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Abstract

A holographic large-N Bose-Hubbard model has been presented in the paper [1]. The holographic

model is a theory with Maxwell fields and charged scalar fields on the AdS2 hard wall. The lobe-shaped

phase structure of the Bose-Hubbard model is realized by using holography. The Mott insulator phase

in which bosons are localized on each site is found for large repulsive interaction. In addition to the

phase transition between Mott insulator phases with different occupation numbers at zero hopping

integral, a holographic phase transition is found at non-zero hopping integral between the Mott

insulator phase and a non-homogeneous phase. The perturbations of fields are also analyzed around

both the Mott insulator phase and the non-homogeneous phase. Almost zero modes are found in the

non-homogeneous phase.

1 Introduction

Translation invariance is broken in real materials including impurities. The DC conductivity is non-zero

in real materials including impurities, while it is divergent in the pure system. In lattice theories, the

translation invariance is also broken. One of the motivation of my talk is to introduce a (holographic)

lattice system in the duality between strongly coupling field theories and the weakly coupling gravity

theories, namely, the gauge/gravity correspondence [2]. In the gauge/gravity correspondence and in the

probe limit without considering the backreactions [3, 4], holographic lattices of impurities have realized

the dimerization transition changing the shape of the Fermi surface [5, 6] and the Kondo effect [7]. The

holographic lattices have also been introduced by using periodic functions of the chemical potential [8, 9]

and those of scalars [10]. Such a background breaks the translation invariance along the periodic direction.

The Bose-Hubbard model is the effective theory of cold atoms on an optical lattice including the

hopping term and short-range repulsive interaction. The Hamiltonian is given by

H = −vhop
∑
〈ij〉

(b†i bj + c.c.)− µ
∑
i

ni +
U

2

∑
i

ni(ni − 1), (1.1)
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where vhop is the hopping integral and the occupation number is defined by ni = b†i bi. The hopping term

is important to describe the motion of particles and to analyze the transport. It is known that, at zero

temperature and without impurities, only two phases exist in the phase structure of the Bose-Hubbard

model [11]. The Mott insulator phase arises when the repulsive interaction is much stronger than the

hopping term (U/vhop � 1). In the Mott insulator phase, bosons are localized on each a site. In the

opposite limit U/vhop � 1, the superfluid phase is favored. In the superfluid phase, U(1) symmetry is

broken and bosons are delocalized. Moreover, it is known that the phase structure of the ground state

is lobe-shaped. In the (µ/U, vhop/U) plane, the phase boundary between the Mott insulator phase and

the superfluid phase is the lobe-shape whose amplitude decreases as 1/ρ. The phase structure can be

realized by introducing complex fields coupling to bi and using the meanfield approach. The action in

the infinite-range hopping limit becomes

S(ψ) = β
(1

2
r(µ, vhop, T ) |ψ |2 +u(µ, T ) |ψ |4 +O(|ψ |6)

)
, (1.2)

where T = 1/β is the temperature and N is the number of the lattice sites. In the Mott insulator phase,

〈ψ〉 = 0, while ψ 6= 0 in the superfluid phase. Thus, ψ is an order parameter of the phase transition. The

phase boundary is given by the condition r(µ, vhop) = 0.

There is a general extension of the Bose-Hubbard model to the model of multiple species such as the

SU(N) Bose-Hubbard model. The conjecture of our paper is that the SU(N) Bose-Hubbard model is

dual to the 2d gravity on the AdS2 hard wall. Actually, the large N limit is powerful and necessary to

cause the phase transition in the finite volume system.

In next section, we realize the lobe-shaped phase structure of the Bose-Hubbard model by using the

holographic model. We then analyze the spectrum of the perturbations around the cusp point near

vhop = 0.

2 The lobe-shaped phase structure of the holographic Bose-

Hubbard model

In this section, we give a review of the holographic construction of large N Bose-Hubbard model [1]. It is

conjectured that the large N SU(N) Bose-Hubbard model corresponds to 2d gravity on the AdS2 hard

wall geometry. The metric of the AdS2 hard wall is given by in the unit AdS radius

ds2 = −u2dt2 +
du2

u2
, (2.3)

where the hard wall cutoff is put at u = uh (u ≥ uh). The AdS/CFT correspondence is summarized in

the table 1. The occupation number ni is conjugate to the chemical potential µ. Only the diagonal part

of the chemical potential is considered. These are dual to U(1)n gauge fields Ai, where n corresponds

to the number of the lattice site. Besides, the bi-local ba†i bja is dual to the hopping integral vhop, where

a = 1, . . . , N represent spin indices. These fields are dual to the bi-fundamental matter φi,j linking two

different nodes of U(1)n gauge symmetry. Finally, the Coulomb repulsive parameter corresponds to the

IR cutoff uh. Even if our model is the theory on the finite volume, the phase transition can be captured

thanks to the large N limit. We then focus on the 2-site model n = 1, 2.

