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1. INTRODUCTION 

In the acceleration of clusters of like charged 
particles or of a quasi-neutral plasma, it is necessary 
either to create fields of force that ensure both accelera­
tion and spatial stability of the clusters, or to confine 
oneself to brief pulse acceleration, during which 
time the unstabilized cluster would not have time 
to deform perceptibly. 

In this connection, it is worthwhile distinguishing 
systems of two types: (1) accelerators, in which 
the same fields of force are utilized both for acceleration 
and for localization of the objects being accel­
erated, and (2) accelerators, which either do not at 
all ensure localization of the objects undergoing 
acceleration, or ensure it by means of other, supple­
mentary, fields of force. 

The mode of localization may serve as the starting 
point when considering accelerators of the first 
type, inasmuch as any system that localizes a motion­
less object converts into a system that accelerates 
it in generating appropriate movement of localized 
fields in space. A special version of this general 
principle is acceleration of charged particles localized 
inside moving wells of a high-frequency potential 
Φ 1,2). 

Great attention is presently being devoted to the 
study of different ways of containing plasma in 
connection with the well-known problem of controlled 

thermonuclear reactions. A possible method consists 
in the utilization of slightly inhomogeneous high-frequency 
electro-magnetic fields. The forces averaged 
during a period of oscillations and acting on a particle 
in such fields are independent of the sign of the 
charge. This, essentially, is what underlies the high-frequency 
methods of localizing plasma.(*) 

The formation of an inhomogeneous field of required 
structure is achieved, both through the proper distribu­
tion of outside sources and at the expense of perturba­
tions caused by the plasma itself. In certain cases 
it has been possible to obtain an electrodynamic 
self-consistent solution: a plasma sphere in a spherical 
resonator4), a plasma cylinder in a circular wave­
guide5), a two-dimensional plasma layer between 
ideal planes6), a plane boundary of plasma retained 
by a plane wave normally incident on it7). In the 
general form, the problem has been solved only for 
highly rarefied plasma, the concentration of which 
is so small that we may ignore distortions introduced 
by the plasma into the external field, that is, we may 
actually deal with the localization of single charged 
particles 8,9). 

The present paper considers certain peculiarities 
of linear and circular high-frequency plasma accel­
erators of the first and, partially, of the second type; 
evaluations are given of the most important para­
meters of such accelerators. 

(*) V. I. Veksler was the first to draw attention to this possibility. He suggested utilising the pressure of electromagnetic waves to 
accelerate plasma blobs3). 
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2. THE MOTION AND LOCALIZATION OF 
SINGLE CHARGED PARTICLES 

As is shown in other papers 8-10) (*) in a slightly 
inhomogeneous high-frequency field Ε(r)eiωt, H(r)eiωt, 
the non-relativistic motion of a charged particle 
may be represented as a superposition of a rapidly 
oscillating motion, 

r(1)(t) = r(1)eiωt = -η/ω2Εeiωt (2.1) 
and a smooth motion r(0)(t) averaged over the 
period 2π/ω and obeying equation. 

(0) = -Φ(Γ(0)), i.e. 
(0)2 

+ Φ(r(0)) = const (2.2) (0) = -Φ(Γ(0)), i.e. 2 + Φ(r(0)) = const (2.2) 

Here, η = e/m is the ratio of the charge of the 
particle e to its mass m, while Φ is the high-frequency 
potential equal to 

Φ = (η/2ω)2|Ε|2 (2.3) 

This description is possible on the following 
assumptions 

(0) 
~ 

E H , /c 1 
(0) 

~ 

(1) 

1; 
r(1) 

~ 
ηΕ 1 (2.4) ωLE 

~ 

ωLE 1; LE 
~ 

ω 2L E 
1 (2.4) 

where LE is a characteristic dimension of the region 
of inhomogeneity of the electromagnetic field. 
Thus, charged particles may be localized near 

absolute minima of the high-frequency potential.(**) 

If the potential curve Φ(r) has the shape of a 
potential well, particles will be retained within it 
that possess, in the centre, (at the point of minimum 
Φ) velocities |ν0| ≤ √2Δ Φ where ΔΦ is the minimum 
difference of potentials between the "edge" and the 
centre of the well. 
Let us assume that such a potential well is formed 

in a frame of reference K' moving relative to the 

laboratory system Κ in the z direction with a velocity 
υ = βc and an acceleration w. Noting that: 

w(1-β2)-3/2 = = const (2.5) 
Then, by introducing in place of (Φ) a certain 

effective potential (***) Φeff', which includes a potential 
of the force of inertia 

Φeff' = Φ' + z' (2.6) 
we find that in order to retain the particle it is necessary 
to observe the inequality (****) 

| ∂Φ' | > (2.7) 
| 

∂z' | > (2.7) 

Condition (2.7) is at the same time also a supple­
mentary limitation of the value of the potential 
Φ itself, because by virtue of Eq. (2.4) one cannot 
utilize Φ(r) curves with very steep slopes. 

3. THE MOTION AND LOCALIZATION OF 
PLASMA CLUSTERS 

From Eq. (2.2) and Eq. (2.3) it follows that with 
the aid of slightly inhomogeneous high-frequency 
fields it is possible to control the motion of charged 
particles and ignore the dependence of their averaged 
trajectory on the phase of the field, and, consequently, 
to exercise control independently of the sign of their 
charge. For this reason, the majority of conclusions 
made with respect to systems with like charged 
particles is generalized also to systems with quasineutral 
plasma formations. However, one must 
bear in mind that in a real electron-ion plasma the 
high-frequency field actually acts only on electrons 
(me wi) as a result of which the effective value 
of a potential of an averaged force correspondingly 
diminishes. 

