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Abstract

The purpose of the first work is to point out that a model-independent search strategy covering
all possible leptoquarks is possible and has not yet been fully exploited. To be systematic
we organize the possible leptoquark final states according to a leptoquark matrix with entries
corresponding to nine experimentally distinguishable leptoquark decays: any of {light-jet, b-jet,
top} with any of {neutrino, e/µ, τ}. The nine possibilities can be explored in a largely model-
independent fashion with pair-production of leptoquarks at the LHC. We review the status of
experimental searches for the nine components of the leptoquark matrix, pointing out which three
have not been adequately covered. To demonstrate the utility of the leptoquark matrix approach
we collect and summarize searches with the same final states as leptoquark pair production and
use them to derive bounds on a complete set of Minimal Leptoquark models which span all
possible flavor and gauge representations for scalar and vector leptoquarks

In the second work of this thesis, we explore an extension to the Standard Model which
incorporates a vector field in the fundamental representation of SU(2)L as the only non-standard
degree of freedom. This kind of field may appear in different scenarios such as Compositeness,
Gauge-Higgs unification and extradimensional scenarios. We study the model in which a Z2
symmetry is manifiest, making the neutral CP-even component of the new vector field a vectorial
dark matter candidate. We constraint the parameter space through LEP and LHC data, as well
as from current dark matter searches. We find that the model is highly constrained but a small
region of the parameter space can provide a viable DM candidate. Additionally we contrast our
predictions on mono-Z, mono-jet and mono-Higgs production with the ones obtained in the well-
studied inert Two Higgs Doublet Model. Finally, comment on the implications of perturbative
unitarity are presented.
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Chapter 1

Leptoquarks

1.1 Introduction

Leptoquarks (LQ) are hypotetical particles which couples to a lepton and a quark. They have
both color and electric charge, then naturally coupling to gluons. Also they can have weak
charges. They appear naturaly in different SM extensions: GUT, SUSY with RPV, Technicolor
and Quark and lepton compositness. Further, there is additional motivation for LQs from B
meson decays anomalies observed, which could be explained in models with LQs of TeV scale
masses. There are many leptoquarks types. In Fig. 1.1 we show a classification following our
notation, BRW [1] and from the PDG book [2]. In view of the amazing amount of LQ models,

Figure 1.1: Minimal leptoquark models (MLQ) classified according to their charges under the SM gauge group.

the goal of our work is the following: to provide a simple organizing principle which makes it
straightforward to systematically search for all possible leptoquarks. The idea is that we identify
a minimum set of independent final states which must be searched for.

We divide the work in two parts. In the first part we introduce the LQ matrix and show
that bounds on the cross sections into each of the 9 final states of the matrix are both efficient
and sufficient for searching for all possible LQs. In second one we demonstrate the utility of
this approach. We collect the best currently available cross section bounds from LHC searches
organized by which element of the LQ matrix they cover and use them to put bounds on a
complete set of “Minimal Leptoquark” (MLQ) models. The MLQs include both scalar and
vector LQs with all possible flavor, charge and isospin quantum numbers.

Bastián Díaz Sáez 1



1. Leptoquarks

1.2 Scalars and Vectors LQs

In this section we summarize some results between scalar and vector LQs: pair-production at the
LHC, and the efficiencies from kinematical cuts (from ATLAS and CMS).

Leptoquark Pair production

The leading Feynman diagrams contributing to the LQ pair-production cross section are shown
in Fig. 1.2. The gluon-gluon-LQ coupling is fixed by SU(3)c gauge symmetry. The vector case
has a subtlety related to unitarity of theories with massive vectors. A consisten theory must
have additional states beyond the LQ with masses not too far above the LQ mass. In the plot
we show the contribution to LQ pair-production due to the intermediation of a massive gluon g′.
Note that its contribution below 2 TeV is very small, then allowing to neglect it in the leading
Feynman diagrams.
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Figure 1.2: Diagrams for leptoquark pair production: gluon-initiated (upper row), quark-initiated (lower-left),
and diagram proportional to the square of the leptoquark-lepton-quark coupling, λ2 (lower-right).

In Fig. 1.3 we show the production cross section of a pair of leptoquarks. The red and blue
cross section curves will be called the fiducial cross sections: σs and σv, for the scalar and vector
LQ, respectively. The leptoquark pair production is almost model-independent, because QCD
gluon-gluon-LQ couplings are expected high enough in comparision to the perturbative value
for the free λ couplings. On the other hand, if the free coupling is increased enough to make a
difference for pair production it also contributes to single LQ production at the same order in λ
and single production will yield a stronger limit.

Efficiencies between scalars and vectors

For experimentalists, the signal under study can depend on many properties such as the spin,
mass, charge, etc. We show that the efficieny is almost the same for scalar and vector LQs; The
signal efficiency only depends on the LQ mass. The basic reason for this model independence
is easy to understand: current LQ bounds already require masses well above 500 GeV and
center of mass energies in excess of 1 TeV. Thus leptoquarks are produced with only moderate

2



1.2. Scalars and Vectors LQs
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Figure 1.3: Pair-production cross section of LQs. Predictions are leading order with K-factors for scalar S and
vector V leptoquarks. The cream band is explained in a later section.
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Figure 1.4: Ratios of signal efficiencies εS/εV for pair-produced scalar and vector LQs with various masses. The
LQ decays are to muons and jets. The panels show the relative efficiencies of a series of selection
cuts from recent ATLAS and CMS analyses.
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1. Leptoquarks

boosts. Furthermore they two-body-decay directly to SM particles, yielding highly energetic
widely separated SM particles with approximately isotropic distributions. Thus signal efficiencies
for standard kinematic cuts are high and only very weakly dependent on any details of the LQ
model other than the LQ mass (see Fig. 1.4).

1.3 LQ matrix

Let us think in the possibles fermion final states at the LHC. All the light quarks, i.e. u, d, c, s
and their antiparticles, all they leave the same trace at the detector, a light jet j. With b-tagging
is possible to recognize a jet coming from a b-quark with high accuracy. The t-quark has its
own family of traces. Then, we have just three possibles signatures from the quark sector: j,
b-jet and t-quark. In the leptonic side we use the following criteria. Light leptons, e±, µ±, have
similar search strategies, then we consider all those leptons as a unique trace: l, τ± and neutrinos
(missing energy) are treated as different and independent final states.

Therefore, we arranged all these LQ final states into a 3× 3 matrix which we call the “lepto-
quark final state matrix”, or simply “LQ matrix” (see Fig. 1.5).

j b t

ν

τ

Figure 1.5: The Leptoquark Matrix.

Possibles LQ final states

Let us consider the easiest case: the LQ couples just to unique quark-lepton bilinear ql, then the
decay to the LQ anti-LQ pair is also unique to the “symmetric” final state (lq)(l̄q̄). However,
when LQs have multiple decay channels then LQ pair production also produces “asymmetric”
final states which are not covered by the classification in terms of a single 3× 3 matrix.

symmetric : (lq)(l̄q̄) + (l′q′)(l̄′q̄′)
asymmetric : (lq)(l̄′q̄′) + (l′q′)(l̄q̄)

The two symmetric ones are contained in the LQ matrix classification, the asymmetric ones are
not. But here is the point: all LQ which produce asymmetric final states necessarily also produce
symmetric final states. Therefore the symmetric final states are sufficient to search for all possible
leptoquarks. Symmetric final states can be represented by the LQ matrix.

4



1.4. Minimal Leptoquark Models

Then the branching fraction to the quark-lepton pair with the largest coupling lq will dominate
the decays, and the branching fraction to the symmetric state (lq)(l̄q̄) will be largest in most of
the cases.

There are some interesting contrary case to the latter. For example, consider the SU(2)weak
singlet scalar leptoquark. It couples to the SU(2)weak doublets qL and lL, both of the first
generation. The possible four possible final states are (νd)(ν̄d̄) + (e−u)(e+ū) + (νd)(e+ū) +
(e−u)(νd̄), each with 25% branching fraction. Here one can use the symmetric LQ matrix final
states (e−j)(e+j) and jj /E. The other non-symmetric channels can not be studied with the
LQ matrix: (e+j)(j /E) and (e−j)(j /E). However, even in this case where no single symmetric
final state dominates the “easiest” and likely most sesitive search is the symmetric search for
(e−j)(e+j).

On the other hand, we have done a study for all the experimental searches that has been
carried for the final states appearing in the LQ matrix. In Fig. 1.6 we resume all the information
we got from ATLAS and CMS searches. The green slots represent the experimental searches
where it is possible to get a cross section times branching fraction upper bound on that specific
final state. In yellow there is only a lower mass bound on a particular squark model which only
allowed us to obtain recast estimates for other models in this channel. Finally, in white are the
channels where we did not find any upper bound.

j b t

ν

τ

Figure 1.6: Summary of the current status of LQ searches at LHC after Runs 1 and 2.

1.4 Minimal Leptoquark Models

The definition of the minimal LQ models is as the follows: each model has one LQ in a single
SU(3)c×SU(2)L×U(1)Y representation coupling to only one SM lepton-quark fermion bilinear.
For each MLQ model we then obtain the lower bound on the mass of the MLQ by comparing
the predicted cross section times branching fraction into LQ final states with the upper bound
from experiment. To do so we need to determine the cross section times branching fraction into
possible symmetric finals states for each MLQ.
Let us see the possible MLQ. One generation of fermion fields is

Q,U c, Dc, L, Ec, N c,

5



1. Leptoquarks

where Q and L are the left-handed fields, and the rest of them are right-handed1. Then, the
scalar and vector LQ couple to quark-lepton bilinear in the following way

S(QL) and V µ (Qσ̄µL) , (1.1)

where Q ∈ Q,U c, Dc and L ∈ L,Ec, N c. σ̄µ is a vector of 2 × 2 matrices which contracts the
LQ vector index with the fermion spinors. For both scalars and vectors there are 3× 3 different
possibilities (before considering generation number). Considering the three fermion families, the
number of possible MLQ models is 162: 3× 3× 3× 3× 2. We are defining the fields in the mass
eigenstates for the quarks and charged letpons. Examples of MLQs models are: Q1L2, Q3N

c
1 ,

Qc†
1 E

c
2, Q3L3 singlet, etc.

1.4.1 Cross section multiplicity and non-trivial branching fractions

In some LQ models can be produced multiple LQs. Additionally, a given LQ can decay to multiple
final states. Therefore, taking into account that fact, the total cross section for an specific final
state will be given by

σ(pp→ LQL̄Q→ final state) = µ× σf , (1.2)

where σf is the fiducial cross section, either scalar or vector, and we define the multiplicity factor
as

µ =
∑
i

Br
(
LQiL̄Qi → final state

)
, (1.3)

where the sum runs over all the LQs in the model which can decay to that final state. µ may be
greater than 1 when multiple LQs are produced and less when branching fractions into the final
state are nontrivial.

For example, consider the SU(2)weak doublet LQ which couple to the first family of quarks
and to electron (positron): Q1E

c
1. One LQ component couple to (ue+), and the another one to

(de+). Then, the multiplicity factor for (e+j)(e−j) is

µ =
∑
i

Br
(
LQiL̄Qi → (e+j)(e−j)

)
= Br

(
LQ1L̄Q1 → (e+j)(e−j)

)
+Br

(
LQ2L̄Q2 → (e+j)(e−j)

)
= 2.

Then
σ
(
pp→ LQL̄Q→ (e+j)(e−j)

)
= µ× σf = 2× σs.

therefore implying that the cross section for this final state in this model is twice the fiducial
cross section.

Let us see another example in which the branching fraction is non-trivial and where the isospin
predicts symmetric final states. Consider the scalar isospin singlet MLQ model which couple to
the quark third generation and to the first lepton generation: (U3E1). The possible final states
is

1
4
[
(e−t)(e+t̄) + bb̄ /E + (e−t)b̄ /E + (e+t̄)b /E

]
(1.4)

1i.e. Q = (uL, dL). Uc and Dc are the charge conjugates fields. For example, Dc = iσ2b∗
R.

6



1.5. Upper bounds on MLQs models

where the 1/4 indicates that each final state has branching fraction 25%. Again, we focus only
on the symmetric case bacause it does not have neutrinos and is usually more sensitive that the
asymmetric one:

σ
(
pp→ LQL̄Q→ (e−t)(e+t̄)

)
= µ× σf = 0.25× σs.

In the literature this case is sometimes called β = 1/2 because the LQ has two different decays
with branching fractions Br ≡ β = 1/2. In the paper you can find more examples.

We summarize all possible µ-factors in Table 1.1 for different MLQ model contributing to the
LQ matrix final state.

Table 1.1: µ-factors for production and decay σ(pp → LQL̄Q → (lq)(l̄q̄)) in different scalar (upper table)
and vectors (lower table) MLQ models. Rows correspond to different final states whereas columns
correspond to different MLQ models. A “×” entry indicates that that MLQ model does not contribute
to the final state.

pp→ SS̄ → (lq)(l̄q̄) QL triplet QL singlet U cL DcL QEc U cEc DcEc QN c U cN c DcN c

(νj) 1.25 0.25 1 1 × × × 2 1 1
(νb) 0.25 0.25 × 1 × × × 1 × 1
(νt) 1 × 1 × × × × 1 1 ×

(ej), (µj), (τj) 1.25 0.25 1 1 2 1 1 × × ×
(eb), (µb), (τb) 1 × × 1 1 × 1 × × ×
(et), (µt), (τt) 0.25 0.25 1 × 1 1 × × × ×

pp→ V V̄ → (lq)(l̄q̄) Q†L triplet Q†L singlet U c†L Dc†L Q†Ec U c†Ec Dc†Ec Q†N c U c†N c Dc†N c

(νj) 1.25 0.25 1 1 × × × 2 1 1
(νb) 1 × × 1 × × × 1 × 1
(νt) 0.25 0.25 1 × × × × 1 1 ×

(ej), (µj), (τj) 1.25 0.25 1 1 2 1 1 × × ×
(eb), (µb), (τb) 0.25 0.25 × 1 1 × 1 × × ×
(et), (µt), (τt) 1 × 1 × 1 1 × × × ×

1.5 Upper bounds on MLQs models

In this section we constraint the LQs masses from each MLQ model following the leptoquark
matrix. In the paper [3] you will find all the references of ATLAS and CMS papers.

1.5.1 νj, νb and νt

Searches for pair-produced scalar LQs decaying into (νj)(νj), (νb)(νb) and (νt)(νt) final states are
identical to those for pair-produces squarks. In Fig. 1.7 we show diagramatically the equivalence
of the search for the case of LQs and b̃ squarks pair-production. This decay is identical only in
the limit in which the neutralino χ̃0

1 is taken to be massless. Thus, constraints on squarks can be
directly applied to Sνq and viceversa. Such a translation has already been performed by ATLAS.
Inmediatelly we obtain the strongest 95% C.L. limits by applying squark bound from CMS Runs
2 analyses, mSνj ≥ 1.05 TeV, mSνb ≥ 1.175 TeV, and mSνt ≥ 1.07 TeV.

In order to recast the limits to any MLQ model, we digitize the temperature plot for the
obseved 95% C.L. upper limit on the light squark pair production cross section from searches at
CMS, setting neutralino mass to zero. In Fig. 1.8 we show the digitized cross section limits as

7



1. Leptoquarks
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Figure 1.7: Diagrams for the process pp→ SνbS̄νb → (bν̄)(b̄ν) (left) and the corresponding SUSY process pp→
b̃1

¯̃
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1)(b̄χ̃0
1) (right). For massless neutralinos the final-states and kinematic distributions

of the two processes are identical. Similar identifications can be made for other Sνq and squark
searches. Here the “1” subscripts are the usual SUSY notation for lightest b-squark and lightest
neutralino.

the black solid curve. The colored lines in the same plot show the theoretical cross sections of
different MLQs that can decay into (νj)(νj) final states. The curves are labeled with the cross
sections given in terms of the µ-factor times the relevant fiducial cross section, σS or σV , for scalar
or vector LQs respectively. The intersects (dotted black lines) of the cross section curves with the
experimental bound correspond to the lower mass bounds obtained in the different models. We
obtain the bounds 630 GeV, 1 TeV, 1.1 TeV, and 1.2 TeV for scalar leptoquarks with µ-factors of
0.25, 1, 1.25, and 2, respectively, and 1.4 TeV and 1.7 TeV for vector leptoquarks with µ-factors
of 0.25 and 1, respectively.

Obs. 95% CL upper limit

[CMS-PAS-SUS-16-036]

500 750 1000 1250 1500 1750 2000

10-3

10-2

10-1

mϕνj
[GeV]

σ
(p
p
→

ϕ
ν
jϕ

ν
j)
[p
b]

0.25
σ
s

σ
s

1.25
σ
s 2 σ
s

0.25
σ
v

σ
v

1.25
σ
v

2
σ
v

Figure 1.8: (left) Bounds on scalar and vector MLQs which decay into (νj)(νj) final states. (right) Correspond-
ing slot in the LQ-matrix.

Figure 1.9: 95% C.L. lower limit on the mass of scalars (above) and vectors (below) from MLQs.

