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Abstract

Finding solutions to systems of linear equations is a common problem in many areas of
science and engineering, with much potential for a speed up on quantum devices. While
the Harrow—Hassidim—-Lloyd (HHL) quantum algorithm yields up to an exponential
speed up over classical algorithms in some cases, it requires a fault-tolerant quan-
tum computer, which is unlikely to be available in the near-term. Thus, attention has
turned to the investigation of quantum algorithms for noisy intermediate-scale quan-
tum (NISQ) devices where several near-term approaches to solving systems of linear
equations have been proposed. This paper focuses on the Variational Quantum Linear
Solvers (VQLS), and other closely related methods and adaptions. Several contribu-
tions are made in this paper, which include: the first application of the Evolutionary
Ansatz to the VQLS (EAVQLYS), the first implementation of the Logical Ansatz VQLS
(LAVQLS), based on the Classical Combination of Quantum States (CQS) method, a
proof of principle demonstration of the CQS method on real quantum hardware and

B Ilya Sinayskiy
sinayskiy @ukzn.ac.za

Aidan Pellow-Jarman
aidanpellow @gmail.com

Anban Pillay
pillayw4 @ukzn.ac.za
http://www.cair.org.za

Francesco Petruccione
petruccione @sun.ac.za
1 University of KwaZulu-Natal, University Road, Chiltern Hill, Westville 3629, South Africa

2 Qunova Computing Inc., Creativity Hall, C2119, KAIST-Munji Campus, 193 Munji-ro,
Yuseong-gu, Daejeon 34051, South Korea

National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South
Africa

Centre for Artificial Intelligence Research (CAIR), Stellenbosch, South Africa
School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South
Africa

Published online: 24 June 2023 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-023-04020-2&domain=pdf
http://orcid.org/0000-0002-3040-0051

258  Page2of25 A. Pellow-Jarman et al.

a method for the implementation of the Adiabatic Ansatz on the VQLS (AAVQLS).
These approaches are implemented and contrasted. The CQS method is run with mod-
erate success on a real quantum device. The EAVQLS and AAVQLS show promise
as possible improvements to the standard VQLS algorithm once refined.

Keywords Variational - Linear equations - Near-term quantum - Quantum-classical -
VQLS

1 Introduction

Systems of linear equations play an important role in many areas of science and
engineering, making the potential quantum speed-up for solving them of great interest.
Solving a system of N linear equations with N unknowns, expressible as Ax = b,
involves finding the unknown solution vector x. This is known as the Linear Systems
Problem (LSP).

The Harrow—Hassidim-Lloyd (HHL) algorithm [1] is a quantum algorithm for
the quantum linear systems problem (QLSP) [2], a quantum analogue of the LSP.
The QLSP is stated as follows: Let A be an N x N Hermitian matrix (however, this
algorithm is not limited to a Hermitian matrix) and let x and b be N dimensional
vectors, satisfying Ax = b, having corresponding quantum states |x) and |b), such
that

) : = Zl’xi|i>
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If A is not Hermitian, define A = (1& 18

equation Ay = (8) and solve fory = (2) Given access to matrix A by means of an
oracle, and a unitary gate U such that U|0) = |b), output a quantum state |x) such
that |||x) — |x)||2 < €, where € is the error-bound of the approximate solution.

The HHL algorithm is a quantum algorithm expected to give a substantial speed-
up over classical approaches, providing up to an exponential speed-up over known
classical algorithms in cases where the linear system is sparse, the condition number
is low, and the actual solution vector is not required to be read out, but instead some
scalar measure on the solution vector is of interest. As with many promising quan-
tum algorithms, the HHL algorithm requires a fault-tolerant quantum computer to be
successfully implemented, predicted to only be available in the long-term future.

Approaches at finding algorithms for noisy intermediate-scale quantum (NISQ)
devices [3], available in the near-term future, have focused mainly on a class of algo-
rithms known as Variational Hybrid Quantum Classical Algorithms (VHQCAS). The
idea behind VHQCAs is to utilize a quantum-classical feedback loop. Here, a quantum
device is used to compute a cost function for a parameterized quantum circuit (ansatz),
much more efficiently than is possible on a classical device [6], while a classical device

), which is Hermitian, and instead solve the
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is used to optimize the selection of the ansatz parameters. VHQCAs rely on the use
of short depth quantum circuits to make them more resistant to noise and allowing
them to be successfully run on NISQ quantum hardware. The main difficulties of this
approach lie in overcoming the noise inherent in quantum devices and the difficulty
of optimizing the ansatz parameters. An example of these difficulties is the barren
plateau problem [4].

The Variational Quantum Eigensolver (VQE) [5] is one notable VHQCA that solves
the optimization problem,

E = min(V(©)|H|V ©)), 3

whereby the minimum eigenvalue E of some Hamiltonian H is approximated through
the optimization of 6 for some ansatz V (0).

The Variational Quantum Linear Solver [6-8] is based on the VQE, recently pro-
posed to solve the quantum linear systems problem. Since its proposal, many variations
have also been presented in order to overcome various difficulties faced by the algo-
rithm, and VHQCAs in general. Attempts to combat these difficulties include training
approaches like the Adiabatic Assisted VQE [7] and ansatz variations such as the
Logical Ansatz, being a Classical Combination of various Ansitze [7, 10] and the
Evolutionary Ansatz [11], an evolutionary approach for Ansatz construction. The
evolutionary ansatz was initially proposed for use in the VQE and has been applied
here for the VQLS variation. Another non-variational approach to solving the quan-
tum linear systems problem is the Classical Combination of Quantum States (CQS)
method [7], of which the Logical Ansatz approach outlined in this paper is an adaption.

