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Abstract. We give an introduction to deformation quantization with emphasis on explicit
formulas and sketch some partial results on theory of morphisms and modules in that framework
and their relation to Poisson geometry.

Introduction

The theory of deformation quantization has become a large research area covering several
algebraic theories like the formal deformation theory of associative algebras and the more
recent theory of operades, as well as geometric theories like the theory of symplectic and (more
generally) Poisson manifolds), and of physical theories like string theory and noncommutative
field theory. The main starting point of deformation qunatization is the seminal article by Bayen,
Flato, Frgnsdal, Lichnerowicz and Sternheimer in 1978 [5]. In this theory, the noncommutative
associative multiplication of operators in quantum mechanics is considered as a formal associative
deformation of the pointwise multiplication of the ‘algebra of symbols of these operators’: in
physical terms, this means the ‘algebra of classical quantities’ which is given by the algebra of all
complex-valued C*°-functions on a Poisson manifold, i.e the ‘phase space’ of classical mechanics.
The formal parameter is an interpretation of Planck’s constant A in convergent situations. The
advantage of this method is its universality: according to a theorem by Kontsevich [57] this
construction is possible for any Poisson manifold. Moreover, geometric intuition is quite useful
in concrete situations since everything is formulated in geometrical terms on a differentiable
manifold in contrast to the usual formulation of quantum mechanics where one has to specify
a Hilbert space. The price to pay is the fact that complex numbers are replaced by the ring of
all formal complex power series whose convergence is a case-by-case study. However, inspite of
these difficulties I see the major interest of deformation quantization for a physicist in its role
as an asymptotic testing ground for ‘true quantum theories’ with admit a reasonable classical
limit, i.e. a parameter like Planck’s constant A whose asymptotic limit A — 0 will lead in most
of the practical applications to a theory like deformation quantization: hence if some concepts
break down even on the level of deformation quantization we cannot expect them to work in any
reasonable quantum theory.

The main objective of this survey is a (hopefully motivating) introduction to this subject: I
have not included in detail all the existence and classification proofs which are quite technical.
Neither do I speak about the theory of operades which has become the algebraic framework of
this theory since Kontsevich. I'd rather would like to underline some motivations from physics,
discuss concrete examples and talk -at the end- about the still open theory of the deformation
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theory of modules, Poisson morphisms, and (symplectic) reduction.

In the first Section, I have given an elementary deduction of several star-product formulas
from canonical quantization (or symbol calculus). These formulas motivate Section 2 in which
the abstract formal associative deformation theory of associative algebra is sketched. As a
by-product, this abstract theory always gives the structure of a Poisson bracket as first order
commutator, motivating Section 3 in which a survey on Poisson and symplectic manifolds is
given. Section 4 deals with the Definition and general Existence and Equivalence theorems for
Deformation quantization on a general Poisson manifold. Some other explicit examples such as
T*S™ and ‘fuzzy’ CP™ are discussed in Section 5. The last Section is devoted to some more
recent results where I am discussing three algebraic concepts in deformation quantization which
all have a physical meaning. Section 6.1 deals with algebra homomorphisms of the deformed
algebras whose classical limit will become pull-backs with Poisson maps: the quantization of the
latter contains the quantization problem of symmetries and integrable systems. In Section 6.2 we
discuss representations or modules of the deformed algebra: apart from possible representations
in (formal pre) Hilbert spaces & la GNS, the more general classical limit yields coisotropic maps
and coisotropic (i.e. first class) submanifolds. This concerns the important physical problem of
quantization of constraints. Finally, Section 6.3 deals with phase space reduction which is the
Leitmotiv of any gauge theory: the quantization problem is to construct a star-product on the
reduced space by means of a star-product on the unreduced (‘unphysical’) space.

1. Canonical Quantization and elementary Star-Products
In order to describe a quantum system it is necessary to know its Hamiltonian operator H. In
practice, the source of inspiration is the Hamiltonian function of the corresponding system of
classical mechanics, and any ‘reasonable’ recipe of translating classical observables to quantum
observables is called quantization.

According to P.A.M.Dirac, all quantizations should satisfy a classical limit condition, i.e. for
all classical observables f, g

fg = fg+oln) (1)
fo—af = in{f. g} +o(h?) (2)

where {f, g} := 0f/0q0g/0p — Of /Opdg/Dq denotes the canonical Poisson bracket.

In this section we shall discuss several possible quantizations in 1 degree of freedom which
are used in quantum physics.

We recall the differential operators @) (position operator) and P (impulsion operator) in case
n =1

QY)(a) = q¥(q) (3)

P := (h/1)0/0q. (4)

In the following sections we denote by C[sy,...,sy] the space of complex polynomials in
N variables si,...,sn. Moreover the symbol Diffop,,,, (R) denotes the space of all differential

operators with polynomial coefficients in the space C*°(R, C), i.e an element D takes the following
general form

N
S i jogt 5)
k=0

where f1,..., fn € C[q].
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1.1. Standard Ordering
We shall consider the the following linear map ps of the space of all complex polynomials in two
variables C[g, p] in the space Diffop,,;, (R):

1 = ps(1):=1 (6)
q — ps(q):=Q (7)
p — ps(p):i=P (8)
q"p" — ps(q"p") = QMP" 9)

Since every differential operator in Diffop,,,,, (R) takes the form (5) it is obvious that this linear
map is a bijection. The principal idea of star-products is to pull back the (noncommutative)
associative multiplication of differential operators by the map ps:

Proposition 1.1 Let f, g be in € Clg,p] and ¢ € C*°(R,C). Then

R O
ps(F)(¢) = Tz:o T ol or (10)
Moreover
- _Z‘” (Rfi)" 0" f O"g
f *s g = Pg l(ps(f)ps(g)) - T'! 8pr 8q7« (11)

=0

<

is a well-defined associative noncommutative multiplication on the space Clq,p| which satisfies
the classical limit
of dg

— _ip2d Zd 2
f*sg=1fg zhapanro(h ).

Proof: The proof of eqn (10) is a direct computation on monomials ¢"*p™. Since *g is obviously
isomorphic to the associative multiplication of differential operators by means of the linear
bijection ps it is clear that *4 is also associative. The formula (11) is checked for monomials

f(a,p) = q"p" and g(q,p) = ¢°p by observing that ps(f *sg) = ps(f)ps(9), hence ps(f) = Q* P
and p,(g) = Q°P¢ whence we have to bring Q*P*Q°P? in standard form by the Leibniz rule,

i = (3 150 ) ()t ()2

r=0

- X () (et o)

r=0

which proves eqn (11). O

Note that for given polynomials f, g the series in h is always a finite sum. Moreover, every
(1/9)" o7 f o"g

term in that series is a bidifferential operator ~= op 9g"

1.2. Weyl-Moyal ordering prescription
From the point of view of physics, standard ordering is not satisfactory: when considering the
pre-Hilbert space

D(R) :={f:R — C|f is C*° and supp(f) is compact } (12)
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equipped with the scalar product (for all ¢,9 € D(R)):

(6.0) == / dg 3(@)v(q) (13)

we quickly see that the two real-valued functions ¢ and p correspond to symmetric operators,
ie. forA=QorA=P
(¢, Ayp) = (A9, ¥), (14)

whereas the real-valued function gp corresponds to the operator QP whose adjoint in D(R) is
equal to PQ = QP — ihl: hence ps(gp) is no longer symmetric which would be necessary to
render it a self-adjoint operator in the Hilbert space completion L?(R,dq) of D(R). In order to
avoid these problems, the Weyl-Moyal ordering prescription had been introduced: this uses a
symmetrization of the monomials in () and P.

We consider the following linear map p,, of the space of all complex polynomials of two
variables C[g, p] in the space Diffop,,,, (R):

1 — pp(l):=1 (15)
g = pu(q) =Q (16)
p = pu(p):=P (17)
1
q"p" = ps(q"p") = © Y Aoy Agman) (18)
(m + n) O'ESm+n
where the operators Ay, - -, Ap4n are given by
110 sil<k<m
FZUP sim+1<k<m+n

For example, p,(qp) = (QP + PQ)/2 and p,(¢°p) = (Q*P + QPQ + PQ?)/3. By definition,
the operators p,,(f) are symmetric if f is real because it is easily computed that

pw(f)Jf = pw(.f)

where AT is the adjoint operator of A in (D(R)), (, )).

For two formal parameters «a,( (considered as real under complex conjugation) the
exponential function exp(aq + (p) is mapped to py, ( exp(aq + ﬁp)) = exp(aQ + BP) because it
is easy to see by induction that each power (a@Q + SP)" is already symmetrized. Using the fact
that ps(exp(aq —|—Bp)) = exp(aQ) exp(GP), the fact that [@Q, P] = ihl and the Baker-Campbell-
Hausdorff formula, we compute

o(aQ+BP) _ 58 aQ B8P

Since the exponential function exp(aq + Op) is a generating function for all polynomials in ¢, p
one realizes the following fundamental relation standard and Weyl-Moyal ordering:

pw(f) = ps(Nf) (19)
where the map N : C[q, p] — Clq, p| is defined by

h_92

N := ¢2i940p (20)

It is clear that IV is well-defined and invertible, and one deduces that p,, : Clg, p] — Diffop,,, (R)
is a linear bijection. There is the following analogue of Proposition 1.1:



International Conference on Non-commutative Geometry and Physics IOP Publishing
Journal of Physics: Conference Series 103 (2008) 012002 doi:10.1088/1742-6596/103/1/012002

Proposition 1.2 Let f, g be in Clq,p|. Then

r aqaprfa aqrfapa

r=0 a=0

frwg:=pu (pu(Hru(g) = (ih/!z)r > <2) (-1 gy __0e (21)

is a well-defined noncommutative associative multiplication on the space Clq,p| satisfying the
classical limit

fruwg=Fg+ SLF.9) + o).
and is isomorphic to x5 via N:
N(f*wg) = (Nf)*s (Ng).
Moreover it is hermitean with respect to pointwise complex conjugation in the following sense
f*wg=7*u f.
Proof: The proof is a direct computation using the operator N. O

Again, it is easy to see that *,, is a series of bidifferential operators.

