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Abstract. A class of bilinear differential operators is introduced through assigning appropriate
signs and used to create bilinear differential equations which generalize Hirota bilinear equations.
The resulting bilinear differential equations are characterized by a special kind of Bell
polynomials and the linear superposition principle is applied to the construction of their
linear subspaces of solutions. Illustrative examples are made by an algorithm using weights
of dependent variables.

1. Introduction
Nonlinear differential equations play a significant role in exploring physical phenomena in depth.
Hirota presented a direct method to solve a kind of specific bilinear differential equations [1];
and soliton solutions are, despite their diversity, a universal phenomenon that Hirota bilinear
equations describe [2].

It is known that under u = 2(ln f)xx, the KdV equation

ut + 6uux + uxxx = 0 (1.1)

can be transformed into
(DxDt +D4

x)f · f = 0, (1.2)

which reads
fxtf − fxft + fxxxxf − 4fxxxfx + 3f2xx = 0. (1.3)

Through this bilinear form, general Wronskian solutions, including solitons and complexitons,
are presented for the KdV equation [3, 4]. The Hirota D-operators [5] are defined to be

Dn
xf · g = (∂x − ∂x′)nf(x)g(x′)|x′=x = ∂nx′f(x+ x′)g(x− x′)|x′=0. (1.4)

For example, we have 
Dxf · g = fxg − fgx,

D2
xf · g = fxxg − 2fxgx + fgxx,

D3
xf · g = fxxxg − 3fxxgx + 3fxgxx − fgxxx.

(1.5)

XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20) IOP Publishing
Journal of Physics: Conference Series 411 (2013) 012021 doi:10.1088/1742-6596/411/1/012021

Published under licence by IOP Publishing Ltd 1



It is very interesting that most integrable equations possess the Hirota bilinear form. Soliton
solutions, particularly three-soliton solutions and Wronskian, Grammian and Pfaffian solutions,
to Hirota bilinear equations can be generated by the Hirota perturbation and Pfaffian techniques
[4, 6, 7, 8].

However, Hirota bilinear equations are special and there are many other bilinear differential
equations which are not written in the Hirota bilinear form. This report will introduce a kind
of generalized bilinear differential operators and their corresponding bilinear equations, which
still possess nice mathematical properties. More importantly, we will talk about links of the
presented bilinear equations with multivariate Bell exponential polynomials and their linear
subspaces of solutions by the linear superposition principle.

2. Bilinear differential operators and bilinear equations
2.1. Bilinear Dp-operators
Let p be a given natural number. We introduce bilinear differential operators as follows:

(Dn
p,xf · g)(x) = (∂x + α∂x′)

nf(x)g(x′)
∣∣
x′=x

=
n∑
i=0

(
n

i

)
αi(∂n−ix f)(x)(∂ixg)(x), n ≥ 1, (2.1)

where the powers of α are determined by

αi = (−1)r(i), where i = r(i) mod p with 0 ≤ r(i) < p, i ≥ 0. (2.2)

Obviously, the case of p = 1 gives the normal derivatives, and the cases of p = 2k, k ∈ N, reduce
to Hirota bilinear operators.

We can observe that the powers αi read

p = 3 : +, −, +, +, −, +, · · · for i = 0, 1, 2, · · · ; (2.3)

p = 5 : +, −, +, −, +, +, −, +, −, +, · · · for i = 0, 1, 2, · · · ; (2.4)

p = 7 : +, −, +, −, +, −, +, +, −, +, −, +, −, +, · · · for i = 0, 1, 2, · · · ; (2.5)

and thus
D3

3,xf · g = f3xg − 3f2xgx + 3fxg2x + fg3x,

D5
5,xf · g = f5xg − 5f4xgx + 10f3xg2x − 10f2xg3x + 5fxg4x + fg5x,

D7
7,xf · g = f7xg − 7f6xgx + 21f5xg2x − 35f4xg3x + 35f3xg4x − 21f2xg5x + 7fxg6x + fg7x,

which are different from the Hirota bilinear differential expressions [1].
A common feature that the Dp-operators share is the Taylor expansion

f(x+ δ)g(x+ αδ) =

∞∑
i=0

1

i!
(Di

p,xf · g)δi, (2.6)

if we define

g(x+ αδ) =

∞∑
i=0

(∂ixg)(x)

i!
αiδi. (2.7)

