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Abstract. In this pedagogical lecture we explain some basic part of the standard cosmological
model which is most relevant for the fundamental theoretical physics. We stress the common
features and differences between early universe inflation and late-time acceleration. We than
proceed with some recent attempts to address the issues of cosmology in string theory and
higher dimensional supergravity with the emphasis on successes and still unsolved problems.

1. Introduction

Our universe presents an ultimate test for the fundamental physics: high-energy accelerators
will probe the scale of energies way below GUT scales. Cosmology and astrophysics are the only
known to us sources of data in the gravitational sector of the fundamental physics (above GUT,
near Planck scale).

Starting from 1998 significant amount of cosmological data have been obtained which
suggested an emergence of a standard cosmological model. Different independent cosmological
observations are in agreement with each other and therefore the standard cosmological model
is also called sometimes a cosmological concordance model. These observations suggest that
the universe is spatially flat, contains dark matter and dark energy, only few percent of
the total energy is in matter which we know. The primordial spectrum of fluctuations is
approximately scale invariant and initial fluctuations are Gaussian and adiabatic. This standard
cosmological model can be described in terms of only few parameters, which explain a large
number of observations, such as the cosmic microwave background (CMB), galaxy clustering,
supernova data, and weak lensing. The latest results from Wilkinson Microwave Anisotropy
Probe (WMAP) CMB measurements, Sloan Digital Sky Survey (SDSS) and Two degree Field
(2dF) galaxy clustering analysis, and from the latest Supernovae type Ia (SNIa) data have been
analysed in [1] where also the properties of the standard cosmological models were presented.

The emergence of cosmological standard model affects all areas of fundamental theoretical
physics, particularly M /string theory. To the extent to which one believes in the data supporting
the standard cosmological model, one would expect that the fundamental physics should explain
the main features of the cosmological observations. This includes the late-time acceleration of
the universe as well as the early universe inflation. The recently discovered fact that 70% of
the total energy of the universe is in mysterious dark energy requires an explanation since it is
difficult to expect that this effect will go away when more observations will be performed.

The purpose of these lectures is to give a pedagogical explanation of some basic features
of the standard cosmological model which are most relevant for the fundamental theoretical
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physics!. We will than proceed with the recent attempts to address the issues of cosmology in
string theory. These will include the following String Theory—Cosmology topics.

(i) KKLT model of de Sitter space
(ii) Early Universe Inflation in String Theory

e Racetrack Inflation
o KKLMMT model of D3-anti-D3 Brane Inflation
e Hybrid Inflation in D3/D7 Brane System

We will conclude with some remarks on Landscape of String Theory.

2. Some Features of the Cosmological Concordance Model

All observations so far fit a four-dimensional Einstein general relativity. The background
geometry of the expanding homogeneous isotropic universe of the Friedman-Robertson-Walker
type is characterized by the scale factor of the universe a(t) which grows in time.

dr?

2 42 2
ds® = —dt* + a*(t) T 72

+ 7“2(d02 + sin? 0dd>2) (1)

and k = —1,0,+1 for the open, flat and closed FRW universe with the background metric (1).
Quantum fluctuations over the background are responsible for the small anisotropy of the cosmic
microwave background of the order 107°.

The common features and differences between early universe inflation (the period of rapid

acceleration in the early universe is called inflation) and late-time acceleration are presented in
the Table 1.

Table 1. COSMOLOGICAL CONCORDANCE MODEL DESCRIBES:

Early Universe Inflation Late-time Acceleration
Near de Sitter space Near de Sitter space
13.7 billion years ago Now

During 10735 sec During few billion years
V ~ H?M? V ~ H?M?

Hiyg <107°Mp Hpeeal <1070 p

% = H ~ const

&0, a(t) ~ eflt

During the early universe inflation as well as in the recent period of acceleration the scale
factor of the universe has a positive second derivative, i. e. the universe is accelerating

1 T will mostly describe the work in this direction in which I was involved or closely related work. There were
many other developments in string cosmology which will not be covered in these lectures: it is a rapidly developing
topic and it is difficult to follow all new studies.
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(inflating). Note that during inflation when & = 32 (p+3p) > 0 the strong energy condition
p+ 3p > 0 is violated. Here p is the energy density and p is the pressure in FRW cosmology
with the energy-momentum tensor of the perfect fluid form: 7, = (p + p)U,U, + pgpuu-

The fundamental question is how to get this picture from the compactified ten-dimensional
string theory or eleven-dimensional M-theory and supergravity. In addition, one would like
to derive the values of the phenomenological parameters in cosmological standard model from
string theory.

The most important cosmological parameters are defined as follows. The density parameter
() is defined as a ratio of the energy density to the critical density

p k
Q= =1+ 2
Perit a’H? ( )
In inflationary universe the second term is negligible for all k = —1,0,+1. A generic prediction

that €2 = 1 follows which is the property of the flat £ = 0 universe.

A short very simplified history of the universe has the following important periods. One tends
to start near the Big bang, the original ¢ = 0 t = 0 singularity. In the simplest models during
the first 1073% seconds inflation with a(t) ~ e/’ makes the size of the universe growing from
the Planckian size 10732 c¢m to at least 107* cm or larger. The Hubble parameter H may be

1
887G N

equal to 10> Mp during the last 50-60 e-foldings where the slow-roll regime takes place. This
restriction follows from the fact that so far the gravitational waves produced during inflation
have not been observed. During inflation the universe is accelerating. The reheating starts after
inflation. Eventually the universe becomes dominated by the radiation with a(t) ~ ¢t/ and
@ < 0. This is changed to a matter dominated period with a(t) ~ t*/% and & < 0 at about
10* years. At 5 x 10° years the decoupling of radiation from matter takes place. The universe
becomes transparent for the radiation and we observe it now as CMB. In both radiation and
matter domination the universe is decelerating. At about 5 billion years ago dark energy began
to accelerate the expansion of the universe and it keeps accelerating now, when the universe is
about 13.7 billions year old.

Even if the universe will keep accelerating, the future of the Earth will be defined by the
fact that the Sun will become a red giant at about 5 billions years from now and will toast the
Earth. At about 150 billion years most galaxies will move away from the sight of our galaxy.

Dark energy equation of state

almost as large as Mp = at the beginning of inflation and it is expected to be less or

p=wp (3)
has a parameter w(t) = % which in principle may be time dependent. If it is constant, Friedmann
egs. can be integrated with the result that

P~ a73(1+w) (4)

At present the observational data are in agreement with w = —1 in which case p = const and
dark energy is due to cosmological constant term in four-dimensional general relativity, which
explains why we need to find a de Sitter or near de Sitter space in string theory. One of the
most important goals of future observations is to find out with great precision whether w is a
constant or a function of time and whether this constant is really equal to —1. In any case, this
is considered one of the prominent observational facts whose explanation may test fundamental
physics.