1.3. Wick ordering
There is a third quantization related to the harmonic oscillator which is very often used in
quantum field theory: firstly, one forms the following complex variable

Z = q+ip. (22)
On the complex vector space
O(C) := {¢ : C — C|¢ antiholomorphic }

one then defines the following scalar product

2|2

2 (2)9(2) (23)

(P, ) = ﬁ /dzdie_

(which may still diverge), and finally the pre-Hilbert space of all square integrable
antiholomorphic functions

M :={¢ € O(C)[(¢,¢) < oo}, (24)

which embeds as a closed subspace of the big Hilbert space L? (RQ,e_(q2+p2)/ @M dgdp/ (27rh))
and is therefore already a Hilbert space. The subspace of all polynomials in the variable z, C[z],
is a dense subspace of H. Partial integration yields the fact that the operator A which mutiplies
by the variable z (in the big pre-Hilbert space) induces the annihilation operator

0
A:=2h— 25
0z (25)
on C[z]. By a second partial integration in C[2] we see that its adjoint At (the creation operator
is the operator

(A79)(2) = z¢(2). (26)
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It follows that we can —in a manner completely analogous to standard ordering— consider the
following linear map py;cx of the space of all complex polynomials in two variables C|[z, z] in the
space Diffop,,,, (2) of all differential operators having polynomial coefficients and acting in the
space of polynomials C[z]:

L = puick(l) :=1 (27)
z = puick(z) = A (28)
Z o= puick(z) = Al (29)
22" = puick(2TE") = AtmAn (30)

It is obvious that this linear map is a bijection.

Proposition 1.3 Let f, g be in Clq,p| and ¢ € C[z]. Then

o0 r r 87’¢
Pwi k
ic rz:;) 7«! azT 2=0 oz
Moreover 00
I *wick 9 1= Pmlck (Pwick(f puick(9)) = Z r' 0z" 8zr

r=0

is a well-defined noncommutative associative multiplication on the space Clq,p| satisfying the
classical limit
of 99

; 2
f*wzckg f + ha 87

and the hermitean property with respect to pointwise complex conjugation

+ o(h?).

f *wick § = G *wick 7
Proof: The proof is completely analogous to the proof of Proposition 1.1. Note that

9,0 _20 9
dqg" Op 10z 0z
O

As for the relation between standard ordering and Weyl ordering there is also an analogue of
the operator N N (37): one defines

R 2
-—_ _|_ P
0q% = Op?

and

INEl

N =12,
Then for all f,g € C[z, z]:
N,(f *w g) = (N/f) *wick (N/g>-
Remark: The seemingly bizarre use of antiholomorphic instead of holomorphic functions

is a quantum mechanical tradition: the creation operators (i.e. increase of the degree of the
polynomial) is historically related to Af.
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1.4. Multidifferential operators and their standard symbols in R™
Before going further it is useful to note the well-known definition of multidifferential operators
on a manifold since we shall encounter them several times.

Let M be an n-dimensional differentiable manifold. Let (U,gb = (x1,... ,xn)) be a chart.

Recall that a multi-index I = (iy,...,4,) is an element of N with |I| := iy + ---4,, and we
denote by
611++7/n
or := ‘ ‘
(a$1)11 P (6xn)zn
the usual abbreviation for iterated partial derivatives. For a vector y = (y1,...,yn) the

expression y; is short for the monomial (y1)™ - - - (y,)'. Recall that a differential operator D of
order N is a C-linear map C*°(M,C) — C>°(M,C) such that in each chart (U, o= (x1,... ,xn))
the operator takes the local form (f € C*°M,C):

Dflv= 3 Do) (31)

IeN™ |I|<N

where for each multi-index I the function D! : U — C is C*®. It is clear that the composition
D1Ds := Dy0Ds of two differential operators Dy and Ds is again a differential operator. Examples
are of course the position and momentum operators () (see eqn (3)) and P, (see eqn (4)).

More generally, a multidifferential operator of rank k or a k-differential operator is a C-
k-multilinear map D : C®(M,C) x --- x C*®(M,C) — C*(M,C) such that there is an
integer N such that in each chart (U,qﬁ = (wl,...,mn)) the operator takes the local form
(f1,-- s frr €C®(M,C)):

D(f1,-- - fi)lv = > D'ty (filur) - - Or, (frlv) (32)

I,..,JkeN” |1 |,... | Ix|<N

where for each k-tuple of multi-indices (11, ..., I;) the function Dtk : U — C is C*®. The
Poisson bracket { , } associated to a Poisson structure P on a manifold M is an example of a
2-differential or bidifferential operator.

Multidifferential operators can be composed in the following way: if D1 is k-differential and if
D, is [-differential and 7 is an integer such that 1 < i < k, then (for all f1, ..., frr—1 € C*(M,C))

(D10 D2)(f1,-- s frgim1) :=D1(f1,- -, fic1, Da(fir - -, fiizt)s firts - - Frgio1)

is a k + | — 1-differential operator.

We shall write Diffop(M) for the space of all differential operators acting on C*°(M,C) and
Diffop® (M) for the space of all k-differential operators acting on C*(M,C)**¥. For M = U
an open subset of R" the subspace Diffop,,y, (M) is important where the functions D! are
polynomials in R™.

For M = U being an open set in R™ multidifferential operators can equivalently be described
by their standard symbols: for o € R™* define the exponential function associated to a by

eq(T) = elos)

For a given k-differential operator D on U given in the form (32) its standard symbol Dis a
C>-function of U x R™ x --- x R™ into the complex numbers defined by

D(:L’,Oq,...,ak) = ef(a1+---ak,x>D(ea17'”760%)(:6)

_ Z Iy d
Il1---7IkeNn7lll|7"'7|Ik|§N



International Conference on Non-commutative Geometry and Physics IOP Publishing
Journal of Physics: Conference Series 103 (2008) 012002 doi:10.1088/1742-6596/103/1/012002

Since the standard symbol is just ‘replacing partial derivatives 0, by the monomial ay g, it is

obvious that the space of all k-differential operators on U C R" is in bijection with the space
of all C*®-functions F' : U x R™ x .. x R"™ — C which are polynomial in the nk variables
ai,...,qa. Hence we have the following

Lemma 1.1 Each k-differential operator D in an open set U of R" is uniquely determined by
its standard symbol D or, equivalently, by its values on exponential functions.

1.5. Quantization in R™

By using exponential maps, it is easy to check the following generalizations of the standard
ordered star-product g, the Moyal-Weyl star-product *,,, and the Wick star-product *,,: Here
we consider the space of polynomials C[q, p|] := Clg1,...,Gn,D1,---,0n] 2 f,9

Z h/l) 3 af J'g (34)

= 2 9Pk Ok, Oty - O,

with standard-ordered representation

— (h/1)" ¢ af
— ! kh.%_l Opk, - Opk,

_ 9%
p=0 aq}ﬂl o 8ri .

ps(f)(¢) = (35)

Upon writing the Poisson bracket > ;_; %6% —(f < g) as Z;:l PH (%f gg with (¢,p) = «
we have

2
i m/2 zn: phitn . phity_ O"f og
—0 . P S PO N 8$k1 e 8% 8$ll cee 8:%
(36)
The operator N being
h n 92
N = e =771 94005, (37)
one has
N(f *w g): (Nf) *s (Ng), (38)
and there is the Weyl-Moyal representation
pw(f) = ps(Nf)' (39)

Moreover, by defining complex coordinates z; := ¢; + ip; (1 < j < n) and we get the Wick
star-product in C* = R?"

ISR SICOIS L s SR - (40)

! Z “ .. Z Z RS Z
=0 P - Oz, - O, Oy -+ O,

which can be seen as a finite-dimensional version of the Wick ordering for quantum field theoretic
observable algebras.

2. Formal Deformations

If we want to replace the polynomials in the preceding section by smooth complex-valued
functions, we immediately see that formulas like eqns (34) and (36) do no longer converge
in general. To make them well-defined it is useful to replace the real number A by a formal
parameter A.
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2.1. Formal Power Series

In this section I shall review several elementary notions about formal power series which I shall
need later on, for more details and proofs see e.g the book by Ruiz [70]. Let R be a ring (always
with unit element, for instance a field) and M a left module over R (for example an R-vector
space in case R is a field). We shall write a map a : N — M in the form of a formal power series

with coefficients in M
[e.9]
a =: Z Na,
r=0

where a, := a(r) is called the rth component of a, and the symbol X is called the formal
parameter. The set of all formal power series with coefficients in M is denoted by M[[A]]. The
sets M[[A]] and R[[A]] are abelian groups in the canonical way, i.e. for b = Y 2 A"b, where
b, € M:

a+bi=> X(ar+b).
r=0

Furthermore, R[[A]] carries the structure of a ring via (@ = Y2 N, B = > 22 NGy,

ap, B € R)
O‘ﬂ = Z A" Z O‘sﬁr—s
r=0 s=0

and M[[A]] becomes a left R[[A]]-module via

ab = i A z”: asby_s.
r=0 s=0

The order of a formal power series a, o(a), is defined as the minimum of the set of all nonnegative
integers r such that a, # 0 in case a # 0 and is defined to be 400 if a = 0. It can be shown
that the function

2-0la=b) if q £ b
d.M[[)\]]xM[[)\]]—>]R.(a,b)Hd(a,b).—{ 0 o
defines a metric on M|[)\]], and (M][[A]],d) becomes a complete metric space. The induced
topology is called the A-adic topology of MI[M]].
The following lemma is very important since multilinear maps over C[[\]] always reduce to
formal power series of multilinear maps over C which will be applied to deformed multiplications:

Lemma 2.1 Let R be a commutative ring, M, M, ..., My R-modules, and ® : My[[N]] X -+ %
My [[N] — M[[N]] a R[[N]]-multilinear map.