Let us demonstrate this with a simplified double-velocity 
model of a fully ionized quasi-neutral 
(Ne Ni) plasma. We shall assume the field Ε 

(*) Our other paper "The motion of charged particles in slightly inhomogeneous high-frequency fields" is devoted to these 
problems. 
(**) We have purposely simplified the situation by considering the case of a purely high-frequency field. However, in the presence 

of a constant magnetic field, localization is possible also in regions of maximum E, on the condition that ωH > ω where ωH 
is the cyclotron frequency (9,10). 

(***) Quantities relating to the K' system are primed. 
(****) Here and henceforth we assess only the possibility of retaining particles in the z-direction and it is assumed that localiza­

tion in the cross-section z = const is accomplished either due to the suitable structure of the potential φ or by means of an 
additional longitudinal constant magnetic field. 
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to be given externally, that is, we assume the concentration 
of electrons in the plasma Ne to be sufficiently 
small(*) 

ω2pl ≡ 
4πe2Ne 1 (3.1) ω2 ≡ meω2 1 (3.1) 

Combining this limitation with the condition of 
smallness of the Debye shielding radius 

rDeb = √kT/4πe2Ne = √VT/4πeNe, 
[k is the Boltzmann constant, Τ the temperature 
in absolute units, kT = eKT] in comparison with 
the dimensions of the plasma cluster L 

L~LE~ = λ\2π 
we obtain 

√2 ωρl 1 (3.2) √2 ω 1 (3.2) 
where 

= υT/c = √2ηeVT/c 

Let the plane layer of such a plasma be incident 
on a monotonically increasing barrier of a high-frequency 
potential (2.3). Then we may write separate 
integrals of motion (Eq. (2.2)) for unlike charged 
particles with allowance made for the Coulomb 
field Eq = — Øq which appears due to separation 
of the charges. 

υe2-υ0e2. 
+Φe+ηeØq = 0 (3.3) 2 +Φe+ηeØq = 0 (3.3) 

υi2-υ0i2 +Φi+ηiØq = 0 2 +Φi+ηiØq = 0 

Here, quantities relating to the electron have the 
subscript "e" and quantities relating to the ion 
have the subscript "i"; and in the general case it 
is assumed that 

ηi = Z |e| = -Z me ηe ηi = Z mi = -Z mi ηe 

Subtracting the first equation (3.3) from the second, 
we find for the potential of the Coulomb field Øq 

Øq = 
1 

{Φe-Φi+ 
υe2-υ0e2. -υi

2-υ0i2 } (3.4) Øq = ηi-ηe {Φe-Φi+ 2 - 2 } (3.4) 

Let υ0e = υ0i = υ0; this occurs in the motion 
of a plasma layer as a single whole with a velocity 
greatly in excess of thermal velocities. Then, substituting 
Eq. (3.4) into Eq. (3.3) we obtain 

υe2-υ0e2 + ηeΦi-ηiΦe = 0 2 + ηi-ηe 
= 0 

that is, such a plasma layer behaves similarly to 
a single charged particle (e,mi) in a field with potentials 
of averaged force: 

Φeff = 
ηeΦi-ηiΦe — ηi Φe = Ζ me Φe. (3.5) Φeff = ηi-ηe 

— 
ηe 
Φe = Ζ mi Φe. (3.5) 

Consequently, the efficiency of all high-frequency 
devices for the control of the motion of plasma 
clusters is less at least by a factor of Ζ me/ml than in 
the case of electrons. 
If in Eq. (3.3) and Eq. (3.4) we put υe2/υi2 = Ζ|ηe/ηi| 

(this is the case in an equilibrium plasma with identical 
electron and ion temperatures)—then 

Φeff = 
Z 

(Φe-
ηe Φi) 

Z Φe (3.6) Φeff = Z+1 (Φe-ηi 
Φi) Z+1 Φe (3.6) 

The ratio (3.6) refers to the problem on the retention 
of the plasma boundary by a high-frequency 
field4-7,11). If we reject the two-velocity model 
and assume the existence of Maxwellian distributions 
around the averaged velocities, then the concentrations 
of electrons and ions will be determined by the 
Boltzmann formula.(**) 

Ne,i(r) = Ne,i(0)exp{-Φeff(e,i) } (3.7) Ne,i(r) = Ne,i(0)exp{-|ηe,iVT| 
} (3.7) 

In a particular case Ζ = 1 (henceforth we shall 
adhere to this case) 

ηi-1Φeff(i) = |ηe-1|Φeff(e) ½|ηe-1|Φe (3.8) 

(*) Although condition (3.1) is not a fundamental limitation of the principles of acceleration to be described, it permits a full analysis of the kinematic part of the problem. 
(**) Further, we unconditionally assume that during the time of interaction of the cluster and the field no alterations occur in the distribution of particles over averaged velocities. Thus, we put aside problems associated with collisions and the heating of localized plasma. These problems are discussed in a study (now going to press) by A. V. Gaponov, M. I. Petelin, E. I. Yakubovich, in which the distribution functions for ions and electrons are obtained and the variation rate (different in the general case) of the electron and ion temperatures is determined on the basis of the solution of averaged kinetic equations with allowance made for collisions. 
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that is, the effective potential diminishes by only 
a factor of two as compared with the potential for 
electrons5). 
It is interesting to note that by virtue of Eq. (3.7), 