The total energy density of the universe consists of the Q; ~ 0.3 energy of pressure-less
matter with equation of state w = 0 and Qj ~ 0.7 dark energy with equation of state w ~ —1

Q=0+ =1 (5)
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Figure 1. A plot of dark energy versus the energy of matter

One of the impressive recent plots of Q2 versus €, was presented in [2], we show it here in
Fig. 1. It shows that with account of data from WMAP, SDSS and Supernovae it is practically
impossible to avoid the fact that about 70% of the energy of the universe is dark and that the
total € is very close to 1.

In matter part again there is a puzzle, only few percent of the total energy are formed by
matter which we know, the rest is a dark matter, which still has to be identified with something
like lightest supersymmetric particles or axions or other objects.

Important cosmological observables describing inflation include the primordial slope ng =
1+ dlglfl(f) where P(k) is the magnitude of the scalar power spectrum measured in CMB. The
observational value of ns is close to 0.98. The ratio between tensor fluctuations (primordial
gravitational waves) and scalar fluctuations r = % is restricted by the data to be r < 0.36. In
the future a major effort will be dedicated towards the detection of the gravitational waves from
inflation. This will give a significant information about inflationary models compatible with the
data.

In theoretical models of inflation due to a scalar field (inflaton) with some potential V' the
value of the primordial slope ns and tensor to scalar mode ratio r depends on the so-called

slow-roll parameters, € and n which are approximately constant:

SR YA 6

2\V %
and
T obs obs
r= §:166, o < 0.36; ns —1 = —6e+ 2n, ng® =0.98 £0.02 (7)
(8)
It is important to stress here that the deviation of the primordial slope ng from the scale-
invariant one with ny = 1 is in the range of a percent, i. e. 7 ~ 1072, ¢ < 1072. In case of
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dark energy, if it is not a cosmological constant but some model with a evolving scalar field,
the relevant slow-roll parameters are also restricted by the data, in particular these parameters
must be less than 1. Another important feature of the early universe inflation is the restriction
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Figure 2. A plot of temperature fluctuations as a function of the multipole number .

on the amount of e-foldings N, defined as

(9)

This measures an amount of inflation which still has to occur after time ¢ before the end of
inflation time t.,q4. At the end of inflation at teng, N(teng) = 0. For the slow-roll inflation
models

a(tend) 1 / ¢ 14

N(t)=1 P —d 10
W=~z ), v 10
The observational data require that the number of last e-foldings N, during which a slow-roll
inflation took place is at least of the order of 50-60, the actual number is somewhat model-
dependent

end

N, > 50 — 60 (11)

Thus models of inflation which can provide 50-60 slow-roll e-foldings or any number of them
which is larger than 50-60 are compatible with observations.

We present here in Fig. 2. one of the plots from [2] of temperature fluctuations as a function
of the multipole number [ with famous peak at about 200 and smaller peaks at larger values of
[. The curve is given by the simplest “vanilla” models of inflation. The black points are from
WMAP and they agree well with inflationary predictions, apart from the region of small | and
few glitches now and there. Beyond [ ~ 600 WMAP data are not expected to be valid, the
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data from less precise observations, like Maxima, Boomerang2, CBI, DASI etc. tend to agree
with the set of smaller peaks predicted from inflation and the decrease of fluctuations at larger
multipoles.

In conclusion, there is an agreement in cosmology community that the combined set of data
suggests that the standard cosmological model is valid. Still much more data and much more
precision will be required in the near future to fully confirm the cosmological model and to have
more precise values of all cosmological parameters. Already at present the data are sufficient to
justify any attempt to explain them from the fundamental physics.

3. Towards Cosmology in String theory

3.1. Impact of the discovery of the late-time acceleration of the universe

Until recently, string theory could not describe acceleration of the early universe (inflation).
The discovery of current acceleration made the problem even more severe, but also helped to
identify the root of the problem: compactified string theory under certain standard restrictions
does not describe a four-dimensional de Sitter (dS) space. Moreover, until recently there was no
example of a four-dimensional de Sitter space derived from string theory even with violation of
these restrictions.

The set of no-go theorems on this starts from 1985 with the latest more “stringy” version
of 2001, [3]. The theorems guarantee that four-dimensional dS solutions cannot be obtained
in string or M-theory by using only the lowest order terms in the 10d or 11d supergravity
action. One expects that corrections to the leading order Lagrangian in the g5 or o/ expansion or
inclusion of extended sources (branes) should improve the situation. Indeed, a careful discussion
of how such additional sources (which are present in string theory) invalidate the no-go theorem
for warped backgrounds and allow one to find highly warped compactifications appears in [4].
Additional sources which violate the assumptions of the theorem were shown to yield dS vacua
in noncritical string theory in [5].

About two years ago a possibility of derivation of a four-dimensional dS space in the
framework of compactified superstring theory was suggested in [6]. Independently of the
cosmological applications one of the trends of string theory for the last few years has to do
with the flux compactification, which allows to stabilize the axion-dilaton and the complex
structure moduli of the Calabi-Yau space, as was shown for the case of IIB string theory in [4].

3.2. Can string theory afford runaway moduli: a dilaton and the volume?

No-scale effective 4d supergravity describing the type IIB axion-dilaton field 7 = a + ie® and
the axion-volume field p = a + io has non-canonical kinetic terms. Here the volume modulus o
is related to a volume of the compact six-dimensional internal space.

oroT 5 0pdp
(=72 -2
This corresponds to a logarithmic dependence of the effective Kahler potential on these fields
of the form

(12)

K = —In(=i(T — 7)) = 3In(—i(p — p)) (13)

If there is a non-vanishing superpotential which, however, does not depend on these two fields
but only on some other fields, one finds that the potential depends on 7 and p via Kéhler
potential

1

_ Ky _
N G TRk

Vo (14)
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where Vj is 7 and p independent. Let us ignore axions for simplicity. To compare with
observations one should switch to canonical kinetic terms for the dilaton and the volume:

1.~ 1 z -
—5(00)" = 5(0u)?* — 72 VE I, (15)
Here the relation between fields which have particular physical meaning in string theory and
canonical scalars in 4d theory is the following: ¢ = ﬂ& and o = eV2/3%, Now it is easy to
study the slow-roll parameters for the dilaton and volume fields. We find that

eg=1 ng=v2 =3 ng = 6 (16)

where the slow-roll parameters are defined in (6) for each field. As explained in the previous
section, we need ~ 1072 for the early universe inflation and ~ 1 for the late-time acceleration.
None of these works for stringy dilaton and volume, particularly the volume whose runaway
behaviour is the strongest.

Thus in a situation when both axions are irrelevant? and we are looking for a possibility to
use the dilaton and/or volume as an evolving scalar in a four-dimensional cosmology we find
that their potentials are too step and cannot work unless one can stabilize both of these fields
by looking for corrections to the potential which will counterbalance the runaway due to the
tree-level Kéhler potential. This means that we have to find non-perturbative superpotentials
depending on 7 and p and possible corrections to tree-level Kahler potential, so that in the total
potential there is a minimum at some finite values of these fields.

