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1. INTRODUCTION

In the acceleration of clusters of like charged
particles or of a quasi-neutral plasma, it is necessary
either to create fields of force that ensure both accelera-
tion and spatial stability of the clusters, or to confine
oneself to brief pulse acceleration, during which
time the unstabilized cluster would not have time
to deform perceptibly.

In this connection, it is worthwhile distinguishing
systems of two types: (1) accelerators, in which
the same fields of force are utilized both for accelera-
tion and for localization of the objects being accel-
erated, and (2) accelerators, which either do not at
all ensure localization of the objects undergoing
acceleration, or ensure it by means of other, supple-
mentary, fields of force.

The mode of localization may serve as the starting
point when considering accelerators of the first
type, inasmuch as any system that localizes a motion-
less object converts into a system that accelerates
it in generating appropriate movement of localized
fields in space. A special version of this general
principle is acceleration of charged particles localized
inside moving wells of a high-frequency potential
) 1, 2).

Great attention is presently being devoted to the
study of different ways of containing plasma in
connection with the well-known problem of controlled

thermonuclear reactions. A possible method consists
in the utilization of slightly inhomogeneous high-
frequency electro-magnetic fields. The forces averaged
during a period of oscillations and acting on a particle
in such fields are independent of the sign of the
charge. This, essentially, is what underlies the high-
frequency methods of localizing plasma.®’

The formation of an inhomogencous field of required
structure is achieved, both through the proper distribu-
tion of outside sources and at the expense of perturba-
tions caused by the plasma itself. In certain cases
it has been possible to obtain an electrodynamic
self-consistent solution : a plasma sphere in a spherical
resonator*), a plasma cylinder in a circular wave-
guide ¥, a two-dimensional plasma layer between
ideal planes®, a plane boundary of plasma retained
by a plane wave normally incident on it”. In the
general form, the problem has been solved only for
highly rarefied plasma, the concentration of which
is so small that we may ignore distortions introduced
by the plasma into the external field, that is, we may
actually deal with the localization of single charged
particles 8%,

The present paper considers certain peculiarities
of linear and circular high-frequency plasma accel-
erators of the first and, partially, of the second type;
evaluations are given of the most important para-
meters of such accelerators.

(" V. 1. Veksler was the first to draw attention to this possibility. He suggested utilising the pressure of electromagnetic waves to

accelerate plasma blobs?).
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2. THE MOTION AND LOCALIZATION OF
SINGLE CHARGED PARTICLES

As is shown in other papers3® ™ in a slightly

inhomogeneous high-frequency field E(r)«**, H(r)e'",
the non-relativistic motion of a charged particle
may be represented as a superposition of a rapidly
oscillating motion,

V(1) = r'Ve = —p/w’Ee™* (PR))
and a smooth motion r‘”(s) averaged over the
period 2n/ew and obeying equation.

. P02
PO = _yer @), i'e'T +&(r'?) = const (222)

Here, n = e/m is the ratio of the charge of the
particle e to its mass m, while & is the high-

frequency potential equal to
@ = (n/20)*|E|? (2.3)

This description is possible on the following

assumptions
ExH, rle<gl
FO@ D < PO pE < 24
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where Ly is a characteristic dimension of the region
of inhomogeneity of the electromagnetic field.

Thus, charged particles may be localized near
absolute minima of the high-frequency potential.**

If the potential curve @ (r) has the shape of a
potential well, particles will be retained within it
that possess, in the centre, (at the point of minimum
®) velocities [ vo | < \/ 24 @ where A® is the minimum
difference of potentials between the “ edge ” and the
centre of the well.

Let us assume that such a potential well is formed
in a frame of reference K moving relative to the

laboratory system K in the z direction with a velocity
v = fic and an acceleration w. Noting that :

w(l—p*) "2 = % = const (2.5)

Then, by introducing in place of (&) a certain
effective potential **® &, ., which includes a potential
of the force of inertia

D, rp =0 +wz' (2.6)
we find that in order to retain the particle it is necessary
to observe the inequality ****)

0P| ~
I Bl Q.7
0z

Condition (2.7) is at the same time also a supple-
mentary limitation of the value of the potential
& itself, because by virtue of Eq. (2.4) one cannot
utilize @(r) curves with very steep slopes.

3. THE MOTION AND LOCALIZATION OF
PLASMA CLUSTERS

From Eq. (2.2) and Eq. (2.3) it follows that with
the aid of slightly inhomogeneous high-frequency
fields it is possible to control the motion of charged
particles and ignore the dependence of their averaged
trajectory on the phase of the field, and, consequently,
to exercise control independently of the sign of their
charge. For this reason, the majority of conclusions
made with respect to systems with like charged
particles is generalized also to systems with quasi-
neutral plasma formations. However, one must
bear in mind that in a real electron-ion plasma the
high-frequency field actually acts only on electrons
(m, < m;) as a result of which the effective value
of a potential of an averaged force correspondingly
diminishes.