Eq. (3.8) and Eq. (2.3)—provided the following 
conditions are satisfied: 

Φeff(e)  
Φ(e) 

~ηeVT, i.e. 
Ε2 
~8 VT Φeff(e)  2 ~ηeVT, i.e. ω2 ~8 ηe 

the following ratio between the Debye radius and the 
amplitude of rapid oscillations should always be 
obeyed: 

rDeb/r(1)~ 1 ω (3.9) rDeb/r(1)~ 2√2 ωpl 
(3.9) 

Hence, in the containment of a rarefied plasma there 
is fulfilled, in addition to Eq. (3.2), also the condition 

βT  
r(1) 

1 (3.10) βT  rDeb 
1 (3.10) 

Let us now determine certain peculiarities in the 
localization of plasma in non-inertial systems, in 
particular, inside a potential well Φ undergoing 
acceleration. In this case, we should introduce 
into Eq. (3.7) a potential similar to Eq. (2.6) but 
making allowance for a corresponding increase in 
the potential of the force of inertia 

Φ'eff = Φ'e 
Ζ + mi (3.11) Φ'eff = Φ'e Z+1 + me Z+1 (3.11) 

As a particular case, when Ζ = 1 (hydrogen plasma) 

Φ'eff = ½Φ'e+½ 
mi (3.12) Φ'eff = ½Φ'e+½ me (3.12) 

The restriction as to the steepness of the slope of 
the well becomes more strict than Eq. (2.7): 

| ∂Φ'e |> mi (3.13) 
| 

∂z' |> me Ζ (3.13) 

By way of illustration, let us consider a purely 
sinusoidal (with respect to z) potential curve 

Φ'(z') = Φ'0+Φ'1 cos 2h'z (3.14) 

Substituting Eq. (3.14) into Eq. (3.11) we obtain 

Φ'eff = 
Ζ 

Φ'0+ 
Z Φ'1[cos 2h'z' + 2αh'z'] (3.15) Φ'eff = Z+1 Φ'0+ Z+1 Φ'1[cos 2h'z' + 2αh'z'] (3.15) 

where 
α = mi (3.16) α = Zme 2h'Φ'1 

(3.16) 

Obviously, the potential wells are retained only 
when α ≤ 1, that is, in the interval 0 ≤ α ≤ 1. 
Hence, the maximum attainable acceleration is 

= 
2h'Φ'1 meZ (3.17) = mi 

meZ (3.17) 

The position of the extrema of the potential curve 
Eq. (3.15) is likewise determined uniquely by means 
of the parameter α 

sin 2h'z'max = sin 2h'z'min = α; 
2h'z'max = 2h'z'min-π (3.18) 

For this reason, for the difference ∆Φ'eff, which 
corresponds to the minimum difference of the 
potential between the edge and the centre of the 
well, we find 

∆Φ'eff = 2Φ'1 
Z 

ψ(α) (3.19) 
∆Φ'eff = 2Φ'1 Z+1 ψ(α) (3.19) where 

ψ(α) = √1—α2—α arc cos α 
The function ψ (α) may be called a factor of the 
inertial attenuation of the potential curve. The 
plasma is practically completely localized inside the 
moving potential well on the condition 

meΔΦ'eff = 2meΦ'1 
Ζ ψ(α) ≥ kT = eVT (3.20) meΔΦ'eff = 2meΦ'1 Z+1 ψ(α) ≥ kT = eVT (3.20) 

In the limiting case Eq. (3.17) ψ (α) = 0 and, consequently, 
it is possible to retain only an ideally "cold" 
plasma (VT = 0), which does not correspond to 
the assumption of complete ionization. 

4. MOVING POTENTIAL WELLS 
As was pointed out elsewhere1,2), the simplest 

method of moving a potential bump consists in 
utilizing travelling waves of different frequencies. 
Let us consider a bump formed in the K' system by 
fields 

E' = E'+eiω't'-ih'z' + E'-eiω't'+ih'z' (4.1) 
to which in system Κ there correspond two waves 
with different frequencies and propagation constants 

Ε = E+eiωt-ih+z + E-eiω_t+ih_z (4.2) 
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The frequencies ω± and wave numbers h± are 
connected with the corresponding quantities in the 
K' system by the ratios 

k± = 
ω± = k'±h'β , h± = 

h'±k'β (4.3) k± = c = √1-β2 , h± = √1-β2 (4.3) 

where β = υ/c, υ is the velocity of motion of the 
K' system, and consequently also the velocity of 
motion of the potential bump formed by field 
Eq. (4.2) relative to the laboratory system K. By means 
of fields Eq. (4.2) it is possible to form the most 
diverse bumps of a high-frequency potential Φ9). 
For example, in a regular cylindrical line two propagating 
waves of the same mode create without losses 
a bump of type Eq. (14), in which 

Φ'0 = (η/2ω')2{|Ε'+|2+|Ε'_|2} 
2Φ'1 = (η/ω')2|E'+E'_| (4.4) 

