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1 Introduction

Many measurements and searches for new physics performed with the ATLAS detector [1] at the
Large Hadron Collider (LHC) at CERN require the presence of one or more leptons (electrons
or muons) to indicate that a high-energy electroweak process occurred in the collision. Lepton
candidates are reconstructed from signals in the inner tracker, calorimeters, and muon spectrome-
ter [2, 3]. Identification criteria are then applied to suppress candidates originating from physical
objects other than leptons from the hard-scattering process of the event. These background can-
didates fall into two categories: 𝑖) “non-prompt leptons” from the semileptonic decay of hadrons,
or from photon (𝛾) conversions in detector material, and 𝑖𝑖) “fake leptons” where the reconstructed
object is not, in fact, due to a lepton. In contrast to the aforementioned categories, “real leptons”
are defined as electrons or muons produced either directly in the hard-scattering process or directly
in the decay of a short-lived non-hadronic resonance (such as a𝑊 /𝑍 boson).

The rates at which fake or non-prompt leptons are selected are difficult to model accurately
from simulation. They can depend strongly on details of the physics simulation, including in
non-perturbative regions where the simulation would not be expected to be reliable. They also
depend on the modelling of the material composition and response of the detector. In addition, fake
leptons sometimes occur with low probability as a result of misidentifying a hadronic jet in multi-jet
events. The computing resources required to simulate these processes with a sufficient sample size
would be prohibitive. Therefore, “data-driven” approaches are commonly used to estimate these
backgrounds.

To simplify the adoption of such methods, and to ensure that they are applied uniformly, a
set of standard tools and prescriptions has been developed for use in ATLAS physics analyses that
are subject to fake/non-prompt lepton backgrounds. The principles and performance of these tools
are described in this paper. The motivation and mathematical basis of the methods are explained
in section 2; a description of the relevant features of the ATLAS detector is given in section 3;
the criteria used to select leptons are given in section 4; the simulated signal and background
processes, as well as the different processes that can lead to fake/non-prompt leptons, are discussed
in sections 5 and 6; the procedures used to measure the efficiencies for real and fake/non-prompt
leptons are described in section 7; the systematic uncertainties associated with the methods are
described in section 8; and section 9 provides examples of the application of the fake/non-prompt
lepton estimation methods in two published ATLAS physics analyses, with details that are not
included in the existing publications.

2 Methods

The fake/non-prompt lepton estimation methods considered in this paper depend on defining two
tiers of lepton selection criteria, called the “baseline” and “tight” criteria. The tight criteria are
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used to select the signal leptons in a physics analysis, while the baseline criteria accept all of the
tight lepton candidates as well as an additional set of candidates with a higher rate of fake/non-
prompt contributions. Candidates that satisfy the baseline criteria but not the tight criteria are
called “loose” leptons. If the two sets of criteria are chosen well, the fraction of real leptons in
the baseline sample that satisfy the tight criteria will be substantially higher than the corresponding
fraction for fake/non-prompt leptons. These fractions are called the “real efficiency” (𝜀r) and “fake
efficiency” (𝜀f), respectively.

The 𝜀r values are generally taken from Monte Carlo (MC) simulated events that are corrected to
account for differences between data and the simulation, while the 𝜀f values are typically measured
in a data sample consisting of different events from the ones that are used for the data analysis, as
detailed in section 7.

2.1 Matrix method

With the efficiencies known, a simple counting of the numbers of lepton candidates that satisfy
the tight and loose criteria provides an estimate for the number of fake/non-prompt leptons. In the
simplest case, where an analysis selects signal events containing exactly one tight lepton candidate
and no loose lepton candidates, the relationship between the numbers of tight and loose leptons
observed in data and the composition of the sample in terms of real and fake/non-prompt leptons is:(

𝑁 t

𝑁 l

)
=

(
𝜀r 𝜀f

1 − 𝜀r 1 − 𝜀f

) (
𝑁b

r
𝑁b

f

)
, (2.1)

where 𝑁 t and 𝑁 l are the numbers of events with tight and loose lepton candidates, and 𝑁b
r and 𝑁b

f
are the unknown numbers of real and fake/non-prompt leptons in the baseline sample. In matrix
notation, the relationship is given by:

Ntl = M𝜀Nb
rf . (2.2)

The fact that the unknown values (𝑁b
r and 𝑁b

f ) and the observed yields (𝑁 t and 𝑁 l) are related
via the matrix M𝜀 gives rise to the name of this method: the “matrix method” [4]. Inversion of the
matrix allows 𝑁b

f to be determined:

𝑁b
f =

1
𝜀r − 𝜀f

[
(𝜀r − 1)𝑁 t + 𝜀r𝑁

l] . (2.3)

In the typical use case, the quantity of interest is the number of events in the tight sample where
the lepton is fake/non-prompt, 𝑁 t

f . This is related to the number of such events in the baseline
sample, 𝑁b

f , by:
𝑁 t

f = 𝜀f𝑁
b
f . (2.4)

Similarly, the number of real leptons in the tight sample is

𝑁 t
r = 𝜀r𝑁

b
r , (2.5)

and these can be treated as elements of a column matrix Nt
rf .

The fact that 𝑁 t appears in eq. (2.1) means that information about the content of the analysis
signal region is used in the estimate, and therefore an analysis is not completely blinded when using
this approach.
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Generally, the values of 𝜀r and 𝜀f depend on factors such as the lepton candidate’s momentum
or its proximity to other objects. Details of how these variations are accounted for in the estimation
are given below.

2.1.1 Asymptotic matrix method

In this method, events in the baseline sample are considered one at a time, and a “fake weight” 𝑤𝑖

is defined for each event, corresponding to the two terms in eq. (2.3) via eq. (2.4):

𝑤𝑖 =


𝜀f𝑖

𝜀r𝑖 − 𝜀f𝑖
(𝜀r𝑖 − 1) if lepton candidate 𝑖 is tight (so 𝑁 t = 1 and 𝑁 l = 0)

𝜀f𝑖
𝜀r𝑖 − 𝜀f𝑖

𝜀r𝑖 if lepton candidate 𝑖 is loose (so 𝑁 t = 0 and 𝑁 l = 1)
,

where 𝜀r𝑖 and 𝜀f𝑖 are the values of 𝜀r and 𝜀f that are appropriate for lepton 𝑖. Since 𝜀r𝑖 is always
less than one, the weight for an event with a tight lepton candidate is negative. By extension, the
total fake/non-prompt lepton background in the tight sample is then estimated by

𝑁 t
f =

∑︁
events

𝑤𝑖 .

This approach is convenient since the 𝑤𝑖 need only be calculated once and then can be stored with
the event, allowing the distribution of the fake-lepton yield to be binned in any variable of interest,
as well as a simple re-computation of 𝑁 t

f if the event selection is modified. One drawback is that
since the value of 𝑤𝑖 may be negative, there is no guarantee that 𝑁 t

f will be positive. The value of
𝑁 t

f is also sensitive to fluctuations in the input 𝜀r𝑖 and 𝜀f𝑖 values.
The statistical uncertainty of 𝑁 t

f is given by:

𝜎𝑁 t
f
=

√︄ ∑︁
events

𝑤2
𝑖
. (2.6)

The method that makes use of the 𝑤𝑖 is known as the “asymptotic matrix method”, since eq. (2.6)
is only valid in the asymptotic limit with a large number of events.

2.1.2 Poisson likelihood matrix method

In this method [5]1 the elements of Nt
rf are treated as free parameters, which are varied to maximise

the likelihood of the observed Ntl values. By doing so, the Poisson-distributed nature of the Ntl

values is taken into account, so there is no need to use the asymptotic approximation. In the
fit, the Nt

rf values are converted to Nb
rf using eqs. (2.4) and (2.5), where the entries in the matrix

M𝜀 are calculated using the averages of the prompt and fake/non-prompt lepton efficiencies in the
baseline sample:

M𝜀 =

(
⟨𝜀r⟩ ⟨𝜀f⟩

1 − ⟨𝜀r⟩ 1 − ⟨𝜀f⟩

)
. (2.7)

1An earlier variant of the likelihood matrix method is described in ref. [6].
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The resulting Nb
rf values are used to obtain the expectation values for Ntl using eq. (2.2). These

expectation values are denoted by Ntl,exp. The Nt
rf parameters are adjusted (subject to the constraint

that they must be non-negative) to maximise the joint Poisson likelihood

𝐿
(
Nt

rf
)
≡

∏
𝑖

𝑃
[
𝑁tl𝑖 |𝑁tl,exp𝑖

(
Nt

rf
) ]
, (2.8)

where the product is over the elements of Ntl; 𝑁tl𝑖 and 𝑁tl,exp𝑖 are the 𝑖th elements of Ntl and Ntl,exp,
respectively; and 𝑃 [𝑛|𝜇] is the Poisson probability for observing 𝑛 events when 𝜇 are expected.
The output of the fit consists of an estimate of the number of fake/non-prompt leptons and the
uncertainty in this quantity, which is obtained by noting the value for which − ln 𝐿 exceeds its
minimum by 0.5.

The primary advantages of the Poisson likelihood approach are that the result is constrained to
be non-negative, and the uncertainty is a better approximation to the range that gives 68% coverage,
particularly in samples with few events. In addition, in some scenarios it can provide smaller
statistical uncertainties than the asymptotic matrix method or the fake-factor method (described
in section 2.2). The main drawback is that the estimated yield must be calculated for the sample
as a whole rather than from a sum of individual event weights, which complicates the process of
producing a distribution of the fake-lepton yield, as required for any differential measurement (to
do so, the likelihood must be applied in every bin of the distribution).

2.2 Fake-factor method

The fact that real-lepton kinematic distributions and efficiencies are generally modelled well in
simulation, and that scale factors can be applied to account for any differences observed between
the values in simulation and in data control samples, leads to an alternative method that uses
simulation, rather than the data, to measure the real-lepton contribution to the loose lepton sample.

The number of fake-lepton events in the loose sample is

𝑁 l
f = 𝑁

l − 𝑁 l
r = (1 − 𝜀f)𝑁b

f

and the number of fake-lepton events in the tight sample is

𝑁 t
f = 𝜀f𝑁

b
f = 𝐹 (𝑁 l − 𝑁 l

r),

where the “fake factor” 𝐹 is defined as 𝐹 ≡ 𝜀f/(1 − 𝜀f). Thus, in the fake-factor method, the
number of tight fake/non-prompt leptons for a given analysis can be computed using the fake factor
𝐹, the total number of loose lepton candidates 𝑁 l, and the number of real leptons in the loose
lepton sample 𝑁 l

r, where the latter quantity can be estimated using MC simulated samples, and its
contribution subsequently subtracted from the quantity 𝐹𝑁 l observed in the data. In practice, the
calculation is performed on an event-by-event basis to account for potential variations in 𝐹 due to
properties of the lepton:

𝑁 t
f =

𝑁 l∑︁
data,𝑖=1

𝐹𝑖 −
𝑁 l

MC∑︁
MC, 𝑗=1

𝑤MC 𝑗𝐹𝑗 ,

where 𝐹𝑖 is the fake factor appropriate for lepton 𝑖, all sources of prompt leptons are considered in
the sum over MC simulated events, 𝑁 l

MC is the number of MC events in the loose sample, and 𝑤MC 𝑗
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is the weight assigned to simulated event 𝑗 , based on the cross-section of the simulated process and
any corrections to the selection efficiency that may be needed to reflect the performance on data
events.

