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Abstract

The Cherenkov Telescope Array (CTA) represents the next generation of
ground-based instruménts for very-high-energy (VHE) gamma-ray astronomy,
aimed at improving on the sensitivity of current-generation experiments by an
order of magnitude and providing coverage over four decades of energy. The cur-
rent CTA)design consists of two arrays of tens of imaging atmospheric Cherenkov
telescopes, comprising Small, Medium and Large-Sized Telescopes, with one
array located in each of the Northern and Southern Hemispheres. To study
the effect of the site choice on the overall CTA performance and support the
site evaluation process, detailed Monte Carlo simulations have been performed.

These results show the impact of different site-related attributes such as alti-
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tude, night-sky background and local geomagnetic field on CTA performance
for the observation of VHE gamma rays.
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1. Introduction

As a result of the success of current imaging atmospheri¢ Cherenkov tele-
scopes (IACTs) and the improvement of the different technologies.involved, the
next generation of ground-based very-high-energy (VHE) gamma-ray detectors
is under development. The Cherenkov Telescope Atray (CTA)! [1, 2] will give
deep and unprecedented insight into the non-thermal high-energy Universe scru-
tinising the gamma-ray sky from 20 GeV to 300:TeV, improving the sensitivity
of current instruments by more than an order ef'magnitude.

In order to achieve these goals, the, CTA Observatory will consist of two
different sites, one in each Hemisphere, and telescopes of three different sizes:
Large-Sized Telescopes (LSTs),[3] sensitive to the faint low-energy showers (be-
low 200 GeV), Medium-Sized Telescopes (MSTs) [4, 5] increasing the effective
area? and the numbler of*telescopes simultaneously observing each event within
the CTA core energy range (between 100 GeV and 10 TeV) and Small-Sized
Telescopes (8STs) [6] spread out over several km? to increase the number of
detected-events at the upper end of the electromagnetic spectrum accessible to
CTA (up'to »~"300 TeV).

The proposed designs for the Northern and Southern observatories will make
thexfull sky accessible with an improved sensitivity alongside better angular and

energy reconstruction. The CTA Southern site, with an ideal location to observe

Ihttp://wuw.cta-observatory.org/
2The effective area of the instrument is defined as the differential gamma-ray detection

dNy det

rate, —Jz==, after all analysis cuts (see Sec. 4), divided by the differential flux of incident

gamma rays.



the Galactic Center and a big fraction of the Galactic Plane, will be larger in
order to measure the extremely low fluxes expected from these sources above
10 TeV. Its baseline design foresees 4 LSTs, 25 MSTs, and 70 SSTs [7]. The
Northern site, with a broader coverage of the extragalactic sky, will be more
focused on the study of extragalactic objects and transient phenomena. The
CTA Northern Hemisphere site is planned to be composed of 4 LSTs4and 15
MSTs.

One of the advantages of such an extended telescope layout-s-that, most of
the detected events will be fully contained inside the area covered by the array.
These so-called contained events will be better sampled, providing an improved
background rejection, better angular and energy resolution, and reduced energy
threshold.

The criteria considered for the scientificSitesranking by the CTA Consor-
tium are costs, risks and scientific performance. Costs (including host premiums,
available infrastructure, building and{operation’costs, taxes and fees) and risks
(including economic and socio-political rigks or environmental hazards) are not
considered in the present paper. The scientific performance of a candidate site
depends mainly on the ayérage annual observing time (AAOT) and the perfor-
mance per unit time>(PPUT) of the array. The AAOT, mainly dependent on
the site’s weathersconditions, was evaluated for each candidate site using vari-
ous satellites and ‘weather simulations [8], together with in-situ weather records.
The AAQT is also beyond the scope of the paper.

AlVsites proposed to host such an ambitious project satisfy a list of geo-
graphical and atmospheric criteria. Sites were required to be located at medium
latitudes, contain enough available area for the deployment of the telescopes lay-
out, have a clean atmosphere with no obstacles blocking significant parts of the
sky and tolerable annual ranges of temperature, wind and humidity.

This study focuses on the determination of the scientific performance per

3Throughout this work, the differential sensitivity in 50 hours of observation (defined in

section 2) will be used as the main parameter describing an array performance per unit time.



unit time of each proposed site, and evaluates through detailed MC simulations
the effect of several site attributes like altitude, geomagnetic field and night-
sky background (NSB) on the telescope layout performance. These site-related
parameters have been widely studied by the current generation of IACTs, and

are briefly described in the following section.

