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Abstract

We construct an artificial neural network to study the pairing symmetries in disordered
superconductors. For Hamiltonians on square lattice with s-wave, d-wave, and nematic pairing
potentials, we use the spin-polarized local density of states near a magnetic impurity in the clean
system to train the neural network. We find that, when the depth of the artificial neural network is
sufficient large, it will have the power to predict the pairing symmetries in disordered
superconductors. In a large parameter regime of the potential disorder, the artificial neural
network predicts the correct pairing symmetries with relatively high confidences.

1. Introduction

A unambiguous determination of pairing symmetry in high-temperature superconductors [1] and
unconventional superconductors [2] plays a crucial role in the investigation of pairing mechanisms and in
the identification of topological nontrivial superconductors [3]. Experimentally, there are various methods
which can be used to detect the pairing symmetry, e.g., phase-sensitive tetracrystal measurements [4, 5],
quasiparticle interference spectrum [6—9], local density of states (LDOS) near magnetic (and nonmagnetic)
impurities [10—12], nuclear magnetic resonance spectroscopy [13, 14], etc. Among them, the local density
distribution of Yu—Shiba—Rusinov [15—17] resonance state [18—22] and spin-polarized (SP) LDOS [23, 24]
near a magnetic impurity visualize the pairing symmetry intuitively. However, the pairing symmetry
implicated in these LDOSs are fragile against disorder, which makes the identification of pairing symmetries
to be poor performed and scarcely used in a variety of interesting materials, which may host unconventional
superconductivity and topological superconductivity, such as Cu,Bi,Se; [25—-27] and its variants [28—34],
FeTe0‘4SSe0,55 [35], etc.

Machine learning algorithms [36] such as deep learning are powerful tools and have been widely used in
different domains from academic research to industry applications. In recent years, these algorithms have
been used in multiple research fields in physics, such as gravitation wave detection [37, 38], particle physics
and high-energy physics [39-42], quantum entanglement and quantum information [43, 44], disorder and
phase transition [45, 46], material designing [47, 48], quantum many-body problem [49, 50], etc. The deep
learning algorithms based on convolutional neural network are powerful tools in the image recognition,
feature extraction and phase classification in physics. In this work, we show that the deep learning
algorithms built on multilayer convolutional neural networks can be used to extract features from SP
LDOS:s for different pairing symmetries, and make a prediction with quantitative confidences on the pairing
symmetries for disordered superconductors. The detailed implementation is as follows. Theoretically, one
can construct different model Hamiltonians with different pairing symmetries. The model Hamiltonians
may come from different superconductivity mechanisms, or come from a systematic classification according
to symmetry analysis and group theory. The parameters in the model Hamiltonians can be obtained from
first principle calculation or fitted from experimental data. Theoretically, one can generate experimental
measurable quantities (e.g., the SP LDOS used in this work) using the Hamiltonians in the clean limit.
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Using the data sets in the clean limit, one can train an artificial neural network. A well trained, robust, and
generic artificial neural network will be predictable for disordered systems.

The paper is organized as follows. In section 2, we build the model Hamiltonians for a superconductor
on square lattice with different pairing symmetries, i.e., s-wave, d-wave, and nematic pairings, and show the
theoretical calculation of SP LDOS using two different methods. The patterns for model training is
generated here from the Hamiltonians without disorder. In section 3, we give a brief introduction to the
artificial neural network and show the detailed construction of the network model used in this work. We
present the prediction of the artificial neural network for systems with different pairing symmetries and
different disorder strengths in section 4. A conclusion is given in section 5.

2. Model Hamiltonian and SP LDOS

We consider the following Hamiltonians on square lattice with three types of pairing symmetries and
on-site potential disorder,

H' = Ho + H} + Himp + Hw, (1)
Ho=) Y > Yhigo (1 05) ro = 1) U Vras 2)
R j=l40=1] R
HA = As) gyt +hecs (3)
R
HR=An) > eij;,’rd’;w&j,i +he, (4)
R j=14
Himp = VOZ ¢$,asga/¢o,o’) (5)
o0’
Hy =Yk, Wrir, for Wg € [~W/2, W/2], ()
R0

