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Abstract General expressions for one-loop contributions
associated with lepton-flavor violating decays of the stan-
dard model-like Higgs boson h → e±

b e
∓
a and gauge boson

Z → e±
b e

∓
a are introduced in the unitary gauge. The results

are used to discuss these decays as new physics signals in
a minimal left-right symmetric model containing only one
bidoublet Higgs and a SU (2)R Higgs doublet accommodat-
ing data of neutrino oscillations and (g−2)μ. The numerical
investigation indicates that some of these decay rates can
reach near future experimental sensitivities.

1 Introduction

Lepton flavor violating (LFV) decays, like those of charged
leptons (cLFV) eb → eaγ , the standard model-like Higgs
boson (LFVh) h → ebea , and the neutral gauge boson
(LFVZ ) Z → ebea , are hot objects of experimental searches
[1–6]. Although these decays do not appear in the stan-
dard model (SM), their existence is predicted by the LFV
sources appearing in many models beyond the SM (BSM),
such as minimal SM extensions guaranteeing neutrino oscil-
lation data [7,8]. Along with updates of the experimental
data, LFV decays of h and Z , as promising signals of new
physics, were indicated in various BSMs. On the other hand,
the recent experimental results of charged lepton anomalies
aea ≡ (g−2)ea/2 show a large deviation from the SM, which
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often supports regions of parameter space predicting large
LFV decay rates, especially for the BSM accommodating
neutrino oscillation data. Therefore, a combination of simul-
taneous studies of the above LFV decays and the (g − 2)ea
data in BSMs accommodating the neutrino oscillation data
is beneficial for searching for allowed regions of the param-
eter space of the models. To the best of our knowledge, in
addition to the analytical formulas for one-loop contributions
to cLFV decays and (g − 2)ea anomalies [9,10], which can
generally be applied to a large class of BSMs, the one-loop
contributions to LFVh and LFVZ decay amplitudes were
introduced in specific SM extensions. Namely, various dis-
cussions on these LFV decays of h [11–28] and Z [29–43] as
signals of new physics originating from loop contributions.
On the other hand, BSMs consisting of both heavy seesaw
neutrinos and right-handed gauge bosons, such as the left-
right (LR) symmetric models [44–49], can predict compli-
cated one-loop contributions to the LFV decay amplitudes.
Phenomenology of these LR models including the (g−2)e,μ
and cLFV decays has been discussed recently [50–54].

Therefore, concrete studies of LFVh and Z decays will be
more useful for determining the allowed regions of parameter
space that are not excluded by experimental constraints. Our
main aim is to introduce a general complete class of one-
loop contributions for LFV decay amplitudes calculated in
the unitary gauge. We will use these results to discuss in
detail the correlations among LFV decay rates and (g − 2)μ
in the LR model discussed in Ref. [54].

The paper is organized as follows. In Sect. 2, we review
the one-loop contributions to decay amplitudes eb → eaγ
and (g − 2)e,μ and provide general one-loop contributions
to decay amplitudes h → e±

a e
∓
b and Z → e±

a e
∓
b , which

are derived using the unitary gauge. In Sect. 3, we deter-
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mine analytic formulas for one-loop contributions to LFV
decay rates, which are used to study the allowed regions of
the parameter space that guarantee simultaneously the neu-
trino oscillation data, LFV constraints, and 1σ deviation of
(g − 2)μ data from the SM prediction. Section 4 summa-
rizes important results. Finally, three appendices are used to
provide more detailed notations of Passarino–Veltman (PV)
functions, precise expressions of relevant one-loop formulas,
and the Higgs sector of the LRIS model.

2 General one-loop formulas

2.1 cLFV decays eb → eaγ and (g − 2)ea

The one-loop contributions to cLFV decay amplitudes and
aea are available [9,10,55,56], where calculations were per-
formed in both gauges ’t Hooft–Feynman and unitary for
diagrams consisting of gauge boson exchanges. We adopt the
following Lagrangian parts playing the roles of LFV sources
discussed in this work [10]

LFeS =
∑

F,S

3∑

a=1

F(gLaFS PL + gR
aFS PR)ea S + h.c., (1)

LFeV =
∑

F,V

3∑

a=1

Fγ μ(gLaFV PL + gR
aFV PR)eaVμ + h.c.,

(2)

where the fermion F and the boson B = Vμ, S have electric
charges QF and QB , and masses mF and mB , respectively.
This means that Q̂B = QB and Q̂B∗ = −QB , therefore the
conventions B ≡ B+QB and B∗ ≡ B−QB are used hereafter.
Two Eqs. (1) and (2) are consistent with those introduced
in Ref. [9]. Moreover, we adopt the Feynman rule that the
photon always couples with two identical physical particles
[9], as shown in Table 1,

where �μνλ(p0, p+, p−) = gμν(p0 − p+)λ + gνλ(p+ −
p−)μ+gλμ(p−− p0)ν is the standard form with ∂μ = −i pμ.
Here, pμ = p0,± are incoming momenta into the relevant
vertex consisting of a neutral, and two charged conjugated
gauge bosons V 0 (= Aμ, Zμ), B, and B∗, respectively. The
Ward Identity forbids the tree-level couplings of a photon
with two different physical states [56]. In the unitary gauge,
the one-loop contributions to the decay amplitudes eb → eaγ
and aea are shown in Fig. 1.

Previous calculations in the unitary gauge were per-
formed, including approximate formulas with heavy gauge
boson exchanges [10], or exact ones [56] expressed in terms
of the PV functions [57], which are convenient for com-
putation using numerical packages such as LoopTools [58].
They are also consistent with the calculation in the ’t Hootf–

Feynman (HF) gauge based on the particular assumption of
the Goldstone boson couplings [9], where the form factors
are given in Appendix B. Useful transformations between
different notations used in previous works are given in Ref.
[56].

We note here that two Eqs. (1) and (2) contain general
LFV sources generating 1-loop contributions to other LFV
processes, including the LFVh and LFVZ we focus on in this
work. The most attractive LFV source comes from the active
neutrino oscillation data, the evidence of the LFV source con-
firmed by experiments [59–61]. Especially the heavy neutri-
nos generating active neutrino masses and mixing through
the seesaw mechanism have couplings with forms given in
two Eqs. (1) and (2). Usually, only the cLFV experimental
data of μ → eγ are considered as the strictest constraints
on the allowed regions of the parameter space, successfully
explaining the (g−2)e,μ data [40,62–64]. Recent discussions
on ISS extensions of the 3-3-1 models suggest that the decay
τ → μγ may result in stricter constraints on (g − 2)μ data
than that of the decay μ → eγ [24,40,65]. This suggests that
the regions of parameter space giving large one-loop contri-
butions to (g−2)μ may also be affected by the experimental
data of LFVh and LFVZ decays. We will discuss this in detail
in the LRIS model [54].

2.2 The LFV decays Z → e±
b e

∓
a and h → e±

b e
∓
a

Unlike photon couplings, the gauge boson Z and neutral
SM-like Higgs boson h can couple two different physical
particles. In particular, the triple couplings of Z relating to
one-loop contributions to the decay amplitude Z → e±

b e
∓
a

are generally given in Table 2.
The triple self-couplings of Z are included in the kinetic

parts of gauge bosons. The couplings of Z with fermions
are included in the fermion kinetic Lagrangian. The triple
couplings of Z with two bosons are included in the covari-
ant kinetic Lagrangian of scalar multiplets RS , LS

kin =(
DμRS

)†
(DμRS), where Dμ = ∂μ − i Pμ. If we denote that

(∂μR
†
S)P

μRS ≡ ∑
V,S′,S gV S∗S′(∂μS∗)VμS′, then it results

in the following part for V − S − S′ couplings

LV SS′ =
∑

V,S,S′
igV S∗S′

[−(∂μS
∗)S′ + S∗(∂μS

′)
]
Vμ + H.c.

=
∑

V,S,S′

[
gV S∗S′(pS′μ − pS∗μ)S∗S′Vμ

+g∗
V S∗S′(pSμ − pS′∗μ)SS′∗V ∗μ

]
, (3)

where the rules used to transform into the momentum space
are (∂μB) = −i pBμB with B = S, S′, S∗, S′∗, and all
momenta are incoming vertex conventionally. The LFVZ
and LFVh decays have couplings ZSk Sl and V Sh, respec-
tively. The notations show that g∗

V S∗S′ = gV S′∗S . The cou-

123



Eur. Phys. J. C          (2024) 84:1262 Page 3 of 21  1262 

Table 1 Feynman rules for cubic couplings of photon Aμ

Vertex Coupling Vertex Couplings Vertex Couplings

Aμ(p0)V ν(p+)V ∗λ(p−) −ieQV�μνλ(p0, p+, p−) AμS(p+)S∗(p−) ieQS(p+ − p−)μ AμFF ieQFγμ

Fig. 1 One-loop contributions to the decay amplitudes eb → eaγ and (g − 2)ea

Table 2 Feynman rules for cubic couplings of Zμ with conventions defined in Table 1

Vertex Coupling Vertex Couplings

Zμ(p0)V ν(p+)V ′∗λ(p−) −iegZV V ′�μνλ(p0, p+, p−) ZμS′∗(p−)S(p+) iegZS′∗S(p+ − p−)μ

SVμ∗Zν iegSZV gμν S∗VμZν ieg∗
SZV gμν

ZμFF ′ ieγμ

(
gLZFF ′ PL + gRZFF ′ PR

)
ZμF ′F ieγμ

(
gL∗
ZFF ′ PL + gR∗

ZFF ′ PR
)

plings in the second row of Table 2 are derived from the
covariant part containing at least one neutral Higgs compo-
nent with non-zero vacuum expectation values (vev), namely
PμRS → Vμ〈S0〉 + V ′

μS. Such couplings do not contain
momentum, hence it is easy to determine that

LSV V ′ =
∑

S,V,V ′
gSVV ′gμνSV

μV ′∗ν + H.c.,

which corresponds to the Feynman rules in the second row
of Table 2 for Z = V ′ 	= V . We will identify V ′μ = W+μ

for consistency with the SM notation when studying certain
BSMs.

The one-loop Feynman diagrams for LFVZ decays are
shown in Fig. 2.

