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AN ALGORITHM OF COMPUTING COHOMOLOGY
INTERSECTION NUMBER OF HYPERGEOMETRIC INTEGRALS

SAIEI-JAEYEONG MATSUBARA-HEO® aND NOBUKI TAKAYAMA

Abstract. We show that the cohomology intersection number of a twisted
Gauss—Manin connection with regularization condition is a rational function.
As an application, we obtain a new quadratic relation associated to period
integrals of a certain family of K3 surfaces.

81. Introduction

The study of intersection numbers of twisted cohomology groups and twisted period
relations for hypergeometric functions started with the celebrated work by Cho and
Matsumoto [6]. They clarified that the cohomology intersection number appears naturally as
a part of the quadratic relation, a class of functional identities of hypergeometric functions.
They also developed a systematic method of computing the cohomology intersection number
for 1-dimensional integrals. Since this work, several methods have been proposed to evaluate
intersection numbers of twisted cohomology groups (see, e.g., [3], [12], [13], [18], [22],
and [25], and the references therein). All methods utilize comparison theorems of twisted
cohomology groups and residue calculus.

We propose a new method in this paper. Our method reduces the problem of evaluating
the intersection numbers to the question of finding a rational solution of a system of linear
differential equations. The key idea of this method is that we regard the intersection matrix
of a twisted cohomology group as a horizontal section of the tensor product of a connection F
and its dual. For the proof, we assume an important condition: the regularization condition.
With the aid of this condition, we can replace transcendental objects such as cohomology
groups with compact support by algebraic de Rham cohomology groups.

In the beginning of §2, we briefly define the intersection matrix and derive the twisted
period relation in a general framework. The twisted period relation for hypergeometric
functions was first given by Cho and Matsumoto [6]. Calculations of intersection numbers
given by Matsumoto [22] will be very helpful to understand what intersection numbers
are and to study hypergeometric functions associated to hyperplane arrangements. A more
comprehensive version of a definition of intersection numbers and the twisted period relation
is given in [25, Sections 3 and 4]. We recommend readers to refer to these papers.

When the twisted cohomology group is associated to the Gel’fand-Kapranov-Zelevinsky
(GKZ) system (see [10]) for a matrix A admitting a regular unimodular triangulation,
our method gives a complete algorithm to determine the intersection matrix with the
aid of algorithms of finding rational solutions of a system of differential equations (see,
e.g., [24] and its references) and the formula of intersection numbers of twisted homology
groups for GKZ hypergeometric systems (see [19]). For an introductory exposition of the
intersection numbers of the twisted homology groups, see the book by Aomoto and Kita

Received July 3, 2019. Revised October 13, 2020. Accepted March 3, 2021.
Mathematics subject classification: 33C60, 33C70, 33F99, 68W30.

© 2021 The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal
under an exclusive license.

P
https://doi.org/10.1017/nmj.2021.2 Published online by Cambridge University Press @ CrossMark


http://dx.doi.org/10.1017/nmj.2021.2
https://orcid.org/0000-0002-7015-6428
https://orcid.org/0000-0002-0061-514X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2021.2&domain=pdf
https://doi.org/10.1017/nmj.2021.2

AN ALGORITHM OF COMPUTING COHOMOLOGY 257

[3, Section 2.3] or [18]. Our method is demonstrated for the matrix A, which appears in a
study of a K3 surface (see [23]) in the last section. We note that the computation of the
cohomology intersection number of this example has not been obtained from the previous
approaches. Another important advantage of our method is that the validity of the formula
of cohomology intersection numbers can be checked by computer algebra systems without
any help of an expert. While this paper was under review, we obtained an algorithm to
construct the Pfaffian systems with respect to a given cohomology basis (see [20]). We
implemented the construction method and the algorithm of this paper as a Risa/Asir
package “mt_gkz.rr” (see [21]).

We give a summary of contents. In §2, we state and prove the main theorem of this
paper (Theorem 2.1). In §3, we recall the basic setup of twisted cohomology theory
associated to GKZ systems and describe our algorithm of computing the cohomology
intersection numbers. We also mention a relation between the secondary fan and the
common denominator of the cohomology intersection matrix. In §4, we demonstrate how
our method works for a particular GKZ system which arises in a study of K3 surfaces.

§2. Statement and the proof

Let X, Y be complex smooth quasi-projective varieties, and let f: X — Y be an affine
morphism. We assume f is generically smooth in order to apply Thom—Mather’s first isotopy
lemma. We put d =dim X —dimY". In the following, we use the notation of [17]. For any
bounded complex of Dx-modules L, we set ffL =Rf.(Dyex ®f-1p, L), where Dy x is
the transfer module. We also put DL = RHomp, (L,Dx)®o Q_?é_l. With this aid, we set
ff! L= ]D)off oDL. Let M = (E,V) be a regular integrable connection on X, and we put

N = f}?M =H[ ;M. By the general theory of holonomic D-modules, we see that S [Misa
complex of Dy-modules with regular holonomic cohomologies, and therefore, N is a regular
connection defined on a nonempty Zariski open subset U of Y. By shrinking U if necessary,
we may assume that f: f~1(U) — U is smooth. Now, let us assume further the following
nontrivial condition: the canonical morphism

(2.1) /f!M—>/fM

is an isomorphism, or equivalently, the canonical morphism

(2:2) D/fM—>/f]D)M

is an isomorphism. Here, DD stands for the holonomic dual. This condition is called the
regularization condition. This name comes from the literature of hypergeometric functions
(see [3, Theorem 3.1]). Since M is a connection, we see that DM is isomorphic to the dual
connection (EY,VY) (see [17, Example 2.6.10]).