Let us demonstrate this with a simplified double-
velocity model of a fully ionized quasi-neutral
(N, ~ N,) plasma. We shall assume the field E

) Our other paper * The motion of charged particles in slightly inhomogeneous high-frequency fields  is devoted to these

problems.

(**) We have purposely simplified the situation by considering the case of a purely high-frequency field. However, in the presence
of a constant magnetic field, localization is possible also in regions of maximum E, on the condition that wg > w where wy

is the cyclotron frequency 9.
(***) Quantities relating to the X’ system are primed.

(+>**) Here and henceforth we assess only the possibility of retaining particles in the z-direction and it is assumed that localiza-
tion in the cross-section z = const is accomplished either due to the suitable structure of the potential ¢ or by means of an

additional longitudinal constant magnetic field.
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to be given externally, that is, we assume the concentra-
tion of electrons in the plasma N, tobe sufficiently
small

w} 4ne’N,
O T e g
® m.m

e

(3.1

Combining this limitation with the condition of
smallness of the Debye shielding radius

TDeb = \/kT/4rce2Ne = \/'IVT/4neNe ,

[k is the Boltzmann constant, 7 the temperature
in absolute units, k7 = eV;| in comparison with
the dimensions of the plasma cluster L

L~Lg~7=12n
we obtain

Ble 222 <1 (.2)
w

where
Bz = vrlc =20 Vy/c

Let the plane layer of such a plasma be incident
on a monotonicelly increasing barrier of a high-
frequency potential (2.3). Then we may write separate
integrals of motion (Eq. (2.2)) for unlike charged
particles with allowance made for the Coulomb
field E, = — V¢, which appears due to separation

of the charges.
2

e_v()g
+®,+n,6,=0

(3.3)

2__ .2
S+ B+, =0

Here, quantities relating to the electron have the
subscript “e” and quantities relating to the ion
have the subscript “i”; and in the general case it
is assumed that

le|

i=Z—= —Z_'”e
m;

Subtracting the first equation (3.3) from the second,
we find for the potential of the Coulomb ficld ¢,

2 2 2 2
-0 'Ui — Vo,
{q)e_<p,.+v_"_&__2_°'} (3.4)

2
Let vy, = vy, = vy ; this occurs in the motion
of a plasma layer as a single whole with a velocity
greatly in excess of thermal velocities. Then, substitut-
ing Eq. (3.4) into Eq. (3.3) we obtain

d)q:

’7e¢i—’7i¢e
2 Ni—1He

that is, such a plasma layer behaves similarly to
a single charged particle (e, m,) in a field with potentials
of averaged force :

n.P;— 19, ~ M
’1i—’1e rle

Consequently, the efficiency of all high-frequency
devices for the control of the motion of plasma
clusters is less at least by a factor of Z m,/m, than in
the case of electrons.

If in Eq. (3.3) and Eq. (3.4) we put v2/v? = Z|n,/n;i
(this is the case in an equilibrium plasma with identical
electron and ion temperatures)—then

Zz Ne z
D= S, ——; |~——0,
Z+1 n; Z+1

The ratio (3.6) refers to the problem on the reten-
tion of the plasma boundary by a high-frequency
field 7', If we reject the two-velocity model
and assume the existence of Maxwellian distributions
around the averaged velocities, then the concentra-
tions of electrons and ions will be determined by the
Boltzmann formula.**

d)(e.i)
Nedr) =N, i(O)exp{— = }

’ ’ [7¢,: V7l
In a particular case Z =1 (henceforth we shall
adhere to this case)
‘-14)(!)

2 2
Ve—1Uy, =0

g, -z—¢ (3.5)

PDepp =

(3.6)

(3.7)

= In; 107, ~3In. | @, (3.8)

(*) Although condition (3.1) is not a fundamental limitation of the principles of acceleration to be described, it permits a ful

analysis of the kinematic part of the problem.

(**) Further, we unconditionally assume that during the time of interaction of the cluster and the field no alterations occur in the
distribution of particles over averaged velocities. Thus, we put aside problems associated with collisions and the heating of
localized plasma. These problems are discussed in a study (now going to press) by A. V. Gaponov, M. L. Petelin, E. L. Yakubovich,
in which the distribution functions for ions and electrons are obtained and the variation rate (different in the general case)
of the electron and ion temperatures is determined on the basis of the solution of averaged kinetic equations with allowance

made for collisions.
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that 1s, the effective potential diminishes by only
a factor of two as compared with the potential for

electrons .

