Search for non-natural parity states in 213At

Madhul AY. Deolﬂ Pragati!, Khamosh Yadav!, S. K. Tandel?, S. S.
Bhattacharjee®, S. Chakraborty?, S. Rai®, S. G. Wahid?, S. Kumar®,

S. Muralithar®, R. P. Singh?, Indu Bala®, Ritika Garg?, and A. K. Jain’
! Department of Physics, Indian Institute of Technology Roorkee, Roorkee - 247667, INDIA
2UM-DAE Centre for Excellence in Basic Sciences,

University of Mumbai, Mumbai - 400098, INDIA
3 Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi - 110067, INDIA
“Dept. of Physics, Institute of Science,

Banaras Hindu University, Varanasi - 221005, INDIA
5 Department of Physics, Visva-Bharati, Santiniketan - 781235, INDIA
SDept. of Physics and Astrophysics, University of Delhi, New Delhi - 110007, INDIA and
" Amity Inst. of Nucl. Sci. & Tech., Amity University, Noida - 201303, INDIA

Introduction

Alpha clustering is an interesting aspect of
nuclear structure. The 0] state in 12C was
predicted by no-core shell-model calculations
at around 17 MeV [I] which is more than twice
of its experimentally observed value. The ex-
istence of 07 state at 7.64 MeV (Hoyle state)
has been explained by considering three alpha
particles in gas-like condensate form, held to-
gether by the coulomb barrier [2]. Alpha clus-
tering was earlier observed only in light nu-
clei. Recently, Astier et al. [3] studied the
excited states in heavy 2'2Po nucleus which
has two protons and two neutrons outside
the 2%8Pb shell closure, using alpha trans-
fer 208Pb(180,'C) reaction. In this experi-
ment, two sets of states of odd and even spins
with non-natural parity were reported. Also,
enhanced FE1 transitions, linking non-natural
parity states and yrast states of same spin
values were observed. These transitions are
supposedly the signature of the presence of a-
cluster structure in this system [3].

213 At is the isotone of 212Po (N = 128) with
one extra proton. The similarity in the low en-
ergy structure of 2!2Po and 2!3At is shown in
Fig. 1. In the studies of the nuclei around
208Ph, evidence of the spectator behaviour of
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the valence proton outside the Z = 82 core
has been reported [4]. Also, the alpha-cluster
preformation factor, calculated using cluster-
formation model (CFM), for 213At is 0.187
which is close to that of 212Po (0.221) [5]. This
encourages us to search for the non-natural
parity states in 213At.

Experimental Details

Excited states in 2At were populated
when B beam, in the energy range 54-62
MeV, was bombarded on the self-supporting
208Ph (~ 99% enriched) target of around 6
mg/cm? thickness. The beam was provided
from the 15UD Pelletron accelerator at ITUAC,
New Delhi. The statistical model calcula-
tions (PACE4) predict very small cross-section
for 213At in the given reaction. However, its
higher experimental yield suggests that the in-
complete fusion of ''B with 2°%Pb is also re-
sponsible for the production of this nucleus.
Gamma rays from the residual nuclei were de-
tected using Indian National Gamma Array
(INGA), which consisted of 14 Compton sup-
pressed clover detectors at the time of experi-
ment. The detectors were placed at 90°, 123°,
148°with respect to the beam direction. The
two and higher fold coincidence data were ac-
quired using CANDLE [6]. The data were first
written into a ROOT Tree [7] format which
were sorted to construct various 2- and 3 di-
mensional histograms using a code developed
at IIT Roorkee. The histograms were further
analysed using RADWARE [§] and ROOT.
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Results and Discussions
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FIG. 1: Comparison of low-lying structures and
corresponding spectra in 2'?Po and 2'3At.

Figure 1 shows a comparison of the low en-
ergy structure in 22Po and 2'3At. It is appar-
ent from the comparison that the lowest lying
two transitions have almost same energies and
E2 nature. In the gate of 727 keV transition
[Fig. 2], which is the strongest transition in
212Po, a 810 keV transition of dipole nature is
observed. The 3~ state which decays to the
yrast positive parity 27 state via 810 keV tran-
sition has been understood in the framework
of coupling of valence nucleon excitations to
the one-phonon octupole vibration state (37)
of 208Pb core [3].
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FIG. 2: Part of the spectra of *'?Po and 2™ At
gated by 727 keV and 725 keV transitions, respec-
tively.

In the present study, several new transitions
have been observed in 2'3At. In the gate of
725 keV transition, a 628 keV transition is
observed which decays directly to the excited
13/2~ state [Fig. 2]. The DCO ratio of this
transition has been deduced which confirms
the AJ = 1 nature and therefore, spin of 15/2
can be tentatively assigned to the level. This
state can also be interpreted as the coupling of
3~ octupole excitation of the 2°®Pb core to the
excitation of valence nucleons of 2'3At. The
energy of the (15/2%) state follows the trend
of decreasing excitation energy with addition
of valence nucleons.

Further investigations will be carried out to
search for non-natural parity states in 213At.
Also, unambiguous determination of multipo-
larities of resulting transitions, in addition to
that of 628 keV transition, is desirable.
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