Then for each nonnegative integer r there is a unique R-multilinear map ®, : My X - - XMy — M
such that

T

@(a(l),... ,a(k)) = Z)\T Z és(a(l)rl,...,a(k)Tk) (41)
r=0

0<s,71,..., rp<r
stri+-+rp=r

for all agy =377 g Niagy,, € Mi[[N]], 1 <i <k.
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2.2. Formal Deformations of Associative Algebras
Let (Ao, po) be an associative algebra with unit 1 over a commutative ring R.

Definition 2.2 A formal associative deformation of the associative algebra with unit 1, (Ao, o)

is given by a sequence of R-bilinear maps p1, o, ... - Ag X Ag — Ao such that:
(i) T
Z (Ms (Mrfs(aa b), C) — Hs (a, fir—s(, C))) =0 (42)
s=0

for allr € N and a,b,c € Ap.
(ii) pr(1,a) =0= pr(a,1) for allr € N, r > 1 and a € Ap.

It is not hard to see that the formulas (34) and (36) define a formal associative deformation of
the algebra C>°(R?", C) when £ is replaced by .
The following Proposition is obvious:

Proposition 2.1 The space A := Ap[[\]] equipped with the R[[A]]-bilinear multiplication p =

Yool o A s e
ZAT Z Hs (It,b )

= s+t+u=0
for all a =372 Na; and b =02 A\by, in A, is an associative algebra over the ring R[[A]].
For the case 7 =1 of eqn (42) we get (writing po(a,b) =: ab):
0 = ap (b, ¢) — pi(ab, c) + pi(a,be) — pi(a,b)e =: () (a, b, c)

where &g is the Hochschild coboundary operator defined on the R-module

o0

H(Ag, Ao) := @D CH*( Ao, Ao) : @HomR (Ao ®p -+ ®r Ao, Ao)
k=0 k=0

(the space of Hochschild cochains) by
(5Hf)(a1 @ ®agr) = arf(a2 @ @ agy)
+Z flar® - ®ar—1 ® arary1 ® -+ @ ag41)

+(— )ka(GI ® -+ @ ak) k41

It is well-known that (5%[ = 0, hence that operator defines a cohomology theory called the
Hochschild cohomology:

Hk(Ao,Ao) = Ker((SH : C'Hk(.Ao,Ao) — C'Hk+1(./40,./40))
BH*( Ay, Ao) = Im(0p : CH*1(Ag, Ag) — CH"(Ag, Ap))
HH*( Ay, Ay) = ZH*(Ay, Ay)/BH*(Ay, Ap)

The elements of ZH k(.Ao,.AO) are called Hochschild k-cocycles of Ay, the elements of
BH¥(Ag, Ap) are called Hochschild k-coboundaries of Ay, and HH*(Ag, Ag) is called the k!
Hochschild cohomology group of Ay (with values in Ap).

10
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It follows that for any formal deformation the term p; is always a Hochschild 2-cocycle. In the
more general case where 1 is not necessarily associative it is easily computed that the associator
of u

Aa,b,c) := p(p(a,b),c) — p(a, u(b,c))

satisfies the following identity:
0 = M(av A(b7 &) d)) - A(,U,(CL, b)7 Cy d) + A(CL, /,L(b, 0)7 d)
—A(a,b, (e, d)) + p(Ala,b,c), d)
for all a,b, c,d € Ap. For an associative formal deformation we demand that A =32 (A" A, = 0.

Let us suppose that the components Ag, A1, ..., Ay are already zero. Thanks to the preceding
identity we get at order r + 1 of A:

0 Ary1 = 0.
Since
A1 = 0pflr41 + A;’—&-l
where the rest A/ 41 contains only the terms g, - - , y, it follows that

We have : ogA, 1 =0 = A, € Z%(AyAo)
!
We want :  A]_, L —Ogpre1 = A;H € Bg(Ao,Ao)

Consequently the recursive obstructions to continue the construction of the term p,; of a formal
associative deformation of po (where puq, ..., u, are already chosen) are contained at each stage
r in

HH?(Ap, Ay).

For the very important particular case where Ay is given by Ay = C°°(M,C) (equipped
with uo equal to pointwise multiplication) one usually considers Hochschild cochains given by
multidifferential operators: This subspace of the complex of Hochschild cochains which we
shall write in the form CHg(C*(M,C),C>®(M,C)) is a subcomplex with respect to the
Hochschild coboundary. Its cohomology is called the differential Hochschild cohomology of
C>®(M,C), and we shall write it as H Hgg (C*°(M,C),C>(M,C)). The computation of this
cohomology originates in the article by Hochschild-Kostant-Rosenberg [54] (for polynomials),
has been generalized to the smooth case by Vey [73], Cahen-DeWilde-Gutt [21], Cahen-Gutt
[22], and DeWilde-Lecomte [32], and gives nothing but the space of multivector fields:

Theorem 2.3
VkeN: HH(C®(M,C),C®(M,C)) = T(M,ATM).

A generalization of this result had been obtained by A.Connes en 1985 (see [28], p.207-210) who
has replaced differential cochains by cochains which are continuous with respect to the standard
Fréchet topology of this space. Pflaum [69] and Nadaud [61] have shown that one may drop
Connes’ hypotheses that the Euler characteristic of the manifold is zero. In these cases the
resulting Hochschild cohomology is isomorphic to the right hand side of the HKR-Theorem 2.3,
i.e. the space of all smooth multivector fields I'(ATM).

11
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2.8. Poisson brackets in a general algebraic context
Proposition 2.2 If (A, uo) is a commutative associative algebra and C =372 A"y is a formal
associative deformation then it turns out that

{f,9y =m(f9) —mlg, f) VfgeA

defines a Poisson bracket on A, i.e. a Lie bracket which satisfies the Leibniz rule:

{f,ghy ={f,gth+{f,h}g V f,g,h e A

Proof: Indeed, the Jacobi identity for the bracket { , } follows from total antisymmetrization
of the associativity condition of p at order 2. In order to obtain the Leibniz identity one takes
the associativity condition of u at order 1,

0=—fCi(g,h) +Ci(fg,h) = Ci(f, 9h) + Ci(f, 9)h,

and adds to it the same identity with f and h interchanged, which gives

(showing that 0g{ , } = 0). Adding to this identity the one with ¢ and h interchanged and
subtracting the one with f and g interchanged yields (twice) the Leibniz rule. O
This rather general simple fact means that if Poisson structures in classical mechanics are
replaced by more general mathematical objects, their quantization can no longer lead to
associative quantum observable algebras.

2.4. Gerstenhaber’s formula
The explicit formulas for the associative multiplications *s; and %, have a common algebraic
feature: the following rather useful theorem is due to M.Gerstenhaber [46], p.13, Thm.8:

Theorem 2.4 Let (A, up) be an associative algebra with unit 1 over a commutative ring k
which contains the rationals Q where py : A® A — A denotes the (not necessarily commutative)
multiplication of A. Let Di,...,Dy, Fy,..., E, 2n derivations of (A, po) which all pairwise
commute, i.e. Doy = poo(Dr®@14+1®Dy), Ejoug = poo(Ey®@1+1® E;), Do Dy = Dyo Dy,
Dy 0o E; = Ejo Dy, and Ej, 0 E; = Ejo Ey, for all integers 1 < k,l <n. Letr =Y, | Dy ® Ej.
Then on the k[[A]]-module A[[M]] there is a k[[\]]-bilinear multiplication p defined by

= pg o€ (43)
which deforms pg with unit element 1.

Proof: The following elegant reasoning has been found by A.Dimakis and F.Miiller-Heussen in
[35] for a particular case: one defines the following three linear maps: A A® A —- AR A® A
(where 1 denotes the identitiy map A — A) ri2 :=r®1, ro3 := 1@rand ri3 1=y ;| Dy®1QFE}.
Since the derivations commute we have [r12,713] = 0, [r12,723] = 0 and [r13,r23] = 0. Thanks to
the derivation identity it follows that

ro(po®1) = (po®1)o(ri3+re3) and

ro(1®ug) = (1&® po)o (r2+r13),
hence

o (u®1) = (uo®1)oel3 ) and

eAr o (1 ® MO) _ (1 ® MD) o 6(7“12-&-7“13)7

12
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therefore, as the r;; commute:

po(p®1) = ppo Ao (ho ®1) 0 12 pio 0 (1o ® 1) o eAri2+riz+ras)

Analogously:

po(1®p) = pgo A o (1® po) o 23 fo 0 (1 ® o) o eAr12+ri3+ras)
Since pg is associative we get o o (o ® 1) = pp o (1 ® pp), whence the associativity of the
multiplication . Moreover, since any derivation vanishes on 1 it follows that 1 is still the unit
element of p. O

It is easily seen that the multiplications *g, *,,, are particular cases of Gerstenhaber’s formula
if the real number 7 is replaced by the formal parameter A, and if we set

I 0 %)

re = — — ® — 44
Zkzlapk Ik “
i — 0 0 0 d

Tw = = T Q77— — 45
2 ; (3% Opr  Opy 3%) 43)

3. Poisson Geometry

3.1. Poisson Manifolds

We have seen in Proposition 2.2 that the first order commutator of a formal associative
deformation of commutative algebra A always gives rise to a Poisson bracket. In this Section
we shall deal with the important case where the undeformed algebra is the space of smooth
complex valued functions, C*°(M,C) on a smooth mannifold M.