The waves (Eq. (4.2)) in the Κ system may propagate 
in the same (h+h_ < 0) or inopposite (h+h_ > 0) 
directions. Quantities that refer to antiparallel 
waves will have the subscript " " , while those 
that refer to waves of the same direction (parallel 
waves) have he subscript " " . In addition, we 
shall distinguish systems with slow (h > k) and fast 
(h < k) waves. Though in both cases the dispersion 
equation has the form 

h2± = K2± - x2± (4.5) 
for fast waves (if we are speaking of waveguide 
systems without dissipation of energy and with 
isotropic boundaries) the transverse wave number 
x is purely real and does not necessarily depend on 
the frequency (regular waveguides). Now for slow 
waves, x is a quantity which is imaginary (or complex) 
and fundamentally dependent on the frequency(*) 

h2± = K2± - x2±(K±) = K2± + (K±) ≥ K2± (4.7) 
where 

= ix± 
Let us first examine the case of fast waves, the 

study of which, thanks to Eq. (3.5), may be carried 
out in the general form without specifying the shape 
of the cross-section of the wave-guide and the type 
of field in it. 

Two very important parameters determine the 
quality of the bump (Eq. (3.14)) from the point of 
view of suitability for accelerating charged particles: 
first, the propagation constant h', which characterizes 
the steepness of the slopes of the potential well, 
and second, the quantity β = υ/c which determines 
the rate of motion of potential wells. Taking into 
consideration Eq. (4.6) and introducing dimensionless 
designations 

γ = K+/K-, P± = x±/K-, ρ = h'/K- (4.8) 
directly from Eq. (4.3), we obtain 

β(γ,p) = K +-K - = γ-1 (4.9) β(γ,p) = |h+|+|h_| 
= 

√γ2-P2 + √1-p2 
(4.9) 

β(γ,p) = 
K +-K - = γ-1 (4.10) β(γ,p) = |h+|-|h_| 

= 
√γ2-p2 - √1-p2 

(4.10) 

ρ(γ,p) = 1 √γ-P2 + √(γ2-p2)(1-p2) (4.11) ρ(γ,p) = √2 √γ-P
2 + √(γ2-p2)(1-p2) (4.11) 

ρ(γ P) = 1 √γ-p2 - √(γ2-p2)(1-p2) (4.12) ρ(γ P) = √2 
√γ-p2 - √(γ2-p2)(1-p2) (4.12) 

Since the case of exponentially diminishing waves 
is excluded from consideration, γ varies within the 
limits p < γ < ∞ and 0 ≤ p ≤ 1. The precise 
equality γ = p or p = 1 corresponds to excitation 
of the waveguide on one of the critical frequencies, 
that is, to independence, of one of the fields Eq. (4.2) 
of the coordinate z. And from Eq. (4.9) - Eq. (4.10) 
we have 

β(γ,1) = β(γ,1) = √(γ-1)/(γ+1) 
|β(γ,γ)| = |β(γ,γ)| = |√(1-γ)/(1+γ)| 

Thus it is precisely the curves √(γ—1)/(γ+l) and 
√(1—γ)/(1+γ) that divide the regions of antiparallel 
and parallel waves. Similarly, 

ρ(γ,1) = ρ(γ,1) = 1 √γ-1 ρ(γ,1) = ρ(γ,1) = √2 √γ-1 
(4.14) 

ρ(γ,γ) = ρ(γ,γ) = 1 / 2 ρ(γ,γ) = ρ(γ,γ) = √2 √γ-γ2 

(*) Since the transverse wave number x remains invariant with respect to transformation Eq. (4.3), the slow waves Eq. (4.1) in the accompanying frames of reference should also, generally speaking, have different wave numbers. Note that the wave number h', which enters into all subsequent formulae, should be put equal to h' = ½(h'+ + h'-). 
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Obviously, 
ρ(γ,p)≥ρ(γ,d); |β(γ,p)||β(γ,p)| (4.15) 
higher velocities of motion of localized fields are 
always achieved in the use of waves of a single direction, 
but on the other hand, antiparallel waves form 
potential wells with steeper slopes. Bumps with 
maximum steep slopes are formed (from fast waves) 
by antiparallel TEM waves that propagate with 
the velocity of light (p = 0, h = k); according to 
Eq. (4.11), we have for them 

(ρ) m a x = √γ (4.16) 
For waves of a single direction, the most suitable 
in this respect are regimes with maximum values 
of p 

(ρ) m a x = 
1 √γ-1 (4.17) (ρ) m a x = √2 √γ-1 (4.17) 

If the frequencies ω+ and ω- coincide (γ = 1), 
then the bump Ø' stops (β =0); as for bump 
Ø', though (according to Eq. (4.10)) it should 
nominally move with the group velocity of the wave 

β → √ 1 - β 2 if γ→1 (4.18) 
the potential wells disappear in it because ρ(1,p) = 0. 