The CMS search stopped at 1.7 TeV and therefore we cannot obtain reliable experimental
bounds on heavier leptoquark candidates. To get an estimate, we extrapolated the experimental
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1.5. Upper bounds on MLQs models

bound on the cross sections as independent of LQ mass for masses larger than 1.7 TeV (shown
as the black dotted line). It seems reasonable to guess that the cross section limit flattens out
for large LQ masses because signal efficiencies from very heavy LQs approach saturation. This
allows us to recast bounds on vector leptoquarks of 1.75 TeV and 1.8 TeV for µ-factors of 1.25
and 2 respectively. Referring to the row labeled Sνj and Vνj in 1.1 we can then associate the
mass bounds corresponding to different µ-factors to the different MLQ models. These bounds
are summarized in the Fig. 1.12. Mass bounds in parenthesis are estimated bounds obtained
using our extrapolated experimental cross section limits. Mass bounds without parenthesis are
rigorous, they rely only on the cross section bounds published by the experiments.

1.5.2 eb and µb

To constraint the MLQs models we use the SUSY with RPV searches data. The final-state
signature and kinematic distributions of pair-produced squarks which decay via the Yukawa
coupling d̃c†QL, where d̃c† couple like a LQ, are identical to production and decay of scalar LQs.
The process searched for is pp → t̃1t̃1 where t̃1 decays into the final states (eb) or (µb) with at
least one b-tag. Then, we take the strongest bounds from ATLAS search at 13 TeV at the special
points where the decays are 100% to (eb) or 100% to (µb). Seb and Sµb are excluded up to 1.5
TeV and 1.4 TeV with 95% C.L., respectively. Additionally, we assume that the signals regions
do not depend on the LQ mass for even heavier LQs. In Fig. 1.12 we show our extrapolation for
a wide LQ masses, and in the Table 1.11 are shown the estimated bounds.

[ATLAS-CONF-2017-036]
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Figure 1.10: Bounds on scalar and vector MLQs which decay into (eb)(eb) final states (left), (µb)(µb) (middle).
(right) Corresponding slot in the LQ-matrix.

Figure 1.11: 95% C.L. limit on the LQs mass for different MLQ models.
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1. Leptoquarks

1.5.3 τj

We are not aware of any dadicated searches for these final states. However, given the similarity of
this final state with the well-covered (τb)(τb) final state and given that SM backgrounds are small
at large invariant masses we expect that a designated search will obtain bounds on leptoquarks
masses which are comparable to those for the (τb)(τb) case.

Figure 1.12: Corresponding slot in the LQ-matrix. No dedicated search has been carried in this channel.

1.6 Conclusions

Leptoquarks occur in many new physics scenarios and could be the next big discovery at the LHC.
We have focused on both scalar and vector LQ pair production, comparing their production cross
sections and efficiencies at the LHC, founding big differences in their production cross section
because of the LQs spin, and resulting in efficiencies very similar at ATLAS and CMS detector
(in the worst cases less than 10% of differences). The searches were organized by what we called
the leptoquark matrix: it leads to nine distinct final states to be searched for. We have found
strong bounds from existing searches (6 of the 9 cases). The bounds on LQ masses oscillates
between 600 GeV to around 2 TeV, where the highest masses bound are generally for vector LQs.

It is worth to motivate the experimental collaborations to publish bounds on the cross sec-
tion times branching fraction as a function of LQ mass for each of these final states. We also
note that even in the cases where cross section bounds as a function of mass have been published
it would be useful if the search range could be extended as far as possible in LQ mass. We plead
that experimenters publish bounds on leptoquark cross sections as functions of mass for as wide
a range of leptoquark masses as possible. Such bounds are essential for reliable recasts to general
leptoquark models.

For leptoquarks with large couplings single (and off-shell) production can become important
and potentially yield stronger lower bounds on LQ masses. This is especially true when the
large coupling is to first generation quarks with their large parton distribution functions. For
LQs related to the recent hints for new physics from B meson decays the interesting range of
couplings is 10−2 ≤ λ ≤ 1. The LQ matrix is also convenient for organizing the possible single
LQ production final states.
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Chapter 2

Introduction to Dark Matter

It is amazing the complexity and differences in the physics of the smallest and the biggest scales.
On one hand, the physics of small things is goberned by the rules of quantum mechanics, where the
inherent probability and statistical behaviour is underlying all the microscopic phenomena. On
the other hand, general relativity has been very successful guiding us in the discovery of many
astrophysical phenomena, such as mercury perihelium, gravitational lensing and the recently
discovered gravitational waves, and in the description of the evolution of our Universe. More
surprisingly is the deep conection among the fundamental interactions of nature and and laws
that goberns the macroscopic world. Therefore, it is tempting from the most fundamental level
to answer some big-scale issues, such as the famous problem of dark matter (DM). Of course,
other paths to address astrophysical problems has been proposed, such as Modified Newtonian
Dynamics (MOND), and it is worth to explore all these possibilities too.

In this chapter we will review the main astrophysical and cosmological evidences of DM, along
to present the main features of both Standard Models: ΛCDM model and Particle Physics one.
From the latter, we will review the motivation for new physics at the Fermi-scale and how those
proposals relates to the DM problem.

2.1 Astrophysical Evidence

In the 30’s, the astronomer Fritz Zwicky did observations on the Coma Cluster1, and he could
infer through gravitational effects that something non-luminous (dark) would must to be in there.
This inference was made because the galaxies in the cluster were moving too fast for the cluster
to be bound together by the visible matter. Though the idea of DM would not be accepted for
another fifty years, Zwicky wrote that the galaxies must be held together by some dunkle materie
(dark matter). About 90% of the mass of the Coma cluster is believed to be in the form of DM.

Over the years, more data supported the existence of this new exotic kind of matter in another
observations, even at different distances scales. In the following, we ressume the different kind of
observations supporting the evidence of DM2:

• Galactic scale. Stars in galaxies orbiting a common center move more rapidely than they
must to. This is what is called rotation curves. Observing rotation curves usually exhibit

1The Coma Cluster, also known as Abell 1656, is a large cluster of galaxies that contains over 1000 identified galaxies. The Cluster
is at approximattely 100 Mpc (321 million ly).

2There is additional evidence supporting DM both on subgalactic and inter-galactic scales. For a review of this see [4].
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2. Introduction to Dark Matter

Figure 2.1: Dwarf spiral galaxy (NGC 6503) rotation curve located at 5.27 Mpc from the Milky way.

a characteristic flat behavior at large distances, i.e. our towards, and even far beyond, the
edge of the visible disk (see Fig. 2.1). The fact that the velocity of the stars is approximately
constant implies the existence of a spherical halo with mass and density obeying M(r) ∼ r
and ρ ∼ 1/r2. The total amount of DM present in a galaxy is difficult to quantify since
we do not know to what distances halos extend and there is no concordance on the DM
distribution in the inner regions of the galaxy.

• Cluster of galaxy scales. As we mentioned above, the cluster galaxy velocities was the
first evidence of DM (F. Zwicky). Furthermore, gravitational lensing is an effect which
allows to infer the potential well and thus the mass of the cluster. For instance, the right-
side pictures in Fig. 2.3 show the distortion of the light coming from the Abell and the
MS2137.3-2353 clusters: the left-side of the figure shows the spectra in X-rays in which the
gravitational lensing is not visible, while in the right side the lens is notorious). The other
powerful evidence that we have at this sclae is the two colliding cluster of galaxies, most
known as Bullet Cluster.

• Cosmological scales. This evidence come from the information in the Cosmic Microwave
Background (CMB). The WMAP analysis data have shown the abundance of baryon in the
Universe to be Ωbh

2 = 0.024±0.001, a number which is consistent with the predictions from
Big Bang Nucleosynthesis (BBN), 0.018< Ωbh

2 < 0.023, whereas the abundance of DM is
ΩDMh

2 = 0.14 ± 0.02. Additionally, besides the cosmological data from CMB, the three-
dimensional matter power spectrum P (k) thorugh the Sloan Digital Sky Survay (SDSS) has
used to complement the existence of DM in the Universe.

• N-body simulations. The most widely adopted approach to the problem of large-scale
structure formation involves the use of N-body simulations. This has shown that the exis-
tence of Cold Dark Matter (CDM) in the Universe is indispensable for the structure forma-
tion in the earliest eras of the universe. In chapter 3 we will study in more details the origin
and consequences of the CDM paradigm.
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2.1. Astrophysical Evidence

Figure 2.2: Chandra X-ray (left) and Hubble Space Telescope Wide Field Planetary Camera 2 optical (right)
images of Abell 2390 (z = 0.230) and MS2137.3-2353 (z = 0.313) [5]. Note the clear gravitational
arcs in the Hubble images.

Figure 2.3: The power spectrum of the cosmic microwave background radiation temperature anisotropy in terms
of the angular scale (or multipole moment). The data shown comes from the WMAP [6] and the
dashed and poninted curves correspond to different barionic matter densities.
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2. Introduction to Dark Matter

2.2 Standard Cosmology

The Big Bang scenario has became the paradigm of the modern cosmology. It describes the
Universe as a system evolving from a highly compressed state existing around 1010 years ago.
This picture has its roots in the discovery of Hubble’s law from astronomical data, and though
the decades it has evolved in complexity. The model has been very successful in the prediction
of a lot of things, such as the abundance of elements, large scale structure, relic background
radiation and many other properties of the Universe. The model is based on Einstein equations

Rµν −
1
2gµνR = 8πGNTµν − Λgµν , (2.1)

where Rµν and R are, respectively, the Ricci tensor and scalar (obtained by contraction of the
Riemann curvature tensor). gµν is the metric tensor, GN is Newton’s constant, Tµν is the energy-
momentum tensor, and Λ is the so-called cosmological constant. This equation relates the ge-
ometry of the spacetime (left-hand side) to the energy-matter content (right hand-side) of the
Universe.

To solves the Einstein equations one has to specify the symmetries of the problem. Based
on observations at large distances, such as the Cosmic Microwave Background (CMB) or galaxy
survays at scales ∼ 100 Mpc3, the Universe seems uniform: homogenous and isotropic. These
two facts together are known as the Cosmological Principle, and are the starting point to solve
Einstein equations. The inmediate consequence of the cosmological principle can be expressed in
the line element as

ds2 = −dt2 + a(t)2
(

dr2

1− kr2 + r2dΩ2
)
, (2.2)

where a(t) is the so called scale factor and k is a constant parametrizing the spatial curvature of
the Universe. It can takes the values k = −1, 0,+1, which corresponds to have a open, flat and
closed Universe, respectively.

The Einstein equation can be solved with this metric, giving as a result the well-known Fried-
mann equation

H2 = 8πGN

3 ρtot −
k

a2 , (2.3)

where H is the Hubble parameter given by

H(t) ≡ ȧ(t)
a(t) , (2.4)

and ρtot is the total average energy density of the universe. A recent estimate of the present value
of H0 = 100hkm s−1Mpc−1, where h is a constant used to keep track of how uncertainties in H0
propagate into other cosmological parameters, and its value is given by h ∼ 0.67 ± 0.01. A flat
Universe (k = 0) corresponds to the following critical density today

ρc,0 = 3H2

8πGN

(2.5)

= 1.9× 10−29h2grams cm−3 (2.6)
= 1.1× 10−5h2protons cm−3. (2.7)

3Spheres with diameters larger than ∼ 100 Mpc centered in any place of the Universe should contain, roughly, the same amount
of matter.
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2.3. Standard Model of particle Physics

To see more explicitely the other cases of curvature depending of the value of the total density,
we introduce the parameter densities Ωi, which are defined as the density of some specie relative
to the critical density:

Ωi(t) ≡
ρi(t)
ρc(t)

. (2.8)

It is also customary to define that Ω = ∑
i Ωi. The Friedmann equation can be rewritten in terms

of the total parameter density as

Ω− 1 = k

H2a2 . (2.9)

The sign of the spatial curvature of the Universe k is therefore determined by whether Ω is greater
than, equal to, or less than one (see Table 2.1).

Table 2.1: Classification of cosmological models based on the value of the average density, ρ, in terms of the
critical density ρc.

ρ < ρc Ω < 1 k = −1 open
ρ = ρc Ω = 1 k = 0 flat
ρ > ρc Ω > 1 k = 1 closed

Considering the different species in the Universe, i.e. radiation (r), matter (m), curvature (k)
and dark energy (Λ), the Friedmann equation can be recast in the following way

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ, (2.10)

where we have used the conventional normalization for the scale factor a0 ≡ 1 (today). Obser-
vations such as TypeIA supernovae, CMB and Large-scale structure have shown that the actual
values for the species is4

|Ωk| < 0.01, Ωr = 9.4× 10−5, Ωm = 0.32, ΩΛ = 0.68. (2.12)

The matter splits into 5% ordinary matter (barionic matter) and 27% dark matter:

Ωb = 0.05, Ωc = 0.27. (2.13)

Considering that the different species scales with a different power in the scale factor, it is possible
to distinguish different epochs in the Universe dominated by only one source (see Fig. 2.4).

2.3 Standard Model of particle Physics

The Standard Model of elementary particles (SM) is a four-dimensional Quantum Field Theory
(QFT) which includes all the forces, except gravity, and all the known elementary fermions:

4Sometimes these values are given considering the constant h defined above (h ∼ 0.67± 0.01). For example, for our purposes the
most useful quantity is

Ωmh2 = 0.1415± 0.0019, (2.11)

where Ωbh2 = 0.02226± 0.00023 and Ωch2 = 0.1186± 0.0020.
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2. Introduction to Dark Matter

Figure 2.4: Evolution of the energy densities in the Universe as a function of the scale factor.

leptons and quarks. The model is based on SU(3)c × SU(2)L × U(1)Y gauge symmetry. The
SU(3)c gauge group describes the gluon fields, which along with the quarks is known as Quantum
ChromoDynamics (QCD). SU(2)L × U(1)Y is the Electroweak gauge symmetry (EW), and it
contains the weak and electromagnetic mediators in a unified way. Both quarks as leptons may
feel the EW interactions.

The inclusion of the Higgs field into the SM is motivated in order to have a consistent renor-
malizable and unitary QFT massive spin-1 fields (weak mediators). The parametrization of the
mass acquisition by some of the electroweak gauge bosons is thorugh of what is known as the
Higgs mechanism. It undergoes through a phase transition, breaking spontaneously the elec-
troweak symmetry of the theory by the vacuum expectation value of the neutral component of
the Higgs field, realizing the following pattern

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)Q. (2.14)

This spontaneous symmetry breaking results in the generation of the massive W± and Z gauge
bosons as well as the massive scalar Higgs boson. Complementary, the scalar doublet can be used
to generate almost all the fermion masses: Yukawa sector. In view of the lack of the counterpart
right-chiral neutrino, it is not possible to include a mass term for it, remaining massless at tree
level.

The electroweak scale

The Higgs mechanism has been very attractive for two reasons. The first one is that it is the
minimal way to generate the masses for the weak force mediators in a renormalizable way. This
minimality respects custodial symmetry, making the ρ-parameter very close to the unity, and
making the electroweak radiative corrections to be allowed by the experimental data. The second
important reason is that a light Higgs boson helps to unitarize the elastic scattering amplitudes
of the gauge bosons at high energies (E � MW ). This is, the Higgs boson participates in the
electroweak elastic scattering amplitudes at all levels in perturbation theory canceling the ∼ E2

grow energy behavior. This means that if the Higgs boson were not discovered, one would have
expected a new strong dynamics at the TeV scale.
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2.3. Standard Model of particle Physics

After EWSB, the tree level Higgs boson mass is related to the Fermi-scale (energy scale around
256 GeV) through

mH =
√
λv =

√
λ√

GF

√
2
. (2.15)

Any quantum correction to mH implies inmediatelly a quantum correction on GF . The problem
with the Higgs mechanism appears when we think the SM valid perturbatively up to very high
energies, let say near the Planck scale MPl. The Higgs boson mass is unstable under radiative
corrections. This means that because there is no symmetry protecting the Higgs mass, the
radiative corrections are additive. In fact, at one-loop level, the corrections to the Higgs mass
are of the form m2

H = m2
0 + δm2

H , where

δm2
H =

[1
4
(
9g2 + 2g′2

)
− 6y2

t + 6λ
] Λ2

32π2 , (2.16)

and yt is the top Yukawa coupling (we have neglected the contribution from lighter fermions),
g and g′ are the coupling constants of SU(2)L and U(1)Y gauge groups, and λ is the Higgs
self-interaction parameter. We have assumed a common cut-off Λ to regulate the momentum
integrals. Thus, the natural value of the Higgs mass is the cut-off Λ of the theory. In order
for the EWSB scale v to be much lower than the cut-off (MPl) we need a delicate cancellation
between this quantum correction and the bare parameters of the model: the bare parameters of
the Higgs potential have to be adjusted to one part in ∼ 1015. This is a fine-tuning problem, and
makes the theory “unnatural”.

Over the years, this naturalness problem has motivated the construction of many extensions to
the SM, most of them based on two reasoning at the TeV scale: weakly-interacting Higgs model
(e.g. Supersymmetry) and a new Strong Dynamics (e.g. Compositeness). Curiously, in most of
this extensions a massive color-singlet neutral particle arises, making it a dark matter candidate.
Therefore, it seems reasonable to link the expected new electroweak physics to the astrophysical
problem of dark matter. In the next chapter we will develop the details of the WIMP paradigm
and we will review through the Boltzmann equation how the decoupling of dark matter ocurred
in the early Universe, leading to the observed relic density today.
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Chapter 3

Particle Dark Matter

In this chapter we will review the basic particle physics paradigm which goberns the dark matter
(DM) problem: the Cold Dark Matter paradigm along one of the most popular candidates to be
a DM particle, the weakly interacting massive particle (WIMP). We will derive the Boltzmann
equation after some assumptions, giving rise to the WIMP miracle. After settled this framework,
we will review the main features of the three dark matter experiments today: direct detection,
indirect detection and collider experiments.

