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AN ALGORITHM OF COMPUTING COHOMOLOGY
INTERSECTION NUMBER OF HYPERGEOMETRIC INTEGRALS

SAIEI-JAEYEONG MATSUBARA-HEO and NOBUKI TAKAYAMA

Abstract. We show that the cohomology intersection number of a twisted

Gauss–Manin connection with regularization condition is a rational function.

As an application, we obtain a new quadratic relation associated to period

integrals of a certain family of K3 surfaces.

§1. Introduction

The study of intersection numbers of twisted cohomology groups and twisted period

relations for hypergeometric functions started with the celebrated work by Cho and

Matsumoto [6]. They clarified that the cohomology intersection number appears naturally as

a part of the quadratic relation, a class of functional identities of hypergeometric functions.

They also developed a systematic method of computing the cohomology intersection number

for 1-dimensional integrals. Since this work, several methods have been proposed to evaluate

intersection numbers of twisted cohomology groups (see, e.g., [3], [12], [13], [18], [22],

and [25], and the references therein). All methods utilize comparison theorems of twisted

cohomology groups and residue calculus.

We propose a new method in this paper. Our method reduces the problem of evaluating

the intersection numbers to the question of finding a rational solution of a system of linear

differential equations. The key idea of this method is that we regard the intersection matrix

of a twisted cohomology group as a horizontal section of the tensor product of a connection E

and its dual. For the proof, we assume an important condition: the regularization condition.

With the aid of this condition, we can replace transcendental objects such as cohomology

groups with compact support by algebraic de Rham cohomology groups.

In the beginning of §2, we briefly define the intersection matrix and derive the twisted

period relation in a general framework. The twisted period relation for hypergeometric

functions was first given by Cho and Matsumoto [6]. Calculations of intersection numbers

given by Matsumoto [22] will be very helpful to understand what intersection numbers

are and to study hypergeometric functions associated to hyperplane arrangements. A more

comprehensive version of a definition of intersection numbers and the twisted period relation

is given in [25, Sections 3 and 4]. We recommend readers to refer to these papers.

When the twisted cohomology group is associated to the Gel’fand-Kapranov-Zelevinsky

(GKZ) system (see [10]) for a matrix A admitting a regular unimodular triangulation,

our method gives a complete algorithm to determine the intersection matrix with the

aid of algorithms of finding rational solutions of a system of differential equations (see,

e.g., [24] and its references) and the formula of intersection numbers of twisted homology

groups for GKZ hypergeometric systems (see [19]). For an introductory exposition of the

intersection numbers of the twisted homology groups, see the book by Aomoto and Kita
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[3, Section 2.3] or [18]. Our method is demonstrated for the matrix A, which appears in a

study of a K3 surface (see [23]) in the last section. We note that the computation of the

cohomology intersection number of this example has not been obtained from the previous

approaches. Another important advantage of our method is that the validity of the formula

of cohomology intersection numbers can be checked by computer algebra systems without

any help of an expert. While this paper was under review, we obtained an algorithm to

construct the Pfaffian systems with respect to a given cohomology basis (see [20]). We

implemented the construction method and the algorithm of this paper as a Risa/Asir

package “mt gkz.rr” (see [21]).

We give a summary of contents. In §2, we state and prove the main theorem of this

paper (Theorem 2.1). In §3, we recall the basic setup of twisted cohomology theory

associated to GKZ systems and describe our algorithm of computing the cohomology

intersection numbers. We also mention a relation between the secondary fan and the

common denominator of the cohomology intersection matrix. In §4, we demonstrate how

our method works for a particular GKZ system which arises in a study of K3 surfaces.

§2. Statement and the proof

Let X, Y be complex smooth quasi-projective varieties, and let f :X → Y be an affine

morphism. We assume f is generically smooth in order to apply Thom–Mather’s first isotopy

lemma. We put d = dimX−dimY . In the following, we use the notation of [17]. For any

bounded complex of DX -modules L, we set
∫
f
L= Rf∗(DY←X ⊗f−1DX

L), where DY←X is

the transfer module. We also put DL= RHomDX
(L,DX)⊗OX

Ω⊗−1
X . With this aid, we set∫

f !
L = D ◦

∫
f
◦DL. Let M = (E,∇) be a regular integrable connection on X, and we put

N =
∫ 0

f
M =H0

∫
f
M . By the general theory of holonomic D-modules, we see that

∫
f
M is a

complex of DY -modules with regular holonomic cohomologies, and therefore, N is a regular

connection defined on a nonempty Zariski open subset U of Y. By shrinking U if necessary,

we may assume that f : f−1(U)→ U is smooth. Now, let us assume further the following

nontrivial condition: the canonical morphism∫
f !

M →
∫
f

M(2.1)

is an isomorphism, or equivalently, the canonical morphism

D

∫
f

M →
∫
f

DM(2.2)

is an isomorphism. Here, D stands for the holonomic dual. This condition is called the

regularization condition. This name comes from the literature of hypergeometric functions

(see [3, Theorem 3.1]). Since M is a connection, we see that DM is isomorphic to the dual

connection (E∨,∇∨) (see [17, Example 2.6.10]).

