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At the previous Rochester Conference (1960) Eden, 

Polkinghorne et al. reported work devoted to the 

proof of the Mandelstam representation in any finite 

order of perturbation theory. As is known, later on 

it was found that the hopes for proving this were too 

optimistic. Such proof has not been obtained until now. 

In the present report we consider the two following 

problems. 

1. Proof of one-dimensional dispersion relations 

in any finite order of perturbation theory by the method 

of majorization of diagrams, developed earlier x ' 4 ) 

and the derivation of dispersion relations for partial 

wave amplitudes of the nucleon-nucleon and pion-

pion scattering. 

2. Derivation of parametrical equations of the 

surface of singularities of an arbitrary diagram and 

their application. 

A detailed account of these results is given in the 

preprints of the a u t h o r s 5 , 6 ) . 

1. PROOF OF DISPERSION RELATIONS IN 
PERTURBATION THEORY 

In papers 3 , 4 ) it was shown that all strongly con­

nected diagrams of scattering processes involving 

7z-mesons and nucléons are majorized in the Euclidean 

region by a small number of the simplest diagrams. 

R g . 1 d> 
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for all av ^ 0 for which £ a v > 0 . Here mv is the 
v = l 

mass on the v-th line, / is the number of the internal 

lines of the diagram. It is found that the knowledge 

of the domain GNN in the Euclidean space allows 

one to find the domain described by this same inequa­

lity (1.1) in the case when the momenta pt (with real 

scalar products) belong to a pseudo-Euclidean space 

with arbitrary signature. For this purpose we de­

compose vectors pt into mutually orthogonal Euclidean 

and anti-Euclidean parts 

The explicit expressions for the vectors Pt and Qt 

depend, generally speaking, on invariants s and t 

composed of vectors /?. If the p/s lie on the mass 

shell: 

then the construction of vectors Pt and Q- is carried 

out simply: for this we have to expand the vectors 

Pi in three orthogonal vectors 

So, e.g., in the case of the nucleon-nucleon scattering 

the graph represented in Fig. 1 with different numera­

tion of vertices majorizes all strongly connected 

diagrams of this process 4 ' 5 \ This diagram gives the 

maximal domain GNN in the space of the Euclidean 

external momenta in which the quadratic form of every 

(strongly connected) diagram of the nucleon-nucleon 

scattering is negative: 
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From the positive definiteness of the matrix AU(OL) it 
follows that the form Q(oc,P) (depending on the P 
with real scalar products) is smaller than the same 
form Q(ot,P) of the corresponding Euclidean mo­
menta P. This result, obtained in a straightforward 
way, includes as a special case the substitutions which 
were used i n 1 , 7 , 8 ) . It should be noted that when 
the momenta p{ are on the mass shell (1.3), the 
Euclidean vectors Pt are not (the P2 are changing with 
s and t). Therefore it is essential that in previous 
papers 2 " 4 ) we carried out the majorization of 
diagrams for arbitrary (variable) squares of external 
momenta. Thus, we find that the nucleon-nucleon 
elastic scattering amplitude is expressed in terms of 
real analytical functions of the scalar products of 
pi's (satisfying (1.3)) regular in the triangle 

based on a rather non-trivial integral representation 
of the scattering amplitude suggested in 9 ) 

In the case of meson-nucleon scattering it is possible 
to prove dispersion relations for fixed t or s too, 
while dispersion relations for the square of three-
dimensional momenta in c.m.s. for fixed cos 6 are 
established only in the interval 

2. SURFACE OF SINGULARITIES FOR AN 

ARBITRARY DIAGRAM 

In formulating and proving the Symanzik theorem 
on the majorization of diagrams and its generaliza­
tion 3 ' 4 ) we have characterised each diagram by an 
incidence matrix E= ( e / v ) ( t ) ( e / v = 1, if the line v goes 
out from the vertex z; siv = — 1 , if the line v enters 
the vertex /, siv = 0, if the vertex i does not lie on 
the line v). The norm of an arbitrary diagram in the 
coordinate space (in terms of which the Symanzik 
theorem is formulated) has the form: 

(*) Speaking abou t the analytical properties of the ampli tude, we have in mind the analytical properties of any part ial sum of the 
per turbat ion series representing this ampli tude. 

(**) This representation may be proved by the majorization method (it follows easily from the fact that Q ( a , / > ) < 0 for all strongly 
connected graphs in the domain (1.5)). In the equal mass case (the nn scattering) a derivation of the spectral representation for 
part ial wave amplitudes is given also in ref. 13, (but without proof of (1.5)). 

(Î) The incidence matrix was introduced by H . Poincaré in 1901 and is widely used in topology. 

on the plane s+t+u = 4M2 (M is the nucléon mass, 
m is the 7r-meson mass). 