Considering the Spencer resolution, we see that f f M is represented on U by
Rf.(DRx/y(M)), where DRx/y (M) = (Q;;;‘é(E),VX/y) is the relative de Rham complex
(see [8, Proposition 1.4]). Again by shrinking U, we may assume that N is free on U, and
that fo: f~1(U)% — U is a fiber bundle by Thom-Mather’s first isotopy lemma (see [29,
Corollary 1.2.14] and [30, théoreme 4.14] in view of [30, théoremes 2.2 and 3.3]). We take a
free basis {¢;}/_; C H(U,N) =H°(T'(f~1(U),DRx,y (M))) (resp. {1;}}_; C H°(U,DN))
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on U. The connection V&M : N — Q(N) (resp. VVEM : DN — QY(DN)) with respect
to this basis {¢;};_; (resp. {¢;}i_;) is given by VEM = d+Q (resp. VVEM = d+QVY)
for some r x r matrix Q = (w;;); j—; (resp. Q¥ = (w;)] ;—;) with values in 1-forms. Note
that we have V&M¢gp, = > j=1wWii A ¢j (resp. VVEMy = > i=1wWyi Ag). Applying the
solution functor to (2.1), applying the commutativity between direct images and solution
functors (see [17, Theorem 7.1.1]), and taking a stalk at y € U, we obtain a sequence of

isomorphisms

(2.3)  HYfHY)"™ L -1y) = (RUFL)y =~ (RUFL)y = HE(F 1Y) L 1 p-104)),s

where £ is the dual local system of the local system of flat sections (E**)V"" and H,
stands for the cohomology group with compact support (see [3, Section 2.2]). The first
isomorphism of (2.3) is a result of Lemma 4.1 in the Appendix. By regularity, we also have
the comparison isomorphism of Deligne-Grothendieck (see [7, corollaire 6.3])

(2.4) HY(f 7! (9); DRy (DM)) = HY(f 7 ()™ £ [ p-1(y)).

Taking the Poincaré dual of (2.3), we obtain a comparison isomorphism of homology
groups

(2.5) Ha(f ™ )" L 1) S HL W)L Tp10):

Here, we denote by H'Y the locally finite (or Borel-Moore) homology group (see [3, Section
2.2]).

Now, we define the cohomology intersection matrix. Following [6], we will denote it by
I.,,. We denote by £V the dual local system of £. The cohomology intersection pairing is
the perfect pairing between H(f~1(y)*"; £ [f-1(y)) and HAY(f~ 1 (y)*m; LY [f-1(y)) defined by
HYF T )™ LY Tp1) X HE @)™ L 1p10y) 2 (W] 1) = (W] I)en = [y @ AN €
C for a fixed y. Note that we take the standard resolution of L [;-1(,) and LY [;-1,) by
means of a twisted de Rham complex by regarding f~1(y) as a 2d-dimensional smooth man-
ifold (see [3, Section 2.2]). By abuse of notation, we often write (w,n).s, instead of ([w], [1])ch-
In view of isomorphisms (2.3) and (2.4), we can define the cohomology intersection matrix
Ier, = ({¢i,%;)en)ij, which is nondegenerate at each y € U. Since fo": f~1(U)*" — U is a
fiber bundle, we can take a free basis v; € R f2"(L£) and v/ € Refan(LV) on a neighborhood
W of each y € U%". We can define the homology intersection pairing as the perfect
pairing Hy (£ 1 ()" L [p-1¢p)) x HY (£71@) LY Tp-14) 2 (1,9Y) = (7,7")n € C, which
is defined as the Poincaré dual of the cohomology intersection pairing (see [18]). By local
trivialization, we may assume that the homology intersection matrix Iy, = ({vi,7; )n)i j is

constant on W, and I} is nondegenerate in view of (2.5). Now, let us put P = ( fv qbi)
VAN

and PY = (f,yy %’) . In view of (2.3)—(2.5), the twisted period relation (see [6, Theorem
J ]

2]) is

(2.6) I, ="P'I,'PY.

Here, tI.;, is the transposed matrix of I.;. By the definition of the connection matrix, we
have two equalities

(2.7) dP ="'QP, dPY='Q"PY.

https://doi.org/10.1017/nmj.2021.2 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2021.2

AN ALGORITHM OF COMPUTING COHOMOLOGY 259

We put I = I, and J =*I~1. Since I, is locally constant, by differentiating (2.6), we obtain
the identity

(2.8) dJ+QJ+J'QY =0.

Here, we have used the fact that both P and PV are nondegenerate by the perfectness of the
period pairings (see [3, Lemma 2.5]). Taking into account the equality dI ! = —I~1(dI)I !,
we have

(2.9) dl ="QI +1QV.