Considering the Spencer resolution, we see that
∫
f
M is represented on U by

Rf∗(DRX/Y (M)), where DRX/Y (M) = (Ω•+d
X/Y (E),∇X/Y ) is the relative de Rham complex

(see [8, Proposition 1.4]). Again by shrinking U, we may assume that N is free on U, and

that fan : f−1(U)an →Uan is a fiber bundle by Thom–Mather’s first isotopy lemma (see [29,

Corollary 1.2.14] and [30, théorème 4.14] in view of [30, théorèmes 2.2 and 3.3]). We take a

free basis {φj}rj=1 ⊂ H0(U,N) = H0(Γ(f−1(U),DRX/Y (M))) (resp. {ψj}rj=1 ⊂ H0(U,DN))

https://doi.org/10.1017/nmj.2021.2 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.2


258 S.-J. MATSUBARA-HEO AND N. TAKAYAMA

on U. The connection ∇GM : N → Ω1(N) (resp. ∇∨GM : DN → Ω1(DN)) with respect

to this basis {φj}rj=1 (resp. {ψj}rj=1) is given by ∇GM = d+Ω (resp. ∇∨GM = d+Ω∨)

for some r× r matrix Ω = (ωij)
r
i,j=1 (resp. Ω∨ = (ω∨

ij)
r
i,j=1) with values in 1-forms. Note

that we have ∇GMφi =
∑r

j=1ωji ∧ φj (resp. ∇∨GMψi =
∑r

j=1ω
∨
ji ∧ ψj). Applying the

solution functor to (2.1), applying the commutativity between direct images and solution

functors (see [17, Theorem 7.1.1]), and taking a stalk at y ∈ U , we obtain a sequence of

isomorphisms

Hd(f−1(y)an;L �f−1(y))	 (Rdfan
∗ L)y 	 (Rdfan

! L)y 	Hd
c(f

−1(y)an;L �f−1(y)),(2.3)

where L is the dual local system of the local system of flat sections (Ean)∇
an

and Hc

stands for the cohomology group with compact support (see [3, Section 2.2]). The first

isomorphism of (2.3) is a result of Lemma 4.1 in the Appendix. By regularity, we also have

the comparison isomorphism of Deligne-Gröthendieck (see [7, corollaire 6.3])

H0(f−1(y);DRX/Y (DM))	Hd(f−1(y)an;L �f−1(y)).(2.4)

Taking the Poincaré dual of (2.3), we obtain a comparison isomorphism of homology

groups

Hd(f
−1(y)an;L �f−1(y))

∼→Hlf
d (f−1(y)an;L �f−1(y)).(2.5)

Here, we denote by Hlf the locally finite (or Borel–Moore) homology group (see [3, Section

2.2]).

Now, we define the cohomology intersection matrix. Following [6], we will denote it by

Ich. We denote by L∨ the dual local system of L. The cohomology intersection pairing is

the perfect pairing between Hd
c(f

−1(y)an;L �f−1(y)) and Hd(f−1(y)an;L∨ �f−1(y)) defined by

Hd(f−1(y)an;L∨ �f−1(y))×Hd
c(f

−1(y)an;L �f−1(y)) 
 ([ω], [η]) �→ 〈[ω], [η]〉ch =
∫
f−1(y)

ω∧η ∈
C for a fixed y. Note that we take the standard resolution of L �f−1(y) and L∨ �f−1(y) by

means of a twisted de Rham complex by regarding f−1(y) as a 2d-dimensional smooth man-

ifold (see [3, Section 2.2]). By abuse of notation, we often write 〈ω,η〉ch instead of 〈[ω], [η]〉ch.
In view of isomorphisms (2.3) and (2.4), we can define the cohomology intersection matrix

Ich = (〈φi,ψj〉ch)i,j , which is nondegenerate at each y ∈U . Since fan : f−1(U)an →Uan is a

fiber bundle, we can take a free basis γj ∈Rdfan
! (L) and γ∨

j ∈Rdfan
! (L∨) on a neighborhood

W of each y ∈ Uan. We can define the homology intersection pairing as the perfect

pairing Hd

(
f−1(y)an;L �f−1(y)

)
×Hlf

d

(
f−1(y)an;L∨ �f−1(y)

)

 (γ,γ∨) �→ 〈γ,γ∨〉h ∈C, which

is defined as the Poincaré dual of the cohomology intersection pairing (see [18]). By local

trivialization, we may assume that the homology intersection matrix Ih = (〈γi,γ∨
j 〉h)i,j is

constant on W, and Ih is nondegenerate in view of (2.5). Now, let us put P =
(∫

γj
φi

)
i,j

and P∨ =
(∫

γ∨
j
ψi

)
i,j
. In view of (2.3)–(2.5), the twisted period relation (see [6, Theorem

2]) is

Ih = tP tI−1
ch P∨.(2.6)

Here, tIch is the transposed matrix of Ich. By the definition of the connection matrix, we

have two equalities

dP = tΩP, dP∨ = tΩ∨P∨.(2.7)
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We put I = Ich and J = tI−1. Since Ih is locally constant, by differentiating (2.6), we obtain

the identity

dJ +ΩJ +J tΩ∨ = 0.(2.8)

Here, we have used the fact that both P and P∨ are nondegenerate by the perfectness of the

period pairings (see [3, Lemma 2.5]). Taking into account the equality dI−1 =−I−1(dI)I−1,

we have

dI = tΩI+ IΩ∨.(2.9)

We call (2.9) the secondary equation. Note that Ω and Ω∨ are matrices with entries in

regular 1-forms on U. We also remark that the cohomology intersection matrix Ich is not

necessarily a constant matrix for a general choice of the bases {φi} and {ψi} (see formula

(4.4) of this paper). The following theorem is the main result of this paper.

Theorem 2.1. Suppose that the regularization condition (2.1) is satisfied and N is

irreducible. Then, the secondary equation (2.9) is a regular connection, that is, any analytic

solution of (2.9) has at most polynomial growth along any singularity. Moreover, any

rational solution of (2.9) is, up to constant multiplication, equal to Ich.

Note that the secondary equation (2.9) can be rewritten in an invariant form: d〈φ,ψ〉ch =

〈∇GMφ,ψ〉ch+ 〈φ,∇∨GMψ〉ch. Therefore, we obtain the following corollary.

Corollary 2.2. Under the assumption of Theorem 2.1, let B be an OU -bilinear form

B :N ⊗OU
DN →OU such that for any local sections φ of N and ψ of DN , the equality

dB(φ,ψ) =B(∇GMφ,ψ)+B(φ,∇∨GMψ)(2.10)

holds. Then, B is, up to constant multiplication, equal to the cohomology intersection pairing

〈•,•〉ch.