The following approaches were implemented and will be discussed in this paper:

Method Abbreviation
Variational quantum linear solver (VQLS)
Adiabatic ansatz VQLS (AAVQLS)
Evolutionary ansatz VQLS (EAVQLS)
Classical combination of quantum state (CQS)
Logical ansatz VQLS (LAVQLS)

This paper makes several contributions to the literature on the VQLS. Firstly, we
present the first application of the Evolutionary Ansatz to the VQLS. The Evolutionary
Ansatz has previously been applied to the Variational Quantum Eigensolver [11].
Secondly, the implementation proposed for solving systems of linear equations using
the AAVQLS is new to this work. Also, a proof of principle demonstration of the CQS
method on a real quantum device is conducted. Lastly, the first known implementation
of the Logical Ansatz VQLS is given, with proposed training methods that are new
to this work. All implementations of these approaches may be found in the Github
repository. !

1 https://github.com/aidanpellow/vqls.
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This paper begins with a description of the above near-term approaches for the
Quantum Linear Systems Problem. Some experiments designed for an evaluation of
these approaches are outlined in the section following that. We then present and discuss
the results of the experiments.

2 Near-term algorithms

The inputs to the all the near-term algorithms below are the matrix A, and vector b. A is
given in a slightly different form here than in the QLSP. Here, A is given by m unitary
matrices A;, implemented as unitary gates, such that A = >"/" | ¢;A;, ¢; € C (any
Hermitian matrix in a finite-dimensional space can be written as a linear combination
of unitary matrices). Also given is a unitary gate U, such that U|0) = |b). VQLS cost
functions often require either or both A; and U to be given as controlled gates, which
is assumed possible.

2.1 Variational quantum linear solver

The standard VHQCA approach for the quantum linear systems problem is the Varia-
tional Quantum Linear Solver, itself being a basic application of the VQE. The VQLS
simply involves the selection of a suitable ansatz, cost function, and classical opti-
mizer. The algorithm runs in a simple feedback-loop, whereby the classical optimizer
finds the optimal parameters for the ansatz circuit, by iteratively evaluating the cost
function on the quantum device, and updating the parameters until a minimum cost
value is achieved. The quantum device is used to evaluate the cost function, because it
is much more efficient than any known method on a classical device for this step [6].

Let the ansatz be denoted by V («), and let the optimal ansatz parameters be denoted
by a*. Then, once the VQLS algorithm terminates, V («*)|0) = |x’), where |||x) —
|x")||2 < €, where € is the error-bound of the approximate solution, and |x) is the
exact solution as described by Eq. (3) (Fig. 1).

2.1.1 VQLS ansatz

Broadly speaking, there are two types of ansitze; hardware-efficient (agnostic) ansétze
and problem-specific ansitze.

Hardware-efficient ansitze are designed without taking into account the specific
problem being solved, that is matrix A and |b), but rather only the topology (backend
connectivity of the qubits) and available gates of a specific quantum computer. A
hardware-efficient ansatz can be denoted by a sequence of n parameterized quantum
gates as,

Vagnostic (@) = y1(a1)y2(a2) - - - Yu(atn), 4)

where y; denotes a specific parameterized gate in the quantum circuit, and «; denotes
that parameters value.
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( INPUT: U

Quantum Device Classical Device
Cost Function Optimizer

o—] [ H if terminate(C(w)):

*

N of =«

0) =[b) and A =>"  c;A;.¢; €C )

else:
“— o = Update(a)

( OUTPUT: o* where V(a*) [0) = |2/) and |||a) — [2/)]|]2 < € )

Fig.1 VQLS Schematic: The algorithm runs in a simple feedback loop, whereby a classical optimizer finds
the optimal parameters for the ansatz circuit, by iteratively evaluating the cost function on the quantum
device and updating the parameters, until a minimum cost value is achieved. The matrix A is given as a
linear sum of unitaries A; with complex coefficients ¢;, and the vector b is given as a unitary U such that
U|0) = |b). V(«) denotes the parameterized ansatz, o™ denotes the optimal parameters. At termination,
V(a*)|0) = |x”), where |||x) — |x")||o < €, with |x) being the exact solution to the QLSP, and ¢ being the
error-bound of the approximate solution

These ansitze can be constructed to be more resistant to noise on any specific avail-
able quantum device, but they may fall short finding a solution |x’), as any particular
hardware-efficient ansétze is not guaranteed to span the region of the Hilbert space con-
taining any good approximation of the solution |x’). Therefore, a hardware-efficient
ansatz effectively trades potential relevance to the specific problem, for increased noise
resistance.

Problem-specific ansétze on the other hand do not take into account the specific
quantum device being used, and rather try to exploit the knowledge of the problem
available. The Quantum Alternating Operator Ansatz (QAOA) [6] is one such pro-
posed problem-specific ansatz, using two Hamiltonians, known as the driver and the
mixer, denoted by Hp and H)y, respectively, constructed from specific knowledge
of the problem, namely A and b. This problem-specific ansatz can be denoted by a
repeating sequence of driver and mixer Hamiltonian simulations, each being applied
for a variable amount of time. These time parameters « are the trainable aspect of this
problem specific ansatz, which are optimized by some classical device. The QAOA
can be denoted as,

VQAOA(Ol) — e—lHMOlZpe—lHDOlZp—l o e—tHMaze—zHDal ) (5)

The requirement of Hamiltonian simulation from the QAOA makes these ansitze
far less near-term; therefore, these ansitze are not considered further in this paper.
More information on the specific construction of the QAOA, including operators Hp
and Hy,, is given in [6].
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2.1.2 VQLS cost functions

The cost function Hamiltonian is where the application of the VQE algorithm to
solving systems of linear equations is implemented. Various different cost functions
have been proposed for the VQLS [6, 7]. For simplicity, denote the state V («)|0),
as |x), and let |[{y) = A|x). Ref. [6] proposes a cost function based on the overlap
between the projector |4 ) (1| and the subspace orthogonal to |b). This cost function
also normalizes the expectation value of the Hamiltonian to improve performance.
The cost function is given by,

