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At the previous Rochester Conference (1960) Eden,
Polkinghorne et al. reported work devoted to the
proof of the Mandelstam representation in any finite
order of perturbation theory. As is known, later on
it was found that the hopes for proving this were too
optimistic. Such proof has not been obtained until now.

In the present report we consider the two following
problems.

1. Proof of one-dimensional dispersion relations
in any finite order of perturbation theory by the method
of majorization of diagrams, developed earlier ¥
and the derivation of dispersion relations for partial
wave amplitudes of the nucleon-nucleon and pion-
pion scattering.

2. Derivation of parametrical equations of the
surface of singularities of an arbitrary diagram and
their application.

A detailed account of these results is given in the
preprints of the authors >,

1. PROOF OF DISPERSION RELATIONS IN
PERTURBATION THEORY

In papers > it was shown that all strongly con-

nected diagrams of scattering processes involving
n-mesons and nucleons are majorized in the Euclidean
region by a small number of the simplest diagrams.
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Fig. 1

So, e.g., in the case of the nucleon-nucleon scattering
the graph represented in Fig. 1 with different numera-
tion of vertices majorizes all strongly connected
diagrams of this process . This diagram gives the
maximal domain Gy, in the space of the Euclidean
external momenta in which the quadratic form of every
(strongly connected) diagram of the nucleon-nucleon
scattering is negative:

3 !
Q(x, p) = Z A;()p;p;— glo‘vm?’ <0, (1.1

i, j=1

4
for all a,>0 for which Y «,>0. Here m, is the

v=1

mass on the v-th line, / is the number of the internal
lines of the diagram. It is found that the knowledge
of the domain Gyy in the Euclidean space allows
one to find the domain described by this same inequa-
lity (1.1) in the case when the momenta p; (with real
scalar products) belong to a pseudo-Euclidean space
with arbitrary signature. For this purpose we de-
compose vectors p; into mutually orthogonal Euclidean
and anti-Euclidean parts

pi=Pi+Qia

(P}>0; 07<0; i,j=1,..,4)

PQ,=0 (1.2)

The explicit expressions for the vectors P; and O,
depend, generally speaking, on invariants s and ¢
composed of vectors p. If the p,’s lie on the mass
shell :
pi=ps=pi=pi=M>, (1.3)
then the construction of vectors P, and Q, is carried
out simply: for this we have to expand the vectors

p;in three orthogonal vectors
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gi=Dpi+P2ss Ga=pi+ps, d3=p2+ps, (1.4)

(qi=s, g5=1, q5=u).

From the positive definiteness of the matrix A;;(«) it
follows that the form Q(«, P) (depending on the P
with real scalar products) is smaller than the same
form Q(a, P) of the corresponding Euclidean mo-
menta P. This result, obtained in a straightforward
way, includes as a special case the substitutions which
were used in “7®. 1t should be noted that when
the momenta p; are on the mass shell (1.3), the
Euclidean vectors P; are not (the P? are changing with
s and 7). Therefore it is essential that in previous
papers > we carried out the majorization of
diagrams for arbitrary (variable) squares of external
momenta. Thus, we find that the nucleon-nucleon
elastic scattering amplitude is expressed in terms of
real analytical functions of the scalar products of
p;’s (satisfying (1.3)) regular in the triangle

Gynis, 1)1 s<d4M?, t<dM?, u<d4M*® (1.5

on the plane s--1-+u = 4M? (M is the nucleon mass,
m is the m-meson mass).

Then using the fact that Q(x, p) is a linear function
of the invariants s and ¢, it can be shown by the
Wu method ® that the N N-scattering amplitude is
analytical ™ also in a complex neighbourhood
5NN of the real domain Gyy. A point (s= s -+is’,
t = t'+it") lies in the domain 5”, if it is possible to
find such real A, so that the point (s, = s+ As”,
t, = t'+At") lies in the (real) domain Gy . These
analytical properties of the N N-scattering amplitude
are sufficient to prove one-dimensional dispersion
relations for fixed #(—4m*<t<4m?) as well as for
fixed s (4 M?*—m*)<s<4M?*)and also for (any) fixed
cos 0 (0 is the scattering angle in c.m.s.). From
dispersion relations for fixed cos® we can deduce
dispersion relations for the partial wave N N-scattering
amplitudes. This derivation is more direct and con-
ceptually simpler than that obtained in ®'® which is

based on a rather non-trivial integral representation
of the scattering amplitude suggested in ® %)

In the case of meson-nucleon scattering it is possible
to prove dispersion relations for fixed ¢ or s too,
while dispersion relations for the square of three-
dimensional momenta in c.m.s. for fixed cos 6 are
established only in the interval

m\?
1—2<-> S cos0 £1
M

and this is not sufficient to obtain dispersion relations
for the n N-scattering partial waves.