3.1 Cold Dark Matter and the WIMP paradigm

On quite general grounds, one expect the DM particle to be cold, it means that they must to
be non-relativistic (and thus massive) since the universe was approximately one year old, other-
wise, relativistic particles, such as Standard Model neutrinos, would exceed the escape velocity
of clumpling baryons and thus could not produce gravitational wells needed for structure for-
mation. Numerical simulations of structure formation in the early universe have supported this
fact, requiring non-relativistic (cold) dark matter at the epoch of structure formation. Addition-
ally, DM must to be non-baryonic, i.e. carrying neither electric not color charges. Dynamical
systems, such as cluster collisions, shows that dark matter basically does not interact at the
astrophysical scales. This implies that the dark matter must to be weakly interacting, with the
constraint σ/m < 1.24 cm2g−11. The last general requisite is to be stable (long lived), with a
lifetime exceeding the age of the universe. These set of ingredients (non-relativistic and with no
electric/color charge) make what is called the Cold Dark Matter (CDM) paradigm. It is believed
that approximately 84.54% of matter in the Universe is DM, with only a small fraction being the
ordinary baryonic matter that composes stars, planets and living organisms.

Generally, DM relics are considered to be produced in the very early universe in two distintc
ways: (i) thermal and (ii) non-thermal processes. The thermal production is the idea that DM
was in thermal equilibrium with SM particles in the very beggining of the Universe, i.e., the
reactions going from the dark sector to the standard model and back again were at equal rates.
On the other hand, non-thermal production refers to processes taking place outside of the thermal
equilibrium, and the resulting relics are called non-thermal relics. In the first class of processes,
at some moment in the early universe the rate of the own expansion of the universe grew up to

1Self-interacting DM with a cross section in the range 0.1 < σ/m < 10 cm2g−1 (scales of dwarf galaxies) can be very beneficial in
order to alleviate the small scale structure problems. Two long-standing puzzles of the collisionless cold DM paradigm are ”cusp-vs-
core” and the ”too-big-to-fail” problems. However, some of the methods and assumptions utilized to obtain these results have been
questioned in the recent literature and the actual limit could be less stringent.
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3. Particle Dark Matter

the level of the collision rates among the two kind of sectors and then happened what is known
as freeze-out. This last idea means that from that moment until today, the comoving density
of dark matter is constant. In the second case, the relic production can happen from boson
field coherent motion or from out-of-equilibrium decays of heavier states. Typically, dark matter
relics which were created from a thermal processes and decoupling of the rest of the particles
in the early universe are said to be WIMPS (Weakly Interacting Massive Particle). This class
of particles have a range of masses in the range between a few GeV and some TeV, and they
interacts through the weak force only.

In what follows we will describe thermal equilibrium and the evolution of DM density in the
early universe under some assumptions.

3.2 Dynamic in the Early Universe

The beggining of the universe is taught hotter and denser than today, and the amounts of DM
particles and the rest of the plasma must have been in equal numbers: there was a thermodynamic
equilibrium (through mechanisms like pair production or collisions interactions of other particles).
This means the annihilation process of SM particles and DM particles happened in the same
proportion as the reverse process. See left diagram of Fig. 3.1. The number of particles must
have been so high that generated an environment where the amount of particles per second were
destroyed was equal to the amount of particles were created.

χ

χ

SM

SM

The universe

was expanding

χ

χ

SM

SM

Figure 3.1: Scheme of the thermodynamic equilibrium in the early Universe.

However, as the Universe was expanding and cooled, the thermodynamics equilibrium was broken
and two things occurred:

• The lightest particles did not had enough kinetic energy (thermal energy) to produce DM
particles through interactions.

• The expansion of the universe started to dilute the number of particles doing less frequently
the interaction between them.

Therefore, we can ask now, how did evolve the number of particles as the universe expand? The
formal tool to describe the evolution beyond thermal equilibrium is the Boltzmann equation.
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3.2. Dynamic in the Early Universe

3.2.1 The Boltzmann equation

The first important quantity to consider in a expanding Universe is the number of galaxies per
proper volume as measured by a comoving observer: n(t). The only dependence of this quantity
on time and not in the spatial directions is a consequence of the cosmologial principle. We can
start the analysis thinking in a Universe where the number of particles is conserved for a fixed
volume (V ∝ a3). This imply that in an expanding Universe, the number density of particles
diluted with time (ni ∝ a−3). Therefore, in absence of interactions, the number density of
particles evolves as

dni
dt

+ 3ni
ȧ

a
= 0. (3.1)

To include the effects of interactions we add a collision term to the r.h.s. of eq. (3.1)

1
a3
d(nia3)
dt

= Ci [{nj}] . (3.2)

The form of the collision term will be depend specifically of the interaction process to consider.
Because the interaction between three particles is very unlikely, we can think on scattering and
annihilation process of two particles and simple particle decay. For example, let us consider the
following process

1 + 2⇔ 3 + 4. (3.3)
In this process, particle of species 1 and 2 annihilate each other to produce particle the specie 3
and 4, and vice versa. For example, let see how the number density of particles of the specie 1
change in time. The rate of change of n1 depend on how fast the particles are annihilated versus
how fast they are being produced. This can be described in the following way

1
a3
d(n1a

3)
dt

= −αn1n2 + βn3n4 (3.4)

The first term in the r.h.s of eq. (3.4) describes the annihilation of particles and the second
term describes the production process. We know from QFT that the annihilation term must be
proportional to the cross section, but in this case the cross section may depend on the relative
velocity v of particles 1 and 2. Therefore, the parameter α = 〈σv〉 is the thermally average cross
section, where the braket denote the average over v. We can find the value of the parameter
β considering the case when the system is in chemical equilibrium. When this happen the
interaction term is zero, and β is

β = α
(
n1n2

n3n4

)
eq
, (3.5)

where neq
i is the equilibrium number density. The Boltzmann equation is

1
a3
d(n1a

3)
dt

= −〈σv〉
[
n1n2 −

(
n1n2

n3n4

)
eq
n3n4

]
. (3.6)

It can be written in a simplified form when we suppose that n1 = n2 = n and the species 3 and
4 are in equilibrium neq

dn

dt
+ 3Hn = −〈σv〉

(
n2 − (neq)2

)
. (3.7)

In order to understand the game between abundance of some specie in relation to others and
the Universe expansion, we can rewrite this equation in terms of the abundances: Ni = ni/s
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3. Particle Dark Matter

(remember that the number of particles in a covolume is constant provided the interactions do
not destroy nor created them). For example, let us trace the abundance of the specie 1, N1:

d ln(N1)
d ln a = −Γ1

H

[
1−

(
N1N2

N3N4

)
eq

N3N4

N1N2

]
. (3.8)

where Γ1 = n2〈σv〉2 is the interaction rate per particle, the fraction Γ1/H represent the interaction
efficiency and the parenthesis in the r.h.s of eq. (3.8) characterize the deviation from equilibrium.
As long as Γ� H the natural state of the system is chemical equilibrium (basically this measures
if particles interact frequently enough or is the expansion of the universe so fast that particles
never encounter each other). Under this scenario we consider a simple example: suppose we start
with N1 � N eq

1 (while Ni ∼ N eq
i , i = 2, 3, 4). The r.h.s. of eq. (3.8) is negative, therefore particles

of species 1 are being destroyed and N1 is reduced towards the equilibrium value N eq
1 . By the

other hand, if N1 � N eq
1 , the r.h.s. of eq. (3.8) is positive, this means that particles of species N1

are being created and N1 is driven towards N eq
1 . In both cases the system tend to the chemical

equilibrium. However, when Γ < H, this means the number of particles of specie 1 is not enough
to interact with each other, the r.h.s. of eq. (3.8) is suppressed and the density of particles would
freeze-out at this point turning into a constant relic density N1 = constant. On the study of
DM in early Universe we can observe the same type of evolution for relic abundance. In the
next subsection we will study the freeze-out of DM in the early universe using the Boltzmann
equation.

3.2.2 Dark Matter Freeze-out

To study of the evolution of the DM densities as the universe temperatures drops one must to
make some assumptions about the nature of the DM particles. Considering this we will use the
hypothesis of the WIMP as a candidate for DM. This framework states that the DM particles are
massive and interacts very weakly to themselves and to the Standard Model particles. The first
consequence of this is that the abundance of DM particles is traced to reactions which consider
the interaction of just two DM particles. More than two DM particles interacting in the same
vecinity is too unlikely3.

WIMPs were in close contact with the rest of the cosmic plasma at high temperatures, but
then experienced freeze-out at a critical temperature Tf . The idea is to solve the Boltzmann
equation for such a particle, determining the epoch of freeze-out and its relic abundance. We
start the analysis considering that heavy DM particles X and their antiparticles X annihilate
each other to produce two lights SM particles ` and `

X +X ↔ `+ `. (3.9)

Assuming that there is no asymmetry between DM particles and their antiparticles X, we have
nX = nX . The second assumption is that the light particles are tightly coupled to the cosmic
plasma, so that throughout the evolution of the system they maintain their equilibrium densities
n` = neq` . The Boltzmann equation of the form (3.6) for the evolution of the number of WIMPs

2For a process of the form 1 + 2⇔ 3 + 4, we would write the interaction rate of species 1 as Γ1 = n2〈σv〉, where n2 is the density
of the target species 2 and v is the average relative velocity of 1 and 2. The interaction rate of species 2 would be Γ = n1〈σv〉.

3In the SIMP (Strongly Interacting Massive Particles) paradigm processes such as DM +DM +DM ⇔ SM +SM are more likely
to occur due to the high coupling among DM particles.
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3.2. Dynamic in the Early Universe

in a co-moving volume, where NX = nX/s and N eq
X = neqX/s is

dNX

dt
= −s〈σv〉

[
N2
X − (N eq

X )2
]
. (3.10)

In the non-relativistic limit one has that

N eq
X = g

s

(
MXT

2π

)3/2
e−MX/T . (3.11)

where MX is the DM mass. Since most of the interesting dynamics will take place when the
temperature is of order the particle mass, T ∼ MX , it is convenient to define a new measure of
time

x = MX

T
, (3.12)

because it will compare the temperature to the DM mass, and the freeze-out state starts for
x ∼ 1. To write the Boltzmann equation in terms of x rather than t, we note that

dx

dt
= − 1

T

dT

dt
x = − 1

T

dT

da

da

dt
x ' Hx, (3.13)

where we have used that T ∼ a−1, then
dNX

dx
= − λ

x2

[
N2
X − (N eq

X )2
]
, (3.14)

where we have defined
λ = 2π2

45 g∗S
M3

X〈σv〉
H(MX) . (3.15)

Eq. (3.14) is know as the Ricatti equation. g∗S counts the number of relativistic degrees of free-
dom, and it is derived from the thermodynamics describing the state of the universe4. Also we
assumed that in this epoch the universe is dominated by radiation, where H = H(MX)/x25 and
t = 1/2H.

Fig. 3.2 shows the result of a numerical solution of eq. (3.14) for two different values of λ.
At very high temperatures, x < 1, we have NX ≈ N eq

X ' 1. However, at low temperatures,
x � 1 the equilibrium abundance becomes exponentially suppressed, N eq

X ∼ e−x. Ultimately,
X-particles will become so rare that they will not be able to find each other fast enough to
maintain the equilibrium abundance. We find that freeze-out happens at about xf ∼ 10. This is
when the solution of the Boltzmann equation starts to deviate significantly from the equilibrium
abundance. The final relic abundance, N∞X = NX(x = ∞), determines the freeze-out density
of dark matter. Well after freeze-out, NX will be much larger than N eq

X according to Fig. (3.2).
Thus at late times (when x > xf ), we can drop N eq

X from Boltzmann equation, which turn into

dNX

dx
' −λN

2
X

x2 . (3.16)

Integrating from x = xf to x =∞ we find

1
N∞X
− 1
N
xf
X

= λ

xf
. (3.17)

4The entropy density can be written s = 2π2

45 g∗s(T )T 3.
5In a radiation-dominated universe we have that H = 1.66g1/2

∗ T 2/MP , where MP = 1.22 × 1019 GeV. It follows that H(m) =
1.66g1/2

∗ m2/MP = Hx2.
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3. Particle Dark Matter

Figure 3.2: Abundance of dark matter particles as the temperature drops below the DM mass.

Because N∞X � N
xf
X , we have

N∞X '
xf
λ
. (3.18)

Of course, this still depends on the unknown freeze-out time (or temperature) xf . Eq. (3.18)
predicts that the freeze-out abundance N∞X decreases as the interaction rate λ increases. This
result is consistent with the fact that λ is proportional to the average annihilation cross section
〈σv〉, which measure the probability of interaction between DM and the lighter particles. If
the averaged cross section is low then is less probable the annihilation of DM, generating an
enhancement in the abundance.

WIMP miracle

Now, if we consider that the number of WIMPs is conserved after the freeze-out we can relate
the freeze-out abundance of DM to the dark matter density today. If the critical density is given
by ρc,0, the actual dark matter parameter density is

ΩX ≡ ρX,0
ρc,0

(3.19)

≡ MXnX,0
3M2

plH
2
0

= MXNX,0s0

3M2
plH

2
0

= MXN
∞
X s0

3M2
plH

2
0

(3.20)

Substituting N∞X = xf/λ and s0 ≡ s(T0). This expression can be recast using the measured
values at the present time

ΩXh
2 ∼ 0.1

(
xf
10

)( 10
g∗(MX)

)1/2 10−8GeV−2

〈σv〉
(3.21)
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3.2. Dynamic in the Early Universe

Figure 3.3: Dominant Standard Model Higgs production cross-sections at the LHC. Cross-sections were com-
puted to QCD next-to-leading-order.

This reproduces the observed DM density if√
〈σv〉 ∼ 10−4GeV−1 ∼ 0.1

√
GF (3.22)

Equivalently, from natural units we have that 1 eV−1 = 1.97 × 10−7m, then it follows that
〈σv〉 ∼ 10−8 GeV−2 = 10−36 cm2 = 1pb.

The fact that a thermal relic with a cross section characteristic of the weak interaction (see
Fig. 3.3 with a Higgs mass of 125 GeV) gives the right dark matter abundance is an astonishing
success for particle physics. This is known as the WIMP miracle.

3.2.3 Including coannihilations

If one or more particles have a mass similar mass to the relic particle and share a quantum
number with it, the standard calculation of relic density fails. In this case, it is necessary to
take into account more processes into the Boltzmann equation. Let us consider N particles Xi

(i = 1, ..., N) with masses mi and internal degrees of freedom (statistical weights) gi. Also assume
that m1 6 m2 6 ... 6 mN−1 6 mN , and that the lightest particle is protected against decay
thanks to some symmetry (i.e. R-parity or KK-parity, for neutralinos or Kaluza-Klein particles,
respectively.). We will also denote the lightest particle by X1. In this new scenario the Boltzmann
equation becomes

dn

dt
+ 3Hn = −

N∑
i,j=1
〈σijvij〉

(
ninj − neqi n

eq
j

)
, (3.23)

where n is the number density of the relic particle given by n = ∑N
i=1 ni, due to the fact that the

decay rate of particles, Xi, other than the lightest is much faster than the age of the Universe.
As before, the number density in thermal equilibrium is given by

neqi = gi
(2π)3

∫
d3pifi, (3.24)
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3. Particle Dark Matter

where fi = e−Ei/T is the Maxwell-Boltzmann distribution. Additionally,

σij =
∑
X

σ (XiXj → XSM) , (3.25)

is the total annihilation rate for XiXj annihilations into a Standard Model particle. The relative
velocity is given by

vij =

√
(pi · pj)2 −m2

im
2
j

EiEj
(3.26)

where pi and Ei being the four-momentum and energy of particle i. The thermal average is
defined with equilibrium Maxwell-Boltzmann distributions given by

〈σijvij〉 =
∫
d3pid3pjfifjσijvij∫
d3pid3pjfifj

. (3.27)

These kind of models which consider a hierarchy of new particles in which the lightest is the
DM particle can be implemented in the software MicrOMEGAS which takes into account the
Boltzmann eq. (3.23) and gives the relic density for each point of the model parameter space.

3.3 Dark Matter detection

Figure 3.4: The three types of dark matter detection. From left to right is direct detection, from up to down
indirect detection and from bottom to top is the expected collider production. In the center the
mediators can be either SM or new particles.

Particle dark matter signatures are expected to be seen in three different ways: direct and
indirect detection, and in collider experiments. In Fig. 3.4 is shown these types of DM searches
in a pictorical way. Note that the energies involved vary from one search to another.

3.3.1 Direct Detection

Direct detection (DD) experiments aim to observe low-energy recoils (typically a few keVs) of
nuclei induced by interactions with particles of dark matter, which (in theory) are passing through
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3.3. Dark Matter detection

the earth. After such a recoil, the nucleus will emit energy as, e.g., scintillation light or phonons,
which is then detected by sensitive apparatus. It is expected that the elastic scattering of WIMPs
with masses of (10 - 1000) GeV would produce nuclear recoils in the range of (1 - 100) keV.