(x|Hg|x)
=2 ©)
(Vly)
where the Hamiltonian Hg is given by,
Hg = AT (1 — [b)(b]) A. )

This cost function can have gradients that vanish exponentially with the number of
qubits. To improve on this shortfall, the cost function Cy, is proposed by replacing Hg
with a local version of the Hamiltonian, Hy , improving the trainability of the ansatz,
given by,

, 1 &
— AT _ - N0 - T
H, =AU |1 n2|0]><0]|®1j u'a, ®)

j=1
where 1 H denotes identity on all qubits except qubit j. The cost function C; can
be computed using the Hadamard Test as shown in Fig.2. C; has been shown to be
equivalent cost function to Cg, however, having improved performance [6], and is
explicitly given by,

{(x|H|x)

Cp = ———. 9
BT ) ©

2.1.3 Classical optimizers

The VQLS admits the use of either gradient-free or gradient-based optimizers. For
gradient-based optimizers, gradient values can be found analytically [6, 12], or esti-
mated through finite differences. The classical optimizer chosen has a large impact on
how well the optimization process deals with the noise inherent in NISQ devices. Some
classical optimizers handle noise better than others [13], making classical optimizer
selection important.

2.2 Adiabatic-assisted VQLS

The Adiabatic-Assisted Variational Quantum Linear Solver (AAVQLS) [7] simply
augments the standard VQLS approach, by proposing a variation in the Hamiltonian
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Fig.2 Hadamard Test Circuits for cost function C7, Eq. (9). The top circuit is employed when calculating
the value of the numerator (x|H |x), while the bottom circuit is employed when calculating the value of the
denominator, (y|v. The ST gate is included when calculating imaginary-valued parts of the cost function
and excluded when calculating the real-valued parts, and therefore, drawn in as a dotted line. V («) denotes
the ansatz, A; the [-th unitary from the linear sum A = }; ¢; A; and U the unitary such that U|0) = |b).
Zj denotes a standard Z gate on the j-th qubit, and H being a standard Hadamard gate

over time, inspired by adiabatic quantum computing methods [14], in an attempt to
allow the ansatz state to always be close to the ground state of the Hamiltonian. Let
Hj be a Hamiltonian with a known ground state, and let H; be the Hamiltonian whose
ground state corresponds to the solution of the linear system in question. Let the Hamil-
tonian of the AAVQLS be given by (1 — ) Hy + s H, where s is a discrete parameter,
varying from s = 0,tos = 1, in T discrete intervals, during the optimization process.

This approach is the same as the VQLS with respect to the cost function and classical
optimizer; however, the ansatz must be chosen such that it can be easily initialized in
the ground state of Hy at the start of the algorithm. The only added procedure to the
AAVQLS from the VQLS occurs during the training phase, where the parameter s is
varied in T discrete intervals from s = 0 to s = 1, thereby varying the Hamiltonian
from Hy to H;.

Proposed here is one way in which the AAVQLS can be implemented as an adaption
of the VQLS. Firstly, the linear system is reformulated as,

[1—=5145Ax=b, (10)

where § can be varied from 0 to 1, withx = b, whens = 0, and [(1 —5)1 +5A]x = b,
equivalent to Ax = b, when s = 1.

Then, for a suitable ansatz V(«) = y1(a1)y2(®2) - - - ¥ (o) where o can be initial-
ized such that V(o) = 1, append to it the unitary U (for creating state |b)) to create
ansatz Vaay ors(a) as below,
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Vaavors(a) =UV(a). (11)

Here, Vaav ors|0) is indeed equal to |b) when « is initialized appropriately (such that
V(a) =1).
The AAVQLS algorithm then proceeds as follows:

1. Lets = 0 and let ansatz parameters @ = «™, such that V («*) is equal to 1. Then,
VaavoLs (@) gives the solution to (9). Let atprevious = @.

2. Increment s by %

3. Using the VQLS approach, with initial ansatz parameters set to &previous, find the
new optimal parameters ccyrrent With ansatz VaavQrs.

4. Let aprevious = Ucurrent and if s 7 1 return to step 2; else dfinal = Acurrent-

5. Vaavors(@final)|0) = |x"), where [||x) — [x")|| < €, where |x) is the exact solution
to the QLSP and ¢ is the error-bound of the approximate solution.

2.3 Evolutionary ansatz VQLS

The Evolutionary Ansatz [11] utilizes a genetic algorithm to construct the parame-
terized quantum circuit, while concurrently optimizing its parameters. This approach
adapts the ansatz structure to both the specified problem and the backend configuration
of the quantum device available, so it can be thought of as constructing an ansatz that is
both hardware-efficient and problem-specific. This specialized ansatz would be highly
noise resistant (being shallower and requiring fewer 2-qubit gates) while remaining
applicable to the specific problem being solved. This approach still requires a VQLS
cost function and classical minimizer, as standard with VQLS.

The main outline of the Evolutionary Ansatz algorithm is presented here. For a
full explanation, please see the original paper[11]. Some specific details about the
evolutionary ansatz implementation in this discussion differ from the original paper.