Let {, } be a Poisson bracket on A := C>*(M,C). For any g € A let X, denote the linear
map A — A defined by f — X,(f) := {f,g}. By the Leibniz rule each X, is a derivation on
A ie. Xg(ff) = Xg(f)f' + fXg(f') for all f, f' € A. Tt is a classical fact (see e.g. [1]) that
to each derivation there corresponds a unique vector field on M, also denoted by X, such that
X4(f) is given by the Lie derivative of f with respect to X,. In other words, in each local chart
(U, = («,...,2")) on M we can write Xy(f) = Y7y X.(8f/0x") for certain complex valued
smooth functions X; on the chart domain U. The vector field X, is called the Hamiltonian
vector field associated to g. Note that the Jacobi identity of the Poisson bracket implies

[Xf,Xg] :—X{ﬁg} vV f,g € A

Using the fact that the linear map g — X is also a derivation in the sense that X5 = ¢’ X,+9Xy
for all g,¢g’ € A, a slight generalization of the above classical argument shows that the Poisson
bracket uniquely determines a so-called bivector field, i.e. a smooth section P in the bundle
A2TMC. In a local chart (U, (x!,..., x")) this bivector field P takes the form

1 — i 0 0 " Of Og

i J i — i et

P = 5 Z P e A 5 hence {f,g} = Z P Dt D (46)
3,j=1 5,5=1

for all f,g € A where (P¥) is an antisymmetric matrix of smooth complex-valued functions on

U. We shall henceforth restrict to the case where P is real. The rank of a bivector field P in

x € M is defined by the rank of the antisymmetric matrix P, in an arbitrary chart.

13
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On the other hand, each bivector field P can canonically be considered as an antisymmetric
bilinear form on the cotangent bundle T*M by using the natural pairing: let o, 8 two 1-forms
on M

P(a,B) = igiocP =Y P, (47)
i,j=1

and one can thus define the antisymmetric bracket

{f,97 =Af,9tp:= P(df,dg) = df Xy=—dg Xy. (48)

for any f,g € A which automatically satisfies the Leibniz rule. The Jacobi identity for such
a bracket, however, is not necessarily valid and has to be demanded: it is easily seen that in
co-ordinates this leads to the following quadratic PDE on P":

L= (i OPTF S OPR L 9P
0—;<P oo TP+ P ay)‘ (49)
As a matter of fact, the above condition behaves well under co-ordinate changes and is a special
case of the so-called Schouten bracket | , |s which is a graded Lie bracket on the space of the
so-called multivector fields (or polyvector fields), i.e. T'°°(M,ATM), and the above condition
reads [P, P|; = 0, see [72] for details.

The above condition (49) implies the simplest example of a Poisson manifold, i.e. any open
set M of R" equipped with a constant antisymmetric matrix P%.

A bivector field P on a manifold M satisfying (49) is called a Poisson structure, and the pair
(M, P) is called a Poisson manifold. On such a manifold one can always define Hamiltonian
mechanics by associating to each smooth real-valued function H on M its Hamiltonian vector
field X g which gives rise to a dynamical system, i.e. the first order ODE

t=Xpg(zr) and z(0)=x9€ M, (50)

the so-called Hamiltonian equations of motion. Since for any f € A one has d(f(x(t)))/dt =
(Xu(f)(t) ={f, H}(x(t)) it follows that f is a conserved quantity for H iff {f, H} = 0, hence
in particular H is always a conserved quantity (conservation of energy).

The above condition (49) implies the simplest example of a Poisson manifold, i.e. any open
set M of R™ equipped with a constant antisymmetric matrix P%. In contrast to that the local
structure of a Poisson manifold can be very complicated, and the rank of the bivector field may
change over the manifold. On the other hand there are no topological restrictions for a manifold
of dimension n > 2 to admit a nonzero Poisson structure: in fact, by choosing in the image of
a chart domain n commuting vector fields X1, ..., X, which are independent at the origin and
have compact support (exercise: construct them!) and by pulling them back to the manifold,
one can define P as a sum of terms of the form X; A X;. Moreover it is clear that on any 2
dimensional manifold any bivector field is automatically Poisson.

3.1.1. The dual of a Lie algebra Apart from constant Poisson structures, the following example
of the so-called linear Poisson structure is the most important: Let (g, [, ]) be an n-dimensional
real Lie algebra and M := g* its dual space. Let e1,...,e, be a base of g, let e',...,e" be the
dual base, and ¢} := e*([e;, en]) the structure constants of g.

Then for all £ € g* one defines on M the linear Poisson structure corresponding to |, |:

PO =€ D=5 3 Gz A ge (51)

ke lm=1 &
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The Jacobi identity for this Poisson structure is a direct consequence of the Jacobi identity for
the Lie bracket [, ] of g.

The Lie algebra g = s0(3) = R? of all real 3 x 3 antisymmetric matrices with the bracket
[e1, ea] = e, [e2, e3] = e1, [e3, e1] = ea coming from the vector product is an important example
for the dynamics of a freely spinning top: let © be a positive definite 3 x 3-matrix (the inertia
tensor), and H : R® — R the real valued function H(L) = %Zijzl L;(© Y% L;. Then the
dynamical system corresponding to H is the Fuler equation of a freely spinning top

dL
— =[07'L,L

dt [ Y ]

where L is the angular momentum and ©~!'L the angular velocity of the top.

3.2. Symplectic manifolds
Symplectic manifolds are the most important examples of Poisson manifolds, see the book [1]
for an excellent introduction.

A Poisson manifold (M, P) such that the bivector field P is an invertible antisymmetric
matrix at each point x € M in some co-ordinate chart is called a symplectic manifold. The
natural inverse of P is a 2-form w € I'?(M, A*T*M) = Q%(M): we adopt the convention that
S wirPIT = 6. It is an easy exercise that the Jacobi identity (49) is equivalent to the linear
PDE
dv=0 or 0= 0w K iy awk.i.

oxt  OzF  Oxd
Therefore symplectic manifolds are denoted (M,w) with w a nondegenerate closed 2-form.

Unlike general Poisson manifolds, symplectic manifolds have a very simple local structure
ensured by Darbouz’s Theorem: around each point of M there always exists so-called canonical
or Darboux co-ordiantes (q,p) = (¢',...,¢",p1,.-.,pn) in which the symplectic form takes the
constant form

(52)

n
w = Z dq' A dp;. (53)
i=1
See e.g. [1], p.175, Thm 3.2.2. for a proof. In particular, symplectic manifolds are always
evendimensional, and the Poisson bracket takes the usual form Y1, f/9q'0g/0p; — (f < g).
Simple examples of symplectic manifolds are R?" equipped with the constant 2-form (53).
Moreover, any oriented 2-dimensional manifold (a so-called oriented Riemann surface) carries
a volume form and is hence symplectic. Unlike general Poisson manifolds there are topological
obstructions for compact manifolds to admit a symplectic form w: in the de Rham cohomology,
the class of each of the following closed 2k-forms W1 <k<n:=dimM /2 has to be non zero:
in fact, if there was a k — 1-form @ with w”* = d6, then the volume form w”" would be equal
to df A w7 = d(g A w"F)) which would be absurd since the total volume [;, w"™ of M
would be zero by Stokes’s Theorem. For example, the spheres S?* do not admit any symplectic
structure for all n > 2.
A general Poisson manifold is known to be foliated by local symplectic submanifolds, the
so-called symplectic leaves, see [72] for details, whose dimension is in general non constant.

3.2.1. Cotangent bundles Let @ be a differentiable manifold, 7*(Q its cotangent bundle, and
T T*Q — (@ the canonical bundle projection. The canonical 1-form 6y on the manifold T%Q
is defined in the following manner: let ¢ € Q, o € T,Q*, and W, € T,,T*@Q, then

Oo(v) (Wa) = a(TaTé Wa). (54)
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Let ((U, (ql,...,q”)) be a chart of @), and (T*U, (ql,...,q"7p1,...,pn)) the corresponding
canonical chart of 7*Q (i.e. ¢*(a) := ¢ (15()) and pi(a) = a(0/0q")), then 6y takes the

form
Oy := Zpkqu (55)
k=1
whence the fact that the canonical 2-form
wo ‘= —d90 (56)

is nondegenerate, hence a symplectic form on T*@. The cotangent bundles generalize the
phase spaces in physics where @ is a configuration space and the fibres represent the conjugate
momenta.

3.2.2. Complex Projective Space Apart from the tori of even dimension, the complex projective
spaces are the simplest compact symplectic manifolds:
Consider the complex manifold C**! \ {0} equipped with complex coordinates z := (21 :=

q1+1p1, -y Znt1 i= qn+1 + ipnt1) and with the standard symplectic form
i n+1 n+1
0= §Zdzk/\d2k = dgi A dpy. (57)

Complex projective space CP"™ is defined by the following equivalence relation
z~z2 iff Ja e C\{0} such that 2’ = az, (58)
and CP™ := C""1\ {0}/ ~. Let
7 C"\ {0} - CP": 2 — [2] (59)

be the canonical projection whose fibres obviously are the complex lines in C"*!\ {0} passing
through the origin. There are n + 1 complex charts (U, v) defined by

U, = {[Z] S (CPn‘Z;C #* O}
z 2k z z
v o= <7)1 = 71,. ey V1 = g,wﬂ_l = k—H,.. yUp41 = n+1> .
2k 2k 2k 2k
The Fubini-Study 2-form w is defined in each chart (U, v) (where we set [v]2 := S |u2):
(o
n+1 1 n+1
w]U = dv; N\ dvy — vydvy A vy doy (60)
g 1+|v\ Z 1+|!)”Z,:1
ls«ék LUk

It can be shown that these locally defined closed two-forms wl|y, are well-behaved under the
change of charts and thus define a global 2-form w. Moreover, the map ® : CP' — S?

