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Abstract. We give an introduction to deformation quantization with emphasis on explicit
formulas and sketch some partial results on theory of morphisms and modules in that framework
and their relation to Poisson geometry.

Introduction
The theory of deformation quantization has become a large research area covering several
algebraic theories like the formal deformation theory of associative algebras and the more
recent theory of operades, as well as geometric theories like the theory of symplectic and (more
generally) Poisson manifolds), and of physical theories like string theory and noncommutative
field theory. The main starting point of deformation qunatization is the seminal article by Bayen,
Flato, Frønsdal, Lichnerowicz and Sternheimer in 1978 [5]. In this theory, the noncommutative
associative multiplication of operators in quantum mechanics is considered as a formal associative
deformation of the pointwise multiplication of the ‘algebra of symbols of these operators’: in
physical terms, this means the ‘algebra of classical quantities’ which is given by the algebra of all
complex-valued C∞-functions on a Poisson manifold, i.e the ‘phase space’ of classical mechanics.
The formal parameter is an interpretation of Planck’s constant ~ in convergent situations. The
advantage of this method is its universality: according to a theorem by Kontsevich [57] this
construction is possible for any Poisson manifold. Moreover, geometric intuition is quite useful
in concrete situations since everything is formulated in geometrical terms on a differentiable
manifold in contrast to the usual formulation of quantum mechanics where one has to specify
a Hilbert space. The price to pay is the fact that complex numbers are replaced by the ring of
all formal complex power series whose convergence is a case-by-case study. However, inspite of
these difficulties I see the major interest of deformation quantization for a physicist in its rôle
as an asymptotic testing ground for ‘true quantum theories’ with admit a reasonable classical
limit, i.e. a parameter like Planck’s constant ~ whose asymptotic limit ~→ 0 will lead in most
of the practical applications to a theory like deformation quantization: hence if some concepts
break down even on the level of deformation quantization we cannot expect them to work in any
reasonable quantum theory.

The main objective of this survey is a (hopefully motivating) introduction to this subject: I
have not included in detail all the existence and classification proofs which are quite technical.
Neither do I speak about the theory of operades which has become the algebraic framework of
this theory since Kontsevich. I’d rather would like to underline some motivations from physics,
discuss concrete examples and talk -at the end- about the still open theory of the deformation
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theory of modules, Poisson morphisms, and (symplectic) reduction.
In the first Section, I have given an elementary deduction of several star-product formulas

from canonical quantization (or symbol calculus). These formulas motivate Section 2 in which
the abstract formal associative deformation theory of associative algebra is sketched. As a
by-product, this abstract theory always gives the structure of a Poisson bracket as first order
commutator, motivating Section 3 in which a survey on Poisson and symplectic manifolds is
given. Section 4 deals with the Definition and general Existence and Equivalence theorems for
Deformation quantization on a general Poisson manifold. Some other explicit examples such as
T ∗Sn and ‘fuzzy’ CPn are discussed in Section 5. The last Section is devoted to some more
recent results where I am discussing three algebraic concepts in deformation quantization which
all have a physical meaning. Section 6.1 deals with algebra homomorphisms of the deformed
algebras whose classical limit will become pull-backs with Poisson maps: the quantization of the
latter contains the quantization problem of symmetries and integrable systems. In Section 6.2 we
discuss representations or modules of the deformed algebra: apart from possible representations
in (formal pre) Hilbert spaces à la GNS, the more general classical limit yields coisotropic maps
and coisotropic (i.e. first class) submanifolds. This concerns the important physical problem of
quantization of constraints. Finally, Section 6.3 deals with phase space reduction which is the
Leitmotiv of any gauge theory: the quantization problem is to construct a star-product on the
reduced space by means of a star-product on the unreduced (‘unphysical’) space.

1. Canonical Quantization and elementary Star-Products
In order to describe a quantum system it is necessary to know its Hamiltonian operator Ĥ. In
practice, the source of inspiration is the Hamiltonian function of the corresponding system of
classical mechanics, and any ‘reasonable’ recipe of translating classical observables to quantum
observables is called quantization.

According to P.A.M.Dirac, all quantizations should satisfy a classical limit condition, i.e. for
all classical observables f, g

f̂ ĝ = f̂g + o(~) (1)

f̂ ĝ − ĝf̂ = i~{̂f, g}+ o(~2) (2)

where {f, g} := ∂f/∂q∂g/∂p− ∂f/∂p∂g/∂q denotes the canonical Poisson bracket.
In this section we shall discuss several possible quantizations in 1 degree of freedom which

are used in quantum physics.
We recall the differential operators Q (position operator) and P (impulsion operator) in case

n = 1:

(Qψ)(q) := qψ(q) (3)
P := (~/i)∂/∂q. (4)

In the following sections we denote by C[s1, . . . , sN ] the space of complex polynomials in
N variables s1, . . . , sN . Moreover the symbol Diffoppoly(R) denotes the space of all differential
operators with polynomial coefficients in the space C∞(R,C), i.e an elementD takes the following
general form

N∑

k=0

fk∂
k/∂qk (5)

where f1, . . . , fN ∈ C[q].
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1.1. Standard Ordering
We shall consider the the following linear map ρs of the space of all complex polynomials in two
variables C[q, p] in the space Diffoppoly(R):

1 7→ ρs(1) := 1 (6)
q 7→ ρs(q) := Q (7)
p 7→ ρs(p) := P (8)

qmpn 7→ ρs(qmpn) := QmPn (9)

Since every differential operator in Diffoppoly(R) takes the form (5) it is obvious that this linear
map is a bijection. The principal idea of star-products is to pull back the (noncommutative)
associative multiplication of differential operators by the map ρs:

Proposition 1.1 Let f, g be in ∈ C[q, p] and φ ∈ C∞(R,C). Then

ρs(f)
(
φ
)

=
∞∑

r=0

(~/i)r

r!
∂rf

∂pr

∣∣∣∣
p=0

∂rφ

∂qr
. (10)

Moreover

f ∗s g := ρ−1
s

(
ρs(f)ρs(g)

)
=

∞∑

r=0

(~/i)r

r!
∂rf

∂pr

∂rg

∂qr
(11)

is a well-defined associative noncommutative multiplication on the space C[q, p] which satisfies
the classical limit

f ∗s g = fg − i~
∂f

∂p

∂g

∂q
+ o(~2).

Proof: The proof of eqn (10) is a direct computation on monomials qmpn. Since ∗s is obviously
isomorphic to the associative multiplication of differential operators by means of the linear
bijection ρs it is clear that ∗s is also associative. The formula (11) is checked for monomials
f(q, p) = qapb and g(q, p) = qcpd by observing that ρs(f ∗s g) = ρs(f)ρs(g), hence ρs(f) = QaP b

and ρs(g) = QcP d whence we have to bring QaP bQcP d in standard form by the Leibniz rule,

(P bQcϕ)(q) =
(
~
i

)b ∂b
(
qcϕ(q)

)

∂qb
=

b∑

r=0

(
~
i

)r (
b

r

)
c!

(c− r)!
qc−r

(
~
i

)b−r ∂b−r
(
ϕ(q)

)

∂qb−r

=
b∑

r=0

(
~
i

)r 1
r!

(
c!

(c− r)!
Qc−r b!

(b− r)!
P b−rϕ

)
(q)

which proves eqn (11). 2

Note that for given polynomials f, g the series in ~ is always a finite sum. Moreover, every
term in that series is a bidifferential operator (1/i)r

r!
∂rf
∂pr

∂rg
∂qr .

1.2. Weyl-Moyal ordering prescription
From the point of view of physics, standard ordering is not satisfactory: when considering the
pre-Hilbert space

D(R) := {f : R→ C|f is C∞ and supp(f) is compact} (12)
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equipped with the scalar product (for all φ, ψ ∈ D(R)):

〈φ, ψ〉 :=
∫
dq φ(q)ψ(q) (13)

we quickly see that the two real-valued functions q and p correspond to symmetric operators,
i.e. for A = Q or A = P

〈φ,Aψ〉 = 〈Aφ,ψ〉, (14)

whereas the real-valued function qp corresponds to the operator QP whose adjoint in D(R) is
equal to PQ = QP − i~1: hence ρs(qp) is no longer symmetric which would be necessary to
render it a self-adjoint operator in the Hilbert space completion L2(R, dq) of D(R). In order to
avoid these problems, the Weyl-Moyal ordering prescription had been introduced: this uses a
symmetrization of the monomials in Q and P .

We consider the following linear map ρw of the space of all complex polynomials of two
variables C[q, p] in the space Diffoppoly(R):

1 7→ ρw(1) := 1 (15)
q 7→ ρw(q) := Q (16)
p 7→ ρw(p) := P (17)

qmpn 7→ ρs(qmpn) :=
1

(m+ n)!

∑

σ∈Sm+n

Aσ(1) · · ·Aσ(m+n) (18)

where the operators A1, · · · , Am+n are given by

Ak :=
{
Q si 1 ≤ k ≤ m
P si m+ 1 ≤ k ≤ m+ n

For example, ρw(qp) = (QP + PQ)/2 and ρw(q2p) = (Q2P + QPQ + PQ2)/3. By definition,
the operators ρw(f) are symmetric if f is real because it is easily computed that

ρw(f)† = ρw(f̄)

where A† is the adjoint operator of A in
(D(R)), 〈 , 〉).

For two formal parameters α, β (considered as real under complex conjugation) the
exponential function exp(αq + βp) is mapped to ρw

(
exp(αq + βp)

)
= exp(αQ+ βP ) because it

is easy to see by induction that each power (αQ+ βP )n is already symmetrized. Using the fact
that ρs

(
exp(αq+βp)

)
= exp(αQ) exp(βP ), the fact that [Q,P ] = i~1 and the Baker-Campbell-

Hausdorff formula, we compute

e(αQ+βP ) = e
~αβ
2i eαQeβP .

Since the exponential function exp(αq + βp) is a generating function for all polynomials in q, p
one realizes the following fundamental relation standard and Weyl-Moyal ordering:

ρw(f) = ρs(Nf) (19)

where the map N : C[q, p] → C[q, p] is defined by

N := e
~
2i

∂2

∂q∂p . (20)

It is clear that N is well-defined and invertible, and one deduces that ρw : C[q, p] → Diffoppoly(R)
is a linear bijection. There is the following analogue of Proposition 1.1:
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Proposition 1.2 Let f, g be in C[q, p]. Then

f ∗w g := ρ−1
w

(
ρw(f)ρw(g)

)
=

∞∑

r=0

(i~/2)r

r!

r∑

a=0

(
r

a

)
(−1)r−a ∂rf

∂qapr−a

∂rg

∂qr−apa
(21)

is a well-defined noncommutative associative multiplication on the space C[q, p] satisfying the
classical limit

f ∗w g = fg +
i~
2
{f, g}+ o(~2).

and is isomorphic to ∗s via N :

N(f ∗w g) = (Nf) ∗s (Ng).

Moreover it is hermitean with respect to pointwise complex conjugation in the following sense

f ∗w g = g ∗w f.