By abuse of notation, let us denote by U a complex smooth quasi-projective variety and

by (E,∇E) a connection on U. In the sequel, we denote this connection simply by E if no

confusion arises. We set End(E) =HomO(E,E), and the associated connection on End(E)

is denoted by ∇. The endomorphism sheaf End(E) is again a connection. In other words,

it is a D-module, is locally free, and is of finite rank as an O-module. See, for example, [17,

Chapter 5], where one can find some fundamental properties of this connection. We recall

that analytic continuations of flat sections (Ean)∇E naturally give rise to a representation

of the fundamental group π1(U
an, x̊) for a base point x̊ ∈U . We call this representation the

monodromy representation.

Proposition 2.3. Suppose the monodromy representation of (E,∇E) is irreducible. Let

x̊ ∈ U be a point. We put

S = {ϕ ∈ (End(E)an)∇x̊ | ϕ is monodromy invariant}.(2.11)

Then, dimCS = 1.

Proof. Remember that the connection on End(E) is given by

〈∇ϕ,s〉=∇E(〈ϕ,s〉)−〈ϕ,∇Es〉(2.12)
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for any ϕ ∈ End(E) and s ∈ E. Suppose ϕ ∈ (End(E)an)∇. For any s ∈ (Ean)∇E , we have

0 = 〈∇ϕ,s〉=∇E(〈ϕ,s〉).(2.13)

We denote by πE(g) (resp. πEnd(g)) the analytic continuation of flat sections of E (resp.

End(E)) along a loop g ∈ π1(U
an, x̊). We have

πE(g)(〈ϕ,s〉) = 〈πEnd(g)ϕ,πE(g)s〉,(2.14)

and therefore,

πEnd(g)ϕ= πE(g)◦ϕ◦πE(g
−1).(2.15)

From this, we can see that πEnd(g)ϕ= ϕ is equivalent to πE(g)◦ϕ= ϕ◦πE(g). Therefore,

we have an identity

S = Endπ1(Uan ,̊x)(Ex̊).(2.16)

The assertion follows from Schur’s lemma.

Next, we recall the trivialization formula for a tensor connection. Let (F,∇F ) be another

connection on U. Suppose that (E,∇E) and (F,∇F ) are trivialized with respect to frames

(e1, . . . ,er) and (f1, . . . , fr′). The connections are trivialized as ∇E = d+A∧ and ∇F =

d+B∧, where A = (ωi
j) and B = (ω̃i

j) are square matrices with entries in 1-forms. Then,

for any section
∑

1≤i≤r
1≤j≤r′

αijei⊗ fj of E⊗F := E⊗OU
F , we have

∇E⊗F

⎛
⎜⎜⎝ ∑

1≤i≤r
1≤j≤r′

αijei⊗ fj

⎞
⎟⎟⎠=

∑
i,j

dαi,jei⊗ fj +
∑
j

(e1, . . . ,er)A

⎛
⎜⎝

α1j

...

αrj

⎞
⎟⎠⊗ fj

+
∑
i

ei⊗ ( f1, . . . , fr′)B

⎛
⎜⎝

αi1

...

αir′

⎞
⎟⎠(2.17)

=
∑
i,j

dαi,j ei⊗ fj +
∑
i,j

(
r∑

k=1

ωi
kα

kj

)
ei⊗ fj +

∑
i,j

⎛
⎝ r′∑

l=1

ω̃j
l α

il

⎞
⎠ ei⊗ fj .(2.18)

Therefore, if we trivialize the tensor product E⊗F with respect to the frame { ei⊗ fj},
the connection is given by ∇E⊗F = d+A •+ • tB. Now, we can show that the secondary

equation is actually a tensor connection.

Proposition 2.4. The secondary equation (2.9) coincides with the tensor connection

DN ⊗N .

Proof. Recall that the connection of N is given by d+Ω with respect to the basis φj and

that of DN is given by d+Ω∨ with respect to the basis ψj . Thus, their dual connections with

respect to the dual frames are given by d− tΩ (connection for DN) and d− tΩ∨ (connection

for N ), respectively. Therefore, the connection DN⊗N with respect to these frames is given

by d− tΩ•−•Ω∨. This is nothing but the secondary equation (2.9).
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Lemma 2.5. If (E,∇E) is a regular connection, and if s ∈ Γ(Uan,(Ean)∇E ) is

monodromy invariant, we have s ∈ Γ(U,E), that is, s is an algebraic section.

Proof. Take a projective compactification X of U, so that D=X \U is a normal crossing

divisor. Since s has at most polynomial growth along D (see [7, théorème 4.1]), we see that

there is a positive integer m such that s ∈ Γ(Xan,Oan
E (mD)) = Γ(X,OE(mD)). Here, the

equality is a consequence of GAGA (see [28]).

(Proof of Theorem 2.1) Recall that N is a regular connection, hence so is DN . Therefore,

the tensor connection DN ⊗N is also regular. By Theorem 2.4, we can conclude that (2.9)

is regular. The first part of the statement is verified.

In view of Theorem 2.3 and 2.5, and the fact that DN ⊗N is isomorphic to End(N), we

see that the rational solutions of (2.9) are 1-dimensional. Taking into account that Ich is

monodromy invariant, the second part of the statement is confirmed.

