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Abstract: Unraveling the inner dynamics of gluons and quarks inside nucleons is a primary target

of studies at new-generation colliding machines. Finding an answer to fundamental problems

of Quantum ChromoDynamics, such as the origin of nucleon mass and spin, strongly depends

on our ability of reconstructing the 3D motion of partons inside the parent hadrons. We present

progresses and challenges in the extraction of TMD parton densities, with particular attention to

the ones describing polarization states of gluons, which still represent a largely unexplored field.

Then, we highlight connections with corresponding parton densities in the high-energy limit, the

so-called unintegrated gluon distributions or UGDs and, more in general, to recent developments in

high-energy physics.

Keywords: proton structure; spin physics; TMD factorization

1. Unveiling the Multidimensional Structure of the Proton

The advent of new-generation particle accelerators [1–20], such as the High-Luminosity
Large Hadron Collider (HL-LHC) [21] and the Electron-Ion Collider (EIC) [22–24], will
start a new era in the search for long-waited signals of New Physics beyond the Standard
Model (SM) of particle physics. At the same time, it has opened up a great window of
opportunities for precision studies of the dynamics of strong interactions, responsible
for the strong nuclear force, that “bind us all”. Among these analyses, deepening our
knowledge of the proton content represents a primary target of efforts made by a very
active scientific community, whose richness and spread grow over time. The most powerful
tool to gather information about the inner structure of the proton is the so-called language
of parton correlators, that allows us to address the distribution of proton elementary
constituents (quark and gluons, generally called partons) in space, momentum and energy.
Of special interest are the transverse-momentum-dependent (TMD) parton distribution
functions (PDFs), which permit us to unravel the proton content in a three-dimensional
representation, namely via a faithful 3D tomographic imaging. A TMD-like description
is needed to find an answer to more fundamental questions, such as understanding the
origin of the proton spin [25].

From a physical viewpoint, TMD PDFs (or simply TMDs) come out as 3D general-
izations of 1D collinear PDFs, since they account for struck-parton transverse-momentum
effects. A TMD description is required in order to correctly depict observables sensitive to
the intrinsic transverse motion of colliding partons. The latter, quantified by TMDs, leaves
its imprint on transverse momenta of particles tagged in the final state. It can be accessed
through experimental measurements of semi-inclusive final states featuring observed trans-
verse momenta or transverse imbalances much smaller than the reference hard scale(s). To
achieve a complete tomographic reconstruction of the proton, the information encoded in
TMDs needs to be complemented by the one carried by another family of 3D maps: the
generalized parton distributions (GPDs). While TMDs the give us access to the proton 3D
content in momentum space, GPDs permit us to unveil the 3D dynamics of partons in the
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position space. More in particular, information on the transverse position of a parton in the
parent hadron is gathered from exclusive reactions with the proton being deflected at small
angles. GPDs quantify the parton transverse-spatial distribution via a Fourier transform of
the transverse momentum transferred to the proton.

Formally, both TMDs and GPDs are projections of more general distributions, defined
in terms of the fully unintegrated and off-diagonal correlator. These quantities are known
as generalized TMDs (GTMDs) and they are often referred as “mother” distributions of
TMDs and GPDs [26–36]. However, beyond this purely formal link, no general relations
between TMDs and GPDs are known. Some nontrivial connections have been found
only via models [37–39]. Striking examples are the so-called chromodynamic lensing
relations [37,40–42] connecting time-reversal effects in single-spin asymmetries and spatial
distortions of the GPDs in the impact-parameter space (see also Ref. [43]). These functional
relations do not hold anymore when higher Fock states and/or higher-order diagrams are
considered in models [39,44–46].

2. TMD Gluon Distribution Functions

Unpolarized and polarized gluon TMDs at twist-2 (leading twist) for a spin-1/2 target
were identified for the first time in Refs. [47] (see also Refs. [33,39]). TMD distributions
are sensitive to the resummation of logarithmically enhanced terms proportional to the
observed transverse momentum. While our knowledge of this perturbative contribution
is well known [48–50], the genuine nonperturbative TMD content is a largely uncharted

territory. The distribution of linearly polarized gluons in an unpolarized nucleon, h
⊥g
1 , is a

key ingredient to explain spin effects observed in unpolarized-hadron collisions [51–56],

whose size is expected to grows in the low-x domain [57,58]. The Sivers function, f
⊥g
1T , tells

us about the distribution of unpolarized gluons in a transversely polarized nucleon. It
plays a core role to explain transverse-spin asymmetries rising in collisions of polarized
hadrons. Remarkably, the Sivers function can be accessed via unpolarized electron-nucleon
scatterings thanks to its connection with the Odderon in the forward-QCD limit [59].