To unambiguously identify such low-energy interactions, a detailed knowledge on the signal
signatures, the particle physics aspects and nuclear physics modelling is mandatory. The calcula-
tion of event rates in direct detection experiments, the DM density, the halo velocity distribution
in the Milky Way and the WIMP-nucelon scattering cross section are required. The rate is
approximately given by

R ∼
∑
i

Ninχ〈σiχ〉, (3.28)

where the index i runs over nuclei species present in the detector and the amount of them in it
is given by

Ni = Detector mass
Atomic mass of species i . (3.29)

The second important quantity is the local WIMP density given by

nχ ≡
WIMP energy density

WIMP mass , (3.30)

and, finally, 〈σiχ〉 corresponds to the cross section for the scattering of WIMPs off nuclei of
species i averaged over the relative WIMP velocity with respect to the detector. The scattering
DM-nucleus can be classified by two important characteristics: elastic or inelastic scattering and
spin-dependent or spin-independent scattering:

• Elastic and inelastic scattering: The elastic scattering of a WIMP off of a nucleus in a
detector is simply the interaction of the WIMP with a nucleus as a whole, causing it to
recoil, ideally often enough to measure the recoil energy spectrum in the target. As we will
detail below, the spectrum of recoils is exponential with typical energies of 50 keV. Current
experiments can detect recoils of considerably lower energy, as low as 1-10 keV. Inelastic
scattering, on the other hand, is not observed by the recoil of a target nuclei. Instead,
the WIMP interacts with orbital electrons in the target either exciting them, or ionizing
the target. Alternatively, the WIMP could interact with the target nuclei leaving it in an
excited nuclear state. This process leaves the signature of a recoil followed by the emission
of a photon a nanosecond, or so, later. Such signatures have to compete with backgrounds
of natural radioactivity, however.

• Spin-Dependent and Spin-Independent Scattering: WIMP scattering off of nuclei is com-
monly discussed in the context of two classes of couplings. First, axial-vector (spin de-
pendent) interactions result from couplings to the spin content of a nucleon. The cross
sections for spin-dependent scattering are proportional to J(J + 1) rather than the number
of nucleons, so little is gained by using heavier target nuclei. For scalar (spin-independent)
scattering, however, the cross section increases dramatically with the mass of the target nu-
clei, and typically dominates over spin-dependent scattering in current experiments which
use heavy atoms as targets.
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3. Particle Dark Matter

Prediction of event rates

From classical kinematics, the energy transfered to the recoiling nucleus is

ER = p2

2mN

= µ2
Nv

2

mN

(1− cos θ), (3.31)

where p is the momentum transfer, θ is the scattering angle in the WIMP-nucleus center-of-mass
frame, mN is the nuclear mass and µN correspond to the WIMP-nucleus reduced mass. The
velocity distribution of DM in the galaxy can be approximately to the Maxwell-Boltzmann one,
whose velocity dispersion is 270 km s−1 (to compare, the escape volocity from the galaxy is
544km s−1). I we assume that mDM = mN = 100GeV, and the mean velocity is 〈v〉 = 220 km s−1

= 0.75×10−3c, the mean recoiling energy is

〈ER〉 = 1
2mDM〈v〉2 ∼ 30 keV (3.32)

Assuming a local DM density of ρ0 = 0.3 GeVcm−3, the number density of WIMPS is n0 =
ρ0/mDM = 3× 10−3 cm−3, and their flux on Earth is

φ0 = n0 × 〈v〉 = ρ0

mDM

× 〈v〉 = 6.6× 104cm−2s−1. (3.33)

Assuming an electroweak scattering cross section, from (3.28) the rate of events will be

R ∼ N × φ0 × σ ∼ 0.13 events kg−1year−1. (3.34)

Input from particle and nuclear physics

In a more technical way, the differential recoil spectrum resulting from DM interactions can be
written as

dR

dE
(E, t) = ρ0

mDMmN

∫ vmax

vmin
~v · f(~v, t) dσ

dE
(E, v)d3v, (3.35)

where mDM is the DM mass and mN is the nucleus mass. The DM velocity v is defined in the rest
frame of the detector. Also, the equation accounts for the local DM density ρ0 and the WIMP
velocity distribution f(~v, t) in the detector reference frame. The WIMP-nucleus differential cross-
section dσ

dE
(E, v) can be expressed as the sum of a spin-independent (SI) and spin-dependent (SD)

terms (if DM is a scalar the SD term will be zero):

dσ

dER
= mN

2µ2
Nv

2

[
σSIF

2
SI(ER) + σSDF

2
SD(ER)

]
, (3.36)

where FSI and FSD are the nuclear form factors, and σSI and σSI are the cross sections in the
zero momentum transfer limits given by

σSI = 4µ2
N

π
[Zfp + (A− Z)fn]2 , (3.37)

σSD = 16µ2
N

π

J + 1
J

[ap〈Sp〉+ an〈Sn〉]2 . (3.38)
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3.3. Dark Matter detection

fp,fn and ap,an are the effective WIMP-couplings to neutrons and protons in the spin-independent
and spin-dependent case, respectively. These parameters depend on the details of DM nature and
interactions with SM particles, and they are not known a priori. They are usually expressed as
a function of the WIMP-proton cross section σp. 〈Sp,n〉 = 〈N |Sp,n|N〉 are the expectation values
of the total proton and neutron spin operators in the limit of zero momentum transfer, and they
have to be determined by using detailed nuclear model calculations.

Input from astrophysics

In eq. (3.35) we have seen that the rate of WIMP-nucleus collision requires data from DM
velocity distribution f(~v) and the local dark matter density profile ρ0. In the so-called standard
halo model (SHM), which describes an isotropic, isothermal sphere of collisionless particles with
density profile ρ(r) ∝ r−2, the local density is assumed to ρ0 = 0.3 GeVcm−3, and the velocity
distribution is Maxwellian

f(~v) = 1√
2πσv

exp−
~v2

2σ2
v , (3.39)

where the velocity dispersion is related to the local circular speed vc as σv =
√

3/2vc. Since the
velocity distribution extends to infinity in the SHM, it has to be truncated at the measured local
escape velocity vesc, such that f(~v) = 0 for v > vesc = 544 km s−1.

Experiments and limits

In this last 30 years there have been operating many direct detection experiments whose goal
are to find direct evidence of DM. These experiments mostly use either cryogenic or noble liquid
detector technologies. Cryogenic detectors operating at temperatures below 100 mK, detect the
heat produced when a particle hits an atom in a crystal absorber such as germanium. Noble
liquid detectors detect scintillation and ionization produced by a particle collision in liquid xenon
or argon. Cryogenic detector experiments include: CDMS, CRESST, EDELWEISS, EURECA.
Noble liquid experiments include ZEPLIN, XENON, DEAP, ArDM, WARP, DarkSide, PandaX,
and LUX, the Large Underground Xenon experiment. Both of these techniques focus strongly
on their ability to distinguish background particles (which predominantly scatter off electrons)
from dark matter particles (that scatter off nuclei).

In Fig. 3.5 (left) we show cross section upper limits (until the year 2012) and projections as a
function of the DM mass from a plethora of experiments mentioned above. The dominant neutrino
component background for different WIMP mass correspond to the yellow region in below, and
they contribution depend on the zone of the WIMP mass. At lower masses, neutrinos coming
from correspond to both atmospheric and to diffuse supernova neutrino background (DSNB). In
Fig. 3.5 (right) we show the recent published results from XENON1T experiment, along with
the most competitive, LUX (red line) and PandaX-II (blue line). We can appreciate that some
experiments have improved their sensitivities appreciable. In this thesis we use the most stringent
limits until today: XENON1T.
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3. Particle Dark Matter

Figure 3.5: (left) WIMP discovery limit (thick dashed orange) compared with past limits (solid curves) and
projections (dashed lines). The dominant neutrino components for different WIMP mass regions
are labeled. The filled regions identify possible signal regions associated with data from CDMS-II
Si (light blue, 90% C.L.), CoGeNT (yellow, 90% C.L.), DAMA/LIBRA (tan, 99.7% C.L.), and
CRESST (pink, 95.45% C.L.) experiments. (right) 90% C.L. upper limit on the spin-independent
WIMP-nucleon cross section from the XENON1T most recent published results [7]. The limit (black
line) is shown as a function of the WIMP mass together with XENON1T 1- and 2σ sensitivity bands
(green and yellow bands, respectively), and most recent results from LUX (red line) and PandaX-II
(blue line).

3.3.2 Indirect detection

Indirect detection experiments search for products of the self-annihilation or decay of dark matter
particles in outer space. These products may be a pair of either high-energy neutrinos, photons,
charged leptons or proton/antiprotons. In this case, such particles would then propagate in
the galaxy and reach us. Promising sources are usually the most dense regions, such as the
galactic center, the inner halo of our galaxy, the cento of the Sun. However, sometimes the
denser regions are not the better places to look for signals, because of the high astrophysical
background. Therefore, it may happen that the best detection opportunities do not come from
this regions, but from places with the best signal to background ratio.

There are three kind of experiments trying to identify some signal over the background: space
sattellites (e.g. Fermi-LAT, PAMELA), ground based (e.g. HESS, MAGIC, MILAGRO, VER-
ITAS), and underground based detectors (e.g. IceCube, Super-K, Antares). The energy range
sensitivity depends on the detector. For instance, FERMI satellite has an excellent sesitivity to
gamma rays spanning a range of energies from 30 MeV to 300 GeV, or the HESS telescope has a
good sensitivity mainly beteween 10 GeV and 10 TeV. Until now none signal has been detected,
therefore upper bounds on DM annihilation cross section has been put.

The flux of dark matter annihilation products is proportional to the number of annihilations
per unit time, per unit volume, σvn2(r) ≡ σvρ2(r)/m2

DM , where σv is the annihilation cross
section multiplied by the velocity, n(r) and ρ(r) are the number and the mass density of a DM
particle, respectively, and r is the distance from the galactic center. The flux is also proportional
to the spectrum of secondary particles of species, i, per annihilation, dNi

dE
. The flux observed

is found by integrating the density squared along the line-of-sight connecting the observer (the
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Earth) to the Galactic center. Including all factors, the observed flux can be written as

Φi(ψ,E) = ∆ΩdNi

dE

〈σv〉
4πm2

DM

J̄∆Ω, (3.40)

where ∆Ω = 4πA (the area of the detector) and J̄∆Ω is called ”J-factor” of the source, and is
given by

J̄∆Ω ≡
1

8π

∫
drdΩρ(~r)2 (3.41)

The J-factors of different sources characterize the relative size of their expected annihilation
signals. For example, the dwarf satellite galaxies of the Milky Way have J-factors in the neigh-
borhood J ∼ 1017−20 GeV2/cm5. Other example is the region within 1 degree of the Milky Way’s
center which has J ∼ 1022 GeV2/cm5.

In what follows we show some examples of data constraints from indirect detection in neutrinos
(ICECUBE) and from high energy gamma rays (EGRET and GLAST). In Fig. 3.6 (a) is shown
the upper limits on the average annihilation cross section from the Galactic halo given by IceCube
collaboration. In the picture is also shown the preferred regions for PAMELA data, and the region
including Fermi data for annihilation to τ+τ−. Additionally, neutralinos can annihilate into mono-
energetic gamma-ray lines via the processes χχ→ γγ. Fig. 3.6 (b) shows the expected gamma-ray
flux as a function of the DM mass from the Galactic center from neutralino annihilations. The
upper limits correspond to the solid (EGRET) and dashed (GLAST) lines.

Figure 3.6: (left) Constraints on the DM annihilation cross section from ICECUBE’s observation of the Galac-
tic Halo, comparing with the fit regions of charged CRs. (right) Gamma-rays flux above 1 GeV per
square meter per year from the Galactic center from neutralino annihilations. A NFW halo profile
has been used. For each point, the thermal relic density is below the maximum value allowed by
WMAP. The solid and dashed lines are the limit from the EGRET experiment and predicted sensi-
tivity for GLAST, respectively. The various shadings refer to different scenarios of supersymmetry
breaking.

3.3.3 Collider searches

Collider experiments have shown to be very useful to constraint DM particle models. However,
these constraints are highly model dependent, therefore is is imposible to completely describe the
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reach of colliders in the search for particle dark matter. There has been different observables to
search for something invisible at colliders. Single events with an imbalance in the outgoing states
is what usually refered as missing energy. It refers to energy that is not detected in a particle
detector, but it is expected due to the laws of conservation of energy and momentum. Neutrinos
are the typical particles that are not detected in collider experiments, and in that way it is
possible to trace an imbalance in the energy/momentum of the total outgoing particles. In fact,
as we review below, the W± boson was discovered showing some imbalance in the momentum of
the outgoing particles.

In order to make a strategy to study dark matter signals at collider, it is necessary to have
some background in the kinematics that has been used to search for new physics. In the following
we review the kinematic that was necessary to discover the W± bosons, and finally we sketch
some important points in the search for dark matter at LEP and LHC.

W -boson at SPS

The discovery of the charged-current interactions (1983) at Super Proton Synchrotron (SPS) at
CERN involved to dealt with missing energy in the analized events. This is because once the
W± bosons were produced, they may decay to a charged lepton and its corresponding neutrino,
i.e. W± → l± + νl (of course, there are also hadron channels). How can the W± mass be recon-
structed?. Let us see some of kintematic of this kind of processes.

First, the transverse momentum is the momentum in the orthogonal direction to the beam,
pT ≡ ~pT = ~p sin θ, where θ is the angle measured from the beam line. With this, one defines the
transverse energy ET =

√
|~pT |2 +m2, which in the limit of vanishing mass one has ET = pT . The

missing transverse momentum in an event with visible momenta is given by
pmissT ≡ /~pT = −

∑
i

~pT , (3.42)

where i index runs for all the visible particles. Equivalently, the missing transverse energy (MET)
is the magnitude of it, i.e. Emiss

T ≡ /ET = |/~pT |. Now, let us move to the W -boson decay kinemat-
ics.

In the W± rest frame we have |~pl| = |~pν | = MW

2 , and |~pTl | ≤ MW

2 . In the laboratoty frame
we know that the W system can be boosted only along the z axis, and the pTe distribution is
conserved. The mass determination of the W bosons was done by two methods:

• Lepton ET spectrum (Fig. 3.7(a)). It peaks at MW/2. One must to compare the exper-
imental data to Monte Carlo (MC) prediction. Note that there are some events with
ET > MW/2 ∼ 40 GeV, and this is because some W± bosons can be produced with a
little transverse momentum.

• Transverse mass (Fig. 3.7(b)). The invariant transverse mass is defined as
M2

T = (Ee
T + Eν

T )2 − (peT + pνT )2 (3.43)
= 2Ee

TE
ν
T (1− cos θ) ≤M2

inv, (3.44)
where we have neglected the electron and neutrino masses. In the last line we have enpha-
sized that the transverse mass is always less or equal to the invariant mass of the system
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lepton plus neutrino (the W mass). The maximium transverse mass is when the electron
and neutrino going out back-to-back, and that ocurrs if pT (W ) = 0, then MT = 2Ee

T = Minv.
Only these events show the maximum transverse mass, allowing to determine the W mass.

Figure 3.7: Two methods used to discover the W± mass at UA1 experiment at SPS. The left figure shows the
lepton missing energy transverse spectrum, and the right one the transverse mass of the events.

DM signatures at LEP and LHC

Dark matter searches at LEP has been searched for a long time. For example, if the DM candi-
date is sufficiently light, Z or Higgs bosons may decay invisibly to such particles with a non-zero
branching fraction. At LEP, there has been searched for single photon events (mono-photons)
over the background e+e− → Z → νν̄, where ν are the SM neutrinos, with an additional photon
radiated off of the initial state. For instance, in SUSY frameworks there is allowed the decay
Z → χ̃0

1 + χ̃0
2, where χ̃0

1 and χ̃0
2 are the lightest neutralinos. Until now, none event over the

background has been seen, then stringent bounds on the Z boson decay has been set. In this
thesis we use these limits to constraint our vectorial DM model.

Also, at the LHC there have been different searches for DM signals. For instance, DM dou-
ble production accompanied by an Initial State Radiaton (ISR) of some SM particle, such as a
gluon or a photon, is expected to be seen. The ingoing particles (partons) have practically zero
transverse energy (momentum), therefore, in the production of DM, by conservation, we expect
some imbalance in the pT final state. Due to the search simplicity and high cross section, the
most used topology of DM search is mono-jet + /ET

6. This correspond to the following partonic
process

qq̄ → χχ̄+ g, qg → χχ̄+ q, , gḡ → χχ̄+ g. (3.45)

Other signals are mono-photon, mono-W/Z, mono-Higgs (for a review of LHC DM detection
see [9]). Usually, to optimize the signal-to-background ratio, searches commonly use kinematical
event selection criteria in different observables, such as a minimum value in the transverse mo-
mentum of the visible particle. Interestingly, there are some models, such as the i2HDM and the
one that we study in this thesis, which give these kind of signals without the necessity of an ISR.

6The name mono-jet is misleading, because the probability to produce just one highly energetic jet is in fact rahter low [8].
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3. Particle Dark Matter

Finally, if the DM mass is below MH/2, the Higgs may decay to a pair of DM particles.
Combinations of the various direct searches for invisible Higgs decays have been performed by
both ATLAS [10] and CMS [11]. The resulting upper bounds at 95% C.L. on the invisible
branching ratio are Brinv < 0.25 and Brinv < 0.24, respectively.

