
HIGH LEVEL SOFTWARE DEVELOPMENT FRAMEWORK AND ACTIVI-

TIES ON VELA/CLARA

D. J. Scott, #,1 A. D. Brynes,1 M. P. King,1 STFC ASTeC, Daresbury Laboratory, United Kingdom
1also at The Cockcroft Institute, Warrington, WA4 4AD, United Kingdom

Abstract

The success of modern particle accelerators depends on
good high level software. Over the past few years an inte-
grated framework has been developed to better connect
machine physicists to VELA/CLARA at the STFC’s
Daresbury laboratory. This framework is comprised of a
number of tools, including, a C++/Python API to interface
to the EPICS control system with which all high level soft-
ware can be developed. The API is encapsulated, extensi-
ble and designed to grow as further phases of CLARA are
installed. The API is seamlessly integrated with the
VELA/CLARA virtual accelerator and other activities by
the simulations group. As well as presenting the design
choices and methodology we will give an overview of the
first control room applications built using our tools and
how they will form the basis for a new programme of ma-
chine learning and optimisation on CLARA.

INTRODUCTION & OVERVIEW

VELA/CLARA [1, 2] are complementary, compact elec-
tron linear accelerators at the STFC’s Daresbury Labora-
tory, designed as an R&D machine for novel FEL schemes
and as an underpinning technology demonstrator for a fu-
ture UK-XFEL, a large scale national facility. CLARA also
delivers beam for user exploitation experiments ranging
from novel acceleration to efficacy tests for cancer thera-
pies. Optimised operation of machines such as CLARA is
non-trivial. There are many non-linear processes and com-
plex dynamics that must be mitigated in order to achieve
best outcomes. Due to the different applications of CLARA
there is also a requirement to provide flexible set-ups with
automated optimisation techniques being desirable. There
are also many new and emerging techniques in machine
learning and intelligent controls that are yet to be fully ap-
plied to these challenges [3-5]. Over the past 5 years a net-
work of software tools, protocols and data has been devel-
oped with the aim of integrating the design, simulation,
commissioning, characterisation, operation and optimisa-
tion of CLARA: CLARA-NET. CLARA is an ideal ma-
chine for this development work as:

It is being built in phases, and each phase has a design,
installation, commissioning and operation stage, allowing
subsequent phases to learn from previous ones. This gives
chances to test new ideas and iterate in a timely manner.

It is an R&D machine with a significant proportion of
operation time dedicated to Machine Development and
prototyping solutions.

CLARA has a role to provide beam for underpinning
technology demonstrations for the future UK-XFEL (e.g.

cavity BPM, RF structures). CLARA-NET forms a core
part of that technology demonstration.

The required operational flexibility with diverse exploi-
tation programme makes an ideal proving ground for new
methods aiming to provide this flexibility.

The scope of CLARA-NET is too large to be discussed
here, instead the main components and the workflows used
for High Level Software Development will be presented.

The Virtual Accelerator (VA)
The VA is a digital copy of the Physical Accelerator

(PA) [6]. It is comprised of an Online Model (accurate sim-
ulation model of the physical machine [7]), a Virtual Con-
trol System and Virtual Hardware. The VA relies on various
Data Stores, e.g. previous simulation results and the Master
Lattice, (a mark-up language repository of all ‘offline data’
such as element specification, measured performance, lat-
tice positions, controls variables, etc.). All these parts are
connected via Python scripts that provide a common user
interface. The VA has a Simulation Framework that can
simulate the beam dynamics using a suite of codes, with
settings applied either directly, or read from the Virtual or
Physical Control System. Results from the simulation are
added to the Data Store and can also be written to the Vir-
tual or Real Control Systems. (Within CLARA-NET
switching between the PA or VA is as simple as setting a
flag in user-code and therefore this distinction need not be
explicitly stated in what follows.) Used in this way it is
easy to see how the VA can be an invaluable tool for de-
signing High Level Applications, test optimisations (in the
virtual or physical space) and gives access and insight to
‘hidden’ parameters such as the 6D-emittance of the beam.
Figure 1 gives a schematic of example workflows using the
VA.

High Level Application Development Tools

A ‘High Level Application’ (HLA) is an automated set
of procedures/protocols to perform a specific task on the
machine (e.g. a beam measurement). Two of the aims of
this part of CLARA-NET are to; encourage new developers
from a pool of staff with little application development ex-
perience; set common standards of design, tools and work-
flow such that different developers can take over existing
applications with minimum overhead. To achieve this there
are a number of preferred tools used by all HLA. Agile pro-
ject management tools, such as Github [8], Trello [9] and
Slack [10] provide open access to all stages of application
lifecycle. HLA are written in Python, using a small set of
libraries, including PyQT [11] and NumPy [12]. All HLA
make use of a common C++/Python middle-level-interface
to the control system, CATAP: ‘Controls Abstraction To

#duncan.scott@stfc.ac.uk

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-TUPRB084

MC2: Photon Sources and Electron Accelerators
A06 Free Electron Lasers

TUPRB084
1855

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

Accelerator Physics’ (explained in more detail below). To
enforce standards software should pass acceptance and
quality assurance tests before being allowed in the release
environment.

