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Abstract

Finding reductions between problems is a fundamental way to evaluate hardness
of computational tasks. With hypothesis in complexity theory such as NP 6= P ,
finding reductions from hard problems (e.g. SAT) to a task implies the task cannot
be accomplished efficiently. For example, if one can find a reduction from SAT to
breaking a cryptosystem, then this cryptosystem is computationally secure unless
NP = P . On the other hand, for some tasks, it can be proven that hard problems
cannot reduce to them. For instance, the existence of reductions from SAT to
finding Nash equilibrium results in the consequence that polynomial hierarchy
collapses. This can view as evidence that finding the Nash equilibrium can not be
as hard as NP-hard problems.

There are many similar results studying classical reductions (which are either
deterministic or randomized) between hard problems and tasks which have inter-
esting applications. However, for quantum reductions, there are not many known
examples. Quantum algorithms are believed to be more powerful than classical al-
gorithms. Therefore, intuitively, we ask: Can we find quantum reductions between
problems, where no classical reduction is known? Or, given a task, can we rule
out the possibility that there are hard problems reducing to the task via quantum
reductions? In this thesis, we study quantum reductions in these two directions.

For the first topic, we study the dihedral hidden subgroup problem by relating
its hardness to a well-studied classical problem, the random subset sum problem.
The dihedral hidden subgroup is an important open problem in quantum comput-
ing and cryptography. It is known that lattice problems reduce to it, and that it
reduces to random subset sum with density > 1 and also to quantum sampling
subset sum solutions. We examine a decision version of the problem where the
question asks whether the hidden subgroup is trivial or order two. The decision
problem essentially asks if a given vector is in the span of all coset states. We
approach this by first computing an explicit basis for the coset space and the per-
pendicular space. We then look at the consequences of having efficient unitaries
that use this basis. We show that if a unitary maps the basis to the standard basis
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in any way, then that unitary can be used to solve random subset sum with con-
stant density > 1. We also show that if a unitary can exactly decide membership
in the coset subspace, then the collision problem for subset sum can be solved for
density > 1 but approaching 1 as the problem size increases. This strengthens the
previous hardness result that implementing the optimal POVM in a specific way
is as hard as quantum sampling subset sum solutions.

For the second topic, we consider whether quantum reductions from NP-hard
problems to breaking cryptosystem exist. In cryptography, it requires a system
to be hard to be broken on average instead of being hard in the worst case. To
show the security of a cryptosystem, one ideal approach is reducing a worst-case
hard problem to breaking the system on average. Therefore, reducing NP-hard
problems to breaking cryptography, e.g., the average-case hardness of inverting
one-way permutations is a particularly intriguing instance. We initiate a study of
the quantum analogue of these questions and show that if NP-complete problems
can be reduced to inverting one-way permutations using certain types of quantum
reductions, then coNP ⊆ QIP(2).
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Chapter 1 |
Introduction

This thesis focuses on studying quantum reductions from hard problems to compu-
tational tasks with important applications in cryptography. In Chapter 2, we study
whether there exists a reduction from random subset sum with the hardest param-
eter to the dihedral hidden subgroup problem. The dihedral hidden subgroup
problem is an important open problem in quantum computing and cryptography.
In particular, lattice-based cryptography, which is proposed to be secure against
quantum computers is based on problems reducing to the dihedral hidden subgroup
problem. In Chapter 3, we explore the possibilities to reduce NP-hard problems to
breaking cryptographic primitives under quantum reductions [CHS]. It has been
shown that NP-hard problems cannot classically reduce to the task of breaking cer-
tain cryptographic primitives unless the polynomial hierarchy collapses. However,
it is not known if the existence of quantum reductions from NP-hard problems to
these cryptographic primitives implies any nontrivial consequence in complexity
theory. In the following, I will elaborate on these two topics.

1.1 The dihedral hidden subgroup problem
The hidden subgroup problem is a successful framework to break cryptographic
primitives with quantum computers. By solving abelian hidden subgroup prob-
lems in polynomial time, quantum computers break RSA [Sho97], discrete loga-
rithm [Sho97], key exchange based on principle ideal problem [Hal07], the Smart-
Vercauteren homomorphic encryption scheme [BS16], and GGH multilinear maps
[BS16]. Non-abelian hidden subgroup problems also have important applications
in cryptography but only few of them have efficient algorithms. In particular, it has
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been shown that the security of lattice-based cryptography reduces to solving the
dihedral hidden subgroup problem via the standard approach [Reg04], where the
dihedral hidden subgroup problem is still open. Solving the dihedral hidden sub-
group problem via the standard approach is defined as the dihedral coset problem
(DCP).

In joint work with Hallgren [CH16], we were motivated to understand the hard-
ness of the DCP by relating it to a well-studied classical problem, random subset
sum. Random subset sum has a density parameter ρ, which determines its hard-
ness. The DCP reduces to random subset sum with ρ = 1 [Reg04], which is known
to be the hardest case [IN96]. For the other direction, we would like to show
hardness of the DCP based on random subset sum with ρ = 1 whose hardness is
well studied. However, the only known connection is that random subset sum with
ρ = 1/ log k reduces to the DCP by combining the reductions in [IN96, Reg04],
where density 1/ log k may not be as hard as density 1. Hence, we asked, is the
DCP as hard as random subset sum with ρ = 1?