In view of the many ways to study dark matter at the LHC, it seems legitimate to ask which
one of them is the most promising and how are the details of expected distributions. There is
no single correct answer to those questions. There are different theoretical approaches to study
particle dark matter, and each approach has its (dis)advantage over others. In the next chapter
we will review the different theoretical approaches and we will establish the model that this thesis
is on.
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Chapter 4

Dark Matter Models

From the theoretical particle physics point of view, dark matter can be studied basically in three
frameworks: Effective field theory, Simplified models and Complete models. In this chapter we
will review the main aspects of each line, and some comments about the limitation of some
approach over the others. As this thesis relies on a vector DM simplified model, we will sketch
some frameworks in this direction: vector Higgs portal and EW vector multiplets. After that,
we develop the theoretical framework of the SU(2)L vector doublet model, which is the focus of
this thesis.

4.1 Theoretical DM Frameworks

As it is sketch in Fig. 4.1, from less to more complete dark matter theoretical frameworks, they
can be resumed as the following

Figure 4.1: Particle DM theory space.

• Effective Field Theory (EFT) approach (see e.g. [12–19]). This description is based on writ-
ing down all the possible non-renormalizable operators between two DM fields and the
Standard Model particles up to dimension six and classifying them according to the DM
particle type. These operators arise after integrating out heavy mediators and are therefore
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4. Dark Matter Models

suppresed by an UV-scale Λ. For instance, for a scalar DM field χ one has

L =
∑
i

O2+n
i (SM) |χ|

2

Λn
(4.1)

where O2+n
i (SM) are operators of mass dimension 2 + n in the SM fields. Each operator

is characterized by the only two parameters: the effective suppression scale Λ and the DM
mass mDM . One interesting point is that the lowest dimension operators can only involve
the Higgs field, justifying for example the study of scenario like the Higgs portal one. The
EFT approach is completelly UV model-independent.

• Simplified models (see e.g. [20–24]). In this description the mediators are included in the
model, and the operators in the Lagrangian usually are renormalizables. There are a lot of
models in this line: Higgs portals, dark photons, extended-Higgs sectors, etc.. Both scalar
and fermion dark matter has been the most explored in this line by their simplicity (for a
classification see [25]). However, it has been shown that vector bosons may perfectly play
the role of dark matter, most of them motivated from hidden gauge sectors [26–35]. This
approach is not completelly UV model-independent and generally is an effective description.

• Complete Models. Most of these frameworks are well-motivated by the Naturalness prob-
lem in the SM. However, under some conditions, usually these frameworks contain a dark
matter candidate. The main theoretical alternatives considering those characteristics are
supersymmetry (SUSY) [36], extra large dimensions [37], little Higgs model [38] and from
a linear sigma model [39]. For example, in some SUSY theories the DM candidate (LSP)
appears as a consequence of the existence of a R-parity, and typically this particle is the
neutralino.

What advantages and limitations has one approach over others?, it depends on the studied
context. EFT description is only justified whenever there is a clear separation between the
energy scale of the process to describe and the scale of the underlying microscopic interactions
(cut-off energy). In other words, EFT is valid as long as the energy scale of the process involving
the DM and the SM particles is small compared to the energy scale associated to the heavy
mediator. Usually, EFT works very well in the contexts of DD and ID because of the typical
small momentum transfer (see Chapter 3.3). However, experiments which involve processes at
higher energies, such as the LHC experiments, the EFT approach should be handled with care
because the characteristic energy processes scales can be as high as the cut-off validity of the
model [15,16].

On the other hand, simplified approach becomes useful when the mediator is relatively heavy
as the DM particle. The mediators can be eventually be produced on-shell and contribute signif-
icantly to processes other than the original ones considered within the EFT context [15, 16]. In
other words, considering mediators makes it possible to consider different kinematic distributions
and optimize the experimental sensitivy for each case. It should be noted that there is no simple
way to translate an exlusion limit obtained within the EFT approach to models with a light
mediator [21]. Other good reason to consider the simplified models comes from a theoretical
point of view. It is quite natural to assume that the DM particle is comparable in mass to the
particle responsable for its interactions. In particular it turns out to be very difficult to obtain
the required DM relic abundance if the mediator is too heavy, challenging one of the primary
motivations for LHC DM searches. In the presence of a light mediator, on the other hand, the
relic abundance can be readily reproduced [40].
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4.1. Theoretical DM Frameworks

Figure 4.2: Feynman diagrams for dark matter annihilation in a Higgs portal.

With respect to UV-models, to test a complete theory seems not easy. For instance, SUSY
containts 105 paramters, but can be reduced to the well known phenomenological Minimal
Supersymmetric Model or pMSSM which uses only 19 paramters. It takes into account infor-
mation from all aspects of particle physics, incorporating constraints form the measured char-
acteristics of the Z and Higgs boson, b-quark physics, astrophysics as well as direct searches for
DM at underground facilities and SUSY particles at the LHC. Still, even when working with a
Complete models seems more complex than an EFT or a Simplified Model, the motivations relies
in their theoretical framework. It is important to mention that it is always possible to map the
constraints from a Complete Models to a Simplified model (although highly challenging), and
not to an EFT, because the latter one can have multiple UV-completions.

Finally, Complete Models assures you that you have all the degrees of freedom necessary
to make the complete phenomenology. Instead, Simplified Models and EFT approaches maybe
can be too simplified in their description, in the sense that they could neglect additional states
(beyond the mediators), couplings, or hidden relations between the different parameters, therefore
loosing some information in the phenomenology. Even worse is that eventually both EFT and
Simplified models have a bad UV-behavior, resulting in perturbative unitarity violation (see
e.g. [41]).

Vector Dark Matter Higgs portal

New fields which are not charged under the electroweak SM gauge group and communicates with
the SM Higgs boson only are said to be belonged to a hidden sector, and the Higgs sector acts as
a portal between the SM and the new sector. The Higgs sector of the SM enjoys the feature to
have the possibility to couple new degrees of freedom through the dimension-4 interaction term

Vportal = λhχ|φ|2|X|2, (4.2)

where φ and X represent the SM Higgs doublet and the dark matter field, respectively. For
example, one portal which consider a SM singlet vector dark matter has the following Lagrangian

L = −1
4FµνF

µν + 1
2m

2XµX
µ + λhv

4 φ†φXµX
µ + λ

4 (XµX
µ)2 , (4.3)

where Xµ represent the vector dark matter. After electroweak symmetry breaking, the neutral

37



4. Dark Matter Models

component of the doublet Higgs field is shifted to h → v + h/
√

2 with v = 256 GeV, and the
physical mass for the vector DM particle is given by

M2
V = m2 + 1

2λhvv
2. (4.4)

The relic abundance of the DM particles is obtained through the s-channel annihilation via the
exchange of the Higgs boson, through the DM in the t and u channels, and a contact diagram
(see Fig. 4.2). For example, the annihilation cross section into light fermions of mass mf is given
by

〈σfv〉 =
λ2
hvm

2
f

48π
1

(4M2
V −m2

h)
2 . (4.5)

From this expression one can note that the DM annihilation becomes much more efficient around
the Higgs pole, MH ∼ 2MV , which implies a fall in the reilc density in that specific region.
In order to study the relic density values for all the parameter space running the Boltzmann
equation, we implemented the Lagrangian 4.3 into LanHEP, CalcHEP and in MicrOMEGAS
software. In Fig. 4.3 (a) is shown the relic density as a function of the DM mass for a fixed
coupling constant λhV V = 1. The saturation occurs at low and high masses, and it is clearly the
inverted peak at the half of the Higgs mass (resonant annihilation). In Fig. 4.3 (b) is shown a
2D-projection showing the values of relic density for all the points of the model. We note that
masses of a few GeV oversaturates due to the small annihilation cross section. As the DM mass
increases, the abundance start to diminish, until to reach the hard interface near MH/2, where
an abrupt change in color is made (very small denominator in the annihilation cross section 4.5).
The last important point to mention is that is clear from this figure that for small couplings the
annihilation cross section also diminish, resulting in a high relic density (red color).

Furthermore, the spin-independent cross section is given by [30]

σSIV−N = λ2
hv

16πM4
H

m4
Nf

2
N

(MV +mN)2 , (4.6)

where mN is the nucleon mass and fN parametrized the Higgs-nucleon coupling. There exist
different estimation of this last factor (e.g. from Lattice result fN = 0.326 [42]). In view that
σSIV−N is bounded from above by the experiments (e.g. XENON,LUX), there is a maximum value
allowed for the pair (MV , λhv).

Weakly interacting dark matter

Another way to provide a dark matter candidate is through the introduction of color-singlet elec-
troweak multiplets, such as singlet, doublet, triplet, etc., under the SU(2)L gauge group and with
some hypercharge (see [25, 44]). These multiplets are called generically Minimal Dark Matter,
and they may be either scalars or fermions. In order to have a good DM candidate it is assumed
that the electroweak multiplet has a certain hypercharge such that the neutral state be the light-
est. Sometimes additional discrete symmetries are imposed in order to stabilize the lightest state
such as R-parity or Z2. For instance, for scalar and fermion DM the following extensions to the
SM are considered

L = LSM + c

χ̄
(
i /D +M

)
χ

|Dµχ|2 −M2|χ|2
(4.7)
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Figure 4.3: (left) Relic density for different dark matter masses in the singlet vector case. The red dashed line

correspond to the PLANCK measurments [43]. (right) Color plot for the relic density as a function
of the parameter space in (MV , λhv).

where D is the gauge-covariant derivative, c = 1/2 for a real scalar or a Majorana fermion and
c = 1 for a complex scalar or a Dirac fermion, and M is the tree-level mass of the particle.
Quantum corrections may generate a mass splitting ∆M among the electroweak multiplet states
[44].

According to vectorial DM, there have been shown different proposals of electroweak multiplet
which carries a neutral state as a good dark matter candidate, such as multiplets transforming in
the adjoint representation [45], and in the fundamental one in the context of 331 models [46,47]
and in Gauge-Higgs unification framework [48]. For example, the model studied in [45] contains
three vectorial states: the neutral one V 0 and two charged V ±. A feature of this models is that
the mass splitting is radiatively generated, pushing up the charged ones around ∼ 200 MeV above
the neutral one. If such a splitting would not exist then there would be degeneracy among the
three states, making the charged ones stables and then introducing cosmological problems.

One of the problems of dealing with vector fields is that the longitudinal polarization grows
indefinitely with the energy, threatening unitarity principles (for details of this point see appendix
B and C). It is important to be aware of the limitations of models containing vector fields. In
order to tame growing amplitudes energy behavior, UV-completion are needed motivated by
gauge principles. The other way to UV-complete the model is to think the new vectors as
composite states of a new underlying strong sector (e.g. Walking technicolor and Compositeness
frameworks).

In this thesis we focus in an extension to the SM in which we introduce an electroweak vector
doublet which enters with the same quantum numbers as the SM Higgs doublet. The model
contains four new states, two neutrals and two charged, and they couples to the SM electroweak
mediators i.e., Z, W± and the photon, and to the Higgs boson. The model could be considered
as a framework in between the Higgs portal and the weakly interacting DM models. Finally,
the interaction of this new multiplet with the Higgs field makes that the degeneracy among the
states be broken at tree level.
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4. Dark Matter Models

4.2 Dark Vector Dark Matter

We extend the SM by introducing a new set of vector fields transforming in the fundamental
representation of SU(2)L with hypercharge 1/21:

Vµ =
(
V +
µ

V 0
µ

)
=
 V +

µ
V 1
µ+iV 2

µ√
2

 , (4.8)

The most general Lagrangian containing this new vectors with operators up to dimension four
is:

L = −1
2 (DµVν −DνVµ)† (DµV ν −DνV µ) +M2

V V
†
µV

µ

+ λ2(φ†φ)(V †µV µ) + λ3(φ†Vµ)(V µ†φ) + λ4(φ†Vµ)(φ†V µ)
+ α1φ

†DµV
µ + α2(V †µV µ)(V †ν V ν) + α3(V †µV ν)(V †ν V µ)

+ igκ1V
†
µW

µνVν + i
g′

2 κ2V
†
µB

µνVν + h.c. (4.9)

where Bµν is the abelian U(1)Y field strenght, and W µν = W µνa τa

2 is the non-abelian SU(2)L
field strenght. In principle, all the free parameters, λi, αi for i = 1, 2, 3 may be complex. The
parameters κ1 and κ2 are analogous the the well-known anomalous couplings in the context of
vector leptoquark models.

Due to the Lorentz representation of the new set of vector, it is not possible to couple the
new vector boson to the standard fermions with renormalizable operators. For example, let us
suppose a Lorentz invariant Yukawa-like coupling between SM first generation of leptons and the
vector doublet. Then, consider the following vector and axial vector couplings,

L ⊃ Lγµ
(
gV − gAγ5

)
eRVµ (4.10)

where gV and gA are unknown coupling constants. Considering the chirality projectors PL,R, the
Lagranian (4.10) may be rewritten as

L =
(
νe e

)
PRγ

µ
(
gV − gAγ5

)
PReVµ

=
(
νe e

)
γµ
(
gV − gAγ5

)
PLPReVµ

= 0

where in the second line we have used the property {γµ, γ5} = 0, and in the last line we have
used that PLPR = 0. This fact can be extrapolated straighforwardly to all SM fermions.

On the other hand, the model allows a dimension three operator which is the only one linear
in Vµ. In principle, this term would introduce a mixing between the SM gauge bosons and the
new vector states. However, it is possible to set up its corresponding coupling constant (α1 in
(4.9)) to zero because an accidental Z2 symmetry appears in the Lagrangian. Due to the new
symmetry this choice is technically natural in the sense of t’Hooft. Therefore, in this limit and
at the renormalizable level, the new vector sector only communicates to the SM through the

1For an explicit UV-realization of this kind of vectors see [49]. The authors show the appearence of SU(2)L massive vector doublet
as the spontaneously breaking of a U(3)W gauge symmetry to the GSM by some new scalar sector.
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electroweak gauge bosons, the photon and SM-Higgs boson. As a consequence, the flavour sector
is untouch at tree level.

Finally, the terms in the last line of (4.9) are allowed by the symmetry. However the value of
their coupling constant ( κ1 and κ2) are not fixed by the symmetries. In this paper, we work in
the simplified case where κ1 = κ2 = 1. This choice is consistent with the hypercharge assigned
to Vµ and agrees with what happen in vector leptoquarks models, where the ultra-violet gauge
completion and unitarity arguments fixes the values of those parameters to one [50]. In other
words, if we allow for values different to one, there appear the coupling among the photon Aµ
and the two neutral vector V 1 and V 2, implying the latter fields now get an electric charge.

As we explained above, in the limit when α1 vanish, the model acquires an additional Z2
discrete symmetry allowing the stability of the lightest odd particle (LOP). If the LOP happens
to be a neutral component of Vµ (as it must be for cosmological reasons) then it constitutes a
good DM candidate. In this case, the Lagrangian (4.9) reduces to:

L = −1
2 (DµVν −DνVµ)† (DµV ν −DνV µ) +M2

V V
†
µV

µ

− α2(V †µV µ)(V †ν V ν)− α3(V †µV ν)(V †ν V µ)− λ2(φ†φ)(V †µV µ)

− λ3(φ†Vµ)(V µ†φ)− λ4

2
[
(φ†Vµ)(φ†V µ) + (V µ†φ)(V †µφ)

]
+ i

g′

2 V
†
µB

µνVν + igV †µW
µνVν . (4.11)

The Lagrangian 4.11 contain six free parameters2 which we labelled as λ2, λ3, λ4 for quartic cou-
pling involving interactions between SM-Higgs field and the new vector field, a mass term MV ,
and α2, α3 for quartic couplings of pure interactions among the vector fields. These latter self-
interacting terms are not relevant for the experimental constraints and dark matter phenomenol-
ogy done in this paper, therefore from now on we will not consider them, However, self-interacting
particle dark matter can be relevant in related fields such as astrophysical structures [51].

After EWSB the tree level mass spectrum of the new sector is

M2
V ± = 1

2
[
2M2

V − v2λ2
]
, (4.12)

M2
V 1 = 1

2
[
2M2

V − v2(λ2 + λ3 + λ4)
]
, (4.13)

M2
V 2 = 1

2
[
2M2

V − v2(λ2 + λ3 − λ4)
]
, (4.14)

For phenomenological proposes we will work in a different base of free parameters

MV 1 , MV 2 , MV ± , λL, (4.15)

where λL = λ2 +λ3 +λ4 is the coupling controlling the interaction between the SM Higgs and V 1

(see Fig. (4.4). This parameter will be very important in the constraints and phenomenological
study.

It is convenient to write the quartic coupling and the mass parameter as a function of the new
2We assume that all the free parameters are real, otherwise, the new vector sector may introduce CP-violation sources. In this

work we do not deal with that interesting possibility.
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free parameters

λ2 = λL + 2(M2
V 1 −M2

V ±)
v2 , λ3 = 2M2

V ± −M2
V 1 −M2

V 2

v2 ,

λ4 = M2
V 2 −M2

V 1

v2 , M2
V = M2

V 1 + v2λL
2 . (4.16)

For future convenience, it will be useful to introduce

λR ≡ λ2 + λ3 − λ4 = λL + 2 (M2
V 2 −M2

V 1)
v2 , (4.17)

which is not a new free parameter, but it is the effective coupling constant which governs the
HV 2V 2 interaction.