It is interesting to note that by virtue of Eq. (3.7),
Eq. (3.8) and Eq. (2.3)—provided the following
conditions are satisfied :

o E* Vp

~nVy, ie. —~8—
2 ' 2 n,

@ -
L ~

the following ratio between the Debye radius and the
amplitude of rapid oscillations should always be
obeyed :

1 o

"peb/"(l)""_:_ 39
V2w, 3.9)

Hence, in the containment of a rarefied plasma there
is fulfilled, in addition to Eq. (3.2), also the condition

ey

fr €«— <1 (3.10)

T Dpeb

Let us now determine certain peculiarities in the
localization of plasma in non-inertial systems, in
particular, inside a potential well ¢ wundergoing
acceleration. In this case, we should introduce
into Eq. (3.7) a potential similar to Eq. (2.6) but
making allowance for a corresponding increase in
the potential of the force of inertia

m; wz'
m,Z+1

' ’ Z
¢eff = ¢e—+

3.11
Z+1 G.11)

As a particular case, when Z = 1 (hydrogen plasma)

mi~ ’
eff = %‘p;'*'%; wz (3.12)

e
The restriction as to the steepness of the slope of
the well becomes more strict than Eq. (2.7) :
o,
oz’

m;w

—Z 3.
m,Z (3.13)

By way of illustration, let us consider a purely
sinusoidal (with respect to z) potential curve

@'(z') = &)+ &), cos 2h'z’ (3.14)

: Substituting Eq. (3.14) into Eq. (3.11) we obtain

z
@, +——®)[cos 2h'z"+20h'Z"]

ST 731 T Z41

(3.15)

where
m, w
e — 3.16
Zm,2h' @ (3.16)

Obviously, the potential wells are retained only
when o <1, that is, in the interval 0 < a < 1.
Hence, the maximum attainable acceleration is

- 2h' @]

W ~ lmz (3.17)

i

max

The position of the extrema of the potential curve
Eq. (3.15) is likewise determined uniquely by means
of the parameter o

sin 2h'z, ,, =sin 2h'z;; = ;

(3.18)

2Rz = 20z — T
For this reason, for the difference A4>;ff, which
corresponds to the minimum difference of the
potential between the edge and the centre of the
well, we find
z

Z+1

where (3.19)

¥(o) = V1 —o? —aarc cos a

The function ¥ (¢) may be called a factor of the
inertial attenuation of the potential curve. The
plasma is practically completely localized inside the
moving potential well on the condition

Z
Z+1

mAd,,, = 2m, D} V() =kT=eVy (3.20)
In the limiting case Eq. (3.17) ¢ (¢) = 0 and, con-
sequently, it is possible to retain only an ideally “cold”
plasma (¥ = 0), which does not correspond to

the assumption of complete ionization.

4. MOVING POTENTIAL WELLS

As was pointed out elsewhere ?), the simplest
method of moving a potential bump consists in
utilizing travelling waves of different frequencies.
Let us consider a bump formed in the K’ system by
fields

E = E;eiw't’—ih’z’+Er—eiw’t’+ih’z’ (41)

to which in system K there correspond two waves
with different frequencies and propagation constants

E= E+eim+t—ih+z+E_eiw-t+ih_z (42)
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The frequencies w, and wave numbers h, are
connected with the corresponding quantities in the
K’ system by the ratios

(4.3)

where B = v/c, v is the velocity of motion of the
K’ system, and consequently also the velocity of
motion of the potential bump formed by field
Eq. (4.2) relative to the laboratory system K. By means
of fields Eq. (4.2) it is possible to form the most
diverse bumps of a high-frequency potential &% .
For example, in a regular cylindrical line two propa-
gating waves of the same mode create without losses
a bump of type Eq. (14), in which

®p = (n/20")*{|E} >+ |E_|?}

26, = (/o) [E, B @

The waves (Eq. (4.2)) in the K system may propa-
gate in the same (b, h_ < 0) or inopposite (b, h_ > 0)
directions. Quantities that refer to antiparallel
waves will have the subscript “ ==, while those
that refer to waves of the same direction (parallel
waves) have he subscript “=¢ ”. In addition, we
shall distinguish systems with slow (2 > k) and fast
(h < k) waves. Though in both cases the dispersion
equation has the form

i =K% —x3 4.5)

for fast waves (if we are speaking of waveguide
systems without dissipation of energy and with
isotropic boundaries) the transverse wave number
x is purely real and does not necessarily depend on
the frequency (regular waveguides). Now for slow
waves, x is a quantity which is imaginary (or complex)
and fundamentally dependent on the frequency ™

by = Ki—xi(Ky) = K1+ X3(Ku)2KP  (47)

where
;i = ixi

Let us first examine the case of fast waves, the
study of which, thanks to Eq. (3.5), may be carried
out in the general form without specifying the shape
of the cross-section of the wave-guide and the type
of field in it.