Evolutionary Algorithms are based on the principle of natural selection. The Evo-
lutionary Ansatz VQLS (EAVQLS) mimics this principle to adapt the ansatz choice
by evolving a set of candidate ansatze, known as the population, through random
mutations (the EAVQLS only mimics asexual reproduction, there are no crossovers
between candidate solutions in the population). The candidate ansétze being evolved
are known as genomes. A genome consists of a list of genes, and for the EAVQLS is
given as follows. If V; («) is any potential ansatz in the population, V; («) is expressed
as a genome g; that can be written as,

g = i), ya(a2), - -+, Y (om)],

where each y; is a gene. Each gene y; is a layer of gates such that each qubit of the
ansatz is assigned a gate. This set of gates is chosen from a gate set,

G = {I, Us, A U3},

where I is the single qubit identity gate, U3 is the universal single qubit rotation, and
A1Us3 is the controlled version of Us. Other gate sets may be used, for example, if the
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I 1 2 () 1 |
= _

Fig.3 4 Qubit evolutionary Ansatz genome schematic: three different genes (ansatz rows) are each outlined
in red, blue and green in the genome above. The qubits are initialized as H®"|0)®" allowing the first gene
in the genome to contain controlled gates that are not redundant. Ry (6) denotes a the standard y-rotation
gate (these could be replaced with U3 in the case of a complex-valued solution), and I the standard identity
gate

VQLS problem only deals with real valued A and b, an appropriate gate set is given
by,

Gr = {lz, Ry, A1 Ry}.

An example of an evolutionary ansatz genome is shown in Fig. 3.

Initially, the evolutionary algorithm begins with a population consisting of random
genomes, each only consisting of a single gene. The qubits in all ansatz circuits are
initialized with the gate H®", allowing the first gene in the genome to contain con-
trolled gates that are not redundant when the ansatz corresponding to the genome is
applied to the state |0)®". These genomes are evolved asexually, through the use of 3
genetic operators, fopological search, parameter search and removal.

The topological search operator, T, explores the space of possible ansétze, by adding
a new random gene to the genome, which is equivalent to adding a new random layer
of gates to the ansatz represented by the genome. The new gene added to the genome
is initialized as identity, to ensure that the genome’s fitness may only improve, or at
worst, remain the same. This new gene also takes into account the gates of the previous
gene in the genome, eliminating potential redundant gates from being added to the
genome with the new gene (two of the same gate on the same qubit/s in a row results
in a redundancy). The identity gate, I, is only used whenever adding a different gate
would cause some redundancy. The operation performed by t is given by,

T [yiler), - Ym(am)] = [yilen), -« Y (@m)s Ymt1 (@mg1) ]
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The removal operator, p, acting on a genome, removes some number of genes from
the genome, starting from the end of the gene list. The operation performed by p is
given by,

P [Vl(al)v Tt yp(ap)v ) Vm(am)] - [7/1 (Ol]), V2(0l2), ) yp(ap)]

where p € {1,2,--- , m}.

The parameter search runs an optimization subroutine, O, on each individual gene
in the genome, in a random order. The optimization subroutine Q is implemented for a
genome g; and a gene y; («; ), by using the ansatz V («) represented by genome g; in the
standard VQLS optimization routine, while only optimizing the specific parameters
«; of the gene y; («;). This optimization is done per gene so that removal operator does
not affect the training of the rest of the ansatz.

The fitness f; of genome g; is calculated using the value of the cost achieved by
the ansatz represented by the genome, as well as the depth of the ansatz (number of
genes) and the number of 2-qubit gates. The fitness value is given by,

Ji=Cgi) +a-lgil+ B - InGg)l,

where o and B are weighted variables that can be assigned, C(g;) is the cost value
of the ansatz of represented by g;, |g;| is the number of genes in g;, and |A(g;)] is
the number of 2-qubit gates in g;. This genome fitness value is then averaged among
genomes of the same species and is called the species-adjusted fitness. Species are
defined by a genetic distance measure, given by the average distance of a common
ancestor between two separate genomes. Two genomes with an average distance of a
common ancestor less than some given value may be assigned to the same species.
The EAVQLS Algorithm runs as follows:

1. Generate a population P of n empty genomes g;, and apply 7(g;) to each genome.

2. Apply the optimization subroutine O to the last gene in each genome for all
genomes in P.

3. Group the genomes in P by species, then calculate the fitness and then species-
adjusted fitness of each genome g; in P.

4. Randomly select n parent genomes with replacement from P, inversely propor-
tional to their fitness values, forming the next generation P’.

5. For all of the genomes g; in P’, apply the three genetic operators to g; with some
predefined probabilities.

6. If a termination condition is met, return the fittest genome in P’, else let P = P’
and return to step 2.

2.4 Classical combination of quantum states (CQS)

The Classical Combination of Quantum States (CQS) approach detailed in [7] is
the most unique near-term approach presented in this paper. The CQS approach is
not a variational algorithm, meaning that there is no classical optimization of ansatz
parameters. The CQS approach solves the linear system by finding the solution as a
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linear combination of quantum states. A similar method is detailed in [9], where the
first proof of principle demonstration of this method is given.

Given a set of n states S = {|s1), - - -, |sn)}, the CQS method aims to find a linear
combination x” approximating the solution x to the linear systems problem Ax = b
where,

x’=2a,-|s,->,a eC. (12)
i=1

Note that, differing from the above-mentioned approaches, the solution x’ is never
actually created on the quantum device. It is not necessarily normalized and is propor-
tional to the solution to the same problem solved using the other variational methods.

Starting withm = 1, and the set S = {|s1)} where |s1) is a state that can be prepared
by some efficient quantum circuit. The CQS Algorithm then runs as follows:

1. Solve the for the optimal values of a* such that x" = X"  a*[s;), where x" is the
an approximation of x, given the set S.

2. Using the value of «*, find the next circuit generating the state |s,1) and add
[sm+1) t0 S.

3. Setm = m + 1 and repeat from step 1 until x” is a sufficiently good solution.

Given a set of n efficiently prepared states, S = {|s1), - - - , |s,)}, containing a close
approximation of the solution x as a linear combination, the linear coefficients, c¢;, can
be found efficiently by a hybrid quantum-classical procedure outlined below.