1

AP + 2 (2122 + 2122, —i(2122 — Z122), |z1]% — |zz\2)

[21, 22] =

is easily computed to be a diffeomorphism.
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4. Star-products

In the preceding chapter we have seen that one can construct noncommutative or “quantum”
associative multiplications * on C[[\]] and even on C*®°(R?", C) by using symbol calculus, i.e. by
using a linear bijiection between C[g,p] and an already given associative algebra, namely the
algebra of all differential operators with polynomial coefficients acting on C*°(R", C).

The principal idea of star-products is to construct such an associative multiplication * directly
on the space of classical observables, i.e. on the function space C>°(M, C)[[A]] (where M is a given
Poisson manifold) without a priori referring to a ‘representation’ in a differential or operator
algebra: for most of the Poisson manifolds it is not at all clear how such a differential operator
algebra could be chosen. From the point of view of physics this means that the construction of
the quantum system starts with the observable algebra (unlike the classical approach), whereas
the construction of the Hilbert space is postponed.

4.1. Definition
The following definition had been given by F. Bayen, M. Flato, C. Frgnsdal, A. Lichnerowicz,
and D. Sternheimer in 1978 [5]:

Definition 4.1 Let (M, P) be a Poisson manifold. The structure of a star-product on M or a
deformation quantization on M is defined by the following sequence of C-bilinear maps
Cr:C®(M,C) xC*®(M,C) — C>*(M,C)
for all v € N subject to the following conditions (f,g,h € C>°(M,C)):
(i) Every C, is a bidifferential operator
(ii) Co(f,g) = fg (classical limit).
(i1i) Ci(f,9) — Ci(g, f) = i{f, g} :=iP(df,dg) (classical limit).
(iv) C.(1,9) =0=C,.(f,1) for all * > 1 (the constant function 1 remains a unit element).
(v) > o (CS(CT_S(f,g), h) =30 (Cs(f, Cr—s(g, h)) for all r € N (associativity).

The formal series
% 1= Z N'C,
r=0

1s called a star-product on M.
Furthermore, if for all € N and f,g € C>°(M,C)

Co(fr9) =G, ) (61)

(where ~ denotes pointwise complex conjugation) the star-product is called symmetric or
hermitian.

For example, *,, and %, are hermitean, %, is not.
The following corollary is obvious:

Corollary 4.1 Let % be a star-product on the Poisson manifold (M, P). Then the C[[A]]-module
C>®(M,C)[[A]] becomes an associative algebra over the ring C[[A]] via (F = Y 2 A'F.,G =
2o A'Gr € C(M, C)[[A]])

FxG:= f:x > Cu(F,Gu).

r=0 s+t+u=0

If moreover the star-product is hermitean, then the pointwise complex conjugation ~ becomes an
(antilinear) antiautomorphism of the associative algebra (C*° (M, C)[[N]], *), i.e.:

F+«G=GxF.
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We list further properties of star-products:

Definition 4.2 (i) If the order N, of the bidifferential operator C, is always equal to r the
star-product is called natural by S.Gutt and J. Rawnsley.

(ii) A hermitean star-product is called of Weyl-Moyal type iff

Crlg,f)=(=1)"C.(f,g) forall r>0.

For example, *; and #,, are natural, and *,, is of Weyl-Moyal type.
For two star-products = and #’ there is the following notion of formal isomorphy which we
had already encountered for *; and ,,:

Definition 4.3 Let (M, P) be a Poisson manifold and *,+" two star-products. They are
called equivalent (x ~ x') iff there is a formal series of linear maps, called an equivalence
transformation

S=id+» XS,
r=1
(where each S, : C*°(M,C) — C*(M,C) is C-linear) such that
F+ G=S8"1((SF)*(SQ))

for all F,G € C*(M,C)[[\]].

It can be shown using the computations of Hochschild cohomology that all the S, (r > 1) are
necessarily differential operators vanishing on the constants.
Since the operator series N (see eqn (37)) takes the form id +

6@(3% + 0(A\?), it defines an
equivalence transformation between the star-products *,, and .

A
21 0q

4.2. Existence

4.2.1. Symplectic manifolds After some important results for special cases (like symplectic
manifolds whose third de Rham cohomology group vanishes [62] and cotangent bundles of
parallelizable manifolds [22]) the first complete existence result had been shown by M.DeWilde
and P.Lecomte in 1983, [33]:

Theorem 4.4 (DeWilde-Lecomte 1983) On every symplectic manifold (M,w) there is a
star-product.

The proof was based on one hand on explicit computations of the differential Hochschild
cohomology of the commutative associative algebra C°°(M,C) and on the second and third
Chevalley-Eilenberg cohomology of the Lie algebra C*° (M, C) equipped with the Poisson bracket,
see [50], [31], and for a survey [34]. On the other hand, an important ingredient had been a a
local homogeneity argument based on a generalization of the Euler field of a cotangent bundle
which has already occurred in [22].

Independently of this result, B.Fedosov had given a proof of Theorem 4.4 in 1985, [39]. His
method is remarkable since it rather uses symplectic connections than local charts: therefore his
proof allows to construct the bidifferential operators directly in tensorial terms, which sometimes
is more adapted to the implementation of symmetries. Yet another existence proof had been
given by H.Omori, Y.Maeda, and A.Yoshioka in 1991, see [66]: here local Weyl-type star-
products (isomorphic to #*, on R?") are glued together by means of cocycles of equivalence
transformations.
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4.2.2.  Poisson manifolds The main obstacle to translate even locally the methods of the
previous section to a general Poisson manifold was the fact that the local structure of a Poisson
manifold can still be very complicated (unlike the symplectic situation where Darboux’s theorem
holds), and that there is in general no connection in the tangent bundle leaving invariant the
Poisson structure: if this is the case the Poisson structure must have constant rank, a case
Fedosov also dealt with. In the deformation quantization community it came out as a big
sensational surprise in 1997 when the following result was announced by Maxim Kontsevich:

Theorem 4.5 (Kontsevitch 1997) On every Poisson manifold (M, P) there exists a star-
product.

For the algebraic framework of operades, Loo-structures, and formality, see the original article
[57] and the article [3] which unzips some details of the proof. Kontsevich gave the result first
for M = R"™ in terms of an explicit formula, see the discussion further down, and sketched its
globalization to manifolds. A.Cattaneo and G.Felder (see [24]) have retraced the quantum field
theoretical roots of Kontsevich’s construction in the physical theory of Poisson-Sigma models due
to P.Schaller and T.Strobl (see [71]), and have given a more explicit globalization of Kontsevich’s
result & la Fedosov in [25] (with Tomasini). V.Dolgushev has globalized the formality map, see
[37].

For the Poisson manifold (R",% Z,b:l P9, A 0y) Kontsevitch uses the following Ansatz
for the bidifferential operators C, of the star-product: let f,g be in C*®(R",C), let 2r =
ny +---+n, + M + N be a partition of the nonnegative integer 2r as a sum of nonnegative
integers, and let o be a permutation of {1,2,...,2r}. Let us denote ((nl, ey My M N),O') by
I',-, and one defines the bidifferential operator

n "1 Po(1)@o(2) o PAo(2r—1)%0(2r)
Cr.(f,9) = > or om0 0
a17'..7a27‘:1 wal $an1 xan1+.A.+nr_l+1 xan1+.4.+nr
oM f oNg
8xan1+m+nr+1 e 8xan1+m+n,«+M axan1+--~+nT+M+1 e a‘razr

(62)

The bidifferential operator C, is obtained by a particular real linear combination of the preceding
operators parametrised by all possible I'; with weights wr, which are at the heart of Kontsevich’s
construction: he represents the I', by graphs having r 4 2 vertices (corresponding to r Poisson
structures and two functions) and 2r edges (corresponding to 2r partial derivatives) in the
upper halfplane, and the coefficients wr, of the linear combination are obtained by a multiple
integration related to the geometric image of the graph:

C(f,9) =Y wr,Cr.(f,9). (63)
T,

4.3. Equivalence

4.8.1.  Symplectic manifolds A couple of years before the first existence proof, the above
computations of Hochschild and Chevalley-Eilenberg cohomology had made it clear that
recursive obstructions to equivalence lie in the second de Rham cohomology of the underlying
symplectic manifold. On the other hand, the above-mentioned existence proofs by DeWilde-
Lecomte [33] and by Fedosov [39] already included second de Rham cohomology classes. In
the papers by P.Deligne [29], R.Nest-B.Tsygan [63, 64] and M.Bertelson-M.Cahen-S.Gutt [7] a
somewhat canonical parametrization of the equivalence classes has been found:
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Theorem 4.6 Let (M,w) be a symplectic manifold. Hence the equivalence classes of star-
products on (M,w) are in bijection with the formal power series having coefficients in Hag (M),
the second cohomology group of the manifold M.

The above bijection is given explicitly (in terms of Cech-cohomology based on an atlas
consisting of Darboux charts) and is called the Deligne class [*] of . For an excellent review
of these things including a very simple existence proof of symplectic star-products, see [52].
Moreover, N.Neumaier has shown that the series of closed 2 forms occurring in the Fedosov
construction [39] coincide with the representatives of the Deligne class, see [65].