§3. Euler integral representations and twisted period relations

In this section, we discuss general results on Euler integral representations. Consider k

Laurent polynomials hl,z(l)(x) =

Nl∑
j=1

z
(l)
j x a(l)(j) (l = 1, . . . ,k), where each coefficient z

(l)
j is

regarded as a variable and x = (x1, . . . ,xn). For any parameters γl ∈ C (l = 1, . . .k) and

c ∈ Cn, an integral

fΓ(z) =

∫
Γ

h1,z(1)(x)−γ1 · · ·hk,z(k)(x)−γkxcdx

x
(3.1)

is called Euler integral. In the formula above, we put dx
x = dx1

x1
∧ · · · ∧ dxn

xn
. Here, Γ is a

suitable element of the twisted homology group associated to the multivalued function

Φ = h1,z(1)(x)−γ1 · · ·hk,z(k)(x)−γkxc.(3.2)

Let us clarify the meaning of this choice. We define an algebraic connection on a trivial

bundle over (Gm)n \{x ∈ (Gm)n | h1,z(1)(x) · · ·hk,z(k)(x) = 0} by

∇x = dx−
k∑

l=1

γl
dxhl,z(l)(x)

hl,z(l)(x)
∧+

n∑
i=1

ci
dxi

xi
∧ .(3.3)

Here, dx is the exterior derivative in x -variables. Formally, the action of the connection ∇x

on any function f is given by the formula ∇xf =Φ−1× (dx(Φ×f)). We denote by CΦ the

dual local system of the local system of flat sections of the analytification ∇an
x . Then, our

integration cycle Γ belongs to the twisted homology group

Hn

(
(C×)n \{x ∈ (C×)n | h1,z(1)(x) · · ·hk,z(k)(x) = 0};CΦ

)
.(3.4)
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To control the Euler integral fΓ, we use a GKZ system via the Cayley trick. We put

Al = ( a(l)(1)| · · · | a(l)(Nl)), N =N1+ · · ·+Nk, and define an (n+k)×N matrix A by

A=

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
. . .

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1

A1 A2 · · · Ak

⎞
⎟⎟⎟⎟⎟⎠ .(3.5)

We put δ=

(
γ

c

)
and denote by MA(δ) the GKZ system (see [10]). Note that our parameters

γ and c correspond to −α and β in [10]. The following proposition is well known.

Proposition 3.1 [10]. The integral (3.1) is a solution of MA(δ).

More generally, under a suitable condition on parameters δ, one can prove that any solution

of MA(δ) has an Euler integral representation (see [10]).

Let π :X = (Gm)nx×AN
z \
⋃k

l=1{(x,z) | hl,z(l)(x) = 0}→AN
z = Y be the projection, where

subscripts stand for coordinates. We define an algebraic connection of the trivial bundle

over X by ∇ = Φ−1 ◦∇ = Φ−1 ◦ d(x,z) ◦Φ. We denote by ZA the sublattice of Z(n+k)×1

spanned by column vectors of A. If ZA=Z(n+k)×1, δ is nonresonant in the sense of [10], and

γl /∈ Z for any l= 1, . . . ,k, we have the regularization isomorphism
∫
π!
(OX ,∇)

∼→
∫
π
(OX ,∇)

and a canonical isomorphism MA(δ) 	
∫
π
(OX ,∇) by [19, Theorem 2.12]. Note that the

regularization condition is, in general, violated if any of γl is an integer (see [19, Remark

2.14]). If we denote by U the Newton nondegenerate locus of MA(δ), MA(δ) is a connection

on U (see [1, Lemma 3.3]).

Now, let us fix a basis {φi(z)}ri=1 ⊂
∫ 0

π
(OX ,∇) �U and a basis {ψi(z)}ri=1 ⊂∫ 0

π
(OX ,∇∨) �U . By using the relative de Rham complex, we can explicitly compute the

connection ∇GM of
∫ 0

π
(OX ,∇) �U via the formula

∇GMφ= dzφ−
∑
j,l

γl
x a(l)(j)

hl,z(l)(x)
dz

(l)
j ∧φ(3.6)

for any φ ∈ Hn
(
(Gm)nx ×U ;

(
Ω•

(Gm)nx×U/U

(
∗∪k

l=1 {hl,z(l)(x) = 0}
)
,∇x

))
=
∫ 0

π
(OX ,∇) �U .

We have a similar formula for the connection ∇∨GM of
∫ 0

π
(OX ,∇∨) �U . These bases as

well as the connection matrices ∇GM = dz +Ω and ∇∨GM = dz +Ω∨ can explicitly be

constructed via Gröbner bases (see [15, Theorem 2]). Note that there is an isomorphism

induced by the correspondence MA(δ) 
 [1] �→ [dxx ] ∈
∫ 0

π
(OX ,∇) (see [19, Corollary 3.4]).

When A is a matrix of the form (3.5), the associated GKZ system is regular holonomic (see

[16]). In [19], the intersection numbers for a basis of the twisted homology group for the

GKZ system associated to a matrix A of the form (3.5) admitting a unimodular regular

triangulation are determined when parameters are generic (see [19, Theorem 8.1]). The

irreducibility of the GKZ system is proved under the nonresonance condition (see [4], [10],

and [27]). Note that irreducibility of a regular holonomic D-module is equivalent to that

of the corresponding perverse sheaf by Riemann–Hilbert correspondence (see [17, Theorem

7.2.5]). Algorithms for finding rational solutions have been studied by several approaches
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(see, e.g., [24] and its references). These results together with our Theorem 2.1 yield the

following theorem.

Theorem 3.2. Given a matrix A = (aij) as in (3.5) admitting a unimodular regular

triangulation T. When parameters are nonresonant, γl /∈ Z, and moreover the set of series

solutions with respect to T is linearly independent, the intersection matrix of the twisted

cohomology group of the GKZ system associated to the matrix A can be algorithmically

determined.

We rename (z
(l)
j )j,l as (zi)i and denote ∂

∂zi
by ∂i. The action of a differential operator

to a function is denoted by •. In other words, ∂i • f means ∂f
∂zi

. Moreover, we denote by

Ωi the coefficient matrix of Ω with respect to the 1-form dzi. The algorithm we propose is

summarized as follows.

1. Obtain a Pfaffian system ∂i+Ωi from the GKZ hypergeometric ideal defining MA(δ)

generated by ∑
j

aijzj∂j + δi, i= 1, . . . ,n+k,

∂u−∂v, Au=Av,u,v ∈ NN
0 .

It is well known that this step can be performed by a Gröbner basis computation in the

ring of differential operators with rational function coefficients. See, for example, [14,

6.2, 7.4.2].

