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We consider spherically symmetric and static charged black holes in Einstein-Gauss-Bonnet-Maxwell
gravities in general D > 5 dimensions and study their photon spheres and black hole shadows. We show
that they all satisfy the sequence of inequalities recently proposed relating a black hole’s horizon, photon
sphere, shadow and its mass.
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1. Introduction

Spherically symmetric and static black holes play an important
role in Einstein’s General Relativity owing to their simplicity, not
only for their own construction, but also for the analysis of their
surrounding geodesic motions. The analysis [1,2] of null geodesics
of such a black hole that are asymptotic to the Minkowski space-
time indicates that photons can have a close orbit, forming an
photon sphere. For most known exact black hole solutions, there
is only one such a photon sphere and it is unstable. There are two
classes of photons whose orbits do not cross the photon sphere:
those inside will spiral into the horizon and those outside will
escape to infinity, surrounding a shadow disk, whose radius, also
called optical radius, is the impact parameter of the photons. The
research subject was recently boosted by the first picture the pho-
ton shadow [3]. (See also, e.g. [4-10].)

For spherically symmetric and static black holes, multiple close
orbits can exist even under the stringent dominant energy condi-
tion and an explicit example was constructed in Einstein-Maxwell
gravity extended with a quasi-topological electromagnetic struc-
ture [11]. In this black hole, there exists a stable photon sphere
sandwiched between two unstable ones. Thus the trapped photons
inside the outer photon sphere can form a photon shield outside
the horizon, without falling into the horizon or escaping to infinity.
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Recently a sequence of inequalities was proposed relating the
radii of the black hole event horizon R, the (outer and unstable)
photon sphere Ry, the black hole shadow Rgy [12]

3R, <Ry < Bh 3y (11)
2+_ ph_ﬁ_ . .

This set includes the well-known Riemann-Penrose inequality
Ry <2M [13], and the inequalities proposed by Hod (R,n < 3M)
[14] and Cveti¢, Gibbons and Pope, (Rpn < Ren/~/3) [15]. The
Riemann-Penrose inequality is considered proven under the dom-
inant energy condition, see e.g. [16]. The other two inequalities
can also be proven under the dominant energy condition, together
with negative trace of the energy-momentum tensor. However,
large number of black holes satisfying at least the null energy con-
dition were examined in [12] and no counterexample was found
for (1.1). The whole series of inequalities was recently proven in
[17]. A different lower bound for photon sphere was also con-
jectured in [18], and it was shown [15] to be violated by the
Kaluza-Klein dyonic black hole [19,20].

The four-dimensional inequalities (1.1) was generalized to those
in higher D-dimensional spacetimes and they become [12]

1 1
1 = /D=3 8rM(D-1) \ D3
(j(D - 1))D 3R+ = Rph =V D=1 Rsh < ((Dﬂ—Z)QD,z) s
(12)

where Qp_, is the volume for the unit round (D — 2)-sphere,
namely
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In particular, it was stated that the Reissner-Nordstrom black hole
in general dimensions was verified to satisfy these inequalities
[12]. A sufficient energy condition for the Ry,-M inequality was
established in [21]. The purpose of this paper is not to verify
the conjecture with more examples in Einstein gravity in gen-
eral dimensions. Instead, we shall consider charged black holes in
Einstein-Gauss-Bonnet-Maxwell (EGBM) gravities in general D > 5.
This is worth checking for two reasons. On one hand, the the-
ory is beyond Einstein gravity since it involves quadratic curvature
invariants. On the other hand, the photon spheres and shadows
involve only the geodesic motions of the metrics; therefore, we
may regard the Gauss-Bonnet term as matter, in which case, the
black holes satisfy the weak energy condition, which makes the
verification necessary and nontrivial. The properties of shadows in
theories involving the Gauss-Bonnet term coupled to a scalar were
also studied in [22,23].

The paper is organized as follows. In section 2, we start with
a review of the charged asymptotically flat black holes in EGBM
gravities in general D > 5 dimensions. We then show that the in-
equalities (1.2) are satisfied by the simpler RN black holes and also
the D =5 neutral black hole. We then prove that the inequalities
hold for all the static general black holes. We conclude the paper
in section 3.