TMDs turn out to be process-dependent due to the presence of transverse gauge links
(Wilson lines) [60–62]. Whereas quark TMDs depend on [±] staple links that determine
the direction of future- or past-pointing Wilson lines, gluon TMDs exhibit a more involved
gauge-link dependence, since they are sensitive to combinations of two or more staple links.
As a consequence, they feature a more complicated level of modified universality.

There exist two principal gluon gauge links, known as f -type and the d-type structures.
In the context of low-x investigations they are often called Weiszäcker–Williams and dipole
links, respectively. The antisymmetric fabc QCD color structure is typical of the f -type time-
reversal odd (T-odd) gluon-TMD correlator, while the symmetric dabc structure determines
the d-type T-odd one. This makes f -type (d-type) gluon TMDs dependent on [±,±] ([±,∓])
gauge-link combinations. Much more intricate, box-loop structures rise along with reactions
in which multiple color exchanges connect both the initial and final state [63]. This fact,
however, bring to violations of the TMD factorization [64,65]).

More in general, a rigorous proof of the validity of TMD factorization relies on estab-
lishing proper factorization theorems affording us a precise definition of initial-scale and
evolved densities, and thus defining their universality properties and evolution equations.
These theorems needs to be proven process by process. Up to now, TMD theorems have
been obtained for a few reactions sensitive to quark TMDs: Drell–Yan and semi-inclusive
deep inelastic scattering at low observed transverse momenta [66,67], as well as lepton anni-
hilations into two almost back-to-back hadrons [66–68]. The factorization for the inclusive
production of single hadrons has been discussed only recently [69–71].

Conversely, proper factorization theorems for gluon-TMD sensitive processes are
almost completely lacking, so that factorization is usually assumed in phenomenological
studies. TMD factorization is expected to hold for gluon-induced color-singlet final states,
such as Higgs-boson hadroproduction [53,72,73]. Quite recently, a factorization formula
was derived for the inclusive hadroproduction of pseudoscalar quarkonium states [74]
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in the color-singlet channel [75–78]. This led to an enhancement of the description of
the quarkonium production mechanism that now includes TMD-like inputs, known as
shape functions [74,79,80]. However, the bound-state nature of a quarkonium particle,
instead of a point-like object, makes it difficult to extend that result to gluon-TMD studies
through other quarkonia, such as vectors [79,81–84].

From a phenomenological perspective, the gluon-TMD field is an almost uncharted ter-
ritory. First studies of the unpolarized and the Sivers TMDs were performed Refs. [73,82,83]
and [85–88], respectively. Thus, exploratory analyses of gluon TMDs by means of flexi-
ble for the nonperturbative content of these densities are required. Progresses along this
direction were proposed in the spectator-model approach [47,89,90], which was formerly
adopted to model quark TMDs [39,91–95]. In the gluon-TMD case, it assumes that the struck
nucleon with mass mH and momentum κH emits a gluon with momentum κ, transverse
momentum κT and longitudinal fraction x. The remainders are effectively modeled by and
effective on-shell particle with mass mX and spin 1/2. Within this framework, taken and
at the diagrammatic tree level, all the initial energy-scale twist-2 TMDs can be calculated.
Spectator-model gluon T-even functions were recently resented in Refs. [57,96,97].

In particular, the nucleon-gluon-spectator vertex was modeled as

Υ
µ
ab = δab

[

η1(p2) γ µ + η2(p2)
i

2mH
σ µνκν

]

, (1)

where the η1,2 form factors are two dipolar functions of κ
2
T . In our model the spectator mass

is not a fixed parameter, but it ranges from mH to +∞ and it is weighted through a spectral

function Ξ
[s.m.]
X (mH), which reproduce both the small- and the moderate-x behavior of

gluon collinear PDFs. The analytic expression of the spectral function contains seven
parameters and reads

Ξ
[s.m.]
X (mH) = µ2a

(

A

B + µ2b
+

C

πσ
e
−

(mH−mD )2

σ2

)

. (2)

In Ref. [96] model parameters were fixed by making a simultaneous fit of unpolarized
and helicity TMDs, f

g
1 and g

g
1 , to their collinear counterparts from NNPDF [98,99] at the

initial scale of µ0 = 1.64 GeV. We made use of the replica method [100,101] to determine the
statistical uncertainty of our fit. Further details on the fitting procedure and quality can be
found in Ref. [96]. Since our tree-level approximation does not depend on the gauge link,
our model T-even TMDs are process-universal. A preliminary application of our T-even
gluon TMDs to the hadroproduction of pseudoscalar quarkonium states were presented
in Ref. [96], while the extension of our framework to the T-odd case was discussed in
Refs. [102–106].

