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Introduction
Alpha clustering is an interesting aspect of

nuclear structure. The 0+
2 state in 12C was

predicted by no-core shell-model calculations
at around 17 MeV [1] which is more than twice
of its experimentally observed value. The ex-
istence of 0+

2 state at 7.64 MeV (Hoyle state)
has been explained by considering three alpha
particles in gas-like condensate form, held to-
gether by the coulomb barrier [2]. Alpha clus-
tering was earlier observed only in light nu-
clei. Recently, Astier et al. [3] studied the
excited states in heavy 212Po nucleus which
has two protons and two neutrons outside
the 208Pb shell closure, using alpha trans-
fer 208Pb(18O,14C) reaction. In this experi-
ment, two sets of states of odd and even spins
with non-natural parity were reported. Also,
enhanced E1 transitions, linking non-natural
parity states and yrast states of same spin
values were observed. These transitions are
supposedly the signature of the presence of α-
cluster structure in this system [3].

213At is the isotone of 212Po (N = 128) with
one extra proton. The similarity in the low en-
ergy structure of 212Po and 213At is shown in
Fig. 1. In the studies of the nuclei around
208Pb, evidence of the spectator behaviour of
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the valence proton outside the Z = 82 core
has been reported [4]. Also, the alpha-cluster
preformation factor, calculated using cluster-
formation model (CFM), for 213At is 0.187
which is close to that of 212Po (0.221) [5]. This
encourages us to search for the non-natural
parity states in 213At.
Experimental Details

Excited states in 213At were populated
when 11B beam, in the energy range 54-62
MeV, was bombarded on the self-supporting
208Pb (∼ 99% enriched) target of around 6
mg/cm2 thickness. The beam was provided
from the 15UD Pelletron accelerator at IUAC,
New Delhi. The statistical model calcula-
tions (PACE4) predict very small cross-section
for 213At in the given reaction. However, its
higher experimental yield suggests that the in-
complete fusion of 11B with 208Pb is also re-
sponsible for the production of this nucleus.
Gamma rays from the residual nuclei were de-
tected using Indian National Gamma Array
(INGA), which consisted of 14 Compton sup-
pressed clover detectors at the time of experi-
ment. The detectors were placed at 90◦, 123◦,
148◦with respect to the beam direction. The
two and higher fold coincidence data were ac-
quired using CANDLE [6]. The data were first
written into a ROOT Tree [7] format which
were sorted to construct various 2- and 3 di-
mensional histograms using a code developed
at IIT Roorkee. The histograms were further
analysed using RADWARE [8] and ROOT.
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Results and Discussions
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FIG. 1: Comparison of low-lying structures and
corresponding spectra in 212Po and 213At.

Figure 1 shows a comparison of the low en-
ergy structure in 212Po and 213At. It is appar-
ent from the comparison that the lowest lying
two transitions have almost same energies and
E2 nature. In the gate of 727 keV transition
[Fig. 2], which is the strongest transition in
212Po, a 810 keV transition of dipole nature is
observed. The 3− state which decays to the
yrast positive parity 2+ state via 810 keV tran-
sition has been understood in the framework
of coupling of valence nucleon excitations to
the one-phonon octupole vibration state (3−)
of 208Pb core [3].
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FIG. 2: Part of the spectra of 212Po and 213At
gated by 727 keV and 725 keV transitions, respec-
tively.

In the present study, several new transitions
have been observed in 213At. In the gate of
725 keV transition, a 628 keV transition is
observed which decays directly to the excited
13/2− state [Fig. 2]. The DCO ratio of this
transition has been deduced which confirms
the ∆J = 1 nature and therefore, spin of 15/2
can be tentatively assigned to the level. This
state can also be interpreted as the coupling of
3− octupole excitation of the 208Pb core to the
excitation of valence nucleons of 213At. The
energy of the (15/2+) state follows the trend
of decreasing excitation energy with addition
of valence nucleons.

Further investigations will be carried out to
search for non-natural parity states in 213At.
Also, unambiguous determination of multipo-
larities of resulting transitions, in addition to
that of 628 keV transition, is desirable.
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