3.8. KKLT models of dS vacuum in string theory [6]
To stabilize the moduli in IIB string theory one starts with flux compactifications and include
corrections. The reason to start with type IIB seems to be a technical simplicity, in other
versions of string theory, like heterotic and type IIA the work in this direction is also performed.

We first describe the models of Giddings, Kachru, Polchinski [4] where stabilization of all
but Kéahler moduli can be achieved. Later we enumerate various quantum corrections which
can modify the superpotential and Kéahler potential. We show that incorporating the generic
corrections can yield (supersymmetric) AdS minima with all moduli stabilized. And finally, we
uplift the AdS supersymmetric minimum to a dS by adding to the theory some D3 branes or
some D7 branes with fluxes.

In Calabi-Yau orientifolds with flux and branes one has to satisfy a tadpole consistency
condition

x(X) 1

AT N
24 D3t 92T

/ Hs N F3 . (17)
M

Here T3 is the tension of a D3 brane, Np3 is the net number of (D3 — D3) branes one has
inserted filling the noncompact dimensions, and Hs, F3 are the three-form fluxes in the IIB
theory which arise in the NS and RR sector, respectively. In the language of IIB orientifolds, M
is the Calabi-Yau threefold which is orientifolded. In this language, the term % counts the
negative D3-brane charge coming from the O3 planes and the induced D3 charge on D7 branes,
while the terms on the right-hand side count the net D3 charge from transverse branes and
fluxes in the CY manifold. As in [4], in KKLT construction it is assumed that we are working
with a model having only one Kihler modulus, so h'! (M) = 1

In the presence of the nonzero fluxes, one generates a superpotential for the Calabi-Yau

moduli

Win(rz) = [ G = [ Bi-rHing (18)
M M

2 'We will consider the case of racetrack inflation later when the evolution of the axion is dominant.
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where 7 is the IIB axion-dilaton. The holomorphic 3-form €2 depends on the complex structure
moduli, z,. Combining this with the tree-level Kéhler potential

K = —3n[-i(p—p)] — In[—i(r — 7)] — In[—i /M QAQ (19)

where p is the single volume modulus (p = a + ie**~?); our conventions are as in [4]), and using
the standard N = 1 supergravity formula for the potential, one finds

Vaoscate = € [ 3" g DWD,W —3|W 2 | — 53 " D;WD;W) > 0 (20)
a,b 7,7

Here, a, b runs over all moduli fields, while 4, j runs over all moduli fields except p; and we see
that because p does not appear in (18), it cancels out of the potential energy (20), leaving the
positive semi-definite potential® characteristic of no-scale models with V > 0.

One should use this potential as follows. Fix an integral choice of Hs, F3 in H3(M,Z);
then, the potential (20) fixes the moduli at values where the resulting G5 is imaginary self-dual
(ISD). Supersymmetric solutions furthermore require G to be type (2,1) (more generally, G3
would have a (0,3) piece). Thus in supersymmetric solutions W = 0 on the vacuum, while in
the nonsupersymmetric solutions, W = W), a constant which is determined by the (0,3) piece
of Gs3. In generic solutions, the complex structure moduli the complex structure moduli, the
dilaton, and the moduli of D7 branes are completely fixed, leaving only the volume modulus p.
The scale of the masses m for the moduli which are fixed is m ~ g—; where R is the radius of
the manifold (Im p scales like R*). In this approximation, R is unfixed. By tuning flux quanta,
it is possible (at least in some cases) to fix gs at small values, though not arbitrarily small.

Such models with branes and flux are generically warped compactifications. One can write
the Einstein frame metric of the compactification as

ds%o = 62A(y)77w,d93“dx” + e_QA(y)gmn(y)dymdy" (21)

with y are coordinates of the compact dimensions, and §p,, the unwarped metric on M (so
in the orientifold limit, it is a Calabi-Yau metric). Then it is shown in [4] (by compactifying
the Klebanov-Strassler solution) that one can construct models parametrized by flux integers
M, K such that eAmin ~ exp[—(2nK)/(3gsM)] with e4 being of order one at generic points.
This means in particular that with reasonably small flux quanta, one can generate exponentially
large ratios of scales in such models.

In the following, we will assume that gs; and the complex structure moduli have been fixed by
a suitable choice of flux, and concentrate on an effective field theory for the volume modulus p.
Typically the p modulus, which has a Planck scale suppressed mass, will be much lighter than
these excitations and we can neglect them as well in the low energy theory.

There are two known sources of corrections to the no-scale models, both parametrize possible
corrections to the superpotential (18).

1) Witten has argued in [10] that in type IIB compactifications of this type, there can be
corrections to the superpotential coming from Fuclidean D3 branes. This happens when the

3 We would like to stress here that this clear separation of moduli which keeps the total volume at a different
footing from other fields and leads to a no-scale supergravity, is a rather important starting point for cosmological
applications of string theory. It has to be contrasted with “no-ghosts” dS supergravities associated with “non-
compactified” solutions of M/string theory which typically have AdS and dS maxima and saddle points with
potentials, unbounded from below [7,8]. In the most recent work on new Freund-Rubin and G2 vacua in [9] also
only tachyonic dS vacua have been found.
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four-fold X used for F-theory compactification admits divisors of arithmetic genus one, which
project to four-cycles in the base M. In the presence of such instantons, there is a correction to
the superpotential which at large volume yields a new term Winsy = T'(2;) exp(2mip) where T'(z;)
is a complex structure dependent one-loop determinant, and the leading exponential dependence
comes from the action of a Euclidean D3 brane wrapping a four-cycle in M. At the time when
it was proved in [10] that the compactification four-fold must admit divisors of arithmetic genus
one, xp = »_(—1)"h"™ = 1, no background fluxes were considered. In such case it was possible to
use a particular U(1) symmetry of the fermionic M5 brane action when establishing this theorem.
Later on it was suggested in [11] and argued for particular examples of compactification that
in the presence of fluxes the U(1) symmetry of the fermionic action of the M5 brane might
be broken. This in turn leads to a possibility of generalizing non-perturbative superpotentials
in models with divisors on a four—fold of an arithmetic genus xp > 1. Quite recently the
explicit Dirac action on M5 with background fluxes was derived [12] and indeed, fluxes tend
to break the relevant U(1) symmetry. However, it is still not clear what is the generalization
of Witten’s theorem in presence of fluxes and what are the necessary conditions for having
instanton corrections. This is currently under investigation.