4.8.2. Poisson manifolds In the case of a Poisson manifold the classification result proved to
be much more difficult and had also been done by M.Kontsevich [57]:

The Schouten bracket [, ]s (see [72]) can be extended to the space of formal multivector
fields I'(M, AT M)[[A]] in the obvious C[[A]]-bilinear manner

[Z )\TP'M Z )‘tQt]s =
r=0 t=0

where it satisfies the graded Leibniz and Jacobi identities. A formal Poisson structure P on
a differentiable manifold M is a formal power series P = Y 2 A" P, of bivector fields with
[P, P]s = 0. Moreover, any formal vector field X acts on the formal bivector fields by Lie
derivative Ly P := [X, P],. Finally, two formal Poisson structures P and P’ are called formally
diffeomeorphic iff there exists a formal vector field X such that

o0 s

X" [P Qrils
0

t=0

r=

P = eMx(p).

This is an equivalence relation which can be seen by using the Baker-Campbell-Hausdorff
formula. By means of these structures the set of equivalence classes of star-products is described
as follows:

Theorem 4.7 (Kontsevitch 1997) Let (M, Py) be a Poisson manifold. Then the equivalence
classes of star-products on (M, Py) are in bijection with the formal diffeomorphism classes of
formal Poisson structures whose zeroth order term is equal to Py.

5. Explicit Examples

5.1. Cotangent bundle of S™

This example is due to F. Bayen, M. Flato, C. Frgnsdal, A. Lichnerowicz and D. Sternheimer
[5]:
Consider the symplectic manifold M’ := T*(R"*!\ {0}) = (R**!\ {0}) x R**! equipped
~as an open subset of R?"— with canonical Darboux coordinates (¢,p) and the canoncial
symplectic form ZZI% dqy. N dpg. The following two functions Hi(q,p) := ZZI% qrpr =: ¢-p and
Hs(q,p) := Zi% (qx)? =: |q|? span the two-dimensional non-abelian Lie algebra (with respect
to the Poisson bracket), i.e. {Hj, Ho} = —2H5. Moreover the Hamiltonian flows of H; and Ho
take the form ®!(q,p) = (e°q,e~*p) and ®?(q,p) = (q,p — 2tq), and generate the action of the
two-dimensional non-abelian Lie group

G :={(a,t) € R* | a > 0} (64)
on M’ given by (a,t).(q,p) := (aq, —2tq + o~ 'p). Let T*S™ be defined

M :=T*S":={(¢,p) € M' | ¢-p=0and |g|* = 1}. (65)
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It is easily seen that this definition gives the tangent bundle of the n-sphere S™ which is
isomorphic to its cotangent bundle via the canonical (‘round’) Riemannian metric on S™. There
is a projection
q q-p
m: M — M:(q,p)— (’q|,|q] —mq) (66)
which clearly is a surjective submersion. The fibres of that projection are the orbits of the group
G. Therefore there is the following

Lemma 5.1 Let F be in C>*(M’,C). Then there is a function f € C>°(M,C) such that F = for
if and only if F is G-invariant, i.e. F((a,t).(q,p)) = F(q,p).

Since G is connected it follows that F' is G-invariant iff
{F,H,} =0={F, Ha}. (67)

Using the Moyal-Weyl star-product *,, (36) on M ' it is easily seen that for each quadratic
polynomial F' and every function F' € C*>°(M’, C) there is the following important formula

F sy F — F %y, F =i\F,F}, (68)

i.e. the higher order terms in the star-product commutator vanish. If this formula is applied to
F = H; or F = Hy one directly sees —using (67)- that a function H is G-invariant iff it commutes
with H; and Hy with respect to . It follows that the space of all G-invariant functions is an
associative subalgebra of (C*°(M’, C)[[A]], ). Consequently

Theorem 5.2 There exists a star-product *xgrrrs on M for which one has the following explicit
formula:

f*Brros 9(7(q,p)) = (7 f) *w (7*9)(q, D).

5.2. Complex projective space
The following explicit formula described further down for a star-product on complex projective
space CP"™ has been found in [18] where one may find the details of its proof.
Let
7 :C"\ {0} - CP" (69)

be the canonical projection whose fibres are the complex lines in C"** \ {0} passing through
the origin. As in the preceding example, the fibres are obtained by the action of a two-
dimensional Lie group, namely the multiplicative group of all non zero complex numbers,
C \ {0}. Unfortunately this group does no longer preserve the star-product of Wick type on
C"*+1\ {0} which renders the deduction more difficult. By means of the complex coordinates
2= (21,...,2n41) on C"t1\ {0} we denote the square of the Euclidean distance to the origin
by
n+1

x = Z |22 (70)
k=1

By modifying the usual star-product of Wick type on C"*1\ {0} we get the following

Theorem 5.3 Let f,g be in C°(CP™,C). Then the following fomula gives a star-product of
Wick type on the Kdahler manifold CP™:

m(frg)(z) = 7 (f9)(2)

2 (2N x” s or* f J'rm*g
+ ) EECESYRCEaoV .%:_1 Dz, - Oz, (2)3% 0z, (2).

r=1

In[17] we have shown that this star-product converges on all representative functions of the
canonical action of the unitary group U(n + 1) for certain real values of the parameter A.
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5.83. The Gutt star-product on the dual space of a Lie algebra
This very important explicit example has been found independently by S.Gutt [51] and by
V.Drinfel’d [38] in 1983:

Let (g,], ]) be an n-dimensional real Lie algebra and M := g* its dual space. Let eq,..., e,
be a base of g, let e!, ..., e"” be the dual base, and cf“m = ek([el, em]) the structure constants of
g. Here we shall use a formal parameter v. Let H : g x g — g[[v]] be the formal group law by
Baker-Campbell-Hausdorff:

Hisg) =2ty
ST (006 (00)" (1) ad)
n+1 .

+ x
Sintl, S, by ko DR Rl
11, In>0
ki41;>1

(71)

where g[[v]] is the space of all formal power series with coefficients in g, see the next Section for
details. It is easily seen that one can extend H to g[[v]] x g[[v]]. By its definition, H is equal to
the logarithm of a product of two exponential functions in the completed universal envelopping

algebra of g, i.e.
VT eVY — €VH(I’y).

whence
H(H(z,y),2) = H(z,H(y,2)) Va,y,z € g. (72)
The standard symbol for the star-product * on g* is defined as follows (z,y € g = g**):

€x * €y 1= CH(zy) (73)

Since it is obvious using (71) that H(x,y) — x — y is a multiple of v, we get that the standard
symbol of * is a formal power series in v. Moreover for each power of v there is only a finite
number of summands in H(z,y) (71): this implies that the standard symbol of * is polynomial
in (z,y) for each power of v. Therefore the formula (73) is well-defined. The star-product is
associative because (z,y,z € g)

(eg * €y) ¥€z = CH(zy) ¥Cz = eH(H(wvy)’Z)

=e € * € (y,2) = €z * (€y * €;)

H(x.H(y.2))
thanks to (72). Hence the two tridifferential operators defined by their standard symbols
(ex * €y) * e, et e, * (e, * e;) coincide on exponential functions, hence they are equal thanks

to Lemma 1.1. The formal power series of the standard symbol of * has the following terms of
order zero and of order one:

He,a,y) = STV = 14 Ve((ry) + 00?)
whence the classical limit of * is readily deduced. Finally, the Euler like operator
0 - 0
V% + ; fk@

counting the sum of the degree in v and the degree of homogeneous polynomial functions on g*
is a derivation of x by (71), hence the bidifferential operator C, de * (which is of degree r in
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v) has at most r partial derivatives with respect to £ distributed on the two functions f and
g. It follows that f *x g is a polynomial in v if f and g are polynomials on g*. Therefore it is
legal to set ¥ = 1 on polynomials. This latter complex associative algebra is isomorphic to the
complexified universal envelopping algebra Ug of the real Lie algebra g (see [51]). The preceding
discussion gives the following

Theorem 5.4 Let g ba a finite-dimensional real Lie algebra. Then there exists a star-product
* defined by (71) on the Poisson manifold (g*, Py) which converges (in v) on the subspace
of polynomial functions on g* where the multilplication is isomorphic to the complezified
envelopping algebra of g. ~

In particular, for §,m € g it follows that the C[[A]]-module of all linear functions & and 7) defined
on g* by £(a) := (a, &) forms a Lie subalgebra, i.e.

Exn—ijx & =i ).

5.4. The dual space of an associative algebra

This example is due to the author in this context. Let A be an n-dimensional real associative
algebra. If A~ denotes the Lie algebra whose underlying vector space is A equipped with the
commutator of the associative multiplication one can repeat the preceding Baker-Campbell-
Hausdorff star-product. However, the associative structure of A allows for a much more explicit
description: in a base ey, ..., e, of A (where the dual base is denoted by e!,...,e") the structure
constants of the multiplication are expressed as follows:

m;k = e'(ejex) € R. (74)
Then we can define the following star-product * on A*: (f, g € C*(A*,C)):
fxg (&) =

> " 11 iy . . ar‘f aTg
YDA DR R A B e

(75)
In order to check associativity we compute the standard symbol of * (z,y,z € A =2 A*):

€z * €y = Extytvry

and therefore

(6x * ey) * €z = Cotytvay ¥ €2 = Cotyiatu(aytzatyz)trloyz and
Eq * (ey * ez) =€z * Cytztvyz =  Cotytrtu(zytaztyz)+rioyz
which shows associativity. Moreover, we can prove the following

Theorem 5.5 Let A be a finite-dimensional real associative algebra. Then formula (75) defines
a star-product x on the Poisson manifold A* (equipped with the linear Poisson structure (51) for
the Lie bracket (z,y) — [x,y] := zy — yx ) which converges (with respect to v) on the subspace of
all polynomial functions on A*. The multiplication x for v = 1 is isomorphic to the complezified
universal envelopping algebra of the Lie algebra A~ .