The main advantage of the fake-factor method is that this result does not depend on 𝑁 t, i.e.
the yield in the analysis signal region. This means that unlike the matrix method, the fake-factor
method can be applied while remaining “blind” to the contents of the signal region. However,
the method does have some of the same drawbacks as the asymptotic matrix method, namely the
possibility of 𝑁 t

f being negative, and sensitivity to fluctuations in the 𝜀f values.

2.3 Generalisation for multi-lepton final states

The above methods can be generalised to cases where multiple baseline lepton candidates are
considered in each event. For the matrix methods, this is done by increasing the dimensionality
of M𝜀 , Ntl, and N(t,b)

rf to 2𝑛b , where 𝑛b is the number of baseline lepton candidates in each event.
The estimated fake/non-prompt yield depends on the requirements of a particular analysis in three
ways: first, from the requirement placed on the desired number 𝑛t of tight lepton candidates per
event; second, whether or not events with additional loose lepton candidates are vetoed; and third,
on the minimum number of fake/non-prompt leptons 𝑚f defining the background to be evaluated
with one of the data-driven methods.2 The consideration of𝑚f is reflected in the transition from the
number of fake/non-prompt lepton events in the baseline sample to the number in the tight sample,
in a generalisation of eq. (2.4):

𝑁 t
f =

∑︁
𝑖

𝑔𝑖 (𝜀r, 𝜀f) 𝑁b
rf𝑖 . (2.9)

Here, the sum is over all combinations of real and fake/non-prompt leptons that include at least
𝑚f fake/non-prompt leptons, 𝑔𝑖 is a function of the real and fake/non-prompt efficiencies that will
result in the required number of tight lepton candidates for a given set of real and fake/non-prompt
leptons, and 𝑁b

rf𝑖 is the 𝑖th element of Nb
rf

To address the requirements on 𝑛t and the possible presence of additional loose lepton candi-
dates, the analysis must consider all events in the baseline sample with lepton multiplicities up to
the sum of the allowed numbers of tight and loose lepton candidates in the signal region.

As an example, consider the case where 𝑛b = 2. If an analysis selects signal events containing
exactly two tight lepton candidates and no loose lepton candidates, and the background with𝑚f ≥ 1
is being evaluated, then

𝑁 t
f = 𝜀r1𝜀f2𝑁

b
r1f2

+ 𝜀f1𝜀r2𝑁
b
f1r2

+ 𝜀f1𝜀f2𝑁
b
f1f2
,

where 𝑁b
r1f2

is the number of events in the baseline sample where the first lepton candidate is real and
the second is fake/non-prompt, and 𝑁b

f1r2
and 𝑁b

f1f2
are defined correspondingly. The ordering of the

lepton candidates is typically according to 𝑝T, but the method does not depend on the ordering used.

2An example of a case where 𝑚f is greater than one would be a dilepton analysis where there are backgrounds
from both 𝑊 (→ ℓ𝜈) + 𝑗 events where the jet forms a fake/non-prompt lepton, and dĳet events where both jets form
fake/non-prompt leptons. The analysers may choose to estimate the first contribution from MC simulation, and use
data-driven methods for the second contribution, and therefore setting 𝑚f = 2 for the data-driven approach is required to
avoid double-counting.
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Another example may be an analysis accepting dilepton events (𝑛b = 2) with one tight lepton
and another baseline (not necessarily tight) lepton. If, again, the background being evaluated
consists of events with at least one fake lepton (𝑚f ≥ 1), the coefficients 𝑔𝑖 in eq. (2.9) change such
that the expression becomes:

𝑁 t
f = (𝜀r1 + 𝜀f2 − 𝜀r1𝜀f2)𝑁b

r1f2
+ (𝜀f1 + 𝜀r2 − 𝜀f1𝜀r2)𝑁b

f1r2
+ (𝜀f1 + 𝜀f2 − 𝜀f1𝜀f2)𝑁b

f1f2
,

where the additional terms are needed to account for the additional ways that fake/non-prompt
leptons might satisfy the signal selection (and the terms involving products of the efficiencies are
subtracted to avoid double-counting). For an analysis that imposes the same lepton candidate
requirements but only the background with 𝑚f = 2 is being evaluated, the expression is:

𝑁 t
f = (𝜀f1 + 𝜀f2 − 𝜀f1𝜀f2)𝑁b

f1f2
.

The methods can also be extended to cases where there are more than two levels of lepton
selection criteria, or distinct categories of fake/non-prompt leptons, as in ref. [7].

As with the matrix method, the fake-factor method can be generalised to higher lepton candidate
multiplicities. In the dilepton final state, the number of events with two tight lepton candidates, of
which at least one is fake/non-prompt, is:

𝑁 t
f = 𝑁

t1t2 − 𝑁 t1t2
r1r2 = 𝐹1(𝑁 l1t2 − 𝑁 l1t2

r1r1) + 𝐹2(𝑁 t1l2 − 𝑁 t1l2
r1r2) − 𝐹1𝐹2(𝑁 l1l2 − 𝑁 l1l2

r1r2), (2.10)

where 𝑁 t(l)1t(l)2 is the number of events where the first lepton candidate is tight (loose) and the
second lepton candidate is tight (loose), 𝑁 t(l)1t(l)2

r1r2 is the contribution to 𝑁 t(l)1t(l)2 from events where
both lepton candidates are real leptons, and 𝐹1 and 𝐹2 correspond to the fake factors associated
with the first and second lepton candidate, respectively.

However, the algebraic simplification that leads to eq. (2.10), where the result depends simply
on products of the fake factors and the observed tight and loose lepton candidate yields, with a
correction term that depends only on events where all the leptons are real, does not hold for all
possible event selections nor all values of 𝑚f; such a simplification is restricted to cases where the
baseline and tight candidate lepton multiplicities are the same in all events, and where 𝑚f = 1.

2.4 Use with weighted events

In some cases, such as for self-consistency tests using simulated events, it may be advantageous to
weight the events that are input to the fake/non-prompt background estimate. This is straightforward
for the fake-factor and asymptotic matrix methods, since the weight returned by the method for each
event can be multiplied by the event weight 𝑤evt𝑖 . For the likelihood matrix method, this is handled
by using the scaled Poisson distribution [8], in which the values of 𝑁tl,exp𝑖 and 𝑁tl,evt𝑖 from eq. (2.8)
are scaled according to the event weights 𝑤evt𝑖 :

𝑠tl ≡
∑

tl,obs 𝑤evt𝑖∑
tl,obs 𝑤

2
evt𝑖
,

so that the likelihood becomes

𝐿
(
Nt

rf
)
=

∏
𝑖

𝑃
[
𝑁tl𝑖/𝑠tl |𝑁tl,exp𝑖

(
Nt

rf
)
/𝑠tl

]
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2.5 Performance studies

MC simulations of experiments are utilised to assess the statistical performance of the methods.
These simulations consist of pseudoexperiments that mimic scenarios that might occur in an actual
analysis. Pseudoexperiments with sample sizes of 10 or 1000 dilepton events in the baseline sample
are considered. The fraction of fake/non-prompt leptons in the baseline lepton sample is varied for
each pseudoexperiment, with a uniform distribution between 0 and 100%. The values of 𝜀r and
𝜀f for each lepton are drawn from Gaussian distributions with specified means and widths (limits
are imposed such that the values are always between zero and one, and 𝜀f is always at least 10%
less than 𝜀r). Each lepton is randomly assigned as fake/non-prompt or real, in accord with the
fraction of fake/non-prompt leptons assumed for the pseudoexperiment. Then each lepton is judged
to either meet or fail to meet the tight selection criteria, based on whether or not it is a real lepton
and the values of 𝜀r and 𝜀f assigned to it. The set of simulated leptons is input to the data-driven
algorithms, and the estimated fake yield and its statistical uncertainty are determined for each
pseudoexperiment. These values are then compared with the expectation value for the number of
fake/non-prompt lepton events in each pseudoexperiment, which is determined by the numbers of
real and fake/non-prompt baseline leptons, the values of 𝜀r and 𝜀f for each lepton, and the value
of 𝑚f for the simulated analysis. For example, in a dilepton sample with 𝑚f ≥ 1, the expectation
value is:

⟨𝑁 t
f⟩ =

∑︁
rf events

𝜀r1,𝑖𝜀f2,𝑖 +
∑︁

fr events
𝜀f1,𝑖𝜀r2,𝑖 +

∑︁
ff events

𝜀f1,𝑖𝜀f2,𝑖 .

For the Poisson likelihood matrix method, the likelihood maximisation is implemented using
the minuit function minimisation package [9] to minimise the negative log likelihood. The interface
to minuit is provided by the TMinuit class in root [10].

The fake-factor method requires a two-step process, where the contribution from real-lepton
events is subtracted in the second step. In an actual physics analysis, this subtraction is done using
MC simulation of the prompt lepton contribution. For the simple MC simulation used here, the
second step is modelled by running each pseudoexperiment a second time with the same parameters
but a statistically independent sample of events, and running the fake-factor method only on the
events that do not have fake/non-prompt leptons. The second sample has ten times more events
than the primary sample, to be consistent with the usual case where the MC simulation sample has
a multiple of the number of events in the data sample. The result of this second run is then scaled
down by a factor of ten and subtracted from the result when using the initial set of simulated events.

As an initial example, one can investigate the performance for dilepton events under conditions
that are favourable for estimating the fake/non-prompt lepton background. This means that the
samples are large (1000 events per pseudoexperiment), and the values of 𝜀r and 𝜀f are on average
well-separated (here, ⟨𝜀r⟩ = 0.90 and ⟨𝜀f⟩ = 0.10). The ratios of the estimated to true fake yields
are shown versus ⟨𝑁 t

f⟩ in figure 1(a). The average statistical uncertainties in the estimates for each
method are shown in figure 1(b), and the fraction of pseudoexperiments in which the true fake yield
lies within the uncertainty reported for each method is shown in figure 1(c). The performance of
the methods for dilepton analyses with low statistical precision (10 events per pseudoexperiment)
are shown in figure 2. Finally, to represent a more challenging situation, the case where there is less
separation between the values of 𝜀r and 𝜀f (due, for example, to the application of stricter online
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(a) (b) (c)

Figure 1. Performance of the three methods in pseudoexperiments with dilepton events where the leptons
had an average 𝜀r = 0.9 and 𝜀f = 0.1, both values were varied according to a Gaussian distribution of width
0.1 when simulating each lepton, and there were 1000 events per pseudoexperiment. The quantity ⟨𝑁 t

f ⟩
is the expectation value for the number of fake/non-prompt lepton events in each pseudoexperiment. Plot
(a) shows the ratio of the estimated to expected fake-lepton yields, (b) shows the absolute uncertainty estimate
for each method (for the Poisson likelihood method the average of the upward and downward uncertainties
is taken), and (c) shows the fraction of pseudoexperiments where the true fake yield lies within the reported
one standard deviation (1𝜎) range.