V 1
µ

V 1
ν

H : 2MW sin θW
e

gµνλL

Figure 4.4: Feynman diagram coupling two DM particles to the Higgs Boson.

It is important to mention that because the new vector field have the same quantum numbers
than the SM-Higgs field, the two neutral vectors have opposite CP-parities. However we can
switch their parity just making a change of bases Vµ → iVµ and then re-label each field as
V 1
µ → V 2

µ and V 2
µ → V 1

µ and still obtaining the same phenomenology. Therefore, without loose of
generality, we will choose V 1

µ as the LOP turning it into our Dark Matter candidate. Following
the same line, to make sure that V 1

µ is the lightest state of the new sector, we can find some
restrictions that the quartic couplings must follow to satisfy this condition. Considering this we
can stress that

M2
V 2 −M2

V 1 > 0 ⇒ λ4 > 0,
M2

V ± −M2
V 1 > 0 ⇒ λ3 + λ4 > 0. (4.18)

In order to have a weakly interacting model, we set that all the couplings parameters must to
satisfy

|λi| < 4π ∧ |αj| < 4π (i = 2, 3, 4; j = 2, 3). (4.19)

Finally, we want to make a comment about the Lagrangian structure. Beyond the vectorial
character of the new fields the Lagrangian share an equivalent spectra and couplings than the
most well-known inert Two Higgs Doublet Model (i2HDM) [52–54]. In view of the similarities,
in some part of the phenomenology we used to compare both models. For more details about
the i2HDM, see appendix A.

Model implementation

We implemented this model using the LanHEP [55] package and we used CalcHEP [56] and
micrOMEGAs [57–59] for collider and DM phenomenology calculations, respectively. We included
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effective vertex Hgg and Hγγ and we performed a cross-check of the gauge invariance im-
plementation calculating several 2→2 processes in both gauges (Unitary and ’tHooft - Feyn-
man gauge) using CalcHEP [56] program. The Dark Matter penomenology was made with the
micrOMEGAs [57–59] package. This program solves the Boltzmann equation numerically and cal-
culate all of the relevant annihilation cross sections involved in the process using the CalcHEP
program. micrOMEGAs consider as well the followign effects:

• The case MV 1 < MW ,MZ takes into account the annihilation into 3-body final state from
V V ∗ or 4-body final state from V ∗V ∗ (V = W±, Z).

• The co-annihilation effects are present when the mass split among the DM and the other
particles is small. We took into account the V 1 − V 2 , V 1 − V ± and V 2 − V ± cases.

• The spin-independent cross section of DM scattering off the proton.
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Chapter 5

Experimental constraints

There are many experimental ways to constaint a theoretical model, and in this chapter we
concentrate in the following ones: LEP searches for both SM gauge boson invisible decay and
SUSY particles, LHC measurments on the Higgs decay to both diphoton and invisible, Relic
density bounds by WMAP and Planck sattelite, and finally direct detection (DD) by the strongest
bounds until now given by XENON1T experiment. We do notc impose bounds from indirect
detection because they are weaker than DD.

5.1 LEP limits

Considering that the coupling between the SM gauge bosons and the dark sector is fixed by
gauge invariance, the only way to avoid deviations from precise LEP-I constraints on W and Z
widths [60] [61] is to demand that the channels Z → V 1V 2, V +V − and W± → V 1V ±, V 2V ± are
kinematically not open. This leads to the following conditions on the masses

MV 1 +MV ± > MW± , MV 2 +MV ± > MW± ,

MV 1 +MV 2 > MZ , 2MV ± > MZ . (5.1)

On the other hand, bounds on supersymmetric particles searches at LEP has been very useful
to constraint other models beyond SM. In particular, LEP-II limits on neutralinos and charginos
has been used to constraint the inert doublet model (i2HDM) [62, 63]. Although there are
some differences in the number of Feynman diagrams and the spin involved in the processes,
the kinematical efficiencies among the two result to be quite similar, allowing to recast the
experimental bounds.

In view of the identical topologies in the processes of the i2HDM and our model, it seems
natural to extend the LEP bounds to our vectorial case. The concern is whether the efficiencies
of the vectorial signals are similar to the SUSY ones. In the case of neutral state production,
the process e+e− → Z → V 1V 2 shows a distribution more isotropic and similar to neutrali-
nos, because both cases, having intrinsic spin, have the ability to conserve angular momentum.
Scalars, on the other hand, which are produced through the same topology than the vector ones,
e+e− → Z → H0A0, are produced in p-waves, making the scalars to have large transverse mo-
mentum. Additionally, as it has been shown in [62], the angular differences between SUSY signals
and the scalar ones are even more reduced when are added the decay products of their respective
new states. Therefore, we expect similar efficiencies among our signals and SUSY ones, allowing
to recast LEP-II bounds.
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Figure 5.1: (a) Allowed mass region for neutral vectors based on 95% C.L. upper-limits on e+e− → χ̃0

1χ̃
0
2 cross section

at
√
s = 189 GeV [64]. The solid black contour lines indicate the production cross section e+e− → V 1V 2

at LEP. The red(blue) zones are forbidden (allowed) by LEP-II data. The red shaded region is excluded by
LEP-I data on the Z boson width (see 5.1). (b) Allowed mass region for charged and neutral vector based
on 95% C.L. upper-limits on e+e− → χ̃+

1 χ̃
−
2 cross section at

√
s = 189 GeV [65]

In Fig. 5.1(a) we show the recast limits from neutralinos searches at LEP-II to our model [64].
The allowed region is a small narrow blue area close to the LEP energy threshold. The exclusion
region is notoriously higher than the scalar case [62] because the production cross section for
vectors present an enhancement through their longitudinal polarization, compared to the scalar
case (see 6.4). The resulting excluded region is

MV 1 < 100 GeV & MV 2 < 200 GeV & ∆M−
12 > 8 GeV & ∆M+

12 < ELEP − 8GeV (5.2)

where ∆M∓
12 ≡MV 2 ∓MV 1 and ELEP is the maximum LEP center of mass energy (189 GeV).

Additionally, charginos searches [65] also put strong constraints on the charged vector states
V ±. As it is shown in Fig. 5.1(b), the limit on the charged vectorial mass results to be

MV ± . 93 GeV. (5.3)

5.2 LHC data

5.2.1 H → γγ

The Higgs boson has multiples decay channels, but the cleanest one at the LHC is when it decays
to two photons. Actually, the strongest signature for the Higgs discovery was from this channel.
In the SM there is no interaction between the Higgs and photons at tree level, however, at one-
loop level the former can decay into a pair of photons considering charged gauge bosons W± and
fermions as internal particles. Equivalentely, the DVDM introduces two more diagrams at one
loop which must to be taken into account (see Fig. 5.2) in order to quantify the modifications
in observables such as the Higgs decay width into two photons. In what follows, we calculate
the contributions of these new diagrams to the Higgs decay width, and then we contrast out
theoretical results with the strong restrictions from measurements on this channel [66].
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Figure 5.2: One-loop contributions from the charged vectors V ± on the Higgs decay into two photons

In order to get the Higgs decay width in DVDM, we must to start by the invariant amplitude.
Note that the matrix element can be written as [67]

M = e2g

(4π)2MW

F (k1 · k2g
µν − kµ2kν1)εµ(k1)εν(k2), (5.4)

where k1 and k2 are the four-momentum for the respective photon final states, and εµ(k) is the
corresponding photon polarization. F is a function that depends on the masses of the particles
and couplings involved in the respective loop. For example, in the SM these functions are very
well known, and their values are

F =
∑
f

NcQ
2
fF1/2(βf ) + F1(βW ), (5.5)

where Nc is the color factor (1 for leptons and 3 for quarks), and βf ≡ 4M2
f /M

2
H and βW ≡

4M2
W/M

2
H . The functions in 5.5 are given by

F1/2(βf ) = −2βf [1 + (1− βf )f(βf )] , (5.6)
F1(βW ) = 2 + 3βW + 3βW (2− βW )f(βW ), (5.7)

where

f(β) =


arcsin(1/β)2 for β ≥ 1,

−1
4

[
ln 1+
√

1−β
1−
√

1−β
− iπ

]2
for β < 1.

(5.8)

Therefore, once determined the F factor, one is able to get the decay witdth through the expres-
sion

Γ(H → γγ) = |F |2
(
α

4π

)2 GFM
3
H

8
√

2π
. (5.9)

The goal now is to get the to determine the new F factor coming from the diagrams Fig. 5.2.
The procedure was done using Wolfram Mathematica software (the loop factors were worked
with OneLoop package). The result is given by

FV = λ2

2

(
v

MV ±

)2
F1(βV ), (5.10)

where λ2 is the coupling of the new charged bosons V ± to the Higgs boson, and MV ± is the mass
of it. Adding the new contribution to the SM F -factor, and using (5.9), we find that the Higgs
decay width to two photons at one loop level is given by

Γ(H → γγ) = α2M3
H

256π3v2

∣∣∣∣∣∑
i

NciQ
2
iF1/2(βi) + F1(βW ) + λ2

2

(
v

MV ±

)2
F1(βV )

∣∣∣∣∣
2

. (5.11)
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We consider the most recent limit coming from the
√
s = 13 TeV ATLAS Higgs data analysis

[66] to set restrictions on the parameter space. The new contributions respect to the SM are
parametrized as the ratio of the branchig ratios between our model and the SM

BrBSM(H → γγ)
BrSM(H → γγ) = µγγ = 0.99± 0.14. (5.12)

The new contributions to µγγ are governed by the parameters λ2 and MV ± or, equivalently,
by λL and the difference of masses between MV 1 and MV ± , as previously shown in eq.(4.16).
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Figure 5.3: a) Diphoton rate µγγ vs DM mass MV 1 in two regions: the pink region correspond to MV 1 ≤MH/2, where

H → V 1V 1 channel is open, and the green one to MV 1 > MH/2, where H → V 1V 1 channel is closed.
The blue color represents relic saturation. b) Color map for diphoton rate as a function of the parameter
λ2 and the charged vector mass MV± . The horizontal dashed red lines represent the global signal strength
coming from

√
s = 13 TeV ATLAS Higgs data analysis (5.12). These plots take into account perturbativity

restrictions (4.19).

In Fig.(5.3)(a) we present the diphoton rate as a function of the DM mass MV 1 where the
parameter space was divided in two regions: the pink points (10 ≤ MV 1 ≤ MH/2) represent
the zone where the decay mode H → V 1V 1 is open making the decay mode H → γγ very low
and therefore pushing µγγ under the experimental limit for most of the points, and the green
points (MV 1 > MH/2) the zone where the decay mode H → V 1V 1 is closed. In both regions we
show in blue the points which are consistent with the observed amount of DM. We also present
a color map of the parameter λ2 as a function of the diphoton rate vs charged vector mass MV ±

in Fig.(5.3)(b). In both cases the horizontal red lines represent the global signal strength coming
from

√
s = 13 TeV ATLAS Higgs data analysis (5.12).

We can notice that diphoton rate constraints are very restrictives ruling out an important
amount of the parameter space mostly when |λ2| takes big values in the region MV ± & 400 GeV.
However, for higher masses such as MV ± & 1 TeV, still there is a region where µγγ is within the
experimental limit for high couplings, e.g. |λ2| > 5. Another interesting feature of the results is
related to the reaching of DM saturation. In the low mass region (. 60 GeV) the points that
could give the correct abundance given by PLANCK is practically all ruled out, surviving a very
small fraction of points. On the other hand, the high mass region which saturates the PLANCK
limit matches perfectly with the µγγ measurements where (|λ2| < 2) and (MV ±−MV 1 . 20 GeV)
values are preferred.
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5.2.2 Invisible Higgs decay

The Higgs boson is one of the portals connecting the dark sector with the SM, however there is
an important restriction that we need to worry about. When MV 1 ≤MH/2, the SM-Higgs boson
can decay into Dark Matter particles, which translate into invisible decays. On the other hand,
both ATLAS and CMS experiments at the LHC has been seaching for Higgs invisible decays at√
s = 7, 8 and 13 TeV, putting the restrictive upper limit

Br(H → inv) < 24%, (5.13)

at 95% of confidence level [?]. In this section we interpret the CMS upper bound as the maximum
possible branching ratio of the Higgs boson into dark matter particles, i.e.

Br(H → V 1V 1) ≡ Γ(H → V 1V 1)
ΓSM + Γ(H → V 1V 1) < Brmaxinv , (5.14)

where Brmaxinv = 24% and ΓSM corresponds to the the full decay width of the SM Higgs. In the
center of mass frame, the expression for the decay width is

Γ(H → V V ) = pf
32π2M2

H

∫ ∑
pol

|M|2dΩ, (5.15)

where sum runs over the polarizations of the vector final states, and the tree momentum is given
by

pf = mH

2

√√√√1− 4M2
V

m2
H

. (5.16)

The amplitude is given by

M = Γµνεµ(k1)εν(k2), (5.17)

where Γµν = −2iλLMW sWgµν/e. For simplicity, we define γ ≡ 2λLMW sW/e. The square ampli-
tude is ∑

pol

|M|2 = γ2∑
pol

εµ(k1)∗εν(k2)∗εµ(k1)εν(k2) (5.18)

Using the relation ∑
pol

εµ(k)∗εν(k) = −gµν + kµkν
k2 , (5.19)

we have ∑
pol

|M|2 = γ2
(
−gµν + k1µk1ν

k2
1

)(
−gµν + k2µk2ν

k2
2

)
(5.20)

= γ2
(

2 + (k1 · k2)2

M4
V

)
. (5.21)

In the c.m. reference, we have

k1 · k2 = 1
2
(
M2

H − 2M2
V

)
(5.22)

= 1
2
√
M4

Hλ (M2
V ,M

2
V ;M2

H) + 4M4
V , (5.23)
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where

λ(x, y; z) =
(

1− x

z
− y

z

)2
− 4xy

z2 . (5.24)

In the regime when both final states are on-shell we have k2
1 = k2

2 = M2
V . After some algebra we

get

1
2
∑
pol

|M|2 = γ2

2

(
3 + λ(M2

V ,M
2
V ;M2

H)
4

(
MH

MV

)4)
(5.25)

where we have divided by two because of the identical particles in the final state. Finally, the
decay width is given by

Γ(H → V1V1) = M2
Wλ

2
L

8πg2MH

(
3− M2

H

M2
V 1

+ 1
4
M4

H

M4
V 1

)√√√√1− 4M2
V 1

M2
H

(5.26)

where g is the weak coupling constant. Replacing 5.26 into 5.14 we get the following bound on
λL

|λL| <

 8πΓSMg2
wMH

(
1

Brmax
inv
− 1

)−1

M2
W

(
3− M2

H

M2
V 1

+ 1
4
M4
H

M4
V 1

)√
1− 4M2

V 1/M2
H


1/2

(5.27)

This bound is extremely restrictive because allows only very small values of λL1. For example,
when MV 1 is close to MH/2 (∼ 60 GeV), relation (5.27) sets λL . 0.03. This constraints
is complementary to the one given by Higgs diphoton decay, which strongly constrained dark
matter masses below MH/2, eliminating almost completely the region MV 1 ≤MH/2.

The case described above was based on the assumption that the sole channel contributing to
the Higgs invisible decay is H → V 1V 1. However, when MV 2 < MH/2, the channel H → V 2V 2

can also contributes to the invisible Higgs decay provided that ∆M = MV 2−MV 1 is small enough
(of the order of a few GeV or less), to forbid V 2 to decay into V 1 and a detectable pair of fermions.
Considering that λR = λL+ 2(M2

V 2−M
2
V 1)

v2 , and in this case, MV 2 ≈MV 1 , then λL ≈ λR. Therefore,
in this case the limit on λL can be easily modified.

Finally, in the case of a small V ±−V 1 mass split, the channel H → V ±V ∓ may also contributes
to the Higgs invisible decay channel. However, LEP limits 5.3 put very strong constraints on the
allowed masses of the charged vectors, then making the Higgs decay into the on-shell charged
vectors kinematically forbidden.

5.3 Relic Density constraints

As we mentioned in section 4 our model has a 6-dimensional parameter space but only four free
parameters are relevant for our study: three physical masses of the vector fields (MV 1 ,MV 2 ,MV ±)
and λL, the parameter which regulates the coupling between the SM-Higgs boson and a pair of
V 1. In order to show a general qualitative description of the DM relic density ΩDMh

2 as a function
1This strong contraint in the coupling among the Higgs boson and the dark matter is also shown in the i2HDM [68] with similar

results.
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of the parameter space we fix some of them and perform a scan over the more relevant ones. The
results should be in agreement with the most recent relic density value given by PLANCK [43,69],
i.e.