The restriction of this multiplication to the polynomial functions, hence to the symmetric
algebra S A, generalizes to infinite-dimensional algebras: here A can be seen as the ‘one-particle
observable algebra’, and (SA, ) is a ‘many boson observable algebra’ preserving particle number
in quantum mechanics. The above polynomial construction is extendable to infinite-dimensional
associative algebras A.
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6. Morphisms, modules, and reduction of star-products
In this section I shall review some results on some still open questions concerning algebra and
Poisson morphisms, left modules (i.e. representations) and coisotropic (first class) submanifolds
and reduction. For details on these results, see [8]. In the following, (M, P) always denotes a
given Poisson manifold. For more details on Poisson manifolds and interesting maps merging
into them, see also [72], [59], [76], [11], [23], [49], [53], [58], [75].

6.1. Morphisms
Let (M, P) and (M', P") be two Poisson manifolds, and let ¢ : M — M’ be a smooth map.
Its pull-back ¢* : C°(M',C) — C>®(M,C) defined in the usual way by ¢*(f’) := f o ¢ is well-
known to be a morphism of associative algebras. Moreover, ¢ is called a Poisson map iff for all
m € M we have (T),¢ ® T,,¢) Py, = P, (m)" This is equivalent to saying that the pull-back ¢* is
a morphism of Poisson algebras, i.e. ¢*{f',¢'}pr = {¢*f',¢*¢'}p for all f' ¢’ € C>(M,C).
Examples for Poisson maps are given by all symplectomorphims, i.e. diffeomophisms ¢
between two symplectic manifolds (M,w) and (M’,;w’) such that ¢*w’ = w. Another very
important class of examples is provided by (Lie algebra) momentum maps: these are Poisson
maps J : (M, P) — (g*, P;) where (g,[, | is a finite-dimensional real Lie algebra. The more
familiar equivalent definition is given by

{1, &), (Jm}y = {J[&nl)  forall &neg, (76)

which means that the Hamiltonian vector fields X ;¢ define a left Lie algebra Poisson action
of g on M. Souriau’s original definition supposed that this Lie algebra action comes from a left
Lie group action G x M — M (where g is the Lie algebra of ) and in addition J is equivariant
(i.e. J(gm) = Ad*(g)J(m) for all g € G and m € M). A particular important case of a Lie
algebra momentum map is given by a symplectic manifold (M,w), an abelian Lie algebra whose
dimension is one half of the dimension of M such that J is a submersion almost everywhere on
M: this is called a completely integrable system (in the sense of Liouville).

Furthermore, Poisson maps between symplectic manifolds ¢ : (M,w) — (M',w') take a very
simple form: these are submersions whose kernel bundle Ker T'¢p C T'M is symplectic, whose
w-orthogonal bundle F := Ker T¢¥ C TM is integrable, and such that ¢*w’ and w coincide on
FE xyr E. Locally, ¢ is the projection on the local leaves of E along the fibres of ¢.

Now let * be a star-product on (M, P) and " be a star-product on (M’, P"). A star-product
morphism ® : C®(M’',C)[[\]] — C>(M,C)[[\]] is defined to be a morphism of associative
algebras over C[[)\]], i.e. a sequence of C-linear maps ®, : C*°(M',C) — C*°(M,C) with
¢ =2 N ®, such that

(f' ¥ g) = B(f)  B(g) forall f'.q € C>(M'C)[A]. (77)

By inspection of this condition one finds that &3 must be equal to the pull-back ¢* of a Poisson
map ¢ : (M, P) — (M', P"). Here Milnor’s exercise (see e.g. [56], p. 301, Cor. 35.9) is crucial
which states that every algebra morphism C*°(M’,C) — C*>°(M,C) is the pull-back of a C>-
map M — M’'. S.Gutt and J.Rawnsley found out that the higher order terms of ® have to be
differential operators along ¢, i.e. linear maps D : C°(M’,C) — C*°(M,C) which in a charts
(U, (x1,...,2n)) of M and (U, (z4,...,2},)) of M’ take the local form

» n!

D(f)vng-1wn = Z D'¢* (97 (f'|v"))

IeN" |I|<N

where D! is a C-valued C*°-function on the open set U.
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The problem of the quantization of a given Poisson map ¢ is still open, i.e. to find star-
products * on (M, P) and " on (M’', P') and differential operators ®, along ¢ for r > 1 such
that ® := ¢* + > °2, A®, satisfies (77).

For certain momentum maps J on symplectic manifolds whose Hamiltonian vector fields
X (¢ all preserve any connection V in the tangent bundle (e.g. for proper Hamiltonian Lie
group actions such as for compact Lie groups) B.Fedosov [41] showed the existence of a strongly
mwvariant star-product * i.e. for which

(L&) = f = [+ (&) =iM{J.§), [} forall feC*(M,C), {eg

(see also [2]) for the definition) which implies the quantum version of (76) for f = (J,7n), i.e

(J;6) x (Jim) = (Jym) # (J,§) = iA(L[§,m])  forall &neg, (78)

and thus the quantization of J where g* carries the BCH-star-product, see also [78] for definitions
and some cohomological statements of quantum moment maps. A star-product * satisfying (78)
has been called covariant by [2]. This can be seen as a quantization of a symmetry.
Many classically integrable systems such as the Toda chain and the Calogero-Moser systems are
also quantum integrable in the above sense, see e.g. [12].

For the above Poisson maps ¢ between symplectic manifolds (M,w) — (M’,w’) T have found
a partial answer to the quantization problem by a Fedosov-type analysis: the w-orthogonal
bundle F to the kernel bundle ker T'¢ is integrable and gives thus rise to a a regular foliation of
M. There is a differential topological invariant attached to this foliation, the so-called Atiyah-
Molino class K(M, E), see [8, p.85-91]. I proved in [8] that there is a total obstruction at order
3 in A to the existence of a quantization related to a quadratic expression in the Atiyah-Molino
class which has to be matched by the first two Deligne classes, see [8, Thm.5.3]. However, I do
not know whether this obstruction is geometrically realized in a counterexample. On the other
hand, if the Atiyah-Molino class vanishes, and if the Deligne classes of the two star-products are
sufficiently ¢-related I could prove that such a quantization of ¢ always exists, see [8, Thm.5.4].

6.2. Modules
Given a class of associative algebras, a natural algebraic question concerns its (left) modules or
its representations: in the context of deformation quantization this means that one tries to find a
linear map p which sends an element f € (C*°(M,C)[[A]], *) to a ‘suitable’ C[[\]]-linear operator
p(f) in a C[[A]]-module M such that for all f,g € C*>(M,C)[[\]] one has the representation
identity

p(f*g)=p(f)op(g) and  p(1) =iduy. (79)

For a physicist, this is not an artificial problem since (s)he is for instance interested in the
question whether a given star-product algebra can be represented in some ‘Hilbert space’.

In contrast to the morphisms the variety of possible modules seems to be very large: we shall
henceforth restrict ourselves to a subclass where M = C*>°(C,C)[[A]] for a given differentiable
manifold C' and where each p(f) is a formal power series of differential operators on C. For
generalizations to sections of vector bundles over C| see [8].

A simple example is C' = M, i.e. M = C>(M,C)[[A]] where the algebra C*>° (M, C)[[A]] acts on
itself by left multiplications given by the star-product = itself. Clearly C*°(M, C)[[A]] acts equally
well on a finite direct sum of copies of itself which would correspond to the space of smooth
sections of a trivial vector bundle over M. B.Fedosov generalized this representation to the
space of sections of any vector bundle E over M by first realizing E as the subbundle of a trivial

vector bundle of rank N given by the image of a projection-valued function P = (Pij)l <ij<N
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over M (which has constant rank N) and by deforming P to a projection P with respect to the
star-product, i.e. Zjvzl P;j * Pji = Py, for which he has the explicit formula

L1 1 _
P:21+<P—21)*(1+4(P*P—P)) 12

where the square root is well-defined by its formal Taylor series (since P * P — P is proportional
to A), see [41, p.120, eqn(4.1.16)]. Thereby all the finitely generated projective modules of
C>®(M,C)[[A]] are obtained. See Fedosov’s book [41] for his treatment of K-theory and index
theorems. See also the works of H.Bursztyn and S.Waldmann on Morita theory [19], [20].

A second class of examples is given by symbol calculus, the generalization of canonical
quantization: the maps ps; and p, —extended to formal power series— define modules of
C>(R?", C)[[\]] equipped with the standard ordered star-product 5 or with the Moyal-Weyl star-
product *,,, respectively, on C' = R"™. In these examples one can replace the symplectic manifold
R?" with the canonical symplectic form by the cotangent bundle T*C of any n-dimensional
manifold C (see section 3.2.1) equipped with the canonical 2-form (56): fixing a covariant
derivative V in the tangent bundle of C one can assign to any C*-function F' on T*C which
is of bounded polynomial degree in the fibres a differential operator ps(F') by a generalization
of formula (35) where the partial derivatives 0/0p; have to be replaced by the natural fibre
derivatives in the direction of the fibres of T*C, where the evaluation at p = 0 is interpreted
as the restriction of the result to the zero-section C in T*C whereas the partial derivatives

8%6,%%% are to be replaced by the r-fold symmetrized iteration of the covariant derivative V.
1 r

This prescription defines a star-product *; on T*C represented on the functions on C, see e.g.
[14], [13], [9] where also analogues of Moyal-Weyl star-products *,,, their representations p,,,
and the equivalence transformation N (37) can be found.