Then using the fact that Q(a, p) is a linear function 
of the invariants s and /, it can be shown by the 
Wu method 8 ) that the AW-scattering amplitude is 
analytical ( * } also in a complex neighbourhood 
GNN of the real domain GNN . A point (s= s'+is", 
t = t' + it") lies in the domain GNN, if it is possible to 
find such real A, so that the point (sÀ = s'+Xs\ 
h = t'+Xt") lies in the (real) domain GNN . These 
analytical properties of the JVW-scattering amplitude 
are sufficient to prove one-dimensional dispersion 
relations for fixed t(—4m2<t<4m2) as well as for 
fixed s (4(M2—m2)<s<4M2)md also for (any) fixed 
cos 6 (6 is the scattering angle in c.m.s.). From 
dispersion relations for fixed cos 0 we can deduce 
dispersion relations for the partial wave TWV-scattering 
amplitudes. This derivation is more direct and con­
ceptually simpler than that obtained in 9 , 1 0 ) which is 

where 

(n is the number of the diagram vertices, xt are four-
dimensional vectors). 

It turns out that the technique of the incidence 
matrix and of the norm (2.1) is a convenient tool, not 
only for the comparison of the quadratic forms of 
different diagrams (i.e. in the majorization procedure) 
but also for the description of the singularities of a 

and this is not sufficient to obtain dispersion relations 
for the 71 TV-scattering partial waves. 
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where L(x) and Rv are given by Eqs. (2,1) and (2.2). 
Eqs. (2.4) are applicable not only for any real x, but 
also for complex x (according to 1 2 ) ) . However, there 
remains still the important question of finding an 
algebraic criterion which allows to decide whether 
or not a complex point p of the surface (2.4) is a 
singularity on the main Riemann sheet of the scat­
tering amplitude (i.e. on the so-called " physical " 
sheet). 

Eqs. (2.4) point not only to a connection between 
the technique used by Symanzik 1 } and the Landau 
e q u a t i o n s 1 1 } but are also a convenient tool for 
finding the graph singularities. The main advantage 
of Eqs. (2.4) compared to the initial Eqs. (2.3) is 
that Eqs. (2.4) allow us to express all momenta on the 
surface of singularities in terms of a minimal number 
of independent vectors. 

We illustrate the efficiency of Eqs. (2.4) by a non-
trivial example of the fourth order scattering diagram 

Fig. 2 

((Fig. 2) all vertices in it are external). We assume that 
all masses of the internal lines of the diagram are 
equal to unity and that the squares of the external 
momenta are equal to each other (1.3). From (2.4) 
and (1.3) it follows that (if we assume x 4 = 0) the 
vectors 

given diagram. Following Landau 1 1 } we call the 
points p for which the set of equations 

has a solution (at , at) with all non-zero a v proper 
singularities of a graph. We have shown 6 ) that the 
surface of proper singularities of a graph is given by 
the set of parametrical equations 

are mutually orthogonal and that the modules of the 
vectors (2.2) are 

By expressing the orthogonal vectors qt (1.4) by 
the Çj with the help of (2.4) and taking the square 
of the equalities obtained, we find the parametrical 
equations of the surface of singularities of the diagram 
of Fig. 2 in invariant variables : 

The right-hand sides of (2.7) are homogeneous func­
tions (of degree zero) of the parameters A, therefore 
it is possible to introduce two independent parameters 
only, making use e.g. of the normalization 
^ 1 + ^ 2 + ^ 3 = 1- I n the particular case, when M = 1 
(see (1.3)) the parameters A can be excluded. We 
obtain the equation for the singularity curve in the 
form: 
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where me is the electron mass and n is an integral or 
a half integral number according to whether the 
particle concerned is a boson or a fermion, and the 
mysterious number 137 may be equated to he je2. 
Although the meaning of this formula is not under­
stood, it has been found to agree fairly well with 
observed masses of elementary particles. 

Some attempts have been put forward to explain 
this formula within the framework of atomic physics 
or particle physics. However, physics in the current 
sense is devoted to finding out some relations between 
phenomena or laws governing the world of matter. 
In doing so the existence of matter and of its 
fundamental properties is implicitly assumed. More 
specifically, the fundamental physical constants are 
assumed to be given and so are the particles, or things 
which have energies, momenta, charges and other 
well defined properties if one is reluctant to use the 
term particle. Therefore, physics does not seem 
to be suitable to explain such things which are to be 
assumed. On the other hand, there is a branch of 
science which aims at understanding the existence 

Ten years ago Nambu 1 } proposed a mass formula 
on the basis of contemporary information about new 
particles. According to this formula the mass of 
any particle except the massless photon and neutrino 
is well approximated by 