where w;&)a and g, are the creation and annihilation operators of electron states at site R. o =7, | refers to
the spin-up and spin-down states, respectively. §, = (1,0), §, = (0, 1), 63 = (—1,0), and 4 = (0, —1) are
the four nearest neighbor sites. t is the hopping amplitude, 1 is the chemical potential. In this work, we
consider three kinds of different pairing symmetries: (i) the s-wave pairing shown in equation (3), where
Ag refers to the pairing strength, h.c. means the hermitian conjugate; (ii) the d-wave pairing between
nearest neighbors, d-wave symmetry is characterized in the phase factor, ¢; = ¢3 = 0, ¢, = ¢4 = 7; (iii)
nematic pairing with pairing potential in the form of equation (3) and the nematicity is characterized in the
anisotropic hopping term in equation (2), §; = d3 = 0t, 6, = 04 = —0t [51] . H# in equation (1) has three
different choices, H, H” and HY for s-wave, d-wave and nematic pairings, respectively. The impurity is
located at the center (original point) of the lattice R = 0, Vj in equation (5) represents the strength of
impurity potential. In this work, we consider the classical magnetic impurity, S, = %az and o, is the third
Pauli matrix of spin. As shown in equation (6), disorder is manifested by a random on-site potential with
the amplitude distributed uniformly within width W.

In order to get a good performance of numerical results for a large number of samples, we use two
different methods to calculate the SP LDOS. For the clean system without potential disorder, we choose
periodic boundary conditions for both the two directions of square lattice. In this case, the wavevector is a
good quantum number and the Green’s function of superconductor (corresponding to the Hamiltonian
H, + Hf) can be evaluated directly in wavevector space by using the standard T-matrix method. The
system size has been chosen to be as large as 1024 x 1024 and the fast Fourier transformation is applied to
speed up numerical calculation. The SP LDOS as a function of energy at the impurity site is well performed
using this method. Here we show the detailed derivation of SP LDOS. Using the Nambu spinor
representation in wavevector space, \I/;L = (%t,m w,i g ¢Ikﬁ’ YT %, )> and the Bogliubov—de Gennes formalism
of the Hamiltonian without disorder, see equations (12)—(14) for detailed expressions, one can find that,
the SP LDOS can be written as follows after some straightforward derivation [52—54],

14+,

S.(E,R) = —% Im {Tr { 0. AG(E, R)} } , (7)

where (, is the third Pauli matrix in Nambu spinor space, AG(E, R) = G(E, R) — Go(E, R) is the difference
between the full Green’s function with impurity contained and the free Green’s function without impurity.
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AG(E, R) can be expressed as a product of the free Green’s function, Gy(E, R), and the T-matrix [20],

where

T(E) = [V - Gy(E,0)] 1, 9)

V = Vy(,/2 is the magnetic impurity potential expressed in Bogliubov—de Gennes formalism. The free
Green’s function in real space can be calculated using the Fourier transformation,

Go(ER) = 37 4G (E, ), (10)
k

Go(E, k) = [E + i6 — hpac(k)] ', (11)

where hpqc (k) is the Hamiltonian of clean superconductor expressed in Bogliubov—de Gennes formalism
and wavevector space, it takes different forms for different pairing symmetries,

o) = 3 1K) — 4] G~ Gy A (12
Mo () = 3 [6(h) = 111 . — G Andy, (13)
Biak) = 5 [6(K) + 6ek) — ] . — Gy s, (14)

where e(k) = 2t(cosk, + cosk,) is the dispersion of normal state on square lattice,
de(k) = 20t(cosk, — cosk,) is the distortion of dispersion induced by nematicity, d,, = cosk, — cosk,, is the
form factor of nearest neighbor d-wave pairing, o4 and (4 (# = x, y, z) are the Pauli matrices in spin and
Nambu spinor spaces, respectively.

When the random potential is applied, wavevector is no longer a good quantum number, we have to
diagonalize the total Hamiltonian to find the SP LDOS. The following formula is more suitable [18],

14+
2

SAER) = (¢u(R)]

n

0z5(E_En)W}n(R)>) (15)

here, 1,(R) is the nth eigenvector of the total Hamiltonian (1) and E, is the corresponding eigenvalue of
energy. In practical calculation, the system size has been chosen to be 151 x 151 with open boundary
condition, the §-function in equation (15) is approximated by the Lorentzian distribution function,

1 0

5(E—En) - ;(E_En)2+52)

(16)
where 0 is the infinitesimal imaginary part of retarded Green’s function given in equation (11), it has been
chosen to be 0.002 for numerical calculation. The summation in equation (15) is approximated by a small
subset with E,, € [E — 106, E + 104], the FEAST eigenvalue solver package [55, 56] is used to find the
eigenvalues in this interval and the corresponding eigenvectors. For both the two situations (W = 0, the
clean system, and W # 0, the disordered system) and each SP LDOS pattern, only a small subset with

41 x 41 sites and the magnetic impurity located at the center has been generated for the pairing symmetry
classification using artificial neural network.