2. Site parameters and CTA performance

To optimise the CTA design, detailed Monte Carlo simulations haye been
performed to estimate its scientific performance ([9, 10, 11,7). Throwghout this
work, the differential sensitivity to point-like sources.i§ the parameter used to
evaluate CTA performance per unit time. The differential ‘sensitivity, i.e. mini-
mum detectable flux from a steady, point-like gamma-ray source, calculated for
a narrow energy range, depends on the collection area, angular resolution, and
rate of background events surviving all gammagselection cuts.

TACTs capture images of the very short flashes (a few ns) of optical Cherenkov
radiation caused by the charged particles generated within the extensive air
showers (EASs) produced by. VHE gainma and cosmic rays. Most of this light
is emitted at an altitudeyof 5-10 km and propagates as a cone with a small
opening angle (0.541 deg). At ground level, the shower results in a pool of
light of ~ 120 m radius)centered at the core position. As shown in Fig. 1, the
lateral distribution of the Cherenkov light emitted within the EASs (i.e. aver-
age Cherenkov photon density reaching ground as a function of the distance to
the core)/ changes significantly with the energy of the primary particle. Cap-
tured images picture the emitted Cherenkov photons through the atmosphere
projected within the line of sight of each TACT as elongated elliptical-shaped
images. Then the primary particle is identified (as a gamma ray or background)
and original direction reconstructed (with up to sub-arc-minute accuracy) using
the orientation and shape of all recorded images of the EAS.

The considered CTA candidate sites are listed in Table 1, together with some

relevant site-related parameters. These parameters directly affect the perfor-



mance of TACTSs as they influence the development of the EASs [12], modifying
the Cherenkov light density at ground level. The main environmental parame-
ters affecting the sensitivity of TACTs are the site altitude, the local geomagnetic
field intensity and the NSB level.

2.1. Altitude
The operational altitude of IACTs sets the average stage of development, in
which EASs are measured [12]. Therefore the altitude of the IACTS, influences

the quality of the measurements in several ways:

e for a given gamma-ray energy, the intensity of Cherenkov light close to
the shower axis (less than ~150 m) increases at higher.altitudes (see Fig.

1, left panels)

e for gamma-rays with energy above ~200:GeV, Cherenkov photon density
at large core distances is reduced atvhigher observational altitudes (see

Fig. 1, right panels)

e for a given impact parameterfpthe centroid (i.e. center of gravity) of
shower images will besshifted towards the camera edge for higher altitude
sites. These images get truncated due to the limited field of view of each

telescope, thetefore-limiting the shower distance accessible range

e the contribution from charged particles penetrating to ground level incre-
ments the fluctuations of gamma-ray images detected by IACTs close to
the shower axis. These fluctuations increase the variance of the shape and
total charge of shower images, decreasing background rejection efficiency.

This effect increases with altitude

These effects are translated to lower energy thresholds for higher construc-
tion altitudes and reduced performance at energies above ~ 200 GeV. Consid-

ering the CTA sub-systems individually [9, 7]:

4Distance projected on ground between the center of the Cherenkov light pool and the

IACT
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Figure 1: Average Cherenkov light lateral distributions (for wavelengths between 300 and
600 nm), at ground levels from 1500 m (dot-dashed lines) to 3500 m (solid lines) above sea
level, produced by vertical gamma-ray showers. Three different photon energies are shown: 30
GeV (top), 1 TeV (middle) and 30 TeV (bottom). Left) Cherenkov photon density in linear
scale close to the core position. Right) Broader core distance ranges and logarithmic scale
on the Cherenkov photon density. The geomagnetic field used corresponds to H.E.S.S. site

(Namibia). No atmospheric absorption is considered.



e LSTs: at higher altitude sites, more Cherenkov photons reach the tele-
scopes at ground level (see Fig. 1, top panel), providing a lower threshold
energy, although angular and energy resolution may be degraded due to

the presence of charged particles close to the ground.

e MSTs: telescope spacing is comparable to the crossover point of the
Cherenkov light lateral distributions at different altitudes (see Figy 1,
right panels), so modest performance differences are expected(for interme-
diate energies (200 GeV to 5 TeV). Higher altitude sitesreduce telescope
multiplicity (i.e. number of telescope images obtained for each shower)

but increase the intensity of the recorded showerdmages.

e SSTs: telescope multiplicity will be reduced atyhigh jaltitudes due to the
sum of two effects: a reduced atmospheric. velume is found within the
optical field-of-view of the telescopes (producing bigger images that may
be truncated within the TACT, camera) and the lower Cherenkov light
density emitted by EASs at large, impact distances (see Fig. 1, right

panels).