Beginning with certain values of γ, the velocities 
of motion of both profiles Ø' and Ø' increase 
with γ, and approach the velocity of light. If we 
disregard for the time being purely technical limitations, 
the fundamentally attainable velocity is determined 
by the conditions of localization of the plasma 
inside the potential well. For ρ (when γ p) we 
have, approximately, 

ρ[γ/2(1+√1-p2)]½ 
4.19) 

ρ[γ/2(1-√1-p2)]½ 

Consequently, ρ increases in proportion to √γ 
asymptotically, and beginning with a certain velocity, 
the condition of localization of particles inside the 
well (Eq. (2.4)) proves to be violated due to the 
fact that the amplitude of oscillation of the electrons 
turns out to be comparable with the thickness of the 
potential barrier 

L~1/h' = 1/k-ρ~υ0/ω 

Hence, 

(ρ)lim =[ 
γlim (1±√1-p2)]½ 1/β'0 (4.20) (ρ)lim =[ 2 (1±√1-p

2)]½ 1/β'0 (4.20) 

where β'0 = υ'0/c is the mean velocity of the contained 
particles in the accompanying system Κ'. 
Taking into consideration also the fact that when 

γp, according to Eq. (4.9) and Eq. (4.10), the 
velocities of the profiles are asymptotically equal to 

β1-γ-1(1+√1-p2) 
(4.21) 

β1-γ-1(1-√1-p2) 
and substituting Eq. (4.10) into Eq. (4.11) we obtain 
formulae that permit evaluating the order of magnitude 
of the limiting velocity 

(β)lim1- β'02 [1+√1-p2]2 (4.22) (β)lim1- 2 [1+√1-p
2]2 (4.22) 

(β) l i m1-
β'02 [1-√1-P2]2 (β) l i m1- 2 [1-√1-P

2]2 

Of course, when applying Eq. (4.12) one should 
also take into account the methods of attaining these 
limiting velocities: they may turn out to be either 
impossible due to too large values of γ or, on the 
contrary, to be trivially attainable, as was the case 
for p = 0, when β = 1. 
In conclusion we should like to make several 

remarks as to the utilization of slow electromagnetic 
waves. 
Quite naturally, in systems with slow waves it 

is possible to attain lower velocities of motion of 
profiles than in analogous systems with fast waves. 
But on the other hand, accelerators with slow waves 
have a number of unquestionable merits. These 
have first of all to do with the possibility of raising 
the initial acceleration without additional consumption 
of high-frequency power, or the possibility of a 
corresponding reduction in the power for the same 
accelerations. Thus, given a fixed Φ1 in Eq. (3.17), 
the maximum attainable acceleration is increased 
by a factor of ρ = h'/k'. In actual decelerating 
systems it has not been possible to increase the 
retardation while retaining the distribution Φ invariable: 
as a rule, with increasing ρ, there is an increase 
in the degree of localization of the field near the 
directing surface and a corresponding decrease in 
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the value of Ε on the axis of the waveguide line. 
This undesirable effect may be reduced by shifting 
the centre of the localized cluster closer to the directing 
surface; this is achieved by a slight curvature 
of the trajectory of the cluster(*). 

5. MODES OF ACCELERATED MOTION 
OF POTENTIAL PROFILES 

As is clear directly from Eq. (4.9) or Eq. (4.10), 
there are two possible ways for the accelerated motion 
of potential bumps formed by fields Eq. (4.1). The 
first consists in varying the frequency ω± of one 
of the waves Eq. (4.2) as a function of time, and the 
second, in varying the propagation constants h+ 
and h- as functions of the coordinates. To retain 
the stationary state of the bump Φ' (otherwise the 
potential description will itself lose all meaning), 
it is necessary to demand that these variations should 
occur slowly in the scale of period 2π/h or of the 
wavelength 

| dk k2c, dh h2 (5.1) | 
dt k2c, dz β 

(5.1) 

In addition, it is natural that the transit time of the 
potential well through the accelerator should not be 
much less than the characteristic time of variation 
of the frequency or the propagation constant.(**) 

Let us consider certain peculiarities of each of 
these methods. Let the frequency ω-_ be fixed, and 
ω+ = ω+(t); this is equivalent to a variation of 
γ in Eq. (4.9) and Eq. (4.10) for p = const. In the 
systems β it is possible to begin acceleration from 
zero velocity (γ = 1, β = 0); in systems β this 
is impossible, i.e., an obligatory step is the injection 
of a preliminarily accelerated cluster. The magnitude 
of the initial velocity is determined by the conditions 
of formation of the potential well at the input of 
the accelerator (ρ > 0), but in any case 

(β)start = β(γ,γ)>√(1-p)/(1+p). 
The acceleration values are found by differentiating 
Eq. (4.9) and Eq. (4.10). When γ→p the derivative 

dβ/dγ increases without limit; this excludes the 
selection of a variable frequency near one of the 
critical frequencies of the waveguide, but generally 
speaking, a fixed frequency may be set equal to 
the critical frequency (p = 1). If at the initial instant 
t = 0 the frequencies coincide (γ = 1) and in the 
course of the whole cycle t dγ/dt 0, then according 
to Eq. (4.9) and Eq. (4.10), the acceleration is detemined 
by the ratios 

dβ = (1-p
2)-½ dγ ; dt = 2 dt ; 

(5.2) 
dβ = p

2(1-p2)-½ dγ . 
dt = 2 dt 

. 

Hence it follows, incidentally, that the linear variation 
of frequency corresponds (at the initial period of 
acceleration) to a uniformly accelerated motion of 
the profile. 
An important distinguishing feature of the second 

method of acceleration is the use of waves with 
fixed frequencies; this permits accomplishing resonance 
excitation of the electrodynamic system without 
the use of special non-linear frequency-retuning 
elements. The smooth variation of the propagation 
constant h(z) is, for example, realized in quasicyclindrical 
waveguides or in resonators, the cross-section 
of which and consequently the transverse 
wave number x, slowly varies in the z-direction. 
For these purposes one may also invoke metalplate 
systems with slowly varying surfaces of impedances 
or waveguides with inhomogeneous dielectric 
filling in the z-direction. The appropriate velocities 
and accelerations are easily determined from Equations 
(4.9) and (4.10), noting that dβ = βc dβ dp . dt = βc dp dz 

. 