2. Einstein-Gauss-Bonnet-Maxwell gravity

We start with the Lagrangian of EGBM gravity in general D di-
mensions

L= V=E(R— 1F + aGsE®),

(2.1)
E® =R? —4RMVR 1, + RYPOR 5.

The quadratic Euler integrand is inspired by N =1 superstring,
arising as an «’ correction of the string world sheet [24]. The
theory admits Minkowski spacetime as its vacuum and ghost-free
condition requires that the coupling constant a«cg > 0 [25]. The
anti-de Sitter (AdS) vacuum of this theory, on the other hand, has
ghostlike graviton modes.

2.1. Charged black holes

The EGBM gravity admits spherically-symmetric and static
charged black holes [26,27], given by

2 2 dr? 2162
dsp =—fdt +T+r dQp_,,

20-2) ¢q
AZZ(D dt, @:: —_—
™ D-3 rb-3
2 2
r 8au 4aq
f=1%% 1‘\/”rn——1—rzw—z> :
a=(D-3)(D-4dagcs.- (2.2)

The mass and electric charge are given by

0. = V(D =3)(D—-2)Qp_
s e 8\/57'[

Here Qp_» denotes the volume of the unit round , given by
(1.3). Since Q¢/q is some numerical factor, we shall not always
distinguish Q. and q as the electric charge. The neutral solutions
were obtained in [25,28]. Note that the spherically-symmetric and

D —-2)Qp_
M:( )DZM

- qg. (2.3)

SD72

static ansatz allows another branch of solution where the square-
root term in f takes the opposite sign. The solution then is asymp-
totic to the AdS spacetime that has ghostlike gravitons [25] and
therefore we shall not consider this branch of the solutions in this
paper.

For sufficiently large mass, the solution describes a black hole
with both inner and outer horizons, 0 <r_ <r;. We use the no-
tation ro to denote a generic horizon, and the corresponding tem-
perature and entropy are

(D —=3)r§ (3P — ¢*r§) + (D — 5)rg”

T= ,
4 (2a +13)
_ 20(D —2)
S=1Qp oy 1+ ——5). (2.4)
( (D — 4)r? )

It is easy to verify that the first law of black hole thermodynamics
dM = TdS + ®(rg)dQ. is satisfied for both inner and outer hori-
zons. For given charge g, there is a smallest horizon radius rex > 0,
corresponding to the extremal black hole; it is determined by

D-5
p_3 (D —4r
Hex=Tox "+ —3°

D-5 2(D—4
PN

D_3
(2.5)

For > pex, the black holes have two horizons. For the purpose
of studying the photon sphere and shadows, which are determined
by the metric only, we may regard the Euler integrand E® as
matter, then from the Einstein gravity point of view, the charged
black holes satisfy the weak energy condition. It turns out that
© — Dsphere Can be negative, which stops the solution from satisfy-
ing the dominant energy condition. Furthermore, the trace of the
energy-momentum tensor can be positive.

2.2. Photon spheres and shadows

Owing to the spherical symmetry, the null geodesic motions
can be easily analysed. For the metric given in (2.2), the radius
of the photon sphere is determined by

()

The impact parameter, also called the optical radius or the shadow
radius is given by

=0. (2.6)

I'ph

Rop= 20
RERNAICES)

Note that the form of both radii are independent of the spacetime
dimensions. In order to establish (1.2), it is convenient to define

(2.7)

1

D—1R 87M(D —1) \DP-3
x=/—M Ry = 8TM(D —1)

D —3 Rsh (D =2)Qp—

1

D—-3R 2 D=3 1,
Y= ] Tsh z=<—> ph (2.8)

D —1rpn D—-1 [
Our goal in this paper is to prove
x>1, y=1, 2=>1, (2.9)

for charged black holes in EGBM gravities in general dimensions
and therefore verify (1.2).
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2.3. RN black holes