We focus only on the unitary gauge so that particles in
all diagrams are physical. The effective amplitude for the
LFVZ decays Z → e+

b (p2)e−
a (p1) is written following the

notations [30,37,40]:

iM(Z → e+
b e

−
a ) = ie

16π2 ua
[
/ε (āl PL + ār PR)

+(p1.ε)
(
b̄l PL + b̄r PR

)]
vb, (4)

where εα(q) is the polarization of Z and ua(p1), and vb(p2)

are Dirac spinors of e−
a and e+

b . All form factors āl,r and b̄l,r
receive contributions from one-loop corrections. The external
on-shell gauge boson Z gives q.ε = 0, leading to p2.ε =
−p1.ε. The on-shell conditions of the final leptons and Z
boson are p2

1 = m2
1 = m2

a , p2
2 = m2

2 = m2
b, and q2 = m2

Z .
The respective partial decay width is

�(Z → e+
b e

−
a ) =

√
λ

16πm3
Z

×
( e

16π2

)2

×
(

λM0

12m2
Z

+ M1 + M2

3m2
Z

)
, (5)

where λ = m4
Z + m4

b + m4
a − 2(m2

Zm
2
a + m2

Zm
2
b + m2

am
2
b),

and

M0 = (m2
Z − m2

a − m2
b)
(
|b̄l |2 + |b̄r |2

)
− 4mambRe

[
b̄l b̄

∗
r

]

− 4mbRe
[
ā∗
r b̄l + ā∗

l b̄r
]− 4maRe

[
ā∗
l b̄l + ā∗

r b̄r
]
,

M1 = 4mambRe
[
āl ā

∗
r

]
,

M2 =
[

2m4
Z − m2

Z

(
m2

a + m2
b

)
−
(
m2

a − m2
b

)2
]

123
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Fig. 2 One-loop contributions to the decay amplitudes Z → e+
b e

−
a in the unitary gauge

×
(
|āl |2 + |ār |2

)
. (6)

The total form factors consist of all the particular one-loop
contributions originating from the diagrams given in Fig. 2.
They are divided into three parts with different virtual parti-
cle exchanges in the loops: pure gauge bosons, pure scalars,
and the appearance of both gauge bosons and scalars. The
respective contributions are listed as follows

āL ,R = ā(1+2+7+8)
L ,R + ā(5+6+9+10)

L ,R + ā(3+4)
L ,R ,

b̄L ,R = b̄(1+2+7+8)
L ,R + b̄(5+6+9+10)

L ,R + b̄(3+4)
L ,R ,

ā(1+2+7+8)
L ,R =

∑

V,V ′,F
āFV V ′
L ,R +

∑

V,F,F ′
āV FF ′
L ,R +

∑

V,F

āFV
L ,R,

b̄(1+2+7+8)
L ,R =

∑

V,V ′,F
b̄FV V ′
L ,R +

∑

V,F,F ′
b̄V FF ′
L ,R +

∑

V,F

b̄FVL ,R,

ā(5+6+9+10)
L ,R =

∑

S,S′,F
āFSS′
L ,R +

∑

S,F,F ′
āSFF ′
L ,R +

∑

S,F

āFS
L ,R,

b̄(5+6+9+10)
L ,R =

∑

S,S′,F
b̄FSS

′
L ,R +

∑

S,F,F ′
b̄SFF ′
L ,R +

∑

S,F

b̄FSL ,R,

ā(3+4)
L ,R =

∑

S,V,F

(
āFSV
L ,R + āFV S

L ,R

)
,

b̄(3+4)
L ,R =

∑

S,V,F

(
b̄FSVL ,R + b̄FV S

L ,R

)
, (7)

where we omit the index (ab) for simplicity, namely �X
L ,R ≡

�
(ab)X
L ,R for all X = FVV ′, . . . . The analytical formulae of

the form factors given in Eq. (7) were calculated by hand
in the unitary gauge and cross-checked via the form pack-
age [66]. The results are collected in Appendix B, where all
one-loop contributions are introduced in terms of the PV-
functions consistent with those defined in LoopTools [58].

They will be used for the specific discussions in the LRIS
model framework presented in Sect. 3. Apart from that, the
analytic forms of the FV-functions in the limit ma = mb = 0
were introduced in Ref. [14], where it was shown that they
could be used approximately without using LoopTools [67].

The couplings of the SM-like Higgs boson h related to
one-loop contributions to the LFVh decays are generally
given in Table 3.

Although the general one-loop formulas related to gauge
boson exchanges have been determined in many works, the
diagrams arising from the hSV couplings were first discussed
in Ref. [14], for a 3-3-1 model including simple analytical
forms used for numerical evaluations without the need for
numerical packages such as LoopTools. These diagrams were
also mentioned in the 2HDM, along with studying the cLFV
and LFVZ decays, with or without (g − 2)ea anomalies [25,
40]. A class of general one-loop analytic formulas for LFVh
decay amplitudes was given in Ref. [68], which are applicable
only to the ’t Hooft–Veltman gauge. On the other hand, the
general LFV gauge couplings with non-zero gR

aFV 	= 0 given
in Eq. (2) have not been mentioned before. The one-loop
Feynman diagrams for LFVh decays are shown in Fig. 3.

The effective Lagrangian of the LFVh decay h → e±
a e

∓
b

is

LLFVh = h
(
�

(ab)
L ea PLeb + �

(ab)
R ea PReb

)
+ H.c.,

where �
(ab)
L ,R arise from loop contributions. The respective

partial decay width in the limit mh � ma,b is [12]

�(h → eaeb) ≡ �(h → e−
a e

+
b ) + �(h → e+

a e
−
b )

� mh

8π

(
|�(ab)

L |2 + |�(ab)
R |2

)
. (8)
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Table 3 Feynman rules for cubic couplings of the SM-like Higgs boson h

Vertex Coupling Vertex Couplings

hVμV ′∗ν ighV V ′gμν hSS′∗ −iλhSS′

VμS∗(p−)h(p0) igV Sh(p0 − p−)μ V ∗μS(p+)h(p0) ig∗
V Sh(p+ − p0)μ

hFF ′ −i
(
gLhFF ′ PL + gRhFF ′ PR

)
hF ′F −i

(
gL∗
hFF ′ PR + gR∗

hFF ′ PL
)

Fig. 3 One-loop contributions to the decay amplitudes h → e+
b e

−
a in the unitary gauge

The corresponding branching ratio is Br(h → eaeb) =
�(h → eaeb)/�total

h where �total
h � 4.1 × 10−3 GeV [69]

with q2 ≡ (p1 + p2)
2 = m2

h . Similar to the case of discus-
sion on the LFVZ decays, the particular formulas one-loop
contributions to �

(ab)
L ,R are given in Appendix B, namely

�
(ab)
L ,R = �

(1+2+7+8)
L ,R + �

(5+6+9+10)
L ,R + �

(3+4)
L ,R ,

�
(1+2+7+8)
L ,R =

∑

F,V,V ′
�FVV ′

L ,R +
∑

F,F ′,V
�V FF ′

L ,R +
∑

F,V

�FV
L ,R,

�
(5+6+9+10)
L ,R =

∑

F,S,S′
�FSS′

L ,R +
∑

F,F ′,S
�SFF ′

L ,R +
∑

F,S

�FS
L ,R,

�
(3+4)
L ,R =

∑

F,S,V

(
�FSV

L ,R + �FV S
L ,R

)
, (9)

where we omit the index (ab) for simplicity, namely �X
L ,R ≡

�
(ab)X
L ,R for all X = FVV ′, . . . We note here important prop-

erties of the neutral boson couplings to fermions, namely,
the two vertices h F̄ F ′ and Z F̄ F ′ may have different ver-
tex factors from the respective Lagrangian parts. On the
basis of the general Feynman rules for four-component
spinors of fermions discussed in Ref. [70], two classes of
the Lagrangian parts corresponding to the appearance of the
Dirac or Majorana spinors are considered here. In particular,

the Lagrangian for at least one Dirac spinor is as follows:

LD
Z f f = e

∑

F,F ′

[
Fγμ

(
gLZFF ′ PL+gR

ZFF ′ PR

)
F ′Zμ+h.c.

]
,

LD
h f f = −

∑

F,F ′

[
F
(
gLhFF ′ PL + gR

hFF ′ PR

)
F ′h + h.c.

]
.

(10)

Various available BSMs consist of Dirac fermions and scalars
to accommodate the (g − 2)μ anomaly data, such as vector-
like leptons [10,71] and SM quarks in leptoquark models
[72]. Further studies to explain successfully simultaneous
(g − 2)e data with minimal Dirac fermion couplings with
different charged leptons may result in promising LFVh and
LFVZ decay signals.

In contrast, the Lagrangian for vertices consisting of two
Majorana spinors F = (F)c and F ′ = (

F ′)c is

LM
Z f f = e

2

∑

F,F ′
Fγμ

(
gLZFF ′ PL − gL∗

ZFF ′ PR

)
F ′Zμ,

LM
h f f = −1

2

∑

F,F ′
F
(
gLhFF ′ PL + gL∗

hFF ′ PR

)
F ′h, (11)

where the Majorana conditions give gR
hFF ′ = gL∗

hFF ′ and
gR
ZFF ′ = −gL∗

ZFF ′ = −gLZF ′F . The usual conventions were

123
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used previously gLZFi Fj
∝ qi j ,Ci j in Refs. [13,37] and

gLhFi Fj
∝ λhi j , λi j [13], for example. These works considered

F, F ′ ≡ ni , n j as Majorana neutrinos explaining the experi-
mental neutrino oscillation data through the standard seesaw
(SS) or inverse seesaw (ISS) mechanism. After the Feynman
rules are constructed, the same calculations are applicable to
both Dirac and Majorana spinors using the conventions for
four-component spinors [70].

At tree level, we adopt a Lagrangian for the SM-like cou-
plings of Z and h to SM leptons Zebea and hebea in this
model is:

Lnc = eZμ

3∑

a=1

ēaγ
μ [tL PL + tR PR] ea − gma

2mW
δheeheaea,

(12)

in which the SM limit results in the following relations

tR = tSM
R = sW

cW
, tL = tSM

L = s2
W − c2

W

2sW cW
, δhee = 1. (13)

3 The LRIS model and Feynman rules for LFV decays

3.1 Brief review of the LRIS model

The LR symmetry models constructed based on the gauge
group SU (3)c × SU (2)L × SU (2)R ×U (1)B−L have been
widely studied, such as the minimal model [73] with a min-
imal seesaw (MSS) or linear seesaw (LSS) mechanism to
generate neutrino mass and mixing. Another extension of the
LR version (LRIS) was introduced [51–53] with inverse see-
saw (ISS) neutrinos to successfully explain the RD and RD∗
anomalies with a rather light scalar spectrum. The (g−2)e,μ
anomalies were also discussed in LRIS models [54] and
the correlations with the cLFV decay Br(μ → eγ ). It is
therefore interesting to study other LFVZ and LFVh decays
in this model. We summarize here the particle content and
Lagrangian discussed in the above works. The charged oper-
ator is defined as

Q = T L
3 + T R

3 + B − L

2
= T L

3 + Y

2
, (14)

where T L ,R
3 are the generators of SU (2)L ,R , and B and L

are the baryon and lepton numbers of the U (1)B−L group.

The matching condition with SM gives
Y

2
= T R

3 + B − L

2
.