As shown in Table 1, there are large differences in altitudes of CTA candidate
sites, ranging from 1640 my(Aar, Namibia) to 3600 m (San Antonio de los
Cobres, Argentina).

2.2. Geomgnetic field intensity

Aleng, the development of EASs, the Earth’s magnetic field exerts Lorentz
forces onthe/generated charged particles bending their trajectories. These forces
produce a larger lateral spread on charged particles with low energies, mainly
e~ /eT pairs generated in the EAS, producing a broadening effect on the lateral
dévelopment of air showers not negligible compared with Coulomb scattering
[13], leading to a distortion of the Cherenkov light pool and the shower image
shape.

The magnetic force depends on the angle formed between the trajectory of

the charged particle and the Geomagnetic Field (GF). In first approximation,



the direction of the trajectories can be approximated by the one of the shower
axis and the force is perpendicular to both the GF and the axis. The Lorentz
force intensity:

FL:q(ﬁxg)uqéL (1)

is proportional to the perpendicular component of the GF (é 1) with respect to

the shower direction (with B, = 0, see [14]):
B, =B, sin 6 sin ¢ i+ (B, cos® — B, sinf cos ¢) ]’+ B, sin Oisin ¢ k (2)

where 6 and ¢ are respectively the zenith and azimuth angles of.the shower axis
and B, and B, are the local horizontal and vertical GF intensityirespectively (H
and Z, aligned with 7 and E), fixed by the location ofthe observatory. The (ZJ,E)
correspond to the CORSIKA coordinate frame {15], and.point to the magnetic
North, West and Zenith (downwards) directions, respectively. Eq. 1 and 2 show
a direct dependency between the Lorentz effect on e* and the direction of the
particles. This effect disrupts the cylindrical symmetry of pure electromagnetic
cascades, broadening the showerydevelopment and the Cherenkov light pool
along the East-West direction, distorting the shape of recorded images [16, 17].
In general, higher GF inténsities slightly increase energy thresholds and degrade
angular and energy resolution.at low energies.

Table 1 shows the horizontal and vertical components of the intensity of the
GF at the different:CTA candidate sites. The GF intensity is similar at northern
sites, but/Significantly lower in South America as compared with Southern Africa
due t6 the:South Atlantic Anomaly (SAA). However, the horizontal component
of the GF; the most relevant parameter for observations near zenith, is lower in
South Africa compensating GF differences between Southern Hemisphere sites.
Giyen these considerations, no major performance differences among sites in a

given Hemisphere are expected due to the effect of the GF.

2.3. Night-sky background

The NSB is the diffuse light from the night sky and accounts for the visible

light coming from several sources. In the case of IACTs (sensitive to 300-600 nm



photons), the main contribution comes from, in order of decreasing contribution,
the airglow, zodiacal light and starlight scattered by interstellar dust. Other
sources may become dominant under certain conditions, such as Moon light
or anthropogenic light. These photons enter the telescope optics producing
accidental triggers and increasing noise in the images. Accidental triggers/are
easily suppressed within the standard IACTs analysis (rarely mimicking low
energy showers), but affect the data acquisition performance decreasing theé
acceptance (due to both the associated dead time following accidental.triggers,
and the required increased trigger thresholds). Increased NSB levels will, in
general, increase energy thresholds resulting in a reduction of-performance with
respect to dark sky observations.

CTA observations up to 5 times the NSB level found/in dark sky patches
away from the galactic disk are anticipated whenthe:moon is above the horizon.
The natural NSB levels observed at eachysite (measured using an Autonomous
Tool for Measuring Observatory Sité COnditions PrEcisely (ATMOSCOPE),
[18]) increase with altitude as a result of the reduced attenuation of zodiacal
and starlight. The NSB of all candidate sites was measured [19] and results
showed similar levels, with thelexception of Teide (Tenerife, Spain), where the
level of NSB is 30% higheriwith respect to other sites at similar altitude after
subtraction of starlight, due to anthropogenic light from nearby cities. Note
that the candidate site in La Palma, essentially identical to the Tenerife site in

all other réspects, has a smaller NSB, similar to the rest of candidate sites.

