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Abstract Very recently, Josset and Perez (Phys. Rev. Lett.
118:021102,2017) have shown that a violation of the energy-
momentum tensor (EMT) could result in an accelerated
expansion state via the appearance of an effective cosmolog-
ical constant, in the context of unimodular gravity. Inspired
by this outcome, in this paper we investigate cosmological
consequences of a violation of the EMT conservation in a
particular class of f(R, T) gravity when only the pressure-
less fluid is present. In this respect, we focus on the late time
solutions of models of the type f(R,T) = R+ BA(-T).
As the first task, we study the solutions when the conserva-
tion of EMT is respected, and then we proceed with those
in which violation occurs. We have found, provided that the
EMT conservation is violated, that there generally exist two
accelerated expansion solutions of which the stability prop-
erties depend on the underlying model. More exactly, we
obtain a dark energy solution for which the effective equa-
tion of state depends on the model parameters and a de Sit-
ter solution. We present a method to parametrize the A(—T)
function, which is useful in a dynamical system approach and
has been employed in the model. Also, we discuss the cos-
mological solutions for models with A(=T) = 87 G(—T)*
in the presence of ultra-relativistic matter.

1 Introduction

Today’s astrophysical measurements reveal that the Uni-
verse is experiencing an accelerated expansion phase [1-11].
These sets of observational data have driven the quest for
convincing theoretical explanations of such a phenomenon.
Among the various proposed models, the most popular one
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is the theory of general relativity (GR) modified by a cosmo-
logical constant term A, which is called “the concordance”
or ACDM model [12]. In this model, it is assumed that the A
term may take over the recent eras of the dynamical evolu-
tion of the Universe after domination of what is called “Dark
Matter” (DM), of which the interactions are still somewhat
obscure. Observational data have discovered that at least 70%
of the total energy budget of the Universe is in the form of the
so-called “Dark Energy” (DE), which is regarded as a cosmic
medium with unusual properties attributed to cosmological
constant effects. These data show that the ACDM model is
in good shape [13—15]. In spite of its fine agreement with the
observation data, there are two major concerns in this con-
text; the first one is referred to as “the cosmological constant
problem” which asks the question of the origin and the great
disagreement between theoretical and expected values of
the cosmological constant [16—18]. The other problem deals
with this puzzlement of why we happen to live in a special
era of evolution of cosmos where the contribution of A, DM
and the baryonic matter are of the same order. This is pointed
out as “cosmic coincidence problem” in the literature.
These issues have motived people to seek for some other
theoretical foundations or at least apply some modifications
to the assumed ACDM model. In this respect, cosmologi-
cal scenarios with running A have been proposed. The first
developments, in this context, have been made by Shapiro et
al. [19-22]. They have shown that there is no sturdy evidence
to indicate that the cosmological constant is running or not.
This fact encourages one to investigate cosmological scenar-
ios within different theoretical backgrounds that admit run-
ning cosmological parameters. Up to now, different running
cosmological constant models have been proposed, among
which we can quote a time dependent cosmological con-
stant motivated by quantum field theory [22-24], a running
vacuum in the context of supergravity [25], A(t) cosmology
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induced by Elko fields [26], running cosmological constant
via covariant/non-covariant parametrization [27] and some
more [28-30].

In this paper we work on a particular subclass of f (R, T)
gravity, in which R and T are the Ricci scalar and the
trace of EMT, respectively. Firstly, this model was intro-
duced by Harko et al. [31] and later has been widely inves-
tigated in [32-51]. In the background of f(R,T) grav-
ity, we have investigated a linear combination of the Ricci
scalar and an arbitrary function of the trace of EMT, i.e.,
f(R, T) = R+ A(T). In this model, the Einstein gravity has
been modified by a minimally coupled “trace-dependent”
cosmological constant. One may find some efforts made
to elaborate on the cosmological features of A(T)CDM in
the literature. The idea of a running cosmological constant,
A(T), probably dates back to the paper of Poplawski [52]. He
found that A(T) gravity will reduce to Palatini f(R) grav-
ity when the pressure of the fluid is neglected. Besides, he
concluded that cosmological data are consistent with A (T)
gravity without any knowledge about the functionality of
A(T) parameter. In [53], Bianchi Type-V cosmological solu-
tions have been derived.! The locally rotationally symmetric
(LRS) Bianchi type-I cosmological models have been con-
sidered in [55]. In most work on A(T) gravity, the EMT is
forced to be conserved. With this assumption, the authors
of [37,40] have shown that these types of models lead to an
accelerated expansion era with an undesirable present value
for the EOS parameter.

Up to now, cosmological consequences of the violation
of the EMT conservation have not been studied properly. It
may be a good idea to consider the minimally coupled part of
the f (R, T) model as a running cosmological constant and
inspect its cosmological solutions. As we shall see, when
the conservation of EMT is allowed to be violated, it would
result in a DE era which is accompanied by an observation-
ally allowed present value for the EOS parameter. Specifi-
cally, such a model mimics a de Sitter solution. Interestingly,
a similar DE solution has been reported in [56], which arises
from the violation of EMT conservation. The authors of [56]
have pointed out that violation of EMT conservation can be
predicted by modified quantum mechanical models or by
models that utilize the causal set approach to quantum grav-
ity.? In our analysis, we have applied the dynamical system
approach and employed a useful method to parametrize the
A(T) function. In this method we have presented a way to

! However, it seems that the authors of [53] have made a wrong assump-
tion as regards the conservation of EMT. For more details, one can com-
pare the paragraph above Eq. (6) in the original paper with equation (2.1)
in [54].