2) In general models of this sort, one finds non-Abelian gauge groups arising from stacks
of N, coincident D7 branes wrapping 4-cycles in M. The 4d gauge coupling of the SU(N,.)
Yang-Mills theory on such wrapped branes (we ignore the decoupled U(1) factor) satisfies

8w
9¥um
D7 brane moduli (at least in cases where the 4-cycle being wrapped has vanishing h!, which
are easy to arrange) are also fixed. Therefore, any charged matter fields (which would create
a Higgs branch for the D7 gauge theory) have also been given a mass at a high-scale; and the

low-energy theory is pure N = 1 supersymmetric SU(N,) gauge theory. This theory undergoes
gluino condensation, which results in a nonperturbative superpotential Wyauge = A?VC = Ae Ne

where Ay, is the dynamical scale of the gauge theory, and the coefficient A is determined by the
energy scale below which the the SQCD theory is valid. We see that this leads to an exponential
superpotential for p similar to the one above (but with a fractional multiple of p in the exponent,
since the gaugino condensate looks like a fractional instanton effect in W).

So effects 1) and 2) have rather similar consequences for our analysis; we will simply assume
that there is an exponential superpotential for p at large volume.

Here, we show that the corrections to the superpotential considered above can stabilize the
volume modulus, leading to a susy preserving AdS minimum. We perform an analysis of the
vacuum structure just keeping the tree-level Kahler potential

= 2#15—: = 27 Imp . Since the complex structure moduli of X are completely fixed, the

K = =3In[—i(p - p)] (22)

and a superpotential ‘
W =Wy + Ae' . (23)

Wy is a tree level contribution which arises from the fluxes. The exponential term arises from
either of the two sources above, and the coefficient a can be determined accordingly. In keeping
with the fact that the complex structure moduli and the dilaton have received a mass, we have
set them equal to their VEVs and consider only the low-energy theory of the volume modulus. To
avoid the need to worry about additional open-string moduli, we assume the tadpole condition
(17) has been solved by turning on only flux, i.e. with no additional D3 branes.

At a supersymmetric vacuum D,W = 0. We simplify things by setting the axion in the p
modulus to zero, and letting p = io. In addition we take A,a and Wy to be all real and Wy
negative. The minimum then lies at

2
DW =0 — WO = *Ae_ao—cr(]. + 5 aacr) (24)
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The potential, V = & (GP'BDPWD,)W - 3]W]2), at the minimum is negative and equal to

CL2A26_2 aoer

Viads = (=3 W?) 405 = — (25)

60cr
We see that we have stabilized the volume modulus while preserving supersymmetry. It is
important to note that the AdS minimum is quite generic. A controlled calculation requires
that o > 1, this ensures that the supergravity approximation is valid and the o’ corrections to
the Kéahler potential are under control. It also requires that a o > 1 so that the contribution to
the superpotential from a single (fractional) instanton is reliable. Generically, if the fluxes break
supersymmetry, Wy ~ O(1), and these conditions will not be met. However it is reasonable to
expect that by tuning fluxes one can arrange so that Wy < 1. In these circumstances we see
from (24) that ac > 1. Taking a < 1, one can then ensure that o > 1, as required.

—2t

Figure 3. Thin green line corresponds to AdS stabilized potential for Wy = —1074, A = 1,
a = 0.1. Dashed line shows the additional term G—C;, which appears either due to the contribution

of a D3 brane or of a D7 brane. Thick black line shows the resulting potential including the
U—C; correction with C' = 2.6 x 107!, which uplifts the AdS minimum to a dS minimum. All

potentials are shown multiplied by 101°.

To uplifting the AdS vacua to dS vacua we proceed as follows. In the tadpole condition (17),
there is a contribution from both localized D3 branes and from fluxes. We assume that in fact
we turn on too much flux, so that (17) can only be satisfied by introducing one D3 brane. Now,
the tadpole is cancelled, but there is an extra bit of energy density from the “extra” flux and
D3 brane. In a geometry of the Klebanov-Strassler type throat, any anti-D3 branes are driven
to the end of the throat, where the warp factor is minimized. In suitable models the inclusion
of a D3 adds to the potential an exponentially suppressed term. We get a term in the potential

which goes like
C

V = Gy (26)
The coefficient C' depends on the number of D3 branes and on the warp factor at the end of the
throat. These parameters can be altered by discretely changing the total flux, and the fluxes
which enter in (3.3), respectively. This allows us to vary the coefficient C' and the susy breaking
in the system, while still keeping them small We will see that by tuning the choice of C' one can
perturb the AdS vacua to produce dS vacua with a tunable cosmological constant. The vacua
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will clearly only be metastable, since all of the sources of energy we have introduced vanish as
Imp — oco.

We now add to the potential a term of the form C/o?, as explained above. For suitable
choices of C, the AdS minimum will become a dS minimum, but the rest of the potential does
not change too much. There is one new important feature, however: there is a dS maximum
separating the dS minimum from the vanishing potential at infinity. The potential is:

—ao

Vikkrr = GAQ% <%JaAe_’w + Wy + Ae_‘w> + % (27)
By fine-tuning C, it is easy to have the dS minimum very close to zero. We plot an example in
Fig. 3. An alternative to adding a D3 brane is to add a D7 brane with fluxes on it [13]. In such
case the additional terms has an interpretation as a D-term in N=1 supergravity.

In KKLT construction there is no claim that the cosmological constant is computable; only
that the expected corrections in models with small g; and Wy are smaller than the barrier height
stabilizing the vacuum. This means that it is now possible to derive from non-perturbative string
theory the positive cosmological constant as the simplest form of dark energy describing the late-
time acceleration of the universe. The actual value of this constant, A ~ 10_120M]23, remains
a mystery and requires additional assumptions like landscape of string theory and anthropic
reasoning which will be discussed in the end of the lecture.

3.4. Lifetime of the known dS spaces in string/supergravity theory
KKLT model starts with a volume stabilization in an AdS minimum which exists due to non-
perturbative effects. It can be uplifted to dS minimum with the barrier protecting it from
the decay. If the value of dS minimum A ~ 107!20M/2 is achieved in these models, this dS is
metastable, but observationally indistinguishable from a cosmological constant. The lifetime is
of the order t ~ 1010 years, as explained in [6]. Thus if future observations will point out that
the dark energy equation of state is w = —1, string theory is now capable of explaining it.

Exact solutions of 11d M/string-supergravity with fluxes, so-called ghost-free dS
supergravities are unstable since dS is a saddle point. The lifetime for such dS spaces was
evaluated in [14] and found to be of the order of 1-10 lifetime of the universe, i. e. of the order
t ~ 14 — 140 x 10° years, which is significantly smaller than the KKLT case. These models
predict the future collapse of the universe and may lead to potentially observable consequences
codified into equation of state function of time w(t).

Over the last couple of years many other possibilities for stabilization of moduli in string
theory leading to de Sitter space were suggested. They always require some non-perturbative
effects and one may expect to learn more about this topic in the future.