The particle content bases corresponding to the gauge
group SU (3)c × SU (2)L × SU (2)R ×U (1)B−L × Z2 is:

QL =
(
u
d

)

L
∼
(

3, 2, 1,
1

3
,+

)
,

LL =
(

ν

e

)

L
∼ (1, 2, 1,−1,+) ,

QR =
(
u
d

)

R
∼
(

3, 1, 2,
1

3
,+

)
,

LR =
(

ν

e

)

R
∼ (1, 1, 2,−1,+) ,

S1 ∼ (1, 1, 1, 0,−) , S2 ∼ (1, 1, 1, 0,+) ,

φ =
(

φ0
1 φ+

1
φ−

2 φ0
2

)
∼ (1, 2, 2, 0,+) ,

χR =
(

χ+
R

χ0
R

)
∼ (1, 1, 2, 1,+) . (15)

The U (1)B−L charges of S1,2 are consistent with Ref. [50],
guaranteeing the zero electric charges resulting from Eq.
(14). The neutral Higgs components get the following non-
zero vev:

〈φ〉 = diag

(
v1√

2
,

v2√
2

)
, 〈χ0

R〉 = vR√
2
. (16)

The parameter tβ ≡ v1/v2 and v2 ≡ v2
1 + v2

2 will be used
when matching with the SM. We focus on the Yukawa part
of leptons as follows:

−LY =
3∑

i, j=1

[
yLi j L Ri φ

†LL j + ỹLi j L Ri φ̃
†LL j

+ysi j L Ri χ̃R(S2 j )
c + H.c.

]
, (17)

where φ̃ = σ2φ
∗σ2, and χ̃R = iσ2χ

∗. This generates the
charged lepton mass matrixM� = (yLcβ + ỹL sβ)v/

√
2, and

the following neutrino mass matrix after symmetry breaking:

−Lν
mass = νRmDνL + νRM

T
R (S2)

c + μs

2
S2(S2)

c + h.c.

= 1

2

(
(νL)c, νR, S2

)
Mν

(
νL , (νR)c, (S2)

c)T +h.c.,

(18)

where Mν is a symmetric 9 × 9 matrix having the following
ISS form

Mν =
⎛

⎝
O3×3 mT

D O3×3

mD O3×3 MT
R

O3×3 MR μs

⎞

⎠ , mD = v√
2

(
yLsβ + ỹLcβ

)
,

MR = ysT√
2

vR, (19)

where νL = (ν1, ν2, ν3)
T
L , νR = (ν1, ν2, ν3)

T
R, S2 =

(S21, S22, S23)
T . The total mixing matrix is defined as a 9×9

123
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unitary matrix U ν satisfying

U νTMνU ν = M̂ν = diag(mn1, mn2 , ...,mn9)

= diag(m̂ν, M̂N ),

n′
L = U νnL , n′

R = U ν∗nR = U ν∗(nL)c, (20)

where the two left- and right-handed flavor base are n′
L =

(νL , (νR)c, (S2)
c)T , and (n′

L)c = n′
R = ((νL)c , νR, S2)

T ,
nL ,R = (n1, n2, ..., n9)L ,R are Majorana neutrino mass
eigenstates niL ,R = (ni R,L)c. We will use the approximate
form of U ν as follows [24,41]

Uν �

⎛

⎜⎜⎜⎜⎜⎝

(
I3 − R0R

†
0

2

)
Uν

3
i R0√

2
R0√

2

O3×3 − i I3√
2

I3√
2

−R†
0U

ν
3

i√
2

(
I3 − R†

0 R0
2

)
1√
2

(
I3 − R†

0 R0
2

)

⎞

⎟⎟⎟⎟⎟⎠
,

(21)

where

mD = x
1
2
0 MRμ̂

− 1
2

s ξ x̂
1
2
ν U

ν†
3 , (22)

R0 ≡ x
1
2
0 U

ν
3 x̂

1
2
ν ξ†μ̂

− 1
2

s , (23)

MR = M̂R = diag(M1, M2, M3), M̂N = diag(M̂R, M̂R),

(24)

and new conventions are

x0 ≡ max[mn1,mn2 ,mn3]
|(μs)22| � 1,

μ̂s ≡ μs

|(μs)22| , x̂ν ≡ m̂ν

max[mn1,mn2 ,mn3]
. (25)

The ISS condition |m̂ν | � |μs | � |mD| � M1,2,3 gives
x0 � 1 but non-zero. Note that can be considered as the
non-unitary scale of the active neutrino mixing matrix.

Regarding the charged leptons, in general there are two left
and right rotations U �

L ,R diogonalize the lepton mass matrix

M�:

U �†
R M�U �

L = M̂� = diag(me,mμ,mτ ),

eL ,R → U �
L ,ReL ,R . (26)

The Pontecorvo–MakiNakagawa–Sakata (PMNS) matrix
UPMNS relating to the neutrino oscillation data is defined
as UPMNS = U �†

L U ν
3 [74–76]. It can be seen that [54]:

yL =
√

2

vc2β

(
M�cβ − mDsβ

)
,

ỹL = −
√

2

vc2β

(
M�sβ − mDcβ

)
. (27)

The covariant derivative corresponding to bidoublet φ and
doublets of the SU (2)L ,R in the LRIS model are [77]

• For the bidoublet such as φ:

Dμφ = ∂μφ +
3∑

a=1

[
−igL

σ a

2
Wa

Lνφ + igRφ
σ a

2
Wa

R

]
,

(28)

where σ a is the Pauli matrix.
• For SU (2)L ,R doublets such as XL ,R = χR, LiL ,R,

QiL ,R :

DμXA = ∂μXA −
3∑

a=1

igA
σ a

2
Wa

AμXA

− igBL B
′
μ

B − L

2
XA, A = L , R. (29)

Consequently, the kinetic Lagrangian of Higgs multiplets
generating gauge boson masses are:

LH
k = Tr

[
(Dμφ)†(Dμφ)

]
+ (

Dμχ
)† (

Dμχ
)
. (30)

Defining W±
L ,Rμ ≡ (W 1

L ,Rμ ∓ iW 2
L ,Rμ)/

√
2, the mixing

angle of singly charged bosons W − W ′ is θ determined
as t2θ = 2s2βv2/v2

R , leading to the following relations of
W±

L ,Rμ and physical states Wμ and W ′
μ [52]

(
W±

Lμ

W±
Rμ

)
=
(
cθ −sθ
sθ cθ

)(
W±

μ

W ′±
μ

)
, (31)

where we consider the simple case of gL = gR = g2 = e/sW
is the SU (2)L gauge coupling of the SM. In addition, W
is identified with the SM charged gauge boson with mass
mW � gv/2, where v2 = v2

1 + v2
2 = (246 GeV)2. The exact

formulas of these two gauge boson masses are

m2
W = g2v2

4
× (

1 − tθ s2β

)
, m2

W ′ = g2v2
R

4
× c2

θ

(
s2β + tθ

)

c2θ s2β

,

(32)

which result in the specific form of δ2
hee = 1 − tθ s2β , where

δhee was defined in Eq. (12).
The mixing parameters and masses of neutral gauge

bosons are shown as follows:

⎛

⎝
W 3

Rμ

B ′
μ

W 3
Lμ

⎞

⎠ =
⎛

⎝
cζ cϕ − sW sζ sϕ −cϕsζ − cζ sW sϕ cW sϕ

−cϕsW sζ − cζ sϕ sζ sϕ − cζ cϕsW cWcϕ

cW sζ cW cζ sW

⎞

⎠

123
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⎛

⎝
Z ′

μ

Zμ

Aμ

⎞

⎠ , (33)

where tϕ ≡ gBL/g2, sϕ = tW is the condition matching to
the SM gauge couplings to guarantee the massless photon,
and

t2ζ = 2c3
ϕcW v2

c2
ϕv2

(
c2
ϕc

2
W − 1

)+ c2
W v2

R

= 2
(
2c2

W − 1
)3/2

v2

c4
W v2

R + (
4c4

W − 6c2
W + 2

)
v2

,

m2
Z �m2

W

c2
W

, m2
Z ′ � m2

W ′
c2
ϕ

. (34)

The Higgs potential is [52]:

Vh = μ2
1Tr(φ†φ) + μ2

2

[
Tr(φ†φ̃) + Tr(φφ̃†)

]

+ λ1

[
Tr(φ†φ)

]2

+ λ2

[(
Tr(φ†φ̃)

)2 +
(

Tr(φφ̃†)
)2
]

+λ3Tr(φ†φ̃)Tr(φφ̃†)+λ4Tr(φ†φ)
[
Tr(φ†φ̃)+Tr(φφ̃†)

]

+ μ2
3

(
χ

†
RχR

)
+ λ5

(
χ

†
RχR

)2

+ α1Tr(φ†φ)
(
χ

†
RχR

)
+ α2(χ

†
Rφ†φχR)

+ α3(χ
†
R φ̃†φ̃χR) + α4

[
(χ

†
Rφ†φ̃χR) + H.c.

]
. (35)

The physical states corresponding masses and mixing param-
eters of the model were shown previously [52]; therefore, we
do not repeat this in this work. The main results and notations
used in this work are summarized in Appendix C. The SM-
like Higgs boson was also indicated to be consistent with the
experimental results.

3.2 Couplings and Feynman rules for LFV decays in LRIS

The above ingredients lead to the LFV couplings as follows:

L��H =
[
− h

2v
ni
[
λi j PL + λ∗

i j PR

]
n j

−
(

1 + h

v

)
eRM�eL + h.c.

]

−
9∑

i=1

ni
{[
U ν∗
ai

(
yL†sβ − ỹL†cβ

)

ab
cξ

+U ν∗
(a+6)i y

s†
absξ

]
PR

+U ν
(a+3)i

(
yLcβ − ỹL sβ

)

ab
cξ PL

}
ebH

+

+ h.c. + . . . , (36)

L��V = −eAμeaγ
μea

+
[
g2√

2
W+μ

9∑

i=1

niγ
μ
(
cθU

ν∗
ai PL

+sθU
ν
(a+3)i PR

)
ea + h.c.

]

+
[
g2√

2
W ′+μ

9∑

i=1

niγ
μ
(−sθU

ν∗
ai PL

+cθU
ν
(a+3)i PR

)
ea + h.c.

