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Abstract 

The success of modern particle accelerators depends on 
good high level software. Over the past few years an inte-
grated framework has been developed to better connect 
machine physicists to VELA/CLARA at the STFC’s 
Daresbury laboratory. This framework is comprised of a 
number of tools, including, a C++/Python API to interface 
to the EPICS control system with which all high level soft-
ware can be developed. The API is encapsulated, extensi-
ble and designed to grow as further phases of CLARA are 
installed. The API is seamlessly integrated with the 
VELA/CLARA virtual accelerator and other activities by 
the simulations group. As well as presenting the design 
choices and methodology we will give an overview of the 
first control room applications built using our tools and 
how they will form the basis for a new programme of ma-
chine learning and optimisation on CLARA.  

INTRODUCTION & OVERVIEW 

VELA/CLARA [1, 2] are complementary, compact elec-
tron linear accelerators at the STFC’s Daresbury Labora-
tory, designed as an R&D machine for novel FEL schemes 
and as an underpinning technology demonstrator for a fu-
ture UK-XFEL, a large scale national facility. CLARA also 
delivers beam for user exploitation experiments ranging 
from novel acceleration to efficacy tests for cancer thera-
pies. Optimised operation of machines such as CLARA is 
non-trivial. There are many non-linear processes and com-
plex dynamics that must be mitigated in order to achieve 
best outcomes. Due to the different applications of CLARA 
there is also a requirement to provide flexible set-ups with 
automated optimisation techniques being desirable. There 
are also many new and emerging techniques in machine 
learning and intelligent controls that are yet to be fully ap-
plied to these challenges [3-5]. Over the past 5 years a net-
work of software tools, protocols and data has been devel-
oped with the aim of integrating the design, simulation, 
commissioning, characterisation, operation and optimisa-
tion of CLARA: CLARA-NET.  CLARA is an ideal ma-
chine for this development work as: 

It is being built in phases, and each phase has a design, 
installation, commissioning and operation stage, allowing 
subsequent phases to learn from previous ones. This gives 
chances to test new ideas and iterate in a timely manner.  

It is an R&D machine with a significant proportion of 
operation time dedicated to Machine Development and 
prototyping solutions. 

CLARA has a role to provide beam for underpinning 
technology demonstrations for the future UK-XFEL (e.g. 

cavity BPM, RF structures). CLARA-NET forms a core 
part of that technology demonstration.  

The required operational flexibility with diverse exploi-
tation programme makes an ideal proving ground for new 
methods aiming to provide this flexibility.  

The scope of CLARA-NET is too large to be discussed 
here, instead the main components and the workflows used 
for High Level Software Development will be presented. 

The Virtual Accelerator (VA) 
The VA is a digital copy of the Physical Accelerator 

(PA) [6]. It is comprised of an Online Model (accurate sim-
ulation model of the physical machine [7]), a Virtual Con-
trol System and Virtual Hardware. The VA relies on various 
Data Stores, e.g. previous simulation results and the Master 
Lattice, (a mark-up language repository of all ‘offline data’ 
such as element specification, measured performance, lat-
tice positions, controls variables, etc.). All these parts are 
connected via Python scripts that provide a common user 
interface. The VA has a Simulation Framework that can 
simulate the beam dynamics using a suite of codes, with 
settings applied either directly, or read from the Virtual or 
Physical Control System. Results from the simulation are 
added to the Data Store and can also be written to the Vir-
tual or Real Control Systems. (Within CLARA-NET 
switching between the PA or VA is as simple as setting a 
flag in user-code and therefore this distinction need not be 
explicitly stated in what follows.) Used in this way it is 
easy to see how the VA can be an invaluable tool for de-
signing High Level Applications, test optimisations (in the 
virtual or physical space) and gives access and insight to 
‘hidden’ parameters such as the 6D-emittance of the beam. 
Figure 1 gives a schematic of example workflows using the 
VA. 