3.5.  Gravitino-Hubble relation and stabilization of moduli
It can be shown that in the simplest version of the KKLT model, the maximal value of the Hubble
constant during inflation cannot exceed the present value of the gravitino mass, H < mg/s.
This may have important implications for string cosmology and for the scale of the SUSY
breaking in this model. If one wants to have inflation on high energy scale, one must develop
phenomenological models with an extremely large gravitino mass. On the other hand, if one
insists that the gravitino mass should be O(1 TeV), one will need to develop models with a very
low scale of inflation. We will show here, following [15] that one can avoid these restrictions in a
more general class of KKLT models based on the racetrack superpotential with more than one
exponent. In this case one can combine a small gravitino mass and low scale of SUSY breaking
with the high energy scale of inflation.

The simplest KKLT model has a minimum at some value of the field ¢ and at a = 0. This
minimum is separated from the Minkowski vacuum of Dine-Seiberg type at infinite volume of
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the internal space by a barrier, which makes the de Sitter minimum metastable with the lifetime
t ~ 1010" years.

Since D;W = 0 in the AdS minimum, its depth is given by Vags = —3e|W|? . Here all
functions are calculated at o = 0., where o, is the position of the minimum of the potential
prior to the uplifting.

Before the uplifting, the potential has only one extremum, at ¢ = o, and its absolute value
exponentially decreases at o > o,. When we add the term o—(’;, the minimum shifts upward
in such a way that the new dS minimum is positioned at oy ~ o.. The gravitino mass in the
uplifted dS minimum is given by

m35(00) = KNI (o) 2 2 KDY ()2 = A (28)
The gravitino mass can be associated with the strength of supersymmetry breaking at the
minimum where the total potential is approximately vanishing. Indeed, Vkkrr(og) = Vr+Vp =
|F|> = 3m3,, + 3D* ~ 0 . This yields 3m3 ,, ~ 3D* + |F|* .

Now let us discuss the height of the barrier Vg which stabilizes dS state after the uplifting.
Since the uplifting is achieved by adding a slowly decreasing function C'/o? to a potential which
rapidly approaches zero at large o, the height of the barrier Vg is approximately equal (up to a
factor O(1)) to the depth of the AdS minimum: Vi ~ |Vags| ~ m§/2 .

One may achieve inflation by considering dynamics of branes in the compactified space. This
involves a second uplifting, which corresponds to a nearly dS (inflationary) potential added to
the KKLT potential Vi grr. The added potential should be flat in the inflaton direction. It has
been studied in [15] in the context of D3/D7 brane inflation. Figure 4 shows that the vacuum
stabilization is possible in this model only for sufficiently small values of the inflaton potential,
Virl < e Vi ~ ¢ [Vags| ~ ¢ m%/z , where ¢ =~ 3 for the original version of the KKLT model. The

key reason for the vacuum destabilization is the o~ dependence of the inflaton potential, with
n>0.
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Figure 4. The lowest curve with dS minimum is the one from the KKLT model. The second one
describes, e.g., the D3/D7 inflationary potential with the term Vi g = VU(? ) added to the KKLT
potential; it originates from fluxes on D7 brane. The top curve shows that when the inflationary
potential becomes too large, the barrier disappears, and the internal space decompactifies. This
explains the constraint H < mg/s.

One should note that there could be many stages of inflation in the early universe, some
of which could happen in a vicinity of a different minimum of the effective potential in stringy
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landscape, with much higher barriers surrounding it. Thus it is quite possible that at some stage
of the evolution of the universe the Hubble constant was much greater than ms/,,. However,
this could not be the last stage of inflation. We cannot simply jump to the KKLT minimum
after the tunneling with bubble formation following some previous stage of inflation, because
such tunneling would create an open universe. After such tunneling, we will still need to have
a long stage of inflation, which should make the universe flat, form the large scale structure of
the observable part of the universe, and end by a slow roll to the KKLT minimum. Our results
imply that the Hubble constant H at this last and most important stage of inflation should be
smaller than the present value of the gravitino mass.

The simplest KKLT potential has only one minimum, and this minimum occurs at large
negative values of the effective potential. Therefore we can look for a possibility to stabilize
the volume modulus in a supersymmetric Minkowski minimum. We perform an analysis of the
vacuum structure? keeping the tree-level Kihler potential K = —31In[(p + p)] and a racetrack
superpotential similar to the one recently used in the racetrack inflation scenario [17]

W =Wy + Ae™% + Be % . (29)

Here Wy is a tree level contribution which arises from the fluxes. The exponential terms arise
either from Euclidean D3 branes of from gaugino condensation on D7 branes.
At a supersymmetric vacuum D,W = 0. The supersymmetric Minkowski minimum then lies
at
W(oer) =0, DW (o) =0. (30)

As in KKLT, we simplify things by setting the imaginary part of the p modulus (the axion field
a) to zero, and letting p = p = 0. (Even though in some models the condition o« = 0 is not
satisfied at the minimum of V(p) [17], we have verified that it is satisfied in the model which
we are going to propose). In addition we take A, a, B,b and Wy to be all real and the sign of A
and B opposite.

We find a simple relation between the critical value of the volume modulus and parameters
of the superpotential

1 aA

“a—b |pB|"

Equations (30) require also a particular relation between the parameters of the superpotential:

(31)

Ocr

_a _b
b—a b—a

aA
bB

aA

—Wao = A -
0 bB

(32)

Note that only solutions with non-vanishing value of Wy are possible in this model; these
solutions disappear if we put A or B equal to zero, as in the original version of the KKLT
model. -

The potential, V = e® (GP?D,WD,W — 3|W|?), as the function of the real field p=p =0
is given by

672(a+b)0
V= 6—2(bBe‘w + aAe®) x [Be‘w(?) +bo) + € (A(3 + ao) + 3¢ W) (33)
o

It vanishes at the minimum which corresponds to Minkowski space:

oV
VMink(Ucr> =0, %(O—CT) =0. (34)

4 We performed the calculations and we plot the corresponding potentials using the “SuperCosmology” code [16].
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Thus it is possible to stabilize the volume modulus while preserving Minkowski supersymmetry.
The gravitino mass in this minimum vanishes.

An example of the model where the vacuum stabilization occurs in the supersymmetric
Minkowski vacuum is given by the theory with the superpotential (29) with A = 1, B =
—1.03, a = 27/100, b = 27/99, Wy = —2 x 10~*. The resulting potential is shown in Fig.
5. The vacuum stabilization occurs at ¢ ~ 62 > 1, which suggests that the effective 4D
supergravity approach used in our calculations should be valid.

\V4
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Figure 5. The F-term potential (33), multiplied by 10, for the values of the parameters
A=1, B=-1.03, a=27r/100, b =27/99, Wy = —2 x 10~%. A Minkowski minimum at V' = 0
stabilizes the volume at o, ~ 62. AdS vacuum at V < 0 stabilizes the volume at o.. =~ 106.
There is a barrier protecting the Minkowski minimum. The height of the barrier is not correlated
with the gravitino mass, which vanishes if the system is trapped in Minkowski vacuum.