2. Find a nonzero rational function solution I of the secondary equation,

∂i • I− tΩiI− IΩ∨
i = 0, i= 1, . . . ,N.

To be more precise, see, for example, [24] and its references.

3. Determine the constant multiple of I by the twisted period relation (2.6). To be more

precise, we use [19, Theorem 8.1].

Let G be the Gröbner basis of the GKZ hypergeometric ideal obtained in step 1. The set of

the standard monomials for G, which is the set of monomials in ∂ that are not divisible by

the initials of the elements of G, is of the form {∂s |s ∈ S ⊂ NN
0 } (see, e.g., [14, 6.1]). The

basis of the twisted cohomology groups corresponding to G is obtained by applying these

∂s’s to the kernel function of (3.1) and dividing it by (3.2).

Example 3.3. Let us determine algorithmically the intersection matrix of the twisted

cohomology group for a matrix standing for the hypergeometric function 2F1, which was

studied by [6] and [22] with geometric methods. We put

A=

⎛
⎝ 1 1 0 0

0 0 1 1

0 1 0 1

⎞
⎠ , F =

(
1

z4∂4

)
.

Here, {1,∂4} in the frame F is the set of the standard monomials of a Gröbner

basis of the left ideal defining MA(δ). The bases of the twisted cohomology group

corresponding to the frame F is
{

dx
x , z4

∂ logΦ
∂z4

dx
x = −γ2z4dx

(z3+z4x)x

}
⊂
∫ 0

π
(OX ,∇) �U and{

dx
x , z4

∂ logΦ−1

∂z4
dx
x = γ2z4dx

(z3+z4x)x

}
⊂
∫ 0

π
(OX ,∇∨) �U , where Φ = (z1+ z2x)

−γ1(z3+ z4x)
−γ2xc.
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The expression ∇GM
∂z4

[
dx
x

]
= −γ2z4dx

(z3+z4x)x
is obtained by the exchange of ∂z4 and the integral

sign as

∂z4 •
∫
Γ

(z1+xz2)
−γ1(z3+xz4)

−γ2xc · dx
x

=

∫
Γ

(z1+xz2)
−γ1(z3+xz4)

−γ2xc · −γ2z4
z3+z4x

dx

x

and the perfectness of the twisted homology and cohomology groups. The other expressions

can be obtained analogously. Generally speaking, through the connection ∇GM in (3.6), we

can define an action of the Weyl algebra DN on
∫ 0

π
(OX ,∇); the action of ∂zi is given by

∇GM
∂zi

. When S is the set of the standard monomials of a Gröbner basis of the left ideal

defining MA(δ),
{
s•
[
dx
x

]∣∣ s ∈ S
}
is a free basis of OU ′-module

∫ 0

π
(OX ,∇)|U ′ 	MA(δ)|U ′ ,

where U ′ is the complement of the singular locus of Ωi’s in Theorem 3.2 associated to the

Gröbner basis.

Now, we set z1 = z2 = z3 = 1 because of two reasons. The first reason is that the

solutions of the GKZ system can be expressed as a composition of rational functions and

transcendental functions of one variable by the homogeneity condition (first-order operators

in MA(δ)); see, e.g., [26, Proposition 1.3, 7]). The second reason is that if we do not set these

zi’s to 1, the procedure to get a rational solution requires more computational resources,

which are wasteful because of the homogeneity condition. For the frame F, we have the

following connection and dual connection matrices:

Ω =

(
0 −cγ2

z4−1
1
z4

−(c+γ2)z4+c−γ1

z4(z4−1)

)
dz4,

Ω∨ =

(
0 −cγ2

z4−1
1
z4

(c+γ2)z4−c+γ1

z4(z4−1)

)
dz4.

These can be obtained by a Gröbner basis of the hypergeometric ideal MA(δ) (see, e.g.,

[14, Chapter 6] and [26]). We find the following rational solution of the secondary equation

dz4I− tΩI− IΩ∨ = 0.

I =

(
1 cγ2

γ1+γ2
−cγ2

γ1+γ2

cγ2(γ1−c)
γ1+γ2

)
.

Let us utilize the quadratic relation of [19, Theorem 8.1] to determine the constant multiple

of I. Let T be a unimodular triangulation {123,234}. From the relation, we have

γ1γ2
∑
σ∈T

π3

sinπA−1
σ δ

ϕσ,0(z;δ)ϕσ,0(z;−δ) =
〈dxx , dxx 〉ch
2π

√
−1

,

where ϕσ,0(z;δ) is the series solution of the form

∑
k∈ N0

zkL+ρ∏4
i=1Γ(1+ρi+kLi)

, L= (1,−1,−1,1),Aρ+ δ = 0,ρi = 0 when i �∈ σ

and Aσ is the submatrix of A constructed by taking the columns standing for σ. For example,

when σ = 234, Aσ is the 3× 3 matrix of which columns are the second, third, and fourth
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columns of A. The constant term of the left-hand side is

1

γ1− c

(
γ1
c
+

γ2
c−γ1−γ2

)
=

−(γ1+γ2)

c(c−γ1−γ2)
(3.7)

by utilizing the rule Γ(1+z)Γ(1−z) = z π
sinπz . We multiply a constant to I, so that the (1,1)

element is equal to the constant (3.7) ×2π
√
−1. Thus, we obtain the following intersection

matrix of the twisted cohomology group:

2π
√
−1

( −(γ1+γ2)
c(c−γ1−γ2)

−γ2

c−γ1−γ2

γ2

c−γ1−γ2

γ2(c−γ1)
c−γ1−γ2

)
.(3.8)

We conclude this section with simple observations on the cohomology intersection

numbers associated to GKZ system. The first observation is on the dual fan of the Newton

polytope of the LCM of the denominators (common denominator) of the entries of Ich.