2 In [56], the authors have obtained an effective cosmological constant
in the context of unimodular gravity.
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determine whether or not a given model might lead to a stable
late time solution.

The present paper has been organized as follows: In
Sect. 2, the field equation of f(R,T) gravity has been
reviewed. Besides, the relevant dimensionless parameters
which will be used in the construction of subsequent equa-
tions are introduced. A discussion of the EMT conservation
will be given as well. In Sect. 3, we discuss the late time solu-
tions of the only conserved f (R, T) model. In this case, some
issues have already been illustrated, however, we present
some other features. Section 4 is devoted to a description
of the mentioned method. In Sect. 5, we consider models in
which the A (T) function shows a power-law behavior. These
models will be investigated independently. Finally, in Sect. 6
we summarize our results.

2 Field equations of f (R, T) gravity

In this section, we present the field equations of f(R,T)
modified gravity (MG) and discuss the conservation of EMT.
We assume that a pressure-less fluid (DM along with baryonic
matter) and ultra-relativistic matter are present. The action
of (R, T) gravity can then be written as

1
S = / J—gd*x [ﬁf (RTO-W) + L(“’ml)} , 1)
K
where we have defined the Lagrangian of the total matter as
[(total) — | ) 4 | (W) )

In the above definitions, we have used R and TPV =
g’“’Tff; " a5 the Ricci curvature scalar and the trace of EMT
of pressure-less and ultra-relativistic fluids (for which we
get these matters as the total matter content of the Universe),
respectively. The letters “p” and “u” indicate the pressure-
less and ultra-relativistic fluids and g is the determinant of the
metric, k> = 87 G is the gravitational coupling constant, and
we set ¢ = 1. Since the ultra-relativistic fluid has a traceless
EMTie.,T® =0, wehave TP:W = T® 4 TW = T®) =T,
Hereupon, we will drop the letter “p” from the trace of
the pressure-less matter for simplicity.> The EMT T%;" is
defined as the Euler—Lagrange expression of the Lagrangian

of the total matter, i.e.,

ST/ =o(L® 4 LW
) Gl § 3)

NPT

3 Note that, in the current formulation of f (R, T) gravity, the presence
of an ultra-relativistic fluid does not affect the results in the sense that
only the trace of pressure-less fluid couples to the Ricci curvature.



Eur. Phys. J. C (2017) 77:282

Page 3 of 14 282

The field equations for f (R, T) gravity can be obtained [31]:

1
FR TR = 5 F R Dgu + (800 = 7,70 ) FR.T)

- (SnG _ FR, T))Tff;“) ~FR. TN, (4)
where
sTHY

o = g L, 5)

SgHY
and for the sake of convenience, we have defined the follow-

ing functions as derivatives with respect to the trace T and
the Ricci curvature scalar R:

af (R, T)
aT

af (R, T)

f(R,T)E and F(R,T)Ea—R

(6)

We consider a spatially flat, homogeneous and isotropic
Universe, which is described by the Friedmann—Lemaitre—
Robertson—Walker (FLRW) metric:

ds? = —d® + a*(t) (dr2 + r2d§22) , )

where a(t) denotes the scale factor of the Universe. There-
fore, the field equation (4), by assuming the metric (7), leads
to

3H*’F(R,T) + % (f(R,T)— FR,HR)+3F(R, THH
= 876G+ FR,T) p® +87GpW, (8)

as the modified Friedmann equation, and

2F(R,T)H + F(R,T)— F(R,T)H

32
=—@7G + F(R,T) pP = = Gp", ©)

as the modified Raychaudhuri equation. In Egs. (8) and (9),
H indicates the Hubble parameter. Hereafter, we work on
the Lagrangians which include minimal coupling between
the trace of EMT and the Ricci scalar, i.e.,

JR,T) =gR)+ BA(=T), (10)

where 8 can control the strength of the coupling. Since, for
the pressure-less matter we have TP = —,o(p), in order to
avoid ambiguity due to the negative sign, we work here-
after with the A(—T) function. In fact, to guarantee that
A(T) is always a real-valued function, we consider A(—T)
instead. For this class of f (R, T) models we have F(R, T) =

—BA'(=T)* and F(R, T) = ¢’(R). The field equations (8)
and (9) can then be rewritten as

I+ 5 4p 2 R,
6H2g' 6H%g’ 6H? Hg
gnGp(p) A/p(p) SJTG,O(“)
= 3H2 / _ﬁ?,HZ /+ 3H2 / (11)
8 8 8
and
i
2 —
H? + Hzg/ Hg/
_ SnGp(p) A/p(p) 327TG,0(U) (12)
Hzg’ Hzg/ 3H2g/ ’

where the arguments have been dropped for convenience. In
order to construct the dynamical system for the field equa-
tions (11) and (12), it is helpful to define a few dimensionless
variables and parameters by

¢(R)
= 13
1 He(R) (13)
_ g(R)
2= T6HYR) (14)
R H
X3Em=m+2, (15)
X1 = M (16)
' T 3H%R)
K2TA'(=T)
Ay 17
X5 3H2g(R) (17)
2 (rad)
QW= 0 1
3H2g(R)’ (18)
2 ()
QP =_5Fr 19
SHR) (19

where we have used Ricci scalar, R = 6(H + 2H?) for
metric (7), within the definition of (15). Moreover, we use
the following definitions:

TA"(=T) 20)
ns ————=
A(=T) "’
TA (=T
Sl DA § 1)
A(=T) X4
In general, eliminating T from (20) and (21) yields n =
n(s). Describing the models with n = n(s) instead of

A(=T), can be suitable in dynamical system analysis. In
the following subsections we discuss the consequences
of conservation/non-conservation of EMT, which in turn,
results in a key equation that helps us to study the dynami-
cal evolution of the models. We classify minimally coupled

4 Note that we shall use F(R, T) = 3f (R, T)/0T = BdA(=T)/dT =
—BdA(=T)/d(=T) = —BA".
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models as those that respect EMT conservation and those
that do not.