3. Artificial neural network classification

An artificial neural network is a nonlinear function which is constructed by layers of ‘neurons’. Using some
hidden ‘neurons’ layers, z, z?, ..., z (here n is the number of hidden layers), the input data x can be
mapped to the output results y. For the sequenced feedforward artificial neural network, this can be written
as,

x(= zVasdefault) — 2z — 2 — ... z" — . (17)

For each mapping between sequenced layers, z\ — z(*1, generally, there are two elementary functions:
(i) the weighted linear function, W(+Vz and (ii) the activation function, A"V,

i+1)

20 _y 4l . z(i'H)ZA(i+1)[W(i+1)z(i)]. (18)




10P Publishing New J. Phys. 22 (2020) 053015 L Chen et al

Network parameters: |in]?11L| Stage 1
Size of conv. kern. = (3,3)

No. of filters = 256
(Layers 1~14)

Layer 1
Stage 2
|-t
Layer 9 Laer 8 Laer 7 Léyer 6
Stage 3
Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 |

Figure 1. I[llustration of the artificial neural network. 16 hidden layers are used in this network. The last hidden layer is a global
connected layer, it is not shown here. These layers can be divided into three stages. In stage 1, two convolutional layers (layer 1
and layer 2) are applied to extract the superficial information of the pattern. In stage 2, five convolutional layers (layer 4 to layer
8) are applied to extract the deep features of the SP LDOS pattern. At the end of these two stages, max pooling layers (layer 3 and
layer 9) are used to refine the features. In stage 3, convolutional layers and max pooling layers are used alternately to abstract the
aspects of the original pattern. In each convolutional layer, 256 filters are used, the size of convolutional kernel is (3, 3). In
addition, dropout and regularization are applied to avoid overfitting. Here an SP LDOS pattern in d-wave superconductor with
disorder strength W = 0.5 is chosen to demonstrate the structure of the artificial neural network. The first 6 patterns in each
hidden layer are displayed (in layer 15, there are only 4 filters). The confidence is calculated to be

(4 x 1078,0.299,2 x 1078,0.02), which indicates that the d-wave pairing symmetry (I = 1) is dominated.

A deep neural network with 16 hidden layers are chosen in practical training. Figure 1 shows the structure
of the neural network model (see the caption for the detailed description of the network). For the output
layer, the activation function has been chosen to be the sigmoid function,

1

- (19)
1+ exp[—z,(c )]

sigmoid (z,(c"),z(")>
where z,(c") refers to the kth value of the last hidden layer z"). For all the hidden layers, we chose the rectified
linear unit (ReLU) function as the activation function,

ReLU (") = max (0,27),  (i=0,1,...,n—1). (20)

One can find that, if the model is established, i.e., the number of layers, the type and the activation
function of each layer, the size and number of convolutional kernels in each convolutional layer, are chosen
and fixed, then the full mapping y(x) is totally determined by the weight matrices, WO i=1,2,...,n+ 1.
The training process is designed to optimize these weight matrices. In classification problems, the
cross-entropy function is widely used as the cost function for the training,

Ns N
l s c R . )\

S s=1 I=1

Here, NV is the number of samples in training, A\; is the number of classes. #; is a binarization function:
when x° belongs to the Ith class, j; = 1, otherwise y; = 0. y; is the output for the Ith label for the input
sample x°. For a well trained artificial neural network model defined as y; — ; for any s in 1 to N, the
cross-entropy function tends to its global minimum value. The last term is the regularization and A is the
regularization parameter. This term is applied to reduce the overfitting. The weight matrices are learned
using a set of clean samples without disorder, these weight matrices are updated in the training process by
minibatch gradient descent with batch size 40 as W,E’,)(, — W,E’,)(, -7 (8£ / 8W,£l,)<,> , where 7 is the learning
rate, which has been chosen to be the small value 0.0015. After the training process, the artificial neural
network model is determined, y;(x) returns a value in the interval (0, 1) for the input pattern, this value
gives the prediction of confidence that the input data x belongs to the Ith class. In this work, three classes of
symmetries are investigated, | = 0, 1 and 2 stands for the s-wave, d-wave and nematic pairings, respectively.
In order to get the feature of strong disorder which destroys all the pairing symmetries significantly, a




