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Abstract

We outline some features of a program of study toward
faster computation of the cumulative effect of a sequence
of beam-beam interactions across the interaction region.

INTRODUCTION

The beam beam (BB) interaction between counter-rotat-
ing beams has a long history of study. The interactions may
be long range (LR) or short range (SR) depending as the
beams are separated or not (respectively). The interactions
are impulsive, occurring each time bunches collide. Beam-
beam limitations to the luminosity in proton-proton collid-
ers has a long and relentless study for over four decades.
Three machines have been the focus of these studies: the
Tevatron and SCSC in the U.S. and the CERN LHC (and
HL-LHC) in Europe.

The original intention was that this paper, with [1-3],
would be the end goal in a concerted program to speed up
the calculation of weak-strong beam-beam effects in the
HL-LHC under the circumstances of unequal horizontal
and vertical beam sigmas, asymmetric Interaction Region
optics, and closed orbit distortions (COD).

PROGRAM OF STUDY

This program would calculate the short-range interaction
at the central interaction point and the long-range (a.k.a
parasitic) interactions of the separated beams in the inter-
action region; and then sums these with the appropriate be-
tatron phase advances; and then finally perform the sum
over two interaction regions using Lie-algebraic tech-
niques throughout.

For particle tracking studies we need the electric field
and transverse impulse as function of transverse displace-
ments. Analytic tune shift studies need the potential as
function of action-angle coordinates. Analytic resonance
studies need the Fourier components (with respect to an-
gle) of the potential.

Each calculation is long, complicated and repetitive. It
was hoped that significant speed up of the calculation could
be made by exploiting several aspects of the problem.

1. Using a simpler beam density and interaction poten-

tial

2. Making a complete separation of the short-range and

long-range interaction.

3. Exploiting symmetries that exist in the optics (such as

phase advances, and equality of the ratios of beam
sizes and separations) downstream and upstream of
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the central IP to introduce cancellations or simple
summations of the up and down-stream interactions.

4. Use of pre-computed expressions for particular ampli-

tudes such as 60, is useful to resonance studies — but
not particle tracking.
Item (1) is the main area of novelty, and has already many
ramifications: field, potential, tune-shifts, Fourier compo-
nents, etc., all have to be re-calculated. Contrastingly, item
(3), exploiting symmetries, is already performed by other
authors for many years.

Currently, some parts of this program are complete and
others well-started but not complete; and some parts have
been the subject of diversions; for example, how to deal
correctly with the potential function for the closed orbit
distortion that results from the long-range interaction. Fur-
ther, the calibration and comparison of new and old results
has proven much more demanding than expected.

BB INTERACTION POTENTIAL

Particle tracking relies on computation of the electro-
magnetic impulses. Theory relies on analysis of the adia-
batic invariants in presence of the BB potential. The im-
pulse and potential for a single BB interaction are both
complicated functions, usually developed in high order se-
ries. In a single interaction region (IR), there may be sev-
eral short range and many long range BB encounters. In a
ring, there may be several IRs. Consequently, many im-
pulses (or potentials), which are individually complicated,
must be calculated and added together. Therefore, short ex-
pansion series with equivalent accuracy will be useful.

Traditionally, the beams are taken to have Gaussian
transverse charge distributions. In this model, the witness
particle (in the weak beam) is always inside the strong
beam (provided they are within the same physical aper-
ture). This has the advantage for particle tracking, that no
test is needed for inside versus outside.

Houssais and later Bassetti & Erskine, took the trans-
verse density to be G=Exp[-R%2] where R?> =
[(x/ox)*(y/oy)*] and where unequal r.m.s. are 6x and oy.
However, particle beams are not necessarily Gaussian un-
less synchrotron radiation is strong and the storage time is
long. We take density in the quadratic form Q=[I-
(R/D)*2]"N. With b >4c and N >6 suitably chosen, this can
approximate the Gaussian increasingly well, even for rela-
tively small N>6. Let V(G) and V(Q) denote the potentials
and E(G) and E(Q) denote the fields from the gaussian and
quadratic density, respectively.

The power series expansions for field and potential are
finite; and surprisingly accurate in the regime b’*=(4+N)c>.
When we calculate the corresponding potential, for
R>4sigma or larger, it differs little from the Gaussian case.
This happens because the residual charge beyond radius
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>R is of order Exp[-R? /2] <<< 1 leaving only the Log[R]
term, which is common to both potentials. In other words,
at very large radius the only term that really counts in the
field is 1/R; the E(G) and E(Q) both get this dominant term
correct (indeed for R>b, it’s the only term in E(Q)) ; but the
series for E(G) goes on to use many terms to correct for the
charge at R>b.

CONVERGENCE OF SERIES EXPANSION

Concerning the cost of evaluating a mathematical func-
tion, we take the following model. The function has an ar-
gument which is evaluated once, and then we compute a
power series in the argument — a series which has some
convergence property. Typically, the larger is the argument,
the greater is the number of terms that must be summed to
obtain a relative fractional accuracy.

In the case of the E(G), that series is in principle infinite
whereas in the case of a power-law quadratic form E(Q)
the series is always finite. How could it be that they (gauss-
ian and quadratic) give a similar result? The quadratic
makes the simplifying assumption that all the charge is
within radius R=b, whereas the gaussian has to worry about
the residual charge beyond this radius even though it be-
comes progressively and vanishingly small.