3. Monte Carlo Simulations of Site Candidates for CTA

The' evaluation studies presented in the following uses detailed Monte Carlo
(MC) simulations of the instrument in development. As presented in [9, 7], these
are performed by defining a large telescope layout, comprising few hundreds of
telescopes of different types distributed over an area of around 6 km?. From
this master layout, subsets of telescopes are selected and analysed as feasible

CTA layouts. Simulations of EASs initiated by gamma rays, cosmic-ray nuclei



and electrons are generated using an EAS simulation software, CORSIKA [15]
together with the simulation of the telescope response using sim_telarray [20],
software packages extensively used and validated by the High Energy Gamma
Ray Astronomy (HEGRA) and High Energy Stereoscopic System (H.E.S.S.)
experiments.

The EASs are simulated independently for each of the candidate sites; with
specific atmospheric density profiles, altitudes and GFs (direction/and inten”
sity). Site atmospheric models (density and refraction index as*a function of
the altitude) were generated using the NRLMSISE-00 model [21] and cross-
checked against radiosonde data, where available near the sites. A total of 3
Northern and 6 Southern Hemisphere sites were simulated, all-listed in Table 1,
together with their altitudes and geomagnetic field strengths ([22, 23]).

Closely located site candidates: Yavapai-and«Meteor Crater in the US, Ar-
mazones and Paranal in Chile and Tenerife and LaPalma in Spain have similar
characteristics. Therefore, only one site hag'been simulated in each case. Note
“Aar@500m” is a hypothetical site located at Aar, Namibia with an assumed
altitude of 500 m, computed to evaluate CTA performance at a significantly
lower altitude.

Simulated showersinclude gamma rays (from a point source) and background
(mainly protons and electrons), with protons (~ 100 billion events per site) being
the particle type consuming most of the CPU time and disk space resources, even
though few of them/trigger and pass the selection cuts. While nuclei (helium
through iron) account for about a quarter of the showers triggering a telescope
system, they are easily distinguished from gamma-ray showers in the analysis
(see section 4), not contributing significantly to the background after cuts [9].
As a consequence, simulation of showers induced by nuclei was carried out only
for a few selected sites. A minimum of 2 triggered telescopes were required for
each shower to be stored. Most of the simulations were produced for zenith
angles of 20 deg (except for 3 sites, for which simulations were also done at 40
deg).

To account for the effect of the geomagnetic field for different azimuth an-

10



Candidate site name Lat., Long. Altitude | "By B,
[deg] [m] [WT] | [pT]
Aar (Namibia) 26.69 S 6.44 E 1640 | 10.9 | -24.9
Armazones (Chile) 24.58 S 70.24 W 2100 214 | -89
Leoncito@2640 m (Argentina) 31.72 S 69.27 W 2640 19.9 | -12.6
Leoncito@1650 m (Argentina) 31.41'S69.49 W 1650 199 | -12.6
San Antonio de los Cobres 24.058 6624 W | 3600 | 209 | -8.9
(SAC;Argentina)
Meteor Crater (USA) 35.04 N 111.03 W 1680 23.6 | 42.7
San Pedro Martir (SPM; Mexico) 1,31.01 N 115.48 W 2400 25.3 | 384
Teide, Tenerife (Spain) 28.28 N 16.54 W 2290 30.8 | 23.2
Aar@500 m (hypothetical sité) 26.69 S 6.44 E 500 10.9 | -24.9

Table 1: Summary table of all simulated CTA candidates sites. The strength of the geo-

magnetic fiéld is given by its horizontal (B;) and downwards pointing (B,) components (see

section,2.2). Meteor Crater and Tenerife simulations represent also the nearby sites of Yavapai

(ArizonayUSA) and Roque de los Muchachos Observatory (La Palma, Spain) respectively.
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gles, simulations were carried out with showers coming from both the north
and south directions. The assumed NSB level corresponds to dark-sky observa-
tions towards an extra-galactic field at each site. Telescope optical system and
hardware settings and available observation time are assumed to be identical at
all sites [9, 20]. At each site, individual telescope trigger thresholds are set”so
that the rate of accidental triggers is equal to the rate expected from<cosmic
rays. An additional lower-scale production was carried out with elevated NSB
levels (by 30% and 50%, just for “Leoncito@2640” site) to estimate the impact
of increased NSB levels on CTA performance (see Sec. 2.3).