Two very important parameters determine the
quality of the bump (Eq. (3.14)) from the point of
view of suitability for accelerating charged particles :
first, the propagation constant 4, which characterizes
the steepness of the slopes of the potential well,
and second, the quantity § = v/c which determines
the rate of motion of potential wells. Taking into
consideration Eq. (4.6) and introducing dimensionless
designations

y=Ki/K_, Py=x:/K_, p=h'/|K_ (438)

directly from Eq. (4.3), we obtain

K,—K_ y—1
—(y,p) = = 49
booD = e e
K,—K_ y—
—(,p) = = , 4.10
B = o = T e

| B
p>(.p) = 7% Vy=p*+ VG -p)(1-p?) (411

PP == 1= = NP —p)  (4.12)
V2

Since the case of exponentially diminishing waves
is excluded from consideration, y varies within the
limits p<y<oo and 0<p<1. The precise
equality y = p or p =1 corresponds to excitation
of the waveguide on one of the critical frequencies,
that is, to independence, of one of the fields Eq. (4.2)
of the coordinate z. And from Eq. (4.9) - Eq. (4.10)
we have

B> =B =Va—D/o+1)
1B @) = 1B @) = NA—p)/1+7)]

Thus it is precisely the curves \/(y—l)/(y+1) and
\/I(l—y)/(1+y) that divide the regions of antiparallel
and parallel waves. Similarly,
1 N
po () =ps() =—=Vy-1
2
. 4.149)
PV =p=(¥) = —=Vy—7
: \/2 Y7

(#)-Since the transverse wave number x remains invariant with respect to transformation Eq. (4.3), the slow waves Eq. (4.1) in the
accompanying frames of reference should also, generally speaking, have different wave numbers. Note that the wave number
h’, which enters into all subsequent formulae, should be put equal to 4" := 1 (h'y + A’2).
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Obviously,

P2 (D)= p (1) | B=(nD)| S |Bs(rp)]  (415)

higher velocities of motion of localized fields are
always achieved in the use of waves of a single direc-
tion, but on the other hand, antiparallel waves form
potential wells with steeper slopes. Bumps with
maximum steep slopes are formed (from fast waves)
by antiparallel TEM waves that propagate with
the velocity of light (p = 0, h = k); according to
Eq. (4.11), we have for them

(P2 )max =y (4.16)

For waves of a single direction, the most suitable
in this respect are regimes with maximum values
of p

1 -
—_> 'max _ —= \/ - 1
(0= Jmas 7 Y 4.17

If the frequencies w, and w_ coincide (y =1),
then the bump ¢~> stops (B =0); as for bump
¢'3, though (according to Eq. (4.10)) it should
nominally move with the group velocity of the wave

B -VI-F if yo1 (4.18)

the potential wells disappear in it because p— (1,p) =0 .
Beginning with certain values of y, the velocities

of motion of both profiles qb'z and ¢':; increase
with y, and approach the velocity of light. If we

disregard for the time being purely technical limita-

tions, the fundamentally attainable velocity is deter-
mined by the conditions of localization of the plasma
inside the potential well. For p (when y > p) we
have, approximately,

p =721 +V1-pH)]?
“4.19)

o =[1/2(1 =~/ 1= pH)] "2

Consequently, p increases in proportion to V' Y
asymptotically, and beginning with a certain velocity,
the condition of localization of particles inside the
well (Eq. (2.4)) proves to be violated due to the
fact that the amplitude of oscillation of the electrons
turns out to be comparable with the thickness of the
potential barrier

L~1/ =1/k_p~v,jw

Hence,
172

Piim ¢
(02 Diim =l:'7(1 ++/1 —pz)] ~1/B, (4.20)
where f, = v,/c is the mean velocity of the contained

particles in the accompanying system K.