Encouraged by the algebraic quantum field theorist K.Fredenhagen, S.Waldmann and I have
formulated some the above representations in a “GNS fashion”, see [16]: in case the star-product
* is hermitean (see eqn (61)) the algebra C*°(M, C)[[A]] obviously has an involution by pointwise
complex conjugation (in the ring C[[A]]). The subring R[[A]] is known to have a non-archimedean
ring ordering defined by

00 >0 ifa#0 and ayqe) >0
0= Xo, “ (80)
r=0 <0 ifa#0 and Qo(a) <0

which means that the strictly positive elements are closed under addition and multiplication.
This has allowed us to speak of positive linear functionals 2 : C*° (M, C)[[A]] — CJ[[\]] by declaring
that for all f € C>°(M,C)[[A]] the complex power series Q(f * f) is a real power series, and is
nonnegative w.r.t. the above ring ordering. Then the algebraic part of the GNS machinery works:
thanks to the Cauchy-Schwartz inequality Q(f * g) Q(f * g) < Q(f = f) Q(g * g) it is shown that
the Gel’fand ideal o = {f € C®(M,C)[[A]] | Q(f * f) = 0} is a left ideal in C=(M, C)[[N]],
and hence the quotient C[[A]]-module Hg := C*°(M, C)[[A]]/Zq is a left module of the algebra
C>(M, C) which has a canonical scalar product (17, v,) := Q(f*g) where 1; denotes the class of
f e C>®(M,C)[[A]] in Hg. This so-called formal GN S-representation respects the scalar product
of the formal pre-Hilbert space Hq, i.e. the adjoint operator of f corresponds to f. We found
that all relevant representations in quantum mechanics such as the Schrodinger representation
and the WKB representations can be obtained as formal GNS representations where the linear
functional is an integration over configuration space C' of T*C or, more generally, a projectable
lagrangian submanifold L of T*C, see also [13] and [9] for details.
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Returning to the general case of a differential operator representation of the algebra
(C(M,C)[[N]], *) on C=(C,C)[[A]] an order-by-order analysis of eqn (79) shows that the map
po must be a differential operator of order zero, whence there is a smooth map ¢ : C — M
with po(f)e = (*f)p, see [8, p.44, Prop.2.3] for details. By induction we have shown
that all the higher order bidifferential operators p, are bidifferential operators C*°(M,C) x
C>=(C,C) — €>=(C,C) along id. and ¢ in the sense that in local charts (U, (z1,...,2y,)) of M

and (U’, (2}, ...,2},)) we have

prlfo Doy = Y. S o o lv)del

ITeN" |IIKN [’eN™ || J|<N'

where p!!" are C®-functions on U’. An important notion is the vanishing ideal T = {g €
C>®(M,C) | t*g = 0} of ¢. It is an ideal of the commutative algebra C>°(M,C). At order \! of
(79) it can be seen that 7 is a Poisson subalgebra of (C*(M,C),{ , }). This last statement is
the definition of a so-called coisotropic map: if ¢ is an embedding of C' as a smooth submanifold
of M it is equivalent to E. := io(P,) € T.C for all ¢ € C and for all « € T.M* vanishing on T.C'.
For symplectic manifolds this means that for all ¢ € C the tangent space E. = T.C¥ C T.C.
The equation [P, P]s = 0 implies that the distribution ¢ — E. is involutive and allows for an in
general singular foliation F of C' (by Frobenius’ theorem, see e.g. [56], p. 28, Thm.3.25.) i.e.
that for each ¢ € C the tangent space of the leaf through ¢ at c is given by E., see e.g. [72],
p-99, Prop.7.6 for a proof. Physicists call coisotropic submanifolds first-class constraint surfaces
and the leaves gauge orbits. For example, any submanifold of codimension 1 is automatically
coistropic. The foliation is regular (i.e. U.ccE. is a subbundle of the tangent bundle T'C' of C')
in the symplectic case: the quotient space of all leaves, C'/F, is called the reduced phase space
of (M,w) which we shall come to in the next section.

The quantization problem for coisotropic submanifolds v : C' — M of a Poisson manifold is
the inverse problem to find a representation p of a given star-product % on (M, P) on the space
C>(C,C)[[A]] such that po(f)(¢) = (¢*f)e. Up to now, in complete generality, this is an open
problem.

However, there are the following partial results: We have already seen that symbol calculus
provides representations of certain star-products on T*C' on the base space C'. More generally,
as Alan Weinstein has shown (see [75]), if C C M is a Lagrangian submanifold of the symplectic
manifold (M, w), i.e. T,C¥ = T.C for all ¢ € C, then there is a tubular neighbourhood around
C which is symplectomorphic to a tubular neighbourhood of the zero-section of T*C. Using
symbol calculus there always exist representations iff .*[x] = 0, e.g. if the Deligne class of
vanishes, see [8, p.61, Thm.3.3]. More generally, if C' is coisotropic in a symplectic manifold
and if the Atiyah-Molino class of the foliation of C' vanishes (for example if the reduced phase-
space C'/F is a smooth manifold), and if :*[x] = 0, then there are star-product representations
on the functions on C, see [8, p.115, Thm.5.6]. Here, it turned out to be useful to look at
those star-products for which the vanishing ideal Z[[\]] is a left ideal in the deformed algebra
(so-called adapted star-products). On the other hand, a certain quadratic expression in the
Atiyah-Molino class is a total obstruction to representability, see [8, p.91, Thm.4.6]. As in the
case of morphisms, I do not know of any counterexample where these obstructions are realized.
As P.GloBner has shown in his thesis, see [48], star-product representations always exist for
codimension 1 submanifolds. An interesting construction using a generalization of Kontsevich’s
graph method was done by Cattaneo and Felder who succeeded in finding representations for
certain in general non symplectic Poisson structures in R” with R¥ as co-isotropic submanifold,
see [26] and [27].
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6.3. Reduction

Let ¢ : C — M be a coisotropic (first-class) submanifold of a symplectic manifold (M,w). We
have seen that the subbundle E = U.ccE, with E. = T.C¥ = {v e T.M | w(v,w) =0 Y w €
T.C'} is integrable (since dw = 0), and thus C' is automatically equipped with a foliation F such
that each E. is the tangent space of the leaf passing through c. If the space of all leaves, i.e. the
reduced space M, := C/F is a smooth manifold such that the canonical projection 7 : C' — C/F
is a submersion, then it is known to be equipped with a natural symplectic form w, which is
defined by

Vw=: 1w,

see e.g. [1], p. 416, Thm. 5.3.23, for a proof.

An important particular case is obtained by a moment map J : M — g* coming from a
Hamiltonian Lie group action G x M — M (where g is the Lie algebra of G) for which 0 is a
regular value and whose inverse image C' := J~1(0) is not empty. In this case, C is coisotropic,
and the reduced space —in case it exists as a smooth manifold— is given by the orbit space of
the group action of G on C' (in case G is connected this amounts to the same as the definition
above, for nonconnected G the quotient space is still symplectic). In this extremely important
and useful situation one speaks of Marsden- Weinstein reduction, see [60].

For example, complex projective space (see also section 3.2.2) is obtained as a reduced
symplectic manifold of (M = R?"*2 w = EZI; dgr A dpi) by means of the moment map

J(q,p) = w — 1 for the usual circle (= U(1))-action on C"*! = R?*"*2 The canonical
projection of C' = §?"*! on CP(n) is called the Hopf fibration.

The physicist’s interest in reduced phase spaces is the fact that many interesting situations
(as e.g. all gauge theories) are formulated on a phase space M which is simple, but ‘too big’,
i.e. contains superfluous degrees of freedom. The ‘true physical phase space’ is obtained by
imposing constraints on M, that is restriction to C, and then passing to the space of ‘gauge
orbits’, i.e. to the reduced space M,..

It is therefore interesting to know how star-products x on M reduce to star-products *, on

M,.. For the Marsden-Weinstein situation there have been results of B.Fedosov [42], and for an
account of the BRST theory in [11].
For the general case, I could give a fairly complete positive answer in [8]: the main idea
is to construct a star-representation p of % on C*°(C,C)[[\]] and to arrange things that the
reduced algebra is isomorphic to the commutant of this representation, i.e. the space of all those
linear operators D : C*(C,C)[[A]] — C>(C,C)[[A]] which commute with all the representors:
p(f)oD = Dop(f). This also transforms C*°(C, C)[[A]] into a bimodule for the deformed algebra
and its commutant:

Theorem 6.1 Let v : C' — M be a connected coisotropic submanifold of a symplectic manifold
(M,w) such that the reduced phase space  : C — Myeq exists. Let * be a star-product on M.
Then the following conditions are equivalent:
(i) v*[] is basic, i.e. there is a class B on Myeq with *[x] = 7*[.
(ii) There is a star-product %, on Mg such that C*°(C,C)[[A]] becomes a * — %, or a %, — *-
bimodule.
If one of these conditions is satisfied then

e x is representable.

o [x] = 7 [*,].

o (C®(M,,C)[[N]],*,) is the commutant of the algebra (C*°(M,C)[[A]],*) acting on
C=(C,O)[[A]]-
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e The isomorphism classes of x — x,-bimodule-structures on C*°(C,C)[[A]] are in bijection to
the following deRham cohomology groups

M jp(C,C) & N Hap(C, C)[[]

!/

where the ' means quotienting by 2wt times the integer classes.

The idea of the proof (see [8, p.69,Thm.3.5] for details) is to use Weinstein’s theorem of
embedding C' as a Lagrangian submanifold of M x M, by the canonical map ¢ — (u(c),w(c)),
and to use symbol calculus in a tubular neighbourhood of C in M x M, (which looks like T*C):
Hence the algebra (C(M x M,,C)[[A]],* ® #*?) acts on C*°(C, C)[[A] iff the condition of the
Deligne classes is as above. The tensor product of the star-products * ® #, " is locally defined
by

Fx@+ G(z,y) = N> C ()T ()10 F) (2, 4)(8,01,G) (x, y)
s=0 a=0

Thereby one gets a representation of the tensor product * ® ;' on C which gives the bimodule
structure.
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