To begin with, we recall the basic notion of Newton polytope (see [11, Chapter 6]). Let

f(z) =
∑

α fαz
α be a polynomial in z = (z1, . . . , zN ). The Newton polytope New(f) is the

convex hull of the index set {α | fα �= 0} in RN×1. For any convex polytope P in RN×1

and its face F, its normal cone NF (P ) is defined to be the set of ω ∈ (RN×1)∗ = R1×N

such that the face determined by the vector −ω is F (〈−ω,x〉 takes the maximum on F

while x ∈ P ). The dual fan of the Newton polytope New(f) is denoted by N(f). Now, let us

denote by EA(z) the product of principal AΓ-discriminants for any face Γ of New(A) (see

[11, Chapter 9 and Definition 1.2]). Here, New(A) is the convex hull of column vectors of A.

Since the secondary equation is a tensor product of MA(δ) and MA(−δ), its singular locus

is contained in the vanishing locus of EA(z). If g(z) denotes the common denominator of

Ich, we have {g(z) = 0} ⊂ {EA(z) = 0}. By Hilbert’s nullstellensatz, there is a polynomial

h(z) and a positive integer l such that EA(z)
l = g(z)h(z). Taking their Newton polytopes,

we have New(El
A) = New(g)+New(h). Here, + is the Minkowski sum of convex polytopes.

If we take their dual fans, we see that the left-hand side gives the secondary fan (see [11,

Chapters 7 and 10, Proposition 1.5, and Theorem 1.4]), whereas the right-hand side is a

fan which is a refinement of N(g). Summing up all the arguments above, we obtain the

following theorem.

Theorem 3.4. Suppose that the parameter δ is nonresonant and γl /∈ Z for any l =

1, . . . ,k. Let g be the common denominator of Ich. Then, the secondary fan is a refinement

of N(g).

Note that by [11, Chapter 6 and Corollary 1.6], there is an injective correspondence from

open cones of N(g) to convergence domains of Laurent series expansions of 1
g(z) .

The second observation is on how the cohomology intersection number depends on

the parameters δ. In Example 3.3, the basis F depends rationally on the parameters

δ. In this case, the cohomology intersection numbers are rational functions in both the

variables z and the parameters δ with coefficients in the field of rational numbers Q.

Let us formulate the observation above. For any field extension K ⊂ C of Q, we set

(Gm(K))nx = Spec
(
K[x±

1 , . . . ,x
±
n ]
)
. Since the (reduced) defining equation EA(z) of the

complement Z = AN \U is a rational polynomial, we can also consider a reduced scheme

U(K) defined over K whose base change to C is isomorphic to U. We denote by DU(K)

the ring of differential operators on U(K). Any element P of DU(K) is a finite sum P =
1

EA(z)l

∑
αaα(z)∂

α, where aα(z) is a polynomial with coefficients in K and l is an integer.
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Theorem 3.5. Suppose that δ is nonresonant, γl /∈ Z, and A as in (3.5) admits

a unimodular regular triangulation T. Then, for any P1,P2 ∈ DU(Q(δ)), the cohomology

intersection number
〈P1·dxx ,P2·dxx 〉ch

(2π
√
−1)n

belongs to the field Q(δ)(z).

Proof. By the definition of the action of the ring Q(δ)〈z,∂z〉, it is enough to show

that the function I(z;δ) =
〈x ah b dx

x ,x a′h b′ dx
x 〉ch

(2π
√
−1)n

belongs to the field Q(δ)(z). Here, a =

(a1, . . . ,an), a′ ∈ Zn, b = (b1, . . . , bk), b′ ∈ Zk, and x ah b = xa1
1 · · ·xan

n hb1
1 · · ·hbk

k . Due to

[2, Lemma 3.2], we may assume that the parameter δ is generic, so that the formula [19,

Theorem 8.1] holds. Let B be an N × (N −n− k) integer matrix whose column vectors

generate the kernel lattice Ker(A× : ZN → Zn+k) and are compatible with the regular

triangulation T in the sense of [9]. We take an (N −n− k)×N integer matrix C such

that CB is an identity matrix. We define a morphism jA : (C∗)n+k → (C∗)N by jA(t) = tA

and a morphism πB : (C∗)N → (C∗)N−n−k by πB(z) = zB. Note that the morphism jA
combined with the product structure of (C∗)N induces an action of (C∗)n+k on (C∗)N . For

any t= (t1, . . . , tn+k) in (C∗)n+k, we write τ1 = (t1, . . . , tk) and τ2 = (tk+1, . . . , tn+k). By [19,

Theorem 8.1], we have a formula I(jA(t)z;δ) = τb+b′

1 τa−a′

2 I(z;δ). Taking into account this

homogeneity property and the exact sequence

1→ (C∗)n+k jA→ (C∗)N
πB→ (C∗)N−n−k → 1,(3.9)

we only have to show that I1(ζ;δ)
def
= I(ζC ;δ) ∈ Q(δ)(z). Here, ζ is a coordinate of

(C∗)N−n−k. Note that the Laurent series expansion formula [19, Theorem 8.1] is valid

when the absolute values of entries of ζ are all small. Since I(z;δ) is a solution of the

secondary equation (2.9) and (2.9) is isomorphic to MA(δ)⊗MA(−δ), for an appropriate

nonnegative integer l and a polynomial f(ζ;δ) in ζ and a vector α0 ∈ N0
N−n−k, we have

I1(ζ;δ) =
f(ζ;δ)

ζα0EA(ζC)l
. Note that EA(z) ∈ Q[z]. We write f(ζ;δ) =

∑d
i=1 fi(δ)ζ

αi , where αi

are elements of N0
N−n−k. By choosing a suitable vector φ= (φ1, . . . ,φN−n−k)∈ N0

N−n−k

and by rearranging αi if necessary, we may assume 0 ≤ 〈φ,α1〉 < · · · < 〈φ,αd〉. Here, 〈•,•〉
is the dot product of vectors. We set g(ζ) = EA(ζ

C)l. For a complex variable ξ, we write

ξφ = (ξφ1 , . . . , ξφN−n−k). We put F (ξ)
def
= f(ξφ;δ) = ξ〈φ,α0〉g(ξφ)I1(ξ

φ;δ). By [19, Theorem

8.1] and the fact that B is compatible with T, we see that I1(ξ
φ;δ) is a Laurent series in ξ

with coefficients in Q(δ). Since F (ξ) =
∑d

i=1 fi(δ)ξ
〈φ,αi〉, we obtain fi(δ) ∈Q(δ). Thus, we

have f(ζ;δ) ∈Q(δ)[ζ], hence we obtain I1(ζ;δ) ∈Q(δ)(z).