Taking into consideration also the fact that when
7> p, according to Eq. (4.9) and Eq. (4.10), the
velocities of the profiles are asymptotically equal to

B >1-y 1 +V1-p?)
(4.21)
foy 21~y (1=1-p?)

and substituting Eq. (4.10) into Eq. (4.11) we obtain
formulae that permit evaluating the order of magnitude
of the limiting velocity

12
(B )im=1 —%’-[1 +V/1-p? (4.22)

ﬂlz
(I-?:;)Iim-’!l _ZL[l—\/l —1’2]2

Of course, when applying Eq. (4.12) one should
also take into account the methods ofattaining these
limiting velocities : they may turn out to be either
impossible due to too large values of y or, on the
contrary, to be trivially attainable, as was the case
for p=0, when f_, = 1.

In conclusion we should like to make several
remarks as to the utilization of slow electromagnetic
waves.

Quite naturally, in systems with slow waves it
is possible to attain lower velocities of motion of
profiles than in analogous systems with fast waves.
But on the other hand, accelerators with slow waves
have a number of unquestionable merits. These
have first of all to do with the possibility of raising
the initial acceleration without additional consumption
of high-frequency power, or the possibility of a
corresponding reduction in the power for the same
accelerations. Thus, given a fixed @, in Eq. (3.17),
the maximum attainable acceleration is increased
by a factor of p=h'/ k'. In actual decelerating
systems it has not been possible to increase the
retardation while retaining the distribution & invari-
able : as a rule, with increasing p, there is an increase
in the degree of localization of the field near the
directing surface and a corresponding decrease in
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the value of E on the axis of the waveguide line.
This undesirable effect may be reduced by shifting
the centre of the localized cluster closer to the direct-
ing surface; this is achieved by a slight curvature
of the trajectory of the cluster

5. MODES OF ACCELERATED MOTION
OF POTENTIAL PROFILES

As is clear directly from Eq. (4.9) or Eq. (4.10),
there are two possible ways for the accelerated motion
of potential bumps formed by fields Eq. (4.1). The
first consists in varying the frequency w, of one
of the waves Eq. (4.2) as a function of time, and the
second, in varying the propagation constants A,
and A_ as functions of the coordinates. To retain
the stationary state of the bump & (otherwise the
potential description will itself lose all meaning),
it is necessary to demand that these variations should
occur slowly in the scale of period 2zn/h or of the
wavelength
dh < 5.1)

B
In addition, it is natural that the transit time of the
potential well through the accelerator should not be
much less than the characteristic time of variation
of the frequency or the propagation constant. **

Let us consider certain peculiarities of each of
these methods. Let the frequency w_ be fixed, and
o, = w,(?); this is equivalent to a variation of
y in Eq. (4.9) and Eq. (4.10) for p = const. In the
systems f_, it is possible to begin acceleration from
zero velocity (y =1, f_=0); in systems B this
is impossible, i.e., an obligatory step is the injection
of a preliminarily accelerated cluster. The magnitude
of the initial velocity is determined by the conditions
of formation of the potential well at the input of
the accelerator (p_ > 0), but in any case

(B Dsare = B >N (L= p)/(L+p) .

The acceleration values are found by differentiating
Eq. (4.9) and Eq. (4.10). When y — p the derivative

df/dy increases without limit; this excludes the
selection of a. variable frequency near one of the
critical frequencies of the waveguide, but generally
speaking, a fixed frequency may be set equal to
the critical frequency (p = 1). If at the initial instant
t = 0 the frequencies coincide (y = 1) and in the

d
course of the whole cycle t% <0, then according

to Eq. (4.9) and Eq. (4.10), the acceleration is deter-
mined by the ratios

> _(1-p")""dy

dt 2 dt’
(5.2)
d.B:: B p2(1_p2)—1/2 d’))
dr 2 dt

Hence it follows, incidentally, that the linear variation
of frequency corresponds (at the initial period of
acceleration) to a uniformly accelerated motion of
the profile.

An important distinguishing feature of the second
method of acceleration is the use of waves with
fixed frequencies; this permits accomplishing reso-
nance excitation of the electrodynamic system without
the use of special non-linear frequency-retuning
elements. The smooth variation of the propagation
constant /(z) is, for example, realized in quasi-
cyclindrical waveguides or in resonators, the cross-
section of which and consequently the transverse
wave number x, slowly varies in the z-direction.
For these purposes one may also invoke metal-
plate systems with slowly varying surfaces of imped-
ances or waveguides with inhomogeneous dielectric
filling in the z-direction. The appropriate velocities
and accelerations are easily determined from Equa-

. . dp dpdp
tions (4.9) and (4.10), noting that — = fc——.

dt dpdz
Inasmuch as the parameter p should be situated
within the interval 0 < p < 1 for rapidly propagating
waves, the maximum ranges of velocities, that is,
the differences between the velocities at the input

and at the output of the accelerator, are equal to

(*) A more detailed discussion of these questions is given in an article written by 1. G. Kondratiev and the author and submitted
to Izv. vys. ucheb. zav.; radiofiz., entitled : ** On the Utilization of slow electromagnetic waves for accelerating plasma .

