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Abstract. A class of bilinear differential operators is introduced through assigning appropriate
signs and used to create bilinear differential equations which generalize Hirota bilinear equations.
The resulting bilinear differential equations are characterized by a special kind of Bell
polynomials and the linear superposition principle is applied to the construction of their
linear subspaces of solutions. Illustrative examples are made by an algorithm using weights
of dependent variables.

1. Introduction
Nonlinear differential equations play a significant role in exploring physical phenomena in depth.
Hirota presented a direct method to solve a kind of specific bilinear differential equations [1];
and soliton solutions are, despite their diversity, a universal phenomenon that Hirota bilinear
equations describe [2].

It is known that under u = 2(In f),,, the KdV equation

Uy + 6utly + Ugpr = 0 (1.1)
can be transformed into

(DeDy+ D3)f - f =0, (1.2)
which reads

Through this bilinear form, general Wronskian solutions, including solitons and complexitons,
are presented for the KdV equation [3, 4]. The Hirota D-operators [5] are defined to be

Dyf-g= (0 = 0x)" f(2)g(2") o=z = O fz + 2")g(x — ") =0 (1.4)
For example, we have

D.f-9=fe9— fz,
D2f g = freg — 2f29x + [ Yau, (1.5)
D%f ‘g = fxa:xg - 3fmcg:c + 3fxgx:c - fgmx:c-
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It is very interesting that most integrable equations possess the Hirota bilinear form. Soliton
solutions, particularly three-soliton solutions and Wronskian, Grammian and Pfaffian solutions,
to Hirota bilinear equations can be generated by the Hirota perturbation and Pfaffian techniques
[4, 6,7, 8].

However, Hirota bilinear equations are special and there are many other bilinear differential
equations which are not written in the Hirota bilinear form. This report will introduce a kind
of generalized bilinear differential operators and their corresponding bilinear equations, which
still possess nice mathematical properties. More importantly, we will talk about links of the
presented bilinear equations with multivariate Bell exponential polynomials and their linear
subspaces of solutions by the linear superposition principle.

2. Bilinear differential operators and bilinear equations
2.1. Bilinear D,-operators
Let p be a given natural number. We introduce bilinear differential operators as follows:

n

=3 (D)ee @@, a1 @

=0

(Dpof - 9)(x) = (0x + adw)" f(2)g(2")

where the powers of o are determined by
o = (=1)"%, where i = r(i) mod p with 0 < r(i) < p, i > 0. (2.2)

Obviously, the case of p = 1 gives the normal derivatives, and the cases of p = 2k, k € N, reduce
to Hirota bilinear operators.
We can observe that the powers o' read

p=3: 4+, —, +, +, —, +, --- fori=0,1,2,---; (2.3)
p:5: +7 ) +7 ) +7 +> ) +7 ) +7 fori:071727"' 5 (24)
p= 7 +7 ) +7 ) +7 ) +a +7 ) +a ) +7 ) +a oo for i = 07 172> R (25)

and thus
D3 .f 9= f329 — 3f2ugs + 3fs920 + [ G50

Dg,xf g = fS:L‘g - 5f4xg:(3 + 10f39:.92:6 - 10f2:1:g3x + 5fxg4:1: + fg5:1:7
D;,mf g = f7a:g - 7f6xgac + 21f5xg2:r: - 35f4a:g3:c + 35f31:g4x - 21f2x95x + 7fa:96:r: + fg7:r:a

which are different from the Hirota bilinear differential expressions [1].
A common feature that the D,-operators share is the Taylor expansion

(o.9) 1 Z
flx+0)g(x+ ad) = ZOZ' , (2.6)
if we define -
g(x + ad) = Z %‘)(@aidi. (2.7)

7!
=0

The case of bilinear operators with more than one dependent variables can be similarly defined
as follows:

(Dpy - Dyl f - g) (@, -+ m1)

p,r1 Y282

= (Opy +a8m’1) (O, + a0p)" f (1, co)g(x), - ,x§)|$§:$i, ny, - ,n > 1. (2.8)
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2.2. Bilinear equations
A bilinear differential equation associated with a multivariate polynomial F = F(z1,--- ,x;) is

defined by
]:(Dp,xp"‘ aDp,xl)f'fZO) (29)

which reduces a Hirota bilinear equation if p = 2k, £ € N. When p = 5, we particularly have
the generalized bilinear KdV equation

(D52Dst+ Ds ) f - f =2 farf =2 foft + 2faaf — 8fsafo + 6 f3, =0, (2.10)

the generalized bilinear Boussinesq equation

(D3, 4+ D3)f - f =2 forf =22 +2facf — 8fsufu+6f3, =0, (2.11)

and the generalized bilinear KP equation

(D5t Dso+ D50 +D3 ) f - f =2 furf =2 fofi+2f1nf =8 fsufu+6 fo,+2 fo f =2 f; = 0. (2.12)

Such generalized bilinear equations have two common characteristics:

e Bilinear: The nearest neighbors to linear equations.

e Using the D,-operators: Nice mathematical operators.
Two basic questions in the mathematical theory of bilinear equations are:

e How can one characterize bilinear equations defined by (2.9)?
e What kind of exact solutions are there to bilinear equations defined by (2.9)?

In this report, we would like to discuss those two questions, and provide solutions to both
questions through the Bell exponential polynomials and the linear superposition principle,
respectively.

3. Relations with Bell exponential polynomials
3.1. Bell polynomials
To begin with, let y be a C°° function of x and introduce

yr =0py, 72 1. (3.1)
The Bell polynomials are defined by
Yoa(y) = Yalyr, -+ yyn) = €7907e’, n > 1, (3.2)
in combinatorial mathematics [9]. A direct computation tells
Yi=uyi, Ya=y{ +y2, Y3 =19} +3y1y2 + 3,

Yy = yi + 6ytys + dyi1ys + 3y3 + va, (3.3)
Ys =y} + 10y3y2 + 10y2y3 + 15193 + 5y1y4 + 10y2y3 + 5.

A special case of the Faa di Bruno formula (see, e.g., [10]) presents the Bell polynomials

precisely: |
fd n mi ceoqyMn
Yualy) = Z myl- - mp!(1)™ - (nl)mn Y Yn™s (3.4)
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where the sum is over all n-tuples of nonnegative integers (mq, - - ,m,,) satisfying the constraint
mi + 2mg + - - - + nm,, = n. The Bell polynomials can also be computed from

Y o Yal(y Yn)
1,°° "
exp(3_ Ly =14 3 T, (3.5)
r=1 n=1

n!
The general formula (3.4) immediately tells the homogeneous property

Y’n(ayla a2y25 e 704nyn) = anYn(yla e ayn)a (36)

whose left-hand side is evaluated through first substituting all ayi, oy, - - ,a™y, into Y, and
then collecting powers of a and computing them by the rule (2.2). On the other hand, the

general Leibniz rule
n

o antin) = Y- (1) ter e oka) (3.7)

i=0
shows the addition formula for the Bell polynomials:

Viely+1) =3 (”) Vi iye () Yia 8. (3.8)

- (3
=0

Those two properties will be used to link bilinear equations to a special kind of Bell polynomials.