For any field extension K ⊂ C of Q(δ), we define the symbol
∫ 0

π
(OX(K),∇) �U(K) by

Hn

(
(Gm(K))nx ×U(K);

(
Ω•

(Gm(K))nx×U(K)/U(K)

(
∗

k⋃
l=1

{hl,z(l)(x) = 0}
)
,∇x

))
,(3.10)

where Hn stands for the n-th hypercohomology group. By the formula (3.6),
∫ 0

π
(OX(K),∇)

�U(K) naturally has a structure of DU(K)-module. When δ is nonresonant, γl /∈ Z, and

K = Q(δ), any element [φ] ∈
∫ 0

π
(OX(K),∇) �U(K) can be written as [φ] = P · [dxx ] for some

P ∈DK . Therefore, we obtain the following theorem.
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Theorem 3.6. Under the assumption of Theorem 3.5, the normalized cohomology

intersection pairing B = 〈•,•〉ch
(2π

√
−1)n

defines a perfect bilinear pairing

∫ 0

π

(OX(Q(δ)),∇) �U(Q(δ)) ×
∫ 0

π

(OX(Q(δ)),∇∨) �U(Q(δ))→OU(Q(δ))(3.11)

such that the formula (2.10) holds.

Therefore, when the parameter δ is generic, we can treat it as a formal symbol and we do

not need to consider any algebraic extension of Q in our algorithm.

§4. A period integral associated to a family of K3 surfaces [23]

This section is a demonstration of our algorithmic method to obtain the intersection

matrix of twisted cohomology groups and functional identities derived by the twisted

period relation. The intersection matrix and some functional identities presented in this

section have not been obtained by other methods. We also note that once we obtain the

intersection matrix, the correctness modulo a constant multiple can be checked if it satisfies

the secondary equation (2.9). Since the entries of the matrix are rational functions, it can

be checked by computer algebra systems.

We consider an Euler integral

f(z) =

∫
Γ

u
dx∧dy

xy
, u= (z1x

3+z2x
2y+z3x

2y−1+z4x
2+z5x)

−c1xc2yc3(4.1)

under the nonresonance condition on c. This function is a solution of the GKZ system

associated to the matrix

(
1

a(1)(j)

)
=

⎛
⎝ 1 1 1 1 1

3 2 2 2 1

0 1 −1 0 0

⎞
⎠ .

We can see that the sets of rational differential forms

ω =
dx∧dy

xy
,
∂ logu

∂z5
ω,

∂ logu

∂z4
ω,

∂2u

∂z25

1

u
ω(4.2)

and

ω =
dx∧dy

xy
,
∂ logu−1

∂z5
ω,

∂ logu−1

∂z4
ω,

∂2(u−1)

∂z25
uω(4.3)

are bases of the twisted cohomology groups and construct the connection matrices dz +Ω

and dz +Ω∨ with these bases by Gröbner basis computation (see, e.g., [14, Chapter 6]).

When c=

⎛
⎝ 1/2

1+ε

ε

⎞
⎠and z1 = z2 = z3 = 1 (we make this specialization with the same reason

mentioned in Example 3.3), we find by solving the secondary equation that the intersection
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matrix of the cohomology group is a scalar multiple of the matrix

I =

⎛
⎜⎜⎜⎜⎝

1 −4ε+1
8z5

0 4ε2+3ε−1
8z2

5
4ε−1
8z5

−4ε2+ε
8z2

5
0 r24

0 0 0 r34
4ε2−5ε+1

8z2
5

r42 r43 r44

⎞
⎟⎟⎟⎟⎠ ,(4.4)

where rij are rational functions in the z4, z5, and ε. Note that this I gives an example that

Ich is not necessarily a constant matrix with respect to z. By [19, Theorem 8.1], we can see

that the self-intersection number of the first form is〈
dx∧dy

xy
,
dx∧dy

xy

〉
|z1=z2=z3=1 =

32

1−16ε2
(2π

√
−1)2.(4.5)

Thus, the intersection matrix is equal to (2π
√
−1)2 32

1−16ε2 I, which gives quadratic relations

of GKZ hypergeometric series. The whole intersection matrix of the twisted cohomology

group is posted at our web page.1

Let us show a quadratic relation by taking a restriction to {z1 = z2 = z3 = z5 = 1} (see

[23]). In this case, we have three independent series

ϕ345(1,1,1, z4,1;c(ε)) = z
− 1

2−2ε
4

∑
m,n≥0

(z−2
4 )m+n

Γ(1+ε+n)Γ(12 −2ε−2m−2n)Γ(1+ε+m)m!n!
,

(4.6)

ϕ245(1,1,1, z4,1;c(ε)) = ϕ134(1,1,1, z4,1;c(ε))

=z
− 1

2
4

∑
m,n≥0

(z−2
4 )m+n

Γ(1−ε+n)Γ(12 −2m−2n)Γ(1+ε+m)m!n!
,(4.7)

ϕ124(1,1,1, z4,1;c(ε)) = z
− 1

2+2ε
4

∑
m,n≥0

(z−2
4 )m+n

Γ(1−ε+n)Γ(12 +2ε−2m−2n)Γ(1−ε+m)m!n!
.