Proof: The proof is a direct computation using the operator N . 2

Again, it is easy to see that ∗w is a series of bidifferential operators.

1.3. Wick ordering
There is a third quantization related to the harmonic oscillator which is very often used in
quantum field theory: firstly, one forms the following complex variable

z := q + ip. (22)

On the complex vector space

Ō(C) := {φ : C→ C|φ antiholomorphic }

one then defines the following scalar product

〈φ, ψ〉 :=
1

4π~

∫
dzdz̄e−

|z|2
2~ φ(z̄)ψ(z̄) (23)

(which may still diverge), and finally the pre-Hilbert space of all square integrable
antiholomorphic functions

H := {φ ∈ Ō(C)|〈φ, φ〉 <∞}, (24)

which embeds as a closed subspace of the big Hilbert space L2
(
R2, e−(q2+p2)/(2~)dqdp/(2π~)

)
and is therefore already a Hilbert space. The subspace of all polynomials in the variable z̄, C[z̄],
is a dense subspace of H. Partial integration yields the fact that the operator A which mutiplies
by the variable z (in the big pre-Hilbert space) induces the annihilation operator

A := 2~
∂

∂z̄
(25)

on C[z̄]. By a second partial integration in C[z̄] we see that its adjoint A† (the creation operator
is the operator

(A†φ)(z̄) := z̄φ(z̄). (26)
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It follows that we can –in a manner completely analogous to standard ordering– consider the
following linear map ρwick of the space of all complex polynomials in two variables C[z, z̄] in the
space Diffoppoly(z̄) of all differential operators having polynomial coefficients and acting in the
space of polynomials C[z̄]:

1 7→ ρwick(1) := 1 (27)
z 7→ ρwick(z) := A (28)
z̄ 7→ ρwick(z̄) := A† (29)

z̄mzn 7→ ρwick(z̄mzn) := A†mAn (30)

It is obvious that this linear map is a bijection.

Proposition 1.3 Let f, g be in C[q, p] and φ ∈ C[z̄]. Then

ρwick(f)
(
φ
)

=
∞∑

r=0

(2~)r

r!
∂rf

∂zr

∣∣∣∣
z=0

∂rφ

∂z̄r
.

Moreover

f ∗wick g := ρ−1
wick

(
ρwick(f)ρwick(g)

)
=

∞∑

r=0

(2~)r

r!
∂rf

∂zr

∂rg

∂z̄r

is a well-defined noncommutative associative multiplication on the space C[q, p] satisfying the
classical limit

f ∗wick g = fg + 2~
∂f

∂z

∂g

∂z̄
+ o(~2).

and the hermitean property with respect to pointwise complex conjugation

f ∗wick g = g ∗wick f.

Proof: The proof is completely analogous to the proof of Proposition 1.1. Note that

∂

∂q
∧ ∂

∂p
=

2
i

∂

∂z
∧ ∂

∂z̄
.

2

As for the relation between standard ordering and Weyl ordering there is also an analogue of
the operator N N (37): one defines

∆′ :=
∂2

∂q2
+

∂2

∂p2

and
N ′ := e

~
4
∆′ .

Then for all f, g ∈ C[z, z̄]:
N ′(f ∗w g) = (N ′f) ∗wick (N ′g).

Remark: The seemingly bizarre use of antiholomorphic instead of holomorphic functions
is a quantum mechanical tradition: the creation operators (i.e. increase of the degree of the
polynomial) is historically related to A†.
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1.4. Multidifferential operators and their standard symbols in Rn

Before going further it is useful to note the well-known definition of multidifferential operators
on a manifold since we shall encounter them several times.

Let M be an n-dimensional differentiable manifold. Let
(
U, φ = (x1, . . . , xn)

)
be a chart.

Recall that a multi-index I = (i1, . . . , in) is an element of Nn with |I| := i1 + · · · in, and we
denote by

∂I :=
∂i1+···+in

(∂x1)i1 · · · (∂xn)in

the usual abbreviation for iterated partial derivatives. For a vector y = (y1, . . . , yn) the
expression yI is short for the monomial (y1)i1 · · · (yn)in . Recall that a differential operator D of
order N is a C-linear map C∞(M,C) → C∞(M,C) such that in each chart

(
U, φ = (x1, . . . , xn)

)
the operator takes the local form (f ∈ C∞M,C):

D(f)|U =
∑

I∈Nn,|I|≤N

DI∂I(f |U ) (31)

where for each multi-index I the function DI : U → C is C∞. It is clear that the composition
D1D2 := D1◦D2 of two differential operators D1 and D2 is again a differential operator. Examples
are of course the position and momentum operators Qk (see eqn (3)) and Pl (see eqn (4)).

More generally, a multidifferential operator of rank k or a k-differential operator is a C-
k-multilinear map D : C∞(M,C) × · · · × C∞(M,C) → C∞(M,C) such that there is an
integer N such that in each chart

(
U, φ = (x1, . . . , xn)

)
the operator takes the local form

(f1, . . . , fk ∈ C∞(M,C)):

D(f1, . . . , fk)|U =
∑

I1,...,Ik∈Nn,|I1|,...,|Ik|≤N

DI1,...,Ik∂I1(f1|U ) · · · ∂Ik
(fk|U ) (32)

where for each k-tuple of multi-indices (I1, . . . , Ik) the function DI1,...,Ik : U → C is C∞. The
Poisson bracket { , } associated to a Poisson structure P on a manifold M is an example of a
2-differential or bidifferential operator.

Multidifferential operators can be composed in the following way: if D1 is k-differential and if
D2 is l-differential and i is an integer such that 1 ≤ i ≤ k, then (for all f1, . . . , fk+l−1 ∈ C∞(M,C))

(D1 ◦i D2)(f1, . . . , fk+l−1) := D1

(
f1, . . . , fi−1,D2(fi, . . . , fl+i−1), fl+1, . . . fk+l−1

)

is a k + l − 1-differential operator.
We shall write Diffop(M) for the space of all differential operators acting on C∞(M,C) and

Diffopk(M) for the space of all k-differential operators acting on C∞(M,C)×k. For M = U
an open subset of Rn the subspace Diffoppoly(M) is important where the functions DI are
polynomials in Rn.

For M = U being an open set in Rn multidifferential operators can equivalently be described
by their standard symbols: for α ∈ Rn∗ define the exponential function associated to α by

eα(x) := e〈α,x〉.

For a given k-differential operator D on U given in the form (32) its standard symbol Ď is a
C∞-function of U × Rn∗ × · · · × Rn∗ into the complex numbers defined by

Ď(x, α1, . . . , αk) := e−〈α1+···αk,x〉D
(
eα1 , . . . , eαk

)
(x)

=
∑

I1,...,Ik∈Nn,|I1|,...,|Ik|≤N

DI1,...,Ik(x)α1I1 · · ·αkIk

(33)
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Since the standard symbol is just ‘replacing partial derivatives ∂Ik
by the monomial αkIk

’ it is
obvious that the space of all k-differential operators on U ⊂ Rn is in bijection with the space
of all C∞-functions F : U × Rn∗ × · · · × Rn∗ → C which are polynomial in the nk variables
α1, . . . , αk. Hence we have the following

Lemma 1.1 Each k-differential operator D in an open set U of Rn is uniquely determined by
its standard symbol Ď or, equivalently, by its values on exponential functions.

1.5. Quantization in Rn

By using exponential maps, it is easy to check the following generalizations of the standard
ordered star-product ∗s, the Moyal-Weyl star-product ∗w, and the Wick star-product ∗w: Here
we consider the space of polynomials C[q, p] := C[q1, . . . , qn, p1, . . . , pn] 3 f, g:

f ∗s g =
∞∑

r=0

(~/i)r

r!

n∑

k1,...,kr=1

∂rf

∂pk1 · · · ∂pkr

∂rg

∂qk1 · · · ∂qkr

(34)

with standard-ordered representation

ρs(f)
(
φ
)

=
∞∑

r=0

(~/i)r

r!

n∑

k1,...,kr=1

∂rf

∂pk1 · · · ∂pkr

∣∣∣∣
p=0

∂rφ

∂qk1 · · · ∂qkr

. (35)

Upon writing the Poisson bracket
∑n

k=1
∂f
∂qk

∂g
∂pk

− (f ↔ g) as
∑2n

k,l=1 P
kl ∂f

∂xk

∂g
∂xl

with (q, p) = x
we have

f ∗w g =
∞∑

r=0

(i~/2)r

r!

2n∑

k1,...,kr,l1,...,lr=1

P k1l1 · · ·P krlr ∂rf

∂xk1 · · · ∂xkr

∂rg

∂xl1 · · · ∂xlr

.

(36)

The operator N being

N := e
~
2i

Pn
j=1

∂2

∂qj∂pj . (37)

one has
N(f ∗w g) = (Nf) ∗s (Ng), (38)

and there is the Weyl-Moyal representation

ρw(f) := ρs(Nf). (39)

Moreover, by defining complex coordinates zj := qj + ipj (1 ≤ j ≤ n) and we get the Wick
star-product in Cn = R2n

f ∗wick g :=
∞∑

r=0

(2λ)r

r!

n∑

k1,...,kr=1

∂rf

∂zk1 · · · ∂zkr

∂rg

∂z̄k1 · · · ∂z̄kr

. (40)

which can be seen as a finite-dimensional version of the Wick ordering for quantum field theoretic
observable algebras.

2. Formal Deformations
If we want to replace the polynomials in the preceding section by smooth complex-valued
functions, we immediately see that formulas like eqns (34) and (36) do no longer converge
in general. To make them well-defined it is useful to replace the real number ~ by a formal
parameter λ.
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2.1. Formal Power Series
In this section I shall review several elementary notions about formal power series which I shall
need later on, for more details and proofs see e.g the book by Ruiz [70]. Let R be a ring (always
with unit element, for instance a field) and M a left module over R (for example an R-vector
space in case R is a field). We shall write a map a : N→M in the form of a formal power series
with coefficients in M

a =:
∞∑

r=0

λrar

where ar := a(r) is called the rth component of a, and the symbol λ is called the formal
parameter. The set of all formal power series with coefficients in M is denoted by M [[λ]]. The
sets M [[λ]] and R[[λ]] are abelian groups in the canonical way, i.e. for b =

∑∞
r=0 λ

rbr where
br ∈M :

a+ b :=
∞∑

r=0

λr(ar + br).

Furthermore, R[[λ]] carries the structure of a ring via (α =
∑∞

r=0 λ
rαr, β =

∑∞
r=0 λ

rβr,
αr, βr ∈ R)

αβ :=
∞∑

r=0

λr
r∑

s=0

αsβr−s

and M [[λ]] becomes a left R[[λ]]-module via

αb :=
∞∑

r=0

λr
r∑

s=0

αsbr−s.

The order of a formal power series a, o(a), is defined as the minimum of the set of all nonnegative
integers r such that ar 6= 0 in case a 6= 0 and is defined to be +∞ if a = 0. It can be shown
that the function

d : M [[λ]]×M [[λ]] → R : (a, b) 7→ d(a, b) :=
{

2−o(a−b) if a 6= b
0 if a = b

defines a metric on M [[λ]], and (M [[λ]], d) becomes a complete metric space. The induced
topology is called the λ-adic topology of M [[λ]].