3.2. Binary Bell polynomials
We first explore a relation of the Bell polynomials to the D,-operators. For the sake of
computational convenience, we assume that

Fo @ g n@), (3.9)

Then using (3.6) and (3.8), we have

(G0 Dpat g =3t (1) (40 ) 0ka)
=0
n

o/( .)Y(n_m(sm ()

]

I
WKM:
o

=

y17 Ty yn)|yr:§rx+04r77r:c7 (310)

where &, = 0L¢ and 1, = OLn, 7 > 1.
Similarly to the case of the Hirota D-operators [11], we introduce binary Bell polynomials

yp;nm(U, UJ) = Yn(y17 te 7yn)|yT:l(wa_;'_vrm)_;'_%ar(wrm_UTx)7 n > 1; (311)

2
where vy, = 0Lv and w,, = 0w, r > 1. For example, we have
yB;x(va w) = Uy, y3;2$(v7 w) = "U% + wag, y3;3ac("l), w) = ’U% + v, wo, + W3y,
Vaz (v, w) = v + 6v2wo, + 3w3, + 4v,wss + Vag, (3.12)
V350 (v, w) = v° + 1003w, + 15v,w3, + 10v2ws, + 10wepws, + HvV4e + Whg-

This way, upon setting that
w:£+77aU:§—777 (313)
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from (3.10), we have a combinatorial formula for the Dj-operators:

)

- f
(fg) 1D;mf'g:yp;nz(v:lng,wzlnfg).
To characterize bilinear equations, we further introduce P-polynomials:

Ppina(q) = Vpina (0, 9),
the first few of which in the case of p = 3 read
Ps.2(q) = 0, P3:2:(0) = G205 P3:32(q) = @32» P3142(q) = 33,
{ P35 = G5z + 10420032, Psi6x = Gox + 15g5, + 1043,
In terms of
g=w—v=2Ing, v—lng,

the combinatorial formula (3.14) becomes

(fg)ing,zf g = yp;nx(vav + Q)'

Letting f = g, this tells a relation between bilinear expressions and the P-polynomials:

fﬁZDZ,zf [ = Ppnalqg=2In f).
Therefore, a bilinear equation

n

F(Dpa)f- f=0 with F(z) =) ca'
=0

is equivalent to an equation on a linear combination of P-polynomials in ¢ = 21n f:

Z Ci’Pp;m(q =2In f) = 0.

=0

This is a characterization for our generalized bilinear equations in one dimensional case.

3.8. Multivariate binary Bell polynomials
For a C*° function y = y(z1,--- , 1), define the variables [12]:

l
Yryyoory = Yrizy ooz = 8;1 o a;lly(l'ly T ,ZL‘[), 1,00, 7 > 07 Zri > 17
=1

and the multivariate Bell polynomials

Yrar ua (Y) = Yor oo n (Yryoe ) = €70 - 031, ma, o g 20, an = 1,
i=1
which can be computed through
Yriyr e Ty Yn17“‘7nl ni ng
exp( Z 1 i) =1+ Z u ot
ril-org nil---ng!
riteo4+r 21 np+--+n 21
1, > 0 ni, e ,mn 20

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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Three examples in differential polynomial form are

Yor = Yot + Yalts Your = Yout + Y2uYe + 25l + Yo, (3.25)
Viot = Yae,t + Ysole + 3Y20,4Y0 + 3Y20Yat + 3Y20Yal + 3YZYar + Yaye. '
Based on (3.24), we can show the homogeneous property:
Ynlz'“:nl (arl—’—“.rlyrl:'“:rl) = n1+ +nlYn17 T l(yT'l,"',T'l)’ (326)

and the general Lebnitz rule
oo eomrg =30 3011 (") oo (g ol - Gig) (3.27)
11=0 131=07=1

implies the addition formula for the multivariate Bell polynomials:

n
Yn1$1, Ty y + y Z Z H < ]> 71177;1).171,--- ,(nlfil):rl (y)}/ilxlw' 77;l$l (y/) (328)

11=0 3=0j5=1
Similarly for the sake of computational convenience, we assume that
f= eS(@1,sa) . g= @i,z (3.29)
Then by (3.26) and (3.28), we can compute that