(a) (b) (c)

Figure 2. Performance of the three methods in pseudoexperiments with dilepton events where the leptons
had an average 𝜀r = 0.9 and 𝜀f = 0.1, both values were varied according to a Gaussian distribution of width
0.1 when simulating each lepton, and there were 10 events per pseudoexperiment. The quantity ⟨𝑁 t

f⟩ is the
expectation value for the number of fake/non-prompt lepton events in each pseudoexperiment. Plot (a) shows
the ratio of the estimated to expected fake-lepton yields, (b) shows the absolute uncertainty estimate for
each method (for the Poisson likelihood method the average of the upward and downward uncertainties is
taken), and (c) shows the fraction of pseudoexperiments where the true fake yield lies within the reported
one standard deviation (1𝜎) range.

lepton selection criteria that might be required when the LHC runs at higher luminosities) is also
explored. Figure 3 shows the results when ⟨𝜀r⟩ = 0.70 and ⟨𝜀f⟩ = 0.30, and there are 10 events per
pseudoexperiment.

These studies show that all three methods give accurate estimates, with nearly equivalent
performance, in high-statistics samples with a large separation between 𝜀r and 𝜀f (as shown in
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(a) (b) (c)

Figure 3. Performance of the three methods in pseudoexperiments with dilepton events where the leptons
had an average 𝜀r = 0.7 and 𝜀f = 0.3, both values were varied according to a Gaussian distribution of width
0.1 when simulating each lepton, and there were 10 events per pseudoexperiment. The quantity ⟨𝑁 t

f⟩ is the
expectation value for the number of fake/non-prompt lepton events in each pseudoexperiment. Plot (a) shows
the ratio of the estimated to expected fake-lepton yields, (b) shows the absolute uncertainty estimate for
each method (for the Poisson likelihood method the average of the upward and downward uncertainties is
taken), and (c) shows the fraction of pseudoexperiments where the true fake yield lies within the reported
one standard deviation (1𝜎) range.

figure 1). One notable feature is the dip in the uncertainty values for all three methods near
⟨𝑁 t

f⟩ = 10 in figure 1(b). This occurs because there are two ways for the model to produce an
expectation around 10: either a very low fake fraction in the baseline to start with, or a very large
fake fraction so that there are few real leptons and most of the background is from events with two
fake/non-prompt leptons, which gives a minimum value of 𝜀2

f · 1000 = 10 when 𝜀f = 0.10. These
two processes will have very different uncertainties. There is also a bias in the Poisson likelihood
matrix method toward low values when the true number of fakes is large. This bias arises due to the
averaging of efficiencies over the entire baseline sample (see eq. (2.7)) when in fact the efficiencies
are on average different for real and fake leptons. Such differences in the averages occur randomly
in the ‘toy’ MC tests, but can occur systematically in a physics analysis if, for example, the real and
fake efficiencies have different kinematic distributions. The biases can be mitigated by binning the
baseline sample in the variables for which the real-lepton and fake-lepton distributions may differ,
and performing the likelihood fit separately in each bin. As an example of the effect of such a
binning, the pseudoexperiments can be run with the results binned according to the values of 𝜀f .
The effect of using two such bins in the value of 𝜀f for each lepton is shown in figure 4.

When the situation becomes more challenging, such as in figures 2 and 3, the characteristics
of each method become more distinct. For low-statistics samples, the Poisson likelihood approach
tends to exhibit a bias toward high values when the true number of fakes is small, a natural
consequence of the fact that it cannot return negative values. The coverage of the true value by
the estimated uncertainty is, however, still reasonable. A clear distinction between the precision
of the methods also appears in figures 2 and 3, where the Poisson likelihood approach has the
smallest statistical uncertainty, followed by the asymptotic matrix method and then the fake-factor
method. This is because the Poisson likelihood approach considers lepton efficiencies averaged
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Figure 4. Ratio of the estimated to expected fake-lepton yields for the Poisson likelihood matrix method in
pseudoexperiments with dilepton events where the leptons had an average 𝜀r = 0.9 and 𝜀f = 0.1, both values
were varied according to a Gaussian distribution of width 0.1 when simulating each lepton, and there were
1000 events per pseudoexperiment. The triangles show the result with a single bin, while the circles show
the result where the input events are binned according to the values of 𝜀f for each lepton. Two bins are used
for each of the two leptons, and the results from all four bins are summed to give the estimated 𝑁fake value.

over the entire sample and is therefore less susceptible to event-by-event fluctuations in the values
of 𝜀r and 𝜀f .

Despite the differences between them, all the approaches are valid, as shown by the statistical
coverage plots: except in extreme cases, the confidence intervals built from the estimates and their
statistical uncertainty do contain the true fake yield in at least 68% of pseudoexperiments, and
the visible overcoverage is due mostly to the fact that the uncertainties are computed under the
assumption that all of the Ntl values are independent, while the pseudoexperiments were generated
with a fixed number of baseline events for each, which means there was some anticorrelation among
the Ntl.

When selecting which method to use, the analyser needs to consider the relative benefits and
complexities of implementing the methods, along with the size of the uncertainty in the fake/non-
prompt lepton background yield relative to other uncertainties in the analysis.

3 The ATLAS detector

While the above description of the matrix and fake-factor methods is general, the remainder of this
paper discusses the application of these methods to ATLAS physics analyses, and therefore a brief
description of the experimental apparatus follows.

The ATLAS detector [1] at the LHC covers nearly the entire solid angle around the collision
point.3 It consists of an inner tracking detector surrounded by a thin superconducting solenoid,

3ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis
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electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) incorporating
three large superconducting toroidal magnets. The inner-detector system is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the range |𝜂 | < 2.5.

The high-granularity silicon pixel detector covers the vertex region and typically provides
four measurements per track, the first hit normally being in the insertable B-layer (IBL) installed
before Run 2 [11, 12]. It is followed by the silicon microstrip tracker, which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation
tracker (TRT), which enables radially extended track reconstruction up to |𝜂 | = 2.0. The TRT also
provides electron identification information based on the fraction of hits (typically 30 in total) above
a higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |𝜂 | < 4.9. Within the region |𝜂 | <
3.2, EM calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering |𝜂 | < 1.8 to correct for energy loss
in material upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-
tile calorimeter, segmented into three barrel structures within |𝜂 | < 1.7, and two copper/LAr
hadronic endcap calorimeters. The solid angle coverage is completed with forward copper/LAr and
tungsten/LAr calorimeter modules optimised for EM and hadronic measurements respectively.

The MS comprises separate trigger and high-precision tracking chambers measuring the de-
flection of muons in a magnetic field generated by the superconducting air-core toroids. The field
integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. A set of precision
chambers covers the region |𝜂 | < 2.7 with three layers of monitored drift tubes, complemented by
cathode-strip chambers in the forward region, where the background is highest. The muon trigger
system covers the range |𝜂 | < 2.4 with resistive-plate chambers in the barrel, and thin-gap cham-
bers in the endcap regions. Interesting events are selected to be recorded by the first-level trigger
system implemented in custom hardware, followed by selections made by algorithms implemented
in software in the high-level trigger [13]. The first-level trigger accepts events from the 40 MHz
bunch crossings at a rate below 100 kHz, which the high-level trigger reduces in order to record
events to disk at about 1 kHz.

An extensive software suite [14] is used in data simulation, in the reconstruction and analysis
of real and simulated data, in detector operations, and in the trigger and data acquisition systems of
the experiment.

4 Lepton selection criteria

Full descriptions of the electron and muon reconstruction algorithms and available selection criteria
used in ATLAS are provided in refs. [2] and [3], respectively. Here the features most relevant to the
fake/non-prompt lepton background estimation are summarised briefly.

4.1 Electron reconstruction and identification

Electron candidates are reconstructed within |𝜂 | < 2.47 as tracks in the inner detector matched to
energy clusters in the EM calorimeter.
points upwards. Cylindrical coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the
𝑧-axis. The pseudorapidity is defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2). Angular distance is measured in
units of Δ𝑅 ≡

√︁
(Δ𝜂)2 + (Δ𝜙)2.
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In order to separate true electrons from other unwanted reconstructed candidates, electron
identification (ID) algorithms are used. These rely upon a set of variables that quantify the
distribution of energy in the calorimeter, the quality of the spatial match between the calorimeter
deposit and the associated track, and the transition radiation signal in the TRT (see table 1 of ref. [2]
for a complete list). Rather than place individual requirements on these variables, they are combined
into a likelihood discriminant based upon the probability density functions of the variables measured
for prompt electrons in 𝑍 → 𝑒+𝑒− events and for background candidates reconstructed in inclusive
collision events.

Since different analyses have different requirements for electron selection efficiency and back-
ground rejection, several “working points” (WPs) are defined by different values of the likelihood.
The likelihood threshold values are varied according to the 𝑝T and |𝜂 | of the electron candidate,
so that the selection efficiency varies smoothly with the electron 𝑝T. The most commonly used ID
WPs (and their average efficiencies4 measured for typical electroweak processes) are “Loose” (93%),
“Medium” (88%) and “Tight” (80%). In addition to the listed WPs, there is another (“LooseAnd-
BLayer”) WP that imposes the same requirement on the likelihood as the “Loose” WP, but also
requires that the electron track have a hit in the IBL to suppress candidates originating from photon
conversions.

Often, additional requirements are imposed on the impact parameter of the electron’s track:
the impact parameter in the transverse plane, 𝑑0, with respect to the centre of the beamspot must
satisfy |𝑑0 | < 5𝜎(𝑑0), where 𝜎(𝑑0) is its estimated uncertainty, while the longitudinal separation
𝑧0 between the point where 𝑑0 is measured and the chosen primary vertex of the event, multiplied by
a moderating factor sin(𝜃) which accounts for reduced 𝑧0 accuracy for more forward tracks, cannot
exceed 0.5 mm in absolute value.

4.2 Muon reconstruction and identification

Muon candidates are reconstructed in the region |𝜂 | < 2.5 by combining MS tracks with matching
inner-detector tracks. The muon reconstruction efficiency is approximately 98% per muon in
simulated 𝑍 → 𝜇+𝜇− events. After reconstruction, high-quality muon candidates used for physics
analyses are selected by a set of requirements on the number of hits in the different inner subdetectors
and different MS stations, on the track fit properties, and on variables that test the compatibility
of the individual measurements in the two detector systems, as detailed in ref. [3]. These criteria
reduce the background from in-flight decays of light-flavour hadrons, which often result in kinked
tracks. The most commonly used muon ID WPs (and their efficiencies measured in 𝑡𝑡MC events) are
“Medium” (98%) and “HighPt” (80%), the latter optimised to offer the best momentum resolution
for 𝑝T > 100 GeV. The same impact parameter requirements as defined for electrons are also often
applied to muon candidates, with a tighter condition in the transverse plane: |𝑑0 | < 3𝜎(𝑑0).

4.3 Lepton isolation

In addition to the ID criteria mentioned above, most analyses place requirements on the isolation of
the lepton from other detector activity. This is especially helpful in reducing the contribution from

4Those efficiencies, as well as those quoted for muons in the next section, do not include requirements for the leptons to
be successfully identified in the context of the trigger decision, which may include small additional inefficiencies [15, 16].
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leptons produced in heavy-flavour decays, or muons from 𝜋± or 𝐾± decays within jets5 as there
are often other components of the jet that are near the lepton in these cases. In all of the methods
described in section 2, the baseline lepton selection usually does not require isolation, while the
tight lepton selection usually does. However, many of the single-lepton triggers [15, 16] used in
ATLAS require isolation, so analyses that depend on such triggers cannot avoid applying isolation
requirements for baseline leptons.