The following lemma is very important since multilinear maps over C[[λ]] always reduce to
formal power series of multilinear maps over C which will be applied to deformed multiplications:

Lemma 2.1 Let R be a commutative ring, M,M1, . . . ,Mk R-modules, and Φ : M1[[λ]]× · · · ×
Mk[[λ]] →M [[λ]] a R[[λ]]-multilinear map.
Then for each nonnegative integer r there is a unique R-multilinear map Φr : M1×· · ·×Mk →M
such that

Φ(a(1), . . . , a(k)) =
∞∑

r=0

λr
r∑

0≤s,r1,...,rk≤r
s+r1+···+rk=r

Φs(a(1)r1
, . . . , a(k)rk

) (41)

for all a(i) =
∑∞

ri=0 λ
ria(i)ri

∈Mi[[λ]], 1 ≤ i ≤ k.
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2.2. Formal Deformations of Associative Algebras
Let (A0, µ0) be an associative algebra with unit 1 over a commutative ring R.

Definition 2.2 A formal associative deformation of the associative algebra with unit 1, (A0, µ0)
is given by a sequence of R-bilinear maps µ1, µ2, ... : A0 ×A0 → A0 such that:

(i)
r∑

s=0

(
µs

(
µr−s(a, b), c

)− µs

(
a, µr−s(b, c)

))
= 0 (42)

for all r ∈ N and a, b, c ∈ A0.
(ii) µr(1, a) = 0 = µr(a, 1) for all r ∈ N, r ≥ 1 and a ∈ A0.

It is not hard to see that the formulas (34) and (36) define a formal associative deformation of
the algebra C∞(R2n,C) when ~ is replaced by λ.
The following Proposition is obvious:

Proposition 2.1 The space A := A0[[λ]] equipped with the R[[λ]]-bilinear multiplication µ :=∑∞
r=0 λ

rµr, i.e.

µ(a, b) :=
∞∑

r=0

λr
∑

s+t+u=0

µs(at, bu)

for all a =
∑∞

t=0 λ
tat and b =

∑∞
u=0 λ

ubu in A, is an associative algebra over the ring R[[λ]].

For the case r = 1 of eqn (42) we get (writing µ0(a, b) =: ab):

0 = aµ1(b, c)− µ1(ab, c) + µ1(a, bc)− µ1(a, b)c =: (δHµ1)
(
a, b, c

)

where δH is the Hochschild coboundary operator defined on the R-module

CH(A0,A0) :=
∞⊕

k=0

CHk(A0,A0) :=
∞⊕

k=0

HomR(A0 ⊗R · · · ⊗R A0,A0)

(the space of Hochschild cochains) by

(δHf)(a1 ⊗ · · · ⊗ ak+1) := a1f(a2 ⊗ · · · ⊗ ak+1)

+
k∑

r=1

(−1)rf(a1 ⊗ · · · ⊗ ar−1 ⊗ arar+1 ⊗ · · · ⊗ ak+1)

+(−1)k+1f(a1 ⊗ · · · ⊗ ak)ak+1

It is well-known that δ2H = 0, hence that operator defines a cohomology theory called the
Hochschild cohomology:

ZHk(A0,A0) := Ker
(
δH : CHk(A0,A0) → CHk+1(A0,A0)

)

BHk(A0,A0) := Im
(
δH : CHk−1(A0,A0) → CHk(A0,A0)

)

HHk(A0,A0) := ZHk(A0,A0)/BHk(A0,A0)

The elements of ZHk(A0,A0) are called Hochschild k-cocycles of A0, the elements of
BHk(A0,A0) are called Hochschild k-coboundaries of A0, and HHk(A0,A0) is called the kth

Hochschild cohomology group of A0 (with values in A0).
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It follows that for any formal deformation the term µ1 is always a Hochschild 2-cocycle. In the
more general case where µ is not necessarily associative it is easily computed that the associator
of µ

A(a, b, c) := µ
(
µ(a, b), c

)− µ
(
a, µ(b, c)

)

satisfies the following identity:

0 = µ
(
a,A(b, c, d)

)−A
(
µ(a, b), c, d

)
+A

(
a, µ(b, c), d

)

−A(
a, b, µ(c, d)

)
+ µ

(
A(a, b, c), d

)

for all a, b, c, d ∈ A0. For an associative formal deformation we demand thatA =
∑∞

r=0 λ
rAr = 0.

Let us suppose that the components A0, A1, . . . , Ak are already zero. Thanks to the preceding
identity we get at order r + 1 of λ:

δHAr+1 = 0.

Since
Ar+1 = δHµr+1 +A′r+1

where the rest A′r+1 contains only the terms µ0, · · · , µr it follows that

We have : δHA
′
r+1 = 0 =⇒ A′r+1 ∈ Z3(A0,A0)

We want : A′r+1
!= −δHµr+1 =⇒ A′r+1

!∈ B3(A0,A0)

Consequently the recursive obstructions to continue the construction of the term µr+1 of a formal
associative deformation of µ0 (where µ1, . . . , µr are already chosen) are contained at each stage
r in

HH3(A0,A0).

For the very important particular case where A0 is given by A0 = C∞(M,C) (equipped
with µ0 equal to pointwise multiplication) one usually considers Hochschild cochains given by
multidifferential operators: This subspace of the complex of Hochschild cochains which we
shall write in the form CHdiff

(
C∞(M,C), C∞(M,C)

)
is a subcomplex with respect to the

Hochschild coboundary. Its cohomology is called the differential Hochschild cohomology of
C∞(M,C), and we shall write it as HHdiff

(
C∞(M,C), C∞(M,C)

)
. The computation of this

cohomology originates in the article by Hochschild-Kostant-Rosenberg [54] (for polynomials),
has been generalized to the smooth case by Vey [73], Cahen-DeWilde-Gutt [21], Cahen-Gutt
[22], and DeWilde-Lecomte [32], and gives nothing but the space of multivector fields:

Theorem 2.3

∀ k ∈ N : HHk
diff

(
C∞(M,C), C∞(M,C)

) ∼= Γ(M,ΛkTM).

A generalization of this result had been obtained by A.Connes en 1985 (see [28], p.207-210) who
has replaced differential cochains by cochains which are continuous with respect to the standard
Fréchet topology of this space. Pflaum [69] and Nadaud [61] have shown that one may drop
Connes’ hypotheses that the Euler characteristic of the manifold is zero. In these cases the
resulting Hochschild cohomology is isomorphic to the right hand side of the HKR-Theorem 2.3,
i.e. the space of all smooth multivector fields Γ(ΛTM).
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2.3. Poisson brackets in a general algebraic context
Proposition 2.2 If (A, µ0) is a commutative associative algebra and C =

∑∞
r=0 λ

rµr is a formal
associative deformation then it turns out that

{f, g} := µ1(f, g)− µ1(g, f) ∀ f, g ∈ A
defines a Poisson bracket on A, i.e. a Lie bracket which satisfies the Leibniz rule:

{f, gh} = {f, g}h+ {f, h}g ∀ f, g, h ∈ A.
Proof: Indeed, the Jacobi identity for the bracket { , } follows from total antisymmetrization
of the associativity condition of µ at order 2. In order to obtain the Leibniz identity one takes
the associativity condition of µ at order 1,

0 = −fC1(g, h) + C1(fg, h)− C1(f, gh) + C1(f, g)h,

and adds to it the same identity with f and h interchanged, which gives

0 = −f{g, h}+ {fg, h} − {f, gh}+ {f, g}h
(showing that δH{ , } = 0). Adding to this identity the one with g and h interchanged and
subtracting the one with f and g interchanged yields (twice) the Leibniz rule. 2

This rather general simple fact means that if Poisson structures in classical mechanics are
replaced by more general mathematical objects, their quantization can no longer lead to
associative quantum observable algebras.

2.4. Gerstenhaber’s formula
The explicit formulas for the associative multiplications ∗s and ∗w have a common algebraic
feature: the following rather useful theorem is due to M.Gerstenhaber [46], p.13, Thm.8:

Theorem 2.4 Let (A,µ0) be an associative algebra with unit 1 over a commutative ring k
which contains the rationals Q where µ0 : A⊗A→ A denotes the (not necessarily commutative)
multiplication of A. Let D1, . . . , Dn, E1, . . . , En 2n derivations of (A,µ0) which all pairwise
commute, i.e. Dk ◦µ0 = µ0 ◦(Dk⊗1+1⊗Dk), El ◦µ0 = µ0 ◦(El⊗1+1⊗El), Dk ◦Dl = Dl ◦Dk,
Dk ◦ El = El ◦Dk and Ek ◦ El = El ◦ Ek for all integers 1 ≤ k, l ≤ n. Let r :=

∑n
k=1Dk ⊗ Ek.

Then on the k[[λ]]-module A[[λ]] there is a k[[λ]]-bilinear multiplication µ defined by

µ := µ0 ◦ eλr (43)

which deforms µ0 with unit element 1.

Proof: The following elegant reasoning has been found by A.Dimakis and F.Müller-Heussen in
[35] for a particular case: one defines the following three linear maps: A⊗A⊗A→ A⊗A⊗A
(where 1 denotes the identitiy map A→ A) r12 := r⊗1, r23 := 1⊗r and r13 :=

∑n
k=1Dk⊗1⊗Ek.

Since the derivations commute we have [r12, r13] = 0, [r12, r23] = 0 and [r13, r23] = 0. Thanks to
the derivation identity it follows that

r ◦ (µ0 ⊗ 1) = (µ0 ⊗ 1) ◦ (r13 + r23) and
r ◦ (1⊗ µ0) = (1⊗ µ0) ◦ (r12 + r13),

hence

eλr ◦ (µ0 ⊗ 1) = (µ0 ⊗ 1) ◦ e(r13+r23) and

eλr ◦ (1⊗ µ0) = (1⊗ µ0) ◦ e(r12+r13),
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therefore, as the rij commute:

µ ◦ (µ⊗ 1) = µ0 ◦ eλr ◦ (µ0 ⊗ 1) ◦ eλr12 = µ0 ◦ (µ0 ⊗ 1) ◦ eλ(r12+r13+r23).

Analogously:

µ ◦ (1⊗ µ) = µ0 ◦ eλr ◦ (1⊗ µ0) ◦ eλr23 = µ0 ◦ (1⊗ µ0) ◦ eλ(r12+r13+r23).