We begin with analysing the RN black hole in general dimen-
sions by setting o = 0. It was stated in [12] that (1.2) was satisfied
by these black holes, but no detail was given. We thus present the
proof of this simpler example before we progress to the general
solutions. The metric function is

2/ q?

f=1- ;b3 T 2003 (2.10)

The solution describes a black hole when q < u, with the outer
horizon radius

1
D=3
R+:</~’L+ /MZ_q2> .

The photon sphere and black hole shadow radii are

1
D3

Rpn = (%(D ~Dp+ 30— 122 — 4D - 2>qz) ’

o

D-3

27705 (D — D+ /(D = 122 —4(D - 2)¢2)

VD=3(D = )2 = 2¢2 + /(D — 1242 — 4D — 277

To verify the inequalities (2.9), it is instructive to introduce a di-
mensionless parameter A to replace the charge parameter q:

UNAA+D—1)
~ A+D-2
The range 0 < q < pu is now mapped to A € [0, +o0], with A =
0 giving the Schwarzschild black hole, and A — +o0 yielding the
extremal RN black hole. Following the discussion in section 2.2, we
find that

. (211)

Rsh =

(2.12)

_ (P=DT9G.4D =275 /(D =3+ (D -2
(D -2+ D105 ’

A 7

y_(1+ (D—l)((D—3)A+(D—2)2)) ’

<1+ (D—-3)22/(D=1) )ﬁ
2(D —2)y/(D=3)A+ (D —2)2+ (D —3)A+2(D —2)2 ’

(2.13)

The inequalities )V > 1 and Z > 1 are manifest. The inequality X >
1 can be established by a numerical plot for given D. As a concrete
example, we present D =5 plots of (X, ), Z) in Fig. 1. In general
(X, Y, Z) are all monotonically increasing functions of 1. Near the
Schwarzschild limit A — 0, we have

Lk 1 1 D-3
20-22|D-3"D—-12D—1)

(X, y,z2}=1
(2.14)

Near the extremal limit A — oo, we have

D-2 D-1
(D2 B3 (D 1)y 1 ,
X = Wore (Z(D 3)— = +00. )),
V= D—2 (2(D—3)—1+(9(r2)).
2(D—3)32JD 1 Py
C(20-2\P= 1 »
Z= (70 — ) (1 =+ O¢ )). (2.15)

The leading terms, corresponding to the extremal limit, are all
greater than 1 for D > 4. Intriguingly, they approach one as D —
Q.

}+oa%.

1.05
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Fig. 1. The X, ), Z as functions of dimensionless parameter A in D = 5. They are
monotonically increasing functions as A runs from A = 0 (the Schwarzschild) to A =
oo (the extremal limit).

2.4. D = 5 neutral black hole

We now consider the effect on the inequalities by the Gauss-
Bonnet term. It is instructive first to examine a simpler example,
namely the neutral black hole in five dimensions:

2
r 8a
F=14+(1- /14224, (2.16)
2« r4
In this case, there is only one horizon r, determined by
p=310t+a. (217)

This implies that we must have p > %a for the solution to de-
scribe a black hole. The radii of photon sphere and shadow are

Re — aY8uu —a)
N VIuQu—a) - 2p+a
(2.18)

T'ph = (SM(ZM - 01))%1 ,

It is instructive to define a dimensionless parameter g = a/r%r, we
then find

WV, 1-1
+7’ﬁ%l+l’ y:\/%(1+\/ﬁr1),

(2.19)

Since the parameter 8 runs from 0 to +oo, it is straightforward to
see that the inequalities (2.9) are all satisfied, with the saturation
occurring at 8 = 0, corresponding to the Schwarzschild black hole.
The Rph-M inequality, corresponding to XY > 1, was established
in [21]. Note that if we relax the ghost-free condition so that @ <0
and hence B < 0, it follows from (2.19) that the reality condition
requires that 8 > —1 and the inequalities (2.9) are no longer true.