The case of bilinear operators with more than one dependent variables can be similarly defined
as follows:

(Dn1
p,x1 · · ·D

nl
p,xl

f · g)(x1, · · · , xl)
= (∂x1 + α∂x′1)n1 · · · (∂xl + α∂x′l)

nlf(x1, · · · , xl)g(x′1, · · · , x′l)|x′i=xi , n1, · · · , nl ≥ 1. (2.8)
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2.2. Bilinear equations
A bilinear differential equation associated with a multivariate polynomial F = F(x1, · · · , xl) is
defined by

F(Dp,x1 , · · · , Dp,xl)f · f = 0, (2.9)

which reduces a Hirota bilinear equation if p = 2k, k ∈ N. When p = 5, we particularly have
the generalized bilinear KdV equation

(D5,xD5,t +D4
5,x)f · f = 2 fxtf − 2 fxft + 2f4xf − 8f3xfx + 6 f22x = 0, (2.10)

the generalized bilinear Boussinesq equation

(D2
5,t +D4

5,x)f · f = 2 f2tf − 2 f2t + 2f4xf − 8f3xfx + 6 f22x = 0, (2.11)

and the generalized bilinear KP equation

(D5,tD5,x+D4
5,x+D2

5,y)f ·f = 2 fxtf−2 fxft+2f4xf−8f3xfx+6 f22x+2 f2yf−2 f2y = 0. (2.12)

Such generalized bilinear equations have two common characteristics:

• Bilinear: The nearest neighbors to linear equations.

• Using the Dp-operators: Nice mathematical operators.

Two basic questions in the mathematical theory of bilinear equations are:

• How can one characterize bilinear equations defined by (2.9)?

• What kind of exact solutions are there to bilinear equations defined by (2.9)?

In this report, we would like to discuss those two questions, and provide solutions to both
questions through the Bell exponential polynomials and the linear superposition principle,
respectively.

3. Relations with Bell exponential polynomials
3.1. Bell polynomials
To begin with, let y be a C∞ function of x and introduce

yr = ∂rxy, r ≥ 1. (3.1)

The Bell polynomials are defined by

Ynx(y) = Yn(y1, · · · , yn) = e−y∂nxe
y, n ≥ 1, (3.2)

in combinatorial mathematics [9]. A direct computation tells
Y1 = y1, Y2 = y21 + y2, Y3 = y31 + 3y1y2 + y3,

Y4 = y41 + 6y21y2 + 4y1y3 + 3y22 + y4,

Y5 = y51 + 10y31y2 + 10y21y3 + 15y1y
2
2 + 5y1y4 + 10y2y3 + y5.

(3.3)

A special case of the Faà di Bruno formula (see, e.g., [10]) presents the Bell polynomials
precisely:

Ynx(y) =
∑ n!

m1! · · ·mn!(1!)m1 · · · (n!)mn
ym1
1 · · · y

mn
n , (3.4)
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where the sum is over all n-tuples of nonnegative integers (m1, · · · ,mn) satisfying the constraint
m1 + 2m2 + · · ·+ nmn = n. The Bell polynomials can also be computed from

exp(

∞∑
r=1

yr
r!
tr) = 1 +

∞∑
n=1

Yn(y1, · · · , yn)

n!
tn. (3.5)

The general formula (3.4) immediately tells the homogeneous property

Yn(αy1, α
2y2, · · · , αnyn) = αnYn(y1, · · · , yn), (3.6)

whose left-hand side is evaluated through first substituting all αy1, α
2y2, · · · , αnyn into Yn and

then collecting powers of α and computing them by the rule (2.2). On the other hand, the
general Leibniz rule

(fg)−1∂nx (fg) =
n∑
i=0

(
n

i

)
(f−1∂n−ix f)(g−1∂ixg) (3.7)

shows the addition formula for the Bell polynomials:

Ynx(y + y′) =

n∑
i=0

(
n

i

)
Y(n−i)x(y)Yix(y′). (3.8)

Those two properties will be used to link bilinear equations to a special kind of Bell polynomials.