2.1 Models which obey the conservation of EMT

In this subsection, we present the results that come from
considering the EMT conservation. If we apply the Bianchi
identity to the field Eq. (4) and assume that the conservation
of EMT holds for pressure-less and ultra-relativistic fluids,
independently, we get

'é(P) + 3Hp(p) =0, (22)
o™ +4Hp™ = 0. (23)

We then find the following constraint for the pressure-less
fluid?:

., 3
h = EHh’. (24)

After straightforward but lengthy algebra, we arrive at a spe-
cific form for A(—T), as follows:

AT =Civ-T+C, (25)

where C1 and C» are constants of integration. It means that
solution (25) is the only subclass of f (R, T) theories of grav-
ity with minimal coupling that respect the conservation of
EMT. For this solution we obtain x5 = x4/2, which reduces
the space constructed from the variables of the theory.

2.2 Models which violate the conservation of EMT

These models do not generally respect conservation laws
(22) and (23). Applying the Bianchi identity to the field
Eq. (4) leads to the following equation between the function
F (R, T), the EMT and its trace:

1
A oh T 4 (2 4 FO) g T 4 : FO g, TO

+ TEFS vu ]:(P) -V, (p(P)_']:(P)) =0, (26)

where the argument of F (R, T) has been dropped for abbre-
viation. Notice that in the above equation, we have used F' )
in the corresponding terms of pressure-less fluid, since only
T® would appear in the argument of F(R, T); we further
note that the function F and its derivative are zero for the
ultra-relativistic fluids. Equation (26) has a specific form such
that we can consider the evolution of two fluids separately,
i.e., we can write

5 See [37,40] for more details.
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1
%+ F) ot TI(LP‘} + E‘7:(p) v T® 4 Ti?g gt F® =0,
27)
VAT =0, (28)

where p(p) = 0 has been used. From Eq. (28) we can deduce
that in the minimal form of f (R, T) gravity, the conserva-
tion of EMT for ultra-relativistic fluid, i.e., Eq. (23) can be
always assumed, at least, as long as mutual interactions are
not taken into account. Therefore, regarding the choice (10)
for (R, T) function, we can rewrite Eq. (27) as

<K2 - %A’ + ﬁA”T) T+3HT (x2 - ﬁA’) =0, (29

where we have used p® = —T. Once the function A(—T)
is determined, the dependency of —T and thus p® on the
scale factor can be calculated. More precisely, Eq. (29) can
be simplified as

-T,2 ﬁA/ +BA'T a
/ £ 2 b dT = —3/ d(Ina), (30)
To T (K2 - ﬂA’) ao

where T and ag denote the present values for the scale factor
and EMT trace. Note that, in general, the integral on the left
hand side of Eq. (30) may not be simply solved. Moreover,
after the integration process, it may not be possible to clearly
write the density as a function of scale factor. Let us choose
the functionality of A parameter as A(—T) = x2(=T)%,
whence we obtain

1
_ a\2a—1 | 2@=1)
[%} =Ca3, (31)
0

where C is a constant of integration. In this case, for later
application, let us rewrite Eq. (29) in terms of the pressure-
less fluid density in the following form:

1 —afp®*!
l—o(x+ %) ﬂ,o(P)a_l

p(P) — _3H p(P)’ (32)

or correspondingly, eliminating time gives

1 a—1]dp®(a)
_ _ (P) OO et
|:1 o (oz + 2) Bp } T

_ (p)
+3<] —aﬁp(p)a l) pPa) =0

a

(33)

In Sect. 3 we present an overview of the cosmological impli-
cations of the only conserved models, i.e., the models with
A(=T) = x2/=T. The dynamical system representation
of this case has been considered in [40]. However, in this
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section we review the corresponding cosmological conse-
quences of this case to complete our discussion. Moreover,
we will present new details that have not been considered
before. In Sect. 4 we consider cosmological behavior of mod-
els of type f(R, T) = R+ BA(—T) for a general A(—T)
function via the dynamical system approach. We will see that
relaxing the EMT conservation which gives Eq. (29), leads
to some interesting features; DE solutions will be achieved.
In Sect. 5 we study the models with A(=T) = x2(—=T)*
when the EMT conservation has not been considered. Among
non-conserved models there are two special cases that the
equivalent dynamical system cannot be constructed prop-
erly. More precisely, as we will see the process of recast-
ing the field equations into equivalent dynamical system
would breaks down for cases with @ = 1 and ¢ = —1/2.
In Sects. 5.1 and 5.2 we will consider these cases alge-
braically.