Showing hardness would require reducing random subset sum with ρ = 1 to
the DCP. We were unable to find a reduction, but we proved a weaker relationship
in [CH16]. Let S be the subspace for the order-two coset states, our approach is
finding a basis B ∪ B⊥ such that B spans S and B⊥ spans its complement. We
first showed that measurements which distinguish B from B⊥ solve the DCP with
group size a power of 2. Then we proved that this measurement also solves random
subset sum with ρ = 1 + c for c a constant or the collision problem for subset sum
with ρ = 1. This implies that an efficient implementation of this measurement
would solve subset sum with ρ = 1 + c and the collision problem with ρ = 1. This
also improves the result in [BCvD06] that implementing the optimal POVM for
the DCP in a specific way is as hard as worst-case subset sum. It is still open
that whether there exist a reduction from random subset sum with hard density
to solving the DCP via an arbitrary measurement.
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1.2 Quantum reductions from worst-case to
average-case problems
Chapter 3 studies how the landscape of complexity theory and cryptography
change when quantum reductions are considered. In joint work with Hallgren and
Song [CHS], we start our studies from a fundamental question in complexity the-
ory which is when worst-case problems have reductions to average-case problems.
Such reductions exist for complete sets of PSPACE, EXP and #P [FF93]. For NP,
where this question is open, previous results [FF93,BT06] showed that such non-
adaptive reductions do not exist unless the polynomial hierarchy collapses. This
question has also been studied in the context of cryptography. For instance, the
classical reductions from an NP-hard problem to the task of inverting a one-way
permutation do not exist; otherwise, the polynomial hierarchy collapses [Bra79].
These papers only analyzed classical reductions. Quantum reductions appear to be
more powerful than classical reductions, when reducing from worst-case to average-
case problems. Regev [Reg04,Reg05] showed that some lattice problems reduce to
random subset sum or LWE via quantum reductions, while no classical reduction
is known. Therefore, we asked the following question: Can we base cryptographic
primitives on NP-complete or even QMA-complete problems if we allow quantum
reductions?

There are two challenges to show the non-existence of quantum reductions.
Previous results showing the non-existence of classical reductions are proven by
the following strategy: Suppose there exists a classical reduction from an NP-
hard problem L to an average-case problem (e.g., inverting one-way permutations).
Then, by simulating the classical reduction, one can build a constant-round inter-
active proof protocol (IP(c)) for L. This implies that coNP⊆ IP(c) = IP(2) and
therefore the polynomial hierarchy collapses. The first challenge is that since the
messages can be quantum states, the verifier needs to prevent the prover from
cheating by entanglement. Second, to show a non-trivial consequence, one needs
to construct a QIP(2) protocol for L instead of a constant-round protocol since
QIP(c) = PSPACE for c ≥ 3.

In [CHS], we studied the question whether or not the existence of quantum
reductions from NP-hard problems to inverting one-way permutations also gives
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unlikely consequences in complexity theory. To show the non-existence of reduc-
tions, it is important to have general definitions of reductions. There are two
types of classical reductions, which are locally random reductions and worst-case
to average-case reductions. We showed that the existence of quantum analogue
of these two reductions with the restriction that the queries are non-adaptive and
uniform superpositions from an NP-complete problems to inverting one-way per-
mutations implies coNP ⊆ QIP(2), where QIP(2) is the two-message quantum
interactive proof. Note that the classical result shows that coNP ⊆ AM, which
implies the polynomial hierarchy collapses. Though our result does not imply the
polynomial hierarchy collapses, it is a non-trivial consequence of the existence of
quantum reductions.
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Chapter 2 |
How hard is deciding trivial
versus nontrivial in the dihedral
coset problem?

2.1 Introduction
The dihedral coset problem is an important open problem in quantum algorithms.
It comes from the hidden subgroup problem, which is defined as: given a function
on a group G that is constant and distinct on cosets a subgroup H, find H. Here
we will focus on the case when G is the dihedral group of order 2N . It is known
that this problem reduces to the case when the subgroup is order two [EH00].
All known approaches for solving the hidden subgroup problem over the dihedral
group start by evaluating the function in superposition and measuring the function
value. The result is a random coset state 1√

2(|0, x〉+ |1, x+ d〉), where d ∈ ZN is a
fixed label of the subgroup and x is a coset representative uniformly chosen in ZN .
For our purposes, it is more convenient to have the following quantum problem
rather than the hidden subgroup problem.

The dihedral coset problem [Reg04] is: given a tensor product of k coset states

|c(d)
x1,x2,··· ,xk〉 = 1√

2
(|0, x1〉+ |1, x1 + d〉)⊗ · · · ⊗ 1√

2
(|0, xk〉+ |1, xk + d〉),

where x1, . . . , xk are randomly chosen in ZN , compute d. The first register of each
state is mod 2, and the second register is mod N .
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This is a natural problem to consider after the successes with abelian groups
such as ZN . The dihedral group with 2N elements has ZN as a normal sub-
group. The representations are mostly two dimensional, so it does not have obvi-
ous problems like the symmetric group, where we know large entangled measure-
ments are required to get information from the states [HMR+10]. Furthermore,
Regev [Reg04] showed that the unique shortest vector problem reduces to the dihe-
dral coset problem, so it could provide a pathway for finding a quantum algorithm
for lattice problems.

Much is known about the dihedral coset problem, at least compared to most
other nonabelian groups (although there are groups with efficient algorithms, e.g.
[FIM+14, ISS08,DIK+14]). Ettinger and Hoyer [EH00] showed that a polynomial
number of measurements in the Fourier basis has enough classical information to
determine d, but the best known algorithm takes exponential time to compute it.
Kuperberg found subexponential time algorithms [Kup05,Kup13] for the problem.
He also showed that computing one bit of d was sufficient to compute all of d.
This algorithm was a big step, although it should be noted that it seems difficult
to combine this with Regev’s uSVP to dihedral group HSP reduction to get a
subexponential time algorithm for the uSVP, partly due to the fact that the coset
states created in the reduction have errors with some probability.