3.2. Binary Bell polynomials
We first explore a relation of the Bell polynomials to the Dp-operators. For the sake of
computational convenience, we assume that

f = eξ(x), g = eη(x). (3.9)

Then using (3.6) and (3.8), we have

(fg)−1Dn
p,xf · g =

n∑
i=0

αi
(
n

i

)
(f−1∂n−ix f)(g−1∂ixg)

=

n∑
i=0

αi
(
n

i

)
Y(n−i)x(ξ)Yix(η)

= Yn(y1, · · · , yn)|yr=ξrx+αrηrx , (3.10)

where ξrx = ∂rxξ and ηrx = ∂rxη, r ≥ 1.
Similarly to the case of the Hirota D-operators [11], we introduce binary Bell polynomials

Yp;nx(v, w) = Yn(y1, · · · , yn)|yr= 1
2
(wrx+vrx)+

1
2
αr(wrx−vrx), n ≥ 1, (3.11)

where vrx = ∂rxv and wrx = ∂rxw, r ≥ 1. For example, we have
Y3;x(v, w) = vx, Y3;2x(v, w) = v2x + w2x, Y3;3x(v, w) = v3x + 3vxw2x + w3x,

Y3;4x(v, w) = v4x + 6v2xw2x + 3w2
2x + 4vxw3x + v4x,

Y3;5x(v, w) = vx
5 + 10v3xw2x + 15vxw

2
2x + 10v2xw3x + 10w2xw3x + 5vxv4x + w5x.

(3.12)

This way, upon setting that
w = ξ + η, v = ξ − η, (3.13)

XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20) IOP Publishing
Journal of Physics: Conference Series 411 (2013) 012021 doi:10.1088/1742-6596/411/1/012021

4



from (3.10), we have a combinatorial formula for the Dp-operators:

(fg)−1Dn
p,xf · g = Yp;nx(v = ln

f

g
, w = ln fg). (3.14)

To characterize bilinear equations, we further introduce P-polynomials:

Pp;nx(q) = Yp;nx(0, q), (3.15)

the first few of which in the case of p = 3 read{
P3;x(q) = 0, P3;2x(q) = q2x, P3;3x(q) = q3x, P3;4x(q) = 3q22x,

P3;5x = q5x + 10q2xq3x, P3;6x = q6x + 15q22x + 10q23x.
(3.16)

In terms of

q = w − v = 2 ln g, v = ln
f

g
, (3.17)

the combinatorial formula (3.14) becomes

(fg)−1Dn
p,xf · g = Yp;nx(v, v + q). (3.18)

Letting f = g, this tells a relation between bilinear expressions and the P-polynomials:

f−2Dn
p,xf · f = Pp;nx(q = 2 ln f). (3.19)

Therefore, a bilinear equation

F(Dp,x)f · f = 0 with F(x) =
n∑
i=0

cix
i (3.20)

is equivalent to an equation on a linear combination of P-polynomials in q = 2 ln f :

n∑
i=0

ciPp;ix(q = 2 ln f) = 0. (3.21)

This is a characterization for our generalized bilinear equations in one dimensional case.