3 Conserved A (T)CDM model in phase space

In this section we present a brief review on the cosmological
solutions of the only case that respect the EMT conservation.
The EMT conservation leads to the constraint Eq. (24) which
gives Eq. (25) for A parameter, as the only solution. To illus-
trate late time effects of the extra term ~/—T, we put aside
the ultra-relativistic fluid. Therefore, field equations (8) and
(9) for the model f(R,T) = R + Bx?v/—T will take the
following form:

1
3H2 — 2 <p(p) _ ﬂp(pn) , (34)
. 1
2H = i3 (—p@) + gp(l”z) . (35)

The energy conservation yields solution (22) for which the

solution is given by p® = ,o(gp)a_3, where we have set

PP =1) = p(()p) . We can check that differentiating Eq.
(34) with respect to time together with using 6P = —3Hp®
gives Eq. (35). This means that solutions of equation (34)
would satisfy Eq. (35). Equation (34) can then be solved to

give

2/3

3 1/3
a,_y (1) = (—) [ QP Hot (8\/§— 3ﬂt>} :
(36)

where we have set k2 = 1 and a(t = 0) = 0. We can also
check that solution (36) reduces to the standard matter dom-
inated era solution for 8 = 0 and Q(()P) = 1. From solution
(36), the age of Universe can be calculated as

=

4
(& = T RS- , (37)

@_ 4
V3P 3P Hy

where t(ng) shows the solution with positive sign and t(gf) the
solution with negative sign between the two terms in brackets.
We suppose that 8 = bHy where b is a constant, therefore
we have

=

@ _ 4981 b Gyear.  (38)
0 - - .
\/ng() /39(()[’)

In the MG theories we can define an effective EoS parameter
as weM = —1 — 2H/3H2. For the conserved A(T)CDM
model, using Eqgs. (34) and (35) along with the solution (36)
leads to the following solution for the effective E0S:

. 1 8
we = —— 4 (39)

2 b (3ht-8v3) + 16

As can be seen, this solution goes to zero for early times and
to —1/2 in the late times. Besides, we can obtain the fluid
density for this case using p® = p(()p )a_3, however, in this
case the scale factor follows the form given in (36). In Fig. 1,
we have drawn the related plots for cosmological parame-
ters discussed above. The upper left plot presents the age of
Universe for both positive and negative solutions obtained in
(38). In this plot the orange line denotes the age of Universe
for t(gﬂ and the green one indicates t(()f). We have plotted the
rest of the diagrams for b = £0.9. For the purpose of com-
parison, we have employed a black line for the scale factor
of the standard pressure-less fluid dominated era, i.e. a®P),
for which a(r) ~ £2/3 holds.

For reconstructing the dynamical system representation
of Egs. (34) and (35) we can use the dimensionless variables
(16)—(19) (remember that in this case we have x5 = x4/2).
In terms of these variables we obtain

QP 4 QW 4 0B — 1, (40)
dow 30(DE)
= QW (— +QW 1], (41)
DE DE
dQ®B _ o®B) 3(1 — QPB) 1w, (42)
dr 2

where we have redefined Q(PE) = — Bxy4. Note that since x4

is always positive [see the definition of (16)], it restricts the
allowed values of B to negative values, in order that Q0B
stays positive. The fixed points of this dynamical system are
presented in Table 1. Also, we have drawn in Fig. 2, the phase
portrait of this model in the (2™, Q(PE)) plane.

@ Springer
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f(Gyear)

M

Fig. 1 Cosmological quantities for the model f(R,T) = R +
Bic2/—T when only pressure-less fluid is present. In the above plots
we have used b = 8/ Hy. Upper left panel Two solutions for the age of
Universe. Lower left panel The effective EOS parameter for b = —0.9

Table 1 The fixed point solutions of (R, T) = R+ r2v/—T gravity

Fixed point Coordinates (2, QD)) Eigenvalues wet
DE 5 3 1
p©B ©, 1) (-3.-3) -
prd (1,0) (5.1) !
pm (0, 0) (3.-1) 0
107 " @ u-matter |
® p—matter
08 N
06 ~
_ /
Q 7,
~ /
S oat /

0.2'//}\
oof @ T — i
NV oWl Il SN
00 02 04 06 08 10
Q(U)

Fig. 2 Phase portrait of (R, T) = R+ B«2+/—T gravity. The abbre-
viations “u-matter”, “p-matter” and “DM” have been used for specifying
the ultra-relativistic, pressure-less and DE dominated eras, respectively

@ Springer
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is denoted by a red line. Upper right panel The scale factor of Universe
for the same value of b (a*P shows the scale factor of standard matter
era). Lower right panel The behavior of matter density parameter for
the same value of b

4 Late time cosmological solutions of
f(R,T) =R+ BA(-T) gravity

In this section we investigate the late time cosmological solu-
tions of a specific class of models of the form f(R,T) =
R + A(—T). This family of models can be interesting as
they make a minor modification to GR. In fact we can inter-
pret these types of models as a A(T)CDM theory, which
implies a matter density dependent cosmological constant.
Our aim here is to consider late time solutions only, hence
we do not include the ultra-relativistic fluid. To reconstruct
Egs. (11) and (12) in terms of a closed dynamical system for
g(R) = R, we use the definitions (16), (17), (20) and (21).
The last two ones play the role of a (kind of) parametrization®
in determining the functionality of A (—T). This parametriza-
tion can be suitable at least for some well-defined models.
Generally, eliminating the trace T between the definitions
(20) and (21) leaves us with a relation between the n and
s parameters, which results in a function n(s). In fact, each
f(R,T) = R+ BA(—T) model can be specified by a func-
tion n(s). Models with constant s and n shall be considered
in Sect. 5. Equations (11), (12) and (29) can be rewritten in
terms of the dimensionless variables as follows:

6 These types of parametrization have been utilized firstly in [57].
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QP prs—Ex=1, 43)
2H =—1 p (44)
3H2 T P

5(p) 14+ 8%

p 274 (45)

3HP® 14 By, — B(n+ Dxs

From the definition for effective EOS parameter and Eq. (44)
we get

w%=§m. (46)

Using Eqs. (43)—(45) the following autonomous differential
equations can be obtained:

d 14 5x
ﬁ=—3)C5 24 + 3x4 1+EX4 ,
B 1
dN 1+ 5x4—B(n+3)xs 2
47

_B(* _ 1
4 g (1+ﬁx4> noB(F - (1)) (48)
dN 2 14+ 2xs—B(n+1)xs

The above system admits three fixed points with the proper-
ties we have listed in Table 2.