Since µ0 is associative we get µ0 ◦ (µ0 ⊗ 1) = µ0 ◦ (1 ⊗ µ0), whence the associativity of the
multiplication µ. Moreover, since any derivation vanishes on 1 it follows that 1 is still the unit
element of µ. 2

It is easily seen that the multiplications ∗s, ∗w, are particular cases of Gerstenhaber’s formula
if the real number ~ is replaced by the formal parameter λ, and if we set

rs :=
1
i

n∑

k=1

∂

∂pk
⊗ ∂

∂qk
(44)

rw :=
i

2

n∑

k=1

(
∂

∂qk
⊗ ∂

∂pk
− ∂

∂pk
⊗ ∂

∂qk

)
(45)

3. Poisson Geometry
3.1. Poisson Manifolds
We have seen in Proposition 2.2 that the first order commutator of a formal associative
deformation of commutative algebra A always gives rise to a Poisson bracket. In this Section
we shall deal with the important case where the undeformed algebra is the space of smooth
complex valued functions, C∞(M,C) on a smooth mannifold M .

Let { , } be a Poisson bracket on A := C∞(M,C). For any g ∈ A let Xg denote the linear
map A → A defined by f 7→ Xg(f) := {f, g}. By the Leibniz rule each Xg is a derivation on
A, i.e. Xg(ff ′) = Xg(f)f ′ + fXg(f ′) for all f, f ′ ∈ A. It is a classical fact (see e.g. [1]) that
to each derivation there corresponds a unique vector field on M , also denoted by Xg, such that
Xg(f) is given by the Lie derivative of f with respect to Xg. In other words, in each local chart
(U, x = (x1, . . . , xn)) on M we can write Xg(f) =

∑n
i=1X

i
g(∂f/∂x

i) for certain complex valued
smooth functions Xi

g on the chart domain U . The vector field Xg is called the Hamiltonian
vector field associated to g. Note that the Jacobi identity of the Poisson bracket implies

[Xf , Xg] = −X{f,g} ∀ f, g ∈ A.

Using the fact that the linear map g 7→ Xg is also a derivation in the sense thatXgg′ = g′Xg+gXg′

for all g, g′ ∈ A, a slight generalization of the above classical argument shows that the Poisson
bracket uniquely determines a so-called bivector field, i.e. a smooth section P in the bundle
Λ2TMC. In a local chart

(
U, (x1, . . . , xn)

)
this bivector field P takes the form

P =
1
2

n∑

i,j=1

P ij ∂

∂xi
∧ ∂

∂xj
hence {f, g} =

n∑

i,j=1

P ij ∂f

∂xi

∂g

∂xj
. (46)

for all f, g ∈ A where (P ij) is an antisymmetric matrix of smooth complex-valued functions on
U . We shall henceforth restrict to the case where P is real. The rank of a bivector field P in
x ∈M is defined by the rank of the antisymmetric matrix P ij

x in an arbitrary chart.
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On the other hand, each bivector field P can canonically be considered as an antisymmetric
bilinear form on the cotangent bundle T ∗M by using the natural pairing: let α, β two 1-forms
on M

P (α, β) = iβiαP =
n∑

i,j=1

P ijαiβj , (47)

and one can thus define the antisymmetric bracket

{f, g} := {f, g}P := P (df, dg) = df Xg = −dg Xf . (48)

for any f, g ∈ A which automatically satisfies the Leibniz rule. The Jacobi identity for such
a bracket, however, is not necessarily valid and has to be demanded: it is easily seen that in
co-ordinates this leads to the following quadratic PDE on P ij :

0 !=
n∑

r=1

(
P ir ∂P

jk

∂xr
+ P jr ∂P

ki

∂xr
+ P kr ∂P

ij

∂xr

)
. (49)

As a matter of fact, the above condition behaves well under co-ordinate changes and is a special
case of the so-called Schouten bracket [ , ]s which is a graded Lie bracket on the space of the
so-called multivector fields (or polyvector fields), i.e. Γ∞(M,ΛTM), and the above condition
reads [P, P ]s = 0, see [72] for details.

The above condition (49) implies the simplest example of a Poisson manifold, i.e. any open
set M of Rn equipped with a constant antisymmetric matrix P ij .

A bivector field P on a manifold M satisfying (49) is called a Poisson structure, and the pair
(M,P ) is called a Poisson manifold. On such a manifold one can always define Hamiltonian
mechanics by associating to each smooth real-valued function H on M its Hamiltonian vector
field XH which gives rise to a dynamical system, i.e. the first order ODE

ẋ = XH(x) and x(0) = x0 ∈M, (50)

the so-called Hamiltonian equations of motion. Since for any f ∈ A one has d(f(x(t)))/dt =
(XH(f))(t) = {f,H}(x(t)) it follows that f is a conserved quantity for H iff {f,H} = 0, hence
in particular H is always a conserved quantity (conservation of energy).

The above condition (49) implies the simplest example of a Poisson manifold, i.e. any open
set M of Rn equipped with a constant antisymmetric matrix P ij . In contrast to that the local
structure of a Poisson manifold can be very complicated, and the rank of the bivector field may
change over the manifold. On the other hand there are no topological restrictions for a manifold
of dimension n ≥ 2 to admit a nonzero Poisson structure: in fact, by choosing in the image of
a chart domain n commuting vector fields X1, . . . , Xn which are independent at the origin and
have compact support (exercise: construct them!) and by pulling them back to the manifold,
one can define P as a sum of terms of the form Xi ∧ Xj . Moreover it is clear that on any 2
dimensional manifold any bivector field is automatically Poisson.

3.1.1. The dual of a Lie algebra Apart from constant Poisson structures, the following example
of the so-called linear Poisson structure is the most important: Let (g, [ , ]) be an n-dimensional
real Lie algebra and M := g∗ its dual space. Let e1, . . . , en be a base of g, let e1, . . . , en be the
dual base, and cklm := ek([el, em]) the structure constants of g.

Then for all ξ ∈ g∗ one defines on M the linear Poisson structure corresponding to [ , ]:

Pg(ξ) := ξ([ , ]) =
1
2

n∑

k,l,m=1

ξkc
k
lm

∂

∂ξk
∧ ∂

∂ξl
. (51)

International Conference on Non-commutative Geometry and Physics IOP Publishing
Journal of Physics: Conference Series 103 (2008) 012002 doi:10.1088/1742-6596/103/1/012002

14



The Jacobi identity for this Poisson structure is a direct consequence of the Jacobi identity for
the Lie bracket [ , ] of g.

The Lie algebra g = so(3) ∼= R3 of all real 3 × 3 antisymmetric matrices with the bracket
[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2 coming from the vector product is an important example
for the dynamics of a freely spinning top: let Θ be a positive definite 3× 3-matrix (the inertia
tensor), and H : R3 → R the real valued function H(L) = 1

2

∑3
i,j=1 Li(Θ−1)ijLj . Then the

dynamical system corresponding to H is the Euler equation of a freely spinning top

dL

dt
= [Θ−1L,L]

where L is the angular momentum and Θ−1L the angular velocity of the top.

3.2. Symplectic manifolds
Symplectic manifolds are the most important examples of Poisson manifolds, see the book [1]
for an excellent introduction.

A Poisson manifold (M,P ) such that the bivector field P is an invertible antisymmetric
matrix at each point x ∈ M in some co-ordinate chart is called a symplectic manifold. The
natural inverse of P is a 2-form ω ∈ Γ2(M,Λ2T ∗M) = Ω2(M): we adopt the convention that∑n

r=1 ωirP
jr = δj

i . It is an easy exercise that the Jacobi identity (49) is equivalent to the linear
PDE

dω = 0 or 0 =
∂ωjk

∂xi
+
∂ωij

∂xk
+
∂ωki

∂xj
. (52)

Therefore symplectic manifolds are denoted (M,ω) with ω a nondegenerate closed 2-form.
Unlike general Poisson manifolds, symplectic manifolds have a very simple local structure

ensured by Darboux’s Theorem: around each point of M there always exists so-called canonical
or Darboux co-ordiantes (q, p) = (q1, . . . , qn, p1, . . . , pn) in which the symplectic form takes the
constant form

ω :=
n∑

i=1

dqi ∧ dpi. (53)

See e.g. [1], p.175, Thm 3.2.2. for a proof. In particular, symplectic manifolds are always
evendimensional, and the Poisson bracket takes the usual form

∑n
i=1 ∂f/∂q

i∂g/∂pi − (f ↔ g).
Simple examples of symplectic manifolds are R2n equipped with the constant 2-form (53).

Moreover, any oriented 2-dimensional manifold (a so-called oriented Riemann surface) carries
a volume form and is hence symplectic. Unlike general Poisson manifolds there are topological
obstructions for compact manifolds to admit a symplectic form ω: in the de Rham cohomology,
the class of each of the following closed 2k-forms ω∧k, 1 ≤ k ≤ n := dimM/2 has to be non zero:
in fact, if there was a k − 1-form θ with ω∧k = dθ, then the volume form ω∧n would be equal
to dθ ∧ ω∧(n−k) = d(θ ∧ ω∧(n−k)) which would be absurd since the total volume

∫
M ω∧n of M

would be zero by Stokes’s Theorem. For example, the spheres S2n do not admit any symplectic
structure for all n ≥ 2.

A general Poisson manifold is known to be foliated by local symplectic submanifolds, the
so-called symplectic leaves, see [72] for details, whose dimension is in general non constant.

3.2.1. Cotangent bundles Let Q be a differentiable manifold, T ∗Q its cotangent bundle, and
τ∗Q : T ∗Q → Q the canonical bundle projection. The canonical 1-form θ0 on the manifold T ∗Q
is defined in the following manner: let q ∈ Q, α ∈ TqQ

∗, and Wα ∈ TαT
∗Q, then

θ0(α)
(
Wα

)
:= α

(
Tατ

∗
Q Wα

)
. (54)
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Let
(
(U, (q1, . . . , qn)

)
be a chart of Q, and

(
T ∗U, (q1, . . . , qn, p1, . . . , pn)

)
the corresponding

canonical chart of T ∗Q (i.e. qk(α) := qk
(
τ∗Q(α)

)
and pl(α) := α(∂/∂ql)), then θ0 takes the

form
θ0 :=

∑

k=1

pkdq
k (55)

whence the fact that the canonical 2-form

ω0 := −dθ0 (56)

is nondegenerate, hence a symplectic form on T ∗Q. The cotangent bundles generalize the
phase spaces in physics where Q is a configuration space and the fibres represent the conjugate
momenta.

3.2.2. Complex Projective Space Apart from the tori of even dimension, the complex projective
spaces are the simplest compact symplectic manifolds:

Consider the complex manifold Cn+1 \ {0} equipped with complex coordinates z := (z1 :=
q1 + ip1, . . . , zn+1 := qn+1 + ipn+1) and with the standard symplectic form

ω0 :=
i

2

n+1∑

k=1

dzk ∧ dz̄k =
n+1∑

k=1

dqk ∧ dpk. (57)

Complex projective space CPn is defined by the following equivalence relation

z ∼ z′ iff ∃α ∈ C \ {0} such that z′ = αz, (58)

and CPn := Cn+1 \ {0}/ ∼. Let

π : Cn+1 \ {0} → CPn : z 7→ [z] (59)

be the canonical projection whose fibres obviously are the complex lines in Cn+1 \ {0} passing
through the origin. There are n+ 1 complex charts (Uk, v) defined by

Uk := {[z] ∈ CPn|zk 6= 0}
v :=

(
v1 :=

z1
zk
, . . . , vk−1 :=

zk−1

zk
, vk+1 :=

zk+1

zk
, . . . , vn+1 :=

zn+1

zk

)
.