High Level Application Development Tools 

A ‘High Level Application’ (HLA) is an automated set 
of procedures/protocols to perform a specific task on the 
machine (e.g. a beam measurement). Two of the aims of 
this part of CLARA-NET are to; encourage new developers 
from a pool of staff with little application development ex-
perience; set common standards of design, tools and work-
flow such that different developers can take over existing 
applications with minimum overhead. To achieve this there 
are a number of preferred tools used by all HLA. Agile pro-
ject management tools, such as Github [8], Trello [9] and 
Slack [10] provide open access to all stages of application 
lifecycle. HLA are written in Python, using a small set of 
libraries, including PyQT [11] and NumPy [12]. All HLA 
make use of a common C++/Python middle-level-interface 
to the control system, CATAP: ‘Controls Abstraction To 
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Accelerator Physics’ (explained in more detail below). To 
enforce standards software should pass acceptance and 
quality assurance tests before being allowed in the release 
environment.  

 

Figure 1: VA workflow schematic.  

CATAP: THE MID-LEVEL-INTERFACE 

CATAP is a software library containing multiple mod-
ules that provides easy read/write access to the main types 
of accelerator hardware through the control system. In ad-
dition to basic control and data reading, standard proce-
dures, analysis techniques etc. are also included. CATAP’s 
main design goals are to be; easy to use, extensible and able 
to perform any conceivable application. Some of the most 
important design choices and the advantages they bring are 
given below. 

Ease of use: Each module has human readable functions 
and variable names. End-users should only have to create 
a single object and everything else automatically follows. 
Once imported and initialised CATAP abstracts away all 
the configuration, connections and communications with 
the Controls System. This gives end users access to func-
tion such as: 

Switch-on(ALL_MAGNETS), quad1.set_current = 1.3 
open(SHUTTER_1), gun_rf.set_phase = -15 

Using this extended toolset it is possible to build ‘any 
conceivable beam experiment,’ all written at a relatively 
high level that allows developers to concentrate on the ex-
perimental procedure, not on the intricacies of controlling 
and monitoring multiple hardware types.   

Python: The source code is written in C++ (so easily in-
cluded in any C++ application) and has also been compiled 
into Python modules using boost [13] that can imported 
into any Python script. Python is a very easy to use script-
ing language that can be used by novices and experts, 
thereby widening the pool of possible developers.  

An object orientated approach with encapsulation: 
CATAP creates containers of Virtual Hardware Objects that 
represent the data associated with each hardware type. 
Online data is automatically updated from the Controls 
System. Offline data is read from the Master Lattice. Each 
hardware type has relevant methods, for example: a magnet 
object knows how to switch on/off, set a field, degauss etc. 
a magnet; a BPM object knows how to calculate the beam 
charge and position. Using this approach it is possible to 
aggregate hardware types into logical sub-system group-
ings. For example, the CLARA Photo-Injector module 
groups together the relevant individual modules required to 
control and monitor the system, e.g. the Virtual Hardware 

for the Photo-injector laser position and intensity, virtual 
cathode camera, camera-images and image analysis, 
photo-injector laser transport shutters and valves etc. In 
this way different systems of multiple hardware types can 
easily be created.  

Extensible with ease of maintenance/management: 
The Virtual Hardware Objects are dynamically instantiated 
at run-time after reading the Master Lattice, as new hard-
ware comes online, or is upgraded all that is required is an 
update to the Master Lattice for these changes to be propa-
gated to all users of CATAP.  

Shared solutions: Simple procedures are contained 
within CATAP. This means writing procedures for degauss-
ing, switching on the RF system, etc. are problems that 
only need solving once. As solutions become accepted and 
robustly tested they can be moved down the toolchain. For 
example a cathode charge scan was developed as a Python 
application enabling quick prototyping and testing of dif-
ferent methods. When the procedure was agreed it was then 
implemented at the C++ level, making it available to all 
users of CATAP. A next stage could then be to implement 
the procedure within the Controls System, which would be 
even more robust.  

External user exploitation libraries: As the code is 
compiled into python modules from c++ source it is very 
simple to create managed, external user versions of the 
CATAP library. These libraries will have stricter limits on 
the control of hardware suitable for external users, whilst 
also giving them the ability to monitor all signals and de-
sign their data acquisition accordingly.  