We call (2.9) the secondary equation. Note that 2 and QY are matrices with entries in
regular 1-forms on U. We also remark that the cohomology intersection matrix I.; is not
necessarily a constant matrix for a general choice of the bases {¢;} and {i;} (see formula
(4.4) of this paper). The following theorem is the main result of this paper.

THEOREM 2.1. Suppose that the reqularization condition (2.1) is satisfied and N is
irreducible. Then, the secondary equation (2.9) is a reqular connection, that is, any analytic
solution of (2.9) has at most polynomial growth along any singularity. Moreover, any
rational solution of (2.9) is, up to constant multiplication, equal to I.p,.

Note that the secondary equation (2.9) can be rewritten in an invariant form: d{p,¥)., =
(VEM G ) g, + (¢, VVEMap) .. Therefore, we obtain the following corollary.

COROLLARY 2.2. Under the assumption of Theorem 2.1, let B be an Oy -bilinear form
B:N®p, DN = Oy such that for any local sections ¢ of N and ¢ of DN, the equality

(2.10) dB(¢,9) = B(VEY ¢,9) + B(¢, VM)
holds. Then, B is, up to constant multiplication, equal to the cohomology intersection pairing
<.7 .>ch .

By abuse of notation, let us denote by U a complex smooth quasi-projective variety and
by (FE,VEg) a connection on U. In the sequel, we denote this connection simply by E if no
confusion arises. We set End(E) = Homo(E, E), and the associated connection on End(E)
is denoted by V. The endomorphism sheaf End(E) is again a connection. In other words,
it is a D-module, is locally free, and is of finite rank as an O-module. See, for example, [17,
Chapter 5|, where one can find some fundamental properties of this connection. We recall
that analytic continuations of flat sections (E£%*)V= naturally give rise to a representation
of the fundamental group 71 (U%",z) for a base point & € U. We call this representation the
monodromy representation.

PROPOSITION 2.3. Suppose the monodromy representation of (E,V ) is irreducible. Let
x €U be a point. We put

(2.11) S ={pc (End(E)™)Y | ¢ is monodromy invariant}.
Then, dim¢ S = 1.
Proof. Remember that the connection on End(FE) is given by

(2.12) (Veo,5) =Vi({@,s) = (¢, VEs)
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for any ¢ € End(E) and s € E. Suppose ¢ € (End(E)*™)V. For any s € (E*")VE | we have
(2.13) 0=(Ve,s) =Ve((g,s)).

We denote by 7g(g) (resp. mend(g)) the analytic continuation of flat sections of E (resp.
End(FE)) along a loop g € m (U, ). We have

(2.14) TE(9)(@:5) = (TEnd (9)9, TE(9)S),

and therefore,

(2.15) TEna(9)e =TE(9)opomr(g™h).

From this, we can see that mrn,q(g9)e = ¢ is equivalent to mg(g) o = pomg(g). Therefore,
we have an identity

(216) S - Endﬂ-l(Uanj:) (EJQJ)
The assertion follows from Schur’s lemma. 1

Next, we recall the trivialization formula for a tensor connection. Let (F,V ) be another
connection on U. Suppose that (E,Vg) and (F,Vg) are trivialized with respect to frames
(e1,...,e.) and (fy,...,f). The connections are trivialized as Vg = d+ AA and Vp =
d+ BA, where A= (w!) and B = (@}) are square matrices with entries in 1-forms. Then,

> J
for any section ) 1<i<, aVe; ®f; of EQ F := E®p,, F, we have

1<5<r’
aly
Veer | Y, ole;@f; [ =) doe;@f;i+) (e1,...,e,)A| 1 |@f
1<i<r i\j j o’
1<5<r’
ail
(2.17) +> e@(fi,..., £)B|
i ot

’
T

(218) :Zdai’j ei® fJ—FZ (iwio/’”) ei® fJ+Z Z(Z)lj()éil ei® fj.
2] k=1

.7 1,J =1

Therefore, if we trivialize the tensor product £ ® F' with respect to the frame { e; ® f;},
the connection is given by Vggr = d+ Ae+e!'B. Now, we can show that the secondary
equation is actually a tensor connection.

PROPOSITION 2.4. The secondary equation (2.9) coincides with the tensor connection
DN ®N.

Proof. Recall that the connection of N is given by d+ (2 with respect to the basis ¢; and
that of DN is given by d+ Y with respect to the basis ¢;. Thus, their dual connections with
respect to the dual frames are given by d —'§2 (connection for DN) and d — Q" (connection
for N), respectively. Therefore, the connection DN ® N with respect to these frames is given
by d—'Q2e —eQV. This is nothing but the secondary equation (2.9). O
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LEMMA 2.5. If (E,Vg) is a reqular connection, and if s € T(U (E)VE) s
monodromy invariant, we have s € (U, E), that is, s is an algebraic section.

Proof. Take a projective compactification X of U, so that D = X \ U is a normal crossing
divisor. Since s has at most polynomial growth along D (see [7, théoreme 4.1]), we see that
there is a positive integer m such that s € I'(X*",O%"(mD)) =T'(X,0r(mD)). Here, the
equality is a consequence of GAGA (see [28]). 0

(Proof of Theorem 2.1) Recall that N is a regular connection, hence so is DN. Therefore,
the tensor connection DN ® N is also regular. By Theorem 2.4, we can conclude that (2.9)
is regular. The first part of the statement is verified.