The calorimeter isolation [2, 3] is calculated from the sum of transverse energies of calorimeter
energy clusters within Δ𝑅 ≡

√︁
(Δ𝜂)2 + (Δ𝜙)2 = XX/100 of the lepton candidate, not including the

contribution expected from the candidate itself. Typical values of XX are 20, 30 or 40. Expected
residual contributions to the isolation from the lepton candidate, as well as expected contributions
from particles produced by additional proton–proton (𝑝𝑝) interactions, are subtracted [20], resulting
in the variable 𝐸coneXX

T .
The track-based isolation [2, 3], denoted by 𝑝coneXX

T , is based on tracks near the lepton candidate
with either 𝑝T > 0.5 or 1 GeV that satisfy basic track-quality requirements and are spatially
consistent with the primary vertex of the event. The scalar sum of the transverse momenta of
such tracks, excluding tracks associated with the lepton candidate, is compared with the 𝑝T of the
candidate to assess the isolation. For muon candidates, only the single track associated with the
candidate is excluded; for electron candidates, additional tracks consistent with pair-production
from a bremsstrahlung photon are also excluded. The track isolation can also be defined with a
variable cone size (𝑝varconeXX

T ). In this case, the size of the cone around the lepton candidate within
which tracks are considered is varied as a function of the 𝑝T of the candidate:

Δ𝑅 = min
(

10 GeV
𝑝T [GeV] , 𝑅max

)
,

where 𝑅max is the maximum cone size (typically 0.2 or 0.3).
Combining selections on track-based and calorimeter-based isolation provides even better

fake/non-prompt lepton background rejection, as the two isolation variables use complementary
information. Track-based isolation was found to be less sensitive to detector noise and pile-up
effects than calorimeter-based isolation, and the inner detector provides a better 𝑝T measurement
than the calorimeters for individual soft hadrons. On the other hand, calorimeter-based isolation
includes neutral particles as well as some particles below the inner detector’s track-𝑝T threshold,
which are ignored when computing track isolation. However, track and calorimeter isolation
variables measure hadronic activity in a redundant manner, since charged particles are measured
by both the calorimeters and the inner detector, and simple selection cuts applied independently to
those two variables may not achieve optimal rejection power. To avoid this, an analysis can use a
“particle-flow” algorithm, which allows removal of overlapping contributions from the track-based
and calorimeter-based isolation, decreasing the correlation between the two variables. For the time
being, particle-flow-based isolation variables are defined only for muons, and discussed in ref. [3].

For analyses where the fake/non-prompt lepton background may be dominated by non-prompt
electrons and muons from the decays of 𝑏- and 𝑐-hadrons [21, 22], isolation WPs using a boosted

5Jets are reconstructed from clusters of topologically connected calorimeter cells (topo-clusters), as described in
ref. [17]. The anti-𝑘𝑡 algorithm [18, 19] is used to form jets from the topo-clusters, with the radius parameter 𝑅 usually
set to 0.4; when reconstructing jets formed from the merged decay products of boosted resonances, a larger 𝑅 value,
typically 1.0, is used. Typically, jets with 𝑝T > 20 GeV and |𝜂 | < 4.5 are considered in physics analyses.
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decision tree (BDT) discriminant based on isolation and secondary vertex information, referred to
as the non-prompt lepton BDT, are also used.

Several isolation WPs based on tracking, a combination of calorimetry and tracking, particle-
flow, or a non-prompt lepton BDT are defined to allow for consistency across analyses that require
different levels of lepton isolation. They are described in refs. [2] and [3].

4.4 Removing overlaps between jets and leptons

In some cases the same object can result in multiple signatures in the detector. For example, an
electron will deposit energy in the calorimeter, and that energy will generally also be clustered into
a jet. In addition, sometimes objects will be spatially correlated due to the underlying physics, as
when a muon is produced by heavy-flavour decay within a jet. To avoid double-counting, and to
select only the isolated leptons that are of interest in physics analyses, an overlap removal procedure
is applied to resolve these ambiguities. The procedure used for most physics analyses is as follows,
where the lepton candidates are those that satisfy the baseline ID criteria for the analysis:

• All electron candidates that are within Δ𝑅 = 0.01 of a muon candidate (or share a track with
a muon candidate) are removed.

• All jets that are within Δ𝑅 = 0.2 of any remaining electron candidates are removed.

• All electron candidates that are within Δ𝑅 = 0.4 of any remaining jet are removed.

• Cases where a remaining jet is within Δ𝑅 = 0.4 of a muon candidate are examined to
determine the number of tracks associated with the jet. If there are more than two such tracks
the muon candidate is removed; otherwise the jet is removed.

Variations of this procedure are also supported, primarily for analyses that focus on heavy-
flavour jets or that select boosted massive particles using large-𝑅 jets.

5 Monte Carlo simulation samples

The studies of fake/non-prompt leptons that are presented in sections 6 and 7 make use of large
MC samples of simulated events. The production of 𝑡𝑡 events at next-to-leading order (NLO)
in the quantum chromodynamics (QCD) coupling constant 𝛼s is described in ref. [23] and relies
on the Powheg Box v2 event generator [24] interfaced with Pythia 8.230 [25] for parton show-
ering and subsequent steps, with the A14 set of tuned parameters [26]. The parton distribution
functions used for matrix element calculation and parton showering are NNPDF3.0nlo [27] and
NNPDF2.3lo [28] respectively. Generated events were filtered such that at least one of the top
quarks decays semileptonically. The EvtGen 1.2.0 program [29] was used to model heavy-flavour
hadron decays.

The production of Drell–Yan 𝑍/𝛾∗ → ℓ+ℓ− events (ℓ = 𝑒, 𝜇, 𝜏) at NLO in 𝛼s is described in
ref. [30] and relies on the Sherpa 2.2 event generator [31] with the dedicated set of tuned parameters
and the NNPDF3.0nnlo [27] parton distribution function. Events were generated according to a
partition of the phase space described in ref. [30], resulting in a set of orthogonal samples which
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were combined with weights corresponding to the NLO cross-section calculated by the generator.
The ℓ+ℓ− invariant mass was required to be at least 40 GeV.

A full ATLAS detector simulation [32] based on Geant4 [33] was then used to faithfully
reproduce particle interactions with the detector and its response. Additional 𝑝𝑝 interactions in
the same or neighbouring bunch crossings were also simulated in order to reproduce the conditions
of data-taking during the LHC Run 2 operation. Simulated events are weighted to reproduce
the measured performances of various selection criteria, such as electron identification [2]. In
addition, reconstructed lepton and jet momenta are transformed [2, 34, 35] to match the real
detector resolution.

The source of a lepton candidate in simulation, discussed in section 6, is identified by using
preserved generator-level information to match the track of each reconstructed lepton candidate to a
suitable stable particle produced by the generator or the Geant4 simulation, among those preserved
in the event record (sections 3.6 and 5.3 in ref. [32]). The matching is performed by evaluating the
contribution of each stable particle to the simulated ID and (for muons) MS hits used to reconstruct
the track, and requiring that the matched particle accounts for at least half of those hits (section 6.3
in ref. [36]). While the latter is a general procedure used for all tracks, for leptons specifically the
result is discarded if the reconstructed track has less than three combined hits in the pixel and SCT
detectors, or if the track and the stable particle do not satisfy Δ𝑅 < 0.2. If the stable particle is a
charged lepton (or, in the case of electron candidates, may also be a photon), its origin is checked
so that the different sources of non-prompt leptons can be distinguished.

In section 9, other simulated processes are used. The corresponding MC samples are obtained
with a similar workflow. Complete information about the MC generators and their configurations,
as well as the cross-section calculations used to normalise the simulated samples, is available in the
references provided in that section.

6 Sources of fake/non-prompt leptons

The relative contributions of fake/non-prompt leptons from different sources to the sample of
selected lepton candidates depend on the energy and spatial location of the candidate in the detector,
the identification, impact parameter and isolation criteria applied, the overlap removal procedure,
and the nature of the selected final state (e.g. the presence or absence of heavy-flavour hadrons).

Figures 5 and 6 present for illustration the relative contributions of the different sources of
fake/non-prompt muons and electrons respectively, as a function of the transverse momentum of
the candidate, as measured in MC simulated events. They are shown for two different processes: 𝑡𝑡
production, leading to final states rich in heavy-flavour hadrons, and Drell–Yan production of 𝑒+𝑒−

or 𝜇+𝜇− pairs; for 𝑡𝑡 events at least one of the two 𝑊 bosons produced in the 𝑡𝑡 decay is required
to decay leptonically (𝑊 → ℓ𝜈). For these particular figures, the reconstruction/ID of electron
and muons and the general event selection follow those described in ref. [37] for baseline lepton
candidates, which correspond to rather loose criteria (in particular, no isolation nor transverse
impact parameter requirements are applied, and no overlap removal is done). For both processes,
events are considered only if they contain a pair of reconstructed baseline leptons with identical
charges, a signature for which fake/non-prompt leptons usually represent a non-negligible source
of background.
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Figure 5. Relative contributions of fake or non-prompt muons from different sources as a function of 𝑝T in
simulated (a) 𝑡𝑡 and (b) Drell–Yan processes. Events are required to contain at least two leptons with identical
charges. Punch-through hadrons are charged hadrons reaching the MS and leading to the reconstruction of
a fake muon candidate. Some other minor sources are not displayed; the sum of their contributions is less
than 2% in every bin of (a), and less than 4% in bins of (b) up to 𝑝T = 100 GeV. The muons are required to
satisfy minimal track-quality criteria specified in the text. Error bars represent statistical uncertainties of the
simulation.
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Figure 6. Relative contributions of fake or non-prompt electrons from different sources as a function of 𝑝T
in simulated (a) 𝑡𝑡 and (b) Drell–Yan processes. Events are required to contain at least two leptons with
identical charges. Some other minor sources are not displayed; the sum of their contributions is less than
0.5% in every bin. These do not include electron candidates corresponding to high-energy muon ionisation
signal in the calorimeters, or from conversions of final-state radiation (FSR) photons with small angular
separation from a genuine electron or muon. The electrons are required to satisfy loose ID criteria specified
in the text and ref. [37]. Error bars represent statistical uncertainties of the simulation.

The “prompt 𝛾-conversion” category only includes electron candidates where the photon is
separated by Δ𝑅 > 0.1 from any generator-level high-𝑝T electron from the hard-scatter inter-
action (photons emitted at smaller separation are generally reconstructed as part of the electron
candidates).

Non-prompt leptons are those arising from electroweak decays of hadrons. Heavy-flavour 𝑏-
and 𝑐-hadrons decay close to the interaction point and the resulting leptons are distinguishable from
real leptons mostly by isolation and impact parameter.
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Light-flavour hadrons can also be a major source of fake leptons via decay-in-flight in the
tracker volume. This happens mainly in final states for which QCD multi-jet production is a
significant contributor. A charged hadron stopping early in the calorimeter, and generating a
narrower-than-average shower, can mimic the experimental signature of an electron. Electron ID
criteria are particularly powerful in rejecting these candidates rather than those from other sources,
based notably on three-dimensional profiles of the shower, but since many orders of magnitude
more hadrons than leptons are produced in collisions at the LHC, a substantial number of such fake
electrons may be selected in a physics analysis. With regard to muons, the depth of the ATLAS
calorimeter is sufficient to stop most pions and kaons before they can reach the MS. Muon candidates
arising from kaons decaying semileptonically in flight before reaching the MS are a more important
contribution to the fake/non-prompt lepton background.