The standard regression function used to solve a linear system is given by,

Lgr(x) := ||Ax — |b)||5 = xTATAx — 2Re[(b|Ax] + 1. (13)

Given x = Y /L, ajlsi), let V. = (vi,...,vy) where v; = Als;). Now, Ax =
Z;-"zl a;Als;) = Va. Equation (13) can be rewritten as,

[Va — |b)|2 = a"VIVa — 2Re{g e} + 1. (14)
where g; = (i|VT|b) = (si|AT|b). A simple regression problem for o can be obtained
with the kernel matrix VIV, where (VT V); = (s [ATAls 7). This quadratic optimiza-
tion problem on complex « can be rewritten as a real optimization problem,

min,(zTQz —2rTz + 1), (15)

where z = (Re[a], Im[«]), and Q and r are given by,

~ (Re[VIV]Im[VTV]
Q= <Im[V*V] Re[VTV]> ’ (16)
r = (Re[gq] Im[q]) . (17)
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Fig.4 Ansatz tree diagram: an |b
example expansion of the Ansatz

Tree. The highlighted node in
the tree represents the unitary
created by applying the unitaries
A; and then A to the state |b)
Ay |b)

As |b)

AA|b) AsAn ) N AuAgb)

Here, Eq. (15) can be solved using standard convex quadratic programming methods
(Fig. 4).

The ansatz tree (Fig.4) is a proposed structure used to obtain a good set of
unitaries. As previously specified, the matrix A is given as a linear combination,
A= Z?:l c;A;j, c; € C. The unitaries A; are used in the construction of the ansatz
tree as follows.

Each node in the ansatz tree represents a single state, |s;), composed from the
unitaries A; and |b), which can be added to the ansatz set used to find the linear
combination on a classical device. The ansatz tree can be expanded breadth-first, or
searched via some heuristic.

A heuristic approach to searching the ansatz tree also proposed in [7] aims to expand
the ansatz tree node by node. Let the current set of expanded nodes in the tree be given
by the set S, and the current set of all potential child nodes of the nodes in S be the set
C(S). Let the current approximate solution for the set of expanded nodes be given by
a*. The ansatz tree is further explored by expanding the child node, |) € C(S), that
has the greatest overlap with the current gradient, maximizing the function given by,

(YIVLR(x*) =2 Z F(U A i) — 2(W|Alb). (18)
[Vi)esS

2.5 Logical ansatz VQLS

The logical ansatz approach is simply an adaption of the CQS method above, allowing
for parameterized unitaries to be employed. This approach is then similar to the Stan-
dard VQLS approach, except it proposes that instead of a single ansatz circuit, a linear
combination of multiple ansatz circuits be used. This greatly lowers the depth of any
one of the multiple ansatz circuits. The Logical Ansatz is implemented here as sug-
gested in [7], by implementing the CQS method with a selected set of n parameterized
ansatze making the states S = {|s1(01)), - - - , |s,(6,))}, and repeating the optimization
process outlined for the CQS with a classical minimizer optimizing the parameters 6;
of the ansatze creating the states |s; (0;)). This method avoids the ansatz tree expansion
process for selecting unitaries, by instead optimizing a set of pre-selected parameter-
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ized unitaries. The solution found is expressed by,

x' =) ailsi(6)) i € C. (19)

i=1

This logical ansatz implementation and training differs from that in [10].
The Logical Ansatz Linear Solver Algorithm runs much like the CQS method:

1. Select n parameterized ansatze each corresponding to some state |s; (6;)), forming
set S.

2. Solve the for the optimal value of «* such that x" = X", «|s; (6;)), where x” is
the closest approximation of x, given the set S. Proceed either to 3 or 4 for method
1 or 2, respectively.

3. Method 1: For r training rounds, select each of the states |s; (6;)) at random and
optimize their parameters 6; with some classical optimizer, only solving the new
o™ value after the parameter optimization of each ansatz.

4. Method 2: Treating the entire state x’ = E;"zloz;‘ |s; (6;)) as a single logical ansatz,
optimize all parameters at once with a classical optimizer, solving for the new o*
value with each change of parameter during the optimization process.

3 Experimentation and evaluation

Tests of all above described methods follow below. The linear systems to be solved
are given as a matrix A, where A = ¥;c; Ay, for [ unitary gates, and a state |b), given
as a unitary U, prepared by some efficient quantum circuit, such that U|0) = |b),
corresponding to some b, as described in the formulation of the near-term Quantum
Linear Systems Problem.

In all problem instances detailed below, the state [b) = H®"|0)", where n is the
relevant number of qubits for the problem. These problems are also only real-valued
linear systems; however, these approaches are not limited to real-values. The number
of shots for the Qiskit’s Qasm simulator is set to 10,000 (except for the CQS approach
on the real device).

3.1 Variational quantum linear solver

Three problem instances of differing sizes were selected to investigate the performance
of the standard VQLS. Two different classical optimizers (gradient-based vs gradient-
free), and three levels of noise were tested in order to further investigate their role in
the performance of the VQLS. The two chosen optimizers were the gradient-based
Broyden-Fletcher—Goldfarb—Shanno algorithm (BFGS) [15] (using an analytic gradi-
ent function computed on the quantum hardware) and the gradient-free Simultaneous
Perturbation Stochastic Approximation algorithm (SPSA) [16], based on performance
in [13]. The three noise levels were chosen such to demonstrate the difference between
zero noise, shot-noise only and realistic NISQ device noise, given by Qiskit’s Stat-
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Fig.5 The ansitze selected for the 3, 4 and 5 qubit problem instances. These consist of Ry and controlled-X
gates, as the problems tested were real-valued

evector simulator, Qasm simulator and Qasm simulator with a realistic noise sample,
respectively. The noise sample is taken from the IBM-Vigo quantum device.
The three problem instances, using 3, 4 and 5 qubits, respectively, are given by,

A =H +025-Z,+0.15- Hs3,
A>=71+025-Z,+0.5-Z4,
A3 =H;+0.25-Z3+0.5- Hs,

where Z;, (i = 1, 2, 3) indicates the matrix formed by the tensor product, with Pauli
gate Z applied to qubit i and the identity gate applied to the remaining qubits. Notation
is similarly defined with Hadamard gate H and Pauli gate X. 1 indicates an N x N
identity matrix.