In view of Theorem 2.3 and 2.5, and the fact that DN ® N is isomorphic to End(N), we
see that the rational solutions of (2.9) are 1-dimensional. Taking into account that I, is
monodromy invariant, the second part of the statement is confirmed.

§3. Euler integral representations and twisted period relations

In this section, we discuss general results on Euler integral representations. Consider &

N,

Laurent polynomials h; ,o) (z) = ZZ](Z)J’ a() (l=1,...,k), where each coefficient z](-l) is
j=1

regarded as a variable and x = (z1,...,2,). For any parameters v, € C (I =1,...k) and

c € C™, an integral

(3.1) fr(z) = /Fhl,zm(iﬁ)_v1 "'hk,z<k>(3€)_%xcdj

x

is called Euler integral. In the formula above, we put d?m = %1 ARERWN dxin". Here, I" is a
suitable element of the twisted homology group associated to the multivalued function

(3.2) b = hl’z(l)(év)_’h "'thZ(k) (:L')_’kac.

Let us clarify the meaning of this choice. We define an algebraic connection on a trivial
bundle over (G,,)" \ {z € (Gm)" | by o) (x) -+ hy o0 () = 0} by

k n
dzhl (1) (ZL') da:i
3.3 e =dy — — A i— .
33 Vi=di- Yo DI

—~ " o) —

Here, d, is the exterior derivative in z-variables. Formally, the action of the connection V,,
on any function f is given by the formula V,f = ®~! x (d,(® x f)). We denote by C® the
dual local system of the local system of flat sections of the analytification V™. Then, our
integration cycle I' belongs to the twisted homology group

(3.4) H,, ((C*)"\{z € (C*)" | hy 1) (2) -+ hy o (2) = 0};CP) .
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To control the Euler integral fr, we use a GKZ system via the Cayley trick. We put
A= (a®(1)]---] a®(Ny)), N = Ny +---+ Ny, and define an (n+k) x N matrix 4 by

1 -~ 1l0 -~ 0ol---]l0o -~ 0
0 --«- 01 - 1]--To -+ 0
(3.5) A=
0o --- 0l0 - 0]---]1 -+ 1
Ay A, Ap

We put 6 = (Z) and denote by M4 (9) the GKZ system (see [10]). Note that our parameters

~ and ¢ correspond to —a and $ in [10]. The following proposition is well known.
PROPOSITION 3.1 [10]. The integral (5.1) is a solution of Ma(9).

More generally, under a suitable condition on parameters §, one can prove that any solution
of M4(0) has an Euler integral representation (see [10]).

Let m: X = (G,,)7 X Aiv\Ule{(w,z) | hy . (x) =0} = AN =Y be the projection, where
subscripts stand for coordinates. We define an algebraic connection of the trivial bundle
over X by V=010V =¢! od(y,,)oP. We denote by ZA the sublattice of Z(ntk)x1
spanned by column vectors of A. If ZA = Z("+k)*1§ is nonresonant in the sense of [10], and
v ¢ Z for any [ =1,...,k, we have the regularlzatlon isomorphism [ (Ox,V) V)5S [ (Ox,V)
and a canonical isomorphlsm My(6) ~ [ (Ox,V) by [19, Theorem 2.12]. Note that the
regularization condition is, in general, violated if any of 7; is an integer (see [19, Remark
2.14]). If we denote by U the Newton nondegenerate locus of M4(d), M 4(0) is a connection
on U (see [1, Lemma 3.3]).

Now, let us fix a basis {¢;(2)}_; C f:(OX,V) lv and a basis {¢;(2)}_; C
f;r)(OX,VV) [v. By using the relative de Rham complex, we can explicitly compute the
connection V&M of f:(OX,V) [ via the formula

(3.6) VM p =, — ZW d=\" N

for any ¢ € H" ((G) x Us (0, yuvjv (Ul T (@ >—0}),vm)) = [2(0x,V) Iv.
We have a similar formula for the connection VV&M of f (Ox,VY) |u. These bases as
well as the connection matrices VEM = d, +Q and VVEM = d, + QY can explicitly be
constructed via Grobner bases (see [15, Theorem 2]). Note that there is an isomorphism
induced by the correspondence M4 (8) 3 [1] — [92] € f:(OX,V) (see [19, Corollary 3.4]).
When A is a matrix of the form (3.5), the associated GKZ system is regular holonomic (see
[16]). In [19], the intersection numbers for a basis of the twisted homology group for the
GKZ system associated to a matrix A of the form (3.5) admitting a unimodular regular
triangulation are determined when parameters are generic (see [19, Theorem 8.1]). The
irreducibility of the GKZ system is proved under the nonresonance condition (see [4], [10],
and [27]). Note that irreducibility of a regular holonomic D-module is equivalent to that
of the corresponding perverse sheaf by Riemann—Hilbert correspondence (see [17, Theorem
7.2.5]). Algorithms for finding rational solutions have been studied by several approaches
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(see, e.g., [24] and its references). These results together with our Theorem 2.1 yield the
following theorem.