Among hadrons faking electrons, one significant class is neutral pion decays into photons
(𝜋0 → 𝛾𝛾); the collimated photons create a single energy deposit in the EM calorimeter, while
the associated track might be provided by the conversion of one of the photons in the upstream
detector material. Due to the importance of this phenomenon, the electron ID criteria specifically
discriminate against these by attempting to identify a two-peak structure in the distribution of the
cell energies matched to the electron cluster [2], which is not present for real electrons. Other
contributions such as Dalitz decay of pions [38] also create comparable experimental signatures.

The conversion of photons into electron–positron pairs represents the last important class of
non-prompt electrons. These 𝛾-conversions must typically occur early on (e.g. in the beam pipe)
and be largely asymmetric in the splitting of the momentum between the two electrons; otherwise,
the conversion vertex can be reconstructed, or the candidate electron’s track lacks hits in the first
layers of the inner detector, both leading to the proper classification of the reconstructed object as
a photon instead of an electron [2]. The origin of the photon itself influences the characterisation
of the candidate as non-prompt or real: photons emitted close to a real electron, either due to
bremsstrahlung or as higher-order quantum electrodynamic (QED) corrections to the production
process, are typically considered part of the electron candidate (the calorimeter energy deposits tend
to overlap to the extent that a single cluster is reconstructed); furthermore, from the perspective of
quantum field theory, well-defined electrons must include extra radiation (“dressed leptons” [39]).
The electron reconstruction procedure [2] accounts for bremsstrahlung, in particular by allowing
kinks in the track consistent with bremsstrahlung emission in dense material regions. In contrast,
photons from other origins, such as initial-state radiation, QED processes not involving leptons
or where photons are sufficiently separated from leptons, or hadronic jet fragmentation, may be
considered as sources of fake electrons.

It can be seen in figure 5 that non-prompt muons constitute the only substantial contribution
to the fake/non-prompt muon background, while for electrons figure 6 shows more variety: in
general, non-prompt electrons are particularly represented in the lower 𝑝T range, especially in
processes involving the production of heavy-flavour hadrons, while hadron fakes and converted
photons populate the higher 𝑝T range.6

The different sources of fake/non-prompt leptons have distinct probabilities to satisfy the tight
lepton selection criteria described in section 4. Figure 7 illustrates those differences for the particular

6However, for the range 𝑝T < 10 GeV, not shown in the figure, hadron fakes are also the dominant contribution.
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Figure 7. Rejection (defined as 1/𝜀f) as a function of 𝑝T for different sources of fake/non-prompt (a) muons
and (b) electrons in simulated 𝑡𝑡 events containing two leptons with identical charges. The efficiency 𝜀f is
the fraction of lepton candidates selected using the same baseline criteria as in figures 5 and 6 that also pass
the tight selection criteria of ref. [37]. Error bars represent statistical uncertainties of the simulation, and for
purposes of clarity, values with relative uncertainties greater than 30% are not shown.

example of signal leptons definitions used in ref. [37] (including lepton–jet overlap removal) and
simulated 𝑡𝑡 events containing two leptons with identical charges. Such variability between sources
is unwelcome, as the fake efficiencies required for the application of the methods described in
section 2 then depend upon the relative contributions of each source to the regions of interest, which
may not be easy to assess. It is therefore desirable to measure the efficiencies in regions similar in
composition to the regions where the background estimate is needed; otherwise large extrapolation
uncertainties may apply.

Precise simulation of these various sources of background, including their relative contribu-
tions, is indeed very challenging, as it relies heavily on the modelling of the soft-QCD regime by
event generators, including modelling of fragmentation and hadronisation processes, hadron decay
modelling, and soft emissions and detector modelling. Another issue is that only a small fraction of
fake or non-prompt lepton candidates survive the ID and isolation requirements, so the simulation
of a very large number of events is needed to obtain a statistically accurate prediction. For inclusive
processes with large cross-sections (e.g. multi-jet production), this is often impractical.

For these reasons, many of the fake/non-prompt lepton background predictions used in ATLAS
publications are based on methods using the data, such as the ones described in this paper. They rely
on common properties shared to some extent by the different sources of fake/non-prompt leptons
that differentiate them from real leptons, such as a high likelihood to not meet the combination of
ID and isolation criteria.

7 Measurement of real and fake/non-prompt lepton efficiencies

The methods described in section 2 both rely on knowledge of the efficiency for leptons that pass
the baseline selection to also pass the tight selection. For the fake-factor method, only the efficiency
for fake/non-prompt leptons is used explicitly in the calculation, while for the other methods the
efficiency for real leptons must also be measured. In many cases these efficiencies depend on the
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properties of the lepton (such as its 𝑝T or angular distance from a jet) or on the event in which
it is found (such as the overall activity of the event, as measured for example by the number of
reconstructed primary vertices).

7.1 Real-lepton efficiencies

The efficiencies of specific working points of lepton selections are calibrated precisely in ATLAS
for general purposes, primarily with “tag-and-probe methods” based e.g. on 𝑍 → ℓℓ events. By
performing these measurements on both data and MC-simulated events, “scale factors” (SFs) that
account for differences between the efficiencies observed in data and simulation are derived. These
SFs can then be applied to simulated events using the selection criteria that are relevant to a given
analysis to determine the appropriate real-lepton efficiencies. This MC-based approach is valid as
long as both the baseline and tight lepton selection criteria are taken from the set for which SFs have
been measured; only in extraordinary cases would an analysis utilise different selection criteria.
Since the efficiencies depend more strongly on the environment than the SFs do, the main advantage
of this approach over purely data-based measurements is to allow efficiencies to be obtained directly
in the desired environment (i.e. the region in which the fake/non-prompt background estimate is
needed), rather than being extrapolated from a more distant region which would be needed for
reliable measurements in data.

Details of the real-electron and real-muon efficiency measurements can be found in refs. [2]
and [3], respectively. The real efficiencies are often parameterised with respect to the 𝑝T and |𝜂 | of
the leptons, and measured separately for electrons and muons.

7.2 Fake/non-prompt lepton efficiencies

The fake/non-prompt lepton efficiencies are specific to each analysis, primarily since there are several
sources for such leptons (see section 6), which will contribute with different weights depending on
the chosen selection criteria. In general, though, the first step in the efficiency measurement is to
identify a region that has a large contribution from fake leptons. Two approaches are commonly
used. In the first, events with a pair of leptons with the same electric charge are selected. Since
such lepton pairs are only rarely produced at the LHC (via processes such as 𝑊𝑍 + jets, 𝑍𝑍 + jets,
and 𝑡𝑡 + 𝑋 (𝑋 = 𝑊/𝑍) production) it is likely that one of the two leptons is fake/non-prompt. By
placing stringent quality criteria on one lepton in these events, the probability that the remaining
lepton is fake/non-prompt is enhanced. The second approach is to use single-lepton events, where
criteria are imposed to suppress the contribution from real leptons. Examples of such criteria are
requiring the missing transverse momentum7 𝐸miss

T , or transverse mass8 𝑚T, to be below specific
thresholds, thereby reducing the contribution from 𝑊+ jets or 𝑡𝑡 events, or requiring via the track
impact parameters that the lepton originate from a position inconsistent with the primary event
vertex, thereby enhancing the contribution of leptons from heavy-flavour decay.

7Emiss
T is defined as the negative vector sum of the 𝑝T of the reconstructed and calibrated objects in the event, with a

correction applied for inner detector tracks that originate from the primary collision vertex and are not associated with
any other objects, and 𝐸miss

T is defined as the magnitude of Emiss
T [40].

8Here 𝑚T ≡
√︃

2 𝑝ℓT 𝐸
miss
T (1 − cosΔ𝜙ℓ,𝐸miss

T
), where Δ𝜙ℓ,𝐸miss

T
is the azimuthal angle between the lepton and Emiss

T
directions.
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Figure 8. Probability for a muon produced in the decay of a 𝑏-hadron to satisfy a track-based isolation
requirement, in simulated 𝑡𝑡 events, shown as a function of (a) the muon 𝑝T; and (b) the sum 𝑝T + 𝐸cone40

T
of the muon 𝑝T and nearby calorimeter energy deposits. In each case, the universality of these probabilities
is gauged by changing the kinematic properties of the parent hadron (markers of various colours), achieved
indirectly by selecting events in different ranges of global transverse energy 𝐻T. Precise definitions of the
isolation criteria, the 𝑝T + 𝐸cone40

T and 𝐻T variables, as well as descriptions of the muon and jets selections,
are given in section 7.2.

In either approach, there will be a residual contribution from events with only real leptons in
the selected sample. This contribution is typically estimated using MC simulation and subtracted
separately from both the tight and baseline samples before the ratio of these samples is taken to
measure the efficiency.

As with the real-lepton efficiencies, the fake/non-prompt lepton efficiencies depend on prop-
erties of the lepton candidates or of the event in which they are found. Therefore, it is generally
helpful to bin the efficiencies in the lepton 𝑝T and |𝜂 |, and possibly in terms of other quantities as
well. The optimal binning to be used is chosen in the context of each physics analysis, considering
the given numbers of events and potential changes in the relative contributions from the different
sources of fake/non-prompt leptons; illustrative examples are provided in section 9.

Adopting a parameterisation of the efficiency with respect to variables other than 𝑝T and 𝜂 can
sometimes be beneficial. For example, the probability that a fake or non-prompt lepton satisfies the
isolation criteria is correlated with the fraction of the jet’s visible momentum carried by the lepton.
Therefore parametrising the fake efficiency as a function of the lepton 𝑝T amounts to assuming
that, for a particular lepton 𝑝T, the distribution of the parent jet momentum is similar in the regions
where the efficiencies are measured and the regions where the background estimates are needed.
If this assumption does not hold, it can be useful to adopt instead a parameterisation as a function
of the parent jet momentum. Since this quantity is not easily accessed experimentally (unlike the
lepton 𝑝T), proxy observables are used in practice. An example of successful application is the
analysis in ref. [41], which employed the sum of the lepton’s 𝑝T and the transverse energy in a cone
around the lepton as a proxy.

The preceding discussion is also illustrated in figure 8 for non-prompt muons produced in the
decay of 𝑏-hadrons in simulated 𝑡𝑡 events. The probabilities for such muons to satisfy a track-based
isolation requirement, as defined in section 4, are shown for two alternative parameterisations: one
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based on the muon 𝑝T, and the other on the scalar sum of the muon 𝑝T and the transverse energy
deposited in calorimeter-cell clusters within a cone of size Δ𝑅 = 0.4 around the muon (referred to
as 𝐸cone40

T in section 4). This scalar sum serves as a proxy for the parent jet’s transverse momentum.
In the second parameterisation, the fake efficiency is the fraction of jets with a non-prompt

muon and visible momentum 𝑝T + 𝐸cone40
T in which the muon is mostly isolated, i.e. 𝑝T ≫ 𝐸cone40

T .
While one might consider jets with arbitrarily soft muons in the denominator of this fraction,
for practical reasons figure 8(b) only includes events where muons satisfy 𝑝T > 10 GeV. To
study the dependence of these efficiencies on the momentum distribution of the underlying jet,
different regions of jet momentum are emphasised by imposing different requirements on the global
transverse energy 𝐻T in the event, defined for this purpose as the scalar 𝑝T sum of all jets with
𝑝T > 25 GeV and |𝜂 | < 2.8 that are a distance Δ𝑅 > 0.6 from the muon. This quantity is indeed
partially correlated with the kinematics of the muon’s parent jet, via the momentum of the top
quarks producing all these jets. The reconstruction, calibration and selection of jets and muons for
this figure are otherwise those detailed in ref. [37].