3.3. Multivariate binary Bell polynomials
For a C∞ function y = y(x1, · · · , xl), define the variables [12]:

yr1,··· ,rl = yr1x1,··· ,rlxl = ∂r1x1 · · · ∂
rl
xl
y(x1, · · · , xl), r1, · · · , rl ≥ 0,

l∑
i=1

ri ≥ 1, (3.22)

and the multivariate Bell polynomials

Yn1x1,··· ,nlxl(y) = Yn1,··· ,nl
(yr1,··· ,rl) = e−y∂n1

x1 · · · ∂
nl
xl
ey, n1, · · · , nl ≥ 0,

l∑
i=1

ni ≥ 1, (3.23)

which can be computed through

exp(
∑

r1 + · · ·+ rl ≥ 1
r1, · · · , rl ≥ 0

yr1,··· ,rl
r1! · · · rl!

tr11 · · · t
rl
l ) = 1 +

∑
n1 + · · ·+ nl ≥ 1
n1, · · · , nl ≥ 0

Yn1,··· ,nl

n1! · · ·nl!
tn1
1 · · · t

nl
l . (3.24)
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Three examples in differential polynomial form are{
Yx,t = yxt + yxyt, Y2x,t = y2x,t + y2xyt + 2yxtyx + y2xyt,

Y3x,t = y3x,t + y3xyt + 3y2x,tyx + 3y2xyxt + 3y2xyxyt + 3y2xyxt + y3xyt.
(3.25)

Based on (3.24), we can show the homogeneous property:

Yn1,··· ,nl
(αr1+···rlyr1,··· ,rl) = αn1+···+nlYn1,··· ,nl

(yr1,··· ,rl), (3.26)

and the general Lebnitz rule

(fg)−1∂n1
x1 · · · ∂

nl
xl
fg =

n1∑
i1=0

· · ·
nl∑
il=0

l∏
j=1

(
nj
ij

)
(f−1∂n1−i1

x1 · · · ∂nl−il
xl

f)(g−1∂i1x1 · · · ∂
il
xl
g) (3.27)

implies the addition formula for the multivariate Bell polynomials:

Yn1x1,··· ,nlxl(y + y′) =

n1∑
i1=0

· · ·
nl∑
il=0

l∏
j=1

(
nj
ij

)
Y(n1−i1)x1,··· ,(nl−il)xl(y)Yi1x1,··· ,ilxl(y

′). (3.28)

Similarly for the sake of computational convenience, we assume that

f = eξ(x1,··· ,xl), g = eη(x1,··· ,xl). (3.29)

Then by (3.26) and (3.28), we can compute that

(fg)−1Dn1
p,x1 · · ·D

nl
p,xl

f · g

=

n1∑
i1=0

· · ·
nl∑
il=0

l∏
j=1

αij
(
nj
ij

)
(e−ξ∂n1−i1

x1 · · · ∂nl−il
xl

eξ)(e−η∂i1x1 · · · ∂
il
xl
eη)

=

n1∑
i1=0

· · ·
nl∑
il=0

l∏
j=1

αij
(
nj
ij

)
Y(n1−i1)x1,··· ,(nl−il)xl(ξ)Yi1x1,··· ,ilxl(η)

=

n1∑
i1=0

· · ·
nl∑
il=0

l∏
j=1

(
nj
ij

)
Y(n1−i1)x1,··· ,(nl−il)xl(ξr1,··· ,rl)Yi1x1,··· ,ilxl(α

r1+···+rlηr1,··· ,rl)

= Yn1,··· ,nl
(yr1,··· ,rl = ξr1,··· ,rl + αr1+···+rlηr1,··· ,rl). (3.30)

Let us now introduce binary multivariate Bell polynomials in differential polynomial form:

Yp;n1x1,··· ,nlxl(v, w) = Yn1,··· ,nl

(
yr1,··· ,rl = ξr1x1,··· ,rlxl + αr1+···+rlηr1x1,··· ,rlxl

)
, (3.31)

where
w = ξ + η, v = ξ − η. (3.32)

Then from (3.30), a combinatorial formula follows

(fg)−1Dn1
p,x1 · · ·D

nl
p,xl

f · g = Yp;n1x1,··· ,nlxl(v = ln
f

g
, w = ln fg). (3.33)

Further setting the following multivariate P-polynomials:

Pp;n1x1,··· ,nlxl(q) = Yp;n1x1,··· ,nlxl(v = 0, w = q). (3.34)
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For example, we have

P3;x,t(q) = 0, P3;2x,t =
1

4
q2xqt, P3;3x,t =

3

4
q2xqxt +

3

8
q3xqt +

3

4
qxq2xqt. (3.35)

It now follows that

f−2Dn1
p,x1 · · ·D

nl
p,xl

f · f = Pp;n1x1,··· ,nlxl(q = 2 ln f). (3.36)

Thus, a bilinear equation

F(Dp,x1 , · · ·Dp,xl)f · f = 0 with F(x1, · · · , xl) =

n∑
i1,··· ,il=0

ci1,··· ,ilx
i1
1 · · ·x

il
l (3.37)

is equivalent to an equation on a linear combination of multivariate P-polynomials in q = 2 ln f :

n∑
i1,··· ,il=0

ci1,··· ,ilPp;i1x1,··· ,ilxl(q = 2 ln f) = 0, (3.38)

where the coefficients ci1,··· ,il ’s are constants. This is a characterization for generalized bilinear
equations defined through the Dp-operators.

4. Linear superposition principle
4.1. Subspaces of solutions
Let F(x1, · · · , xl) be a multivariate polynomial. Consider a bilinear equation

F(Dp,x1 , · · · , Dp,xl)f · f = 0. (4.1)

Define a set of N wave variables

θi = k1,ix1 + · · ·+ kl,ixl, 1 ≤ i ≤ N, (4.2)

where the kj,i’s are constants, and form a linear combination of N exponential waves

f =

N∑
i=1

εi e
θi =

N∑
i=1

εi e
k1,ix1+···+kl,ixl , (4.3)

where all εi’s are arbitrary constants.
Note that we have the bilinear identities:

F(Dp,x1 , · · · , Dp,xl) e
θi · eθj = F(k1,i + αk1,j , · · · , kl,i + αkl,j) e

θi+θj , 1 ≤ i, j ≤ N, (4.4)

where the powers of α obey the rule (2.2). Therefore, we can have the following criterion for
obtaining the linear subspaces of solutions defined by (4.3) (see also [13, 14]).

Theorem: Let N ≥ 1. An arbitrary linear combination of N exponential waves defined by
(4.3) solves the generalized bilinear equation (4.1) iff the constants kj,i’s satisfy

F(k1,i + αk1,j , · · · , kl,i + αkl,j) + F(k1,j + αk1,i, · · · , kl,j + αkl,i) = 0, 1 ≤ i ≤ j ≤ N. (4.5)
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Let F be a multivariate polynomial defined as in (3.37). Obviously, the formula (3.33) yields

Di1
p,x1 · · ·D

il
p,xl

eθi · eθj = Yp;i1x1,··· ,ilxl(θi − θj , θi + θj) e
θi+θj , 1 ≤ i, j ≤ N. (4.6)

Thus, we obtain an equivalent theorem on the linear subspaces of exponential N -wave solutions.
Theorem’: Let F be defined by (3.37) and N ≥ 1. An arbitrary linear combination of N

exponential waves defined by (4.3) presents a solution to the generalized bilinear equation (4.1)
iff the wave variables θi’s satisfy

n∑
i1,··· ,il=0

ci1,··· ,il [Yp;i1x1,··· ,ilxl(θi − θj , θi + θj) + Yp;i1x1,··· ,ilxl(θj − θi, θj + θi)] = 0, 1 ≤ i ≤ j ≤ N.

(4.7)

This theorem has an advantage that the wave variables θi’s can be nonlinear functions of
dependent variables, but the first theorem only works for linear wave variables θi’s.

Given a multivariate polynomial F , below is one way of solving the system (4.5) or (4.7) for
kj,i and ci1,··· ,il , in order to obtain bilinear equations and their linear subspaces of solutions (see,
e.g., [13, 15]). We adopt a kind of parameterization for wave numbers and frequencies and list
the sequential solution procedure as follows:

• Introduce weights for the independent variables:

(w(x1), · · · , w(xl)) = (w1, · · · , wl), (4.8)

where the weights wi’s can be both positive and negative.