The local cost function (detailed above) was selected for all the VQLS runs. 100
runs of the VQLS algorithm were conducted for each problem instance, noise-level
and classical optimizer. Furthermore, the same 100 random initial ansatz parameter
values were used for all runs in the same problem instance across all noise levels and
classical optimizers. This was done to make the results obtained for each problem
instance comparable.

In order to ensure even resource distribution between the gradient-based BFGS
and the gradient-free SPSA classical optimizers, the optimizers were only allowed a
limited number of cost function evaluations. The resource cost of a gradient call can
be given in terms of cost function calls, being exactly 2 cost function calls per ansatz
parameter, and so this comparison can be done. The 3, 4 and 5 qubit problem instances
were limited to 1000, 1500 and 2000 cost function evaluations, respectively.

The ansitze selected for each of the problem instances are shown in Fig.5. Ansatz
selection was not done with any specific backend in mind, and as such, the ansatz used
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it
]
0

R, )
[ [
Fig. 6 The ansatz employed in the AAVQLS test. This ansatz can be initialized to identity with some

random parameters. The circuit U for creating |b) is appending to the end of this ansatz in accordance with
the method discussed in the AAVQLS description in order to create the adiabatic ansatz

have been assumed to be hardware efficient. No transpilation to any specific backend
connectivity was done, even for the realistic noise simulation.

3.2 Adiabatic ansatz variational quantum linear solver

The following test of the AAVQLS algorithm compares the Adiabatic Ansatz method
to a standard VQLS approach, for the three same noise levels as the test above. The
same local cost function was used, and Powell’s method was used as the classical
optimizer [17], due to its noise resistance [13]. Both the AAVQLS and the VQLS used
the same ansatz circuit given in Fig. 6. This ansatz can be initialized to identity with
some nonzero random parameters, hence its use in the AAVQLS here. The circuit U
for creating state |b) is appending to the end of this ansatz in accordance with the
method discussed in the AAVQLS description, to create the full adiabatic ansatz.
The example five qubit problem tested was given by,

Ay =7140.15-7Z34+0.5- Z4.

The AAVQLS approach was split into two trials. One using 10 steps and the other
using 20 steps are denoted in the results with the suffix ‘1” and ‘2,” respectively. These
were compared to a standard VQLS implementation. The same number of overall
function evaluations were allowed for all approaches. Twenty runs for each approach
and noise-level were conducted.

3.3 Evolutionary ansatz variational quantum linear solver

The EAVQLS method was compared to the standard VQLS method. Again the local
cost function was used for both the EAVQLS and the VQLS, and the 4 Qubit ansatz
in Fig.5 was used for the VQLS comparison. Three attempts of the Standard VQLS
approach were performed, each with a different classical optimizer: COBYLA, BFGS
and SPSA. The EAVQLS algorithm in two different hyper-parameters, with o =
0.0001, 8 = 0.001, and @« = 0.001, 8 = 0.01. The o and B parameters punish
ansétze for having too many genes (circuit layers), and having too many 2-qubit gates.
These EAVQLS settings will be referred to as EAVQLS Lower and EAVQLS Higher,
respectively. The EAVQLS used the COBYLA [18] optimizer, as the simulation was
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Fig. 7 CQS algorithm ansatz tree expansion used to solve the CQS test problem on the real quantum
machine

done on a noise-free statevector simulator, and COBYLA has a very quick convergence
rate on a noise-free simulation [13]. The test problem consisted of four qubits with A
given by,

As=714+0.15-X,Z3+ 0.5 Hy.

Twenty runs of each EAVQLS genetic algorithm were performed, with a popula-
tion of size 20 and 20 generations. The genetic hyper-parameters, topological search,
parameter search and removal, were set to the values of 0.7, 0.2 and 0.4, respectively.
Each VQLS instance was run 100 times, and the top 20 best runs were selected in
the comparison. This is done to give a fairer comparison with the resource intense
EAVQLS method. Once the statevector simulation of both the EAVQLS and VQLS
runs was completed, 50 noisy shots, with a noise-model sampled from the IBM Belem
device, were run on each final optimized ansatz solution, in order to compare the noise
resistance of the solution EAVQLS ansatz, to the VQLS standard ansatz used. This
comparison of noise resistance also compares the EAVQLS Higher and Lower settings
to each other, with the expected outcome that the EAVQLS Lower will outperform
the EAVQLS Higher in the statevector simulation, as it has greater freedom to employ
2-qubit gates and more genes (greater circuit depth); however, the EAVQLS Higher
may outperform the EAVQLS Lower in the noisy shots, because the EAVQLS Higher
circuits have fewer 2-qubit gates, and fewer number of genes (circuit depth).

3.4 Classical combination of quantum states

The CQS method is the only non-variational approach tested. The aim of this test
was to see how accurately the real quantum machine could approximate the solution
given the nodes. This test follows the standard implementation of the CQS algorithm;
however, no ansatz tree expansion was conducted on the real device. Instead the ansatz
tree was pre-expanded with the nodes as seen in Fig. 14, and then, the solution was
approximated on the real device.

The three qubit test example used is given as follows,

Ag=1+0.25-Z,+0.175 - H3.

This example was selected as a non-trivial problem that suited the topology of the real
backend selected (the IBMQX2 quantum device). The number of shots per Hadamard
test was set to 245760 (being 30 repetitions of the max 8192 shots per run).
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3.5 Logical ansatz variational quantum linear solver

The logical ansatz used the same cost function as the CQS method as detailed above.
Both COBYLA and Powell’s method were tested as classical optimizers, and both a
noise-free Statevector simulation, and a shot-noise Qasm simulation were tested. The
logical ansatz was tested on the five qubit problem given by,

A7 =H +025-Z3+05-Hy+0.5-Zs.