The Fubini-Study 2-form ω is defined in each chart (Uk, v) (where we set |v|2 :=
∑n+1

l=1,

l 6=k

|vl|2):

ω|Uk
:=

i

2(1 + |v|2)




n+1∑

l=1
l 6=k

dvl ∧ dv̄l − 1
(1 + |v|2)

n+1∑

l,l′=1

l,l′ 6=k

v̄ldvl ∧ vl′dv̄l′


 (60)

It can be shown that these locally defined closed two-forms ω|Uk
are well-behaved under the

change of charts and thus define a global 2-form ω. Moreover, the map Φ : CP 1 → S2

[z1, z2] 7→ 1
|z1|2 + |z2|2

(
z1z2 + z̄1z̄2,−i(z1z2 − z̄1z̄2), |z1|2 − |z2|2

)

is easily computed to be a diffeomorphism.
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4. Star-products
In the preceding chapter we have seen that one can construct noncommutative or “quantum”
associative multiplications ∗ on C[[λ]] and even on C∞(R2n,C) by using symbol calculus, i.e. by
using a linear bijiection between C[q, p] and an already given associative algebra, namely the
algebra of all differential operators with polynomial coefficients acting on C∞(Rn,C).

The principal idea of star-products is to construct such an associative multiplication ∗ directly
on the space of classical observables, i.e. on the function space C∞(M,C)[[λ]] (whereM is a given
Poisson manifold) without a priori referring to a ‘representation’ in a differential or operator
algebra: for most of the Poisson manifolds it is not at all clear how such a differential operator
algebra could be chosen. From the point of view of physics this means that the construction of
the quantum system starts with the observable algebra (unlike the classical approach), whereas
the construction of the Hilbert space is postponed.

4.1. Definition
The following definition had been given by F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz,
and D. Sternheimer in 1978 [5]:

Definition 4.1 Let (M,P ) be a Poisson manifold. The structure of a star-product on M or a
deformation quantization on M is defined by the following sequence of C-bilinear maps

Cr : C∞(M,C)× C∞(M,C) → C∞(M,C)

for all r ∈ N subject to the following conditions (f, g, h ∈ C∞(M,C)):

(i) Every Cr is a bidifferential operator
(ii) C0(f, g) = fg (classical limit).
(iii) C1(f, g)− C1(g, f) = i{f, g} := iP (df, dg) (classical limit).
(iv) Cr(1, g) = 0 = Cr(f, 1) for all r ≥ 1 (the constant function 1 remains a unit element).
(v)

∑r
s=0

(
Cs(Cr−s(f, g), h

)
=

∑r
s=0

(
Cs(f,Cr−s(g, h)

)
for all r ∈ N (associativity).

The formal series

∗ :=
∞∑

r=0

λrCr

is called a star-product on M .
Furthermore, if for all r ∈ N and f, g ∈ C∞(M,C)

Cr(f, g) = Cr(ḡ, f̄) (61)

(where ¯ denotes pointwise complex conjugation) the star-product is called symmetric or
hermitian.

For example, ∗w and ∗wick are hermitean, ∗s is not.
The following corollary is obvious:

Corollary 4.1 Let ∗ be a star-product on the Poisson manifold (M,P ). Then the C[[λ]]-module
C∞(M,C)[[λ]] becomes an associative algebra over the ring C[[λ]] via (F =

∑∞
r=0 λ

rFr, G =∑∞
r=0 λ

rGr ∈ C∞(M,C)[[λ]])

F ∗G :=
∞∑

r=0

λr
∑

s+t+u=0

Cs(Ft, Gu).

If moreover the star-product is hermitean, then the pointwise complex conjugation ¯ becomes an
(antilinear) antiautomorphism of the associative algebra (C∞(M,C)[[λ]], ∗), i.e.:

F ∗G = G ∗ F .
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We list further properties of star-products:

Definition 4.2 (i) If the order Nr of the bidifferential operator Cr is always equal to r the
star-product is called natural by S.Gutt and J.Rawnsley.

(ii) A hermitean star-product is called of Weyl-Moyal type iff

Cr(g, f) = (−1)rCr(f, g) forall r ≥ 0.

For example, ∗s and ∗w are natural, and ∗w is of Weyl-Moyal type.
For two star-products ∗ and ∗′ there is the following notion of formal isomorphy which we

had already encountered for ∗s and ∗w:

Definition 4.3 Let (M,P ) be a Poisson manifold and ∗, ∗′ two star-products. They are
called equivalent (∗ ∼ ∗′) iff there is a formal series of linear maps, called an equivalence
transformation

S = id+
∞∑

r=1

λrSr

(where each Sr : C∞(M,C) → C∞(M,C) is C-linear) such that

F ∗′ G = S−1
(
(SF ) ∗ (SG)

)

for all F,G ∈ C∞(M,C)[[λ]].

It can be shown using the computations of Hochschild cohomology that all the Sr (r ≥ 1) are
necessarily differential operators vanishing on the constants.

Since the operator series N (see eqn (37)) takes the form id + λ
2i

∂
∂q

∂
∂p + o(λ2), it defines an

equivalence transformation between the star-products ∗w and ∗s.

4.2. Existence
4.2.1. Symplectic manifolds After some important results for special cases (like symplectic
manifolds whose third de Rham cohomology group vanishes [62] and cotangent bundles of
parallelizable manifolds [22]) the first complete existence result had been shown by M.DeWilde
and P.Lecomte in 1983, [33]:

Theorem 4.4 (DeWilde-Lecomte 1983) On every symplectic manifold (M,ω) there is a
star-product.

The proof was based on one hand on explicit computations of the differential Hochschild
cohomology of the commutative associative algebra C∞(M,C) and on the second and third
Chevalley-Eilenberg cohomology of the Lie algebra C∞(M,C) equipped with the Poisson bracket,
see [50], [31], and for a survey [34]. On the other hand, an important ingredient had been a a
local homogeneity argument based on a generalization of the Euler field of a cotangent bundle
which has already occurred in [22].

Independently of this result, B.Fedosov had given a proof of Theorem 4.4 in 1985, [39]. His
method is remarkable since it rather uses symplectic connections than local charts: therefore his
proof allows to construct the bidifferential operators directly in tensorial terms, which sometimes
is more adapted to the implementation of symmetries. Yet another existence proof had been
given by H.Omori, Y.Maeda, and A.Yoshioka in 1991, see [66]: here local Weyl-type star-
products (isomorphic to ∗w on R2n) are glued together by means of cocycles of equivalence
transformations.
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4.2.2. Poisson manifolds The main obstacle to translate even locally the methods of the
previous section to a general Poisson manifold was the fact that the local structure of a Poisson
manifold can still be very complicated (unlike the symplectic situation where Darboux’s theorem
holds), and that there is in general no connection in the tangent bundle leaving invariant the
Poisson structure: if this is the case the Poisson structure must have constant rank, a case
Fedosov also dealt with. In the deformation quantization community it came out as a big
sensational surprise in 1997 when the following result was announced by Maxim Kontsevich:

Theorem 4.5 (Kontsevitch 1997) On every Poisson manifold (M,P ) there exists a star-
product.

For the algebraic framework of operades, L∞-structures, and formality, see the original article
[57] and the article [3] which unzips some details of the proof. Kontsevich gave the result first
for M = Rn in terms of an explicit formula, see the discussion further down, and sketched its
globalization to manifolds. A.Cattaneo and G.Felder (see [24]) have retraced the quantum field
theoretical roots of Kontsevich’s construction in the physical theory of Poisson-Sigma models due
to P.Schaller and T.Strobl (see [71]), and have given a more explicit globalization of Kontsevich’s
result à la Fedosov in [25] (with Tomasini). V.Dolgushev has globalized the formality map, see
[37].

For the Poisson manifold (Rn, 1
2

∑n
a,b=1 P

ab∂a ∧ ∂b) Kontsevitch uses the following Ansatz
for the bidifferential operators Cr of the star-product: let f, g be in C∞(Rn,C), let 2r =
n1 + · · · + nr + M + N be a partition of the nonnegative integer 2r as a sum of nonnegative
integers, and let σ be a permutation of {1, 2, . . . , 2r}. Let us denote

(
(n1, . . . , nr,M,N), σ

)
by

Γr, and one defines the bidifferential operator

CΓr(f, g) :=
n∑

a1,...,a2r=1

(
∂n1P aσ(1)aσ(2)

∂xa1 · · · ∂xan1

· · · ∂nrP aσ(2r−1)aσ(2r)

∂xan1+···+nr−1+1 · · · ∂xan1+···+nr

∂Mf

∂xan1+···+nr+1 · · · ∂xan1+···+nr+M

∂Ng

∂xan1+···+nr+M+1 · · · ∂xa2r

)
.

(62)

The bidifferential operator Cr is obtained by a particular real linear combination of the preceding
operators parametrised by all possible Γr with weights wΓr which are at the heart of Kontsevich’s
construction: he represents the Γr by graphs having r + 2 vertices (corresponding to r Poisson
structures and two functions) and 2r edges (corresponding to 2r partial derivatives) in the
upper halfplane, and the coefficients wΓr of the linear combination are obtained by a multiple
integration related to the geometric image of the graph:

Cr(f, g) =
∑

Γr

wΓrCΓr(f, g). (63)

4.3. Equivalence
4.3.1. Symplectic manifolds A couple of years before the first existence proof, the above
computations of Hochschild and Chevalley-Eilenberg cohomology had made it clear that
recursive obstructions to equivalence lie in the second de Rham cohomology of the underlying
symplectic manifold. On the other hand, the above-mentioned existence proofs by DeWilde-
Lecomte [33] and by Fedosov [39] already included second de Rham cohomology classes. In
the papers by P.Deligne [29], R.Nest-B.Tsygan [63, 64] and M.Bertelson-M.Cahen-S.Gutt [7] a
somewhat canonical parametrization of the equivalence classes has been found:
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Theorem 4.6 Let (M,ω) be a symplectic manifold. Hence the equivalence classes of star-
products on (M,ω) are in bijection with the formal power series having coefficients in H2

dR(M),
the second cohomology group of the manifold M .

The above bijection is given explicitly (in terms of Čech-cohomology based on an atlas
consisting of Darboux charts) and is called the Deligne class [∗] of ∗. For an excellent review
of these things including a very simple existence proof of symplectic star-products, see [52].
Moreover, N.Neumaier has shown that the series of closed 2 forms occurring in the Fedosov
construction [39] coincide with the representatives of the Deligne class, see [65].