Figure 1: VA workflow schematic.

CATAP: THE MID-LEVEL-INTERFACE

CATAP is a software library containing multiple mod-
ules that provides easy read/write access to the main types
of accelerator hardware through the control system. In ad-
dition to basic control and data reading, standard proce-
dures, analysis techniques etc. are also included. CATAP’s
main design goals are to be; easy to use, extensible and able
to perform any conceivable application. Some of the most
important design choices and the advantages they bring are
given below.

Ease of use: Each module has human readable functions
and variable names. End-users should only have to create
a single object and everything else automatically follows.
Once imported and initialised CATAP abstracts away all
the configuration, connections and communications with
the Controls System. This gives end users access to func-
tion such as:

Switch-on(ALL_MAGNETS), quad1.set_current = 1.3
open(SHUTTER_1), gun_rf.set_phase = -15

Using this extended toolset it is possible to build ‘any
conceivable beam experiment,’ all written at a relatively
high level that allows developers to concentrate on the ex-
perimental procedure, not on the intricacies of controlling
and monitoring multiple hardware types.

Python: The source code is written in C++ (so easily in-
cluded in any C++ application) and has also been compiled
into Python modules using boost [13] that can imported
into any Python script. Python is a very easy to use script-
ing language that can be used by novices and experts,
thereby widening the pool of possible developers.

An object orientated approach with encapsulation:
CATAP creates containers of Virtual Hardware Objects that
represent the data associated with each hardware type.
Online data is automatically updated from the Controls
System. Offline data is read from the Master Lattice. Each
hardware type has relevant methods, for example: a magnet
object knows how to switch on/off, set a field, degauss etc.
a magnet; a BPM object knows how to calculate the beam
charge and position. Using this approach it is possible to
aggregate hardware types into logical sub-system group-
ings. For example, the CLARA Photo-Injector module
groups together the relevant individual modules required to
control and monitor the system, e.g. the Virtual Hardware

for the Photo-injector laser position and intensity, virtual
cathode camera, camera-images and image analysis,
photo-injector laser transport shutters and valves etc. In
this way different systems of multiple hardware types can
easily be created.

Extensible with ease of maintenance/management:
The Virtual Hardware Objects are dynamically instantiated
at run-time after reading the Master Lattice, as new hard-
ware comes online, or is upgraded all that is required is an
update to the Master Lattice for these changes to be propa-
gated to all users of CATAP.

Shared solutions: Simple procedures are contained
within CATAP. This means writing procedures for degauss-
ing, switching on the RF system, etc. are problems that
only need solving once. As solutions become accepted and
robustly tested they can be moved down the toolchain. For
example a cathode charge scan was developed as a Python
application enabling quick prototyping and testing of dif-
ferent methods. When the procedure was agreed it was then
implemented at the C++ level, making it available to all
users of CATAP. A next stage could then be to implement
the procedure within the Controls System, which would be
even more robust.

External user exploitation libraries: As the code is
compiled into python modules from c++ source it is very
simple to create managed, external user versions of the
CATAP library. These libraries will have stricter limits on
the control of hardware suitable for external users, whilst
also giving them the ability to monitor all signals and de-
sign their data acquisition accordingly.

Example

Figure 2 shows a simple python script that creates a mag-
net interface and performs some simple operations and
then shows the workflow from the C++ side with the fol-
lowing numbered items:

1. hardware_complex.setup() specifies the type of hard-
ware to search for in the Master Lattice and returns a
container of parameters for each object

2. A Hardware class is created with hardware type, ma-
chine area, and a container for the specific component
parameters (magnet parameters in this case) and this
object is held by hardware_complex

3. The hardware type of the component checked (mag-
net) then the specific factory (magnet factory) is in-
voked to setup the component using the specific com-
ponent parameters

4. Each component will then establish a connection to
the Controls System via its own Interface so we can
interact with the physical/virtual hardware.

5. (Not in diagram) once this specific component object
is created, it is added to a container owned by Hard-
ware Factory. The component is accessed via the ob-
ject interface, or through getter/setter functions using
the components unique name or any associated alias.

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-TUPRB084

TUPRB084
1856

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC2: Photon Sources and Electron Accelerators
A06 Free Electron Lasers

Figure 2: (Top) example python script creating and using

magnets on CLARA. (Bottom) flow chart of the main C++

classes structure (square boxes) and how they interact with

external systems (orange, rounded edge boxes). Similar

colours show grouping by type.

Example Applications

During the last run of CLARA [14] CATAP as a high
level application development tool was used for the first
time in the wild. The number of application developers was
increased from effectively zero to twelve and the number
of applications worked on was ~40. Applications were de-
veloped for a myriad of purposes: online image analysis,
diagnostic calibration, beam steering, parameter scans such
as charge on the cathode, measuring the momentum, mo-
mentum spread, emittance and RF phase, setting up the la-
ser beam on the cathode etc. Below are specific examples
of how the system was used that highlight the potential of
the system. It must be stressed these applications were
made by developers who had no previous experience build-
ing HLA.