The dihedral coset problem also has some connections to the subset sum prob-
lem. Bacon, Childs, and van Dam analyzed how well a “pretty good measurement”
performs [BCvD06]. This type of measurement maximizes the probability of com-
puting d correctly. It is unknown how to compute the measurement they find
without quantum sampling subset sum solutions. A unitary implementing this
can be used to solve the worst case subset sum, which is NP-complete. Regev
showed how to reduce the dihedral coset problem to the random subset sum prob-
lem density ρ > 1 where ρ also approaches 1 as the problem size increases. Density
1 is the hardest case for the random subset sum problem as shown in Proposition
1.2 in [IN96]. But is solving the dihedral coset problem as hard as subset sum, and
if so, for what parameters? The only connection we are aware of is to compose two
known reductions. First, random subset sum with density ρ = 1/ log k reduces to
uSVP. Then uSVP reduces to the dihedral coset problem. It is open if an efficient
quantum algorithm exists for random subset sum, and density 1/ log k may not be
as hard to solve as constant density.
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2.1.1 New approach

In this paper we focus on distinguishing trivial from order two subgroups. Instead
of trying to compute d, we define a problem which asks if the state is an order two
coset state, or is the trivial subgroup case. We define this problem as the dihedral
coset space problem (DCSP): either an order two coset state is given, or a random
standard basis vector is given, decide which. The random standard basis vector
corresponds to the trivial subgroup case in the hidden subgroup problem. This
problem is a special case of the decision version of the HSP defined by Fenner and
Zhou [FZ08] since we are restricting to order two subgroups. In their paper, they
found a search to decision reduction when N is a power of two. So it turns out
that the problem is not computationally easier in that case.

We start by finding a set of vectors that span C and C⊥. Let ~l ∈ ZkN , and
p ∈ ZN . The vectors have the form

|Sm~l,p〉 = 1√
|T~l,p|

|T~l,p|−1∑
j=0

ωmj|T~l,p|
|~b(j)
~l,p
〉|χ~l〉,

where T~l,p contains the subset sum solutions for (~l, p), and the vectors ~b are an
ordered set of the subset sum solutions. We call this set of orthonormal vectors
the subset sum basis. We prove that the m = 0 subset of vectors span C and the
remaining ones, which have m ≥ 1, span C⊥.

Ideally we would like to reduce subset sum to the DCSP. Since this is still out
of reach, we prove a weaker relationship. Instead, we assume there is an algorithm
that uses the subset sum basis to solve the DCSP and examine the consequences.
Such an algorithm needs to decide if m = 0 or m ≥ 1 to distinguish if the vector
is in C or C⊥. In this paper we consider two main types of unitaries that use this
basis. We show that in one case such a unitary can be used to solve random subset
sum and in the other case it can be used to solve the random collision problem.
This may indicate that the unitaries are difficult to implement.

The first type of unitary we consider maps the subset sum basis to the standard
basis. An example would be one that maps each vector |Sm~l,p〉 to the corresponding
standard basis vector |m, p,~l〉, identifying the vector. This unitary can be used
to solve a subset sum instance (~l, p) by taking |0, p,~l〉, applying U−1 to get |S0

~l,p
〉

and measuring, since |S0
~l,p
〉 is a uniform superposition of solutions. The ability
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to identify the basis vector in this way is very strong because it can solve an
NP-complete problem, but we show the connection for a wider range of unitaries.
In particular, we show that any unitary that maps the subset sum basis to the
standard basis in some way can be used to solve the random subset sum problem in
the cryptographic range of constant density ρ > 1. This can be view as generalizing
the connection to quantum sampling in [BCvD06].

The proof for this case works by showing that such a unitary can be used to
solve worst case collision for the subset sum function. That is, given a subset sum
instance (~l, p) and a solution vector ~b, the goal is to compute a second solution ~b′

if one exists. Then we use the fact that random subset sum reduces to random
collision for density a constant greater than one [IN96].

The second type of unitary we consider maps the subset sum basis to vectors
where the first bit is zero if the vector is in C, and is one if the vector is from C⊥.
This type of unitary can be used to solve the DCSP by computing the unitary on
the input vector and measuring the first bit. It is a relaxation of the first type of
unitary because it could be followed by another unitary mapping to the standard
basis. We show that this type of unitary can be used to solve the random collision
problem for subset sum with density ρ = 1 + c log logN/ logN . This collision
problem for this density appears to be less well understood than for constant
density.

The proof for this case uses the unitary that can solve the DCSP to solve the
random collision problem for subset sum. The problem in this case has an arbitrary
solution vector ~b fixed, and then a vector ~l is chosen at random. The goal is again
to find a second solution ~b′ 6= ~b such that ~b′ ·~l = ~b ·~l mod N on input ~b and ~l.

In addition to these two main types of unitaries we show that a small general-
ization of the form of the subset sum bases has similar results.

The hardness of random subset sum depends on the density and the same is true
for the collision problem. But for collision the definition is important also. There
are four definitions of finding collisions of hash functions [RS04]. Our definition
of random subset sum collision is based on the universal one-way hash-function
family. That is, for any point in the domain, given the hash function uniformly
at random from the family, the goal is to find another point in the domain having
the same hash value. Impagliazzo and Naor have shown that random subset sum
collision is at least as hard as the random subset sum problem when the density is
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a constant greater than 1 [IN96]. However, the density of the random subset sum
collision problem we consider has density ρ ≤ 1+c logN logN/ logN . This density
is between the density used for subset sum in [Reg04] and the cryptographic one.
The hardness of densities for collision in this range is not known, but it can be
contrasted with random subset sum, where the problem gets harder as the density
approaches one [IN96].