]

+ eZμea

[(
cζ t

SM
L − sζ sW

2cϕc2
W

)
PL

+
(
cζ t

SM
R + sζ (c2

ϕc
2
W − s2

W )

2sW cϕc2
W

)
PR

]
ea

+ e

2
Zμ

2∑

i, j=1

ni
[
gLZi j PL − gLZ ji PR

]
n j + . . . , (37)

where we have used U �
L ,R = I3,

λi j = λ j i =
3∑

c=1

(
mniU

ν∗
ci U

ν
cj + mn jU

ν∗
cj U

ν
ci

)
→ gR∗

hi j

= gLhi j = gδhee
2mW

λi j ,

gLZi j =
3∑

c=1

[
U ν∗
ci U

ν
cj

(
cζ

2cW sW
− sζ sW

2cϕc2
W

)

+U ν∗
(c+3)iU

ν
(c+3) j

sζ
(
c2
ϕc

2
W + s2

W

)

2cϕc2
WsW

]
, (38)

and tξ = vs2β/vR relating to the singly charge Higgs mixing
defined in Appendix C.

It is seen easily that the SM-like Higgs couplings heaeb are
LFV conservative, therefore LFVh decays are loop-induced.
In the numerical investigation, we focus on the case ofM� =
M̂� for simplicity. In addition, the hnn is the same as those
in the previous simple ISS extension of the SM. The same
conclusion holds for the Znn coupling in the limit sζ = 0.
In the LRIS model, the particular couplings corresponding to
Lagrangian parts given in Eqs. (1) and (2), are gL ,R

aFS = gL ,R
ai H+

and gL ,R
aFV = gL ,R

aiW , gL ,R
aiW ′ where

gLai H+ =
√

2cξ

vc2β

3∑

c=1

[
U ν

(c+3)i

(
M̂� − mDs2β

)

ca

]
,

gR
ai H+ =

√
2cξ

vc2β

3∑

c=1

[
U ν∗
ci

(
M̂�†s2β − m†

D

)

ca

123
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Table 4 Vertex factors for SM-like Higgs couplings to charged Higgs and gauge bosons in the LRIS model

Vertex Coupling Vertex Coupling

ghW+W− gmW (1 − s2βs2θ )δ
−1
hee ghW ′+W ′− gmW (s2βs2θ + 1)δ−1

hee

ghW+W ′− gmW s2β

(
s2
θ − c2

θ

)
δ−1
hee

gW+H−h
g
2 cξ sθ

(
c2
β − s2

β

)
gW ′+H−h

g
2 cθ cξ

(
c2
β − s2

β

)

+U ν∗
(c+6)i (M̂R)cat

2
ξ

]
,

gLaiW = g2√
2
cθU

ν∗
ai , gR

aiW = g2√
2
sθU

ν
(a+3)i ,

gLaiW ′ = − g2√
2
sθU

ν∗
ai , gR

aiW ′ = g2√
2
cθU

ν
(a+3)i , (39)

where formulas of yL and ỹL given in Eq. (27) were used.
In the numerical investigation, we will consider the simple
case of mD and R0 with UN = I3 = ξ and the diagonal μ̂s ,
which is enough to guarantee the (g − 2)μ data. The form
factors relating to the one-loop contributions to �aea and
Br(eb → eaγ ) predicted by the LRIS model are shown in
Appendices B1 and C2. The main one-loop contributions to
(g − 2)ea anomalies and LFV decay rates predicted by the
LRIS model originate from the couplings given in Eq. (39),
namely

cLRIS
(ab)R = c(ab)R(H+) + c(ab)R(W ) + c(ab)R(W ′). (40)

The respective one-loop contributions to aea and Br(eb →
eaγ ) originating from the LRIS model are:

aLRIS
ea = − 4ma

e
Re

[
cLRIS
(aa)R

]
− aSM

ea (W ),

Br(eb → eaγ )LRIS = 48π2

G2
Fm

2
b

(
|cLRIS

(ab)R|2 + |cLRIS
(ba)R |2

)

× Br(eb → eaνaνb), (41)

whereaSM
ea (W ) is the one-loop contribution fromW exchange

predicted by the SM.
Feynman rules for couplings of the SM-like Higgs boson

with bosons relating to LFVh decays are shown in Table 4.
The triple coupling λhH+H− of the SM-like Higgs boson

derived from the Higgs potential is:

λhH+H− = v
[(

−2s2
2β(2λ2 + λ3) + 2λ1

)
s2
ξ

+c2
ξ

(
α1+α3+α4s2β+(α2 − α3)

(
s2β + s2

β

))]
.

Feynman rules for the couplings of the gauge boson Z to
charged Higgs and gauge bosons associated with one-loop
contributions to the decay amplitude Z → e+

b e
−
a are col-

lected in Table 5.

Table 5 Feynman rules for couplings of Z to charged Higgs and gauge
bosons

Vertex Coupling

gZH+H− − cζ
(
s2
ξ +2s2

W−1
)

2sW cW
+ sζ

((
s2
ξ +2

)
s2
W−1

)

2sW cW
√

1−2s2
W

gH−W+Z
c2β cξmW sθ

sW cW

(
cζ − sζ s2

W√
1−2s2

W

)

gH−W ′+Z
c2β cθ cξmW

sW cW

(
cζ − sζ s2

W√
1−2s2

W

)

gZW+W−
cζ c2

θ

tW
− s2

θ

(
cζ tW + sζ

√
1 − t2

W /sW

)

gZW ′+W ′− cζ s2
θ t

−1
W − c2

θ

(
cζ tW + sζ

√
1 − t2

W /sW

)

gZW ′+W− , gZW+W ′− −cθ sθ

(
cζ

sW cW
+ sζ

√
1 − t2

W /sW

)

The above results for couplings of the SM-like Higgs
h and Z show that our results are consistent with the SM
results in the limit θ, ζ, ξ ∝ v/vR → 0, corresponding
to the condition that vR � v. Consequently, a number
of couplings are suppressed, namely, gW+H−h , gH−W+Z ,
gZW ′+W− = gZW+W ′− → 0, leading to the weak con-
straint by experiments searching for decays H± → W±h,
H± → W±Z , and W ′± → W±Z . On the other hand, the
nonzero values of these mixing parameters result in nonzero
factors of divergent parts in one-loop contributions to the
LFVh and LFVZ decay amplitudes. Therefore, these one-
loop contributions must be included to guarantee the diver-
gent cancellation requirements in the total decay amplitudes,
even if the finite parts may be tiny. In numerical estimation,
the one-loop contributions from diagrams containing very
heavy gauge boson exchanges such as W ′ are ignored, even
when the couplings hW ′+W ′−, hW±W ′∓, and ZW ′+W ′−
are orders of magnitude of the SM couplings even when
θ = ζ = ξ = 0. However, we can easily see that the diver-
gent parts are generally nonzero, therefore these one-loop
contributions are still useful for checking the overall diver-
gent cancellation in the final results.
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3.3 Numerical discussion

The numerical values of experimental data were taken from
Ref. [76], including the neutrino oscillation data, masses of
charged leptons; masses of two gauge bosons W , Z , and the
SM-like Higgs bosons, namely

g = 0.652, GF = 1.166 × 10−5 GeV−2,

αe = 1

137
= e2

4π
, s2

W = 0.231,

mW = 80.377 GeV, mZ = 91.1876 GeV,

mh = 125.25 GeV, �Z = 2.4955 GeV,

me = 5 × 10−4 GeV, mμ = 0.105 GeV,

mτ = 1.776 GeV. (42)

We will focus on the best-fit values of the neutrino oscil-
lation data [76] corresponding to the normal order (NO)
scheme with mn1 < mn2 < mn3 , namely

s2
12 = 0.32, s2

23 = 0.547, s2
13 = 0.0216,

�m2
21 ≡ m2

n2
− m2

n1
= 7.55 × 10−5[eV2],

�m2
32 ≡ m2

n3
− m2

n2
= 2.424 × 10−3[eV2]. (43)

On the other hand, we fix δ = 180 [Deg] for simplicity in
numerical investigation. Consequently, the neutrino masses
and mixing matrix are fixed as follows:

m̂ν =
(
m̂2

ν

)1/2 = diag
(
mn1 ,

×
√
m2
n1 + �m2

21,

√
m2
n1 + �m2

21 + �m2
32

)
, (44)

UPMNS = f (θ12, θ13, θ23, δ)

=
⎛

⎝
c12c13 c13s12 s13e

−iδ

−c23s12 − c12s13s23e
iδ c13c23−s12s13s23e

iδ c13s23
s12s23−c12c23s13e

iδ −c23s12e
iδs13 − c13s23 c13c23

⎞

⎠ ,

(45)

where mn1 ≤ 0.035 eV in order to guarantee the data of
Plank 2018 [78].

Experimental data for (g − 2)e,μ anomalies have been
updated from Ref. [79] showing a 5.1σ standard deviation
from the SM prediction [80–107] that:�aNP

μ ≡ aexp
μ −aSM

μ =
(2.49 ± 0.48) × 10−9 [108]. The experimental ae data was
reported from different groups [109–112], predict the same
order of |�aNP

e | = O(10−13) defined as the deviation
between experiments and the SM prediction [113–118].

The cLFV rates are constrained from recent experiments
as follows [119–122]: Br(μ → eγ ) < 3.1×10−13, Br(τ →
eγ ) < 3.3 × 10−8, and Br(τ → μγ ) < 4.2 × 10−8.
The latest experimental constraints for LFVh decay rates
are Br(h → τμ) < 1.5 × 10−3, Br(h → τe) < 2 × 10−3,

and Br(h → μe) < 4.4 × 10−5 [1–4]. The latest exper-
imental constraints for LFVZ decay rates are Br(Z →
τ±μ∓) < 6.5 × 10−6, Br(Z → τ±e∓) < 5.0 × 10−6,
and Br(Z → μ±e∓) < 2.62 × 10−7 [5,6]. In the follow-
ing numerical investigation, we emphasize that all allowed
points we collect for illustrations simultaneously satisfy the
1σ experimental range of (g − 2)μ data, 2.01 × 10−9 ≤
�aLRIS

μ ≡ �aNP
μ ≤ 2.97 × 10−9, and all recent experimen-

tal constraints of cLFV, LFVh and LFVZ decays mentioned
above. The maximal value of �aLRIS

e ≤ O(10−14) predicted
by our numerical result is smaller than that in recent experi-
mental data.

The unknown parameters of the LRIS model will be
scanned in the following ranges:

vR ∈ [10, 100] [TeV]; mH± ∈ [0.3, 5] [TeV];
M1,2,3 ∈ [0.1, 10] [TeV];

mn1 ∈ [10−3, 0.035] [eV]; tβ ∈ [0.02, 0.8];
x0 ∈ [10−6, 5 × 10−4]; (μ̂s

)
11,33 ∈ [0.2, 50], (46)

and the matrix ξ given in Eq. (22) is parameterized as
ξ = − f (ξ1, ξ2, ξ3, 0) with scanning ranges |ξi | ≤ π . The
lower bound of vR is chosen based on the searches for the
heavy gauge boson W ′ at the High Luminosity Large Hadron
Collider (HL-LHC) [50]. The upper bound of x0 is con-
strained from the data of non-unitary of the active neutrino
mixing matrix [123–125].