Example 

Figure 2 shows a simple python script that creates a mag-
net interface and performs some simple operations and 
then shows the workflow from the C++ side with the fol-
lowing numbered items: 

1. hardware_complex.setup() specifies the type of hard-
ware to search for in the Master Lattice and returns a 
container of parameters for each object 

2. A Hardware class is created with hardware type, ma-
chine area, and a container for the specific component 
parameters (magnet parameters in this case) and this 
object is held by hardware_complex 

3. The hardware type of the component checked (mag-
net) then the specific factory (magnet factory) is in-
voked to setup the component using the specific com-
ponent parameters 

4. Each component will then establish a connection to 
the Controls System via its own Interface so we can 
interact with the physical/virtual hardware. 

5. (Not in diagram) once this specific component object 
is created, it is added to a container owned by Hard-
ware Factory. The component is accessed via the ob-
ject interface, or through getter/setter functions using 
the components unique name or any associated alias. 
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Figure 2: (Top)  example  python  script  creating  and  using 

magnets on CLARA. (Bottom) flow chart of the main C++ 

classes structure (square boxes) and how they interact with 

external systems (orange, rounded edge boxes). Similar 

colours show grouping by type.  

Example Applications 

During the last run of CLARA [14] CATAP as a high 
level application development tool was used for the first 
time in the wild. The number of application developers was 
increased from effectively zero to twelve and the number 
of applications worked on was ~40. Applications were de-
veloped for a myriad of purposes: online image analysis, 
diagnostic calibration, beam steering, parameter scans such 
as charge on the cathode, measuring the momentum, mo-
mentum spread, emittance and RF phase, setting up the la-
ser beam on the cathode etc. Below are specific examples 
of how the system was used that highlight the potential of 
the system. It must be stressed these applications were 
made by developers who had no previous experience build-
ing HLA.  

BPM Calibration and Signal Tagging 

This application routinely calibrated the BPMs to charge 
measurement devices. During operations it was found that 
spurious, false-positive, BPM position readings could be 

generated due to beam scraping in upstream components 
even though there was no signal on an adjacent screen. 
Once further investigated it was found that the low level 
BPM voltages could be used to tag these false-positives 
with a warning not to be trusted. This meta-data was then 
immediately available to all applications using CATAP.   

Align-On-BPMs 

This application used the BPM and magnet modules to 
set and optimise the orbit. The entire application, including 
steering methods, was prototyped using the VA. When the 
false-positive BPM data was identified and the changes 
made to CATAP these changes were immediately available 
to this application and it was updated with minimal effort. 

Quick-Spectra 

This is an example of ‘agile application creation and de-
velopment’ during shift. During a user experiment it be-
came apparent that a quick projection of the beam spectra 
including averaging, comparison with reference data and 
automated FWHM estimation would significantly decrease 
set-up time. Using CATAP a solution was built in a few 
hours that was immediately useful. As we are working 
within a common framework it was possible for other op-
erators to make slight improvements to this HLA on subse-
quent shifts, directly responding to further user requests. 

As an example, an automated unmanned RF condition-
ing procedure has been built with this toolset [15]. It re-
quires a breakdown event to be detected in the RF power 
traces. This event detection routine was first prototyped in 
Python, then, when ready, pushed down to CATAP. Con-
current to this, new methods of event detection using Neu-
ral Networks [16] to classify and characterise events were 
also prototyped at the Python Level using CATAP. As these 
methods are proved the systems are designed to make it 
trivial to switch over from the conventional methods to the 
new.  

CONCLUSIONS AND FUTURE WORK 

The development activities presented here are one part 
of the wider CLARA–NET. Working in concert they will 
enable ever increasing control and optimisation of the 
VELA/CLARA machines by strengthening the links be-
tween simulations and operations and enabling much HLA 
development independent of beam-time. An integrated ap-
proach to High level Software combining operations and 
simulations is a powerful tool that will bring many bene-
fits. Perhaps there could be wider collaborations to work 
on shared solutions that all can benefit from? 
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