THEOREM 3.2. Given a matriz A= (a;;) as in (3.5) admitting a unimodular regular
triangulation T. When parameters are nonresonant, v, ¢ Z, and moreover the set of series
solutions with respect to T is linearly independent, the intersection matriz of the twisted
cohomology group of the GKZ system associated to the matriz A can be algorithmically
determined.

We rename (z}l) )

;1 as (z;); and denote % by 0;. The action of a differential operator
to a function is denoted by e. In other words, 0; e f means %. Moreover, we denote by
Q; the coefficient matrix of {2 with respect to the 1-form dz;. The algorithm we propose is

summarized as follows.

1. Obtain a Pfaffian system 0; +; from the GKZ hypergeometric ideal defining M 4(0)
generated by

> aijzi05+ 6, i=1,...,n+k,
j
OU_OU’ AU:A'U,U,’UE N(])V

It is well known that this step can be performed by a Grébner basis computation in the
ring of differential operators with rational function coefficients. See, for example, [14,
6.2, 7.4.2].

2. Find a nonzero rational function solution I of the secondary equation,

O;el —'QI—1QY =0, i=1,...,N.

To be more precise, see, for example, [24] and its references.
3. Determine the constant multiple of I by the twisted period relation (2.6). To be more
precise, we use [19, Theorem 8.1].

Let G be the Grobner basis of the GKZ hypergeometric ideal obtained in step 1. The set of
the standard monomials for G, which is the set of monomials in 0 that are not divisible by
the initials of the elements of G, is of the form {9°|s € S C NJ'} (see, e.g., [14, 6.1]). The
basis of the twisted cohomology groups corresponding to G is obtained by applying these
0°’s to the kernel function of (3.1) and dividing it by (3.2).

EXAMPLE 3.3. Let us determine algorithmically the intersection matrix of the twisted
cohomology group for a matrix standing for the hypergeometric function oFy, which was
studied by [6] and [22] with geometric methods. We put

1 1]0 0 .
A=10 0ol1 1 ,F:(Za>.
0 1/0 1 4

Here, {1,0,} in the frame F is the set of the standard monomials of a Grobner
basis of the left ideal defining M4(d). The bases of the twisted cohomology group

. . - 0
corresponding to the frame F is {%,24 8(1902 q’dm—x = (Zssz;lf)”w} C f7r (Ox,V) [y and
d dlog®~ ! g d 0 _ _
{?30724 B w = @Ziz;f)x} C [ (Ox,VY) lu, where ® = (21 + 202) ™7 (23 + 242) 7227
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The expression ng{\l/[ [df] = % is obtained by the exchange of d,, and the integral
sign as
-7 —72 pC dx
Oz, | (21 +x20) (23 +m24) 220 e
r
_ _ —Yoz4 dx
= 21+ x29) M (23 +xzy) Pt ——— —
/F(1+ o) sk ) Pt

and the perfectness of the twisted homology and cohomology groups. The other expressions
can be obtained analogously. Generally speaking, through the connection V&M in (3.6), we
can define an action of the Weyl algebra Dy on f:((’)X,V); the action of 0., is given by
ng]i‘/[ . When S is the set of the standard monomials of a Grobner basis of the left ideal

defining M4(5), {se[%]| s € S} is a free basis of Oys-module f:(OX,V)\U/ ~ Mx(0)|ur,
where U’ is the complement of the singular locus of €2;’s in Theorem 3.2 associated to the
Grobner basis.

Now, we set z; = z9 = z3 = 1 because of two reasons. The first reason is that the
solutions of the GKZ system can be expressed as a composition of rational functions and
transcendental functions of one variable by the homogeneity condition (first-order operators
in M4(0)); see, e.g., [26, Proposition 1.3, 7]). The second reason is that if we do not set these
z;’s to 1, the procedure to get a rational solution requires more computational resources,
which are wasteful because of the homogeneity condition. For the frame F, we have the
following connection and dual connection matrices:

0 —C72
z4—1
0= < 1 7(c+'y$z4+cf'yl >d247

Z4 Z4(Z4—1)

0 s
D= 1 (ctrttametn |du

zZ4 24(2471)

These can be obtained by a Groébner basis of the hypergeometric ideal M4(d) (see, e.g.,
[14, Chapter 6] and [26]). We find the following rational solution of the secondary equation

d., I —tQI — QY = 0.
1 CcY2
_l’_
Y1+72 Y1+72

Let us utilize the quadratic relation of [19, Theorem 8.1] to determine the constant multiple
of I. Let T be a unimodular triangulation {123,234}. From the relation, we have

3 <d§7d?w>ch

™
e 0(5:0) ez —0) = e e
) ey ee(s ez —0) = ST
where @, 0(z;6) is the series solution of the form
LkL+p

2 [T, T+ pi+kL;)

ke Ny 1=

L=(1,-1,-1,1),Ap+06=0,p; =0 when i ¢ o

and A, is the submatrix of A constructed by taking the columns standing for o. For example,
when o = 234, A, is the 3 x 3 matrix of which columns are the second, third, and fourth
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columns of A. The constant term of the left-hand side is

1 —(71+
3.7) (71 L > _ _—(nt)
M—ceNe CcTmnT2 cle=71—72)
by utilizing the rule I'(1+42)['(1 — z) = 2 "—. We multiply a constant to I, so that the (1,1)

element is equal to the constant (3.7) x2m+/—1. Thus, we obtain the following intersection
matrix of the twisted cohomology group:

Y2 v2(c—=71)
C—Y1—"72 C—Y1—"72

(*(’Yl +’Yz)) —2
/ c(c—vy1— c—v1—
(38) 2mv —1 Y1 =72 (’Yl V2 .