Table 2 shows that its elements depend on the value of
parameter n, generally. Note that the DE density parameter
is defined so that the relation QP +Q(P®E) = [ holdsandn’ =
dn/ds atthe fixed point. From Table 2 we observe that there is
two type of DE solutions; PI(DE) , of which the effective E0S
parameter depends on n and PZ(DE) for which Q® and thus
Q@B also depend on this parameter. Therefore, only some
specific models can give rise to an accelerated expansion
solution in the late times. Especially, to be consistent with
the observational measurements, the value of n parameter can
be much more confined. One of the eigenvalues of P2(DE) is
zero, which shows that it is a non-hyperbolic critical point
and its stability properties cannot be determined by linear
approximation techniques. Hence, we focus on the solution
characterizing the fixed point PI(DE).

The fixed points shown in Table 2 are solutions of the
system dx4/dN = 0, dxs/dN = 0. From this fact we can
conclude that, for any arbitrary function, namely, f (x4, x5)
we must have d f (x4, x5)/dN = 0 at the equilibrium points.
Hence, for the parameter s = s(x4, x5) we obtain

ds
N =3s(s —n(s)—1)=0. 49)

Therefore, all solutions originating from the presence of
the function A(—T) must satisfy the conditions s = 0 or
n(s) = s — 1. As can be seen, the latter condition holds for
the fixed points PI(DE) (for whichwehave x5 /x4 = n+1 = s)

and for the point PZ(DE), the constraint equation x5 = sx4 =
—2(n + 1)/p must hold. The matter fixed point is related to
the geometrical sector of the Lagrangian, i.e., R, and there-
fore it is not necessary to satisfy the conditions s = 0 or
n(s) = s — 1. Specifying a function A(—T) with the corre-
sponding n parameter, the condition n(s) = s — 1 leads to
an algebraic equation with possible s; roots.” Among them,
we only pick out those which exhibit DE properties. Briefly
speaking, there may be some s; solutions for which the DE
fixed points (or at least one) may pass necessary conditions
so that a stable late time solution for the underlying model
could be achieved. We note that the functions n(s) and n’(s)
are calculated for these s; solutions. True cosmological solu-
tions are those that include an unstable DM fixed point which
is connected to a stable DE one. Therefore, discarding the
fixed point Pz(DE) (owing to a vanishing eigenvalue), we seek
conditions for the stability of other points. The stability prop-

Pl(DE) and PPM are determined as follows:

erties of
forn’ <1 —%<n<—1,
andforn >1—-1<n <0,

(50)

PI(DE) is stable provided {

/ 1—n’
POM s unstable provided {forn <l n<=m

and forn > 1n < 0.
(51)

As a result, in order to have the allowed DM and DE solu-
tions, it suffices that conditions (50) be satisfied. To complete
this section, we explore the discussed method for two spe-
cific models. In the next section, we discuss the cosmological
solutions for models with a power-law A (—T) function.

e Models with f(R, T) = R+a(=T)* +b(—T)# where
a>0, g>0.
In this case we obtain

n(s):a—ﬁ(l—%)—l, (52)
n'(s) = —Osl—f, (53)

where the equation n(s) = s — 1 for (52) gives rise to
the solutions s1 = « and s; = —p. Therefore, a true
cosmological solution can be achieved provided that the
following conditions hold:

1
nis)=—=>1, —= <a<0, (54)
o 2

n'(s1) = —E <1, 0<a<l, (55)
o

7 In fact, solutions are intersection points of the n(s) curve with the line
s — 1.
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Table 2 The fixed point

solutions of Fixed point Coordinates (x4, x5) Eigenvalues we QP Q®B
FR,T)=R+BACT) p©E) (_ 2 204D ) ( 6n _6<n+1>(n’—1)) _ 1 9 1
gravity 1 BQ2n+3)°  B(2n+3) 2n+3° 2n+3 2n+3
pP® (-3.x%5) (0. —52%) -1 “2(1+n) 3+
pOW (0,0) (3-3m+Dn’,-3n) 0 1 0
o 1 6(8=1)
W) =g =1 0<f<s s56)  pPa) = pPa 7 (63)
o
n(s)=-2<1 s=-1<p<0 (57) " For B = 0, the above solution leads to the standard form for

e Models with f(R,T) = R+ a(=T)*exp?="" for
which we get

ne)y =y (1=2)+s-1, (58)

S

n'(s) =L 41, (59)
S

The only solution for the equation n(s) = s —liss, = «

which leads to n(s,) = 1 + y /a. Hence, the conditions
for a true cosmological solution read

oa+y

1
1 (s4) = > 1, 3 <a <0, (60)

oa+y

n' (sy) = <1, 0<a<l. (61)

5 Late time solutions for models with power-law A (—T)
function

In this section, we consider a class of models of type
f(R, T) = R+B«2(—T)%, which violate the EMT conserva-
tion. We will investigate these types of models as dynamical
systems as before. We then study, via considering the equi-
librium points, the cosmological solutions provided by these
models. However, for two values of «, the dynamical system
approach does not work, thereby encouraging us to study
these specific cases algebraically. In Sects. 5.1 and 5.2 we
will study these specific cases and in Sect. 5.3 we deal with
the general form of f(R, T) = R + Bx2(=T)* gravity.