The correlations of �aμ with all LFV decay rates are
illustrated numerically in Fig. 4.

There are three decay rates that reach the experimen-
tal bounds, namely Br(μ → eγ ), and Br(τ → μγ ) and
Br(h → τμ). Fortunately, they are still allowed for future
sensitivities of Br(μ → eγ ) � 6 × 10−14 [126], Br(τ →
μγ ) � O(10−9) [127], and Br(h → τμ) � O(10−4) [128–
131]. We conclude that the allowed regions of parameters of
the LRIS model will be changed strongly by the incoming
experimental results of the three mentioned LFV decays.

The upper bounds of the remaining LFV decay rates pre-
dicted by the LRIS model are:

Br(τ → eγ ) ≤ 9 × 10−13, Br(h → τe) ≤ 1.77 × 10−7,

Br(h → μe) ≤ 1.3 × 10−5,

Br(Z → μ+e−) ≤ 2.8 × 10−12,

Br(Z → τ+e−) ≤ 1.1 × 10−11,

Br(Z → τ+μ−) ≤ 3.8 × 10−7. (47)

Therefore, two decays h → μe and Z → μ+τ− are close to
incoming sensitivities [132,133].

The allowed regions of the parameter space obtained in
our investigation have stricter constraints than the scanning
ranges chosen in Eq. (46). In particular, the singly charged

123
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Fig. 4 The dependence of LFV decay rates on �aμ. Two black lines in the left, second, and right-panels show the upper bounds of LFV decay
rates for cLFV (τ → μγ , μ → eγ ), LFVh (h → τμ,μe), and LFVZ (Z → τμ,μe), respectively

Higgs mass has an upper bound mH± < 4.2 TeV, but it is
still heavier than the values of interest in the popular 2HDMs
[134–137]. A hierarchy of heavy neutrino masses appears,
namely mn5 > 2.8 TeV, whereas the two remaining masses
have small upper bounds such that mn4 ,mn6 < 380 GeV.

We note here that one-loop contributions from heavy
charged gauge bosons W ′ are suppressed with a fixed value
CUV = 0, as in LoopTools. Therefore, total calculations, at
least the divergent parts of all one-loop diagrams, including
those relating to W ′ exchanges, must be considered.

We confirm here a property indicated in Ref. [54] that
the dominant one-loop contributions to �aLRIS

μ come from
charged Higgs exchanges with the appearance of the chi-
ral enhancement term proportional to cLRIS

(aa)R ∝ gL∗
ai H+gR

ai H+
[10]. Consequently, the values of |cLRIS

(ab)R| with a 	= b are

large too. The numerical investigation showed that cLRIS
(ab)R

requires strong destructive correlations between the Higgs
and gauge boson contributions to ensure that all the LFV
decay rates mentioned in this work satisfy the experimental
constraints. Therefore, if the SM result for (g − 2)μ in Ref.
[138] is accepted, implying smaller values of �aLRIS

μ than
those chosen for our numerical illustration, the cancellation
requirements for cLRIS

(ab)R will be relaxed, but the qualitative
conclusions for LFV decay rates are unchanged.

There are indirect sensitivities from other LFV processes
such as the LFV decays μ → 3e, and μ − e conversion
in nuclei, as discussed in Ref. [139] for the seesaw mod-
els. In the LRIS framework, the μ − e conversion in nuclei
was shown to be invisible with recent experimental sensi-
tivities [54]. A similar conclusion is derived for the decay
μ → 3e, because they have the similar one-loop contribu-
tions from the diagrams with Z exchanges. Another LFV
indirect sensitivity is the LFV Higgs μ− e couplings, which
give two-loop contributions from Barr–Zee diagrams [140]
to the decay amplitude μ → eγ [141–143] and tree-level
decays eb → 3ea . As we indicated in Eq. (36), the second
term implies that the two matrices expressing the SM-like
Higgs couplings and charged lepton masses are proportional
to each other. Consequently, the tree-level LFV couplings of

the SM-like Higgs boson do not appear in the LRIS model
under consideration, implying the absence of two-loop Barr–
Zee and tree-level diagrams with this Higgs exchange. In
addition, the similar contributions from heavy neutral Higgs
exchange do not qualitatively change the numerical results
presented in this work.

4 Conclusions

In this work, we completely introduce two classes of gen-
eral master formulas expressing one-loop contributions to
the LFVh and LFVZ decay amplitudes in the BSMs. The
calculations were performed in the unitary gauge, indepen-
dent of the couplings of nonphysical states such as Gold-
stone bosons. Analytical formulas are expressed in terms of
the PV functions consistent with the notations introduced by
LoopTools. The results show that the formulas correspond-
ing to private one-loop diagrams generally contain divergent
parts, which must vanish in the final finite amplitudes. There-
fore, all diagrams containing divergences must be consid-
ered before ignoring them when their finite parts are esti-
mated to be small with fixed divergence parts. The results
introduced in this work are sufficient to estimate these diver-
gences thoroughly. We numerically investigated the LFVh
and LFVZ decay rates in the LSIS model, which accommo-
dates all the data of neutrino oscillation, the cLFV decays,
and the (g − 2)μ anomaly. The results show that some of
these decays are promising signals for incoming experimen-
tal searches. More importantly, the allowed regions of the
parameter space are strongly affected by the recent experi-
mental data from searches for three LFV decays μ → eγ ,
τ → μγ , and h → τμ. This implies that the allowed regions
predicted by the LRIS model change strongly once new LFV
upper bounds are established.
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Appendix A: Notations for Passarino-Veltman functions

A1: General notations

The PV-functions [144] used here to compute all form fac-
tors that give one-loop contributions to the LFVh and LFVZ
decay amplitudes were listed in ref. [55], namely

A0(m
2) = (2πμ)4−d

iπ2

∫
ddk

k2 − m2 + iδ
,

B{0,μ}(p2
i , M

2
0 , M2

i ) = (2πμ)4−d

iπ2

∫
ddk × {1, kμ}

D0Di
,

i = 1, 2,

C0,μ,μν

(2πμ)4−d

iπ2

∫
ddk{1, kμ, kμkν}

D0D1D2
, (A1)

where D0 ≡ k2 − M2
0 + iδ, D1 ≡ (k − p1)

2 −
M2

1 + iδ, D2 ≡ (k + p2)
2 − M2

2 + iδ, C0,μ,μν =
C0,μ,μν(p2

1, q
2, p2

2; M2
0 , M2

1 , M2
2 ) with q = p1 + p2, and

μ is an arbitrary mass parameter introduced via dimensional
regularization [144]. The scalar PV-functions are defined
consistent with LoopTools [58], namely:

A0(m
2) = m2(CUV − ln(m2) + 1),

Bμ(p2
i , M

2
0 , M2

1 ) = (−1)i p1μB1(p
2
i , M

2
0 , M2

i ), i = 1, 2;

Cμ = (−p1μ

)
C1 + p2μC2,

Cμν = gμνC00 + p1μ p1νC11 + p2μ p2νC22

− (p1μ p2ν + p2μ p1ν)C12, (A2)

where CUV = 2/(4 − d) − γE + ln(4πμ2) are the diver-
gent part. In our work, new reduced notations will be used
are B(i)

0 ≡ B0(p2
i , M

2
0 , M2

i ) and B(i)
1 ≡ B1(p2

i , M
2
0 , M2

i ).
The scalar functions A0, B0,C0,C00,Ci ,Ci j (i, j = 1, 2)
are well-known PV functions consistent with notations intro-
duced in LoopTools [58]. The scalar functions A0, B0,C0 can
be calculated using the techniques given in Ref. [57]. Other
PV functions needed in this work are

B0,μ(q2; M1, M2) = (2πμ)4−d

iπ2

∫
ddk {1, kμ}

D1D2
,

B(12)
0 ≡ B0(q

2; M2
1 , M2

2 ) = (2πμ)4−d

iπ2

∫
ddk

D1D2

= (2πμ)4−d

iπ2

∫
ddk

D′
1D

′
2
,

B(12)
μ ≡ Bμ(q2; M2

1 , M2
2 ) = (2πμ)4−d

iπ2

∫
ddk × kμ

D1D2

= (2πμ)4−d

iπ2

∫
ddk × (k + p1)μ

D′
1D

′
2

= B(12)
1 qμ + B(12)

0 p1μ, (A3)

where B(12)
1 ≡ B1(q2; M2

1 , M2
2 ), D′

1 ≡ k2 −M2
1 + iδ, D′

2 ≡
((k + q)2 − M2

2 + iδ.
For simplicity, we define the following notations appear-

ing in many important formulas:

X0 ≡ C0 + C1 + C2,

X1 ≡ C11 + C12 + C1

X2 ≡ C12 + C22 + C2,

X3 ≡ C1 + C2 = X0 − C0,

X012 ≡ X0 + X1 + X2, Xi j = Xi + X j . (A4)

The divergent parts of the PV-functions are:

div[C0] = div[Ci ] = div[Ci j ] = 0; i, j = 1, 2,

div[C00] = CUV

4
, div[B(1)

0 ] = div[B(2)
0 ]

= div[B(12)
0 ] = CUV ,

div[B(1)
1 ] = div[B(2)

1 ] = div[B(12)
1 ] = −CUV

2
. (A5)

The Feynman rules for propagators of any gauge boson Vμ

and their goldstone bosons in the unitary gauge are as follows

�
(u)μν
V = −i

k2 − m2
V

(
gμν − kμkν

m2
V

)
, �

(u)
GV

= 0. (A6)
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Before going to the details of the calculation. We list here
important well-known results such as the on-shell conditions
gives p2

1 = m2
a , p2

2 = m2
b, and q2 = m2

Z , where ma , mb, and
mZ are the masses of leptons a, b (a, b = 1, 2, 3), and gauge
boson Z . The momentum conservation gives q = p1 + p2.
Two internal momenta k1 ≡ k − p1 and k2 ≡ k + p2 with
i = 1, 2 are denoted in the diagram (1) of Fig. 2.

Then we taked = 4 for all finite integrals. For all divergent
integrals, after changing into the expressions in terms of the
PV-functions, we take d = 4−2ε, then determining the final
finite results before fixing ε = 0. In addition, we will use
the following transformation to change from integral to the
notations of the PV-functions:

∫
d4k

(2π)4 → i

16π2 × (2πμ)4−d

iπ2

∫
ddkz

= i

16π2 × (PV − functions) .

In practice, the overall factor i/(16π2) will be added in the
final results. Some intermediate steps used in this work were
presented precisely in Refs. [14,40,41].