(**) In the excitation of a line in a single cross-section (this is particularly convenient in the systems f-3), it is necessary to add
the requirement that the propagation velocity of the perturbations dw/ék should exceed the velocity ot motion of the potential
well, dw/0h > PoC. However, tnis requirement may be reduced to kq. (5.1) in the distributed excitation of a waveguide, which
excitation performs the transmission of the perturbations with the velocity of light.
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h_1 -
S L
vl (5.3)
(4B dunax = 11 =V = DJ+ 1)
and the initial velocities differ from zero. This means
that preliminary acceleration is required.

The use of retardation systems or combination
systems, in which the propagation constants vary
from h,,, >k to hy, < k permit extending the
limits Eq. (5.3). Apparently, in a number of cases
it is expedient to make use also of a supplementary
frequency modulation.

We may note that in waveguides with a variable
cross-section the potential profile always deforms
as it moves along z, since the acceleration principle
itself is based on the variation of 4, and 4. However,
the factor of inertial attenuation (Eq. (3.19)) may
remain constant during an entire cycle, if #'®" = const
or, according to Eq. (2.3),

h'E’? = const

6. CHOICE OF PARAMETERS OF THE
ACCELERATOR

Here we explain certain peculiarities in the selection
of parameters of plasma accelerators .

The point of departure is observance of the condi-
tions of localization. Taking into account Eq. (3.20)
and Eq. (2.4) we have

Lo?/In) > [E<] > V2o(Vi/n ¥ (6.1)

Assuming L = A/4 = nc/2w0  and  substituting
In.] = 5.3x 107 we may rewrite Eq. (6.1) as

Sx103(¥/Vp)' *IEL] » 0 > 107|E,|

Hence it is clear that the conditions of localization
fix rather rigidly the possible frequency range of
operation of the accelerator; it is worthwhile select-
ing o closer to the left-hand limit in Eq. (6.2), since
limitation Eq. (3.20) is weaker than Eq. (2.4); and

(6.2)

in turn the dimensions of the region of localization
predetermine the permissible values of the electric
field strength £: for example, when L =5 cm
(w2 =10'%,,), Vi = 3.3 CGSE; ¢ = 0.5 the field
strength should be E = 10> CGSE (3x10* V/cm)
and when E = 0.1 CGSE (30 V/cm) w = 107 that is
L~5x%x10° cm. Thus, in order to contain the
cluster in relatively small spatial regions one has
to resort to fields with rather large amplitudes.
Satisfaction of condition (6.2), i.e., the choice of
parameters Fp, ¥, E, o almost completely determines
the regime of the accelerator.

The permissible values of w are found from
Equation (3.16) if allowance is made for the fact that
according to Eq. (4.4) the quantity &’ ~1n2/w*(E),,.
One gets

m 2
Wau = aav#(ﬂe/ (w)av> kavpav(Eav)Z:

~5.2x 10“(%) (E.) . (6.3)

the subscript av. denoting the average in time.

The actually produced accelerations and also
the maximum attainable velocities depend on the
mode of moving the localizing field and the electro-
dynamic characteristics of the system; as an example,
if we demand the existence in the waveguide of
propagating waves of only one type **), it is necessary
to vary the frequency of the generators within the
limits between the first and second critical frequencies
of the waveguide

Xy = W = Xy (6.4)

which, in addition to Eq. (6.2), is an additional
restriction of the range w and determines the maximum
possible velocity at the output of the accelerator ***,
From the point of view of Eq. (6.4) the most favour-
able is the use of TEM-waves in multi-wire lines,
for which x = 0, and w is limited below only by the
condition (6.2) or the use of slow waves, for which

(*) All evaluations in this section refer to the case of hydrogen plasma.
(**) As a result of the appearance of propagating waves of higher types, the efficiency of the accelerator may be reduced and there
may also occur a de-localization of the cluster. It should be noted that even when fundamental waves are excited by external
sources, they may transform into waves of higher modes directly on the plasma clusters if their dielectric permeability is notice-

ably different from unity.