There are several open questions. Can the second type of unitary above also
be used to solve random subset sum? Consider unitaries which decide membership
of C with small error, e.g., 1/poly. Can these unitaries be implemented efficiently
or solve some hard problems? Is it possible to implement a unitary efficiently
distinguishing C from C⊥, with the subset sum basis, or some other basis? If a
space has a basis that seems hard to be implemented for some reason, does that
mean that no basis for that space is efficient? Is it possible that a larger space C ′

containing C exists where it is easier to test C ′ vs. C ′⊥? Deciding membership in
a subspace or its complement is a generalization of classical languages to quantum
languages. Are there other examples?

2.2 Background
In this section, we give the background of the dihedral coset problem and the
random subset sum problem.

The dihedral coset problem comes from the dihedral hidden subgroup problem
which is

Definition 2.2.1 (Dihedral Hidden Subgroup Problem). Given the dihedral group
D2N and a function f that maps D2N to some finite set such that f hides a subgroup
H (f takes same value within each coset of H and takes distinct value on different
cosets), the problem is to find a set of generators for H.

Ettinger and Hoyer showed that the problem reduces to the case when the
subgroup is order two [EH00]. Hence, we can assume H is an order two sub-
group, which can be represented as {1, d} for d ∈ ZN . All known approaches
for solving this problem start by evaluating the function in superposition to get∑
g∈D2N |g, f(g)〉, and then measuring the function value. This results in an order

two coset state |0,x〉+|1,x+d〉√
2 , where x ∈ ZN is a random coset representative. Then
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the problem becomes to find d when given many random order two coset states.
This problem is defined as follows:

Definition 2.2.2 (Dihedral Coset Problem (DCP)). Given a random k-register
order two coset state

|c(d)
x1,x2,...,xk

〉 = 1√
2

(|0, x1〉+ |1, x1 + d〉)⊗ · · · ⊗ 1√
2

(|0, xk〉+ |1, xk + d〉).

The problem is to find d.

The hardness of the DCP has been studied by reducing to the random subset
sum problem [Reg04] which is defined as follows:

Definition 2.2.3 (Random Subset Sum Problem). Given a vector of positive in-
tegers ~l = [l1, l2, . . . , lk]T uniformly distributed in ZkN and s = ~b ·~l (mod N) where
~b ∈ Zk2 is chosen uniformly at random, find a vector ~b′ ∈ Zk2 such that ~l · ~b′ = s

(mod N). The density is defined as ρ = k
log(N) .

Although the worst-case subset sum problem is NP-hard, the random subset
sum problem can be solved in polynomial time when the density is in a certain
range. There is no known polynomial-time algorithm for solving the case when ρ is
Ω(1/k) and O( k

log2(k)). Regev [Reg04] showed that a solution to the random subset
sum problem with ρ > 1 implies an efficient quantum algorithm for solving the
DCP. Moreover, we note that one can reduce the random subset sum problem with
ρ = O(1/ log k) to a lattice problem [LO85,CJL+92], and then to the DCP [Reg04].
Since these two ranges are generally believed not equivalent, it is still not clear if
the DCP is equivalent to random subset sum with ρ in a hard range.

In the rest of this section, we define one more problem which will be used in
the section 2.5.

Definition 2.2.4 (Random Subset Sum Collision Problem). Let ~b ∈ Zk2 be an
arbitrary fixed vector. Given ~b, and a vector ~l ∈ ZkN chosen uniformly at random,
the problem is to find a solution ~b′ ∈ Zk2 such that ~b ·~l ≡ ~b′ ·~l (mod N) and ~b′ 6= ~b.

The worst-case version of this problem is to find ~b′ for arbitrary ~b and ~l which
are given. For simplicity, we will call this problem the random collision problem
and the worst-case version as the worst-case collision problem in the rest of the
paper.
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Impagliazzo and Naor showed a relationship between random collision problem
and the random subset sum problem. The input in their notation has n numbers
modulo 2`(n) plus the target value.

Theorem 2.2.5 (Theorem 3.1 in [IN96]). Let `(n) = (1 − c)n for c > 0. If the
subset sum function for length `(n) is one-way, then it is also a family of universal
one-way hash functions.

The subset sum function for length `(n) can be represented by n integers each
of which is `(n)-bits long. The input is an n-bit binary string ~b which indicates a
subset of the n integers and the function outputs an integer s which is the sum of
the subsets of integers indexed by ~b. A family of universal one-way hash functions
is the set of functions F = {f} which satisfies the property that if for all x, when
f is chosen randomly from F , then finding a collision (i.e., y 6= x and f(x) = f(y))
is hard. Note that the random subset sum problem can be viewed as inverting
a random subset sum function and the random collision problem is as finding a
collision for a random subset sum function.

In the proof of Theorem 2.2.5 [IN96], Impagliazzo and Naor showed that finding
a collision for a random subset sum function is at least as hard as inverting a
random subset sum function. Therefore, we can give the following corollary:

Corollary 2.2.6. The random subset sum problem with N a power of 2 and ρ a
constant > 1 reduces to the random collision problem with the same N and ρ.

This corollary will be used in the section 2.5.

2.3 The Dihedral Coset Space Problem
In this section we set up our approach. We first define the dihedral coset space
problem and show how to use it to solve the dihedral coset problem. Then we
define the coset space which we wish to understand.