We have found the supersymmetric Minkowski vacuum prior to adding any nonperturbative
terms ~ C/o? related to D3 brane or D7 branes. We assume, as usual, that by changing the
parameters and by adding the term C/o? one can fine-tune the value of the potential in its
minimum to be equal to the observed small constant A ~ 10729, What is important for us is
that in the first approximation one can make the gravitino mass vanish as compared to all other
parameters of the superpotential. As a result, the value of mg/, in our model does not have
any relation to the height of the potential, and, correspondingly, to the Hubble constant during
inflation.

The same model may also have AdS vacua defined by

Wi(o) #0, DW(o)=0. (35)
At the AdS minimum one has
—Wo=Ae (1 + gaa) + Be (1 + gba) . (36)
The vacuum energy in this minimum is negative,

(aAe™% + bBe )2
60 '

V(o) = =38 |W|? = — (37)

The supersymmetric Minkowski vacuum is absolutely stable with respect to the tunneling to
the vacuum with a negative cosmological constant. Indeed, tunneling from a supersymmetric
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Minkowski vacuum would require creation of bubbles of a new phase with vanishing total energy,
which is impossible because of the positive energy theorems.

In conclusion, we have explained here a modification of the original KKLT scenario where
the volume stabilization does not require an uplifting of a deep AdS minimum, and where the
large scale of inflation is compatible with the small gravitino mass.

4. Towards Inflation in String Theory
There are few types of string inflation models known at present:

e Modular Inflation with volume stabilization: this is the simplest class of models. It uses
only the fields that are already present in the KKLT model. The first working case of
modular inflation is the so-called racetrack inflation [17]

e Brane inflation with volume stabilization: the inflaton field corresponds to the distance
between branes in Calabi-Yau space [18]. Known examples of brane inflation with volume
stabilization taken into account are the KKLMMT model [19] with modifications [20,21]
and D3/D7 model [22-27].

e Dirac-Born-Infeld inflationary model [28]: this model has particular features very different
from other ones. It is not a slow-roll inflationary model, it predicts significant non-
Gaussianity and detectable gravitational waves.

4.1. Racetrack Inflation

Having found classes of string models where the geometrical moduli of the compactification
manifold can be stabilized, one can then discuss possible inflationary scenarios. One could not
do it in absence of moduli stabilization. For instance, the known sources of energy density in
string theory (including any possible source of inflationary energy) scale like inverse powers of
the compactification radius R. So in absence of stabilization of the radius of compactification,
one decompactifies instead of inflating.

The simplest way to obtain inflation would be to use the radius of compactification, or the
corresponding axion field, as an inflaton. For a long time it did not seem possible to do it because
the curvature of the potential with respect to these fields typically is too large. Therefore most of
the models of string theory inflation developed after the discovery of the KKLT mechanism were
based on the investigation of additional degrees of freedom, associated with motion of branes.
We will discuss these models in the next sections.

However, very recently a class of models named “Racetrack inflation” was found in [17], which
does not require the presence of moving branes. The corresponding potential has the KKLT
structure V = Vg + %, where the superpotential has two exponents and the flux contribution
Wo.

W=Ae T+ Be T +W,. (38)

K = —3log(T + T%), (39)

where T' = —ip = X + ¢Y. The inflaton field is the imaginary part of the Kéhler structure
modulus which is an axion-like field in the 4D effective field theory. In this example the structure
of the potential allows for the existence of saddle points between two degenerate local minima
for which the slow-roll conditions can be satisfied in a particular range of parameter space. We
plot the potential in Fig. 6.

The calculation of potentials of N=1 supergravity from the Kéhler and superpotential can be
sometimes quite involved, it is useful therefore to perform a computer calculation. A published
version of calculation of such (and more complicated, with many moduli) potentials using
“Mathematica” can be looked at [16]. It seems to be practically impossible to find interesting
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Figure 6. A plot of a racetrack potential. It has a saddle point at X ~ 115 and at Y = 0 where
the systems spends time and inflates. Later on an instability develops and there is a waterfall
towards one of the two KKLT-type minima at X = 90 and Y = +23.

features in the potentials, like a flat saddle point, without using computers and fine-tuning
parameters of the potential.

This model is most economical with respect to the number of fields/structures involved, so
the discovery of this class of inflationary models is rather encouraging. However, in order to
achieve inflation in this scenario one should find the models exhibiting the saddle point of the
potential in the axion direction, and then ensure that the curvature of the potential near the
saddle point is sufficiently small. This requires fine-tuning of the parameters. Having in mind
enormous amount of possible stringy vacua, one may not necessarily consider it a problem. Still
it would be interesting to find a model where such fine-tuning can be either avoided or replaced
by a requirement of a symmetry.

Inflationary predictions in this model include a flat spectrum of metric perturbations with
ng = 0.95 and no gravitational waves. This number at present is marginally compatible with
the data. Future precision experiments will tell us if this model will remain a viable model of
inflation in string theory.

4.2. Inflation in KLMT and related models

The most popular approach to inflationary model building in string theory involves D-brane
inflation [18] — the idea that the inflaton is an interbrane separation, and inflation is the
macroscopic result of a microscopic Coulomb attraction between branes in a higher dimensional
space. While a host of possible models exist in the various string theories, the two types which
are most commonly considered in the context of models with volume stabilization involve either
D3 and anti-D3 branes, or D3 and D7 branes.

A standard problem with D3/anti-D3 inflation is that the Coulomb attraction between
the brane and anti-brane is in fact too strong to yield small 7 in a standard (unwarped)
compactification. This is reviewed in e.g. §2 of [19]. Happily, however, one can involve significant
warping. So it is natural to consider a scenario where an anti-D3 brane at the end of a KS throat
in the compactification manifold (where is naturally driven by the background fluxes, attracts
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a D3 brane down the throat. The resulting Coulomb attraction is naively diluted so severely
by the warping that beautiful models of slow-roll inflation should result as the D3 rolls down
to annihilate with the anti-D3 [19]. The warping also plays an important role in keeping V'
during inflation small enough to avoid moduli de-stabilization — in fact, these models have
V << (1016 GeV)4
However, this is too naive. The same warping which flattens the brane/anti-brane potential
also produces a conformal coupling on the D3 brane worldvolume [19]. One can understand
this as either a reflection of AdS/CFT, or through explicit computations involving the detailed
form of the D3 Kahler potential in these models. Using the effective Kéhler potential and
superpotential for the volume modulus p and the position of the D3 brane along the throat ¢
one finds that
K = -=3In(—i(p—p) — ¢9), W =Wy + Ae™" (40)

From this perspective, the problem is just a version of the standard supergravity eta problem.
The conformal coupling makes a contribution to the inflaton mass of order H?,

m3 ~ Ve ~ H? (41)

This must be cancelled to 1 part in 100 to obtain a working model. The cancellation can plausibly
happen in models with appropriate superpotential dependence on the D3 brane position [19],
but the resulting predictions are non-Universal (depending on rather global details of the model,
not just local properties of brane/anti-brane dynamics). The mechanism of fine-tuning is based
on the fact that the potential V' depends on the Kéahler invariant combination G of the Kahler
potential K and superpotential W

G=—(K+In|W?) . (42)

This combination can be fine-tuned which leads to a small inflaton mass. An example of
calculations of string theory corrections which may, in principle, provide such cancellation,
were presented in [20]. The calculation is valid under condition that D3 brane in the throat
slowly approaches the anti-D3 brane. A stuck of D7 branes which is responsible for the gaugino
condensation and volume stabilization must coincide with the anti-D3 brane. In such situation
the inflaton field which is the distance between D3 and anti-D3 brane becomes also a distance
between a D3 brane and a stuck of D7 branes. The value of the string corrections to the
superpotentials presented in [20] depends on the values of some additional moduli, beyond the
overall volume and position of D3 brane. Therefore they may be large and may help to cancel
the large inflaton mass for the KRLMI'T model.