It can be observed that for the case of a 𝑝T-dependent parameterisation, the efficiencies vary
strongly with 𝐻T, although large differences occur mostly for 𝑝T > 40 GeV. Since most non-
prompt muons are produced at low 𝑝T, the overall impact of this non-captured dependency might
be small, unless regions of interest in the analysis specifically select high-𝑝T leptons. In contrast,
the parameterisation as a function of 𝑝T + 𝐸cone40

T is much less influenced by 𝐻T, making the
measured efficiencies less dependent on the event topology. In practice, a compromise has to
be found between this observation and other elements evoked above justifying a 𝑝T-dependent
parameterisation, especially for electrons because ID criteria are usually employed in addition to
isolation. The direct dependency of efficiencies on other variables that are also correlated with the
event topology (e.g. 𝐸miss

T ) may also be reduced by such a parameterisation.
As detailed in the next section, suitable uncertainties must be assigned to the use of the fake

efficiencies in different regions than those in which they are measured, in particular to account for
potential differences in relative contributions of the different sources of fake/non-prompt leptons. To
minimize these uncertainties, it has sometimes been found beneficial to use an approach closer to that
of section 7.1, in which efficiencies are evaluated in the simulation and supplemented by data-driven
correction factors that depend on the source of the fake/non-prompt lepton. These correction factors
are derived using dedicated control regions that are enriched in a particular source of fake/non-
prompt leptons. The main assumptions are then the universality of the correction factors across
different processes, and the ability of the simulation to adequately predict the relative contributions
of each source in the regions of interest. Such an approach has for example been used in ref. [42].

8 Systematic uncertainties

Systematic uncertainties in the fake/non-prompt lepton background estimates from the matrix
method and the fake-factor method arise from uncertainties in the values of 𝜀r and 𝜀f . These uncer-
tainties can be traced to statistical uncertainties from the samples used to measure the efficiencies, to
potential biases that may cause the efficiencies in the signal region for a particular analysis to differ
from the values obtained from control samples (such as differences in the origin of fake/non-prompt
leptons between these regions), and to uncertainties in the modelling of contamination from real-
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lepton processes in the samples used to measure the fake efficiency. Details of these uncertainties
and their estimation are provided below. The overall impact of variations in 𝜀r and 𝜀f depends on
the characteristics of the analysis. For example, in the matrix method Equations 2.3–2.5 imply that
for analyses with

𝑁 t
r ×

Δ𝜀r

𝜀2
r
> 𝑁 t

f ×
Δ𝜀f

𝜀2
f

the uncertainty in 𝜀r will dominate, and vice versa.

8.1 Statistical uncertainties in the measured efficiencies

Statistical uncertainties in the real-lepton and fake-lepton efficiencies can be accounted for either
by analytically propagating the uncertainties through to the estimated event yields or by varying
the efficiencies input to the nominal yield calculation by their statistical uncertainties and using the
resulting difference in the estimated fake/non-prompt background yield as the resulting uncertainty.
The real- and fake-efficiency uncertainties are generally uncorrelated since the efficiencies are
measured in statistically independent samples. In the usual case where the efficiencies are measured
in bins of one or more quantities, the bins are uncorrelated, so the variations in each bin are applied
separately. The total statistical uncertainty in the fake/non-prompt lepton background estimate is
given by the sum in quadrature of the uncertainties from all variations. This source of systematic
uncertainty is usually not dominant.

8.2 Systematic uncertainties in the measured efficiencies

Systematic uncertainties in 𝜀f are generally larger and more challenging to assess than for 𝜀r:

1. Real-lepton efficiencies have only slight variations due to event environment effects since real
leptons have small contributions to their measurements from underlying event and jet activity.
This also means there are a wide variety of samples with which they can be calibrated in
great detail.

2. There are several sources of fake/non-prompt leptons, and the efficiencies may differ between
these sources. Therefore, any differences in the fake/non-prompt lepton composition between
the sample used to measure the efficiencies and the signal region for an analysis may lead to
a bias in the efficiencies.

Several methods are used to estimate systematic uncertainties in the fake-lepton efficiencies.
One is simply to vary the selection criteria for events in the control region used to measure the fake-
lepton efficiencies, since the composition of fake/non-prompt leptons in the standard and alternative
control regions may differ. A more sophisticated approach is to use MC simulation to estimate the
fake/non-prompt lepton compositions in both the control and analysis regions. This information,
combined with the MC-estimated selection efficiencies for each source of fake/non-prompt leptons,
can be used to provide an estimate of the uncertainty.
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8.3 Uncertainties in the modelling of real-lepton processes

When measuring the fake-lepton efficiencies, a correction must be applied to account for contami-
nation from processes with real leptons in the control sample used for the measurement:

𝜀f =
𝑁 t − 𝑁 t

r

(𝑁 t + 𝑁 l) − (𝑁 t
r + 𝑁 l

r)

where 𝑁 t
r and 𝑁 l

r are the numbers of real leptons in the selected tight and loose samples, respectively.
MC simulation of real-lepton processes is generally used to estimate 𝑁 t

r and 𝑁 l
r, with corrections

applied to account for known differences in object selection efficiencies between simulation and
data. Nonetheless, several sources of systematic uncertainty in the real-lepton contamination re-
main: uncertainties in the cross-sections of the real-lepton processes, uncertainties in the correction
factors, and uncertainties in the parameters, e.g. parton distribution functions (PDFs) and factori-
sation/renormalisation scales (𝜇f , 𝜇r), used in the simulation.

8.4 Uncertainties due to biases in the Poisson likelihood matrix method

The biases that occur in some situations for the Poisson likelihood matrix method (see section 2.5)
may also be considered as a source of systematic uncertainty, especially when the signal region
contains many bins with few events in each. The magnitude of the bias can be estimated either by
repeating the analysis with coarser bins, or by constraining the total fake/non-prompt lepton yield
estimate to be the value returned by applying the Poisson likelihood matrix method to the entire
unbinned sample. Any resulting differences in the binned estimates can be taken as a systematic
uncertainty.

9 Examples of application in ATLAS analyses

In this section the application of the fake/non-prompt lepton background estimation methods is
described using two example ATLAS analyses. The first is a measurement of the 𝑡𝑡𝑍 differential
cross-section using events that contain three or four lepton candidates, and the second is a model-
independent search for “beyond the Standard Model” (BSM) phenomena in events with three
or more lepton candidates. In both cases, the high lepton multiplicity suppresses the Standard
Model (SM) backgrounds, which makes the relative contribution of the fake/non-prompt lepton
background larger.

Data from
√
𝑠 = 13 TeV 𝑝𝑝 collisions recorded by the ATLAS detector between 2015 and 2018

are used to perform these analyses. In this period, the LHC delivered colliding beams with a peak
instantaneous luminosity of 𝐿 = 2.1 × 1034 cm−2s−1, achieved in 2018, and an average number of
𝑝𝑝 interactions per bunch crossing of 33.7. After applying beam, detector and data-quality criteria,
the total integrated luminosity of the dataset is 139 fb−1 [43]. The uncertainty in the combined
2015–2018 integrated luminosity is 1.7% [44], obtained using the LUCID-2 detector [45] for the
primary luminosity measurements.

9.1 Measurement of the 𝑡𝑡𝑍 cross-section in final states with three or four leptons

This analysis measured the differential production cross-section of the 𝑡𝑡𝑍 process in final states
with a total of three or four electron and muon candidates. The tools described above are used for

– 23 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
T
1
1
0
0
4

the lepton efficiency measurements and the application of the Poisson likelihood matrix method (de-
scribed in section 2.1.2). In addition to the fake/non-prompt lepton estimation in the signal regions
of the analysis, the results are checked in several validation regions enriched in fake/non-prompt
leptons. The Poisson likelihood matrix method was chosen for this analysis since the number of
fake/non-prompt leptons in the signal regions with three or four leptons is expected to be very low,
and the Poisson likelihood matrix method provides more stable results for binned estimations, which
are necessary for differential background predictions in these low-statistics signal regions. The frac-
tion of events with more than one fake/non-prompt lepton in the signal or validation regions has
been checked and found to be negligible. More details about the analysis and the fake/non-prompt
lepton background estimation can be found in ref. [46].

9.1.1 Real-lepton efficiencies

The first step in the application of the matrix method is to measure the efficiencies for real and
fake/non-prompt leptons that satisfy the baseline criteria to also satisfy the tight criteria. In the
𝑡𝑡𝑍 cross-section measurement, baseline electrons are required to satisfy the “LooseAndBLayer”
ID WP, whereas tight electrons are required to satisfy the stricter “Medium” ID criteria and to be
isolated from nearby tracks and calorimeter energy deposits. Both the baseline and tight muons are
required to satisfy the “Medium” WP, and tight muons are in addition required to be isolated from
nearby tracks.

As discussed in section 7.1, the real-lepton efficiencies are obtained using MC simulation,
corrected to match the performance seen in data control samples. Those efficiencies are shown
in figure 9, binned in lepton 𝑝T and |𝜂 |. To check for potential dependencies on the number of
additional jets in the events used for the measurements, the efficiencies are derived for different jet
multiplicities. No significant differences between the real-lepton efficiencies are observed.

9.1.2 Fake/non-prompt lepton efficiencies

The fake/non-prompt lepton efficiencies are measured with same-charge electron–muon (𝑒𝜇) or
muon–muon (𝜇𝜇) data events using a tag-and-probe method, where one “tag lepton” with very
stringent requirements on momentum and isolation (𝑝T > 40 GeV, max(𝑝cone20

T , 𝐸cone20
T )/𝑝T <

0.01) is selected and the remaining “probe lepton” is used for the efficiency measurement. Events
with more than two leptons are not considered. Only the aforementioned baseline electron or muon
requirements are used to select the probe lepton. The samples are dominated by events containing at
least one fake/non-prompt lepton, and are orthogonal to the signal regions, which require a minimum
of three tight lepton candidates. In addition, 𝑡𝑡𝑍 production is negligible in these samples.

The definition of the regions used for the fake-efficiency measurements is summarised in
table 1. For the electron fake efficiencies an 𝑒𝜇 signature is used, with the muon being used as the
tag lepton. For the muon fake efficiencies, the 𝜇𝜇 region is used,9 since the 𝑒𝜇 region also contains
unwanted events where an electron with an incorrectly measured charge is selected as the tag lepton
and paired with a real muon.