Definition 2.3.1 (Dihedral Coset Space Problem (DCSP)). Given a state |τ〉
which is promised to be a random order-two coset state |c(d)

x1,x2,...,xk
〉 or a random

standard basis state |~b, x〉 where ~b ∈ Zk2 and x ∈ ZkN , the problem is to decide if |τ〉
is a k-register order two coset state or not.
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A solution to the DCSP implies a polynomial-time algorithm for solving the
DCP with N a power of 2 as shown in [FZ08]. We include a proof of our special
case here.

Claim 2.3.2. The dihedral coset problem (DCP) with N a power of 2 reduces to
the dihedral coset space problem (DCSP).

Proof. Suppose we are given the input of the DCP with subgroup d, we first show
how to get the least significant bit of d.

Since N is a power of 2, the least significant bit of x and x + d (mod N)
are equal for x ∈ ZN if and only if d is even. Therefore by measuring the least
significant bit of the state |0,x〉+|1,x+d〉√

2 , we get the same state if d is even and get
either |0, x〉 or |1, x+ d〉 (which are standard-basis states) otherwise.

According to the observation above, the least significant bit of d can be com-
puted by the following algorithm. First, we measure the least significant bit of
each register. Then all the registers do not change or collapse to a standard-basis
state. Finally, apply the algorithm for the DCSP. If the result is an order-two coset
state, the least significant bit is 0; otherwise, the least significant bit is 1.

To get bit (i+ 1), one subtracts d by the least significant i bits computed and
measure the I + 1-th least significant bit of the state. Repeat the process above
until all bits of d are known.

It is worth noting that this fact also implies that the lattice problem can be
reduced to the DCSP due to the known reduction from the lattice problem to the
DCP with N a power of 2 [Reg04].

The main objects we want to understand are the coset space and its comple-
ment.

Definition 2.3.3. The coset space C = span({|c(d)
x1,...,xk

〉 : d, x1, . . . , xk ∈ ZN}) and
the orthogonal complement of C is C⊥.

Note that a test for a vector being in C or C⊥ is sufficient to solve the DCSP if k
is big enough. This follows from counting the number of k-register order two coset
states. There are at most N subgroups, and at most Nk coset representatives, so
the number of k-register order two coset states is at most N(N)k. The dimension
of the whole space is (2N)k. Hence, the subspace spanned by k-register order-two
coset states is at most 1/2 of the whole space when k ≥ log 2N .

12



Claim 2.3.4. Let k = log 2N + k′. Let ΠC be a projector onto C and ΠC⊥ be
a projector onto C⊥. If the input is an order two coset state, the measurement
{ΠC ,ΠC⊥} outputs C always. Otherwise, if the input is a random standard basis
state, then this measurement outputs C⊥ with probability at least 1− 1/2k′+1.

2.4 The Subset Sum Basis

In this section, we start by finding an orthonormal basis for C and one for C⊥.
Note that if we can give a unitary which distinguishes which of the two subspaces
we are in (C or C⊥) efficiently, we can solve the DCSP efficiently as in Claim 2.3.4.

In order to make the basis easier to understand, we permute the subsystems
so that the first bit of all registers are on the left, and the integers mod N are
on the right. That is, write the original basis state |b1, x1, b2, x2, . . . , bk, xk〉 as
|b1, b2, · · · , bk, x1, x2, · · · , xk〉. In this notation the coset state is written as

|c(d)
x1,x2,...,xk

〉 = 1
2k/2

1∑
b1,...,bk=0

|b1, . . . , bk, x1+b1d, . . . , xk+bkd〉 = 1
2k/2

∑
~b∈{0,1}k

|~b, ~x+~bd〉.

The subset sum basis is defined as follows:

Definition 2.4.1 (The Subset Sum Basis). Let ~l = (l1, l2, · · · , lk)T ∈ ZkN , and
p ∈ ZN . Let T~l,p = {~b : ~b · ~l = p,~b ∈ Zk2} contain subset sum solutions for input ~l,
p. If |T~l,p| = 0 then define |Sm~l,p〉 = 0. If |T~l,p| ≥ 1, then let m ∈ {0, . . . , |T~l,p| − 1}
and pick an ordering {~b(j)

~l,p
} of the solutions in T~l,p. Define the vector

|Sm~l,p〉 = 1√
|T~l,p|

|T~l,p|−1∑
j=0

ωmj|T~l,p|
|~b(j)
~l,p
〉. (2.1)

For N, k ∈ Z, define two sets

B⊥ = B⊥k,N = {|Sm~l,p〉|χ~l〉 : ~l ∈ ZkN , p ∈ ZN , m ∈ {1, . . . , |T~l,p|−1}, |T~l,p| ≥ 2} (2.2)

and
B0 = B0

k,N = {|Sml,p〉|χ~l〉 : ~l ∈ ZkN , p ∈ ZN , m = 0, |T~l,p| ≥ 1}. (2.3)

The set B = B0⋃B⊥ is called the subset sum basis of C(2N)k .
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In this definition, |χj〉 is the Fourier basis state |χj〉 = 1√
N

∑
i ω

ij
N |i〉, and |χ~l〉 =

|χl1〉 · · · |χlk〉. Note that B0 ∪ B⊥ is an orthonormal basis for the whole space and
the two sets are disjoint. The vector |Sm~l,p〉 is a superposition of solution vectors~b to
the equation ~l ·~b = p. If no such ~b exists then there is no corresponding |Sm~l,p〉. If at
least one solution ~b exists then |S0

~l,p
〉 is in B0. If at least two solutions ~b exist then

vectors appear in B⊥. Varying m gives orthogonal superpositions of the solutions.
Ranging over all ~l ∈ ZkN and p ∈ Z covers all possible bit vectors. Furthermore,
these vectors are tensored with every possible Fourier basis state over ZN .

