A holographic construction of the Bose-Hubbard model
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Abstract

A holographic large- N Bose-Hubbard model has been presented in the paper [1]. The holographic
model is a theory with Maxwell fields and charged scalar fields on the AdS> hard wall. The lobe-shaped
phase structure of the Bose-Hubbard model is realized by using holography. The Mott insulator phase
in which bosons are localized on each site is found for large repulsive interaction. In addition to the
phase transition between Mott insulator phases with different occupation numbers at zero hopping
integral, a holographic phase transition is found at non-zero hopping integral between the Mott
insulator phase and a non-homogeneous phase. The perturbations of fields are also analyzed around
both the Mott insulator phase and the non-homogeneous phase. Almost zero modes are found in the

non-homogeneous phase.

1 Introduction

Translation invariance is broken in real materials including impurities. The DC conductivity is non-zero
in real materials including impurities, while it is divergent in the pure system. In lattice theories, the
translation invariance is also broken. One of the motivation of my talk is to introduce a (holographic)
lattice system in the duality between strongly coupling field theories and the weakly coupling gravity
theories, namely, the gauge/gravity correspondence [2]. In the gauge/gravity correspondence and in the
probe limit without considering the backreactions [3, 4], holographic lattices of impurities have realized
the dimerization transition changing the shape of the Fermi surface [5, 6] and the Kondo effect [7]. The
holographic lattices have also been introduced by using periodic functions of the chemical potential [8, 9]
and those of scalars [10]. Such a background breaks the translation invariance along the periodic direction.

The Bose-Hubbard model is the effective theory of cold atoms on an optical lattice including the

hopping term and short-range repulsive interaction. The Hamiltonian is given by

U
H = —vh0p ;(bibj +ecc)— pZni + 5 Zm(m -1, (1.1)
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where vy0p, is the hopping integral and the occupation number is defined by n; = bjbi. The hopping term
is important to describe the motion of particles and to analyze the transport. It is known that, at zero
temperature and without impurities, only two phases exist in the phase structure of the Bose-Hubbard
model [11]. The Mott insulator phase arises when the repulsive interaction is much stronger than the
hopping term (U/vhop > 1). In the Mott insulator phase, bosons are localized on each a site. In the
opposite limit U/vhep < 1, the superfluid phase is favored. In the superfluid phase, U(1) symmetry is
broken and bosons are delocalized. Moreover, it is known that the phase structure of the ground state
is lobe-shaped. In the (11/U,vhop/U) plane, the phase boundary between the Mott insulator phase and
the superfluid phase is the lobe-shape whose amplitude decreases as 1/p. The phase structure can be
realized by introducing complex fields coupling to b; and using the meanfield approach. The action in

the infinite-range hopping limit becomes

S() = (s thop, T) 161 +u(u,T) |91 +0(6[7)) (1.2)

where T' = 1/ is the temperature and N is the number of the lattice sites. In the Mott insulator phase,
() = 0, while ¥ # 0 in the superfluid phase. Thus, 4 is an order parameter of the phase transition. The
phase boundary is given by the condition 7 (i, vhop) = 0.

There is a general extension of the Bose-Hubbard model to the model of multiple species such as the
SU(N) Bose-Hubbard model. The conjecture of our paper is that the SU(N) Bose-Hubbard model is
dual to the 2d gravity on the AdSy hard wall. Actually, the large N limit is powerful and necessary to
cause the phase transition in the finite volume system.

In next section, we realize the lobe-shaped phase structure of the Bose-Hubbard model by using the
holographic model. We then analyze the spectrum of the perturbations around the cusp point near

Vhop = 0.

2 The lobe-shaped phase structure of the holographic Bose-
Hubbard model

In this section, we give a review of the holographic construction of large N Bose-Hubbard model [1]. Tt is
conjectured that the large N SU(IN) Bose-Hubbard model corresponds to 2d gravity on the AdSs hard
wall geometry. The metric of the AdS; hard wall is given by in the unit AdS radius

du?
d82 = —U2dt2 + ?, (23)

where the hard wall cutoff is put at v = uy (v > uy). The AdS/CFT correspondence is summarized in
the table 1. The occupation number n; is conjugate to the chemical potential p. Only the diagonal part
of the chemical potential is considered. These are dual to U(1)™ gauge fields A;, where n corresponds
to the number of the lattice site. Besides, the bi-local b?Tbja is dual to the hopping integral vhop, Where
a=1,...,N represent spin indices. These fields are dual to the bi-fundamental matter ¢; ; linking two
different nodes of U(1)™ gauge symmetry. Finally, the Coulomb repulsive parameter corresponds to the
IR cutoff uy. Even if our model is the theory on the finite volume, the phase transition can be captured
thanks to the large N limit. We then focus on the 2-site model n =1, 2.