The individual ansédtze making up the logical ansatz were generated randomly. Each
logical ansatz was made up of five shallow physical ansatze. Each ansatz consisting of
3 layers of gates was taken from the gate set {I;, Ry, A1 X}. Two different approaches
to training were tested, each denoted in the results by the suffix ‘1’ or ‘2’, for the first
and second approach, respectively. These two approaches are detailed as Method 1
and Method 2 in the Logical Ansatz section (Sect. 2.5). Twenty runs for each approach
were performed in order to obtain the results.

4 Results and discussion

Please note that the cost values achieved by the VQLS, AAVQLS and EAVQLS are
not directly comparable to the cost values achieved by the CQS and LAVQLS due to
a differing cost function.

4.1 Variational quantum linear solver

The box plot Fig. 8 and line graph Fig.9 show the range of the termination values and
the average rate of convergence, respectively, for each problem instance, noise-level
and classical optimizer used.

Figure 8 gives an idea of the difficulty of each problem instance and also, gives an
idea as to the overall affect of noise on the optimization process. The 4 qubit problem
instance appears to have been the most difficult, next being the 5 qubit instance, with
the 3 qubit instance being the simplest to solve.

The VQLS algorithm performs very well in a noise-free state vector simulation,
with the gradient-based BFGS undoubtedly performing the best outright. The inclusion
of shot-noise alone does not appear to greatly disturb the optimization process much;
however, BFGS is much more affected by the shot-noise than the gradient-free SPSA.
SPSA very much outperforms BFGS in the presence of noise. The realistic noise
levels appear to greatly affect the optimization process, and while again, SPSA is less
affected than BFGS, both are heavily set back. These trends seen between the different
noise levels and classical optimizers appear to hold regardless of the problem instances
apparent difficulty.

Figure 9 shows the average convergence rate of the top 50 attempts, for each noise-
level, classical optimizer and problem instance. In all, SPSA converges faster than
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Fig. 8 Termination Value Box plots: These box plots capture the final value at the termination of top 50
attempts of the VQLS algorithm for both the SPSA and BFGS optimizers, with three levels of noise in
simulation, for 3 problems. The standard VQLS performance is greatly affected by the presence of noise
in the quantum simulation

BFGS regardless of noise-level, and the more difficult the problem, the slower the rate
of convergence.

4.2 Adiabatic ansatz variational quantum linear solver

The box plot Fig. 10 shows the range of the final termination values achieved by the
respective methods for the respective levels of noise. The results captured in Fig. 10
appear to indicate there is not much of a significant difference between the VQLS and
both AAVQLS approaches. However, the state vector simulation clearly favors the
standard VQLS approach, while the both AAVQLS approaches slightly outperform the
VQLS in the realistic noise situation. Given that the state vector simulation is merely
theoretical, there may be some merit to the AAVQLS approach. AAVQLS 2 also ever
so slightly outperforms AAVQLS 1 in the noisy simulations, meaning shorter, more
frequent steps may be the better approach between the two. The AAVQLS approach
was split into two trials. One using 10 steps and the other using 20 steps, denoted in
the results with the suffix ‘1’ and ‘2, respectively.

The line graph Fig. 11 shows the value of the cost function along the adiabatic
optimization path for the best performing run of both AAVQLS 1 and 2 for each noise
level. Figure 11 shows that all methods kept fairly close to the ground state of the
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Fig.9 Average optimization convergence: these line graphs capture the convergence of the top 50 attempts
of the VQLS algorithm for both the SPSA and BFGS optimizers, with three levels of noise in simulation, for
3 problems. (BFGS convergence appears stepped as gradient function calls require multiple cost function
evaluations). Both optimizers converge relatively quickly, close their final values, irrespective of the noise
present

Hamiltonian during the initial phase of optimization, only to move further away from
the ground state during the middle of the optimization process. The Statevector and
Qasm simulations of both methods managed to move close to the ground state near the
end of the optimization process; however, the noisy simulations did not. Ideally, all
methods should have kept fairly close to the ground state throughout the optimization
process.

4.3 Evolutionary ansatz variational quantum linear solver

Figure 12 shows the final cost values achieved by the EAVQLS algorithm (EAVQLS
Higher and EAVQLS Lower) in 20 runs, and the cost value achieved by the top 20
out of 100 statevector simulation of the standard VQLS approach using SPSA, BFGS
and COBYLA minimizers. Figure 13 shows the cost value achieved by the noise shots
on the statevector optimized ansatz parameters of Fig. 12. Noise model was sampled
from the IBM Belem device.

The EAVQLS Higher (set with « = 0.0001, 8 = 0.001) outperforms the EAVQLS
Lower (with « = 0.001, 8 = 0.01) on the statevector simulation; however, the
EAVQLS Lower outperforms the EAVQLS Higher on the noise shots. This is expected
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AAVQLS Termination Values vs Standard VQLS Approach
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Fig.10 AAVQLS termination values: AAVQLS termination values compared to a standard VQLS approach,
for 2 different AAVQLS methods for 3 noise levels. These results appear to indicate there is not much of a
significant difference between the VQLS and both AAVQLS approaches
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Fig. 11 Optimization convergence: these line graphs capture the cost value measured by the AAVQLS

algorithm during the optimization process, for 2 different methods, ‘1’ using 10 steps and ‘2’ using 20

steps, and for 3 noise levels, a statevector simulation, a simulation including only shot-noise, and a currently

realistic noise-level simulation. This corresponds to how close the ansatz kept to the ground state of the

Hamiltonian during the optimization
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Fig. 12 Cost value achieved by the statevector simulation of the EAVQLS algorithm (EAVQLS Higher
and EAVQLS Lower) in 20 runs, compared to the cost value achieved by the top 20 out of 100 statevector
simulation of the standard VQLS approach using SPSA, BFGS and COBYLA minimizers

because the ansitze created by the EAVQLS Lower parameter settings are biased
towards having fewer circuit layers and fewer 2-qubit gates, making them less suscep-
tible to noise.