(f9)~ 1DZ,11;1' Dyl f -9

= i ...ZHaij (n]) —Egmi - G Ol e)

i1=0  i;=0j=1

ni

n; l
— Z . Z H O/J' < ]>Yn1 1)1, 5 (ng—ip)ay (g)YtLlacl,m Rt (77)

i1=0  4,=0 j—l

ni

— nj ERE
- Z o Z H ( Yini—iv)ar, (n—i)a (&1 ) Yirwn o gy (@ e ry)

i1=0 31=0j5=1
= Ynh"' Rl (ym,'" R 57"1,“' o T O‘Tl+m+nnm,"' ,Tz)' (3'30)

Let us now introduce binary multivariate Bell polynomials in differential polynomial form:

Vpinizy, oz (v,w) = Yoi,om (ym,“'ﬂ“l = &rizr e iy T arl+...+Tl77T1z1,~~~,rlwz) ) (3.31)

where
w=E4+n v=E—n. (3.32)

Then from (3.30), a combinatorial formula follows

f
(fg)~ 1D;flm1 : D;lxlf 9= Vpnya, nzxz(v:1n§7w =In fg). (3.33)
Further setting the following multivariate P-polynomials:

Ppnyay - ,nzzz(Q) = Vpnizy, -z (U =0,w= Q)- (3-34)
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For example, we have

1 3 3 3
PB;x,t(Q) = 07 PS;Qx,t = an%qn P3;3x,t = EQ;%Q:et + ng% + ZquZth- (335)

It now follows that

f_zDg,lﬂﬁl o Dgfxlf ’ f = Pp;mwuw 7nl$l(q =2In f) (3'36)
Thus, a bilinear equation

F(Dpayy-Dpz)f-f=0 with F(zq,--,27) = Z ci17...7z~l:1:§1 . :1:3’ (3.37)

i1, ,4;=0
is equivalent to an equation on a linear combination of multivariate P-polynomials in ¢ = 21n f:

n

Z Ciyor it Ppiiar i (4 = 2In f) = 0, (3.38)

i1,0,4=0

where the coefficients c;, ... ;,’s are constants. This is a characterization for generalized bilinear
equations defined through the D,-operators.

4. Linear superposition principle
4.1. Subspaces of solutions
Let F(xy,--- ,x;) be a multivariate polynomial. Consider a bilinear equation

’F(Dp,l?l?"' 7Dp,$l)f'f:0- (4'1)
Define a set of N wave variables
0; = kiix1+ -+ ke, 1<i <N, (4.2)

where the k;;’s are constants, and form a linear combination of N exponential waves

N N
f= Z £; el — Z £ ekl,iml‘f'""f'kl,ixl, (4.3)
=1 =1

where all ¢;’s are arbitrary constants.
Note that we have the bilinear identities:

F(Dpyy s Dpa) e’ - €% = Flly;+ akij, - ki +aky) e, 1<ij <N, (4.4)

where the powers of a obey the rule (2.2). Therefore, we can have the following criterion for
obtaining the linear subspaces of solutions defined by (4.3) (see also [13, 14]).

Theorem: Let N > 1. An arbitrary linear combination of N exponential waves defined by
(4.3) solves the generalized bilinear equation (4.1) iff the constants kj;’s satisfy

]:(kl,i + Oék?Lj, s ,kl,i + Oékl,j) + ]:(kld + OékLZ', s )kl,j + aklﬂ-) = 07 1 S /) S ] S N. (4.5)



XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20) IOP Publishing
Journal of Physics: Conference Series 411 (2013) 012021 doi:10.1088/1742-6596/411/1/012021

Let F be a multivariate polynomial defined as in (3.37). Obviously, the formula (3.33) yields

D;’I,J?l T D;l,wl €9i ’ eej = yp;i1x1,~-~ 72'111(91' - ij 0; + 0]) €6i+6j> 1<i4,5<N. (4'6)

Thus, we obtain an equivalent theorem on the linear subspaces of exponential N-wave solutions.