Real-lepton background processes (primarily diboson and 𝑡𝑡𝑊 production) leading to the same-
charge dilepton signature are estimated using MC-simulated events and are subtracted from data

9In 𝜇𝜇 events with both muons satisfying the tag-selection, the one with the higher 𝑝T is chosen as the tag lepton.
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Figure 9. The two-dimensional real-lepton efficiencies obtained for (a) electrons and (b) muons, in bins of
𝑝T and |𝜂 | of the leptons. The last 𝑝T bin is inclusive. The real-lepton efficiencies are obtained using MC
simulation, but corrected to match the performance seen in data control samples.
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Figure 10. The two-dimensional fake/non-prompt lepton efficiencies measured for (a) electrons and
(b) muons, in bins of 𝑝T and |𝜂 | of the leptons. The last 𝑝T bin is inclusive. The indicated uncertain-
ties show only the statistical errors in the given bins. Compared to the real-lepton efficiencies shown in
figure 9, the fake/non-prompt lepton efficiencies depend much more on the specifications of the analysis.
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Table 1. Definition of the fake-lepton control regions used for the electron (𝑒-fakes-CR) and muon (𝜇-
fakes-CR) fake-efficiency measurements. 𝑁ℓ is the number of leptons (ℓ), while 𝑁jets (𝑁𝑏-jets) is the number
of jets (𝑏-tagged jets, see text), respectively. For additional details of the definitions of physics objects, see
ref. [46].

Region 𝑁ℓ (ℓ = 𝑒, 𝜇) 𝑝T (ℓ) 𝑝T (jets) 𝑁jets 𝑁𝑏-jets

𝑒-fakes-CR = 2 (𝑒±𝜇±) > 7 GeV > 25 GeV ≥ 1 ≥ 1

𝜇-fakes-CR = 2 (𝜇±𝜇±) > 7 GeV > 25 GeV ≥ 1 ≥ 1

to obtain an unbiased efficiency measurement. The contribution from electrons with misassigned
charge in the same-charge 𝑒𝜇 region is also subtracted using estimates from MC-simulated events.

After this subtraction, the dominant source of fake/non-prompt leptons is found to be heavy-
flavour hadron decays. The fake efficiencies, binned in lepton 𝑝T and |𝜂 |, are shown in figure 10.

It is assumed that since the loose and tight lepton selection criteria depend on quantities re-
lated to the lepton itself or to its immediate surroundings, the chosen parameterisation captures the
main variations in the fake efficiencies, and residual dependencies on the event environment can be
covered by systematic uncertainties (see section 8). Indeed, in the simulation, the dependence of
the fake efficiencies on the number of light-flavour jets or 𝑏-tagged10 jets is mild. The uncertainties
are evaluated by comparing, in the simulation, the 𝜀 𝑓 values in the control regions described in
table 1 to the values in the signal regions. These differences, evaluated as a function of 𝑝T and
|𝜂 |, are applied as a systematic uncertainty of the fake-efficiency measurement (as discussed in
section 8), and are of the order of 10%–20%, except for muons with 𝑝T > 50 GeV, for which they
reach 40%. Furthermore, normalisation uncertainties are considered for the real-lepton background
processes, which are subtracted in the fake-efficiency measurement. They are evaluated by scaling
the real-lepton background processes upwards and downwards within their cross-section uncertain-
ties before the subtraction and using the differences between the modified and nominal efficiencies
as uncertainties, which are added in quadrature to the aforementioned uncertainties.

9.1.3 Results in the fake/non-prompt lepton validation regions

To validate the performance of the method, predictions are obtained and compared with data in two
dedicated validation regions called “VR-3ℓ-1𝑏3 𝑗” and “VR-3ℓ-1𝑏3 𝑗-no𝑍”, which have a larger
proportion of fake/non-prompt leptons than is expected in the signal regions. The definitions of
these two validation regions are summarised in table 2. No charge requirements are placed on the
reconstructed lepton candidates in these regions.

The variable 𝑚SF
ℓℓ

refers to the invariant mass of the same-flavour opposite-charge (SFOC)
lepton pair with the invariant mass closest to the 𝑍 boson mass. VR-3ℓ-1𝑏3 𝑗 is a region similar
to the actual signal regions defined in ref. [46], but without a requirement on the 𝑍 mass for the
(SFOC) lepton candidate pair. Therefore, it contains a higher fraction of fake/non-prompt leptons
after the selection. To further enhance the fake/non-prompt lepton contribution, the third-highest-𝑝T

10Jets containing 𝑏-hadrons are identified (tagged) by the MV2c10 𝑏-tagging algorithm [47]. The algorithm uses
a multivariate discriminant with quantities such as the impact parameters of associated tracks, and well-reconstructed
secondary vertices.
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Table 2. Definition of the fake/non-prompt lepton enriched validation regions, VR-3ℓ-1𝑏3 𝑗 and VR-3ℓ-
1𝑏3 𝑗-no𝑍 . 𝑁ℓ stands for the number of leptons (ℓ), while 𝑁jets (𝑁𝑏-jets) is the number of jets (𝑏-tagged jets),
respectively. The leptons are ordered by decreasing 𝑝T (ℓ1,2,3). The mass (𝑚) variables are discussed in the
text. For additional details of the object definitions, see ref. [46].

Region 𝑁ℓ (ℓ = 𝑒, 𝜇) 𝑝T (ℓ1,2,3) 𝑝T (jets) |𝑚SF
ℓℓ

− 𝑚𝑍 | 𝑁jets 𝑁𝑏-jets

VR-3ℓ-1𝑏3 𝑗 = 3 > 27, 20, 20 GeV > 25 GeV – = 3 = 1

(2 tight, 1 loose)

VR-3ℓ-1𝑏3 𝑗-no𝑍 = 3 > 27, 20, 20 GeV > 25 GeV > 10 GeV = 3 = 1

(all tight)

lepton that satisfies the baseline selection criteria must not satisfy the tight criteria. An additional
validation region, VR-3ℓ-1𝑏3 𝑗-no𝑍 , is defined by requiring all three leptons to satisfy the tight
selection criteria, but placing a veto on SFOC lepton pairs that have an invariant mass consistent
with the 𝑍 boson, thereby enhancing the fake/non-prompt lepton fraction in this region. Both
regions are orthogonal to the analysis signal regions and intended to validate the predictions of the
matrix method for different levels of fake/non-prompt lepton contamination.

Some example distributions are shown in figure 11 for VR-3ℓ-1𝑏3 𝑗 and figure 12 for VR-
3ℓ-1𝑏3 𝑗-no𝑍 . The processes with three real leptons (modelled with MC simulations) plus the
prediction from the matrix method can be compared with data in these regions.

The hatched bands in figures 11 and 12 show only the statistical uncertainties of the MC predic-
tion and the uncertainties associated with the fake/non-prompt lepton estimates (i.e. no theoretical
or detector-related systematic uncertainties are included). The total uncertainty associated with the
fake/non-prompt lepton estimate itself contains a systematic component, which is evaluated from
variations of the input fake/real efficiencies (described in the previous section), and the statistical
uncertainty of the data sample to which the Poisson likelihood matrix method is applied.11

There is generally good agreement between the data and the total background estimate, except
that the background is overestimated at low Δ𝑅(ℓ1, ℓ2). One contribution to that difference is that
the two leading (two highest-𝑝T) lepton candidates are likely to be real, yet when they are near each
other they have a lower efficiency for satisfying the isolation criteria, and thus are misinterpreted
as fake/non-prompt leptons by the matrix method. Analyses that are sensitive to such issues may
benefit from imposing a minimumΔ𝑅 requirement between leptons. A discrepancy is also observed
in the higher 𝑝T bins of figure 11(d). Events in these bins have three leptons with 𝑝T above 50 GeV.
As shown in figures 9 and 10, only a single 𝑝T bin above 50 GeV is available for measuring 𝜀r

and 𝜀f , due to the limited number of events in the control regions, so variations above 50 GeV may
be missed. This point was not investigated thoroughly since only a small fraction of events in the
analysis were impacted.

11The total uncertainties of the fake/non-prompt lepton estimates may be different from the uncertainties reported in
ref. [46], as the number of loose leptons in these validation regions is larger than in the signal region of the 𝑡𝑡𝑍 analysis
and, therefore, the statistical uncertainties are smaller.
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Figure 11. (a) Angular separation between the leading and second leading (in 𝑝T) lepton candidates,
Δ𝑅(ℓ1, ℓ2), (b) angular separation between the second- and third-leading lepton candidates, Δ𝑅(ℓ2, ℓ3),
(c) missing transverse momentum in the event, 𝐸miss

T , and (d) the 𝑝T of the third-leading lepton in VR-
3ℓ-1𝑏3 𝑗 . The processes with three real leptons are modelled with MC simulation, while the contribution
from fake/non-prompt leptons (dark red) comes from the Poisson likelihood matrix method as described
above. The hatched band shows the uncertainty from the MC statistics and the fake/non-prompt background
estimate. The rightmost bins are inclusive and contain all events above the 𝑥-axis ranges. The lower panel
shows the ratio of data to the total SM prediction (sum of the real-lepton background contributions estimated
with MC samples and the fake/non-prompt lepton contribution estimated with the matrix method). Further
details are available in ref. [46].

9.2 Model-independent search for new phenomena in multi-lepton final states

Many interesting new models for BSM physics predict final states with three or more leptons. The
general multi-lepton search for new phenomena [48] agnostically considers such final states. Its aim
is to be sensitive to BSM phenomena in often-overlooked corners of phase space. The background
estimation for the multi-lepton search uses MC predictions to account for events that contain only
real leptons, and the fake-factor method for events containing at least one fake/non-prompt lepton.
The dominant sources of fake/non-prompt leptons are semileptonic heavy-flavour decays (primarily
of 𝑏-hadrons), light-hadron decays, and misidentification of light hadrons as leptons. These mainly
arise in 𝑍 + jets and 𝑡𝑡 events.
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Figure 12. Comparisons of the predicted and observed yields in VR-3ℓ-1𝑏3 𝑗-no𝑍 , with respect to the 𝑝T
of the (a) leading and (b) subleading lepton candidates, (c) the scalar sum of the lepton and jet transverse
momenta, 𝐻T, and (d) the missing transverse momentum in the event, 𝐸miss

T . The processes with three
real leptons are modelled with MC simulation, while the contribution from fake/non-prompt leptons (dark
red) comes from the Poisson likelihood matrix method as described above. The hatched band shows the
uncertainty from MC statistics and the fake/non-prompt background estimate. The rightmost (leftmost) bins
are inclusive and contain all events above (below) the 𝑥-axis ranges. The lower panel shows the ratio of data
to the total SM prediction (sum of the real-lepton background contributions estimated with MC samples and
the fake/non-prompt lepton contribution estimated with the matrix method). Further details are available in
ref. [46].

9.2.1 Fake/non-prompt lepton selection

The fake factors are measured using events with a single lepton candidate, where the selection
targets QCD dĳet events. In order to prevent a bias in the fake factor due to trigger selection
criteria [15, 16], the selected events are required to have fired a loose single-lepton trigger where
isolation requirements are not imposed. However, due to the high rate of events that pass such
triggers, a prescale factor is applied, which reduces the number of events available for measuring
the fake factors (the luminosity of the prescaled samples is ∼ 0.5 fb−1 for electrons and ∼ 3.7 fb−1

for muons). Baseline lepton candidates must pass a common object selection, as detailed in
ref. [48]. Electron candidates are required to pass either the “Loose” ID WP with calorimeter- and
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track-based isolation requirements, or the “Tight” ID WP with no isolation requirement. Baseline
muon candidates are required to pass the “Medium” ID WP (“HighPt” for 𝑝T > 300 GeV). Only
leptons with 𝑝T > 25 GeV and satisfying the longitudinal and transverse track impact parameter
requirements (see sections 4.1 and 4.2) are considered.