Defining the field strength f(n)µν = ∂µa(n)ν − ∂νa(n)µ, the Lagrangian of our holographic model
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Table 1: The AdS/CFT correspondence

The large N Bose-Hubbard 2d Gravity side

model side

µ (chemical potential) and ba†i bia (occupation number) at,i

vhop (hopping integral) and ba†i bja (bi-local operator) Φi,j

U hard wall cut-off uh

includes the IR potential and is given by

S = Sgauge + Smatter + SIR
mixed, (2.4)

Sgauge =

2∑
n=1

∫
d2x
√
−g
(
− 1

4
f(n)µνf

µν
(n)

)
, (2.5)

Smatter = −
∫
d2x
√
−g(| ~DΦ |2 +M2 |Φ |2), (2.6)

SIR
mixed = −

∫
u=uh

dtuh(2m2
R |Φ |2 +λ |Φ |4 +

+
∑
m,l≥1

λ(m,l) |Φ |2m
∑
n

(f (n)µ f (n)µ)l + . . . , (2.7)

where f
(i)
µ is the projected field strength in terms of the normal nµ satisfying nµn

µ = 1 at the IR boundary

and f
(i)
µ ≡ f (i)µνnν . Here, the covariant derivative is defined by Dµ = ∂µ − iqa(1)µ + iqa

(2)
µ (µ = u, t).

A few remarks of our holographic construction are as follows: (1) The Lagrangian includes an IR

potential and an IR mass [12, 13]. The IR potential and IR mass affect the phase structure of the

holographic model keenly and should be present in our bottom-up lagrangian. (2) The cutoff of the

AdS2 hard wall must be larger than vhop (uh/vhop � 1) because instable modes appear above the energy

scale greater than uh [17]. After introducing large cutoff uh, small energy can be added to the gravity

safely. (3) The Dirac quantization condition should be imposed on charges ni and magnetic monopole

charges [19]. The Dirac quantization condition is non-trivial and appears because of the gauge invariance

under the large gauge transformation surviving at the AdS boundary. In the string theory, moreover,

the quantization can be understood as the quantization of the coefficient of F1 and D-brane interactions

such as Iint ∼ nF1
∫
BNSNS (nF1 ∈ Z) [18].

The EOMs are derived from (2.4) in the radial gauge a
(m)
u = 0 as

(u2Φ′)′ −M2Φ +
q2

u2
(a

(1)
t − a

(2)
t )2Φ = 0,

a
(m)′′
t − 2q2 |Φ |2

u2
(a

(m)
t − a(m+1)

t ) = 0, (2.8)

Let us consider the M = 0 case. In general, there are two cases of solutions classified by the difference of

the gauge fields. First, the homogeneous case corresponds to the ansatz of equal gauge fields a
(1)
t = a

(2)
t .

In the homogeneous case, the non-linear interaction vanishes in (2.8) and the analytic solutions to the

EOMs are known. At the hard wall u = uh, the Dirichlet type boundary condition is imposed on fields.

The homogeneous phase corresponds to the Mott insulator phase since gauge fields are equal and the

occupation number is equal in each a site. Secondly, the non-homogeneous phase corresponds to the
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Figure 1: The figure is taken from [1]. The lobe-shaped phase structure of our holographic model with

thop = whop. Parameters are chosen as uh = 40, λ = 1, mR = 0, λ(1,1) = −3/2. Using the occupation

number in the Mott insulator phase, the amplitude of the lobe (an edge of the phase boundary) decreases

as 1/ρ.

ansatz of the unequal gauge fields a
(1)
t 6= a

(2)
t . The boundary condition at the hard wall is not unique

in the non-homogeneous phase. The (bottom-up) free type boundary condition is chosen for the bi-

fundamental matter. The occupation number is usually different in each a site in the non-homogeneous

phase. In the superfluid phase, the occupation number is also different in each a site. So, the non-

homogeneous phase should correspond to the superfluid phase arising in the limit of the large kinetic

energy. The non-homogeneous phase looks similar to the sector of the axial vector in the hard wall

AdS/QCD model [14] which has the same matter content in the gravity dual. Two different solutions are

consistent with only two phases in the Bose-Hubbard model at zero temperature and without impurities.