Theorem’: Let F be defined by (3.37) and N > 1. An arbitrary linear combination of N

exponential waves defined by (4.3) presents a solution to the generalized bilinear equation (4.1)
iff the wave variables 0;’s satisfy

n
Z C’il,--- K7 [yp;ilzl,--- ,ila}l(ei - gja 92 + 9]) + yp;ilml,--- ,ilzl(gj - Oia 0] + 92)] = 07 1 S ? S ] S N.
21, ,21=0

(4.7)

This theorem has an advantage that the wave variables #;’s can be nonlinear functions of
dependent variables, but the first theorem only works for linear wave variables 6;’s.

Given a multivariate polynomial F, below is one way of solving the system (4.5) or (4.7) for
k;j; and ¢, ... 3, in order to obtain bilinear equations and their linear subspaces of solutions (see,
e.g., [13, 15]). We adopt a kind of parameterization for wave numbers and frequencies and list
the sequential solution procedure as follows:

e Introduce weights for the independent variables:

('U}(Ilfl),"' ,w(.flil)) = (wla"' 7wl)7 (48)
where the weights w;’s can be both positive and negative.
e Form a homogeneous polynomial F(z1,--- ,x;), defined by (3.37), in some weight.
e Parameterize k1, - , k;; using a parameter k;:
ki =bik;”, 1<j<l, (4.9)

and then determine the proportional constants b;’s and the coefficients c;, ... ;,’s by solving
the system (4.5) or (4.7).

4.2. Illustrative examples
To present illustrative examples, we consider the (3 + 1)-dimensional case with

(w(az),w(y),w(z),w(t)) = (wz7wyawz'7wt)7 (4.10)
and
01' = ]{JZ{L‘ + l@y +m;z — wit, ll = blk‘;uy, m; = ka‘;wz, W; = —bgk;ﬂt, 1 < ) < N. (4.11)

Then, upon forming a homogeneous multivariate polynomial in some weight

n
./—" = Z Cil’i2’i37i4{l)i1yiQZiBtM, (412)

11,82,13,14=1

we solve the system (4.5) or (4.7) for the proportional constants by, by, b3 and the coefficients
Ciy in,izis S SO that we can determine the corresponding bilinear equations and their associated
linear subspaces of solutions consisting of linear combinations of exponential waves. We are
going to present two concrete illustrative examples by applying this general idea below.
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Ezxample 1 - Example with positive weights
Let us set the weights of independent variables:

(w(z), w(y), w(z), w(t)) = (1,2,4,5), (4.13)
and consider a polynomial being homogeneous in weight 6:
F =125 + ey + c32?2 + caxt + csyz. (4.14)

Following the parameterization of wave numbers and frequencies in (4.11), we set the wave
variables
0; = kix + bikZy + boklz + b3kPt, 1 <i < N, (4.15)

where k;, 1 < ¢ < N, are arbitrary constants but the proportional constants b1, b2 and b3 are to
be determined by (4.5).
Now, a direct computation shows that the corresponding bilinear equation reads
F(Dsa, D3y, D3, Dsy) f - f=2¢c1foaf + 2001 f35, + 262 fazyf — 202 f1afy — 8C2f30,y fa
+862f3xfxy + 1202f2x,yf2x + 2C3f290,zf +2¢qforf — 2cafefi + 205fyzf - ZCSfny =0. (416)

The corresponding linear subspace of N-wave solutions is given by

N N
f _ Z g 601' — Zgi ekﬂ-&-hk?y—&-bgk?z—&-bgk?t’ (417)
i=1 i=1
where ¢;, 1 < ¢ < N, are arbitrary constants but the proportional constants b1, by and b3 are
defined by

25 5 10
by = — 2B py =22 = L (4.18)
8cs Cs C4
when the coefficients of the polynomial F satisfy
46165 = 56263. (4.19)

Example 2 - Example with positive and negative weights
Let us set the weights of independent variables:

(w(a:),w(y),w(z),w(t)) = (17_17_273)7 (420)
and consider a polynomial being homogeneous in weight 3:
F = c12® + e’z + esayt. (4.21)