5.1 Models of type (R, T) = R+ Bx2(—=T)® witha = 1

For o = 1, Eq. (33) reduces to the following equation:

0, (62)

( 3ﬁ> dp®(a)  3(1—pB)pP(a)
1—- = + =
2 da a

for which the solution is given by

@ Springer

DM energy density and behaves as a? for large values of
parameter. In case in which 8 = 1 we have p® (a) = ,o(()p).
Moreover, for ¢ = 1, modified Friedman Eqgs. (8) and (9)

lead to

3H? = «? (1 — 3;) o®, (64)
2H =«*(B— 1)p®. (65)

Inserting the solution (63) into Eq. (64) and solving the resul-
tant equation, we get the scale factor as a function of time,
as

2-38
\ad [ 30— g /b | o
aa_la)—(z) NeTxT: . (66)

This solution is valid only for B < 2/3 and it leads to the
standard form for the pressure-less matter dominated era for
B = 0. We can also check that the solutions (63) and (66)
satisfy Eq. (65). Applying the definition given for effective
EoS on Egs. (64) and (65) we see that these types of models
correspond to a constant value, w®™ = /(2 — 38), which
for B < 2/3 gives w®™ > —1/3. However, there is a special
case; Egs. (63), (64) and (65) yield a de Sitter solution for 8 =
1. As aresult, power-law models with @ = 1 resultin a single
decelerated expanding cosmological state for the Universe (at
all times) without ever passing through a pressure-less matter
dominated era. However, these models predict a single de
Sitter state as well.

5.2 Models of type f(R, T) = R + Bx?(=T)* with
a=—1/2

In this case we have —%A/ + A”T = 0; thus Eq. (33) reduces
to the following simple form:

® ®
dp p (a) 13 <l,3,0(p)3/2(a) + 1) M =0, (67)
da 2 a
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which has the following solution for the matter density in
terms of the scale factor:

3/2 2/3
B+ 20"

pP(a) =273 —on P

(68)

where we have set p® (a = 1) = pg. This solution in the
early times where a — 0 behaves as > and in the late times
where a — 00, as (—f/2)?/3. The Friedman equations can
then be obtained:

3H? = k2p®, (69)

20 = i <p<P> + gp(l”_”z) . (70)

As can be seen, the first modified Friedman equation reduces
to its standard form (i.e., its form in GR), and for this rea-
son writing down the equations as a physically consistent
dynamical system breaks down. Exact solutions of Eq. (69)
with energy density of DM given by (68) cannot be obtained
explicitly. Nevertheless, we can obtain the early and late time
solutions, being given by

1/9 2/9
arly) . (27 26132172 273
& (1) ~ <ﬁ> [ﬂ +26HQP)Y ] 203,
(71
1 (i)
al™ () ~e ®+23/ (72)

From the solution (71) we see that the term in square brack-
ets reduces to the standard form for pressure-less matter, i.e.,
(3H02 /2)?/3, once we set f = 0. The above solutions have
been obtained so that in the present time they would be equal
to unity. The solution (72) shows that in the late times, we
have a de Sitter solution for —2 < 8 < 0 (notice that for the
late time solution, i.e., (—8/2)%/3, Egs. (69) and (70) give
H = constant and H = 0, respectively). In the left panel
of Fig. 3 we have plotted the scale factor for three cases; a
numerical diagram has been drawn from Egs. (69) for (68)
in purple color, an asymptotic curve in the late times, i.e. the
solution (72) in brown color, and the scale factor for the stan-
dard pressure-less dominated era in blue, for comparison. We
used § = —1 and p(()p) = 1 for plotting purpose. In the right
panel of Fig. 3, we have presented the effective EOS for the
same values of parameters 8 and ,oép ) These diagrams show
that in the model f (R, T) = R — k2(—T)~!/2, the Universe
could experience an accelerated expansion in the late times,
when only a pressure-less fluid is present. It is interesting to
note that the unusual interaction between the only cosmo-
logical fluid and curvature of space-time, which leads to the

violation of EMT conservation, has the consequence of a late
de Sitter epoch in the evolution of the Universe.

5.3 Models of type: f(R, T) = R+ Bx2(=T)*
@#1,-1/2)

In Sects. 5.1 and 5.2 we have considered cosmological impli-
cations of two specific models that could not be analyzed by
the dynamical system approach. In the present subsection we
will provide a comprehensive study of these models via this
approach. We will see that unlike the conserved case, there
is, however, a de Sitter solution in the case of non-conserved
models. For those models in which f(R, T) = R+8A(-T),
the field equations (8) and (9) reduce to the following equa-
tions:

3H? = —«2 <T(P) — BH'T® 4+ gh - ,O(u)) , (73)
s 2 (1o _ gt _ @
2H =u" | T = BT — 200 ). 74

Substituting A(—T) = «2(=T)% into Egs. (73) and (74)
using (29) leads to

1
3H2 = 2 |:p(p) - B (Oé + E) p(P)a + p(u)] , (75)
. 4
2H = k2 <_p(P) + Igap(p)a —_ §,O(u)) , (76)
— Bap®*!
p0 = 3y =P’ ®, (77)

1= o (o + 3) p@*!