4.3.2. Poisson manifolds In the case of a Poisson manifold the classification result proved to
be much more difficult and had also been done by M.Kontsevich [57]:

The Schouten bracket [ , ]S (see [72]) can be extended to the space of formal multivector
fields Γ(M,ΛTM)[[λ]] in the obvious C[[λ]]-bilinear manner

[
∞∑

r=0

λrPr,
∞∑

t=0

λtQt]s :=
∞∑

r=0

λr
r∑

t=0

[Pt, Qr−t]s

where it satisfies the graded Leibniz and Jacobi identities. A formal Poisson structure P on
a differentiable manifold M is a formal power series P =

∑∞
r=0 λ

rPr of bivector fields with
[P, P ]s = 0. Moreover, any formal vector field X acts on the formal bivector fields by Lie
derivative LXP := [X,P ]s. Finally, two formal Poisson structures P and P ′ are called formally
diffeomeorphic iff there exists a formal vector field X such that

P ′ = eλLX (P ).

This is an equivalence relation which can be seen by using the Baker-Campbell-Hausdorff
formula. By means of these structures the set of equivalence classes of star-products is described
as follows:

Theorem 4.7 (Kontsevitch 1997) Let (M,P0) be a Poisson manifold. Then the equivalence
classes of star-products on (M,P0) are in bijection with the formal diffeomorphism classes of
formal Poisson structures whose zeroth order term is equal to P0.

5. Explicit Examples
5.1. Cotangent bundle of Sn

This example is due to F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz and D. Sternheimer
[5]:

Consider the symplectic manifold M ′ := T ∗(Rn+1 \ {0}) = (Rn+1 \ {0}) × Rn+1 equipped
–as an open subset of R2n– with canonical Darboux coordinates (q, p) and the canoncial
symplectic form

∑n+1
k=1 dqk ∧dpk. The following two functions H1(q, p) :=

∑n+1
k=1 qkpk =: q ·p and

H2(q, p) :=
∑n+1

k=1(qk)2 =: |q|2 span the two-dimensional non-abelian Lie algebra (with respect
to the Poisson bracket), i.e. {H1,H2} = −2H2. Moreover the Hamiltonian flows of H1 and H2

take the form Φ1
s(q, p) = (esq, e−sp) and Φ2

t (q, p) = (q, p − 2tq), and generate the action of the
two-dimensional non-abelian Lie group

G := {(α, t) ∈ R2 | α > 0} (64)

on M ′ given by (α, t).(q, p) := (αq,−2tq + α−1p). Let T ∗Sn be defined

M := T ∗Sn := {(q, p) ∈M ′ | q · p = 0 and |q|2 = 1}. (65)
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It is easily seen that this definition gives the tangent bundle of the n-sphere Sn which is
isomorphic to its cotangent bundle via the canonical (‘round’) Riemannian metric on Sn. There
is a projection

π : M ′ →M : (q, p) 7→
(
q

|q| , |q|p−
q · p
|q| q

)
(66)

which clearly is a surjective submersion. The fibres of that projection are the orbits of the group
G. Therefore there is the following
Lemma 5.1 Let F be in C∞(M ′,C). Then there is a function f ∈ C∞(M,C) such that F = f ◦π
if and only if F is G-invariant, i.e. F

(
(α, t).(q, p)

)
= F

(
q, p

)
.

Since G is connected it follows that F is G-invariant iff

{F,H1} = 0 = {F,H2}. (67)

Using the Moyal-Weyl star-product ∗w (36) on M ′ it is easily seen that for each quadratic
polynomial F and every function F̃ ∈ C∞(M ′,C) there is the following important formula

F ∗w F̃ − F̃ ∗w F = iλ{F, F̃}, (68)

i.e. the higher order terms in the star-product commutator vanish. If this formula is applied to
F = H1 or F = H2 one directly sees –using (67)– that a functionH is G-invariant iff it commutes
with H1 and H2 with respect to ∗w. It follows that the space of all G-invariant functions is an
associative subalgebra of (C∞(M ′,C)[[λ]], ∗w). Consequently
Theorem 5.2 There exists a star-product ∗BFFLS on M for which one has the following explicit
formula:

f ∗BFFLS g
(
π(q, p)

)
= (π∗f) ∗w (π∗g)(q, p).

5.2. Complex projective space
The following explicit formula described further down for a star-product on complex projective
space CPn has been found in [18] where one may find the details of its proof.

Let
π : Cn+1 \ {0} → CPn (69)

be the canonical projection whose fibres are the complex lines in Cn+1 \ {0} passing through
the origin. As in the preceding example, the fibres are obtained by the action of a two-
dimensional Lie group, namely the multiplicative group of all non zero complex numbers,
C \ {0}. Unfortunately this group does no longer preserve the star-product of Wick type on
Cn+1 \ {0} which renders the deduction more difficult. By means of the complex coordinates
z := (z1, . . . , zn+1) on Cn+1 \ {0} we denote the square of the Euclidean distance to the origin
by

x :=
n+1∑

k=1

|zk|2. (70)

By modifying the usual star-product of Wick type on Cn+1 \ {0} we get the following

Theorem 5.3 Let f, g be in C∞(CPn,C). Then the following fomula gives a star-product of
Wick type on the Kähler manifold CPn:

π∗(f ∗ g)(z) := π∗(fg)(z)

+
∞∑

r=1

(2λ)r

r!
xr

(1 + λ) · · · (1 + rλ)

n+1∑

k1,...,kr=1

∂rπ∗f
∂zk1 · · · ∂zkr

(z)
∂rπ∗g

∂z̄k1 · · · ∂z̄kr

(z).

In[17] we have shown that this star-product converges on all representative functions of the
canonical action of the unitary group U(n+ 1) for certain real values of the parameter λ.
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5.3. The Gutt star-product on the dual space of a Lie algebra
This very important explicit example has been found independently by S.Gutt [51] and by
V.Drinfel’d [38] in 1983:

Let (g, [ , ]) be an n-dimensional real Lie algebra and M := g∗ its dual space. Let e1, . . . , en
be a base of g, let e1, . . . , en be the dual base, and cklm := ek([el, em]) the structure constants of
g. Here we shall use a formal parameter ν. Let H : g × g → g[[ν]] be the formal group law by
Baker-Campbell-Hausdorff:

H(x, y) := x+ y

+
∞∑

n=1

(−1)n

n+ 1

∑
k1,...,kn≥0
l1,...,ln≥0
ki+li≥1

ν
Pn

i=1 ki+li

(
ad(x)

)k1
(
ad(y)

)l1 · · · (ad(x))kn
(
ad(y)

)ln

(k1 + · · ·+ kn + 1)k1! · · · kn!l1! · · · ln!
x

(71)

where g[[ν]] is the space of all formal power series with coefficients in g, see the next Section for
details. It is easily seen that one can extend H to g[[ν]]× g[[ν]]. By its definition, H is equal to
the logarithm of a product of two exponential functions in the completed universal envelopping
algebra of g, i.e.

eνxeνy = eνH(x,y).

whence
H

(
H(x, y), z

)
= H

(
x,H(y, z)

) ∀x, y, z ∈ g. (72)

The standard symbol for the star-product ∗ on g∗ is defined as follows (x, y ∈ g ∼= g∗∗):

ex ∗ ey := eH(x,y) (73)

Since it is obvious using (71) that H(x, y) − x − y is a multiple of ν, we get that the standard
symbol of ∗ is a formal power series in ν. Moreover for each power of ν there is only a finite
number of summands in H(x, y) (71): this implies that the standard symbol of ∗ is polynomial
in (x, y) for each power of ν. Therefore the formula (73) is well-defined. The star-product is
associative because (x, y, z ∈ g)

(ex ∗ ey) ∗ ez = eH(x,y) ∗ ez = e
H

(
H(x,y),z

)

= e
H

(
x,H(y,z)

) = ex ∗ eH(y,z) = ex ∗ (ey ∗ ez)

thanks to (72). Hence the two tridifferential operators defined by their standard symbols
(ex ∗ ey) ∗ ez et ex ∗ (ey ∗ ez) coincide on exponential functions, hence they are equal thanks
to Lemma 1.1. The formal power series of the standard symbol of ∗ has the following terms of
order zero and of order one:

∗̌(ξ, x, y) = eξ(H(x,y)−x−y) = 1 +
ν

2
ξ([x, y]) + o(ν2)

whence the classical limit of ∗ is readily deduced. Finally, the Euler like operator

ν
∂

∂ν
+

n∑

k=1

ξk
∂

∂ξk

counting the sum of the degree in ν and the degree of homogeneous polynomial functions on g∗
is a derivation of ∗ by (71), hence the bidifferential operator Cr de ∗ (which is of degree r in
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ν) has at most r partial derivatives with respect to ξ distributed on the two functions f and
g. It follows that f ∗ g is a polynomial in ν if f and g are polynomials on g∗. Therefore it is
legal to set ν = 1 on polynomials. This latter complex associative algebra is isomorphic to the
complexified universal envelopping algebra Ug of the real Lie algebra g (see [51]). The preceding
discussion gives the following

Theorem 5.4 Let g ba a finite-dimensional real Lie algebra. Then there exists a star-product
∗ defined by (71) on the Poisson manifold (g∗, Pg) which converges (in ν) on the subspace
of polynomial functions on g∗ where the multilplication is isomorphic to the complexified
envelopping algebra of g.
In particular, for ξ, η ∈ g it follows that the C[[λ]]-module of all linear functions ξ̃ and η̃ defined
on g∗ by ξ̃(α) := 〈α, ξ〉 forms a Lie subalgebra, i.e.

ξ̃ ∗ η̃ − η̃ ∗ ξ̃ = iλ ˜[ξ, η].

5.4. The dual space of an associative algebra
This example is due to the author in this context. Let A be an n-dimensional real associative
algebra. If A− denotes the Lie algebra whose underlying vector space is A equipped with the
commutator of the associative multiplication one can repeat the preceding Baker-Campbell-
Hausdorff star-product. However, the associative structure of A allows for a much more explicit
description: in a base e1, . . . , en of A (where the dual base is denoted by e1, . . . , en) the structure
constants of the multiplication are expressed as follows:

mi
jk := ei(ejek) ∈ R. (74)

Then we can define the following star-product ∗ on A∗: (f, g ∈ C∞(A∗,C)):

f ∗ g (ξ) :=
∞∑

r=0

νr

r!

∑
1≤i1,...,ir≤n
1≤j1,...,jr≤n
1≤k1,...,kr≤n

mi1
j1k1

· · ·mir
jrkr

ξi1 · · · ξir
∂rf

∂ξj1 · · · ∂ξjr

(ξ)
∂rg

∂ξk1 · · · ∂ξkr

(ξ)

(75)

In order to check associativity we compute the standard symbol of ∗ (x, y, z ∈ A ∼= A∗∗):

ex ∗ ey = ex+y+νxy

and therefore

(ex ∗ ey) ∗ ez = ex+y+νxy ∗ ez = ex+y+z+ν(xy+xz+yz)+ν2xyz and
ex ∗ (ey ∗ ez) = ex ∗ ey+z+νyz = ex+y+z+ν(xy+xz+yz)+ν2xyz,

which shows associativity. Moreover, we can prove the following

Theorem 5.5 Let A be a finite-dimensional real associative algebra. Then formula (75) defines
a star-product ∗ on the Poisson manifold A∗ (equipped with the linear Poisson structure (51) for
the Lie bracket (x, y) 7→ [x, y] := xy− yx) which converges (with respect to ν) on the subspace of
all polynomial functions on A∗. The multiplication ∗ for ν = 1 is isomorphic to the complexified
universal envelopping algebra of the Lie algebra A−.