• Form a homogeneous polynomial F(x1, · · · , xl), defined by (3.37), in some weight.

• Parameterize k1,i, · · · , kl,i using a parameter ki:

kj,i = bjk
wj

i , 1 ≤ j ≤ l, (4.9)

and then determine the proportional constants bj ’s and the coefficients ci1,··· ,il ’s by solving
the system (4.5) or (4.7).

4.2. Illustrative examples
To present illustrative examples, we consider the (3 + 1)-dimensional case with

(w(x), w(y), w(z), w(t)) = (wx, wy, wz, wt), (4.10)

and

θi = kix+ liy +miz − ωit, li = b1k
wy

i , mi = b2k
wz
i , ωi = −b3kwt

i , 1 ≤ i ≤ N. (4.11)

Then, upon forming a homogeneous multivariate polynomial in some weight

F =

n∑
i1,i2,i3,i4=1

ci1,i2,i3,i4x
i1yi2zi3ti4 , (4.12)

we solve the system (4.5) or (4.7) for the proportional constants b1, b2, b3 and the coefficients
ci1,i2,i3,i4 ’s so that we can determine the corresponding bilinear equations and their associated
linear subspaces of solutions consisting of linear combinations of exponential waves. We are
going to present two concrete illustrative examples by applying this general idea below.
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Example 1 - Example with positive weights
Let us set the weights of independent variables:

(w(x), w(y), w(z), w(t)) = (1, 2, 4, 5), (4.13)

and consider a polynomial being homogeneous in weight 6:

F = c1x
6 + c2x

4y + c3x
2z + c4xt+ c5yz. (4.14)

Following the parameterization of wave numbers and frequencies in (4.11), we set the wave
variables

θi = kix+ b1k
2
i y + b2k

4
i z + b3k

5
i t, 1 ≤ i ≤ N, (4.15)

where ki, 1 ≤ i ≤ N , are arbitrary constants but the proportional constants b1, b2 and b3 are to
be determined by (4.5).

Now, a direct computation shows that the corresponding bilinear equation reads

F(D3,x, D3,y, D3,z, D3,t)f · f = 2c1f6xf + 20c1f
2
3x + 2c2f4x,yf − 2c2f4xfy − 8c2f3x,yfx

+8c2f3xfxy + 12c2f2x,yf2x + 2c3f2x,zf + 2c4fxtf − 2c4fxft + 2c5fyzf − 2c5fyfz = 0. (4.16)

The corresponding linear subspace of N -wave solutions is given by

f =
N∑
i=1

εi e
θi =

N∑
i=1

εi e
kix+b1k

2
i y+b2k

3
i z+b3k

4
i t, (4.17)

where εi, 1 ≤ i ≤ N, are arbitrary constants but the proportional constants b1, b2 and b3 are
defined by

b1 = −25c3
8c5

, b2 =
5c2
c5
, b3 =

10c1
c4

, (4.18)

when the coefficients of the polynomial F satisfy

4c1c5 = 5c2c3. (4.19)

Example 2 - Example with positive and negative weights
Let us set the weights of independent variables:

(w(x), w(y), w(z), w(t)) = (1,−1,−2, 3), (4.20)

and consider a polynomial being homogeneous in weight 3:

F = c1x
3 + c2x

5z + c3xyt. (4.21)

Following the parameterization of wave numbers and frequencies in (4.11), we set the wave
variables

θi = kix+ b1k
−1
i y + b2k

−2
i z + b3k

3
i t, 1 ≤ i ≤ N, (4.22)

where ki, 1 ≤ i ≤ N , are arbitrary constants but the proportional constants b1, b2 and b3 are to
be determined by (4.5).