10P Publishing

New J. Phys. 22 (2020) 053015

L Chen et al

20 T T T 06 20 T T T 0.04
(a) s-wave (b) d-wave
10 | 1F4 0.3 10 | ] 44 0.02
[ |
.
~0F Hii 110 > of i fillEe - el 1F10
- il
]
-10 | 1p1-03 -10F = g4 -0.02
-20 l : L -0.6  -20 d - d -0.04
-20 10 0 10 20 -20 -10 0 10 20
X X
20 . . — 0.5 ; ; :
() nematic (d)
0 F B
10 | B 0.25
~ -2 E
~of - 1o S
“wy
-10 {H 025 4 )
B 1 1 1 05 ~ N N N
20—20 -10 0 10 20 (?0.4 -0.2 0 0.2 0.4
X E
Figure2. (a)—(c) SP LDOS S,(E, R) as a function of R = (X, Y) for different pairing symmetries at the resonance peak E = E,
(clean systems without disorder). The resonance energy E = E, is determined by the singularities of T-matrix,
det[V — Go(E,,0)] = 0. (d) S.(E, R) versus E at R = (0,0) for the s-wave pairing. Two resonance energies can be found to be
located at E = 4-0.012. Resonance energy of figure (a) is chosen to be E; = —0.012. The magnetic impurity potential V, = 2 is
chosen for numerical calculation. Other parameters are given in table 1.

Table 1. Default parameters for numerical calculation. One-half of the hopping amplitude, |¢/2, is set to be the unit of energy.

t

ot

I

As

Ap

-2

-7

0.1

0.25

reference class referring to randomness and labeled as I = 3 is added. In this class, the training pattern are
generated using random numbers.

4. Numerical results

Firstly, we consider the SP LDOSs without disorder, which give us an intuitive understanding of the training
pattern. Figure 2 shows typical patterns for different pairing symmetries. These results can be calculated
from both equations (7) and (15). We carry out both these calculations and find that the SP LDOS patterns
are coincide to each other very well. This can be considered as an evidence that our numerical calculation of
SP LDOSs are correct. The resonance energy E = E, is determined by the singularities of the T-matrix, i.e.,
det[V — Go(E;, 0)] = 0. Generally, there are two solutions located symmetrically at the two sides of the
Fermi surface for the equation det[V — Gy(E;,0)] = 0, i.e., E = £E,. In practical calculation, we chose
randomly one of these two resonance energies to evaluate the training pattern. One can find that these
patterns reveal significant different features, i.e., figure 2(a) is SO(2) rotation symmetric, figure 2(b) is
fourfold rotation symmetric, figure 2(c) reveals twofold rotation symmetry. In the training procedure of
machine learning, we make the parameters shown in table 1 fixed (W = 0 is chosen), V; varying from 1 to
4. For each pairing symmetry, 1000 patterns have been generated as training samples.

We have made some pretreatment about these data before the training. (i) The value at R = (0, 0) has
been wiped. Physically, a large value of SP LDOS at R = (0, 0) should not be considered to be the
dominated characteristic of any pairing symmetry. (ii) All the training patterns have been normalized to the
interval [—1, 1]. (iii) Very small Gauss noise (on the scale of x 107> after normalization) has been added to
enhance the robustness of training data.
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Figure 3. (a)—(c) confidences of different pairing symmetries. The titles ‘s-wave’, ‘d-wave’, and ‘nematic’ refer to different
pairing symmetries of the clean system without disorder. The horizontal axes mean the strength of disorder applied in these
superconductors. For each strength of disorder potential, 30 patterns are generated and four kinds of confidences are plotted. The
four kinds of symbols: red circle, blue square, green diamond, and black cross, stand for the confidence of s-wave, d-wave,
nematic pairings, and randomness, respectively. (d)—(1) exemplified single-shot SP LDOS configurations for different pairing
symmetries and different disorder strengths. (V; = 3 is chosen for numerical calculation).