Next we show that B⊥ forms an orthonormal basis for C⊥.

Claim 2.4.2. The vectors in the set B⊥ form an orthonormal basis of a space that
is orthogonal to the k-register order two coset space.

Proof. As noted, the vectors form an orthonormal basis of the whole space. We
will show that an arbitrary state in B⊥ is orthogonal to all k-register order two
coset states. Fix ~l and p, and let

|ψ〉 = |Sm~l,p〉|χ~l〉 = 1√
|T |

|T |−1∑
j=0

ωmj|T | |~b
(j)〉|χ~l〉

be a state in B⊥ where T = T~l,p and ~b(j) = ~b
(j)
~l,p

to simplify notation. Then for an
arbitrary order-two coset state |cdx1,x2,··· ,xk〉, the inner product 〈c(d)

x1,x2,··· ,xk |ψ〉 is

1√
2k|T |

∑
~b∈{0,1}k

〈~b|〈~x+~bd|
|T |−1∑
j=0

ωmj|T | |~b
(j)〉|χ~l〉 = 1√

2kNk|T |

|T |−1∑
j=0

ωmj|T |ω
~l·(~x+d~b(j))
N

= ω
~l·~x
N√

2kNk|T |

|T |−1∑
j=0

ωmj|T |ω
dp
N (2.4)

= ω
~l·~x+dp
N√

2kNk|T |

|T |−1∑
j=0

ωmj|T | = 0. (2.5)

Eq. 2.4 is true because ~b(j) ·~l = p iff ~b(j) ∈ T by the definition of T . Then since
m ≥ 1 and |T | ≥ 2 by the definition of B⊥k,N , Eq. 2.5 is true.

According to Claim 2.4.2, span(B⊥) ⊆ C⊥. Next we show that B0 exactly spans
the subspace C (and thus span(B⊥) = C⊥).
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Lemma 2.4.3. The set B0 is an orthonormal basis for the subspace spanned by
the order-two coset states.

Proof. Because C is orthogonal to span(B⊥) by Claim 2.4.2, C ⊆ span(B0). We
want to show equality. Suppose for contradiction that C ⊂ span(B0). Then there
is a vector |α〉 ∈ C⊥ that is orthogonal to span(B⊥), so |α〉 ∈ C⊥ ∩ span(B0).
We show that there is no non-zero linear combination of states in B0 whose inner
product with all order-two coset states is zero.

Suppose the state

|α〉 =
∑

~l∈ZkN ,p∈ZN

α~l,p|S
0
~l,p
〉|χl1 , . . . , χlk〉

is orthogonal to all order-two coset states, i.e., 〈c(d)
x1,x2,...,xk

|α〉 = 0 for x1, . . . , xk, d ∈
ZN , for some nonzero vector |α〉 ∈ span(B0). This inner product is

1√
2k

∑
~b∈{0,1}k

〈~b, ~x+~bd|
∑

~l∈ZkN ,p∈ZN

α~l,p|S
0
~l,p
〉|χl1 , . . . , χlk〉

= 1√
2k

∑
~b∈{0,1}k

〈~b, ~x+~bd|
∑

~l∈ZkN ,p∈ZN

α~l,p
1√
|T~l,p|

|T~l,p|−1∑
j=0

|~b(j)
~l,p
〉|χl1 , . . . , χlk〉

= 1√
2kNk

∑
~l∈ZkN ,p∈ZN

α~l,p
1√
|T~l,p|

∑
~b∈{0,1}k

|T~l,p|−1∑
j=0
〈~b|b(j)

~l,p
〉ω

~l·(~x+~bd)
N

= 1√
2kNk

∑
~l∈ZkN ,p∈ZN

α~l,p
ω
~l·~x+pd
N√
|T~l,p|

∑
~b:~b·~l=p

|T~l,p|−1∑
j=0
〈~b|b(j)

~l,p
〉

= 1√
2kNk

∑
~l∈ZkN ,p∈ZN

α~l,pω
~l·~x+pd
N

√
|T~l,p|.

Then we have the following equations:

∑
~l∈ZkN ,p∈ZN

√
|T~l,p|
2kNk

α~l,p · ω
x1·l1+···+xk·lk+d·p
N = 0, ∀x1, . . . , xk, d ∈ ZN .

Define ~v as an Nk+1 × 1 vector such that (~v)~l,p =
√
|T~l,p|
2kNkα~l,p. The sums above
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can be represented as follows:

A⊗(k+1) · ~v = ~0, (2.6)

where A is an N × N Fourier matrices with the (i, j)-th entry as Ai,j = ωijN and
~0 is an Nk+1 × 1 vector with all entries as 0. Note that the column of A⊗(k+1) is
indexed by ~l and p and the the row is indexed by ~x and d.

The determinant of A⊗(k+1) is not zero, so the only vector ~v satisfying Equa-
tion 2.6 is ~v = ~0. When |T~l,p| ≥ 1 this forces α~l,p = 0 for every coefficient used in
|α〉. When |T~l,p| = 0, α~l,p is not used in the sum because |Sm~l,p〉 = 0. Therefore, these
facts contradict the hypothesis that there exists a nonzero vector |α〉 ∈ span(B0)
which is orthogonal to all order-two coset states.

Now, it is easy to see that a unitary which can efficiently distinguish span(B0)
from span(B⊥) also distinguishes C from C⊥ by Claim 2.3.4 and Lemma 2.4.3.
The next question we address is whether any unitaries that use this basis can be
implemented efficiently or not.

