

MEASUREMENT OF THE PARAMETER R_{pn} IN ELASTIC SCATTERING AT A PROTON ENERGY OF 605 MeV

Yu.M.Kazarinov, F.Legar, A.F.Pisarev, A.M.Rozanova, and Yu.N.Simonov

Joint Institute for Nuclear Research, Dubna, USSR

(Speaker F.LEGAR)

To eliminate the ambiguity in the phase analysis of nucleon-nucleon scattering at an energy of 630–650 MeV [1], Wolfenshtein's parameter R for pn -scattering at a 90° angle in the center-of-mass system was measured.

A polarized beam of protons was obtained by scattering a proton beam extracted from the JINR synchrocyclotron on a C-target (23 g.cm^{-2}) (Fig. 1). The energy of the polarized beam in this case was $605 \pm 9 \text{ MeV}$, the polarization $P_1 = 0.43 \pm 0.03^{-2}$, and the polarization vector lay in the horizontal plane.

The beam was cleared of neutrons by a 6° rotation in the vertical plane by means of an auxiliary magnet M_1 .

In the second scattering CD_2 - and CH_2 -scatterers, each containing the same number of nuclei, produced different effects when placed in the beam. Cases of pn -scattering were determined by coincidence of the pulses from counters 3 and 4 with the pulse from counters 1 and 2 of the neutron detector.

Recoil protons escaping as a result of pn -collisions in the second scattering were analyzed in the third scattering on an Al-target (24 g.cm^{-2}), placed inside the spark chamber, which recorded the third scattering. This target was divided into two parts in order to reduce the influence of multiple Coulomb scattering.

A second spark chamber was placed in the "neutron" branch. The absence of a track in this chamber served as the main criterion in selecting pn -collision events.

The projections of the tracks on two mutually perpendicular planes were photographed. 4761 cases, satisfying the following criteria, were chosen for processing:

- 1) the entrance angle of the proton into the chamber does not exceed 3° ;
- 2) the angle of the third scattering lies in the interval $4^\circ < \theta > 30^\circ$;
- 3) no track in the chamber of the neutron branch.

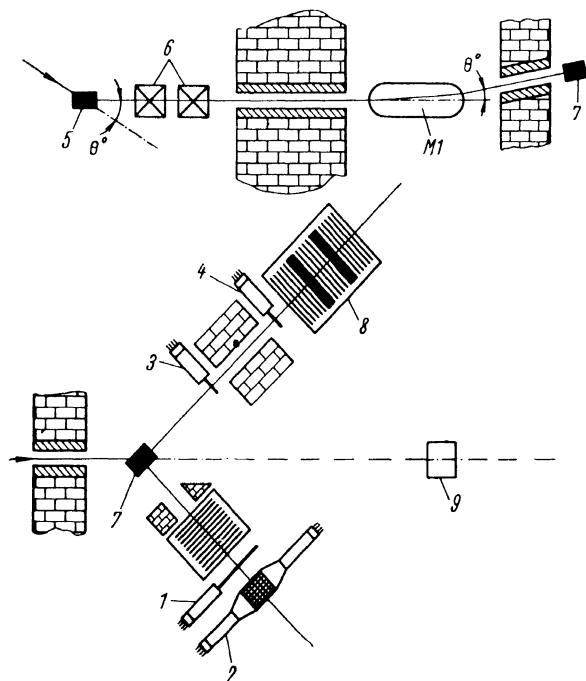


Fig. 1. Experimental layout:

1 – 4 – counters; 5, 7, 8 – first, second, and third scatterers;
6 – magnetic lenses; 9 – monitor.

The calculations were made according to the maximum likelihood method. We determined the maximum for the expression

$$L = \Pi [1 + P_2 P_3(\theta_i) \cos \varphi_i - P_1 P_3(\theta_i) R \sin \varphi_i],$$

where $P_3(\theta_i)$ is the analyzing power of the Al-target (third scattering); P_2 is the polarization in pn -scattering (second scattering); P_1 is the polarization of the beam after scattering by carbon (first scattering).

The maximum lies at the point of the most probable value of R and P_2 .

In order to eliminate a possible error due to multiple scattering, the calculations were made for different minimum angles of the third scattering (4, 5, 6, and 7°). Accord-

ingly, it was shown that within the error limits the results agree. An additional experiment, carried out for pp -collisions in a non-polarized beam of protons, made it possible to determine a pseudoasymmetry in the third scattering and to introduce a correction in the measured value of R and P_2 . The values found with allowance for all corrections and errors of the experimental quantities P_1 and $P_3(\theta_i)$ were $R = 0.55 \pm 0.29$ and $P_2 = -0.13 \pm 0.12$.

REFERENCES

1. Kazarinov Yu.M., Kiselev V.S., JETP, 46, 797 (1963).
2. Kumeikin Yu.P., et al. JETP, 46, 50 (1964).