Similarly, a similar direct computation shows that the corresponding bilinear equation reads

F(D3,x, D3,y, D3,z, D3,t)f · f = 2c1f3xf + 2c2f5x,zf + 20c2f3xf2x,z + 2c3fxytf = 0, (4.23)

and it possesses the linear subspace of N -wave solutions determined by

f =

N∑
i=1

εi e
θi =

N∑
i=1

εi e
kix+b1k

−1
i y+b2k

−2
i z+b3k3i t, (4.24)

where the εi’s and ki’s are arbitrary but b1, b2 and b3 need to satisfy

c1 + 11c2b2 + c3b1b3 = 0. (4.25)
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5. Conclusion and further questions
We created a kind of generalized bilinear differential operators Dp,x, discussed their links with
the Bell polynomials, and applied the linear superposition principle to the corresponding bilinear
equations. Two illustrative examples in the case of p = 3 were made to shed light on the general
framework.

There are, however, many other questions which are worth further investigation. Below is
just a few of them.
Question 1 - Mixed bilinear equations

We can mix Dp-operators with different natural numbers p to formulate a more general
bilinear equation, for example,

m∑
p1,··· ,pl=1

n∑
i1,··· ,il=0

cp1,··· ,pli1,··· ,il D
i1
p1,x1 · · ·D

il
pl,xl

f · f = 0,

where the coefficients cp1,··· ,pli1,··· ,il ’s are constants. This kind of mixed combinations will bring
diversity in establishing links with binary Bell polynomials and formulations for linear subspaces
of solutions.
Question 2 - Geometries related to multivariate polynomials

What kind of geometries of a multivariate polynomial F does the equation

F(k1 + αk′1, · · · , kl + αk′l) + F(k′1 + αk1, · · · , k′l + αkl) = 0

define? It determines an affine geometry of F when p = 2k.
Question 3 - Parameterizations achieved by multiple parameters

Parameterize k1,i, · · · , kl,i using multiple parameters, for example, two parameters ki and li:

kj,i =

wi∑
r=0

bj,rk
r
i l
wi−r
i , 1 ≤ j ≤ l.

What kind of spaces can exist for the proportional constants bj,r which will solve the system

F(k1,i + αk1,j , · · · , kl,i + αkl,j) + F(k1,j + αk1,i, · · · , kl,j + αkl,i) = 0, 1 ≤ i ≤ j ≤ N?

Question 4 - Bilinear Bäcklund transformations
In the case of the Hirota D-operators, binary Bell polynomials are used to build bilinear

Bäcklund transformations for soliton equations [16]. Is there any theory in the general case of
Dp-operators? This case should be a little bit more difficult than the Hirota case, noticing a

fact that the sign function (−1)r(i) in the definition (2.2) does not satisfy

(−1)r(i+j) = (−1)r(i)+r(j), i, j ≥ 0,

when p > 1 is odd, while it is true when p is one or even. It is obvious that the above property
holds when p is one or even; but it does not hold because we have

(−1)r(p) 6= (−1)r(p−1)+r(1), due to (−1)r(p) = 1, (−1)r(p−1) = 1, (−1)r(1) = −1,

when p > 1 is odd. The property is also crucial in deriving Lax pairs from bilinear Bäcklund
transformations (see, e.g., [11, 12]).
Question 5 - Criterion for multivariate polynomials with one zero

While we used multivariate polynomials, which have one zero and only one zero, to determine
bilinear equations with given linear subspaces of solutions, we came up with an interesting
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question [15]: How can one determine if a multivariate polynomial F(x1, · · · , xl) with real
coefficients has one and only one zero in Rl? Two examples of such multivariate polynomials
are as follows:

x2 + y2 − 2y + 1, zero (x, y) = (0, 1);

5x2 + 4xy + y2 − 2x− 2y + 2, zero (x, y) = (−1, 3).

This problem is more general than Hilbert’s 17th problem, since all such multivariate polynomials
satisfy all the conditions in Hilbert’s 17th problem. It is hoped that there would be a definitive
answer to the question.
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