ΩDMh
2 = 0.1184± 0.0012. (5.28)

To simplify the analysis we consider MV 2 = MV ± (equivalently to fix λ3 = λ4 (see 4.14)). In this
scenario, once we fix the mass difference ∆M = MV 2 −MV 1 , then the two relevant parameters
are MV 1 and λL. We will present two characteristic scenarios which we will refer to as: a) quasi-
degenerate case, where ∆M = MV 2 −MV 1 = 1 GeV, and b) the non-degenerate one, in which
∆M = MV 2 −MV 1 = 100 GeV. In Fig. 5.4 we present a 2-dimensional parameter space where
we show ΩDMh

2 as a function of the DM mass MV 1 for different λL values in the two scenarios
mentioned above. The horizontal red dashed line corresponds to the central value of the relic
density measured by PLANCK.
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Figure 5.4: Relic density ΩDMh

2 as a function of MV 1 for different values of λL in a quasi-degenerate scenario (a) where
MV 2 = MV± = MV 1 + 1 GeV and a no-degenerate scenario (b) where MV 2 = MV± = MV 1 + 100 GeV.
The horizontal red line corresponds to the central value of the relic density measured by PLANCK. The
green area indicate the excluded region by LEP measurements.

The first important aspect we can appreciate of these results is that there are two regions that
fulfill the DM budget. The first saturation zone happens between 30 < MV 1 < 80 GeV in the
non-degenerate scenario as shown in Fig.(5.4)(b). In this case the main annihilation mechanism is
through the s-channel Higgs boson exchange which is controlled by the λL coupling. Interestingly,
there is a considerable area of overabundance for small values of MV 1 even for large values of λL.
Of course, this region must be excluded as non physical.

As it is shown Fig.(5.4)(a), the second saturation region takes place in the quasi-degenerate
scenario when MV 1 > 830 GeV. In this zone the interaction between the DM and the longitudinal
polarization of W± and Z boson becomes dominant. This interaction is modulated by λi quartic
couplings which in turn depend on the mass difference among the new vectors as it is shown
in eq.(4.16). When ∆M is small the λi become small enough to produce a suppression in the
annihilation average cross section for these channels pushing the DM abundance up to reach the
saturation limit, even when the (co)annihilation effects are present which become subdominant.
In contrast, in the non-degenerate cases the annihilation of DM is more efficient due to the large
values of λi which results in the asymptotically flat behavior of abundance for high DM mass
values.

51



5. Experimental constraints

The overabundance seen in the non-degenerate scenario for small values of MV 1 completely
disappears in the quasi-degenerate case due to effects of (co)annihilation which introduces new
sources of annihilation of DM, pushing the abundance below the PLANCK experimental limit.
When MV 1 ∼ 40 and MV 1 ∼ 45 GeV we can note the effects of resonant (co)annihilation through
V 1V ± → W± and V 1V 2 → Z channels respectively that manifests on Fig.(5.4)(a) as two inverted
peaks.

At exactly MV 1 ∼ 62.5 GeV the resonant annihilation through the Higgs boson take place
as we can see in both scenarios as a deep peak. After that resonance we observe three points
where the abundance of DM decreases considerably. This happens markedly at MV 1 ∼ 80 GeV
through the opening channel V 1V 1 → W+W− and more tenuously at MV 1 ∼ 90 GeV through
V 1V 1 → ZZ. Finally at MV 1 ∼ 125 GeV the opening of V 1V 1 → HH take place corresponding
to the reduction of DM relic density through s-channel Higgs boson.

One can also observe that in the case of ∆M = 100 GeV, for MV 1 below 65 GeV, DM co-
annihilation is suppressed and the relic density is equal or below the experimental limit only for
large values of λL (λL > 0.1) which are excluded by LHC limits on the invisible Higgs decay.

Finally it is easy to notice that for larger values of λL the abundance of DM decreases, however,
is important to stress that there is a slight difference for the case in which λL takes positives
and negatives values after MV 1 ∼ 62.5 GeV. This behavior is due interference effect between the
s-channel Higgs boson exchange diagram and and those involving gauge bosons.

5.4 Direct Detection limits

We consider as well whether our model is consistent with the limits coming from XENON1T [70]
experiment studying the rescaled spin independent proton-DM scattering cross section

σ̂SI = (ΩDM/ΩPLANCK)× σSI(V 1p→ V 1p) (5.29)

, which allows us to take into account the case when the vector V1 contribute only partially to
the total amount of DM. This approach is useful to take into account other sources that can
contribute to fulfill the DM budget. We present the σ̂SI as a function of the DM mass for several
values of λL in the quasi-degenerate and non degenerated scenario as we shown in Fig. 5.5. The
green area, shown in both plots is the excluded region from the direct detection (DD) experiment
and the soft red color in Fig. 5.5(a) is excluded by LEP data.

The σSI is through the t-channel with the Higgs boson as a mediator, therefore we can notice
immediately that λL plays an important roll which is scale the strength of the interaction between
DM and nucleus of ordinary matter. In the quasi-degenerated scenario the asymptotically flat
behavior of the σ̂SI for MV 1 > 100 GeV can be explained because as MV 1 take higher values, the
cross section σSI is decreasing, however this effect is compensated by the fact that there is more
abundance of DM as the value of MV 1 is increasing. This can be checked in Fig. 5.4(a). On
the other hand, in the non-degenerate scenario the ΩDMh

2 is relatively constant after the DM
annihilation channel V 1V 1 → HH is opened (see Fig. 5.4(b)), therefore, as the value of DM
mass is increasing the σ̂SI is taking smaller values.
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Figure 5.5: Rescaled spin independent direct detection cross section σ̂SI versus MV 1 and the XENONT1 constraint for

several values of λL. The red-shaded region in the left frame is excluded by LEP data.
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Chapter 6

Dark matter phenomenology

After having explored separatelly LEP, LHC, PLANCK and XENONT1T constraints on the
vector doublet model (DVDM), it is necessary to get toghether all of them into a unique analysis
in order to see the viability and how well this kind of DM can account for the relic density of
dark matter in the Universe. Additionally, one important thing which could play a special role in
discriminating between DM models via collider observables are missing transverse energy (Emiss

T )
and some kinematical properties of the SM particles produced in association with DM particles.
For example, at the LHC mono-jet signatures are events with high transverse momentum pT and
a large Emiss

T . These kind of signatures are considered to be a ”discovered channel” for DM.

In this chapter we focus our attention in a full parameter space of the model applying all
the constraints studied in the previous chapter. Additionally, we highlight the parameter points
at which the DVDM gives the correct relic density (saturation), and we compare the DM cross
section and the missing energy distribution shapes for mono-jet, -Z and -Higgs signals of the
vector DM in the model presented in this work and the resulting from the well-studied model
inert Two Higgs Doublet Model (i2HDM) [52, 54, 71–74], which has a very similar coupling and
states structure, but the new states are spinless

6.1 Parameter Space Scan

The previous description provides us with a qualitative overview of the parameter space. However,
in order to have a deeper understanding of the model we perform a random scan using 7 million
points of the most relevant parameters that have direct interference in the phenomenology of
dark matter. The range of the parameters used in the scan are summarized in Table (6.1).

Table 6.1: Range of the 4-dimensional parameter space.

Parameter min value max value
MV 1 [GeV] 10 2000
MV 2 [GeV] 10 2000
MV ± [GeV] 10 2000

λL -12 12

The scan restuls are presented in Fig. (6.1), where we show several plots with 2-D projections
of the 4-dimensional parameter space as a color map of DM relic density. We considered the
parameter space without any theoretical or experimental constraint in the first row, and then, in
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6. Dark matter phenomenology

the second one we took into account perturbativity (4.19), LEP limits (5.1, 5.2 and 5.3), Higgs
decay into two photons (5.12), Invisible Higgs decay (5.13), overabundance DM Relic density
(5.28) and Xenon1T Direct Detection constraints.

As we explained previously, and without losing generality, we work in the region where MV 1 <
MV 2 and therefore λ4 > 0. For this reason we exclude the region MV 1 > MV 2 as we can see
from the gray region in Fig. 6.1(b). The different pattern of colors represent the amount of
DM that the model is capable of explain considering a thermal production mechanism, where
the dark red color in the low DM mass region (MV 1 . 45 GeV) of Fig. 6.1(a,b) represent over-
abundance which we consider as non physical. The dark blue colors are the regions with extreme
under-abundance of DM which is more accentuated for large values of λL in the zone where
MV 1 > MH/2 after the respective annihilation channels (WW , ZZ and HH) are progressively
opened, reflecting the same pattern shown previously in Fig.5.4.

In Fig. 6.1(a,b) the resonant annihilation through the Higgs boson is easily recognized by the
vertical separation around MV 1 ∼ 62.5 GeV, where a steep break in the color pattern can be seen,
changing from an light green to a dark blue. We can also notice the resonant (co)annihilation
through the Z boson in the plane (MV 1 ,MV 2) of Fig.(6.1)(b) at the region MV 1 = MV 2 ∼ 45
GeV.
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Figure 6.1: 2-D projections of the 4-dimensional parameter space presented as a color map of ΩDMh

2 in two different
planes: (MV 1 , λL) plane for Fig.(a,c) and (MV 1 ,MV 2 ) plane for Fig.(b,d). In the first row we present the
parameter space without any constraint and in the second one we applied all the theoretical and experimental
constraints with exception of DM under-abundance.
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6.2. Vector Dark Matter as the only source

Taking into account perturbative restrictions, the region of the parameter space that shows an
important mass difference between MV 1 and MV 2 is excluded since this large difference increases
the values of the quartic coupling beyond the allowed value set by (4.19). This effect can be seen
clearly in Fig. (6.1)(d) where the region with MV 2 > 900 GeV for MV 1 < 500 GeV is excluded.
Only when the mass difference becomes relatively small, MV 2 can admit larger values.

By incorporating the restrictions coming from Higgs invisible decay almost all the parameter
space for MV 1 . MH/2 disappears with exception of a very narrow region where λL parameter
take small values (λL . 0.02). This happen because the dominant annihilation channel is through
the higgs boson exchange.

The Higgs diphoton rate (5.12) introduce strong restrictions on the parameter space specially
for negative values of λL. We can see that restriction in the Fig.(6.1)(c) where λL is limited
from below through the parabolic shape as we increase the values of MV 1 . The diphoton rate
depend explicitly on λ2 = λL + 2(M2

V 1 − M2
V ±)/v2, where the difference of squared masses is

always negative because MV 1 < MV ± , therefore when the mass difference is large and λL takes
high negative values, the parameter λ2 grows in demacy, causing a great deviation from the
experimental value of µγγ. This can also be seen as well in Fig. (5.3)(b).

The additional constraint from XENON1T DD experiments removes part of the parameter
space contained between 63 < MV 1 < 125 GeV where the direct detection rate is more sensitive.
This affects the region for positive and negative values of λL, however the negative part was
removed previously by the Higgs diphoton rate constraint as we can see from Fig.(6.1)(c). The
scattering cross section between V 1 and nuclei is through the t-channel with the Higgs boson
as a mediator, therefore it depends explicitly on the parameter λL. For large values of λL the
abundance of DM is low, but not low enough to suppress the DM detection rate through DD
signal. Only when λL is small (. 0.02), the region between 90 < MV 1 < 200 GeV of the
parameter space is able to bypass the limits of direct detection. When we move to a high DM
mass region (MV 1 & 200 GeV), where the DD rate is less sensitive, we still have a excluded region
with parabolic shape that it is only reached for large values of λL. It produces a clear division
between a low density of DM zone with the rest of the parameter space. However, in the case of
high degeneracy among the vector masses for the region MV 1 > 900 GeV the DD rate is able to
restrict parameter space for values of λL up to 1, as we will see later in the next subsection.

6.2 Vector Dark Matter as the only source

In the previous paragraphs we considered experimental and theoretical constraints in our param-
eter space but we maintained the assumption that our DM candidate contributes partially to the
DM budget, therefore we relaxed the lower limit of the measurements made by the PLANCK
satellite. Here, we show how the model can completely explain the abundance of DM for some
special region of the parameter space taking into account both upper and lower PLANCK lim-
its at 1σ (5.28). For that reason, in Fig. 6.2 we present a 2D projection of the 4-dimensional
parameter space for the planes (MV 1 , λL) and (MV 1 ,MV 2), where we show all the points which
can saturate the PLANCK limit but only the red points survived all the restrictions mentioned
above.
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Figure 6.2: 2-D projections of the 4-dimensional parameter space in two different planes: (MV 1 , λL) plane in (a) and

(MV 1 ,MV 2 ) in (b). We show all the points where the model fulfill the PLANCK limit, but the gray points
are constrained by experiments and the red ones survive all the restrictions.

As we discussed earlier, there are two regions where the vector DM reach the experimental
limit. The first one happen in the low DM mass region between 35 < MV 1 < 80 GeV. However
this zone is complete exclude by the experimental constrains. The region of interest which survive
after all the restrictions is located the high DM mass zone where MV 1 & 840 GeV as we can see
from Fig. 6.2. This result contrasts with the one found in references [46, 47] where the dark
vector can only explain partially the DM relic abundance. One of the most important features
of this regions is the high level of degeneracy between the vector masses showed in the plane
(MV 1 ,MV 2) of Fig.(6.2)(b) where the mass splitting do not exceeds ∆M < 20 GeV.
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Figure 6.3: Closing the parameter space at high values of MV 1 and λL in a quasi-degenerate scenario.

Despite the fact that direct detection experiment are less sensitivity in the zone of high DM
mass, the XENON1T constraints are still able to exclude parameter space for λL > 0.3 in this
zone. As the value of MV 1 increases and DD loses sensibility, the allowed region becomes bigger.
This effect is appreciated as the gray region in Fig.6.2(a) for MV 1 > 840 GeV.

As we increase the value of MV 1 in this scenario of high degeneracy, we can notice that λL can
take larger values. However, when MV 1 ∼ 10 TeV we reach the maximum value for λL allowed by
the perturbability constraints (4.19). Now, with this value of λL, the difference of masses between
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6.3. Dark matter production at the LHC

DM and the other vectors can only reach up to 20 GeV, after that point the quartic couplings
become too large making the effective DM annihilation cross section fall below the experimental
value of PLANCK. This completely closes the parameter space of the model as we can see from
Fig. 6.3.

6.3 Dark matter production at the LHC

The DM double production associated with either mono-jet, -Z or -Higgs are signals expected
to been seen at the LHC in the context of dark matter searches. Due to the similarities in
the topology of these processes between our model and the well know inert-two-Higgs-doublet-
model (i2HDM)1 we compare the parton level distribution cross section and the missing trans-
verse energy shape those signals2. The calculations were done with CalcHEP package, using
NNPDF23 lo as 0130 qed (proton) as parton distribution functions, and a generic transverse
momentum cut of 100 GeV on each of the SM particles.

200 400 600 800 1000
MDM (GeV)

10 5

10 3

10 1

101

103

105

 (f
b)

Mono-X (jet, Z, H) total cross (fb) section at LHC@13TeV
 i2HDM                            DVDM
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Figure 6.4: Mono-X (j, Z,H) cross section as a function of the DM mass. The dashed lines correspond to the scalar
case (i2HDM) and the continuous one to the vectorial one (DVDM).

In Fig. 6.4 we show the total cross section for different mono-signals as a function of the DM
mass in both models for LHC@13TeV. The continuous lines correspond to the case of vector DM
(DVDM), whereas the dashes lines to the scalar case (i2HDM). All the process consider the quasi
degenerate mass scenario ∆M = 1 and λ345(λL) = 1.

Because the topology of the Feynman diagrams in both models are exactly the same in all the
processes studied here, the differences lies mainly in the spin of the final states. The dependence
of the cross section on the DM mass is similar in both cases. However the vector case is scaled
up over the scalar one by two orders of magnitude approximatelly. This vector cross section
enhancement is due to the fact that the longitudinal polarization of vectors scale as ∼ E/MV ,
implying that the production matrix element receive a significant enhancement in the region of
phase space where the DM state is relativistic and either one or both particles are longitudinally

1The i2HDM has an equivalent spectra but with scalar states: h1, h2 and h±. Typically, the lightest odd particle (i.e., the dark
matter candidate) is chose to be h1, and λ345 corresponds to the tree-level coupling between the scalar DM and the Higgs boson.

2Detailed analysis of DM production at LHC considering these processes in the i2HDM see [54], and a more fine analysis for
mono-jet signature at the LHC see [68].
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Figure 6.5: Normalized differential missing transverse energy cross section for the processes pp→ X + /E (X = j, Z,H)
in i2HDM and DVDM. The dashed lines correspond to the predictions of the i2HDM and the continuous
one in the DVDM. All the plots contain different DM mass: 100, 500 and 800 GeV, in the quasi-degenerate
case, i.e. ∆M = 1 GeV, λ345(λL) = 0.1, and at

√
s = 13 TeV LHC energies. A pT,X ≥ 100 GeV cut has

been applied in all the plots.

polarized.

On the other hand, in Fig. 6.5 are shown the normalized missing transverse energy distribution
cross section of each one of the processes at parton level, considering ∆M = 1 GeV and λL = 0.1.
In each channel, the distributions for the vector case are always flattened respect to the scalar
ones. This behaviour is in agreement with the results presented in [17]. Furthermore, the
differences in the shapes are more notorious in the cases in which the new state masses are lower.
Considering that mono-jet signals have the higher cross sections, we complement the analysis
with the invariant mass distribution of the DM pairs. In Fig. 6.6 we present Minv(DM,DM)
distributions for the scalar and vector cases in the mono-jet case, again normalized to unity for√
s = 13 TeV LHC energies. From Fig. 6.6, one can see that the Minv(DM,DM) distributions

are better separated for higer masses of scalars and vectors. The scalar distributions are closer
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Figure 6.6: Invariant mass of DM pair distributions normalized to unity for mono-jet in both i2HDM (dashed) and
DVDM (continuous) at 13 TeV LHC energy. All the results are considering λ345(λL) = 0.1, in the quasi-
degenerate case, i.e. ∆M = 1 GeV.

to the point Minv(DM,DM) = 2MDM, whereas the vectorial ones distributions are broader.