Several modifications of this basic scenario have been proposed which circumvent this issue
in various ways, see [20,21]. So clearly, there are many ideas for obtaining inflation using the
dynamics of D3 and/or anti-D3 branes in the class of compactifications described in [4]. However,
it is fair to say that none of these scenarios is particularly compelling, and it is certainly worth
exploring other brane inflation models which also fit into scenarios for stabilized moduli and
inflate at low enough scales to avoid moduli destabilization.

An interesting recent development related to cosmic strings took place in the context of
KKLMT model, assuming that the necessary fine-tuning has been achieved. Cosmic strings may
be produced after inflation. These cosmic strings may be observable. If their tension is too high,
they would contradict the data on CMB spectrum. The interesting feature of IKLMT model
which was first observed in [19] and developed later in a number of papers is that the effect of
warping may allow us to produce models which at present are still below the level of detection
and do not contradict the CMB data. However, with the increased precision of cosmological
observations one may expect that these cosmic strings may be detected. We refer the reader to
the lecture on this in [29].
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4.3. D3/D7 brane inflation

Here we will explain the class of D3/D7 brane constructions and related inflationary models
which were developed in [22]-[27]. We will assume here, as it was done in KKLMMT model that
there is one total volume modulus®. The D3/D7 brane inflation model has a shift symmetry
which protects the inflaton from a large mass. This symmetry originates from the choice of the
compactification manifold which has isometries. We will discuss it later in details.

The resulting four-dimensional effective model of D3 /D7 brane inflation at the stabilized total
volume is a stringy version of a hybrid D-term inflation [29,30]. The original D-term inflationary
model[31] was recently revisited and improved in [32] with regard to the distinction between the
case of constant FI terms and field-dependent D-terms in effective supergravity.

Hybrid inflation [30] can be naturally implemented in the context of supersymmetric theories.
The basic feature of these inflationary models is the existence of two phases in the evolution of
the universe: a slow-roll inflation in the de Sitter valley of the potential (the Coulomb phase of
the gauge theory) and a tachyon condensation phase, or ‘waterfall stage’, towards the ground
state Minkowski vacuum (a Higgs phase in gauge theory).

In NV = 1 supersymmetric theories, hybrid inflation may arise as F-term inflation [33,34]
or D-term inflation [31], [35]. In N = 2 supersymmetric theories there is a triplet of Fayet-
Iliopoulos (FI) terms, {", where r = 1,2, 3. Choosing the orientation of the triplet of FI terms,
¢", in directions 1,2, F-term inflation is promoted to N' = 2 supersymmetry [36]. The more
general case with N' = 2, when all 3 components of the FI terms are present, is called P-term
inflation[37]. When ¢3 is non-vanishing, a special case of D-term inflation with Yukawa coupling
related to gauge coupling is recovered. In this fashion, the two supersymmetric formulations of
hybrid inflation are unified in the framework of N' = 2 P-term inflation. This N=2 gauge theory
has the potential[37]

2 1 1
V= %@@(Az +B?) - [5(13’“)2 +gP" <§CI>TUT<I>+§T)] , (43)

where P is a triplet of auxiliary fields of the A = 2 vector multiplet, ®', ® are 2 complex scalars
forming a charged hypermultiplet, A, B are scalars from the N' = 2 vector multiplet and g is
the gauge coupling. The auxiliary field satisfies the equation P" = —g(®To"®/2 4 £7) and the
potential simplifies to

2
g
v==5>
2

2
dT®(A% + B?) + (%@TUT@mr) ] : (44)

An additional advantage of using N' = 2 supersymmetric models for inflation is the possibility
to link it to M/string theory where cases with N/ = 2 supersymmetry are simpler and less
arbitrary than the cases with A/ = 1 supersymmetry.

One can link open string theory to a gauge model with a hybrid potential either using a
system with a D4-brane attached to NS5-branes and having a small angle relative to a DG6-
brane [38] or a D3/D7 system of branes [22]. This setup reproduces accurately the properties
of the non-supersymmetric de Sitter vacuum of P-term inflation, for which (P")gesit = —¢" and
(V) desit = &2 /2. In particular, the mass splitting of the scalars in the hypermultiplet (e.g. for
the case of €3 = £ # 0)

M}?yper = 92[(A2 + BQ) + ‘E} ) (45)

5 We hope that the details of stabilization of moduli in D3/D7 model will be better understood in future. The
model is defined in the context of K3 x T?/Z? compactification. The stabilization of the volume of K3 is well
understood in presence of D7 branes, whereas the stabilization of the volume of the torus requires a contribution
from Euclidean D3 branes.
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is reproduced by the low-lying string states; the attractive force between the D4 and D6-brane or
a D3 and D7 branes is a one loop effect from the open string channel, and correctly reproduces
the one-loop gauge theory potential

&gt A4 B

AV =
V=T My B,

(46)

for large values of the inflaton field. Notice the inflaton is the distance between branes.
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Figure 7. A hybrid potential representing an effective D3/D7 model with de Sitter valley where
the system inflates and approaches the critical point where the local de Sitter minimum turns
into a de Sitter maximum. At this point system waterfalls to the minimum. The minimum
should have Mexican hat U(1) structure, not a Z but this is difficult to plot simultaneously
showing a de Sitter valley.

When the distance between the branes becomes smaller than the critical distance
|A2+B2’c:‘f ; (47)

the spectrum of 3-7 strings develops a tachyon. The tachyon condensation is associated to a
phase transition. A final Higgs phase with unbroken N = 2 supersymmetry is described in
D4/D6 model by a reconfiguration of branes: D6 cuts D4 into two disconnected parts, so that
N = 2 supersymmetry is restored. From the viewpoint of the gauge theory it is described by
a vanishing auxiliary field (P")susy = 0, a vanishing vev of the inflaton field A = B =0, and a
vanishing potential (V)susy = 0. The hypermultiplet vev is not vanishing and has to satisfy

1
§<I>Ta7"<1> = ¢, (48)

D3/D7 model is partially dual to D4/D6 model and gives a better description of the Higgs
branch (exit from inflation) keeping the nice properties of the Coulomb branch (inflation).