Inasmuch as the parameter p should be situated 
within the interval 0 ≤ p ≤ 1 for rapidly propagating 
waves, the maximum ranges of velocities, that is, 
the differences between the velocities at the input 
and at the output of the accelerator, are equal to 

(*) A more detailed discussion of these questions is given in an article written by I. G. Kondratiev and the author and submitted to Izv. vys. ucheb. zav.; radiofiz., entitled: "On the Utilization of slow electromagnetic waves for accelerating plasma". 
(**) In the excitation of a line in a single cross-section (this is particularly convenient in the systems β ) , it is necessary to add the requirement that the propagation velocity of the perturbations ∂ω/∂h should exceed the velocity ot motion of the potential well, ∂w/∂h > β0C. However, tnis requirement may be reduced to Eq. (5.1) in the distributed excitation of a waveguide, which excitation performs the transmission of the perturbations with the velocity of light. 
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(∆β) m a x =√ 
γ-1 - γ-1 (∆β) m a x =√ γ+1 -

γ+1 (5.3) 
(∆β)max=|1-√(γ-1)/(γ+1) 

and the initial velocities differ from zero. This means 
that preliminary acceleration is required. 
The use of retardation systems or combination 

systems, in which the propagation constants vary 
from hmax > k to hmin < k permit extending the 
limits Eq. (5.3). Apparently, in a number of cases 
it is expedient to make use also of a supplementary 
frequency modulation. 
We may note that in waveguides with a variable 

cross-section the potential profile always deforms 
as it moves along z, since the acceleration principle 
itself is based on the variation of h± and h'. However, 
the factor of inertial attenuation (Eq. (3.19)) may 
remain constant during an entire cycle, if h'Φ' = const 
or, according to Eq. (2.3), 

h'E'2 = const 

6. CHOICE OF PARAMETERS OF THE 
ACCELERATOR 

Here we explain certain peculiarities in the selection 
of parameters of plasma accelerators(*). 
The point of departure is observance of the conditions 

of localization. Taking into account Eq. (3.20) 
and Eq. (2.4) we have 

Lω2/|ηe| |E±| √2ω(VT/ηeΨ(α))½ (6.1) 
Assuming L = λ/A = πc/2ω and substituting 
|ηe| = 5.3 × 107 we may rewrite Eq. (6.1) as 

5 × 108(Ψ/VT)½|E±| ω 107|Ε±| (6.2) 
Hence it is clear that the conditions of localization 
fix rather rigidly the possible frequency range of 
operation of the accelerator; it is worthwhile selecting 
ω closer to the left-hand limit in Eq. (6.2), since 
limitation Eq. (3.20) is weaker than Eq. (2.4); and 

in turn the dimensions of the region of localization 
predetermine the permissible values of the electric 
field strength Ε: for example, when L = 5 cm 
(ω/2π = 1010 Hz), VT = 3.3 CGSE; ψ = 0.5 the field 
strength should be Ε = 102 CGSE (3 × 104 V/cm) 
and when E=0.1 CGSE (30 V/cm) ω = 107 that is 
L 5 × 103 cm. Thus, in order to contain the 
cluster in relatively small spatial regions one has 
to resort to fields with rather large amplitudes. 
Satisfaction of condition (6.2), i.e., the choice of 
parameters VT, ψ, Ε, ω almost completely determines 
the regime of the accelerator. 
The permissible values of are found from 

Equation (3.16) if allowance is made for the fact that 
according to Eq. (4.4) the quantity Φ'~½η2e/ω2(Ε)aυ. 
One gets 

= αaυ 
me (ηe/(ω)aυ)2kaυρaυ(Εaυ)2 = αaυ mi (ηe/(ω)aυ)

2kaυρaυ(Εaυ)2 

5.2 × 1021( αρ )aυ (Eaυ)2. (6.3) 5.2 × 1021( ω )aυ (Eaυ)
2. (6.3) 

the subscript aυ. denoting the average in time. 
The actually produced accelerations and also 

the maximum attainable velocities depend on the 
mode of moving the localizing field and the electro-dynamic 
characteristics of the system; as an example, 
if we demand the existence in the waveguide of 
propagating waves of only one type(**), it is necessary 
to vary the frequency of the generators within the 
limits between the first and second critical frequencies 
of the waveguide 

cx2 ≥ ω ≥ cx1 (6.4) 
which, in addition to Eq. (6.2), is an additional 
restriction of the range ω and determines the maximum 
possible velocity at the output of the accelerator(***). 
From the point of view of Eq. (6.4) the most favourable 
is the use of TEM-waves in multi-wire lines, 
for which × = 0, and ω is limited below only by the 
condition (6.2) or the use of slow waves, for which 