Table 6.2: Total cross section (fb) for pp→ X+ /E, (X = j, Z,H) with λ345(λL) = 0.1, NNPDF23 lo as 0130 qed (proton)
as a PDF, and pXT > 100 GeV. Here, the missing energy is due to the production of V1V1, V1V2 and V2V2.
The same for the scalar case.

Model i2HDM DVDM
Mass (GeV) 100 500 800 100 500 800
Mono-j 1.9× 101 6.6× 10−2 6.4× 10−3 7.3× 103 6.2 4.5× 10−1

Mono-Z 3.7× 10−1 2.9× 10−3 3.1× 10−4 7.3× 102 4.1× 10−1 2.8× 10−2

Mono-H 1.0× 10−2 2.0× 10−5 2.2× 10−6 3.0× 102 3.1× 10−3 9.7× 10−6
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Chapter 7

Conclusions

Unlike most of extensions to the Standard Model which consider new massive vector fields as
singlets or triplets under SU(2)L gauge group, in this work we have explored a different possibility.
The new vector degrees of freedom enter into the SM in the fundamental representation of SU(2)L,
with hypercharge Y = 1/2. Unlike vector triplet case, our model accept a potential composed of
many terms coupling the new vector to the Higgs doublet with independent coupling constants.
This feature makes the model more similar to the i2HDM than to models with vector triplets.
Additionnaly, due to the quantum numbers assigned to the new vector, it is impossible to couple
it to standard fermions through renormalizable operator. The model acquires a Z2 symmetry
in the limit in which the only non-standard dimension three operator is eliminated. This choice
is natural in the sense of t’Hooft and allows the neutral vector V 1 to be a good dark matter
candidate.

We have performed a detailed analysis constraining the model through LEP and LHC data,
DM relic density and direct DM detection. We found that the main experimental constrains
are imposed by recent measurement of H → γγ (mainly when the V 1 is light) and data on
direct search of DM obtained by XENON1T. After impossing all the experimental constraints,
we found that for a range of masses between 840 ≤ MV 1 ≤ 104 GeV in the highly degenerate
case where ∆M < 20 GeV the lightest neutral component of the doublet can reach the relic
density measurements 5.28, surviving all the experimental constraints. This contrast with other
electroweak vector multiplets models, where the saturation value for DM is above the TeV scale
(see e.g. [45,48]), or other models where the dark vector component never reach the DM budget
(see e.g. [46, 47]). Furthermore, if we relax the lower PLANCK limit (5.28) allowing additional
sources of dark matter, there is an important sector of the parameter space for MV 1 & 100 GeV
that it is still not possible to rule out with the current experiments.

At this point, we want to dedicate some sentences to compare our construction to the recently
proposed Minimal Vector Dark Mater model (MVDM) [45]. In both models, the dark matter
candidate is a component of a vector field transforming a non-trivial representation of SU(2)L:
the adjoint representation in the case of MVDM and the fundamental one in our case. The
difference in representations makes an abysmal separation between the two models. The most
evident one is related to the number of new vector states (3 for the MVDM and 4 in our case).
But more important is what happen with the potential in the Higgs–massive-vector sector. In
the MVDM this sector is extremely simple, contributing with only one term to the Lagrangian
and only one of the two free parameters of the model. In our case, the scalar-vector potential is
richer with three free parameters. This is, in part, the origin of the different ultra-violet behavior
reflected in the scale of unitarity violation which is systematically larger in the MVDM. In fact,
the structure of the potential of our model makes it more closely related to the i2HDM than to
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7. Conclusions

the MVDM making harder to differentiate our model from the former than from the latter.

In view of the similarities between i2HDM with our model, we compared the parton level
cross section and the normalized missing energy differential cross section for mono-X(jet,Z,H).
Mono-X cross section get enhanced in the vectorial case due to their growing energy behaviour
of their final state longitudinal polarization. The shapes of the distribution of missing energy
results to be flatter in the vectorial cases. This feature may help to distinguish between our
model and the i2HDM.

Finally, as a complement to this work, we have shown some results of perturbative unitarity
bounds on some scattering amplitudes involving the new states. Our analysis suggest that our
effective approach needs an ultraviolet completion at a scale of the order of 3 to 10 TeV.
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Appendix A

Inert Two Higgs Doublet Model

The i2HDM is considered one of the most simple extensions to the Standard Model. It consists
in the addition of a second scalar φ2 which is a SU(2)L doublet with hypercharge 1/2. In the
unitary gauge, the doublets are

φ1 = 1√
2

(
0

v +H

)
, φ2 = 1√

2

(
h+

h1 + ih2

)
, (A.1)

where only the neutral component φ1 gets a vacuum expectation value (vev). Due to an imposed
Z2 discrete symmetry, the second scalar doublet transform as

φ2 → −φ2, (A.2)

with all other fields invariant. This partity imposes natural flavor conservation in the Higgs
sector, implying that only φ1 couples to matter.

The Lagrangian of the model is given by

L = |Dµφ1|2 + |Dµφ1|2 − V (φ1, φ2) , (A.3)

with the most general potential

V (φ1, φ2) = −m2
1

(
φ†1φ1

)
−m2

2

(
φ†2φ2

)
+ λ1

(
φ†1φ1

)2
+ λ2

(
φ†2φ2

)2
(A.4)

+ λ3
(
φ†1φ1

) (
φ†2φ2

)
+ λ4

(
φ†2φ1

) (
φ†1φ2

)
+ λ5

2

[(
φ†1φ2

)2
+
(
φ†2φ1

)2
]
.

The parameter space of the model is relatively small, and typically they are taken as real param-
eters in order to precludes the CP-violation.

After electroweak symmetry breaking (EWSB) the scalar mass spectrum is given by

M2
H = 2λ1v

2, (A.5)

M2
h± = 1

2
[
2m2

2 − λ3v
2
]
, (A.6)

M2
h1 = 1

2
[
2m2

2 − (λ3 + λ4 + λ5)v2
]
, (A.7)

M2
h2 = 1

2
[
(2m2

2 − λ3 + λ4 − λ5)v2
]
, (A.8)

where we recognize the H state as the 126 GeV Higgs boson, and the rest as the new scalars.
Without loos of generality, the lightest odd particle is considered to be h1. A phenomenological
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A. Inert Two Higgs Doublet Model

important consequence of the Z2 symmetry is that the Z2-odd particle (LOP) is stable. If
further the LOP is either h1 or h2, this (neutral) state can play the role of the DM candidate.
The coupling combination λ3 + λ4 + λ5 ≡ λ345 plays an important phenomenological role, as it
governs the Higgs-DM interaction vertex Hh1h1, (see Fig. A.1).

h1(p2)

h1(p1)

H(k) : 2MW sin θW
e

(λ3 + λ4 + λ5).

Figure A.1: Tree level coupling between the LOP (DM candidate) and the Higgs Boson.
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Appendix B

Vector fields and polarizations

In this appendix we are interested to review the high energy behaviour of vector fields. To this
end, we must to focus in its equation of motion and polarizations.

The equation of motion of a massive free vector field is

∂µF
µν +M2

V V
ν = 0, (B.1)

Derivating this equation one obtains the constraint ∂µV µ = 0. Including this condition in B.1
we obtain the Proca or Klein-Gordon equation for each component

(�+M2
V )Vµ = 0. (B.2)

The solution to this equation can be written as

Vµ =
∑
i

∫ d3p

(2π)3ai(~p)ε
i
µ(p)eipx, with p0 ≡ E =

√
~p2 +m2 (B.3)

where εiµ is the base four-vector polarization. The i index is undefined, but usually in Minkowsky
spacetime is is chosen a four dimensional base, i.e., i = 1, .., 4. Note that the constraint ∂µV µ = 0
implies pµεi,µ(p) = 0, for all i, then resulting in three independent polarization vectors. Usually,
they are normalized to ε?µεµ = −1.

In the gauge boson rest frame, where pµ = (MV , 0, 0, 0), the longitudinal polarization vector
is

εµL(p) = (0, 0, 0, 1), satisfying εL(p) · εL(p) = −1 and p · εL(p) = 0

Now let boost the boson. In a gauge boson moving frame (z+-axis), the massive vector field
has pµ = (E, 0, 0, pz). The vector polarizations can be written as the following: εµT1 = (0, 1, 0, 0),
εµT2 = (0, 0, 1, 0) and εµL = 1

MV
(pz, 0, 0, E). As the longitudinal polarization depends on the energy,

at high energies it behaves as εµL → pµ

MV
= E

MV
(1, 0, 0, 1), which is the origin of dangerous E2

M2
V

growing amplitudes. However, this is just an approximation since it violates ε·p = 0, and actually
the expression at high energies is

εµL(p) = pµ

MV

+O
(
MV

E

)
(B.4)

To be even more general, let us take the gauge boson moving in some arbitrary direction with
velocity ~β. The four-momentum is pµ = E

(
1, ~β

)
and it is possible to write the longitudinal
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polarization as

εµL(p) =
(
γβ, γβ̂

)
(B.5)

where ~β = ~p/E, γ−1 =
√

1− β2 = MV /E and β̂ = ~β/β. It is easy to check that this form of εL
satisfy the invariant relations p · εL(p) = 0 and ε?µε

µ = −1. In fact, one can show that a better
approximation is

εµL(p) = pµ

MV

+ 1
2γ2

Qµ

MV

+ ... (B.6)

where Qµ = (−E, ~p). The second term it is suppresed by the energy O(MV /E).

Taking into account these considerations in the longitudinal polarizations, there are potentially
dangerous growing amplitudes when we consider the scattering of at least two longitudinally
polarized gauge bosons. The contraction of their polarization vectors grows as

εL(pi) · εL(pj) ∼=
s

2mimj

� 1 for
√
s� mi,mj, i 6= j (B.7)

in the s channel.
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Appendix C

Partial wave amplitudes

Having shown that our model can provide a viable Dark Matter candidate, we want to discuss the
validity range of our effective approach. The main theoretical challenge faced by our construction
is the eventual violation of perturbative unitarity introduced by the new massive vector states. To
this aim, we study the amplitudes, in the high energy regime, of representative and potentially
problematic processes like hV 1 → hV 1 and ZV ± → ZV ±. In order to quantify the loose of
pertrubative unitarity, we decompose the scattering amplitude in terms of partial waves, and
then we impose the constraint on the it from unitarity principles.

The scattering amplitude can be decomposed in partial waves as

M(s, θ) = 32π
∞∑
l=0

(2l + 1)alPl(cos θ), (C.1)

where Pl(cos θ) correspond to the Legandre polynomials and s correspond to the center-of-
momentum energy, the l-th partial-wave amplitude is given by

al = 1
32π

∫ 1

−1
d(cos θ)M(s, θ)Pl(cos θ). (C.2)

Denoting each elastic process as X1X2 → X1X2, where X1,2 is one of the particles in the processes
of interest, and defining x ≡ s/(4MX1MX2), the high energy regime is for x � 1, and in this
limit the scattering amplitude can be written as an expansion in x as the following1

M = Ax2 +Bx+ C +O(1/x), (C.3)

where the coefficients A,B and C can have an angular dependence. Only considering the l = 0
(which give the leading contributions), perturbative unitarity set that

|a0(x)| ≤ 1. (C.4)

In Fig.C.1(a) is shown the maximum energy scale at which the process hV 1 → hV 1 is valid
until perturbative unitarity starts to be violated2. As λL gets smaller the bigger is the scale
energy before the breaking of perturbative unitarity. Additionally, the bound on the energy gets
relax as MV 1 raises too. For values of MV 1 below 100 GeV the scale of unitarity violation is
mostly constant and of the order of a few TeV s, whereas for higher masses the dependence on
λL start to grow, making our model consistent at scales as high as 10 TeV for small values of
λL. Therefore, from the point of view of unitarity, our construction is perfectly safe for masses
of the DM candidate above 200 GeV specially when λL to is small. We want to remark that

1We follow the procedure exposed in [75].
2The explicit expressions of the partial waves are in the Appendix.
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Figure C.1: a) Maximum energy-scale Λ until the process hV 1 → hV 1 starts to violate perturbative unitarity. b)

Maximum energy-scale Λ until the process ZV ± → ZV ± starts to violate perturbative unitarity.

phenomenologically interesting region of the space parameter, where our DM candidate saturate
the relic density, belongs to the unitarity safe zone.

In Fig.C.1(b) is shown the maximum energy scale in the plane (λL,MV ±) at which the process
ZLV

±
L → ZLV

±
L is valid until perturbative unitarity is violated. At masses near 100 GeV and λL

close to zero, the maximum energy values allowed by pertrubative unitarity rises easily above 5
TeV. on the other hand, for values of MV ± near 1 TeV, the scale of unitarity violation is of the
order of 3 TeV.

These results are consistent with unitarity analysis of some vector dark matter models [30,45]
and suggest that our effective model must meet an ultraviolet completion at a scale between 3
and 10 TeV. For instance, one of the simplest ways to restore unitarity is to embed our model
into a larger gauge symmetry spontaneously broken by a new scalar sector [76]. In this sense, our
model can be considered as a simplified model [23], retaining just the lightest states predicted in
this scenario, and pushing the required new states at scales above the vectorial ones.

Complementary to the the results presented above, we present the results of the same processes
but in different planes.

In Fig. C.2 is shown the value of the scale of perturbative unitarity violation (Λ) for the
process hV 1 → hV 1 in the planes (MV 1 ,MV 2), (MV 1 ,MV ±) and (MV 2 ,MV ±), respectively. In
table(C.1) we ressume the zero partial wave for the three possibles elastic scattering of this type.
In concordance with the information given by Fig. C.1(a), for lower masses (. 200 GeV), the
values of Λ are located around the TeV energy scale for most of the masses combinations allowed
by experimental constrains. For higher masses, Λ stars to grow for most of possible combination
of masses, and there is a slightly raising in the energy as the degeneracy among the three states
becomes similar.

On the other hand, in Fig. C.3 we present different plots showing the values of Λ for the
process ZV ± → ZV ±. In this case, the degenarancy of the states do not show any raising in the
maximum allowed energy value. According to what is shown in Fig. C.1(b), as the masses get
near the TeV scale, Λ gets a constant value near 4 TeV, making this process more stringent for
masses above ∼ 500 GeV than the previous one with the Higgs involved.
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Figure C.2: Maximum allowed energy Λ by perturbative unitarity bounds on hV 1 → hV 1 amplitude. The plots
are projected in the planes (MV 1 ,MV 2 )(a), (MV 1 ,MV± )(b) and (MV 2 ,MV± )(c).

Finally, we make some comments about the VL+VL → VL+VL amplitudes, for V = V 1, V 2 and
V ±. These processes may introduce strong constraints on the energy scale at which perturbative
unitarity breaks down. For example, let us first consider the process V 1

L + V 1
L → V 1

L + V 1
L . Its

zero partial wave is

a0(s) = g2(α2 + α3) (36M4
V 1 − 24M2

V 1s+ 5s2) + 18λ2
LM

2
HM

2
W

96πg2M4
V 1

, (C.5)

where α2 and α3 are the self-couplings among the new states (see (4.9)). The strong growing
energy behaviour of the partial wave (a0 ∼ E4) makes that perturbative unitarity breaks down
at very low energies for typical masses of a few hundred GeV. For example, for MV 1 = 100
GeV, λL = 1 and for α2 = α3 = 1, the breaking of perturbative unitarity is reach at center of
mass energies less than 250 GeV. Interestingly, the growing energy behaviour dissapear when
α2 = −α3. However, under this last condition, the V +

L + V −L → V +
L + V −L amplitude still grows

with the energy as E4

a0(s) = g2(9(1− 2c2
w)2M2

W s− 4c2
ws

2)
1536πc4

wM
4
V ±

+ M2
Wλ2s

32πg2M4
V ±
, (C.6)

where λ2 is a function of λL, MV 1 and MV ± (see eq. (4.16)). Even when the partial wave still
grows with the energy, the lost of perturbative unitarity is not as strong as it is in the channels
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Figure C.3: Maximum allowed energy Λ from perturbative unitarity bounds on the processes ZV ± → ZV ± in
the planes (a)(MV 1 ,MV 2 ), (b)(MV 1 ,MV± ) and (c)(MV 2 ,MV± ).

which involves a SM gauge boson. Finally, it seems impossible to get rid of the growing energy
behaviour with an arbitrarily choose of the free parameters. As we have pointed out above,
a possible solution to this problem is to establish the model from a gauge theory in order to
generate a gauge cancellation among the s- and t- channels and the contact graph [77].

Table C.1: Partial waves for hV → hV elastic tree level scatterings processes. Each of the three processes
contain a contact diagram.

Process s-cha t-cha Partial wave (a0)

hV 1 → hV 1 V 1 H,V 1 − λLs

64πM2
V 1

(
1 + 2λL

g2
M2

W

M2
V 1

)

hV 2 → hV 2 V 2 H,V 2 − λRs

64πM2
V 2

(
1 + 2λR

g2
M2

W

M2
V 2

)

hV ± → hV ± V ± H, V ± − λ2s

64πM2
V ±

(
1 + 2λ2

g2
M2

W

M2
V ±

)
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