The model consists of a D3-brane parallel to a D7-brane at some distance, which again
is the inflaton field. The supersymmetry breaking parameter is related to the presence of
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the antisymmetric F,, field on the worldvolume of the D7-brane, but transverse to the D3-
brane. When this field is not self-dual in this four dimensional space, the supersymmetry of the
combined system is broken.

Equation (48) can be associated with the Atiyah-Drinfeld-Hitchin-Manin construction of
instantons with gauge group U(N). The moduli space of one instanton is the moduli space of
vacua of a U(1) gauge theory with N hypermultiplets and (48) is the corresponding ADHM
equation. This suggests that in the brane construction of the cosmological model we may look
for some instantons on the worldvolume of the brane in the Higgs phase of the theory. One can
find an abelian non-linear instanton solution with associated ADHM equation (48). Moreover,
the presence of a cosmological constant will translate as the resolution of the small size instanton
singularity. One other nice feature of the D3/D7 cosmological model is that it is well explained
in terms of k-symmetry of the D7-brane action, both in Coulomb phase as well as in the Higgs
phase.

Unbroken supersymmetry of bosonic configurations in supergravity has already proved to
be an important tool in our understanding of M/string theory. To obtain BPS solutions of
supergravity one has to find Killing spinors, satisfying a condition 0,5y = 0 for all fermions
and find out how many non-vanishing spinors solve this equation for a given solution of bosonic
equations. This allows to find configurations with some fraction of unbroken supersymmetry
in supergravity. Unbroken supersymmetry of the bosonic configurations on the worldvolume of
the k-symmetric branes embedded into some curved space (on shell superspace) for all cases of
D-branes, M2 and M5 k-symmetric branes, a universal equation for the BPS configurations on
the worldvolume is given by

(1-T)e=0. (49)

Here I'(X*(0),6(0), Ai(0)) is a generator of k-symmetry and it should be introduced into the
equation for unbroken supersymmetry with vanishing value of the fermionic worldvolume field
O(o). The existence or absence of solutions to these equations fits naturally in the two stages of
our cosmological model. We refer to the details of how k-symmetry controls D3/D7 system to
the original paper [22].

4.4. De Sitter valley: separated D3/D7 system with fluxes
Consider a type IIB system with D3 and D7-branes plus a constant worldvolume gauge field F
field along directions

0112|3456 |7]81]9
D3| x| x| x| x
D7 | x| x| x| X X | X | X | %
F X | X | x| X

Table 2

This is illustrated in figure 7. It describes a de Sitter stage of a hybrid inflation and it is T-dual
to the type IIA D4/D6 model of branes at an angle (without the NS5-branes), considered in
38].
We place D7 at (z%)? + (2°)? = 0 and D3 is initially at some d? = (24)? + (%)% >> d2, where
d. is defined below in (54). There is a constant worldvolume gauge field F = dA — B present
on DT7:
Fe7 = tan 6y, Fgg = tanby | (50)

responsible for spontaneous breaking of supersymmetry. For example we may have B = 0 in the
bulk and the following vector fields on the brane:

1 1 1 1
Ag = D) tanbiz’ , A; = §tan91x6 , Ag= —5 tanfpz? , Ay = §tan92x8 . (51)
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Figure 8. The D3/D7 “cosmological” system. The 3-3 strings give rise to the N' = 2 vector
multiplet, the 7-3 strings to the hypermultiplet and the worldvolume gauge field F to the FI
terms of the D = 4 gauge theory.

Note that if F is self-dual, supersymmetry would be unbroken, which can be explained via k-
symmetry. For future reference we define F* = F+«F , and similarly for B. We can choose the
GSO even states to be either 1,2 or 3,4. We will choose the former. The standard calculation
zero point energy with the choice of the GSO even states gives

1 —
E:ﬂ:—(ljl—ljg)::tel 92 .
27

; (52)

Therefore the lowest lying multiplet of states of open strings consist of bosons whose masses are
given by
d? 01 — 69
M3 = + 53
7 (nd)? 2l (53)

where we observe that the boson of mass M2 becomes tachyonic at the critical distance®

d? = 71'0/(91 ; 92) , (54)

and the other boson remains at positive mass. The fermion in the multiplet has a mass

ME = , (55)

as the contribution from the zero point energy to the Ramond sector is zero.
The F field plays the role of the Fayet-Illiopoulos term, from the viewpoint of the field
theory living on the D3-brane. It creates an instability in the system driving the D3-brane into

6 We are assuming 6, > 0s.
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the D7-brane; this is the de Sitter stage. The evolution follows the description given in [38].
In particular, a tachyon will form and the system will end in a supersymmetric configuration
describing a bound state of D3 and D7, a D3 resolved in D7.

The shift symmetry in which we are interested here is the independence of the Kahler potential
K on the Rey where y is a complex field representing a distance between a D3 brane and a
D7 brane in an isolated D3/D7 system. This symmetry takes place even with account of the
superpotential: the combination G of K and W shown in eq. (42) is independent on Rey [26].
Only loop corrections due to a flux on D7 presented in eq. (46) break this symmetry as a result
of a splitting of a mass in a supersymmetric multiplet. The procedure of stabilization of moduli
in this model requires that the values of other fields, like the volume of K3, the volume of T2/Z2,
the axion-dilaton field, the complex structure of the torus and the position of D7 branes are all
fixed via fluxes or non-perturbative corrections to the superpotential. For a successful model of
inflation we need to keep a flat direction associated with the position of a single D3 brane. In
such situation, after volume stabilization we expect an inflaton trench potential presented in fig.
9.
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Figure 9. A potential which shows an inflaton trench: whereas the distance between D3 and
D7 changes along the flat direction s = Rey, the volume moduli ¢ is not destabilized.

5. Stringy Theory Landscape

It is known for about 20 years that it is extremely difficult to derive an effective cosmological
model from string theory/10-11-dimensional supergravity. Over the last few years observational
data seem to point out that development of the string cosmology becomes more and more
important.

A new concept of a stringy landscape have emerged as the result of these attempts and was
formulated by Susskind. It has some roots in the ideas of eternal inflation developed by Linde
and Vilenkin and Bousso-Polchinski ideas of a relation between a cosmological constant and flux
compactification. It is also based on the fact that de Sitter space is possible in string theory
when non-perturbative effects are taken into account. It is extremely difficult at present to
explain the scale of the cosmological constant. Stringy landscape suggests to use the fact that
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there is a huge amount of stringy vacua, due to an enormous amount of combination of fluxes.It
is believed that string theory may have 1010 — 10199 different vacua.

With account of loop corrections each vacuum will change. However, the total landscape
picture with many vacua will survive. There are many vacua with negative, vanishing and
positive energies. Somewhere there is our vacuum with A ~ 1/N where N, the number of vacua,
is required to be N > 10'2, The number of phenomenologically (or anthropically) acceptable
vacua is smaller than the number of total vacua, so the picture may, in principle, explain the
data.
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