(*) All evaluations in this section refer to the case of hydrogen plasma. 
(**) As a result of the appearance of propagating waves of higher types, the efficiency of the accelerator may be reduced and there may also occur a de-localization of the cluster. It should be noted that even when fundamental waves are excited by external sources, they may transform into waves of higher modes directly on the plasma clusters if their dielectric permeability is noticeably different from unity. 
(***) Thus, in a waveguide of circular cross-section (the T11 wave x2/x1 = 1.3) when using antiparallel waves βmax — 0.36, and in a waveguide of square cross-section (the TE01 wave x2/x1 = 1.41) βmax = 0.41. Actually, however, the maximum velocity is even slightly lower if we keep to limitation (6.4), because in order to avoid infinitely large accelerations at the initial instant of motion of the cluster one has to select ω- ≠ cx1 i.e. p ≠ 1 then βmax = (x2p — x1)/[p√x22 — x12 + x1√1 — p2]. For example, when p = 0.9 for a circular waveguide βmax = 0.14, and for a waveguide with a square cross-section βmax = 0.2. 
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the limits (6.4) may be extended by means of the 
function χ (ω). If one is discussing accelerators with 
fixed frequencies, then Eq. (6.4) determines the limits 
of variation of the transverse wave number. In 
this case apparently, one may move into the region 
of the simultaneous existence of oscillations of several 
types (not too far, of course), because the resonance 
character of the excitation can ensure sufficient 
excess of the necessary type of field over the de-localizing 
fields of higher modes. 
From the technical viewpoint, the power spent 

in forming the localizing fields is probably the most 
important factor limiting the possibilities of high-frequency 
plasma accelerators. In the case of non-resonance 
excitation, this power is roughly equal to 
the mean flux of the poynting vector in a travelling 
wave and may be evaluated from the equations 

PTM = 
c h ∫|Etr|2dS c h Εaυ2ΔS PTM = 8π k ∫|Etr|2dS 8π k Εaυ

2ΔS 
(6.5) 

PTE = c k ∫|Etr|2dS c k Eaυ2∆S PTE = 8π h ∫|Etr|
2dS 8π h Eaυ

2∆S 

where ∆S is the effective cross-section of the waveguide. 

In the case of resonance excitation of an appropriate 
cylindrical (or quasi-cylindrical) cavity of length l, 
evaluation of Ρ should be carried out with account 
taken of the quality factor of the system (Q) 

P Q = 
ω ∫|E|2dV c (kl)2Eaυ2∆S (6.6) P Q = 8πβ ∫|E|

2dV 16πQ (kl)
2Eaυ2∆S (6.6) 

The following table will give some idea about the 
most important orders of magnitude that enter 
into relations (6.2), (6.3), (6.5) and (6.6). It is easy 
to find the principal parameters VT, , P. 

TABLE I 

ω Eaυ me∆φeff P/ ω Eaυ Ψ(α) P/ 
1/sec CGSE eV cm/sec w 
6.3 × 1010 10 1.9 8.2 × 101 2.8 × 104 6.3 × 1010 102 1.9 × 102 8.2 × 1012 2.8 × 106 (λ = 3 cm) 103 1.9 × 104 8.2 × 1016 2.8 × 108 
1.9 × 1010 10 22 2.8 × 1013 3 × 105 1.9 × 1010 102 2.2 × 103 2.8 × 1015 3 × 107 (λ = 10 cm) 103 2.2 × 105 2.8 × 1017 3 × 109 
1.9 × 109 1 22 2.8 × 1014 3 × 105 1.9 × 109 10 2.2 × 103 2.8 × 1016 3 × 107 (λ = 102 cm) 102 2.2 × 105 2.8 × 1018 3 × 109 

The power in the right-hand column is evaluated 
for a travelling TM wave in a waveguide with an 
effective cross-section ∆S = λ2/4. 
When using resonance circuits in accelerators with 

fixed frequencies one may gain by a factor of Qρ/2kl, 
since, according to Eq. (6.5) and Eq. (6.6), 

2PTM/ρ~PQQ/kl 
This gain is appreciable in the case of resonators whose 
dimensions are comparable to the wavelength, and is 
practically absent for very long resonators (kl 1). 
Another way of reducing Ρ is to reduce the cross-section 
of the waveguide. But in this case there 
are always added joule losses. Besides, one must 
bear in mind that reflecting potential barriers must 
fit inside the waveguide. The thickness of these 
barriers cannot be less than the amplitude of rapidly 
oscillating vibrations (see condition (6.1)), so that 
one cannot hope for an essential reduction in the 
power in this case either. 
But if power sources of the order of 106 — 107 W 

are required for the containment and acceleration 
of a plasma cluster heated to a temperature of the 
order of 10 — 100 eV., it is obvious that, at least 
for the present, one can speak only of operation 
with pulses of short (~10-6 — 10-7 sec) duration. 
Hence, it follows that only clusters with non-relativistic 
velocities can be obtained practically at the 
output of the accelerator in the case of a single interaction 
with the field. From the Table it is clearly 
seen that the magnitude of acceleration increases 
with diminishing wavelength—a thing that is due to 
an increase in the value of the effective potential 
Φeff~E2/ω2. However, one must bear in mind 
the limitation (6.2), which intimately connects the 
permissible values of Ε with the frequency ω. If, 
for example, we put Ε = const ω then the acceleration 
will diminish with diminishing ω. To illustrate 
this, we give the following Table for accelerators 
with antiparallel waves. 