(4.8)

From our intersection matrix of the twisted cohomology group, we obtain the following

quadratic relation (see [19, Theorem 8.1]):

1

2

{
π3

sin2πεcosπ(2ε)
ϕ345(1,1,1, z4,1;c(ε))ϕ345(1,1,1, z4,1;−c(ε))

− 2π3

sin2πε
ϕ245(1,1,1, z4,1;c(ε))ϕ245(1,1,1, z4,1;−c(ε))

+
π3

sin2πεcosπ(2ε)
ϕ124(1,1,1, z4,1;c(ε))ϕ124(1,1,1, z4,1;−c(ε))

}

=
32

(1−16ε2)
.(4.9)

1 http://www.math.kobe-u.ac.jp/OpenXM/Math/intersection/shiga3g2-imat45.rr (ε is b in these data;
Risa/Asir program.).
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When ε= 0, the integral f(z) reduces to the integral discussed in the context of mirror

symmetry (see [23]). It satisfies a rank 3 system. We are interested in this case. Once we

obtain the quadratic relation, we can take a limit ε → 0 and get a quadratic relation for

the case of the resonant parameter value. However, the set of the naive limits of ϕijk’s

does not give a basis of the solution space of the rank 3 system. We put α= π3

sin2πεcosπ(2ε)
,

β =− π3

sin2πε
,

Φε =

(
ϕ345(1,1,1, z4,1;c(ε)),ϕ245(1,1,1, z4,1;c(ε)),

ϕ134(1,1,1, z4,1;c(ε)),ϕ124(1,1,1, z4,1;c(ε))

)
,(4.10)

and

Φ∨
ε =

(
ϕ345(1,1,1, z4,1;−c(ε)),ϕ245(1,1,1, z4,1;−c(ε)),

ϕ134(1,1,1, z4,1;−c(ε)),ϕ124(1,1,1, z4,1;−c(ε))

)
.(4.11)

Let us construct a set of linearly independent solutions by the Frobenius method from Φε

and Φ∨
ε . When ε �= 0, the twisted period relation (4.9) can be written in the following form:

Φε

⎛
⎜⎜⎝
α 0 0 0

0 β 0 0

0 0 β 0

0 0 0 α

⎞
⎟⎟⎠ tΦ∨

ε =
64

(1−16ε2)
.(4.12)

In order to obtain linearly independent solutions, we introduce a 4×4 matrix Q defined by

Q=

⎛
⎜⎜⎝
1 −ε−1 −ε−1 ε−2

0 ε−1 0 −ε−2

0 0 ε−1 −ε−2

0 0 0 ε−2

⎞
⎟⎟⎠ .(4.13)

This matrix Q is chosen, so that the set

lim
ε→0

ϕ345, lim
ε→0

(ϕ245−ϕ345)/ε= lim
ε→0

(ϕ134−ϕ345)/ε, lim
ε→0

(ϕ345−ϕ245−ϕ134+ϕ124)/ε
2

is a basis of the solutions when ε = 0. This method is called the Frobenius method (see,

e.g., [26, pp.22, 145]). We put Φ̃ε =ΦεQ and Φ̃∨
ε =Φ∨

εQ. A simple computation shows that

Φ̃ = Φ̃ε �ε→0 and Φ̃∨ = Φ̃∨
ε �ε→0 are convergent and we have a limit formula:

Φ̃

⎛
⎜⎜⎝
4π3 0 0 π

0 0 π 0

0 π 0 0

π 0 0 0

⎞
⎟⎟⎠ tΦ̃∨ = 64.(4.14)
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The components of the vector Φ̃ are as follows:

Φ̃1 =
1√

π
√
z4

(
1+

3

2z24
+O

((
1

z4

)4
))

,(4.15)

Φ̃2 = Φ̃3 =
1√

π
√
z4

(φ′
20+(logz4)φ

′
21),(4.16)

Φ̃4 =
1√

π
√
z4

(φ′
40+(logz4)φ

′
41+(logz4)

2φ′
42).(4.17)

The components of the vector Φ̃∨ are as follows:

Φ̃∨
1 =

2
√
z4√
π

(
1− 1

2z24
+O

((
1

z4

)4
))

,(4.18)

Φ̃∨
2 = Φ̃∨

3 =
2
√
z4√
π

(φ20+(logz4)φ21),(4.19)

Φ̃∨
4 =

2
√
z4√
π

(φ40+(logz4)φ41+(logz4)
2φ42).(4.20)

Here, φij and φ′
ij are power series in z−2

4 . We would like to note that coefficients of these

power series are very complicated, but these satisfy a simple functional identity (4.14).

Interested readers may refer to our Mathematica programs tperiod.m and fancy.m2 to

obtain explicit expressions of coefficients of these series.

As for Φ̃1, it can be related to Thomae’s and Gauß’s hypergeometric series by a simple

transformation

π1/2z
1/2
4 Φ̃1(z4) = 3F2

(
1/4,2/4,3/4

1,1 ;16/z24

)
=
(
2F1

(
1/8,3/8

1
;16/z24

))2
(4.21)

as was remarked in [23]. Here, the second equality is the result of Clausen’s identity.

Appendix: A lemma on a stalk of a direct image

In this appendix, we prove the following lemma.

Lemma 4.1. Let X,F be real manifolds, let p : X ×F → X, let q : X ×F → F be the

canonical projections, and let L be a Q-local system on F. Then, for any x ∈ X and any

integer k, there is a canonical isomorphism(
Rkp∗(q

−1L)
)
x
	Hk (F,L)(4.22)

under the natural identification F 	 {x}×F .

Proof. Since Rkp∗(q
−1L) is the sheaf associated to the presheaf U �→Hk

(
p−1(U), q−1L

)
,

we see that the left-hand side of (4.22) is equal to lim−→
x∈U

Hk
(
p−1(U), q−1L

)
. Since X is a real

manifold, we can find a fundamental system of neighborhoods of x consisting of balls in an

2 http://www.math.kobe-u.ac.jp/OpenXM/Math/intersection
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Euclidian space. When U is a ball, by Künneth formula, we have a sequence of isomorphisms

Hk
(
p−1(U), q−1L

)
	H0 (U,Q)⊗QHk (F,L)	Hk (F,L) .
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