Appendix B: General One-loop contributions to LFVZ
and LFVh amplitudes in the unitary gauge

B1: Decays eb → eaγ and (g − 2)ea

We use the analytic formulas for computing one-loop con-
tributions to cLFV decay amplitudes and (g − 2)ea given
in Ref. [10], which consistent with previous results [9,55].
From the couplings given by two Eqs. (1) and (2), the form
factors c(ab)R corresponding to the one-loop contribution of
a boson X coupling with a fermion F and a charged lepton
ea are:

cX(ab)R ≡ e

16π2m2
X

{
gL∗
aFX g

R
bFXmF [ fX (tX ) + QFgX (tX )]

+
[
mbg

L∗
aFX g

L
bFX + mag

R∗
aFX g

R
bFX

]

[
f̃ X (tX ) + QF g̃X (tX )

]}
, (B1)

where X = S, Vμ, tX ≡ m2
F/m2

X , QF is the electric charge
of the fermion F , and the master functions are

f�(x) = 2g̃�(x) = x2 − 1 − 2x ln x

4(x − 1)3 ,

g� = x − 1 − ln x

2(x − 1)2 ,

f̃�(x) = 2x3 + 3x2 − 6x + 1 − 6x2 ln x

24(x − 1)4 ,

fV (x) = x3 − 12x2 + 15x − 4 + 6x2 ln x

4(x − 1)3 ,

gV (x) = x2 − 5x + 4 + 3x ln x

2(x − 1)2 ,

f̃V (x) = −4x4 + 49x3 − 78x2 + 43x − 10 − 18x3 ln x

24(x − 1)4 ,

g̃V (x) = −3(x3 − 6x2 + 7x − 2 + 2x2 ln x)

(x − 1)3 . (B2)

Formulas for one-loop contributions to ae,μ and cLFV
decay rates are:

aea (X) = −4ma

e
Re

[
cX(aa)R

]
, (B3)

Br(eb → eaγ ) = 48π2

G2
Fm

2
b

(
|c(ab)R |2 + |c(ba)R |2

)

Br(eb → eaνaνb), (B4)

where GF = g2/(4
√

2m2
W ) is the Fermi constant, Br(μ →

eνeνμ) � 1, Br(τ → eνeντ ) � 0.1782, Br(τ → μνμντ ) �
0.1739, and c(ab)R = ∑

X c(ab)R(X) with X being all rele-
vant bosons predicted by the particular BSM.

In the LRIS model, precise expressions of c(ab)R with
UN = I3 are

c(ab)(H
+) = e

16π2m2
H+

9∑

i=1

[
gL∗
ai H+gR

bi H+mni f�(xi,H )

+
(
mbg

L∗
ai H+gLbi H+ + mag

R∗
ai H+gR

bi H+
)

× f̃�(xi,H )
]
,

c(ab)R(W+) = eg2
2

32π2m2
W

9∑

i=1

[
sθcθU

ν
aiU

ν
(b+3)imni fV (xi,W )

+
(
mbc

2
θU

ν
aiU

ν∗
bi + mas

2
θU

ν
(a+3)iU

ν∗
(b+3)i

)

× f̃V (xi,W )
]
,

c(ab)R(W ′+) = eg2
2

32π2m2
W ′

9∑

i=1

[
−sθcθU

ν
aiU

ν
(a+3)imni

× fV (xi,W ′)

+
(
mbs

2
θU

ν
aiU

ν∗
ai + mac

2
θU

ν
(a+3)iU

ν∗
(a+3)i

)

× f̃V (xi,W ′)
]
, (B5)

where xi,B ≡ m2
ni /m

2
B with B = H±,W,W ′.

B2: Decays Z → e±
a e

∓
b

For simplicity, we will use new notations of products of two
LFV couplings introducing in Eqs. (1) and (2) that gXYFBB′ ≡
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gX∗
aFBg

Y
bFB′ with X,Y = L , R and B, B ′ = V, V ′, S, S′

being charged Higgs and gauge boson exchanges in particular
diagrams. The corresponding arguments for PV-functions are
(m2

a, q
2,m2

b;m2
F ,m2

B,m2
B′), which is used to identify with

the LoopTools notations thatCx = Cx (m2
a, q

2,m2
b;m2

F ,m2
B,

m2
B′) for x = 0, i, 00, i j (i, j = 1, 2), B(1)

0,1 = B0,1(m2
a;m2

F ,

m2
B), B(2)

0,1 = B0,1(m2
b;m2

F ,m2
B′), and B(12)

0,1 = B0,1(q2;m2
B,

m2
B′). The second notation is gXYBFF ′ ≡ gX∗

aFBg
Y
bF ′B with B =

S, V corresponding the argument (m2
a, q

2,m2
b;m2

B,m2
F ,

m2
F ′) for PV-functions used in LoopTools that Cx =

Cx (m2
a, q

2,m2
b;m2

B,m2
F ,m2

F ′), B
(1)
0,1 = B0,1(m2

a;m2
B,m2

F ),

B(2)
0,1 = B0,1(m2

b;m2
B,m2

F ′), and B(12)
0,1 = B0,1(q2;m2

F ,m2
F ′).

In particular LFVh or LFVZ decays with q2 = m2
h,m

2
Z , we

will pay attention to the last three parameters in the arguments
under consideration (m2

F ,m2
B,m2

B′) or (m2
B,m2

F ,m2
F ′).

Regarding to the LFVZ decay, form factors for one-loop
contribution from diagram (1) in Fig. 2 are:

āFV V ′
L = gZVV ′

{
gLL

[(
2(2 − d) + m2

F f
)
C00

+2(m2
Z − m2

a − m2
b)X3

−
(
f (m2

V + m2
V ′) + 4

)
(B(12)

0 + m2
FC0)

+ 1

m2
V

(
A0(mV ) + m2

F B
(1)
0 + m2

a B
(1)
1

−(m2
V − m2

V ′ + m2
Z )m2

aC1

)

+ 1

m2
V ′

(
A0(mV ′) + m2

F B
(2)
0 + m2

bB
(2)
1

−(−m2
V + m2

V ′ + m2
Z )m2

bC2

)]

+gRRmamb

[
f
(
C00 + m2

V ′C2 + m2
VC1

)
− 2X3

]

−gRLmamF

[
f C00 + (2 − f m2

V ′)C0 + f (m2
V

−m2
V ′)C1 + B(1)

0 + B(1)
1

m2
V

]

−gLRmbmF

[
f C00 + (2 − f m2

V )C0 − f (m2
V

−m2
V ′)C2 + B(2)

0 + B(2)
1

m2
V ′

]}
, (B6)

āFV V ′
R = āFV V ′

L

[
gLL → gRR, gRL → gLR, gLR → gRL

]
,

(B7)

b̄FV V ′
L = gZVV ′

{
gLLma

[
4(X3−X1)+ f (m2

F X01+m2
bX2)

−2(m2
V ′ f + 2)C2

]

+gRRmb

[
4(X3 − X2) + f (m2

F X02 + m2
a X1)

−2(m2
V f + 2)C1

]

−gRLmF

[
f
(
m2

F X0 + m2
a X1 + m2

bX2

−2m2
VC1 − 2m2

V ′C2

)
+ 4X3

]

−gLRmambmF f X012

}
, (B8)

b̄FV V ′
R = b̄FV V ′

L

[
gLL → gRR, gRR → gLL ,

gRL → gLR, gLR → gRL
]
, (B9)

where gXY ≡ gXYFVV ′ , the arguments for PV-functions are
(m2

F ,m2
V ,m2

V ′), and

f = (m2
Z − m2

V − m2
V ′)

m2
Vm

2
V ′

.

The diagram (2) in Fig. 2 corresponding to the following
form factors:

āV FF ′
L = gLL

m2
V

{
gLZFF ′

[
m2

V

(
(2 − d)2C00 + 2m2

a X01

+2m2
bX02 − 2m2

Z (C12 + X0)
)

−A0(mV ) −
(
m2

F − m2
a

)
B(1)

0 −
(
m2

F ′ − m2
b

)
B(2)

0

+m2
a B

(1)
1 + m2

bB
(2)
1

−m2
am

2
bX0 − m2

Fm
2
F ′C0 + m2

am
2
F (C0 + C1)

+m2
bm

2
F ′(C0 + C2)

]

−gR
ZFF ′mFmF ′

[
2m2

VC0 + (2 − d)C00

−m2
a(X1 − C1) − m2

b(X2 − C2) + m2
ZC12

]}

+ gRRgR
ZFF ′mamb

m2
V

×
[
2m2

V X0 − (2 − d)C00 + m2
a X1 + m2

bX2

−m2
ZC12 − m2

FC1 − m2
F ′C2

]
, (B10)

āV FF ′
R = āV FF ′

L

[
gLL → gRR, gRR → gLL ,

gLZFF ′ → gR
ZFF ′, gR

ZFF ′ → gLZFF ′
]
, (B11)

b̄V FF ′
L = 2gLLma

m2
V

[
gLZFF ′

(
−2m2

V X01 − m2
bX2 + m2

F ′C2

)

−gR
ZFF ′mFmF ′(X1 − C1)

]

+ 2gRRmb

m2
V

[
gR
ZFF ′

(
−2m2

V X02 − m2
a X1 + m2

FC1

)
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−gLZFF ′mFmF ′(X2 − C2)
]
, (B12)

b̄V FF ′
R = b̄V FF ′

L

[
gLL → gRR, gRR → gLL ,

gLZFF ′ → gR
ZFF ′, gR

ZFF ′ → gLZFF ′
]
, (B13)

where gXY ≡ gXYV FF ′ and arguments for PV-functions are
(m2

V ,m2
F ,m2

F ′).
The sum of two diagrams (7) and (8) gives the following

form factors:

āFV
L = tL

(m2
a − m2

b)m
2
V

{
gLL

[(
(d − 2)m2

V + m2
F

)

×
(
m2

a B
(1)
1 − m2

bB
(2)
1

)
+ m4

a B
(1)
1 − m4

bB
(2)
1

+(m2
a − m2

b)A0(mV ) + 2m2
F

(
m2

a B
(1)
0 − m2

bB
(2)
0

)]

+gRRmamb

[(
2m2

V + m2
F

) (
B(1)

1 − B(2)
1

)

+m2
a B

(1)
1 − m2

bB
(2)
1 + 2m2

F

(
B(1)

0 − B(2)
0

)]

+3
(
mag

RL + mbg
LR
)
mFm

2
V

(
B(1)

0 − B(2)
0

)}
,

āFV
R = āFV

L

[
tL → tR, gLL → gRR, gRR → gLL ,

gRL → gLR, gLR → gRL
]
,

b̄FVL = b̄FVR = 0, (B14)

where gXY ≡ gXYFVV , and B(k)
0,1 = B0,1(p2

k ;m2
F ,m2

V ).
One-loop form factors from diagram (3) in Fig. 2 are:

āFV S
L = g∗

SV Z

m2
V

[
gLLmF (m2

VC0 − C00)

+gRLma(m
2
VC1 + C00) − gLRmbm

2
VC2

]
, (B15)

āFV S
R = āFV S

L

[
gLL → gRR, gRL → gLR, gLR → gRL

]
,

(B16)

b̄FV S
L = g∗

SV Z

m2
V

[
−mF

(
gLLma X01 + gRRmbX2

)

+gRL
(
−2m2

VC1 + m2
a X1 + m2

F X0

)

+gLRmambX2

]
, (B17)

b̄FV S
R = b̄FV S

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B18)

where gXY ≡ gXYFV S and arguments for PV-functions are
(m2

F ,m2
V ,m2

S).
One-loop form factors from diagram (4) in Fig. 2 are:

āFSV
L = gSV Z

m2
V

[
gLLmF (m2

VC0 − C00)

+gRLmb(m
2
VC2 + C00) − gLRmam

2
VC1

]
, (B19)

āFSV
R = āFSV

L

[
gLL → gRR, gRL → gLR, gLR → gRL

]
,

(B20)

b̄FSVL = gSV Z

m2
V

[
−mF

(
gRRmbX02 + gLLmaX1

)

+gLR
(
−2m2

VC2 + m2
bX2 + m2

F X0

)

+gRLmambX2

]
, (B21)

b̄FSVR = b̄FV S
L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B22)

where gXY ≡ gXYFSV and arguments for PV-functions are
(m2

F ,m2
S,m

2
V ).

The contributions from diagrams with pure scalar exchanges
were shown previously in Ref. [37,40]. Particular formulas
of the amplitudes are written as follows. Final results for form
factors corresponding to diagram (5) are:

āFSS′
L = −2gZS′∗Sg

LLC00,

āFSS′
R = −2gZS′∗Sg

RRC00,

b̄FSS
′

L = −2gZS′∗S
[
mag

LL X1 + mbg
RRX2 − mFg

RL X0

]
,

b̄FSS
′

R = −2gZS′∗S
[
mag

RRX1 + mbg
LL X2 − mFg

LR X0

]
,

(B23)

where arguments for PV-functions are (m2
F ,m2

S,m
2
S′), and

gXY = gXYFSS′ .
Forms factors corresponding to diagram (6) are

āSFF ′
L = −

{
gLZFF ′

[
gLLmFmF ′C0 + gRLmamF ′(C0 + C1)

+gLRmbmF (C0 + C2) + gRRmambX0

]

−gR
ZFF ′

[
gLL

(
(d − 2)C00 + m2

a X1

+m2
bX2 − m2

ZC12

)

+mamFg
RLC1 + mbmF ′gLRC2

]}

āSFF ′
R = −

{
−gLZFF ′

[
gRR

(
(d − 2)C00 + m2

a X1

+m2
bX2 − m2

ZC12

)

+gLRmamF1C1 + gRLmbmF2C2

]

+gR
ZFF ′

[
gRRmFmF ′C0 + gLRmamF ′(C0 + C1)

+gRLmbmF (C0 + C2) + gLLmambX0

]}
,

b̄SFF ′
L = −2

[
gLZFF ′

(
gRLmF ′C2 + gRRmbX2

)
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+gR
ZFF ′

(
gRLmFC1 + gLLma X1

)]
,

b̄SFF ′
R = −2

[
gLZFF ′

(
gLRmFC1 + gRRmaX1

)

+gR
ZFF ′

(
gLRmF ′C2 + gLLmbX2

)]
, (B24)

where gXY ≡ gXYSFF ′ and arguments for PV-functions are
(m2

S,m
2
F ,m2

F ′).
Sum of two diagrams (9) and (10) gives the following form

factors

āFS
L = − tL

m2
a − m2

b

[
mF

(
mag

RL + mbg
LR
) (

B(1)
0 − B(2)

0

)

−mambg
RR

(
B(1)

1 − B(2)
1

)

× −gLL
(
m2

a B
(1)
1 − m2

bB
(2)
1

)]
,

āFS
R = āFS

L

[
tL → tR, gLL → gRR, gRR → gLL ,

gRL → gLR, gLR → gRL
]
,

b̄FSL = āFS
R = 0, (B25)

where gXY ≡ gXYFSS and B(k)
0,1 = B0,1(p2

k ;m2
F ,m2

S).

B3: One-loop contributions to decays h → e±
a e

∓
b

The diagram (1) in Fig. 3 corresponding to the following
amplitude:

�FVV ′
L = −ghVV ′gLLma

16π2

{
2C1 − 1

m2
V

[
B(12)

1

−(m2
F − m2

a)(C0 + C1) − (B(2)
0 + m2

VC0)
]

− 1

m2
V ′

[
B(12)

1 + B(12)
0 − (m2

F − m2
b)C1

]

− 1

2m2
Vm

2
V ′

[
A0(mV ′) + m2

F

(
B(1)

0 + B(2)
0 + B(1)

1

)

+m2
bB

(2)
1 + (m2

V + m2
V ′ − q2)

(
m2

F (C0 + C1) + m2
bC2 − B(12)

1

)]}

− ghVV ′gRRmb

16π2

{
2C2 + 1

m2
V

[
B(12)

1

+(m2
F − m2

a)C2

]

+ 1

m2
V ′

[
B(12)

1 + B(12)
0 + (m2

F − m2
b)(C0 + C2)

+B(1)
0 + m2

V ′C0

]

− 1

2m2
Vm

2
V ′

[
A0(mV ) + m2

F

(
B(1)

0 + B(2)
0 + B(2)

1

)

+m2
a B

(1)
1 + (m2

V + m2
V ′ − q2)

(
m2

F (C0 + C2) + m2
aC1 + B(12)

1 + B(12)
0

)]}

− ghVV ′gRLmF

32π2m2
Vm

2
V ′

{
4m2

Vm
2
V ′C0 + A0(mV )

+A0(mV ′) + (m2
F − 2m2

V )B(1)
0

+(m2
F − 2m2

V ′)B
(2)
0 + m2

a B
(1)
1 + m2

bB
(2)
1

+(m2
V + m2

V ′ − q2)(B(12)
0 + m2

aC1

+m2
bC2 + m2

FC0)

}

− ghVV ′gLRmambmF

32π2m2
Vm

2
V ′

[
B(1)

0 + B(2)
0 + B(1)

1

+B(2)
1 + (m2

V + m2
V ′ − q2)X0

]
, (B26)

�FVV ′
R = �FVV ′

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B27)

where the coupling notations are gXY = gXYFVV ′ , q2 = m2
h ,

and the arguments of PV-functions is (m2
F ,m2

V ,m2
V ′).

The diagram (2) in Fig. 3 corresponding to the following
form factors:

�V FF ′
L = 1

16π2m2
V

{
gLLma

[
gLhFF ′mF

(
B(1)

1

+(2m2
V + m2

F ′ − m2
b)C1

)

+gRhFF ′mF ′
(
m2
V C0 − B(12)

0 + (2m2
V + m2

F − m2
a)C1

)]

+gRRmb

[
gLhFF ′mF ′

(
B(2)

1 + (2m2
V + m2

F − m2
a)C2

)

+gRhFF ′mF

(
m2
V C0 − B(12)

0 + (2m2
V + m2

F ′ − m2
b)C2

)]

−gRL
[
gLhFF ′

(
d × m2

V B(12)
0 + 4m2

V (m2
V C0

+m2
aC1 + m2

bC2)

−2m2
V (m2

h − m2
a − m2

b)X0 − A0(mV )

−(m2
F − m2

a)(B(1)
0 − m2

bC2) − (m2
F ′ − m2

b)(B
(2)
0 − m2

aC1)

+m2
a B

(1)
1 + m2

bB
(2)
1 − (m2

F − m2
a)(m2

F ′ − m2
b)C0

)

+gRhFF ′mFmF ′
(

3m2
V C0 − B(12)

0

)]

−gLRgRhFF ′mamb

[
(m2

F − m2
a)C1

+(m2
F ′ − m2

b)C2 − m2
V C0 − B(12)

0

]}
,

�V FF ′
R = �V FF ′

L

[
gLhFF ′ ↔ gRhFF ′ , gLL ↔ gRR , gLR ↔ gRL

]
,

(B28)

where gXY = gXYV FF ′ and the argument of PV-functions is
(m2

V ,m2
F ,m2

F ′).
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Sum of two diagrams (7) and (8) gives the following form
factors:

�FV
L = gδhee

32π2mWm2
V (m2

a − m2
b)

×
{(

gLLmb + gRRma

)
mamb

×
[
2m2

F

(
B(2)

0 − B(1)
0

)
+
(

2m2
V + m2

F

) (
B(2)

1 − B(1)
1

)

+m2
bB

(2)
1 − m2

a B
(1)
1

]

+gRLmF

[
3m2

V

(
m2

a B
(2)
0 − m2

bB
(1)
0

)

−
(
m2

a − m2
b

)
A0(mF )

]

+gLRmambmF × 3m2
V

(
B(2)

0 − B(1)
0

)}
,

�FV
R = �FV

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B29)

where gXY = gXYFVV and B(k)
0,1 = B0,1(p2

k ;m2
F ,m2

V ) with
k = 1, 2.

The form factors corresponding to diagram (3) in Fig. 2
are:

�FV S
L = gV Sh

16π2m2
V

{
mF

[
gLLma

(
B(1)

0 + B(1)
1

+(m2
V + m2

S − m2
h)C0 − (m2

V − m2
S + m2

h)C1

)

−gRRmb

(
2m2

VC0 + (m2
V − m2

S + m2
h)C2

)]

+gRL
[
(m2

V − m2
S + m2

h)
(
B(12)

0 + m2
FC0

)

−A0(mV ) − m2
F B

(1)
0 − m2

a B
(1)
1

+
(
m2

a(m
2
V − m2

S + m2
h) − 2m2

V (m2
h − m2

b)
)
C1

+2m2
Vm

2
bC2

]

−gLRmamb

[
2m2

VC1 + (m2
V + m2

S − m2
h)C2

]}
,

�FV S
R = �FV S

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B30)

where gXY = gXYFV Sand the arguments of PV-functions is
(m2

F ,m2
V ,m2

S).
Final results for form factors corresponding to Diagram

(4) in Fig. 3:

�FSV
L = g∗

V Sh

16π2m2
V

{
mF

[
−gLLma

(
2m2

VC0 + (m2
V

−m2
S + m2

h)C1

)
+ gRRmb

(
B(2)

0 + B(2)
1

+(m2
V + m2

S − m2
h)C0 − (m2

V − m2
S + m2

h)C2

)]

+gRL
[
(m2

V − m2
S + m2

h)(B
(12)
0 + m2

FC0)

−A0(mV ) − m2
F B

(2)
0 − m2

bB
(2)
1

+2m2
am

2
VC1 +

(
m2

b(m
2
V − m2

S + m2
h)

−2m2
V (m2

h − m2
a)
)
C2

]

−gLRmamb

(
2m2

VC2 + (m2
V + m2

S − m2
h)C1

)}
,

�FSV
R =�FSV

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B31)

where gXY = gXYFSV and the arguments of PV-functions is
(m2

F ,m2
S,m

2
V ).

Final results for form factors corresponding to Diagram
(5) in Fig. 3:

�FSS′
L = λhSS′

16π2

[
gRLmFC0 − (gLLmaC1 + gRRmbC2)

]
,

�FSS′
R = �FSS′

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B32)

where gXY = gXYFSS′ and the arguments (m2
F ,m2

S,m
2
S′).