(1.6)

2. SURFACE OF SINGULARITIES FOR AN
ARBITRARY DIAGRAM

In formulating and proving the Symanzik theorem
on the majorization of diagrams and its generaliza-
tion »* we have characterised each diagram by an
incidence matrix E = (¢;,) " (¢;, = 1, if the line v goes
out from the vertex 7; ¢, = —1, if the line v enters
the vertex i, ¢, = 0, if the vertex i does not lie on
the line v). The norm of an arbitrary diagram in the
coordinate space (in terms of which the Symanzik
theorem is formulated) has the form:

L= mR,

; 2.1)

where

2 & (22

(n is the number of the diagram vertices, x; are four-
dimensional vectors).

It turns out that the technique of the incidence
matrix and of the norm (2.1) is a convenient tool, not
only for the comparison of the quadratic forms of
different diagrams (i.e. in the majorization procedure)
but also for the description of the singularities of a

(*) Speaking about the analytical properties of the amplitude, we have in mind the analytical properties of any partial sum of the

perturbation series representing this amplitude.

(**¥) This representation may be proved by the majorization method (it follows easily from the fact that Q (a, p) <0 for all strongly
connected graphs in the domain (1.5)). In the equal mass case (the 7z scattering) a derivation of the spectral representation for
partial wave amplitudes is given also in ref. 13, (but without proof of (1.5)).

(") The incidence matrix was introduced by H. Poincaré in 1901 and is widely used in topology.
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given diagram. Following Landau " we call the

points p for which the set of equations
0Q(x, p) 00(x, p)

= =0, 2.3
aal (30(, ( )

has a solution (o, , ..., o) with all non-zero «, proper
singularities of a graph. We have shown ® that the
surface of proper singularities of a graph is given by
the set of parametrical equations

R,

l
= 2SR
v=1 v

i=1,..,n (2.4)

pi=
(3x

where L(x) and R, are given by Egs. (2.1) and (2.2).
Egs. (2.4) are applicable not only for any real x, but
also for complex x (according to '»). However, there
remains still the important question of finding an
algebraic criterion which allows to decide whether
or not a complex point p of the surface (2.4) is a
singularity on the main Riemann sheet of the scat-
tering amplitude (i.e. on the so-called “ physical ”
sheet).

Egs. (2.4) point not only to a connection between
the technique used by Symanzik » and the Landau
equations ') but are also a convenient tool for
finding the graph singularities. The main advantage
of Egs. (2.4) compared to the initial Egs. (2.3) is
that Egs. (2.4) allow us to express all momenta on the
surface of singularities in terms of a minimal number
of independent vectors.

We illustrate the efficiency of Egs. (2.4) by a non-
trivial example of the fourth order scattering diagram

Fig. 2

((Fig. 2) all vertices in it are external). We assume that
all masses of the internal lines of the diagram are
equal to unity and that the squares of the external
momenta are equal to each other (1.3). From (2.4)
and (1.3) it follows that (if we assume x, = 0) the
vectors

o

&1 = 3(xy+x3—x3),

&y = 3(xy (2.5)

—X2 + x3)’

¢3=3(—x;+x,4+x3)

are mutually orthogonal and that the modules of the
vectors (2.2) are

Ao =|Ry| = |Rs| = VE+EZ,
Ay = |R5|—‘ |R6l =V C1+<3 ) (2.6)

Ay = IR2, = |R4| \/€1+§2

By expressing the orthogonal vectors g; (1.4) by
the {; with the help of (2.4) and taking the square
of the equalities obtained, we find the parametrical
equations of the surface of singularities of the diagram
of Fig. 2 in invariant variables:

1 1
S =202 42— m(_ 1’)

\

t =232+~ /L2)< ) 2.7)

1 1\?
ye 2(&%+A§—i§)<—+f> .
At Ay

The right-hand sides of (2.7) are homogeneous func-
tions (of degree zero) of the parameters 4, therefore
it is possible to introduce two independent parameters
only, making use e.g. of the normalization
A +A,+4; = 1. In the particular case, when M = 1
(see (1.3)) the parameters A can be excluded. We
obtain the equation for the singularity curve in the
form:

S1/3+11/3+u1/3 — ]61/3’ s+i1+u= 4 (2.8)
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Ten years ago Nambu » proposed a mass formula
on the basis of contemporary information about new
particles. According to this formula the mass of
any particle except the massless photon and neutrino
is well approximated by

m=mn-137m,, 6

where m, is the electron mass and # is an integral or
a half integral number according to whether the
particle concerned is a boson or a fermion, and the
mysterious number 137 may be equated to fic/e’.
Although the meaning of this formula is not under-
stood, it has been found to agree fairly well with
observed masses of elementary particles.

Some attempts have been put forward to explain
this formula within the framework of atomic physics
or particle physics. However, physics in the current
sense is devoted to finding out some relations between
phenomena or laws governing the world of matter.
In doing so the existence of matter and of its
fundamental properties is implicitly assumed. More
specifically, the fundamental physical constants are
assumed to be given and so are the particles, or things
which have energies, momenta, charges and other
well defined properties if one is reluctant to use the
term particle. Therefore, physics does not seem
to be suitable to explain such things which are to be
assumed. On the other hand, there is a branch of
science which aims at understanding the existence