A total of 229 telescope positions were simulated for eachsSouthern Hemi-
sphere site, with up to 7 different telescope types [7] (with many positions used
by several telescopes): LST, two MST®, and up.to four variants of SST®.

The array layout considered here consiststof4d=IsSTs, 24 DC-MSTs, and 35
Tm-SSTs (see Figure 2, Right) for the Seuthern\sites, and of 4 LSTs and 15
DC-MSTs (see Figure 2, left) for thelayout for the Northern sites. The array
layouts and individual telescope_characteristics used in the present work (see
Table 2) are not identical to thosevin the final CTA design, but the differences
are not expected to be relevantifor the purpose of comparing the sites.

All results shown/in the following sections refer to point-like gamma-ray
sources located atnthecentre of the field of view and observed at a zenith angle
of 20 deg. Results are averaged between two different azimuth directions (all
telescopesdpointing towards the north or the south), unless otherwise stated.
A typical, MCiset for one site comprises about a billion simulated gamma-ray
and~electron, and about 100 billion proton showers. The simulation requires

substantial computing resources: the simulation of a single candidate site re-

5Modified Davies-Cotton (DC) [4] and Schwarzschild-Couder (SC) designs [4, 24].
Two designs of SC-SSTs, the ASTRI (Astrofisica con Specchi a Tecnologia Replicante

Italiana) and the GCT (Gamma-ray Cherenkov Telescope), both with primary mirror diam-
eters of 4 m, and 2 DC-SSTs, the SST-1M and 7m-SST with a single 4 m and 7 m diameter

mirror respectively [6].

12



ACCEPTED MANUSCRIPT

CTA-N layout [telescopes]
CTA-S layout [telescopes]

LST | MST | DC- \’
4 15
35

No. of mirrors
Mirror tile diameter [m]
Mirror dish area [m2]
Mean edge diameter [m)]
Telescope focal length [m]
Mirror facet focal length(s)
Radius of curv. (at dis

Central hole diameter [m)]

var. | 16.07 11.2
56.0 | 19.2 11.2
1.57 | 1.24 0.64

Camera pixels
Pixel size ]

Field of Aiew

Table 2:

e current/specifications of CTA telescopes.

1855 | 1855 1296
50 50 50
4.6 8.1 9.1

ry table of some relevant parameters used within sim telarray telescope
irror facet focal length of LSTs are variable, adjusted to the parabolic

. Note these parameters, especially for the DC-SST, do not correspond to

13
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Figure 2: Considered array layouts for CTA North (left; named “2N”) and’CTA South (right;
named “2A”). The colored markers indicate the positionsof the corresponding telescopes on
the ground. Red circles: Large-Sized Telescopes; Green circles: Medium-Sized Telescopes;

Blue circles: 7-m class Small-Sized Telescopes.

quires between 10-20 million HEP-SPEC067"CPU hours and ~ 100 TB of event
data are written to disk. A largefraetion of the MC production used the Eu-
ropean Grid Infrastructure(BEGI), utilising the DIRAC framework as interware
[25, 26]. Simulations were earried out on the CTA computing grid as well as on

the computer clustérs of Max-Planck-Institut fiir Kernphysik (MPIK).

4. Analysis

Ta process the MC production and evaluate the performance of each can-
didate site,Several independent analysis tools derived from packages belonging
to different TACT experiments have been used: baseline analysis from H.E.S.S.,
Eventdisplay from VERITAS, MAGIC Reconstruction Software (MARS) and
FAst Simulation for imaging air Cherenkov Telescopes (FAST) (details can be
found in [9, 27, 28, 29]). Although each analysis chain utilises techniques with

subtle differences, all of them consist of the following basic steps:

"The HEP-wide benchmark for measuring CPU performance

14



e Waveform integration: Each pixel charge and signal arrival time are calcu-
lated from the pixel charge time evolution (as simulated by sim_telarray)

for each triggered telescope.

e Image cleaning and parametrisation: image cleaning algorithms are ap-
plied to separate pixels likely illuminated by Cherenkov photons“from
those just containing noise or NSB photons. Substantially different meth-
ods have been used by alternative analysis chains, such as a“2-level next-
neighbour [30] or an aperture cleaning [29] approach. Theftesultingjeleaned
shower images are then parametrised by the second-miement Hillas analy-

sis [31].