Performing the Wick rotation to the Euclidean signature, the free energy is evaluated using the

holographically renormalized action. By comparing the free energy between (non)-homogeneous phases,

the lobe-shaped structure of our holographic model can be realized in the large N limit in Fig. 1.

When vhop/U is large, the non-homogeneous phase is favored thermodynamically. In the different limit

vhop/U � 1, the homogeneous phase is favored. The phase boundary of these two phases has the shape

of the lobe. As seen in the Fig. 1, the decreasing amplitude of the lobe is also found. The edge of the lobe

behaves like vhop|edge = 1/ρ, where ρ is the occupation number in the Mott insulator phase surrounded

by the boundary. This edge also becomes the particle-hole symmetric point where three phases with

different occupation numbers are degenerate.

For non-zero hopping vhop 6= 0, symmetry breaking U(1)2 → U(1) happens. This symmetry breaking

becomes spontaneous symmetry breaking near the cusp point of the µb axis. 1 The second order phase

transition happens as the function of vhop at the cusp point. Far from the cusp point of the µb axis,

symmetry breaking becomes explicit breaking. The phase transition becomes a large N first order phase

transition in general. The order parameter of the phase transition becomes δn = n1 − n2 or the effective

hopping defined by dF/dvhop ∼ 〈b†i bj + c.c.〉. Remind that this effective hopping is not equal to the long-

range correlations in the superfluid phase of the field theory side but equal to the VEV of the bi-local

between nearest neighbor sites. Nevertheless, dF/dvhop can be understood as the order parameter of the

1As the function of µ, on the other hand, the phase transition is of the first order.
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phase transition in the large N limit.

The effective hopping in the gravity dual has some interesting properties. In the Mott insulator phase

and in the vhop → 0 limit, the effective hopping behaves as dF/dvhop ∝ vhop similar to those of the SU(N)

Bose-Hubbard model. By introducing non-zero bulk mass M , actually, the effective hopping can be fitted

to the numerical calculation in the SU(N) Bose-Hubbard model side at small hopping limit [15]. In the

non-homogeneous phase, the behavior is affected by the non-linear interaction with the gauge potential

for non-zero q. When q is small, the effective hopping should be similar to those of the Bose-Hubbard

model since the interactions with a large N CFT become small for small q.

To confirm that our non-homogeneous phase corresponds to the superfluid phase, zero modes should

be found around the second order phase transition point because a massless Goldstone mode is expected

to appear at the critical point. So, it is interesting to analyze the perturbation around the cusp point

in both the (non)-homogeneous phases. The holographic two point function can be computed from the

perturbation of the bi-fundamental scalar around the background solution. In the homogeneous phase,

the spectrum obtained from the perturbation of the bi-fundamental scalar is always gapped (see also [16]).

The gap is given by

∆ = πUn (n: a positive integer), (2.9)

where U = uh. The gap proportional to U is an expected result in the Mott insulator phase. On the

other hand, a zero mode appears in the spectrum in the non-homogeneous phase. The presence of the

zero mode could be connected to the spontaneous symmetry breaking U(1)2 → U(1).

3 Conclusion

We realized the lobe-shape of the phase structure of the Bose-Hubbard model. The Mott/non-homogeneous

phase transition was of the 1st order except for the cusp point by using dF/dvhop or the difference of the

occupation number as the order parameter. The phase transition became of the 2nd order at the cusp

point near vhop ∼ 0, where a zero mode arised from the spectrum of the perturbation.

A top down construction can be proposed in terms of a D3/D5/D7 system. The D3/D7 brane

configuration is based on the paper [20]. In the gravity dual, N D3-branes are replaced by the AdS5

soliton. Non-Abelian U(nF ) D5-branes are embedded and wrapped on asymptotic AdS2 × S4 in AdS5

soliton ×S5, where nF corresponds to the number of the lattice of the effective theory. After letting a

transverse scalar have the VEV, U(nF ) symmetry is broken to U(1)nF . The diagonal elements of the

adjoint field of U(nF ) and the off-diagonal elements of it can then be interpreted as U(1)nF gauge fields

and the bi-fundamental matter like matter contents of our bottom-up model, respectively.
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