Following the parameterization of wave numbers and frequencies in (4.11), we set the wave
variables
0; = ki + bik; Ly + bok; %z + b3kPt, 1 <i < N, (4.22)

where k;, 1 < i < N, are arbitrary constants but the proportional constants b1, by and b3 are to
be determined by (4.5).
Similarly, a similar direct computation shows that the corresponding bilinear equation reads

F(D&ma D3,y7 D3,27 D3,t)f : f = 2clf3zf + 262f5x,zf + 2062f3xf2:c,z + 263fzytf = 07 (423)

and it possesses the linear subspace of N-wave solutions determined by
N N ) ,
. . - - 3
f — E £ 691 — E &; eklx+b1ki y+b2ki Z+b3kit’ (424)
i=1 i=1

where the €;’s and k;’s are arbitrary but b1, b2 and b3 need to satisfy

c1 + 11legby + c3bibg = 0. (4.25)
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5. Conclusion and further questions
We created a kind of generalized bilinear differential operators Dy, .., discussed their links with
the Bell polynomials, and applied the linear superposition principle to the corresponding bilinear
equations. Two illustrative examples in the case of p = 3 were made to shed light on the general
framework.

There are, however, many other questions which are worth further investigation. Below is
just a few of them.
Question 1 - Mized bilinear equations

We can mix D,-operators with different natural numbers p to formulate a more general
bilinear equation, for example,

Z Z i1, ..VplD;gl x1 D;ll xlf : f =0,

1,0 ,pr=1141, i =0

where the coefficients cpll’ “PU's are constants. This kind of mixed combinations will bring

diversity in establishing hnks with binary Bell polynomials and formulations for linear subspaces
of solutions.
Question 2 - Geometries related to multivariate polynomials

What kind of geometries of a multivariate polynomial F does the equation

Fky + akl, -k + ak) + F(ky + aky, - k] +ak) =0

define? It determines an affine geometry of F when p = 2k.
Question 8 - Parameterizations achieved by multiple parameters
Parameterize ki1, --- , k;; using multiple parameters, for example, two parameters k; and [;:

w;
kji= Y bkl 1< <.

What kind of spaces can exist for the proportional constants b;, which will solve the system
Fkii +akij, - ki +aky )+ F(kij+okig,-- kj+aok;)=01<i<j<N?

Question 4 - Bilinear Backlund transformations

In the case of the Hirota D-operators, binary Bell polynomials are used to build bilinear
Bécklund transformations for soliton equations [16]. Is there any theory in the general case of
Dp-operators? This case should be a little bit more difficult than the Hirota case, noticing a
fact that the sign function (—1)"( in the definition (2.2) does not satisfy

(1)) = (1 OO, > 0,

when p > 1 is odd, while it is true when p is one or even. It is obvious that the above property
holds when p is one or even; but it does not hold because we have

(=1)"®) £ (—1)rP=D+ M) - que to (=1)"® =1, (=1)7P D =1, (=1)"® = -1,

when p > 1 is odd. The property is also crucial in deriving Lax pairs from bilinear Backlund
transformations (see, e.g., [11, 12]).
Question 5 - Criterion for multivariate polynomials with one zero

While we used multivariate polynomials, which have one zero and only one zero, to determine
bilinear equations with given linear subspaces of solutions, we came up with an interesting
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question [15]: How can one determine if a multivariate polynomial F(xy,---,x;) with real
coefficients has one and only one zero in R'? Two examples of such multivariate polynomials

are as follows:
z? +y* — 2y + 1, zero (z,y) = (0,1);

522 + dzy + y* — 22 — 2y + 2, zero (z,y) = (—1,3).

This problem is more general than Hilbert’s 17th problem, since all such multivariate polynomials
satisfy all the conditions in Hilbert’s 17th problem. It is hoped that there would be a definitive
answer to the question.
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