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Predictive power of a model is tested by
experimental measurements, which testify its
credibility to be used as a benchmark. How-
ever, phenomenological models with a few pa-
rameters employed to reproduce a set of ex-
perimental data are not free of errors. It is
often the case that an objective function χ2 is
minimized to optimize the set of parameters,
which is defined as

χ2(p) =
1

Nd −Np

Nd∑
i=1

(
Oexpi −Othi (p)

∆Oi

)2

,

(1)
where, Nd and Np are the number of experi-
mental data points and the number of fitted
parameters, respectively. Oexpi andOthi (p) are
the experimental and the corresponding theo-
retical values for a given observable. ∆Oi is
the adopted error which is given by

∆Oi = ∆Othi + ∆Oexpi + ∆Onumi . (2)

The terms in the right hand side are theo-
retical, experimental and numerical errors re-
spectively. Once the minimum value of the
χ2 (= χ2

0) corresponding to the optimized pa-
rameter set p (= p0) is obtained, one can cal-
culate errors on different parmaters as well as
observables by employing covariance analysis
[1]. We have employed this method of covari-
ance analysis to examine the merits of statis-
tical model for fission.

In its primitive form, a standard statisti-
cal model (SM) could reproduce the exper-
imental observables like evaporation residue
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(σER), fission cross sections (σfiss), neutron
multiplicity (νpre) data by tuning its parame-
ters (viz. level density parameters at ground
state and saddle, a scaling factor for the fis-
sion barrier, a pre-saddle delay and saddle-
to-scission transition time) on an ad-hoc ba-
sis [2, 3]. But, eventually after incorporation
of parameters like shell correction (in level
density and fission barrier), orientation degree
of freedom (Kor), collective enhancement in
level density (Kcoll) and a suitable dissipation,
the σER, σfiss and νpre are simultaneously re-
produced for asymmetric reactions populating
compound nucleus (CN) of mass ACN up to
∼ 200 [4], which had been hitherto uncompre-
hended. The pre-saddle dissipation strength
(β) was the only free parameter in that analy-
sis. There were several other parameters (e.g.
parameters that describe the damping of shell
correction (ED) and collective modes (Ecr))
which were taken from independent studies as-
suming that those values would be same in the
CN mass region (ACN ∼ 170 − 224) and dif-
ferent excitation energies (of CN).

So, it was of paramount importance to do
an independent error analysis treating β, ED,
Ecr and ∆E (width parameter of the Fermi
function defining the collective mode) as free
parameters and check whether the values kept
fixed, would remain similar in the CN mass
ACN ∼ 200 region at all and they correspond
to a global minima or not and to put error bars
to the predicted values of the observables.

In the present analysis, the model-I does
not take the effects of Kor and Kcoll into ac-
count whereas model-II does. So, while only
β and ED are varied in case of model-I, β,
ED, Ecr and ∆E are treated as free parame-
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TABLE I: Observables O of different nuclei, adopted errors on them (∆Oi), their experimental values
(Oexp

i ) and the ones (Oth
i ) obtained for model-I and II.

Reactions CN E∗ O Oexp
i Ref. ∆Oi Oth

i
model-I model-II

16O+154Sm 170Yb
107.0 σER 1260±200 [5] 200.0 1316.50±11.30 1324.87±7.49
107.0 σfiss 40±4 [5] 15.0 38.32±9.52 21.32±2.91
120.8 νpre 4.4±0.15 [6] 1.0 3.66±0.28 4.40±0.66

16O+176Yb
192Pt

72.97 σER 927±129 [7] 129.0 1034.14±2.73 1036.87±3.54
99.98 νpre 4.4±0.5 [8] 1.0 3.37±0.15 4.35±0.40

16O+184W 200Pb
72.41 σER 557±21 [9] 200.0 812.53±30.99 611.46±67.89
72.41 σfiss 398±6 [9] 100.0 190.01±28.69 394.50±72.84
195.8 νpre 7.7±0.3 [10] 2.0 7.16±0.84 9.16±0.69

TABLE II: The optimised parameters in different
models and their correlated errors. χ2 per degree
of freedom is also mentioned.

Models Parameters
β ED Ecr ∆E

(χ2) (×1021s−1) (MeV) (MeV) (MeV)

I 1.21±0.40 42.62±1.55 - -
(1.19)

II 1.98±0.43 51.08±36.59 80.10±19.00 10.37±6.95
(1.30)
others 2-4 [11–13] 18.5 [14] 40-60 [16, 17] 10 [16]

28.57 [15]

ters in model-II, to investigate the correlations
among them and their influences on the ob-
servables. The different experimental observ-
ables and adopted errors on them along with
their theoretically obtained values for the re-
actions (16O+154Sm, 16O+176Yb, 16O+184W)
populating CNs (170Yb, 192Pt, 200Pb) used for
analysis are mentioned in Table I. The opti-
mized parameters, their associated errors, the
χ2 values and their optimized values reported
elsewhere are mentioned in Table II for com-
parison.

The damping of collective enhancement
(Ecr) with excitation energy, being compara-
ble to the damping of the shell effects i.e. ED,
has definitely an influence on the production
cross section [16]. Apparently, from Table I
and II, the optimized parameters are found
to be within their reasonable limits. Model-
II gives a better agreement with the mea-
sured data. A detailed covariance analysis
with more data points, more SM parameters
and more events, is underway.
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