2.5 The hardness results
In general we would like to understand unitaries that can be used to decide if a
state is in the coset space C or in C⊥. In this section we look at two types of
unitaries using the subset sum basis, plus an extension of each one:

1. A unitary US that maps every basis vector |Sm~l,p〉|χ~l〉 to a standard basis state.
Note that if these standard basis states specify p and ~l, then this can be used
to solve the worst case subset sum, but we are allowing a more general type
of unitary here.

2. A unitary UC that maps every basis vector |Sm~l,p〉|χ~l〉 to |m = 0?〉|φm~l,p〉, indi-
cating whether or not the state is in the coset space.

3. A unitary U = ŨS that satisfies condition (1) or U = ŨC that satisfies (2),
but U uses a slightly more general basis, where any basis can be chosen for
each (~l, p) subspace span{|Sm~l,p, χ~l〉 : m ≥ 1}.

For the last type we use any basis satisfying the following definition.

16



Definition 2.5.1. Let B̃0 = B0 = {|S0
~l,p
〉|χ~l〉 : ~l ∈ ZkN , p ∈ ZN ,m = 0, |T~l,p| ≥

1} be as in Definition 2.4.1, and let B̃⊥ = {|S̃m~l,p〉|χ~l〉 : ~l ∈ ZkN , p ∈ ZN ,m ∈
{1, . . . , |T~l,p| − 1}, |T~l,p| ≥ 2} be an orthogonal basis such that span({|S̃m~l,p〉 : m ∈
{1, . . . , |T~l,p| − 1}}) = span({|Sm~l,p〉 : m ∈ {1, . . . , |T~l,p| − 1}}) for all ~l, p.

We show that unitaries of type 1 above can be used to solve random subset sum
for the cryptographic density ρ a constant greater than 1, indicating that such a
unitary may be hard to implement. This strengthens the result in [BCvD06] which
is a special case where the unitary must perform quantum sampling, i.e., map an
input |~l, p〉 to a superposition of solutions |~l, S0

~l,p
〉. Such a unitary implementing

quantum sampling can used to solve worst-case subset sum by taking an input
|0, p,~l〉, applying U inverse to get |S0

~l,p
〉|~l〉 and measuring, since this is a uniform

superposition of solutions.
An algorithm that uses the subset sum basis to solve the DCSP needs to decide

if m = 0 (for C), or m > 0 (for C⊥). The second type of unitary above allows
an arbitrary unitary that writes the answer in the first bit. We show that such a
unitary can solve random collision for density ρ = 1 + c log logN/ logN . This may
indicate that no such unitary can be efficiently implemented, although we are less
clear on the difficulty of the random collision problem.

The third type of unitary allows an arbitrary basis within each subspace of
solutions, but does not mix solutions of different inputs ~l, p. Note that |S0

~l,p
〉

cannot change in this case, since it is one dimension in B0. Let B̃ = B̃0 ∪ B̃⊥ be
the basis used by the unitary.

The proofs work by using US to solve the worst-case collision problem, or UC ,
ŨS, or ŨC to solve the random collision problem.

2.5.1 Unitary mapping to a standard basis

First we give an algorithm that finds a solution to the worst-case collision problem
when given a unitary US that maps the subset sum basis B to the standard basis
in an arbitrary way. Given ~b and ~l where ~b ∈ Zk2 and ~l ∈ ZkN , the task in the
worst-case collision problem is to find ~b′ 6= ~b such that ~b′ ·~l = ~b ·~l.

Here QFT kN is the quantum Fourier transform over ZkN .

Theorem 2.5.2. If there exists an efficient unitary operator US, where US is
a bijection between the subset sum basis and the standard basis, then the worst-
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On input ~l ∈ ZkN and ~b ∈ Zk2:

1. Prepare the quantum state |~b, ~l〉.

2. Apply QFT kN on ~l, then the state becomes |~b〉|χ~l〉.

3. Apply US to |~b〉|χ~l〉.

4. Measure US(|~b〉|χ~l〉) in the standard basis.

5. Apply U †S.

6. Measure value ~b′ in the first register.

case collision problem can be solved efficiently by a quantum algorithm. Therefore
random subset sum with density a constant greater than 1 can also be solved.

Proof. Given ~l and ~b as input, let p = ~l · ~b and T = T~l,p. For ~b = ~b(j0) ∈ T ,
after computing the Fourier transform of the second register, the resulting state
|~b(j0), χ~l〉 can be wrtten in the subset sum basis as

|~b(j0), χ~l〉 = 1√
|T |

|T |−1∑
m=0

ω−j0m|Sm~l,p〉|χ~l〉.

Applying US to this state gives the state

1√
|T |

|T |−1∑
m=0

ω−j0m|Dm
~l,p
〉, (2.7)

where |Dm
~l,p
〉 := US(|Sm~l,p〉|χ~l〉) is a standard basis vector by assumption on US.

Measuring the state in Equation (2.7) in the standard basis gives |Dm
~l,p
〉 for some

m ∈ [0 : |T | − 1]. Applying U †S to |Dm
~l,p
〉 gives |Sm~l,p〉|χ~l〉, where the first register is

|Sm~l,p〉 = 1√
|T |

∑|T |−1
j=0 ωjm|~b(j)〉 in the standard basis. Measuring this gives a vector

~b′ 6= ~b with probability |T |−1
|T | .

Theorem 2.2.5 reduces random subset sum to solving the random collision
problem for constant density greater than one, so random subset sum also reduces
to the worst case collision problem.