BPM Calibration and Signal Tagging

This application routinely calibrated the BPMs to charge
measurement devices. During operations it was found that
spurious, false-positive, BPM position readings could be

generated due to beam scraping in upstream components
even though there was no signal on an adjacent screen.
Once further investigated it was found that the low level
BPM voltages could be used to tag these false-positives
with a warning not to be trusted. This meta-data was then
immediately available to all applications using CATAP.

Align-On-BPMs

This application used the BPM and magnet modules to
set and optimise the orbit. The entire application, including
steering methods, was prototyped using the VA. When the
false-positive BPM data was identified and the changes
made to CATAP these changes were immediately available
to this application and it was updated with minimal effort.

Quick-Spectra

This is an example of ‘agile application creation and de-
velopment’ during shift. During a user experiment it be-
came apparent that a quick projection of the beam spectra
including averaging, comparison with reference data and
automated FWHM estimation would significantly decrease
set-up time. Using CATAP a solution was built in a few
hours that was immediately useful. As we are working
within a common framework it was possible for other op-
erators to make slight improvements to this HLA on subse-
quent shifts, directly responding to further user requests.

As an example, an automated unmanned RF condition-
ing procedure has been built with this toolset [15]. It re-
quires a breakdown event to be detected in the RF power
traces. This event detection routine was first prototyped in
Python, then, when ready, pushed down to CATAP. Con-
current to this, new methods of event detection using Neu-
ral Networks [16] to classify and characterise events were
also prototyped at the Python Level using CATAP. As these
methods are proved the systems are designed to make it
trivial to switch over from the conventional methods to the
new.

CONCLUSIONS AND FUTURE WORK

The development activities presented here are one part
of the wider CLARA–NET. Working in concert they will
enable ever increasing control and optimisation of the
VELA/CLARA machines by strengthening the links be-
tween simulations and operations and enabling much HLA
development independent of beam-time. An integrated ap-
proach to High level Software combining operations and
simulations is a powerful tool that will bring many bene-
fits. Perhaps there could be wider collaborations to work
on shared solutions that all can benefit from?

REFERENCES

[1] P. A. McIntosh et al., “VELA: a new accelerator technology
development platform for industry”, in Proc. IPAC’14,

Dresden, Germany, June 2014, pp. 2471-2473.

doi:10.18429/JACoW-IPAC2014-WEPME083

[2] D. Angal-Kalinin et al., “Commissioning of front end of
CLARA facility at Daresbury laboratory”, in Proc.

IPAC’18, Vancouver, BC, Canada, May 2018, pp. 4426.

doi:10.18429/JACoW-IPAC2018-THPMK059

Machine learning

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-TUPRB084

MC2: Photon Sources and Electron Accelerators
A06 Free Electron Lasers

TUPRB084
1857

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

[3] Intelligent controls for particle accelera-
tors, https://www.cockcroft.ac.uk/events/ICPA/

[4] Machine Learning Applications for Particle Accelera-
tors, https://conf.slac.stanford.edu/icfa-ml-2018/

[5] 2nd ICFA Workshop on Machine Learning for Charged Par-
ticle Accelerators, https://indico.psi.ch/event/6698/
contributions/speakers

[6] T. J. Price et al., “Virtual VELA-CLARA: the development

of a virtual accelerator” , in Proc. IPAC’18, Vancouver, BC,

Canada, Apr.-May 2018, pp. 4773-4776.

doi:10.18429/JACoW-IPAC2018-THPML060

[7] M. S. Toplis et al., “Comparison of model vs. reality for
VELA”, presented at the 6th Int. Particle Accelerator Conf.

(IPAC’16), Busan, Korea, May. 2016, paper TUPOW028,
unpublished.

[8] Github, https://www.github.com

[9] Trello, https://www.trello.com

[10] Slack, https://www.slack.com
[11] PyQT, https://wiki.python.org/moin/PyQt

[12] NumPy, https://wiki.python.org/moin/NumPy

[13] Boost, https://www.boost.org
[14] D. Angal-Kalinin et al.,“ Status of CLARA front end com-

missioning and first user experiments”, presented at the 10th
Int. Particle Accelerator Conf. (IPAC’19), Melbourne, Aus-
tralia, May 2019, paper TUPRB083, this conference.

[15] L.S. Cowie et al. “RF Conditioning o fthe CLARA 400 Hz
Photo-injector”, presented at the 10th Int. Particle Accelera-
tor Conf. (IPAC’19), Melbourne, Australia, May 2019, pa-
per TUOTS065, this conference.

[16] D. J. Scott ‘Artificial Neural Networks 1: An Introduction,
Toy Model and CLARA Linac Breakdown Recognition’,
ASTeC, Daresbury United Kingdom, Rep. VELA-EN-
20170814, June 2017.

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-TUPRB084

TUPRB084
1858

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC2: Photon Sources and Electron Accelerators
A06 Free Electron Lasers