More stringent selection criteria are imposed for tight lepton candidates. For muons, where
fake/non-prompt candidates are mainly muons from semileptonic heavy-flavour decays, only the
isolation criteria is modified: the tight selection requires that muons satisfy track-based isolation
criteria. For electrons, where both light- and heavy-flavour hadrons are a non-negligible source of
fake/non-prompt candidates, both the ID and isolation criteria are modified. Tight electrons must
satisfy both the “Tight” ID WP and calorimeter- and track-based isolation requirements.

Additional selection requirements are imposed on the single-lepton sample to ensure a high
purity of fake/non-prompt leptons, which reduces the statistical uncertainty of the computed fake
factor: the 𝐸miss

T is required to be < 25 GeV (< 40 GeV) for events with electron (muon) candidates,
and the number of jets in the event is required to be ≥ 1 (2) for events with electron (muon)
candidates. For muon-candidate events, there must also be at least one jet with 𝑝T > 35 GeV
(the “tag jet”), and the azimuthal angle between the muon candidate and this jet is required to be
> 2.7 radians.

The fake factor is binned in both the 𝑝T and |𝜂 | of the lepton candidate. The bins are defined to
have tolerable statistical uncertainties while preventing sizeable differences between the fake-factor
values in adjacent bins. The highest muon-𝑝T bin includes all muon candidates with 𝑝T > 80 GeV,
as there are very few fake/non-prompt muons at higher transverse momenta.

9.2.2 Fake factors

The fake factors calculated for the multi-lepton analysis are shown in figures 13 and 14 for electrons
and muons. The uncertainties in the fake factors are categorised and evaluated as described below.

There are statistical uncertainties due to the data and MC sample sizes in each fake-factor bin,
which due to their small size are summed in quadrature into a single uncertainty.

In the regions enriched in fake/non-prompt leptons, MC predictions are used to subtract the
real-lepton contribution from the data. The uncertainties in the MC contributions are propagated
to the fake factors. The main contributions from real leptons in the single-lepton regions are from
𝑍 + jets, 𝑊+ jets and 𝑡𝑡 events. For the 𝑍/𝑊+ jets processes, an uncertainty of 5% is applied to
the cross-section. For the 𝑡𝑡 process, uncertainties on the cross section due to renormalization and
factorization scales (∼ 3%) and PDF (∼ 4%) are applied.

Extrapolating the fake factors from the single-lepton sample to the multi-lepton samples used
in the analysis introduces an uncertainty because these samples differ in the kinematic distributions
of fake/non-prompt leptons, and possibly also in the fake/non-prompt lepton composition. Two
uncertainties are included to address the bias caused by imposing a 𝐸miss

T upper bound in the
fake/non-prompt lepton estimation sample, and by imposing a 𝑝T requirement on the tag jet in
the fake/non-prompt muon estimation sample. These uncertainties are estimated by varying the
requirements on these variables upwards and downwards by 10 GeV.12 Plots showing the impact of
these systematic effects on the fake factors are given in figures 13 and 14.

12Only the 𝐸miss
T variation is displayed separately in the plots, as the variation of the jet 𝑝T results in an uncertainty

that is too small to be visible.
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Figure 13. Measured fake factors for electrons as a function of 𝑝T for different |𝜂 | ranges, and their dependence
on individual variations of parameters of the measurement, used to determine systematic uncertainties. The
“MC syst” uncertainty covers variations in the model used to subtract the real-lepton contribution in the
control regions used to measure 𝜀f. The combined impact of statistical and systematic uncertainties added in
quadrature is indicated by the shaded yellow area (the grey area represents only the statistical uncertainty).

Finally, a direct assessment of the uncertainty in the composition of the fake/non-prompt lepton
background in the multi-lepton sample is made. Since fake/non-prompt leptons can come from
both light- and heavy-flavour sources, it is possible that the relative abundances from these sources
can vary between samples. This possibility is addressed through an additional uncertainty which
leverages the different event signatures produced by light- and heavy-flavour hadrons, the latter
consisting primarily of 𝑏-hadrons. To evaluate this uncertainty, an alternative set of fake factors is
computed which, in addition to the binning in 𝑝T and |𝜂 |, are binned according to the presence or
absence of 𝑏-tagged jets in the event. This alternative set of fake factors is shown in figure 15.

The composition uncertainty in the total event yields is then derived from the difference between
estimates calculated with either the nominal fake factors oblivious to the presence of 𝑏-tagged jets
in the events, or the alternative set that requires such a jet. This uncertainty is found to have a
negligible impact on the analysis, since most of the jets in the signal region and in the sample used
to measure the fake factors are not 𝑏-tagged.
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Figure 14. Measured fake factors for muons as a function of 𝑝T for different |𝜂 | ranges, and their dependence
on individual variations of parameters of the measurement, used to determine systematic uncertainties. The
combined impact of statistical and systematic uncertainties added in quadrature is indicated by the shaded
yellow area (the grey area represents only the statistical uncertainty).

9.2.3 Validation regions

Validation regions are defined using appropriate sub-selections of 𝑒𝑒𝜇 and 𝑒𝜇𝜇 events. These are
used to check that the computed fake factors extrapolate correctly from the regions where they are
calculated to the regions in which they are applied. The “on-𝑍” validation region requires an SFOC
lepton pair with a dilepton mass within 10 GeV of the 𝑍 boson mass. The “off-𝑍” validation region
also requires a SFOC pair of leptons, but requires the dilepton mass to fall outside of the 𝑍-mass
window. Only mixed-flavour final states are selected for these validation regions so that which lepton
to choose as the third one, assumed to be the fake/non-prompt lepton, is unambiguous. The sources
of fake/non-prompt leptons contribute in different ratios to the on-𝑍 and off-𝑍 validation regions:
the on-𝑍 validation region is more sensitive to 𝑍 + jets events than the off-𝑍 region, while the inverse
is true for 𝑡𝑡 events, although in absolute terms, 𝑍 + jets events are more numerous than 𝑡𝑡 events in
both cases. Both validation regions target, through a 𝑚T requirement of 𝑚T(ℓ, 𝐸miss

T ) < 40 GeV, a
third lepton that is likely to be fake/non-prompt. The union of the on-𝑍 and off-𝑍 validation regions
is called the “fakes validation region”.

The variables of primary importance for this analysis are the invariant mass of all lepton
candidates in the event (𝑚inv) and the 𝐸miss

T . The signal regions are separated according to the
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Figure 15. Fake factors measured in bins of the lepton candidate’s 𝑝T and |𝜂 | for events with (a,c) electron
candidates and (b,d) muon candidates in events (a,b) without and (c,d) with 𝑏-tagged jets.

values of these quantities, as discussed in ref. [48]. The 𝑚inv distributions in the two validation
regions are shown in figure 16, while the 𝐸miss

T distributions are shown in figure 17. Lastly, the
electron and muon candidate 𝑝T distributions are shown in the fakes validation region in figure 18.
The comparisons in figure 16 were also presented in ref. [48] (albeit in logarithmic scale) and
thus include fitted normalisation factors for the 𝑊𝑍 + jets and 𝑍𝑍 + jets backgrounds from their
respective control regions (“post-fit”). On the other hand, the complementary distributions shown
in figures 17 and 18 were obtained independently of this statistical analysis, and thus employ
the unconstrained SM background normalisations and uncertainties (“pre-fit” distributions). The
background estimate is consistent with the data within the statistical and systematic uncertainties.
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Figure 16. Comparison between data and prediction for the 𝑚inv distribution in the (a) on-𝑍 and (b) off-
𝑍 validation regions, after fitting the normalisation factors for the 𝑊𝑍 + jets and 𝑍𝑍 + jets backgrounds
and systematic uncertainties [48]. All uncertainties, systematic and statistical, are included. The leftmost
(rightmost) bin is inclusive and contains all events with 𝑚inv < 200 GeV (> 500 GeV). The hatched grey
area in these figures shows the total uncertainty. Further details are available in ref. [48].
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Figure 17. Comparison between data and prediction for the 𝐸miss
T distribution in the (a) on-𝑍 and (b) off-𝑍

validation regions. All uncertainties, systematic and statistical, are included. The rightmost bin is inclusive
and contains all events with 𝐸miss

T > 475 GeV. The hatched grey area in these figures shows the total
uncertainty. Further details are available in ref. [48].
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Figure 18. Comparison between data and prediction for the 𝑝T distribution in the fakes validation region
(which is the union of the on-𝑍 and off-𝑍 validation regions). Shown are (a) the electron 𝑝T in 𝑒𝜇𝜇

and (b) the muon 𝑝T in 𝑒𝑒𝜇 events. All uncertainties, systematic and statistical, are included. The rightmost
bin is inclusive and contains all events with 𝑝T > 275 GeV. The hatched grey area in these figures shows the
total uncertainty. Further details are available in ref. [48].

10 Conclusions

For physics analyses exploring signatures with one or more prompt leptons, background contri-
butions due to fake/non-prompt leptons are often difficult to estimate in simulations. Therefore,
data-driven methods are commonly used. Three related methods have been adopted by the ATLAS
Collaboration as recommended tools: the asymptotic matrix method, the Poisson likelihood matrix
method, and the fake-factor method. All three approaches depend on defining two categories of
leptons, one of which (“tight”) is subject to the same identification and selection criteria as are used
in the analysis. The other category (“loose”) adds additional lepton candidates with less stringent
selection requirements. The union of the two sets is called the “baseline” sample. The criteria are
typically defined such that the probability for a real baseline lepton to satisfy the tight criteria is sub-
stantially higher than the corresponding probability for a fake/non-prompt lepton. Then, the relative
numbers of loose and tight leptons in the analysis sample can be used to estimate the contribution
of fake/non-prompt leptons, either inclusively or differentially in any variables of interest.

Despite their similarities, the methods each have their own strengths and drawbacks. The
asymptotic matrix method and fake-factor method provide a fake/non-prompt lepton weight for each
event, which is convenient for analyses. However, these methods are subject to large uncertainties
if the efficiency for baseline fake/non-prompt leptons to satisfy the tight criteria is large in parts
of the analysis phase space. The Poisson likelihood matrix method returns a smaller uncertainty
in such cases, and avoids any possibility of producing a negative estimate for the event yield, but
does not provide a per-event weight, introducing difficulties e.g. for differential estimations. The
fake-factor method uses simulation rather than data to incorporate the contribution from events
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where all leptons are tight. This method can therefore be employed while the signal region for an
analysis is fully blinded, although it may induce additional simulation-related uncertainties in the
background estimate.

The systematic uncertainties for all three methods arise from similar sources, with the largest
contributions related to the extrapolation of the efficiencies measured in the control samples to events
in the analysis sample. Differences in the fake/non-prompt lepton composition in the samples must
be accounted for and appropriate uncertainties must be assigned to this extrapolation.

The performance of the Poisson likelihood matrix method and the fake-factor method has been
demonstrated in a differential 𝑡𝑡𝑍 cross section measurement and in a model-independent search
for BSM phenomena in multi-lepton final states, respectively. In both cases, the chosen method
was shown to provide a reliable estimate of the fake/non-prompt lepton background, as measured
in validation regions.
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