The restriction of this multiplication to the polynomial functions, hence to the symmetric
algebra SA, generalizes to infinite-dimensional algebras: here A can be seen as the ‘one-particle
observable algebra’, and (SA, ∗) is a ‘many boson observable algebra’ preserving particle number
in quantum mechanics. The above polynomial construction is extendable to infinite-dimensional
associative algebras A.
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6. Morphisms, modules, and reduction of star-products
In this section I shall review some results on some still open questions concerning algebra and
Poisson morphisms, left modules (i.e. representations) and coisotropic (first class) submanifolds
and reduction. For details on these results, see [8]. In the following, (M,P ) always denotes a
given Poisson manifold. For more details on Poisson manifolds and interesting maps merging
into them, see also [72], [59], [76], [11], [23], [49], [53], [58], [75].

6.1. Morphisms
Let (M,P ) and (M ′, P ′) be two Poisson manifolds, and let φ : M → M ′ be a smooth map.
Its pull-back φ∗ : C∞(M ′,C) → C∞(M,C) defined in the usual way by φ∗(f ′) := f ◦ φ is well-
known to be a morphism of associative algebras. Moreover, φ is called a Poisson map iff for all
m ∈M we have (Tmφ⊗ Tmφ)Pm = P ′φ(m). This is equivalent to saying that the pull-back φ∗ is
a morphism of Poisson algebras, i.e. φ∗{f ′, g′}P ′ = {φ∗f ′, φ∗g′}P for all f ′, g′ ∈ C∞(M,C).

Examples for Poisson maps are given by all symplectomorphims, i.e. diffeomophisms φ
between two symplectic manifolds (M,ω) and (M ′, ω′) such that φ∗ω′ = ω. Another very
important class of examples is provided by (Lie algebra) momentum maps: these are Poisson
maps J : (M,P ) → (g∗, Pg) where (g, [ , ] is a finite-dimensional real Lie algebra. The more
familiar equivalent definition is given by

{〈J, ξ〉, 〈J, η〉} = 〈J, [ξ, η]〉 for all ξ, η ∈ g, (76)

which means that the Hamiltonian vector fields X〈J,ξ〉 define a left Lie algebra Poisson action
of g on M . Souriau’s original definition supposed that this Lie algebra action comes from a left
Lie group action G×M →M (where g is the Lie algebra of G) and in addition J is equivariant
(i.e. J(gm) = Ad∗(g)J(m) for all g ∈ G and m ∈ M). A particular important case of a Lie
algebra momentum map is given by a symplectic manifold (M,ω), an abelian Lie algebra whose
dimension is one half of the dimension of M such that J is a submersion almost everywhere on
M : this is called a completely integrable system (in the sense of Liouville).
Furthermore, Poisson maps between symplectic manifolds φ : (M,ω) → (M ′, ω′) take a very
simple form: these are submersions whose kernel bundle Ker Tφ ⊂ TM is symplectic, whose
ω-orthogonal bundle E := Ker Tφω ⊂ TM is integrable, and such that φ∗ω′ and ω coincide on
E ×M E. Locally, φ is the projection on the local leaves of E along the fibres of φ.

Now let ∗ be a star-product on (M,P ) and ∗′ be a star-product on (M ′, P ′). A star-product
morphism Φ : C∞(M ′,C)[[λ]] → C∞(M,C)[[λ]] is defined to be a morphism of associative
algebras over C[[λ]], i.e. a sequence of C-linear maps Φr : C∞(M ′,C) → C∞(M,C) with
Φ =

∑∞
r=0 λ

rΦr such that

Φ(f ′ ∗′ g′) = Φ(f ′) ∗ Φ(g′) for all f ′, g′ ∈ C∞(M ′,C)[[λ]]. (77)

By inspection of this condition one finds that Φ0 must be equal to the pull-back φ∗ of a Poisson
map φ : (M,P ) → (M ′, P ′). Here Milnor’s exercise (see e.g. [56], p. 301, Cor. 35.9) is crucial
which states that every algebra morphism C∞(M ′,C) → C∞(M,C) is the pull-back of a C∞-
map M → M ′. S.Gutt and J.Rawnsley found out that the higher order terms of Φ have to be
differential operators along φ, i.e. linear maps D : C∞(M ′,C) → C∞(M,C) which in a charts(
U, (x1, . . . , xn)

)
of M and

(
U ′, (x′1, . . . , x

′
n′)

)
of M ′ take the local form

D(f ′)|U∩φ−1(U ′) =
∑

I∈Nn′ ,|I|≤N

DIφ∗
(
∂′I(f

′|U ′)
)

where DI is a C-valued C∞-function on the open set U .
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The problem of the quantization of a given Poisson map φ is still open, i.e. to find star-
products ∗ on (M,P ) and ∗′ on (M ′, P ′) and differential operators Φr along φ for r ≥ 1 such
that Φ := φ∗ +

∑∞
r=1 λΦr satisfies (77).

For certain momentum maps J on symplectic manifolds whose Hamiltonian vector fields
X〈J,ξ〉 all preserve any connection ∇ in the tangent bundle (e.g. for proper Hamiltonian Lie
group actions such as for compact Lie groups) B.Fedosov [41] showed the existence of a strongly
invariant star-product ∗ i.e. for which

〈J, ξ〉 ∗ f − f ∗ 〈J, ξ〉 = iλ{〈J, ξ〉, f} for all f ∈ C∞(M,C), ξ ∈ g

(see also [2]) for the definition) which implies the quantum version of (76) for f = 〈J, η〉, i.e

〈J, ξ〉 ∗ 〈J, η〉 − 〈J, η〉 ∗ 〈J, ξ〉 = iλ〈J, [ξ, η]〉 for all ξ, η ∈ g, (78)

and thus the quantization of J where g∗ carries the BCH-star-product, see also [78] for definitions
and some cohomological statements of quantum moment maps. A star-product ∗ satisfying (78)
has been called covariant by [2]. This can be seen as a quantization of a symmetry.
Many classically integrable systems such as the Toda chain and the Calogero-Moser systems are
also quantum integrable in the above sense, see e.g. [12].

For the above Poisson maps φ between symplectic manifolds (M,ω) → (M ′, ω′) I have found
a partial answer to the quantization problem by a Fedosov-type analysis: the ω-orthogonal
bundle E to the kernel bundle ker Tφ is integrable and gives thus rise to a a regular foliation of
M . There is a differential topological invariant attached to this foliation, the so-called Atiyah-
Molino class κ(M,E), see [8, p.85-91]. I proved in [8] that there is a total obstruction at order
3 in λ to the existence of a quantization related to a quadratic expression in the Atiyah-Molino
class which has to be matched by the first two Deligne classes, see [8, Thm.5.3]. However, I do
not know whether this obstruction is geometrically realized in a counterexample. On the other
hand, if the Atiyah-Molino class vanishes, and if the Deligne classes of the two star-products are
sufficiently φ-related I could prove that such a quantization of φ always exists, see [8, Thm.5.4].

6.2. Modules
Given a class of associative algebras, a natural algebraic question concerns its (left) modules or
its representations: in the context of deformation quantization this means that one tries to find a
linear map ρ which sends an element f ∈ (C∞(M,C)[[λ]], ∗) to a ‘suitable’ C[[λ]]-linear operator
ρ(f) in a C[[λ]]-module M such that for all f, g ∈ C∞(M,C)[[λ]] one has the representation
identity

ρ(f ∗ g) = ρ(f) ◦ ρ(g) and ρ(1) = idM. (79)

For a physicist, this is not an artificial problem since (s)he is for instance interested in the
question whether a given star-product algebra can be represented in some ‘Hilbert space’.

In contrast to the morphisms the variety of possible modules seems to be very large: we shall
henceforth restrict ourselves to a subclass where M = C∞(C,C)[[λ]] for a given differentiable
manifold C and where each ρ(f) is a formal power series of differential operators on C. For
generalizations to sections of vector bundles over C, see [8].

A simple example is C = M , i.e. M = C∞(M,C)[[λ]] where the algebra C∞(M,C)[[λ]] acts on
itself by left multiplications given by the star-product ∗ itself. Clearly C∞(M,C)[[λ]] acts equally
well on a finite direct sum of copies of itself which would correspond to the space of smooth
sections of a trivial vector bundle over M . B.Fedosov generalized this representation to the
space of sections of any vector bundle E over M by first realizing E as the subbundle of a trivial
vector bundle of rank N given by the image of a projection-valued function P =

(
Pij

)
1≤i,j≤N
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over M (which has constant rank N) and by deforming P to a projection P̂ with respect to the
star-product, i.e.

∑N
j=1 P̂ij ∗ P̂jk = P̂ik for which he has the explicit formula

P̂ =
1
2
1 +

(
P− 1

2
1
)
∗ (

1 + 4(P ∗ P− P)
)−1/2

where the square root is well-defined by its formal Taylor series (since P ∗ P− P is proportional
to λ), see [41, p.120, eqn(4.1.16)]. Thereby all the finitely generated projective modules of
C∞(M,C)[[λ]] are obtained. See Fedosov’s book [41] for his treatment of K-theory and index
theorems. See also the works of H.Bursztyn and S.Waldmann on Morita theory [19], [20].

A second class of examples is given by symbol calculus, the generalization of canonical
quantization: the maps ρs and ρw –extended to formal power series– define modules of
C∞(R2n,C)[[λ]] equipped with the standard ordered star-product ∗s or with the Moyal-Weyl star-
product ∗w, respectively, on C = Rn. In these examples one can replace the symplectic manifold
R2n with the canonical symplectic form by the cotangent bundle T ∗C of any n-dimensional
manifold C (see section 3.2.1) equipped with the canonical 2-form (56): fixing a covariant
derivative ∇ in the tangent bundle of C one can assign to any C∞-function F on T ∗C which
is of bounded polynomial degree in the fibres a differential operator ρs(F ) by a generalization
of formula (35) where the partial derivatives ∂/∂pi have to be replaced by the natural fibre
derivatives in the direction of the fibres of T ∗C, where the evaluation at p = 0 is interpreted
as the restriction of the result to the zero-section C in T ∗C whereas the partial derivatives

∂rφ
∂qk1

···∂qkr
are to be replaced by the r-fold symmetrized iteration of the covariant derivative ∇.

This prescription defines a star-product ∗s on T ∗C represented on the functions on C, see e.g.
[14], [13], [9] where also analogues of Moyal-Weyl star-products ∗w, their representations ρw,
and the equivalence transformation N (37) can be found.