Final results for form factors corresponding to Diagram
(6) in Fig. 3:

�SFF ′
L = 1

16π2

×
{
gLhFF ′

[
gRLmFmF ′C0 + gRRmFmb(C0 + C2)

+gLLmF ′ma(C0 + C1) + gLRmambX0

]

+gR
hFF ′

[
gRL

(
B(12)

0 + m2
SC0 + m2

aC1 + m2
bC2

)

+gLLmamFC1 + gRRmbmF ′C2

]}
,

�SFF ′
R = �SFF ′

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B33)

where gXY = gXYSFF ′ and the arguments (m2
S,m

2
F ,m2

F ′).
Form factors corresponding to sum of two diagram (9) and

(10):

�FS
L = gδhee

32π2mW (m2
a − m2

b)

×
[
gLRmambmF

(
B(1)

0 − B(2)
0

)

+gRLmF

(
m2

bB
(1)
0 − m2

a B
(2)
0

)
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−mamb(g
LLmb + gRRma)

(
B(1)

1 − B(2)
1

)]
,

�FS
R = �FS

L

[
gLL → gRR, gRR → gLL , gRL → gLR,

gLR → gRL
]
, (B34)

where gXY = gXYFSS and B(k)
0,1 = B0,1(p2

k ;m2
F ,m2

S) with
k = 1, 2.

Appendix C: Details calculation to the LRIS model

1: C1: Higgs sector

The model consists of one singly charged Higgs boson, apart
from two Goldstone bosonsG±

1,2 absorbed by the two respec-
tive gauge bosons W± and W ′±:

⎛

⎝
φ±

1
φ±

2
χ±
R

⎞

⎠ = CT
h±

⎛

⎝
G±

1
G±

2
H±

⎞

⎠ , CT
h± =

⎛

⎝
sβsξ cβ cξ sβ
cβsξ −sβ cβcξ

cξ 0 −sξ

⎞

⎠ ,

(C1)

where tξ ≡ vc2β

vR
, andCh± is the 3×3 unitary matrix satisfying

the diagonal relations Ch±M2+CT
h± = diag(0, 0,m2

H±), and
m2

H± = α32
(
c2βv2 + v2

R/(2c2β)
)

with α32 = α3 − α2.
The CP-odd Higgs components generate two Goldstone

bosons of Z and Z ′, and a physical states A. A relation a
mong these flavor and mass eigenstates is:

⎛

⎝
a1

a2

aR

⎞

⎠ = Ca

⎛

⎝
G0

1
G0

2
A0

⎞

⎠ , Ca =
⎛

⎝
0 −sβ cβ

0 cβ sβ
1 0 0

⎞

⎠ , (C2)

where m2
A = 2v2(λ3 − 2λ2) + v2

R(α3−α2)

2c2β

We will summarize the physical spectrum of the Higgs,
boson, and leptons based on previous works [52]. Some new
conventions will be introduced for convenience.

Regarding to the CP-even Higgs sector. The mass matrix
corresponding to the basis rH = (r1, r2, rR)T , in which
LH
mass = − 1

2r
T
HM2

HrH is:

(
M2

H

)

11
= 2v2

(
c2
βλ23 + 2cβλ4sβ + λ1s

2
β

)
+ α32c2

βv2
R

2
(
c2
β − s2

β

) ,

(
M2

H

)

22
= 2v2

(
c2
βλ1 + 2cβλ4sβ + s2

βλ23

)
+ α32s2

βv2
R

2
(
c2
β − s2

β

) ,

(
M2

H

)

33
= 2λ5v

2
R,

(
M2

H

)

12
=
(
M2

H

)

21

= 2v2
(
c2
βλ4 + cβsβ(λ1 + λ23) + λ4s

2
β

)

− α32cβsβv2
R

2
(
c2
β − s2

β

) ,

(
M2

H

)

13
=
(
M2

H

)

31
= vRv

[
α4cβ + sβ(α12 + α32)

]
,

(
M2

H

)

23
=
(
M2

H

)

32
= vRv(α12cβ + α4sβ), (C3)

where λ23 = 2λ2 + λ3. We see that Det
[M2

H

]∣∣
v→0 = 0,

therefore the model consists of at least one neutral CP-
even Higgs with mass ∝ v2, which can be identified
with the SM-like Higgs found experimentally. In particu-
lar, in the limit v = 0, the transformation C1 can be used
to diagonal the squared mass matrix: C1 M2

H

∣∣
v=0 C

T
1 =

diag

(
0,

α32v2
R

2c2β
, 2λ5v

2
R

)
, in which

C1M2
HC

T
1 = M2

H,0, C1 =
⎛

⎝
sβ cβ 0
cβ −sβ 0
0 0 1

⎞

⎠ ,

(
M2

H,0

)

11
= 2v2

(
λ1 + λ23s

2
2β + 4λ4s2β

)
,

(
M2

H,0

)

22
= 2c2

2βλ23v
2 + α32v

2
R

2c2β

,

(
M2

H,0

)

33
= 2λ5v

2
R,

(
M2

H,0

)

12
=
(
M2

H,0

)

21
= 2c2βv2(λ4 + λ23s2β),

(
M2

H,0

)

13
=
(
M2

H,0

)

31
= vRv

(
α12 + α4s2β + α32s

2
β

)
,

(
M2

H,0

)

23
=
(
M2

H,0

)

32
= vRv

(
α4c2β + α32s2β

2

)
. (C4)

It can be seen that
(
M2

H,0

)

11
∝ v2 � v2

R ∝
(
M2

H,0

)

22
,

(
M2

H,0

)

33
. In addition, non-diagonal entries of M2

H,0 ∝

vvR �
(
M2

H,0

)

22
,
(
M2

H,0

)

33
, therefore, the mixing

matrix used to diagonalized M2
H,0 is close to identity. A

a result, we will use C1 as the relation between the fla-
vor states and the physical states (h, h1, h2), in which h is
identified with the SM-like Higgs boson: (r1, rT2 , rR)T =
CT

1 (h, h1, h2)
T . This corresponds to the strict relations of(

M2
H,0

)

12
=
(
M2

H,0

)

13
=
(
M2

H,0

)

23
= 0, equivalently

λ4 = −λ23s2β , α12 = −α4s2β − α32s2
β , and α4 = −α32t2β

2 .

As a result, m2
h = 2v2

(
λ1 + λ23s2

2β + 4λ4s2β

)
.

C2: One-loop contributions to decays LFVh and LFVZ

We list here the one-loop contributions from charge Higgs
and gauge bosons H±, W± and W ′±, which contain large
contributions to �aea and LFV decay rates.
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For LFVh decays, one-loop contributions are collected as
follows. Diagram (1) of Fig. 3 give:

�
(1+2+7+8)
L ,R =

9∑

i=1

[
�iWW

L ,R + �iW ′W ′
L ,R + �iWW ′

L ,R + �iW ′W
L ,R

+�FW
L ,R + �FW ′

L ,R

]
+

9∑

i, j=1

[
�

Wi j
L ,R + �

W ′i j
L ,R

]
,

(C5)

where ghVV ′ = ghWW , ghW ′W ′ , ghWW ′ , and ghWW ′ were
given in Table 4; and δhee = mW /(gv/2) derived from Eq.
(36). Diagram from singly charged Higgs boson H±:

�
(5+6+9+10)
L ,R =

9∑

i=1

[
�i H+H+

L ,R + �i H+
L ,R

]
+

9∑

i, j=1

�
H+i j
L ,R ,

(C6)

Diagram from both exchanges of singly charged Higgs
boson H± and gauge boson:

�
(3+4)
L ,R =

9∑

i=1

(
�i H+W

L ,R + �iW H+
L ,R + �i H+W ′

L ,R + �iW ′H+
L ,R

)
,

(C7)

where gV Sh = gW+H−h, gW ′+H−h are given in Table 4.
The one-loop contributions to LFVZ decay rates pre-

sented in Fig. 2 are collected as follows. The total form factors
are sum of all particular contributions as follows

āL ,R = ā(1+2+7+8)
L ,R + ā(5+6+9+10)

L ,R + ā(3+4)
L ,R ,

b̄L ,R = b̄(1+2+7+8)
L ,R + b̄(5+6+9+10)

L ,R + b̄(3+4)
L ,R ,

ā(1+2+7+8)
L ,R =

9∑

i=1

[
āiWW
L ,R + āiW

′W ′
L ,R + āiWW ′

L ,R + āiW
′W

L ,R

+āiWL ,R + āiW
′

L ,R

]

+
9∑

i, j=1

[
āWi j
L ,R + āW

′i j
L ,R

]
,

b̄(1+2+7+8)
L ,R =

9∑

i=1

[
b̄iWW
L ,R + b̄iW

′W ′
L ,R

+b̄iWW ′
L ,R + b̄iW

′W
L ,R + b̄iWL ,R + b̄FW

′
L ,R

]

+
9∑

i, j=1

[
b̄Wi j
L ,R + b̄W

′i j
L ,R

]
, (C8)

From singly charged Higgs boson:

ā(5+6+9+10)
L ,R =

9∑

i=1

[
āi H

+H−
L ,R + āi H

+
L ,R

]
+

9∑

i, j=1

āH+i j
L ,R ,

b̄(5+6+9+10)
L ,R =

9∑

i=1

[
b̄i H

+H+
L ,R + b̄i H

+
L ,R

]
+

9∑

i, j=1

b̄H
+i j

L ,R , (C9)

From both Higgs and gauge boson exchanges in diagram
(3+4)

ā(3+4)
L ,R =

9∑

i=1

(
āi H

+W
L ,R + āiW H+

L ,R + āi H
+W ′

L ,R + āiW
′H+

L ,R

)
,

b̄(3+4)
L ,R =

9∑

i=1

(
b̄i H

+W
L ,R + b̄iW H+

L ,R + b̄i H
+W ′

L ,R + b̄iW
′H+

L ,R

)
,

(C10)

where gSV Z = gH−W+Z , gH−W ′+Z are given in Table 5.
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