As can be seen, Egs. (75) and (76) reduce to Eqs. (64) and
(65) for « = 1 and in the case of « = —1/2, these equations
reduce to (69) and (70) in the absence of ultra-relativistic
fluid. Using the definitions (16), (18) and (19), the above
equations can be rewritten as

1
QP —g <a + 5) x+ QW =1, (78)
2H B 1
3?=—1—§x4—59<u), (79)
1+ 8x
p(P) — _3H 24 p(P). (80)

1+ B0 —a)(a+3)xs

Finally, the dimensionless evolutionary equations for vari-
ables QM and x4 are obtained:
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60 [ 0.0 [ ]
50 f| — Numerical solution —02 1
P Standard solution
— Late time solution g -—04 1
© 30F ] €
B=—1 2 06 ]
20 F 1
PO(p)=1 —0.8 ]
10 F
0 . n : : -10¢t . y I T 1
0 2 4 6 8 10 0 2 4 6 8 10
t t
Fig. 3 Some cosmological parameters for power-law model witha = —1/2. Left panel Numerical solution of the scale factor in purple, approximate

solution in brown and solution for the standard matter dominated era in blue. Right panel The evolution of effective EOS parameter

dQW

3
_ow [ _ 2P W
v 2 ( I+ T x+Q ) 1)
ary _ [20m0 (b [ pler2) ]
— = X4 - I Q(U) '
N 1+ B0 —a)(a+5)x

(82)

Note that in the case of the power-law dependency, we have
x5 = x4/2, which demands a slightly different system of
equations with respect to a general A (—T) function. As can
be seen, Eq. (82) implies no DE solution for « = 1. We
cannot also interpret a DE model from it for « 1/2,
since Eq. (78) does not include a DE term. Moreover, one
can check that Egs. (78), (81) and (82) reduce to Egs. (40),
(41) and (42) fora = 1/2 and 8 = —1. Also, we can obtain
the effective E0S from Eq. (79) as follows:

B

(eff)
w = —Xx4 +
2 4

Tow
3 Q. (83)
The fixed point solutions of the system (81) and (82) are
calculated in Table 3.

Defining QB = —g (a + %) x4, provided that Q® +
QOB 4+ QW — 1, the fixed point P(PE) can be accounted
as a DE solution for which we have Q(P®) = 1. The con-
dition for accelerated expansion, w®® < —1/3 is satisfied

only for —% < o < 1. It is interesting to note that only for

—% < a < 1 both eigenvalues become negative, simulta-
neously. Therefore, in non-conserved class of models of the
type f(R, T) = R+ Bx2(—T)%, there is a stable solution for

late times with the following properties:

p(©B) _ (Q(U) =0,QP =0, QPE — 1)’

1
w® < —1/3, for —§<a<1. (84)

It is noteworthy that, for « — 0%, we have weir — —1 s0
that we can get a DE solution with observationally accepted
values of the EOS parameter. Planck 2015 measurements

@ Springer

show that the Universe is undergoing an accelerated expan-
sion driven by DE for which the present values of the E0S
parameter lie in the interval —1.051 < w(')DE < —0.961 [58].
This fact imposes a constraint on the « parameter: —0.024 <
a < 0.020. In addition to the existence of a DE fixed point,
there are unstable solutions which indicate domination of the
ultra-relativistic and pressure-less fluids, i.e., the points P
and P®, respectively. Two other solutions are Pxj and Px3,
which are not physically interesting, since they do not cor-
respond to dominant cosmological epochs.® Nevertheless,
P x1 can be a late time solution for small values of «. Table 3
shows that the fixed point Px is a stable one for small val-
ues of «. Therefore, depending on the value of «, each of
these solutions may be the late time solution. To show the
two possibilities, we have plotted in Fig. 4 the phase space
diagrams for the values « = 0.02 and @« = —0.02. The red
solid circle denotes the fixed point PO®B) the green one indi-
cates Pxj, the purple solid circle shows PP, the cyan one
indicates P™ and the orange solid circle shows Px,. The
diagrams show that physically interesting trajectories begin
from P, pass along PP and then terminate at either PP
or Px;. Figure 4 also shows that, for @ < 0, the fixed point
Px is for the late time solutions and for o > 0 the solu-
tion P(P®) would be chosen. These points will overlap for
a = 0, that is, the GR model plus a cosmological constant,
known as the celebrated ACDM model. The fixed point Px;
coincides with the fixed point PW for @ = 4/3, otherwise
it is physically meaningless. The fixed point Px; is always
unstable, that is, the functions f(«) and g(«) never get the
same negative sign or pure imaginary values. In Fig. 4 the
diagrams for the evolution of the matter density parameters
and the effective EOS parameter are plotted for @« = 0.02, as
well.

8 The related values for density parameters of pressure-less fluid and

. . 2@+2)(Ba—4 ; —
DE are given by i(¢) = —% and j (o) = _(,8(,%76;;%’

respectively.
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Table 3 The fixed point

solutions for Fixed point Coordinates (2™, x4) Eigenvalues weD Q® Q(DE)
FR,T) =R+ (=T
ity with radiati DE 1 9 242 |
gravity with radiation p(OE) (O, _ﬂ(wr%)) (3 - ng ) . 0 .
P® (1,0) (4 —3a,1) i 0 0
p® 0, 0) (3(1 —a), —1) 0 1 0
(0.-%) (=2, ) R A e
8(a?+a—2 _ _ .
Px; (oz((;loz—oi)—é)l ' (_80(824_6:_‘_4)5) (f(a)v g(a)) % i(a) J()
1.0F ] 0.4
\ —o® 0.2
0.8 _q®] 00
(DE)} :
0.6 Q% _ 3
[« 5 0.2
0.4} s —04
0.2 —-0.6}
/ —-0.8¢F /
0.0 . ; : 1.0k , , ]
-5 0 5 10 15 -5 0 5 10 15
log[1+z] Log[1+2]

@

Fig. 4 Cosmological quantities for models (R, T) = R+ B(—T)“.
Upper panels the matter density parameters and the effective EOS for

« = 0.02 and initial values "% = 9.7 x 1072 and Q' = 0.999.