With the aim of unveiling the 3D dynamics of gluons inside the proton, we investigate
the following distributions which describe the 2D κT-density of gluons for distinct combi-
nations of their polarization and the nucleon spin. For an unpolarized proton, we identify
the unpolarized distribution

xF
g
u (x, κx, κy) = x f

g
1 (x, κ

2
T) (3)

as the distribution of an unpolarized gluon with x and κT , whereas the Boer–Mulder
distribution

xF g
↔(x, κx, κy) =

x

2

[

f
g
1 (x, κ

2
T)−

κ2
y − κ2

x

2m2
H

h
⊥g
1 (x, κ

2
T)

]

(4)

stands for the density of a linearly-polarized gluon in the transverse plane with x and κT .
Contour plots in Figure 1 exhibit κT-patterns of xF densities in Equations (3) and (4) at

µ0 = 1.64 GeV and x = 10−3 for an unpolarized proton moving towards the reader. For the
sake of simplicity, results are shown for the most representative replica, namely the number
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11. The color code quantifies the weight of the oscillation of each density along the κx,y

directions. The unpolarized distribution in Equation (3) possesses a cylindrical symmetry,
while the Boer–Mulders density in Equation (4) has a dipolar behavior. The departure
from the cylindrical symmetry is larger at low-x, namely in a regime where the Boer–
Mulders function is expected to give a relevant contribution [57,58]. To better visualize
these oscillations, we present in Figure 2 ancillary, slice panels portraying the corresponding
distributions at κy = 0 and for x ranging from 10−1 down to 10−3. We clearly observe that
both our functions increase as x lowers. This is in line with the well-known pattern in x of
collinear PDFs, from which we have extracted the small-x behavior via our fit procedure.

xℱg

u
(x = 10−3, κ

x
, κ

y
) / GeV2

xℱg

↔(x = 10−3, κ
x
, κ

y
) / GeV2
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/
G
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V

κ
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/ GeV κ
x

/ GeV

Figure 1. 3D tomographic reconstruction of the unpolarized (left) and Boer–Mulders (right) gluon

TMD distributions in the proton, as functions of the gluon transverse momentum, at the initial energy

scale, µ0 = 1.64 GeV, and for x = 10−3. Plots refer to replica 11 .
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Figure 2. Ancillary, slice plots for the unpolarized (left) and Boer–Mulders (right) gluon TMD

distributions in the proton, as functions of κx, while κy = 0, at the initial energy scale, µ0 = 1.64 GeV,

and for x ranging from 10−1 down to 10−3.

From an analytic perspective, in our model the f
g
1 /h

⊥g
1 ratio is asymptotically constant

in the x → 0+ limit. This consistently matches the prediction genuinely, coming from
the linear Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution [107–110], that at small-x
the “number” of unpolarized gluons equals the linearly-polarized one, up to higher-twist
effects [111–116]. In this way, a first intersection point between our model gluon TMDs and
the high-energy dynamics has been revealed.

3. Prospects

We reported progresses on accessing the core of the proton via TMD gluon distribu-
tions. The presented results are relevant to explore the multidimensional structure of the
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proton, where the intrinsic motion of partons plays a key role to describe observables sensi-
tive to different combinations of parton and hadron spins. In the low-x domain, a key role is
played by the connections between TMD and BFKL effects. The high-energy resummation
allows us to shed light on the proton structure at small-x via single-forward emissions.
In particular, it gives us direct access to the unintegrated gluon distribution (UGD) in the
proton, whose evolution is regulated by the BFKL Green’s function. Pioneering analy-
ses of the UGD were performed through the study of: deep-inelastic-scattering structure
functions [117,118], light vector-meson helicity amplitudes and cross sections [58,119–132],
forward Drell–Yan [133–136] and single-forward quarkonium [137–145] final states. Start-
ing from the information on the gluon motion carried by the UGD, determinations of
small-x improved collinear PDFs were obtained [98,146,147]. The connection between

the unpolarized and linearly polarized gluon TMDs, f
g
1 and h

⊥g
1 , and the UGD was in-

vestigated in Refs. [57,148–150]. Future studies of the proton structure at new-generation
colliding machines will benefit from the recently discovered property of natural stability of
the high-energy resummation [151] (see also Refs. [152–212]). Finally, to get a complete 3D
picture of the proton, the information about small-x gluon dynamics needs to be comple-
mented by the valence-quark one at moderate- and large-x. A key role along this direction
will be played by new data collected via future fixed-target programs, such as the JLab
CLAS12 [213–220] and the LHC one [221–225] with possible polarized targets [226–228].
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