The EAVQLS Higher performance on the statevector simulation is worse than both
the BFGS and COBYLA optimizers, indicating that for a statevector simulation the
EAVQLS approach shows no advantage. On the noise shots, however, the EAVQLS
Lower performs the best overall, as expected. This performance comes down to it
having the simplest and most noise resistant ansitz circuits. The VQLS use the ansatz
is shown in Fig.5.

4.3.1 Classical combination of quantum states

Relatively good results achieved on the real machine Fig. 15, given the noise levels
of current NISQ devices, however, the problem was specifically tailored to suite the
connectivity of the selected backend. The optimal cost value achievable using the
nodes in the ansatz tree given is equal to approximately 0.00324.

Figure 16 shows the spread of the final cost values of the logical ansatz approach. It
is clear that the noise introduced by the Qasm simulator greatly affects the performance
of the Logical Ansatz VQLS. The effect of noise may be increased when using a logical
ansatz as multiple different Hadamard test runs are needed, one for each pairing of
the different physical ansatze, each adding some potential for error.
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Noise Shots on Statevector Optimized Ansatz

0.20 T

0.15
[
3
p
-
(%)
o
O o.10

0.00 < < 5 5 5

2 e
ot & g & &
2 \© G o &
] e 2 ® )
<& & ¢

Fig. 13 Cost value achieved by the noise shots on the statevector optimized ansatz parameters of the above
Fig. 12. Noise model was sampled from the IBM Belem device
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Fig. 14 CQS algorithm ansatz tree expansion used to solve the specified linear systems problem on the real
machine. H; denotes a Hadamard gate on qubit i, / denotes an identity gate, and Z; denotes a Z gate on
qubit i
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Fig. 15 20 runs of the CQS Algorithm on IBMQX2 machine, with the average cost indicated in red. The
CQS algorithm runs with moderate success on a real quantum device
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Fig. 16 Termination Values achieved by the logical ansatz, for 2 methods, 2 noise levels and 2 different
optimizers. Both training methods 1 and 2 performed similarly well

5 Conclusions

The success of the standard VQLS approach appears to be greatly dependent on the
noise levels on the quantum device. The cost values achieved remain fairly consistent
after the addition of shot-noise and decline substantially when realistic levels of noise
are added to the simulated quantum device.

The AAVQLS approach presents an ansatz optimization strategy that in theory
could keep the ansatz near the ground state of the system’s Hamiltonian, allowing
a low cost value to be easily found. Considering the best runs recorded in Fig. 11,
this trend is observed during the first part of the optimization where at all levels of
noise, the system remained close the ground state of the Hamiltonian. This trend
faded just before midway through the optimization process, where all simulations,
regardless of the level of noise, moved away from the ground state. This presents a
particular flaw in this approach, whereby the system can leave the ground state. One
possible explanation for this is that the optimization process had a step size that was
too large (the evolution of the Hamiltonian was too fast), or the ground state was not
contained in the Hilbert space spanned by the particular ansatz used. The latter issue
may be avoided by evolving the initial Hamiltonian to the final Hamiltonian along a
different path. In the later half of the optimization process, the Statevector and QASM
simulations recovered the ground state while the realistic noise simulation did not. That
the AAVQLS performs similarly to the VQLS in the QASM and Noisy simulations,
as seen in Fig. 10, suggests that there may be some merit to this approach, especially
because the best cost values achieved by the AAVQLS for those two simulations were
quite substantially lower, even if, on average, they performed similarly.
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The EAVQLS performed worse than the VQLS for the specific problem instance
simulated using statevectors in these results in Fig.12. The EAVQLS (EAVQLS
Lower) outperforms all the VQLS approaches in the noise shots in Fig. 13, however,
as the ansitze are biased towards being more noise resistant as they are constructed
in the evolutionary algorithm. For a more realistic test of the EAVQLS algorithm, the
full parameter optimization needs to be done under noisy conditions. It has only been
indicated here in these results that the EAVQLS ansiétze show more noise resistance,
when the algorithm parameters are set appropriately.

The CQS approach was the only approach tested on the real quantum device, in
order to gauge its effectiveness on near-term quantum hardware. With 20 runs on the
IBMQX2 device, the CQS approach managed to achieve some fairly low cost values
and a decent average cost value. This is positive for this approach; however, it is
noted that the specific problem that was solved may have been quite simple, yet still
non-trivial.

The LAVQLS, being an adaptation of the CQS method, appears to work well in
a noise-free simulation; however, the shot-noise alone heavily reduced the final cost
value achieved by the method. This may be because the many Hadamard tests required
to evaluate the cost function amplify the noise. This is not good because a proposed
feature of the LAVQLS was noise resistance due to the use of shorter individual anséize
making up the logical ansatz.

In this paper, a few approaches to solving systems of linear equations on near-
term quantum hardware have been presented. Each approach that differs from the
standard VQLS approach tries to offer some advantage over the standard approach;
however, whether the proposed advantages of these algorithms that actually apply
in implementation are yet to be conclusively seen. Some potential problems with
these approaches have been highlighted, and it is left to a future work to investigate
the realistic advantages of these approaches. It may be the case that some of these
approaches offer significant advantages over the standard VQLS approach; however,
this is still unclear. It is left to a future work to develop better training procedures for
the AAVQLS algorithm, to avoid it losing the ground state, and to fully investigate the
noise-resistance properties of the EAVQLS algorithm.
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