e Stereoscopic reconstruction: Using the infermation gathered by all trig-
gered telescopes observing an event, a stereo,reconstruction is performed
by using the major axes of the cleaned images to reconstruct the direction
of the primary particle. Multivariate event classification algorithms (e.g.
random forest [32]) are used for the energy estimation and background
suppression, discerning between cosmic and gamma-ray initiated showers.
These algorithms aré trained for the two simulated pointing directions
separately, for each site gandidate, with independent data samples, not

used for the,perfermance evaluation.

e Performance estimation: Optimal cuts are determined in order to cal-
culate,the resulting performance, expressed by the Instrument Response
Funetion (IRF)®. Differential sensitivity is maximised for each energy bin

9 (or

by ‘optimising the cuts on the shower arrival direction, hadronness
equivalent) and minimum telescope multiplicity (larger than 1). Similarly

as in [9], sensitivity is computed by requiring five standard deviations (50)

8The IRF relates the source-emitted photons with the detected events, allowing the com-

putation of gamma-ray fluxes as a function of time, energy and direction.
9The hadronness variable, defined between 0 and 1, indicated how likely is that the shower

has hadronic origin [33].
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for a detection at each energy bin (equation 17 from [34]). A ratio of the
off-source to on-source exposure of 5 is considered, a plausible value as-
suming the amount of reflected regions that will be accessible to CTA. In
addition, the signal excess is required to be larger than 10, and at least five
times the expected systematic uncertainty in the background estimation
(1%). Unless otherwise stated, all differential sensitivities shown4in this

work are calculated for 50 hours of observation time.

The analysis chains used show consistent differential seusitivity [7], con-
sidering the significant differences between them (image-cleaning algorithms,
shower reconstruction, quality cuts and background sejection power). In ad-
dition, the conclusions of this work do not changeswith the selected analysis
chain to perform the different performance comparisons. Tt is expected that the
performance of the future CTA reconstruction pipeline with more sophisticated
analysis chains (e.g. improved stereo reconstruction [35, 36, 37], image clean-
ing [38, 39] or model analysis [40]) will provide a significant improvement as
compared to the results presented“in,the following, as they are obtained with
traditional analyses optimised for the current generation of TACTs, with 2-5
telescopes in operation:

CTA candidate sites)scientific performance evaluation was carried out using
all available analysis chains cited in this section. From here on, for clarity,

results showmucorrespond to the Fventdisplay analysis.

5. Science Performance

As introduced in section 2, the primary performance criteria for the site
evaluation is the differential sensitivity over the entire energy range of CTA,
from 20 GeV to 300 TeV. Five bins of equal logarithmic width are used per
energy decade.

As good sensitivity is required over the complete energy range defined above,
the figure of merit used for the comparison of the science performance at the

different site candidates is the so-called performance per unit time (PPUT). It
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is defined as the geometric mean through individual energy bins of the inverse

of the sensitivity normalised to a reference sensitivity:

N . 1/N
Fsens,ref@) > (3)

Fsens ('L)
where Fiens ref 1S the reference sensitivity and Fyens the achieved one through

N bins in energy, from 30 GeV to 200 (20) TeV for CTA South (Nozth). The

PPUT = (

i=1

reference sensitivity (used for normalization) was derived from thelanalysis of
previous simulations carried out by the Consortium (see [9]) for a site at/2000 m
altitude and with a geomagnetic field strength and orientation intermediate be-
tween that found at the Aar and Tenerife sites. These’previous MC simulations
for CTA were based on initial and conservative assumptions of telescope param-
eters and simplified readout systems, therefore PPUT values are expected to be
significantly larger than 1, higher for candidates\with better (lower) differential
sensitivity across the whole energy range.

In order to also evaluate the effect, of the GF on the angular resolution
over the whole energy range of CTApa similar figure of merit is defined ana-
log to the PPUT. The Angular Performance (AP) is defined as the geometric
mean through individualienergy bins of the inverse of the angular resolution

normalised by a reféerence angular resolution:

1/N
AP = 60 68, ref (4)
i1 @O 68

where/Oges refais the reference angular resolution and ©g.6g the calculated one
from. each candidate site through N bins in energy, from 30 GeV to 10 TeV
(energies in which the effect of the GF is more relevant), defined as the 68%
containment radius (i.e. the angle within which 68% of reconstructed gamma
rays are contained, relative to the simulated direction). Reference angular res-
olution, similar to the reference sensitivity, was derived from the analysis of
a previous production of CTA simulations (see [9]). Higher AP will be found
for candidates with better (smaller) angular resolution across the whole energy

range.
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Note the cut optimisation is performed independently for the analysis of each
site, maximising differential sensitivity. The angular resolution curves shown
in this work are calculated using these cuts, therefore they only represent a
conservative estimation of the future angular performance of CTA. Angular
resolution improves by imposing tighter cuts (e. g. on event multiplicity) at/the

expense of reducing differential sensitivity.