H terms G and E(G)
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Figure 1: The number of terms are needed to achieve rela-
tive fractional accuracy better than 0.1% for G (shown
blue) and E(G) (shown red) versus the number of standard
deviations from the beam centre.

From the series expansion of E(G), it may be shown that
the number of terms Nr to achieve excellent fractional ac-
curacy at radius R=Nox ¢ is Nt = -1 + (No)?Exp[1]/2. This
square law dependence is evident in Figure 1. The series
for E(Q) converge more quickly; the number of terms is
order 2N where N =[Ns2-4]/2.

What is going on here? How come we can use so few
terms? We do not try to construct a function that is good
for all possible amplitudes.

We construct a function that is a very good approxima-
tion to the field and potential for all values less than a par-
ticular amplitude. Hence, we would have to construct dif-
ferent functions for different amplitudes. But we are lucky;
at the outset that we are interested in particular amplitudes,
such as 6 sigma or 9 sigma.
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PARTITION OF LRBB

The mathematical form of the long-range interaction is
such that it contains also the short range interaction; it may
be considered as the short range part (that does not contain
the beam separation) and a residual “true long-range part”
that contain terms in powers of the beam separation. These
two parts have different symmetry with respect to reversal
of the sign of the displacements, and so will add up differ-
ently either side of the IP. Figures 2a and 2b and the bullet
points below attempt to explain that conclusion.

= The lattice functions (B,y) are symmetric about the
IP.

= Both beams share the same lattice functions (j,y)

= For a single beam, ellipse tilt o is antisymmetric

about the IP

= The single-particle betatron phases flip by m across
the IP

= The beam-beam force has the symmetry F(-x,y,-d)
= F(x,y,d)

= Hence residual beam-beam forces do not cancel
across the IP; instead they add.
These are important properties which result in simplifica-

tions.
W
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Figure 2a: If x does not flip sign across the IP, the Fgp can-
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Figure 2b: But x flips sign across the IP, so the Fsp adds.

ASYMMETRIC INTERACTION REGION,
UNEQUAL SIGMAS, AND COD

The weak-strong model subjects the test particle in the
weak beam to transverse impulses from the strong beam.
The LRBB interaction is a function of the quadratic form:
[(x+Dx)"2/sx"2 + (y+Dy)"2/sy*2]. Here x,y = Sqrt[Be-
taWeak(s) x,y]Cos[Phi(s) x,y], sx,sy = Sqrt[BetaS-
trong(s) x,y], and beam separations Dx,Dy propagate the
reference orbits away from the interaction point (IP) where
D_x,y=0 and there are crossing angles. Dx(s) is contributed
to by the closed orbits of the weak and strong beams. To 1*
order Dx = DxWeak(s)+DxStrong(s) propto Sqrt[Be-
taWeak]Cos][...] +Sqrt[BetaStrong]Cos|[...] where the co-
sine terms propagate the IP conditions. Unlike x and vy,
Dx,y do not advance in phase each turn. To 2" order, the
constant terms in the LRBB impulse induce closed orbit
distortions. These are compensated by impulses from mag-
netic elements up/down stream of the IP.

In many cases, the interaction region [IR] is symmetric
about the IP; and so Beta[-s]=Beta[+s]. Moreover, for
round beams Beta x = Beta_y. This results in substantial
simplifications. Much of the BB literature adopts those
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simplifying conditions. However, this is not so for IR1 and
IRS of the Large hadron Collider (LHC). In this case,
2 beta_x not equal beta_y and beta(-s) not equal bet(+s) ex-
cept in the drift between the final quadrupole triplets. Dx=0
2 in IP1 and Dy=0 in IP5. All of this must be included in the
appropriate symmetries.

We sketch the method with an abbreviated IR lattice (See
Figure 3) which we take to extend from just downstream
of DIL to just upstream of DI1R.

Make a sequence of Lie maps; see Figure 4. The strategy
is to move all beam-beam kicks to the IP @ 4. Insert iden-
tity transforms, then perform similarity transforms. Start at
C3 and work left. Start again at C5 and work right. The
result, see Figure 5, is a single equivalent element at the IP
book-ended with linear optics.
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A(M14" z) means evaluate Al in the coordinates of D4.
The two sets of coordinates are linked by the Courant-
Snyder transforms between those locations. Likewise
A(M47 z) means evaluate A7 in the coordinates of D4.

The beam size and separation appear in the residual Fgp
Because the beam size is the projection of the beam phase-
space ellipse, and the beam ellipse is also transported by
the Courant-Synder parameters, and because the beam sep-
aration (in the weak-strong model) is also transported by
the same optics, we may hope that all the beam-beam kicks
can be cast in a similar functional form that allows simpler
(but far from trivial) summation over the beam-beam oper-
ators (A, B, C, D). It is possible (but far from guaranteed)
that A, B, C, D commute.

< Strong beam
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Figure 3: Schematic of the beam-beam interactions labelled A through D either side of the IP at parasitic interaction points
labelled 1 through 8. In reality there are many more such long-range interactions as bunches pass one another.
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Figure 4: Sequence of identity transforms are inserted and then similarity transforms (for the beam optics) enable the
successive beam-beam interactions (labelled A-D-A) to be moved from the locations 1-8 to the central interaction point.
Here M(nm) are optics, and (A,B,C,...) are residual beam-beam elements.
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Figure 5: Result of applying the Lie maps is to concentrate an effective single beam-beam interaction that is the Lie
product (shown as blue cells) at the IP book-ended with linear optics (shown as the pink cells).
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