TABLE II 
E+ = 10-8ω, α = 0.6, Ψ = 0.25 PTE ~ 3 × 107W, VT = 10V 

Ν ω sec-1 λ cm Waυ 
cm sec-1 

Iβ=0.1 
M 

tβ=0.1  
η sec 1. 109 189 2 × 1014 190 13 

2. 1010 18.9 2 ×1015 19 1.3 
3. 6.3 × 1010 3.0 1.5 × 1016 3.1 0.2 
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7. ON THE POSSIBILITY OF CIRCULAR 
ACCELERATION OF PLASMA 

The principal difficulty in the circular acceleration 
of plasma is connected with the necessity of maintaining 
a quasi-neutral cluster in a definite stable closed 
path. Although the use, for these purposes, of slightly 
inhomogeneous high-frequency fields is fundamentally 
feasible, it is possible, as will be shown below, only 
for low velocities. To take an example, let it be 
required to establish a cluster in stable motion along 
a circular path of radius r┴ = r o (naturally, considerably 
in excess of the dimensions of the cluster itself). 
We build a toroidal channel of a high-frequency 
potential Φ(r┴) so that the circle r┴ = r0 is situated 
inside this toroidal potential well(*). To compensate 
the centrifugal forces, it is necessary for the slopes 
of the potential well to be sufficiently steep. In a 
non-relativistic approximation, this restriction, analogous 
in meaning to Eq. (2.7), is written as 

| ∂Ø |r┴=ro> 
mi υθ2 (7.1) 

| 
∂r┴ 

|r┴=ro> me ro 
(7.1) 

Here, υθ = βθc is the mean linear velocity of the 
cluster. Considering that ∂Ø ∂r┴ ~Ø/L and substituting 
in Eq. (7.1) the value Φ from Eq. (2.3), we find the 
condition that restricts from below the field strength 
Ε which forms the outer (with respect to r┴) potential 
barrier 

Ε 
>( 

L 
)½( 

mi 
)½ 

2ωc (7.2) 
βθ >( ro )½( me )½ |ηe| 

(7.2) 

By way of illustration, let us take ω = 2 × 1010 sec-1, 
mi/me= 1.8 × 103, L/ro 10-2. Substitution of 
these values into Eq. (7.2) yields |Ε|/βθ > 104 CGSE; 
consequently, even in the case of velocities βθ ~ 10-1 
fields are required with strengths Ε ~ 103 CGSE 
(3×105 V/cm) and by virtue of Eq. (6.5) and 
Eq. (6.6), sources are required with powers of the order 
of 107 — 109 W. Hence it follows that in circular 
accelerators of plasma with radial high-frequency 
focusing, lower speeds may be achieved than in 
corresponding linear accelerators; and the principal 

power consumption of the high-frequency field is 
by fields that maintain the cluster in the radial direction. 

Cluster acceleration may be accomplished by means 
of moving additional potential wells created by waves 
revolving azimuthally. It is interesting to note in 
this connection that if two standing waves of different 
frequencies are excited inside a self-closed waveguide 
system, in such a field one can distinguish four 
potential profiles revolving towards each other in 
pairs with velocities 

β = ± k+-k- , β = ± k+-k-
. β = ± h++h- , β = ± h+-h- . 

This permits the simultaneous moving and even 
acceleration of clusters in opposite directions. 

8. CONCLUSION 
Our entire attention has been devoted to accelerators 

of plasma localized inside high-frequency potential 
wells. It is precisely such systems that fortunately 
combine the possibilities of simultaneous stabilization 
and acceleration of the cluster. Of course 
fundamentally, as was pointed out in paragraph 1, 
accelerating and localizing fields of force can be 
unlike in character. To accelerate such objects it 
is possible to utilize a single stationary potential 
barrier. For example, a cluster of hydrogen plasma 
sliding from a single stationary pure high-frequency 
potential barrier (Eq. (2.3)) acquires, according to 
Eq. (3.3) and Eq. (3.5) a velocity 

βmax= 
e 

|Emax| βmax= ωc√2memi |Emax| 

When ω/2π = 1010Ηz and β = 0.1 this yields 
Ε = 6.5 × 106 V/cm. There exist several ways of 
reducing Emax, but they are all to some degree, 
connected with an increase in the dimensions of the 
system. Thus it is possible to form a barrier by means 
of a low-frequency field, for instance, when 

ω/2π = 107Hz, LE~~4.5m, 
β = 0.1, Emax = 6.5 × 103V/cm 

(*) Such a toroidal channel may be created, for example, by means of TM01 type waves in a corrugated metal torus of circular cross-section, by means of TE01 waves (common relief) or TE11 waves (inverse relief) in a smooth-walled torus of circular cross-section; by means of symmetrical waves in a spirally conducting torus etc. One way of constructing a two-dimensional annular potential well in a cylindrical resonator is considered, for instance, by Veksler and Kovrizhnykh12). 
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or to utilize potential barriers formed by a magneto-static 
homogeneous Ho and high-frequency fields. 
When ω approaches the cyclotron frequency 

ωH = |ηe|Ηo ωH = c 
the value of Emax may be slightly reduced within 
limits, however, permitting the fulfilment of the 
inequality (ω—ωH)LE which is necessary for 

averaging over the period of difference frequency 
2π/ω—ωΗ. 
The possibility of accelerating plasma in the field 

of a standing wave13) also belongs to a similar 
class. However, all these systems (in contrast to 
the foregoing) are fundamentally non-relativistic 
for the reason that restriction (2.4) underlies the 
applicability of the method of averaged description 
of particle motion. 
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DISCUSSION 
OHKAWA: Did you take the non-linear effect into account 

in the second paper where the two waves exist at a very high 
power level? 

RODIONOV: No. 