We conclude this section with simple observations on the cohomology intersection
numbers associated to GKZ system. The first observation is on the dual fan of the Newton
polytope of the LCM of the denominators (common denominator) of the entries of ..
To begin with, we recall the basic notion of Newton polytope (see [11, Chapter 6]). Let
f(z) =", faz® be a polynomial in z = (z1,...,2n). The Newton polytope New(f) is the
convex hull of the index set {a | fo # 0} in R¥*! For any convex polytope P in RV*!
and its face F, its normal cone Np(P) is defined to be the set of w € (RV*1)* = RIXN
such that the face determined by the vector —w is F ((—w,x) takes the maximum on F
while x € P). The dual fan of the Newton polytope New( f) is denoted by N(f). Now, let us
denote by E4(z) the product of principal Ap-discriminants for any face I' of New(A) (see
[11, Chapter 9 and Definition 1.2]). Here, New(A) is the convex hull of column vectors of A.
Since the secondary equation is a tensor product of M4(d) and M4 (—46), its singular locus
is contained in the vanishing locus of E4(z). If g(z) denotes the common denominator of
I.p, we have {g(z) =0} C {Ea(z) =0}. By Hilbert’s nullstellensatz, there is a polynomial
h(z) and a positive integer [ such that F4(z)! = g(2)h(z). Taking their Newton polytopes,
we have New(FE!;) = New(g) + New(h). Here, + is the Minkowski sum of convex polytopes.
If we take their dual fans, we see that the left-hand side gives the secondary fan (see [11,
Chapters 7 and 10, Proposition 1.5, and Theorem 1.4]), whereas the right-hand side is a
fan which is a refinement of N(g). Summing up all the arguments above, we obtain the
following theorem.

THEOREM 3.4. Suppose that the parameter § is nonresonant and ~y; ¢ Z for any | =
1,...,k. Let g be the common denominator of I.;,. Then, the secondary fan is a refinement

of N(g).

Note that by [11, Chapter 6 and Corollary 1.6], there is an injective correspondence from
open cones of N(g) to convergence domains of Laurent series expansions of ﬁz).

The second observation is on how the cohomology intersection number depends on
the parameters 0. In Example 3.3, the basis F' depends rationally on the parameters
0. In this case, the cohomology intersection numbers are rational functions in both the
variables z and the parameters ¢ with coefficients in the field of rational numbers Q.
Let us formulate the observation above. For any field extension K C C of Q, we set
(G (K))2 = Spec (K[xf,,xf]) Since the (reduced) defining equation E4(z) of the
complement Z = AV \ U is a rational polynomial, we can also consider a reduced scheme
U(K) defined over K whose base change to C is isomorphic to U. We denote by Dy (k)
the ring of differential operators on U(K'). Any element P of Dy (k) is a finite sum P =
ﬁ(ﬂ’ Y 0 0a(2)0%, where aq(z) is a polynomial with coefficients in K and [ is an integer.

https://doi.org/10.1017/nmj.2021.2 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2021.2

266 S.-J. MATSUBARA-HEO AND N. TAKAYAMA

THEOREM 3.5. Suppose that 6 is nonresonant, v ¢ Z, and A as in (5.5) admits
a unimodular regular triangulation T. Then, for any Pi,P» € Dy q(s)), the cohomology

intersection number % belongs to the field Q(0)(z).

Proof. By the definition of the action of the ring Q(6)(z,0.), it is enough to show

ap bdzx a’; b da
that the function I(z;0) = fw 2h (dgnzﬁ}ﬁn en belongs to the field Q(0)(z). Here, a =

(a1,...,an), @' €Z", b= (by,...,by), b’ € Z*, and = 2h P =z ... 22 hb ... A%k Due to
[2, Lemma 3.2], we may assume that the parameter ¢ is generic, so that the formula [19,
Theorem 8.1] holds. Let B be an N x (N —n —k) integer matrix whose column vectors
generate the kernel lattice Ker(Ax : ZVN — Z"**) and are compatible with the regular
triangulation 7' in the sense of [9]. We take an (N —n —k) x N integer matrix C such
that CB is an identity matrix. We define a morphism j : (C*)"** — (C*)N by ja(t) = t4
and a morphism 7g : (C*)Y — (C*)N—"=F by wp(2) = 25. Note that the morphism ja
combined with the product structure of (C*)" induces an action of (C*)"** on (C*)". For

any t = (t1,...,tnys) in (C*)"F we write 7 = (t1,...,t) and 7o = (tgs1,. .-, tnyk). By [19,
b+b' _a—a’