(**#) Thus, in a waveguide of circular cross-section (the TE;; wave x,/x; = 1.3) when using antiparallel waves fmax = 0.36, and
in a waveguide of square cross-section (the TE,, wave xy/x, = 1.41) fmax = 0.41. Actually, however, the maximum velocity
is even slightly lower if we keep to limitation (6.4), because in order to avoid infinitely large accelerations at the initial instant

of motion of the cluster one has to select w— 7 ¢x,, i.e. p 7% 1 then fmax = (Xop — x)/[p

X2 —x* +x, V1 —p,). For

example, when p = 0.9 for a circular waveguide fmax = 0.14, and for a waveguide with a square cross-section fmax = 0.2.
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the limits (6.4) may be extended by means of the
function x (w). If one is discussing accelerators with
fixed frequencies, then Eq. (6.4) determines the limits
of variation of the transverse wave number. In
this case apparently, one may move into the region
of the simultaneous existence of oscillations of several
types (not too far, of course), because the resonance
character of the excitation can ensure sufficient
excess of the necessary type of field over the de-localiz-
ing fields of higher modes.

From the technical viewpoint, the power spent
in forming the localizing fields is probably the most
important factor limiting the possibilities of high-
frequency plasma accelerators. In the case of non-
resonance excitation, this power is roughly equal to
the mean flux of the poynting vector in a travelling
wave and may be evaluated from the equations

P =7 |E |2dS~—ﬁE2AS
™ tr 8 k
(6.5)
Prp=— fl nlzds""_"Ez A48

where A4S is the effective cross-section of the wave-
guide.

In the case of resonance excitation of an appropriate
cylindrical (or quasi-cylindrical) cavity of length /,
evaluation of P should be carried out with account
taken of the quality factor of the system (Q)

w (4
P, =— | |E|?dV ~——(kD*E2AS (6.6
o 8an| | 167tQ( )°E; (6.6)

The following table will give some idea about the
most important orders of magnitude that enter

into relations (6.2), (6.3), (6.5) and (6.6). It is easy
to find the principal parameters Vi, w, P.
TABLE |
mnAweff ~
(1] Ego ——ql—@— Wa.,/aQ P/@
1/sec CGSE eV cm/sec w
~ 10 1.9 8.2x 10t 2.8x104
6.3x10% 102 1.9 x10?% 8.2 x 1012 2.8x108
(A =3cm) 10 1.9x10% 8.2 x 101 2.8x108
10 10 22 2.8x101 3x10°
1.9x10 100 | 22x100 | 28x10% | 3x107
(A=10cm) [ 10° 22x105 | 2.8x10v 3x10°
1 22 2.8x10 3x10°
1.9>10° 10 22%10° | 2.8%101 | 3x107
A =100cm) 102 2.2x108 2.8 x 10 3Ix10°

The power in the right-hand column is evaluated
for a travelling TM wave in a waveguide with an
effective cross-section 45 = 12%/4.

When using resonance circuits in accelerators with
fixed frequencies one may gain by a factor of Qp/2kl,
since, according to Eq. (6.5) and Eq. (6.6),

2Prylp~PyQlkl
This gain is appreciable in the case of resonators whose
dimensions are comparable to the wavelength, and is
practically absent for very long resonators (ki > 1).

Another way of reducing P is to reduce the cross-
section of the waveguide. But in this case there
are always added joule losses. Besides, one must
bear in mind that reflecting potential barriers must
fit inside the waveguide. The thickness of these
barriers cannot be less than the amplitude of rapidly
oscillating vibrations (see condition (6.1)), so that
one cannot hope for an essential reduction in the
power in this case either.

But if power sources of the order of 10 — 107 W
are required for the containment and acceleration
of a plasma cluster heated to a temperature of the
order of 10 — 100 eV., it is obvious that, at least
for the present, one can speak only of operation
with pulses of short (~107% — 10~7 sec) duration.
Hence, it follows that only clusters with non-relativ-
istic velocities can be obtained practically at the
output of the accelerator in the case of a single inter-
action with the field. From the Table it is clearly
seen that the magnitude of acceleration increases
with diminishing wavelength—a thing that is due to
an increase in the value of the effective potential
&,;,~E*/w®. However, one must bear in mind
the limitation (6.2), which intimately connects the
permissible values of E with the frequency w. If,
for example, we put E = const @ then the accelera-
tion will diminish with diminishing w. To illustrate
this, we give the following Table for accelerators
with antiparallel waves.