5.1. Performance for dark-sky observations

The on-axis differential point-source sensitivity and angular resolution as a
function of the energy for the considered CTA site candidates is shown in figures
3,4, 5,6 and 7. As shown in these figures, there are significant performance
variations between the candidate sites. These curvesydo not take into account
the AAOT differences between candidate sitess

Close to the energy threshold of the instrument (E < 50 GeV), the detection
is limited by the number of Cherenkov photens hitting the telescopes, and per-
formance differences between sites are\dominated by the altitude. As previously
described, higher altitude sites are, placed closer to the shower maximum, and
therefore collect more Cherenkov photons at distances <150 m to the shower
axis (see Figure 8). The highestraltitude site, San Antonio de los Cobres (SAC)
at 3600 m a.s.l., showsthe best performance among all sites for energies bellow
30 GeV.

In the snid=energy range (roughly from 50 GeV to 5 TeV), altitude is no
longer,such aeritical factor in the instrument performance, since the Cherenkov
light density/is in all sites high enough to produce clear shower images in tele-
scopes within the shower light pool. However, as introduced in Sec. 2.1, alti-
tudeaffects sensitivity in this energy range in several ways: for a given energy,
gamma-ray images look more hadron-like at higher altitudes; very close to the
shower axis the contribution from particles penetrating to ground level increases
with altitude, increasing the level of fluctuations in gamma-ray images and com-
plicating the gamma-hadron separation. In addition, both background suppres-

sion and angular resolution are greatly influenced by the telescope multiplicity
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and energy only.

of the events. At higher altitudessthelight pool is smaller, therefore reducing
multiplicity for a fixed teleéscope separation (or reduce the effective area when
adjusting telescope separations). The results shown in Fig. 8 and 10, prove that
the deteriorated background suppression and lower average telescope multiplic-
ity of measured showers dominate over the higher Cherenkov photon intensity
at higher altitudes, showing lower-altitude sites clearly outperform them in this
energy/range.

In order fo evaluate in further details this result, an additional hypotheti-
cal site at 500 m altitude (located at Aar, Namibia) was simulated, to test if
performance keeps improving with lower altitudes. As shown in Fig. 3, the
Aar@500m site shows good performance in the mid-energy range. The bene-
fits of lower-altitude sites described above seem to balance the lower number of
measured photons, mainly due to the larger distance of the observatory to the
shower maximum. On the other hand, the significantly lower effective area at

energies bellow 50 GeV of the (hypothetical) “Aar@500m” site (shown in Fig.
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8) would deteriorate the Observatory low-energy sensitivity.

As shown in Fig. 7, sites located at slightly higher altitudes, such as Leoncito,
are favoured for observations at moderate zenith angles (40 deg), improving
sensitivity in the mid-energy range. The shower development at higher zenith
angles increases the projected shower light-pool size along with the average
shower maximum altitude!® (Hmax)- At lower altitude sites, where the distance
to Hpax is larger, the loss in Cherenkov photon density surpasses the gain from
the improved collection area, decreasing average telescope multiplicity. Taking
into account that the average zenith angle for future CTA \observations will
very likely be around 30 deg, the accepted range in altitudessfor such an array
of TACTSs can be considered rather wide, between ~ 1600, and-2500 m.

As described in Sec. 2.2, the geomagnetic field bends charged particle tra-
jectories separating positive and negative chargessimair showers, leading to a
distortion of the Cherenkov light pool ongthe ground and of the camera image
shapes, introducing additional uncertainties/in the reconstructed shower param-
eters. These effects mainly influence the gamma-hadron separation quality (e.g.
gamma-ray showers look more hadron-like), the angular (shower image major
axis may be slightly shifted and rotated) and energy reconstruction (average
Cherenkov light density is not just a function of impact parameter anymore).