The first row of figure 3 shows the prediction of pairing symmetries from the artificial neural network
for three kinds of superconductors with disorder potentials. Single-shot SP LDOSs are shown in
figures 3(d)—(1) for different pairing symmetries and different disorder strengths. For all the three kinds of
pairing potentials, when strong potential disorder is added, e.g., W > 2, the dominated characteristic of SP
LDOSs is randomness, i.e., the I = 3 class labeled with black x. In the weak disorder regime, i.e.,
0 < W < 0.5, all of the three kinds of pairing symmetries can be discerned by the artificial neural network.
This is also manifested in the single-shot patterns. Figures 3(d), (g) and (j) have weak disorder, the
symmetry of the patterns are clearly distinguishable. The confidences of these patterns calculated from
trained neural network are (0.966,0.006,7 x 107,0.002), (3 x 1072,0.953,2 x 107%,1 x 10™*), and
(1 x107°,1x 107%,0.704,6 x 107°), respectively. Here, the four components in the lists show the
confidences of s-wave, d-wave, nematic pairing, and randomness. In the last row of figure 3, we find the
dominated characteristic is randomness (I = 3 class), the confidences of randomness are 0.312, 0.044, and
0.034 for these patterns. The confidences of other features are negligible (few orders of magnitude
smaller).

Figure 4 shows the averaged confidences with errorbars for each pairing symmetry. One can find that
the identification of correct pairing symmetry is ended at around W = 1.5, 1.0, and 0.5 for s-wave, d-wave,
and nematic pairing symmetries, respectively. Near the critical disorder strengths of s-wave (figure 4(a)) and
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Figure4. (a)—(c) Sample-averaged confidence of different pairing symmetries as a function of disorder strength. In the clean
limit, W = 0, (a)—(c) has s-wave, d-wave, and nematic pairing symmetry, respectively. For each plot, 30 samplings are chosen.
The errorbars are obtained from the variance of the samples.

nematic (figure 4(c)) pairing classes, one can find that the averaged confidence of d-wave symmetry
emergences, i.e., there is a peak of the blue line labeled with [J at W = 1.0 and 0.5 for figures 4(a) and (c)
respectively. When we get into the detailed pattern with neural network learned high confidence of d-wave
symmetry in these regimes (e.g., typical patterns shown in figures 3(e) and (k)), we find that these patterns
do not display fourfold rotation symmetric. This inconsistence may be induced by overfitting and solved by
using more generic neural network model.

Two things need to emphasized here. Firstly, in order to get a model which is applicable in disordered
systems and trained from only clean samples (i.e., the training data and evaluation data are completely
non-intersected), a deep neural network with multi convolutional layers are essential. We have tested some
simple models with only a single hidden convolutional layer. We find that, these simple models perform
good at the original training data but break down when applied to the disordered systems. They perform
badly even for the weak disordered patterns which are very close to the SP LDOSs of the clean systems. This
demonstrates that pairing symmetry is not a superficial aspect. Another factor which makes the symmetry
identification to be difficult is that the SP LDOSs are smooth functions. These patterns do not have sharp
edges as typical features for different pairing symmetries. This makes the machine learning with few hidden
layers perform badly for this problem. The second thing we need to emphasize is, here we use the sigmoid
function as the activator of the output layer. The confidences shown in figure 3 are ranged from 0 to 1, and
look almost even distributed. This does not mean that the symmetry is not well captured by the model.
Actually, the confidences of the training patterns are also ranged from 0 to 1, and look almost even
distributed. This makes the neural network generic and applicable for disordered systems. We have tried the
widely used maxsoft function as the activator for the output layer. We find that, when the trained models
are applied to identify the original data, the confidences for the correct pairing symmetry are close to one.
However, they perform badly in identifying the symmetry of disordered systems.

Due to the limitation of SP LDOS, for some special situation, the identification of pairing symmetry
should be complemented by using other methods. If the neural network predicts a high confidence of
d-wave pairing, the extended s-wave pairing can not be excluded, further investigations are recommended.

5. Conclusion

In this work, we establish an artificial neural network using the SP LDOS patterns near a magnetic impurity
of clean superconductors as the training data. Three kinds of pairing symmetries, i.e., s-wave, d-wave, and
nematic pairings are investigated. We find that this deep neural network model trained from clean systems
can be applied to predict pairing symmetries in disordered superconductors. Our work pave the way for the
future investigation of pairing symmetries in disordered superconductors by using the deep learning
methods.
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