Encouraged by the algebraic quantum field theorist K.Fredenhagen, S.Waldmann and I have
formulated some the above representations in a “GNS fashion”, see [16]: in case the star-product
∗ is hermitean (see eqn (61)) the algebra C∞(M,C)[[λ]] obviously has an involution by pointwise
complex conjugation (in the ring C[[λ]]). The subring R[[λ]] is known to have a non-archimedean
ring ordering defined by

α =
∞∑

r=0

λrαr





> 0 if α 6= 0 and αo(α) > 0

< 0 if α 6= 0 and αo(α) < 0
(80)

which means that the strictly positive elements are closed under addition and multiplication.
This has allowed us to speak of positive linear functionals Ω : C∞(M,C)[[λ]] → C[[λ]] by declaring
that for all f ∈ C∞(M,C)[[λ]] the complex power series Ω(f ∗ f) is a real power series, and is
nonnegative w.r.t. the above ring ordering. Then the algebraic part of the GNS machinery works:
thanks to the Cauchy-Schwartz inequality Ω(f ∗ g) Ω(f ∗ g) ≤ Ω(f ∗ f) Ω(g ∗ g) it is shown that
the Gel’fand ideal IΩ := {f ∈ C∞(M,C)[[λ]] | Ω(f ∗ f) = 0} is a left ideal in C∞(M,C)[[λ]],
and hence the quotient C[[λ]]-module HΩ := C∞(M,C)[[λ]]/IΩ is a left module of the algebra
C∞(M,C) which has a canonical scalar product 〈ψf , ψg〉 := Ω(f ∗g) where ψf denotes the class of
f ∈ C∞(M,C)[[λ]] in HΩ. This so-called formal GNS-representation respects the scalar product
of the formal pre-Hilbert space HΩ, i.e. the adjoint operator of f corresponds to f . We found
that all relevant representations in quantum mechanics such as the Schrödinger representation
and the WKB representations can be obtained as formal GNS representations where the linear
functional is an integration over configuration space C of T ∗C or, more generally, a projectable
lagrangian submanifold L of T ∗C, see also [13] and [9] for details.
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Returning to the general case of a differential operator representation of the algebra
(C∞(M,C)[[λ]], ∗) on C∞(C,C)[[λ]] an order-by-order analysis of eqn (79) shows that the map
ρ0 must be a differential operator of order zero, whence there is a smooth map ι : C → M
with ρ0(f)ϕ = (ι∗f)ϕ, see [8, p.44, Prop.2.3] for details. By induction we have shown
that all the higher order bidifferential operators ρr are bidifferential operators C∞(M,C) ×
C∞(C,C) → C∞(C,C) along idc and ι in the sense that in local charts

(
U, (x1, . . . , xn)

)
of M

and
(
U ′, (x′1, . . . , x

′
n′)

)
we have

ρr(f, φ)|U ′∩ι−1(U) =
∑

I∈Nn,|I|≤N

∑

I′∈Nn′ ,|J |≤N ′

ρII′
r (ι∗∂If |U )∂′I′ϕ|U ′

where ρII′
r are C∞-functions on U ′. An important notion is the vanishing ideal I := {g ∈

C∞(M,C) | ι∗g = 0} of ι. It is an ideal of the commutative algebra C∞(M,C). At order λ1 of
(79) it can be seen that I is a Poisson subalgebra of (C∞(M,C), { , }). This last statement is
the definition of a so-called coisotropic map: if ι is an embedding of C as a smooth submanifold
of M it is equivalent to Ec := iα(Pc) ∈ TcC for all c ∈ C and for all α ∈ TcM

∗ vanishing on TcC.
For symplectic manifolds this means that for all c ∈ C the tangent space Ec = TcC

ω ⊂ TcC.
The equation [P, P ]s = 0 implies that the distribution c 7→ Ec is involutive and allows for an in
general singular foliation F of C (by Frobenius’ theorem, see e.g. [56], p. 28, Thm.3.25.) i.e.
that for each c ∈ C the tangent space of the leaf through c at c is given by Ec, see e.g. [72],
p.99, Prop.7.6 for a proof. Physicists call coisotropic submanifolds first-class constraint surfaces
and the leaves gauge orbits. For example, any submanifold of codimension 1 is automatically
coistropic. The foliation is regular (i.e. ∪c∈CEc is a subbundle of the tangent bundle TC of C)
in the symplectic case: the quotient space of all leaves, C/F , is called the reduced phase space
of (M,ω) which we shall come to in the next section.

The quantization problem for coisotropic submanifolds ι : C → M of a Poisson manifold is
the inverse problem to find a representation ρ of a given star-product ∗ on (M,P ) on the space
C∞(C,C)[[λ]] such that ρ0(f)(ϕ) = (ι∗f)ϕ. Up to now, in complete generality, this is an open
problem.

However, there are the following partial results: We have already seen that symbol calculus
provides representations of certain star-products on T ∗C on the base space C. More generally,
as Alan Weinstein has shown (see [75]), if C ⊂M is a Lagrangian submanifold of the symplectic
manifold (M,ω), i.e. TcC

ω = TcC for all c ∈ C, then there is a tubular neighbourhood around
C which is symplectomorphic to a tubular neighbourhood of the zero-section of T ∗C. Using
symbol calculus there always exist representations iff ι∗[∗] = 0, e.g. if the Deligne class of ∗
vanishes, see [8, p.61, Thm.3.3]. More generally, if C is coisotropic in a symplectic manifold
and if the Atiyah-Molino class of the foliation of C vanishes (for example if the reduced phase-
space C/F is a smooth manifold), and if ι∗[∗] = 0, then there are star-product representations
on the functions on C, see [8, p.115, Thm.5.6]. Here, it turned out to be useful to look at
those star-products for which the vanishing ideal I[[λ]] is a left ideal in the deformed algebra
(so-called adapted star-products). On the other hand, a certain quadratic expression in the
Atiyah-Molino class is a total obstruction to representability, see [8, p.91, Thm.4.6]. As in the
case of morphisms, I do not know of any counterexample where these obstructions are realized.
As P.Glößner has shown in his thesis, see [48], star-product representations always exist for
codimension 1 submanifolds. An interesting construction using a generalization of Kontsevich’s
graph method was done by Cattaneo and Felder who succeeded in finding representations for
certain in general non symplectic Poisson structures in Rn with Rk as co-isotropic submanifold,
see [26] and [27].
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6.3. Reduction
Let ι : C → M be a coisotropic (first-class) submanifold of a symplectic manifold (M,ω). We
have seen that the subbundle E = ∪c∈CEc with Ec = TcC

ω = {v ∈ TcM | ω(v, w) = 0 ∀ w ∈
TcC} is integrable (since dω = 0), and thus C is automatically equipped with a foliation F such
that each Ec is the tangent space of the leaf passing through c. If the space of all leaves, i.e. the
reduced space Mr := C/F is a smooth manifold such that the canonical projection π : C → C/F
is a submersion, then it is known to be equipped with a natural symplectic form ωr which is
defined by

ι∗ω =: π∗ωr,

see e.g. [1], p. 416, Thm. 5.3.23, for a proof.
An important particular case is obtained by a moment map J : M → g∗ coming from a

Hamiltonian Lie group action G ×M → M (where g is the Lie algebra of G) for which 0 is a
regular value and whose inverse image C := J−1(0) is not empty. In this case, C is coisotropic,
and the reduced space –in case it exists as a smooth manifold– is given by the orbit space of
the group action of G on C (in case G is connected this amounts to the same as the definition
above, for nonconnected G the quotient space is still symplectic). In this extremely important
and useful situation one speaks of Marsden-Weinstein reduction, see [60].
For example, complex projective space (see also section 3.2.2) is obtained as a reduced
symplectic manifold of (M = R2n+2, ω =

∑n+1
k=1 dqk ∧ dpk) by means of the moment map

J(q, p) :=
Pn+1

k=1 (q2
k+p2

k)

2 − 1
2 for the usual circle (= U(1))-action on Cn+1 = R2n+2. The canonical

projection of C = S2n+1 on CP (n) is called the Hopf fibration.
The physicist’s interest in reduced phase spaces is the fact that many interesting situations

(as e.g. all gauge theories) are formulated on a phase space M which is simple, but ‘too big’,
i.e. contains superfluous degrees of freedom. The ‘true physical phase space’ is obtained by
imposing constraints on M , that is restriction to C, and then passing to the space of ‘gauge
orbits’, i.e. to the reduced space Mr.

It is therefore interesting to know how star-products ∗ on M reduce to star-products ∗r on
Mr. For the Marsden-Weinstein situation there have been results of B.Fedosov [42], and for an
account of the BRST theory in [11].
For the general case, I could give a fairly complete positive answer in [8]: the main idea
is to construct a star-representation ρ of ∗ on C∞(C,C)[[λ]] and to arrange things that the
reduced algebra is isomorphic to the commutant of this representation, i.e. the space of all those
linear operators D : C∞(C,C)[[λ]] → C∞(C,C)[[λ]] which commute with all the representors:
ρ(f)◦D = D◦ρ(f). This also transforms C∞(C,C)[[λ]] into a bimodule for the deformed algebra
and its commutant:

Theorem 6.1 Let ι : C → M be a connected coisotropic submanifold of a symplectic manifold
(M,ω) such that the reduced phase space π : C → Mred exists. Let ∗ be a star-product on M .
Then the following conditions are equivalent:

(i) ι∗[∗] is basic, i.e. there is a class β on Mred with ι∗[∗] = π∗β.
(ii) There is a star-product ∗r on Mred such that C∞(C,C)[[λ]] becomes a ∗ − ∗r or a ∗r − ∗-

bimodule.

If one of these conditions is satisfied then

• ∗ is representable.
• ι∗[∗] = π∗[∗r].
• (C∞(Mr,C)[[λ]], ∗r

)
is the commutant of the algebra

(C∞(M,C)[[λ]], ∗) acting on
C∞(C,C)[[λ]].

International Conference on Non-commutative Geometry and Physics IOP Publishing
Journal of Physics: Conference Series 103 (2008) 012002 doi:10.1088/1742-6596/103/1/012002

28



• The isomorphism classes of ∗ − ∗r-bimodule-structures on C∞(C,C)[[λ]] are in bijection to
the following deRham cohomology groups

λH1′
dR(C,C)⊕ λ2H1

dR(C,C)[[λ]]

where the ′ means quotienting by 2πi times the integer classes.

The idea of the proof (see [8, p.69,Thm.3.5] for details) is to use Weinstein’s theorem of
embedding C as a Lagrangian submanifold of M ×Mr by the canonical map c 7→ (

ι(c), π(c)
)
,

and to use symbol calculus in a tubular neighbourhood of C in M ×Mr (which looks like T ∗C):
Hence the algebra

(C∞(M ×Mr,C)[[λ]], ∗ ⊗ ∗opp
r

)
acts on C∞(C,C)[[λ]] iff the condition of the

Deligne classes is as above. The tensor product of the star-products ∗ ⊗ ∗opp
r is locally defined

by

F ∗ ⊗ ∗opp
r G(x, y) :=

∞∑

s=0

λs
s∑

a=0

CIJ
s (x)C′I

′J ′
a−s(y)(∂I∂

′
J ′F )(x, y)(∂J∂

′
I′G)(x, y)

Thereby one gets a representation of the tensor product ∗⊗∗opp
r on C which gives the bimodule

structure.
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Birkhäuser, Basel, 2001.
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