Since the black hole entropies in higher-order gravities are no
longer simply a quarter of the area of the horizon. The Ry and M
relation in (1.2) is no longer related to the Penrose entropy con-
jecture. The black hole entropy can be obtained from the Wald
entropy formula, yielding

s=10; (r3+ + 6ar+) . (2.20)
The mass and entropy relation now becomes
2563 M3 1 3

) (2.21)

279352~ (1+68)2°

Thus for small but non-vanishing 3, the Penrose conjecture is vio-
lated, but it is restored for sufficiently large 8. We may define the
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effective radius associated with the entropy by S = $23(R%)%, and

we have
RS = (3 +6ary)3. (2.22)
We then have

Rpn _ VB+1 (2.23)
V2RS  VEB+T1 '

Intriguingly, this ratio is a monotonically decreasing function of 8.
In other words, Rp, can be smaller than R3, a clear indication that
Ry is a better size parameter than RS.

We see that the D =5 example is particularly simple and the
series of inequalities (1.2) can be established analytically. We find
that for general higher dimensions, the proof of (1.2) is not made
much simpler by turning off the Maxwell field and we therefore
prove the series in the next with the Maxwell field included.

2.5. General black holes

The reason we can easily prove the identities in the previous
subsections was that we could analytically solve the photon sphere
equation (2.6) for the photon sphere radius in the RN black holes
or the D =5 neutral black hole. This turns out not be possible for
the general black holes. We shall adopt the technique developed in
[12] to prove the inequalities. We first prove Z > 1 and then use
this inequality to prove X > 1 and )Y > 1. We define a function
W (r) as

Sau  4aq? [V
W (r) = \/1 + 51~ 20 (ﬁ) .
The photon sphere is located at rp,, which is the largest root of

W. It can be easily seen that as r — oo, W is negative with

2 20-1Dp
W=-g+= 5+

(2.24)

(2.25)

Since rp is the largest root, it follows that for any r with W (r) > 0,
then we must have r < ry. We thus define

1
p=(z(D—1)73ry, (2.26)
and we find
Wp)=U-V,
b= - 2,2
U— 2 +2D73(D—1)Df3a+ (D —3)%q
03 05 2p2D-3
5D-17
v 4 N 32 N 2703 o 8(D — 3)ag?
— 6 (D_Ups (D—l)%pm IOZ(D—H)
(2.27)

Note that in the above, we have expressed w in terms r; and
hence p. It is clear that both (U, V) are positive and further more,
it is quite straightforward to prove that U2 — V >0 for p > 0. We
therefore demonstrate that W (o) > 0. It follows that rp, > p, prov-
ing that Z > 1. It is clear that this lower bound of the photon
sphere holds for the case of ¢ =0.

In order to demonstrate that X > 1 and )Y > 1, we find it is
useful to express w in terms of the photon sphere radius rp, by
solving (2.6). We have

4arD > (D —2)q?
T O-12 (- Do
2(D-3) 2(D 5)
+ 'ph 160£2r 4D = 3ag’ (2.28)
(D —1)2 (D—1)4 (D -1, '
The shadow radius is now given by
20{r2(D+1)
Rsh = D45 s
(D — 2)q?rS, — (D — DurBS +12f (2a+r )
(2.29)

implying that
(D= 1535 (D - 2)¢%r8, — (D~ Hurh® +

20(D = 3yry’ Y
20/(D —3)r3p

E (Za + rgh»

5

XZ

2 . (2.30)
(-1 ((D —2)g2r8, — (D — urBS 4120 <2a + rgh)>
The trick now is to make use of Z > 1, which implies
1 e
Tph = (3(D —1)P3 1y > (3(D — 1)) P73 rey.. (231)

The second inequality holds because rex is the (smallest) horizon
radius of the extremal black hole for given charge g, determined
by (2.5). The g =0 zero limit is achieved by taking rex — 0.