Figure 9 and 10 (leff panel) reveal significant differences in the array perfor-
mance between different pointing directions. By observing showers with direc-
tions close(to parallel to the geomagnetic field lines (telescopes pointing to the
north for sitesiin the Southern Hemisphere) performance is significantly better
with.respect/to observations in directions at larger angles to the field lines (up
to 10% higher PPUT for CTA-S). Sensitivity and angular resolution of the sites
in South America are inferior to those in Southern Africa, at equal altitude,
mainly because the different inclination of the GF results in larger average field

intensities perpendicular to the shower direction at small zenith angles in South

10The location of the shower maximum in the atmosphere corresponds to the depth of

maximum development, Xmaz (in [g cm™2] from the top of the atmosphere)
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America. Note the considered zenith angle of 20 deg and the north pointing
direction is close to the worst case scenario for the Northern Hemisphere sites,
resulting in showers propagating almost perpendicular to the geomagnetic field
lines, therefore shewing larger differences in PPUT (between 15 and 30%). All
Northern Hengisphere sites studied will be affected, on average, by similar geo-
magnetic fields. For/larger zenith angles differences are smaller.

At/the highest energies, above ~5 TeV, the sensitivity is limited by the

collection aréa, which is larger at low-altitude sites (see section 2.1).

5.2mPerformance at increased night-sky background levels

Higher night-sky background levels are expected at some sites due to in-
creased anthropogenic night illumination levels, but also at all sites for obser-
vations towards bright regions in the sky (e.g. within several degrees of the
Galactic Plane). As briefly discussed in Sec. 2.3, the level of NSB light affects
the performance mainly in the threshold region. Higher NSB produces higher
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accidental rates, requiring increased trigger thresholds. It also lowers the signal-
to-noise ratio of measured shower images, leading to a loss of low-energy events
and reconstruction quality.

Figure 11 shows the impagt of increasing the nominal NSB level by 30% and
50% on the effective areafor the Leoncito site. The effect, negligible above 100
GeV, reduces the effective, areca between 10-20% at 40 GeV, becoming more
significant for Jower energies (50-70% at 25 GeV). These results show that
the NSB effect, as ‘compared to the dependence on the site altitude and the
geomagnetieifield, can be considered of second order, with a marginal effect
(<5%hon calculated PPUT values, although quite significant near the energy
threshold.

6., Conclusions

Although the performance of the CTA candidate sites differs significantly,
showing a significant dependence on site altitude and the geomagnetic field

intensity, all studied sites hosting a telescope layout such as the one proposed
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by the CTA Consortium would improve on the sensitivity of current generation
of TACTs by a factor 5-10 (energy-dependent).

The study presented here represents the largest-scale simulation ever per-
formed to study the effect of site-dependent parameters on TACTs performance,
Results only account for the effect of parameters related to the scientific pexfor-
mance of the Observatory, and do not take into account average annual ebservas
tion times or logistic arguments which, in the end, may have a greater influence
on the final selection.

The best overall performance for a CTA-like observatory is expected for sites
at around 1700 m site altitude, with an acceptable range of-altitudes between
1600 and 2500 m (see Fig. 10, right panel). Higher altitudes would improve
performance below ~ 50 GeV, while significantly/decreasing performance above
that energy, with an overall differential sensitivity=loss of ~ 15% at 3600 m.
Lower altitudes would reduce the low energy perfermance of the instrument.

The geomagnetic field intensity differengés between sites must be also taken
into account, as an increase of B, ~10 T reduces overall performance a 10%
(both in angular resolution and sensitivity).

Concerning the effect/0f the,NSB, it should be considered of second order,
with a marginal effect’on the oyerall array performance (50% more NSB would
decrease less than‘a §% PPUT) and negligible above 100 GeV, although quite
significant neatr the energy threshold.

In thedneantime; the CTA site selection process is progressing rapidly: in
late March 2015 two sites for each Hemisphere were shortlisted based on the
input from the CTA Consortium on annual available observing time, science
performance (this study), risks, and cost. During July 2015, detailed contract
negotiations started in order to host CTA on the European Southern Observa-
tory (ESO), Paranal site in Chile and at the Instituto de Astrofisica de Canarias
(IAC), Roque de los Muchachos Observatory in La Palma, Spain. In Septem-
ber 2016 TAC and the CTA GmbH signed the hosting agreement, while the

negotiations with ESO are in an advance state.
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