TABLE I
E: =10"%w , a=06, ¥ =025
Pre~3 x10'W , Vr =10V

N w y! Wav Ig=0.1 tp=0.1

sec™?! cm cm sec™! M n sec
1. 10° 189 2% 10" 190 13
2. 10t 18.9 2x 10 19 1.3
3. | 63x10 3.0 1.5x 10 3.1 0.2
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7. ON THE POSSIBILITY OF CIRCULAR
ACCELERATION OF PLASMA

The principal difficulty in the circular acceleration
of plasma is connected with the necessity of maintain-
ing a quasi-neutral cluster in a definite stable closed
path. Although the use, for these purposes, of slightly
inhomogeneous high-frequency ficlds is fundamentally
feasible, it is possible, as will be shown below, only
for low velocities. To take an example, let it be
required to establish a cluster in stable motion along
a circular path of radius r, = r, (naturally, consider-
ably in excess of the dimensions of the cluster it-
self). We build a toroidal channel of a high-frequency
potential &(r,) so that the circle r, =r, is situated
inside this toroidal potential well ). To compensate
the centrifugal forces, it is necessary for the slopes
of the potential well to be sufficiently steep. In a
non-relativistic approximation, this restriction, anal-

ogous in meaning to Eq. (2.7), is written as

o¢
or

Lry=ro

mivez
>_._
me ro

(1.1)

Here, v, = Boc is the mean linear velocity of the
7,

cluster. Considering that 6_¢~¢/L and substituting
r

1
in Eq. (7.1) the value @ from Eq. (2.3), we find the
condition that restricts from below the field strength
E which forms the outer (with respect to r,) potential

barrier

E [L\'Y, /m)\'/; 20c

__> —_— —_—

ﬂo <ro> <me) lr,el
By way of illustration, let us take @ = 2x 10'%sec™!,
mym, = 1.8%x10%, Ljr,~1072  Substitution of
these values into Eq. (7.2) yields |E]/B, > 10* CGSE;
consequently, even in the case of velocities fy ~ 1071
fields are required with strengths E ~ 10> CGSE
(3x10° V/ecm) and by virtue of Eq. (6.5) and
Eq. (6.6), sources are required with powers of the order
of 107 — 10° W. Hence it follows that in circular
accelerators of plasma with radial high-frequency
focusing, lower speeds may be achieved than in
corresponding linear accelerators; and the principal

(7.2)

power consumption of the high-frequency field is
by fields that maintain the cluster in the radial direc-
tion,

Cluster acceleration may be accomplished by means
of moving additional potential wells created by waves
revolving azimuthally. It is interesting to note in
this connection that if two standing waves of different
frequencies are excited inside a self-closed waveguide
system, in such a field one can distingnish four
potential profiles revolving towards each other in
pairs with velocities

k+_k_.
ho+h_~

B>=%

Bz ==

This permits the simultaneous moving and even
acceleration of clusters in opposite directions.

8. CONCLUSION

Our entire attention has been devoted to accelerators
of plasma localized inside high-frequency potential
wells. It is precisely such systems that fortunately
combine the possibilities of simultaneous stabiliza-
tion and acceleration of the cluster. Of course
fundamentally, as was pointed out in paragraph 1,
accelerating and localizing fields of force can be
unlike in character. To accelerate such objects it
is possible to utilize a single stationary potential
barrier. For example, a cluster of hydrogen plasma
sliding from a single stationary pure high-frequency
potential barrier (Eq. (2.3)) acquires, according to
Eq. (3.3) and Eq. (3.5) a velocity

ﬁmax = lEmaxl

wev 2m, m;

When /2n=10'Hz and B = 0.1 this yields
E = 6.5x10° V/cm. There exist several ways of
reducing FE,,,, but they are all to some degree,
connected with an increase in the dimensions of the
system. Thus it is possible to form a barrier by means
of a low-frequency field, for instance, when

o/2n =10"Hz, Lg~i~4.5m,
B=0.1, E,,=6.5x10V/cm

(*) Such a toroidal channel may be created, for example, by means of 7TM,, type waves in a corrugated metal torus of
circular cross-section, by means of TE, waves (common relief) or TE,; waves (inverse relief) in a smooth-walled torus of cir-
cular cross-section; by means of symmetrical waves in a spirally conducting torus etc. One way of constructing a two-dimensional
annular potential well in a cylindrical resonator is considered, for instance, by Veksler and Kovrizhnykh 2,
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or to utilize potential barriers formed by a magneto-
static homogeneous H, and high-frequency fields.
When @ approaches the cyclotron frequency

averaging over the period of difference frequency
2n/w—wy .
The possibility of accelerating plasma in the field

the value of E_,, may be slightly reduced within
limits, however, permitting the fulfilment of the
inequality r < (w—wp)L; which is necessary for

of a standing wave '® also belongs to a similar
class. However, all these systems (in contrast to
the foregoing) are fundamentally non-relativistic
for the reason that restriction (2.4) underlies the
applicability of the method of averaged description
of particle motion.

Ine|H,
wH =
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DISCUSSION

RopioNov : No.

Oukawa : Did you take the non-linear effect into account
in the second paper where the two waves exist at a very high
power level ?