We can now define two dimensionless parameters 8 > 0 and
y > 1, defined by

1
a=pry,  rpn=0GD 1) yre. (2.32)

Note that the lower bound for y is bigger than 1, but for our pur-
pose, it is sufficient to assume y > 1. Substituting o and rpp, into
(2.30), and we find that both X and ) are functions of the dimen-
sionless quantities (B, y) only, with the dimensionful parameter
rex dropped out. In D =5, the expressions are quite simple and
they are manifestly no smaller than 1:

L @ =3) (VB B e -2%) + By
x=1+ >1
4py -
14y (VB + B +4y5+ By —27%)
4y4 -1

For general dimensions, the expressions are much more compli-
cated, we find

V=1+

>1. (2.33)

2(D-2)

X =20-32 (D—])(D =T

X (C3—I—\/C72)ﬁ,

o (o 2/T}
(7)"7 (@-55)

20\ 3
)/z(Cl—D‘/__;) , (2.34)
where

(0 -1)5y?
Ci=14-20— 71 *
=TT D 38

(D—l)D3(D 3+4(D-5p8) (D y?
Cr=1 + 40D—2) ’

21) 3,3)/2([) 4) 2703 B2

- (D 2)(D—1)D3(D 3+(D—5)ﬂ) (2.35)

(D —3)20% 20—



L. Ma, H. Lii / Physics Letters B 807 (2020) 135535 5

0 20 40 60 80 100

10

0 20 40 60 80 100

Fig. 2. Contour plots of (X, )) for 0 <8 <100,0 <y <10 for D = 6. The left and right are for X and ) respectively. The values in the blue regions lie within [1, 1.1] and
[1,1.2] respectively and these values increase as the colour becomes lighter. There are no regions in ¥ > 1 and B > 0 that have values of X and ) less than 1.

Having expressed X', ) analytically in terms of two dimensionless
parameters (8, y), it is then straightforward to use numerical plots
to show that X > 1 and ) > 1, for any given dimension D > 5.
(Unlike the case of Z > 1, a clever analytical proof is unlikely in
general D, and we present contour plots of (X,)) as functions
of >0 and y > 1 for D =6 in Fig. 2.) In particular, when 8 =0,
corresponding to the RN black hole in general dimensions, we have

1

e 2 4(D —2) 03
~ (D 1yd3 ( (D - 1>2y2<D—3>)

1
x \/Z(D —1)2y200-3) _ 1,

1
Y= 1+ , (2.36)
\/ %(D_1)2y2(D—3)_]
where y is related to A in (2.13) by
4D —2)*(+D -1
y20-3) — ( )+ ) (2.37)

(D —1)2A
In the limit of 8 — oo, X is positive and divergent at the order
,Bﬁ for D > 6 and

1
2

V= (1 - %\/1 +470(D —5)(D — 1) 73 y2<4—D>>
(2.38)

It follows from the second equation in (2.32) that the Schwarzschild
black hole limit is achieved by taking y — oc. For large y, we have

D-1 1=-D
203 (D — ‘1)073/3
(D-3)y2 '

For the neutral black hole in the general Einstein-Guass-Bonnet
theory, the limit is somewhat more subtle, since we now have
rex — 0. It follows from (2.32), we define

B=FAD-1)03y2,

X~y=1+ (2.39)

(2.40)

such that o = Brgh. We now take the limit 8 — oo and y — oo
while keeping § positive and finite. We find

1 1652 48 o

_ 1 ,

»\Vo-n T

X% =
D—1

2B8(D —3)

D—1+2(D—3)E—,/(D—1)2+16,8~2.

It is straightforward to show that X’ >land Y >1 for positive B.
The inequalities are saturated when B = 0, corresponding to the
Schwarzschild black hole in Einstein gravity. The result reduces to

(2.19) when D =5 with g = 8/2/B+1).

V=

(2.41)

3. Conclusions

In this paper, we considered charged static black holes in EGBM
gravities in general dimensions. These black holes are spherically
symmetric and asymptotic to Minkowski spacetimes. From the
view of Einstein gravity, these black holes satisfy the weak energy
condition, provided that the Gauss-Bonnet coupling is nonnegative,
which also ensures that the perturbation is free of ghost excita-
tions. There exists an unstable photon sphere outside the horizon,
giving rise to the edge of a shadow disk for an observer at infinity.
We found the radii of the horizon, photon sphere and shadow disk
satisfy the sequence of inequalities (1.2), conjectured for the black
holes in Einstein gravity. The robustness of this sequence calls for
a better understanding of the underlying condition.
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