Theorem 8.1], we have a formula I(ja(t)z;6) =7/"" 75 (z;0). Taking into account this
homogeneity property and the exact sequence
(3.9) 1— (CH)MHF A (C)N T8 (c)N k1,

we only have to show that I;((;J) = I(¢%;6) € Q(9)(2). Here, ¢ is a coordinate of
(C*)N-n=k_ Note that the Laurent series expansion formula [19, Theorem 8.1] is valid
when the absolute values of entries of ¢ are all small. Since I(z;0) is a solution of the
secondary equation (2.9) and (2.9) is isomorphic to M4 (d) ® Ma(—9), for an appropriate
nonnegative integer [ and a polynomial f((;0) in ¢ and a vector ag € NV "% we have

I, (¢;90) = CQO{E(%E?C), Note that E4(z) € Q[z]. We write f({;d) = Ele fi(0)¢%, where «;

are elements of No™ """ By choosing a suitable vector ¢ = (¢1,...,¢n—n_i) € No¥ "7F
and by rearranging «; if necessary, we may assume 0 < (¢, 1) < --- < (¢,aq). Here, (o, )

is the dot product of vectors. We set g(¢) = E4(¢)!. For a complex variable &, we write
€9 = (&91,... 69N -n-r). We put F(£) = f(£9;6) = (20 g(¢)T,(€2;6). By [19, Theorem
8.1] and the fact that B is compatible with T, we see that I1(£?;6) is a Laurent series in &
with coefficients in Q(d). Since F(§) = Zle fi(6)E4920) we obtain f;(6) € Q(5). Thus, we
have f((;0) € Q(0)[¢], hence we obtain I1(;0) € Q(d)(2). O

For any field extension K C C of Q(6), we define the symbol f:((’)X(K),V) Uy by

k
(3.10) H" <(Gm(K))2 x U(K); (QZGm(K));"XU(K)/U(K) (* U{hl,z<l>($) = 0]’) ,Vz>> ;
=1

where H" stands for the n-th hypercohomology group. By the formula (3.6), ff(@ x (k) V)
lu(k) naturally has a structure of Dy (x)-module. When § is nonresonant, v; ¢ Z, and

K =Q(J), any element [¢] € f:(OX(K),V) lU(k) can be written as [¢] = P[] for some
P € Dg. Therefore, we obtain the following theorem.
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THEOREM 3.6. Under the assumption of Theorem 3.5, the normalized cohomology

intersection pairing B = (;T“%h)n defines a perfect bilinear pairing

0 0
(3.11) / (Ox @), V) To@es) % / (Ox @@ V") lu@e) = Ovwe))

us

such that the formula (2.10) holds.

Therefore, when the parameter J is generic, we can treat it as a formal symbol and we do
not need to consider any algebraic extension of Q in our algorithm.

§4. A period integral associated to a family of K3 surfaces [23]

This section is a demonstration of our algorithmic method to obtain the intersection
matrix of twisted cohomology groups and functional identities derived by the twisted
period relation. The intersection matrix and some functional identities presented in this
section have not been obtained by other methods. We also note that once we obtain the
intersection matrix, the correctness modulo a constant multiple can be checked if it satisfies
the secondary equation (2.9). Since the entries of the matrix are rational functions, it can
be checked by computer algebra systems.

We consider an Euler integral

drNd
(4.1) f(2) :/u ’ y) u = (210° + 200y + 2322y~ + 2427 + 257) P2y
r Y

under the nonresonance condition on ¢. This function is a solution of the GKZ system
associated to the matrix

, 111 11
)=132 2 21
<a(1)(9>) 01 -100

We can see that the sets of rational differential forms

(4.2) " dx Ndy 8loguw 8loguw @1
' xy Oz Oz 022w

and

(4.3) . dx Ndy 8logu_1w 8logu_1w 0?(u=t)
' wy | Oz Oz 022

uw

are bases of the twisted cohomology groups and construct the connection matrices d, + 2
and d, + QY with these bases by Grobner basis computation (see, e.g., [14, Chapter 6]).
1/2
Whenc= | 14& |and z; =29 =23 =1 (we make this specialization with the same reason
€
mentioned in Example 3.3), we find by solving the secondary equation that the intersection
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matrix of the cohomology group is a scalar multiple of the matrix

—4e+1 4e?43e—1
1 8zs 0 822
4e—1 —4£2 +e
(4.4) I=| & sz 0 T |
0 0 0 T34
4e®—5e+1
e T TS P T44
82§

where 7;; are rational functions in the 24, z5, and €. Note that this / gives an example that
I.;, is not necessarily a constant matrix with respect to z. By [19, Theorem 8.1], we can see
that the self-intersection number of the first form is

dx Ndy dx Ady 32 9
4.5 mapmaa=1 = —— 2TV —1)".

Thus, the intersection matrix is equal to (27T\/—71)2$I , which gives quadratic relations
of GKZ hypergeometric series. The whole intersection matrix of the twisted cohomology
group is posted at our web page.'

Let us show a quadratic relation by taking a restriction to {z3 = 2o = 23 = z5 = 1} (see

[23]). In this case, we have three independent series

_1_og (z4—2)m+n
paa5(1,1,1, 20, L5¢(e)) = 24 |
! m,zn;O F(1+€+n)l“(% —2e —2m—2n)I'(14+e+m)m!n!
(4.6)
©ou5(1,1,1, 24, 1;¢(€)) = @134(1,1,1, 24, 1;¢(¢))
_1 (Z—Z)m+n
(4.7) =z, ° 4 ’
m%:zo ra —E—i—n)f‘(% —2m —2n)I'(14+ec+m)m!n!