Defining the field strength f(,,),, = Ouam), — dvaq the Lagrangian of our holographic model

n)pur



Table 1: The AdS/CFT correspondence

The large N Bose-Hubbard 2d Gravity side
model side
1 (chemical potential) and b?Tbm (occupation number) a;
Uhop (hopping integral) and b‘i”bja (bi-local operator) ;5
U hard wall cut-off uy

includes the IR potential and is given by

S = Pgauge + Smatter + SIInRixedv (24)

2
Sgauge = Z /de\/jg< - if(n)#uf(lfny))v (25)
n=1

Smatir = [ ay/=g(| DO 327 | 87), (2.6)
S — / dbun(2m3, | B2 £2 @] +
U=Un
+ 3 Ay [P (S 4L (2.7)
m,l>1 n

where fﬁi) is the projected field strength in terms of the normal n,, satisfying n,n* = 1 at the IR boundary
and f,gi) = f,glu n”. Here, the covariant derivative is defined by D,, = 0,, — iqa,(}) + iqaﬁf) (u=u,t).

A few remarks of our holographic construction are as follows: (1) The Lagrangian includes an IR
potential and an IR mass [12, 13]. The IR potential and IR mass affect the phase structure of the
holographic model keenly and should be present in our bottom-up lagrangian. (2) The cutoff of the
AdSy hard wall must be larger than vpep (un/vVhep > 1) because instable modes appear above the energy
scale greater than uy [17]. After introducing large cutoff uy, small energy can be added to the gravity
safely. (3) The Dirac quantization condition should be imposed on charges n; and magnetic monopole
charges [19]. The Dirac quantization condition is non-trivial and appears because of the gauge invariance
under the large gauge transformation surviving at the AdS boundary. In the string theory, moreover,
the quantization can be understood as the quantization of the coefficient of F1 and D-brane interactions
such as Ijny ~ np1 [ BYSNS (npy € Z) [18].

The EOMs are derived from (2.4) in the radial gauge al™ =0 as

2
(?®) — M2® + L (afV - al?)20 = 0,
u

ag L bl u|2 | (ai )—ag H)):O (2.8)
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Let us consider the M = 0 case. In general, there are two cases of solutions classified by the difference of
the gauge fields. First, the homogeneous case corresponds to the ansatz of equal gauge fields agl) = aEQ).
In the homogeneous case, the non-linear interaction vanishes in (2.8) and the analytic solutions to the
EOMs are known. At the hard wall v = uy, the Dirichlet type boundary condition is imposed on fields.
The homogeneous phase corresponds to the Mott insulator phase since gauge fields are equal and the

occupation number is equal in each a site. Secondly, the non-homogeneous phase corresponds to the
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Figure 1: The figure is taken from [1]. The lobe-shaped phase structure of our holographic model with
thop = Whop- Parameters are chosen as uy = 40, A =1, mr =0, A1 1) = —3/2. Using the occupation
number in the Mott insulator phase, the amplitude of the lobe (an edge of the phase boundary) decreases

as 1/p.

ansatz of the unequal gauge fields agl) #+ a§2). The boundary condition at the hard wall is not unique
in the non-homogeneous phase. The (bottom-up) free type boundary condition is chosen for the bi-
fundamental matter. The occupation number is usually different in each a site in the non-homogeneous
phase. In the superfluid phase, the occupation number is also different in each a site. So, the non-
homogeneous phase should correspond to the superfluid phase arising in the limit of the large kinetic
energy. The non-homogeneous phase looks similar to the sector of the axial vector in the hard wall
AdS/QCD model [14] which has the same matter content in the gravity dual. Two different solutions are
consistent with only two phases in the Bose-Hubbard model at zero temperature and without impurities.