6 Conclusion

In this work we have investigated the cosmological conse-
quences of violation of EMT conservation for a class of
f(R, T) theories of gravity. We have considered both the
ultra-relativistic fluid and DM in a spatially flat, homoge-
neous and isotropic background given by the FLRW metric.
We have studied models of type f(R,T) = R+ BA(-T)
which we call minimally coupled f (R, T) models. A specific
model can be considered, a A (T)CDM model which allows
for a density dependency for the cosmological constant.

Lower panels phase space portraits for two indicated values of «. Red
and green trajectories show the possible physically justified solutions
and black trajectories suffer from either lacking matter dominated or
radiation dominated eras

Firstly, we have presented the field equations of f(R,T)
gravity and defined some dimensionless variables. We also
classified the minimal models to those that respect the con-
servation of EMT and those that do not. The former models
have been considered elsewhere, however, to complete our
study, we have briefly reviewed their cosmological solutions
through the dynamical system approach. Some new results
have been obtained as well. We have algebraically showed
that these types of models cannot be accepted, since they have
alate time solution with an undesirable EOS parameter. Their
EoS parameter varies from zero to —1/2, which is not obser-
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vationally confirmed. Thus, considering the EMT conserva-
tion, GR theory modified by a minimal A (—T) function has
still the problem of incompatibility with recent observational
outcomes. The latter models do not respect the conservation
of EMT, for which a modified version of DM density conser-
vation has been obtained. We have shown that, in the minimal
models of f(R, T) gravity, it is always possible to consider
the evolution of ultra-relativistic fluid and DM independent
of each other, as long as interactions are turned off. There-
fore, only a modification in the behavior of DM density can
provide a different cosmological scenario, at least in the late
time epochs.

To consider the cosmological consequences of the viola-
tion of EMT conservation, we presented a general method to
formulate the dynamical system equations for generic min-
imally coupled models. We have defined two dimensionless
n and s parameters constructed out of the A(—T) function
and its derivatives and showed that the resulted autonomous
equations will depend upon these parameters. As a result,
we have obtained a set of closed equations of which the solu-
tions, and hence the stability properties of them, will be con-
trolled by these parameters. We have discussed that, at least
for well-behaving models, we can parametrize A(—T) func-
tion in terms of a function n(s). We illustrated that all fixed
points originating from the A(—T) function must lie on the
line n = s — 1. In other words, for every function n(s) all
fixed point solutions must occur at the location where the
n(s) curve intersects with the line n = s — 1. The fixed
points, representing the ultra-relativistic and pressure-less
matter domination, are not subject to the above discussion
as they are solutions of GR. Briefly speaking, this method
shows that there generally exist two fixed point solutions
which represent accelerated expansion/DE era in the late
times. We have applied the method to inspect two mod-
els specified by f(R,T) = R+ a(=T)* + b(~T)"# and
f(R, T) = R+a(-=T)*exp’ 1" and discussed the valid-
ity of their solutions.

As a special case that cannot be explained by the above
technique, we investigated the cosmological behavior of
models with A(=T) = «2(=T)2. In this case, we included
the ultra-relativistic fluid and discussed the late time solu-
tions. We found that there are two different DE solutions of
which the properties depend on the constant . Nevertheless,
each f(R, T) = R+ BA(—T) model accepts only one solu-
tion, by which, accordingly, such types of f (R, T) functions
can be classified as two different models. We have argued
that observationally consistent models may be constructed
by small values of «. For example, Planck 2015 measure-
ments have shown that if we believe in DE as one of the
ingredients of the Universe which is presently driving the
observed accelerated expansion, its EOS parameter must lie
within —1.051 < w(()DE) < —0.961. This fact restricts us to
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accept —0.024 < o < 0.02. We have shown that, for the
two specific models with « = 1 and ¢ = 1/2, the dynam-
ical system approach does not work, due to the structure
of the related equations. Algebraic treatments showed that
the former model, in general, indicates a single decelerat-
ing late time cosmological era. However, there is an exact
single de Sitter solution, as well. For the determined val-
ues of o and B parameters, we obtained a constant value
for the EOS parameter with a specific value lying within the
range wy=1 > —1/3. The latter case gives a proper solution
including a connected matter and DE dominated eras. This
model accepts a de Sitter solution in the late times. Finally,
we would like to end this article by highlighting the impor-
tance of examining the observable signals of MG theories,
in order to test the physical validity of the resulted mod-
els. If experiments confirm that a modified version of GR
can explain observations better than the original version, the
results could shed light on some fundamental cosmological
questions. Modified gravity theories have been utilized suc-
cessfully to account for galaxy cluster masses [59], the veloc-
ity field of DM and galaxies [60], the cosmic shear data [61],
the rotation curves of galaxies [62,63], velocity dispersions
of satellite galaxies [64], and globular clusters [65]. These
theories have also been used to propose an explanation for
the Bullet Cluster [66] without resorting to nonbaryonic DM;
see also [67] and the references therein. However, among the
MG theories that have been proposed so far, Rastall’s grav-
ity touches one of the cornerstones of GR, i.e., the conser-
vation of EMT [68] and, interestingly, this issue has been
entered within the context of MG theories [69,70]. While
in the present work, we have studied cosmological conse-
quences of violation of EMT in the framework of f (R, T)
gravity theory, it is of utmost importance to seek for obser-
vational evidence (such as the gold sample supernova type
Tadata [71], SNLS supernova type Ia data set [72] and X-ray
galaxy clusters analysis [73]) that could distinguish between
the resulting models from this theory and GR. However,
observational features of this theory need to be carried out
with more scrutiny and dealing with this issue is beyond the
scope of the present paper.
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Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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