(z )"
(1—e+n)l(3 +2e—2m—2n)I'(1 —e+m)min!’

1
P124(1, 11,20, Tic(e)) = 24 2 Z r
m,n>0

(4.8)

From our intersection matrix of the twisted cohomology group, we obtain the following
quadratic relation (see [19, Theorem 8.1)):

1 3
{ ) 90345(1717177547136(5)>90345(17171724715_0(5))
2  sin“ e cosm(2¢)
273
— . 9 90245(1)]—7172471;6(5))90245(1715172471;_0(5))
Sin- we
7.[.3
+ ) 90124(17]-71)24)1;0(5))@124(171)17'2471;_6(6))}
sin” 7re cos(2¢)
32
4.9 =
(4.9) (1—16e2?)

! http://www.math.kobe-u.ac.jp/OpenXM /Math /intersection/shiga3g2-imatd5.rr (e is b in these data,
Risa/Asir program.).
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When ¢ = 0, the integral f(z) reduces to the integral discussed in the context of mirror
symmetry (see [23]). It satisfies a rank 3 system. We are interested in this case. Once we
obtain the quadratic relation, we can take a limit ¢ — 0 and get a quadratic relation for
the case of the resonant parameter value. However, the set of the naive limits of ¢;ji’s

T

does not give a basis of the solution space of the rank 3 system. We put a = STrEcosn(35)

B= s
o, = (g0345(1,1,1,z4,1;c(5)),g0245(1,1,1,z4,1;c(5)),
(4.10) <p134(1,1,1,2’4,1;c(€)),g0124(1,1,1,2’4,1;0(5))),
and
<I>;/ = <g0345(1,1,1,24,1;—0(5)),4,0245(1,1,1,24,1;—0(5)),
(4.11) @134(1,1,1,24,1;—0(5)),<p124(1,1,1,24,1;—0(5))).

Let us construct a set of linearly independent solutions by the Frobenius method from &,
and ®Y. When £ # 0, the twisted period relation (4.9) can be written in the following form:

64

(4.12) o, 16

tq);/ —

o o o R
oo™ O
o o o
O oo o

In order to obtain linearly independent solutions, we introduce a 4 x 4 matrix ) defined by

1 —e7 1 —g7b g2
0 et 0 —e2
0 0 0 g2

This matrix () is chosen, so that the set
lim 345, 1im (p245 — p345)/e = lim (134 — P345) /€, UM (345 — P45 — P134 + P124) />
e—0 e—0 e—0 e—0

is a basis of the solutions when ¢ = 0. This method is called the Frobenius method (see,
e.g., [26, pp.22, 145]). We put ®. = &.Q and & = &Y(Q. A simple computation shows that
®=9, [.0and V=)

Y le—o0 are convergent and we have a limit formula:

472 0 0 7
= 0O 0 @ 0],z
4.14 (0] LoV = 64.
( ) 0O = 0 O 6
0O 0 O
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The components of the vector ® are as follows:

(4.15) él:\/771\/5<1+;ﬁ+0<<;>4))7

~ ~ 1
(4.16) Py =03 = m(%o + (log z4) 5, ),
(4.17) (i)4 = ;(ﬁbﬁm + (log Z4)¢ﬁu + (log24)2¢212).

Vi

The components of the vector @V are as follows:

-, 2VZE 1 1\*
4.18 Py = 1-—+0((—
( ) 1 ﬁ < QZZ + ((224) )) ’

(4.19) By = 6 = V2! (g + log 1)),

(4.20) &Y = 221 (640 + (log 24) s + (log ) 12).
VT

Here, ¢;; and ¢; are power series in z %, We would like to note that coefficients of these
power series are very complicated, but these satisfy a simple functional identity (4.14).
Interested readers may refer to our Mathematica programs tperiod.m and fancy.m” to
obtain explicit expressions of coefficients of these series.

As for @1, it can be related to Thomae’s and GauB’s hypergeometric series by a simple
transformation

= 2
(4.21) 22120y (2) = o By (MAYE0516/23) = (2 (V52/%16/23))
as was remarked in [23]. Here, the second equality is the result of Clausen’s identity.

Appendix: A lemma on a stalk of a direct image
In this appendix, we prove the following lemma.

LEMMA 4.1. Let X, F be real manifolds, let p: X x F — X, let ¢: X X F — F be the
canonical projections, and let L be a Q-local system on F. Then, for any x € X and any
integer k, there is a canonical isomorphism

(4.22) (R*p.(¢~'L)), ~H"(F.L)
under the natural identification F ~ {x} x F.

Proof. Since R¥p,(q~'L) is the sheaf associated to the presheaf U — H” (p*I(U),qflﬁ),

we see that the left-hand side of (4.22) is equal to lim H" (p~'(U),q 'L). Since X is a real
zelU
manifold, we can find a fundamental system of neighborhoods of z consisting of balls in an

2 http://www.math.kobe-u.ac.jp/OpenXM/Math /intersection
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Euclidian space. When U is a ball, by Kiinneth formula, we have a sequence of isomorphisms
H* (p~2(U),q L) ~H° (U,Q) @ H" (F, £) ~ H" (F, L). 0
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