Performing the Wick rotation to the Euclidean signature, the free energy is evaluated using the
holographically renormalized action. By comparing the free energy between (non)-homogeneous phases,
the lobe-shaped structure of our holographic model can be realized in the large N limit in Fig. 1.
When vpop/U is large, the non-homogeneous phase is favored thermodynamically. In the different limit
Vhop/U < 1, the homogeneous phase is favored. The phase boundary of these two phases has the shape
of the lobe. As seen in the Fig. 1, the decreasing amplitude of the lobe is also found. The edge of the lobe
behaves like Vnopledge = 1/p, Where p is the occupation number in the Mott insulator phase surrounded
by the boundary. This edge also becomes the particle-hole symmetric point where three phases with
different occupation numbers are degenerate.

For non-zero hopping vhep # 0, symmetry breaking U(1)? — U(1) happens. This symmetry breaking
becomes spontaneous symmetry breaking near the cusp point of the j; axis. ! The second order phase
transition happens as the function of vyep at the cusp point. Far from the cusp point of the py; axis,
symmetry breaking becomes explicit breaking. The phase transition becomes a large N first order phase
transition in general. The order parameter of the phase transition becomes dn = n; — ny or the effective
hopping defined by dF'/duvnep ~ <bjbj + c.c.). Remind that this effective hopping is not equal to the long-
range correlations in the superfluid phase of the field theory side but equal to the VEV of the bi-local

between nearest neighbor sites. Nevertheless, dF/dvpep can be understood as the order parameter of the

L As the function of p, on the other hand, the phase transition is of the first order.



phase transition in the large N limit.

The effective hopping in the gravity dual has some interesting properties. In the Mott insulator phase
and in the vpep — 0 limit, the effective hopping behaves as dF'/dvnop X Unop similar to those of the SU(N)
Bose-Hubbard model. By introducing non-zero bulk mass M, actually, the effective hopping can be fitted
to the numerical calculation in the SU(N) Bose-Hubbard model side at small hopping limit [15]. In the
non-homogeneous phase, the behavior is affected by the non-linear interaction with the gauge potential
for non-zero q. When ¢ is small, the effective hopping should be similar to those of the Bose-Hubbard
model since the interactions with a large N CFT become small for small q.

To confirm that our non-homogeneous phase corresponds to the superfluid phase, zero modes should
be found around the second order phase transition point because a massless Goldstone mode is expected
to appear at the critical point. So, it is interesting to analyze the perturbation around the cusp point
in both the (non)-homogeneous phases. The holographic two point function can be computed from the
perturbation of the bi-fundamental scalar around the background solution. In the homogeneous phase,
the spectrum obtained from the perturbation of the bi-fundamental scalar is always gapped (see also [16]).
The gap is given by

A =7Un (n: a positive integer), (2.9)

where U = uy. The gap proportional to U is an expected result in the Mott insulator phase. On the
other hand, a zero mode appears in the spectrum in the non-homogeneous phase. The presence of the
zero mode could be connected to the spontaneous symmetry breaking U (1) — U(1).

3 Conclusion

We realized the lobe-shape of the phase structure of the Bose-Hubbard model. The Mott/non-homogeneous
phase transition was of the 1st order except for the cusp point by using dF'/dvney, or the difference of the
occupation number as the order parameter. The phase transition became of the 2nd order at the cusp
point near vhop ~ 0, where a zero mode arised from the spectrum of the perturbation.

A top down construction can be proposed in terms of a D3/D5/D7 system. The D3/D7 brane
configuration is based on the paper [20]. In the gravity dual, N D3-branes are replaced by the AdSs
soliton. Non-Abelian U(nz) D5-branes are embedded and wrapped on asymptotic AdS, x S* in AdS;
soliton x.S%, where np corresponds to the number of the lattice of the effective theory. After letting a
transverse scalar have the VEV, U(np) symmetry is broken to U(1)"F. The diagonal elements of the
adjoint field of U(np) and the off-diagonal elements of it can then be interpreted as U(1)"F gauge fields

and the bi-fundamental matter like matter contents of our bottom-up model, respectively.
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