The proof that Algorithm 2.5.1 works used a special property of the subset
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sum basis, which is that every basis vector |Sm~l,p〉 spreads the solutions with equal
magnitude. When this is not the case then the algorithm does not work for the
worst case collision problem. However, we will later show that it solves the random
collision problem, as long as the number of solutions is not too large.

First we describe an example basis where the algorithm fails. The idea is that
the unitary can map a solution vector |~b, χ`〉 to a vector that is very close to itself.
In that case the algorithm will measure the same value ~b that it started with and
not solve the collision problem, which can be seen as follows. Let ~b = ~b(0), let

|Ŝ1〉|χ~l〉 = 1√
|T | − 1

|T |−1∑
m=1
|Sm~l,p〉|χ~l〉,

and pick arbitrary orthonormal vectors |Ŝ2〉, . . . , |Ŝ|T |−1〉 to form a basis for the
subspace span({|Sm~l,p〉|χ~l〉 : m ∈ [1 : |T | − 1]}). Note that |〈~b, χ~l|Ŝ1, χ~l〉|2 =
|T |−1
|T | , which implies that one gets US(|Ŝ1〉|χ~l〉) with probability |T |−1

|T | after ap-
plying US and measuring in the standard basis. In that case, applying U †S re-
sults in the input vector ~b. Therefore, given a unitary mapping this new basis
{|S0, χ~l〉, |Ŝ1, χ~l〉, . . . , |Ŝ|T |−1, χ~l〉} to standard basis, the algorithm returns an an-
swer ~b′ 6= ~b happens with probability 1/|T |. The number of solutions |T | can be
very large for larger densities.

Next we show that if we limit the size of T , then random collision can be solved.

Corollary 2.5.3. Suppose Algorithm 2.5.1 is run with ŨS. If ŨS is an efficient
unitary operator which maps every state in B̃ to an arbitrary state in the standard
basis, then on input ~l,~b, the algorithm solves the collision problem with probability
at least 1

|T~l,p|
(1− 1

|T~l,p|
), where p = ~l ·~b. In particular, when k ≤ logN + c log logN ,

the random collision problem can be solved in quantum polynomial time.

Proof. Similar to the proof for Theorem 2.5.2, first represent |~b, χ~l〉 as a linear
combination of states in B̃ as follows:

|~b, χ~l〉 = 1√
|T |
|S0〉|χ~l〉+

√√√√ |T | − 1
|T |

(
|T |−1∑
m=1

cm|S̃m〉)|χ~l〉,

where T = T~l,p and S̃m = S̃m~l,p.
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After applying the unitary ŨS, the state is

ŨS|~b, χ~l〉 = 1√
|T |
|D0〉+

√√√√ |T | − 1
|T |

(
|T |−1∑
m=1

cm|Dm〉), (2.8)

where Dm for m ∈ [0 : |T | − 1] are arbitrary distinct states in the standard
basis. By measuring the state in the Equation (2.8) in the standard basis, |D0〉
is measured with probability 1/|T |. Then applying Ũ †S and measuring the output
state in the standard basis gives ~b′ 6= ~b with probability |T |−1

|T | . Based on the
Claim 2.6.1, |T | = poly(k) with high probability. Thus, given a random input
~b and ~l, the probability to get ~b′ 6= ~b using ŨS in Algorithm 2.5.1 is at least
|T |−1
|T |2 = 1/poly(k).

2.5.2 Deciding membership in C

The unitary US illustrated how our algorithm works and used the subset sum
basis, but US may not be useful for distinguishing C from C⊥ in general. Next we
consider a unitary UC that can distinguish C from C⊥. Suppose UC works on a
larger Hilbert space to have work space and exactly distinguishes B0 from B⊥ in
the first qubit as follows:

Definition 2.5.4. Let UC be a unitary operator such that

UC(|Sm~l,p〉|χ~l〉|0〉) =

 |0〉|ψ~l,p,0〉 if m = 0
|1〉|ψ~l,p,m〉 otherwise

where {|ψ~l,p,m〉 : ~l ∈ ZkN , p ∈ ZN , m ∈ [0 : |T~l,p| − 1]} are states resulting from
applying UC and the third register is a workspace initialized to |0〉.

We modify Algorithm 2.5.1 so that only the first bit is measured in step four,
and UC is used instead of US.

Theorem 2.5.5. If UC can be implemented efficiently, then Algorithm 2.5.2 solves
the collision problem on input ~l,~b with probability 2

|T~l,p|
(1 − 1

|T~l,p|
), where p = ~l ·~b.

In particular, when k ≤ logN + c log logN the random collision problem can be
solved in quantum polynomial time.
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On input ~l ∈ ZkN and ~b ∈ Zk2:

1. Prepare the quantum state |~b, ~l〉.

2. Apply QFT kN on ~l, then the state becomes |~b〉|χ~l〉.

3. Apply UC to |~b〉|χ~l〉.

4. Measure the first qubit of UC(|~b〉|χ~l〉) in the standard basis.

5. Apply U †C .

6. Measure the first register in the standard basis.

Proof. Given ~l and ~b as input, let p = ~l ·~b and T = T~l,p. For ~b = ~b(j0) ∈ T , after
computing the Fourier transform of the second register, we can write the resulting
state |~b(j0), χ~l〉 in the subset sum basis as follows:

|~b(j0), χ~l〉 = 1√
|T |

|T |−1∑
m=0

ω−j0m|Sm~l,p〉|χ~l〉.

Applying UC to this state plus a work register results in

1√
|T |

(|0〉|ψ~l,p,0〉+
|T |−1∑
m=1

ω−j0m|1〉|ψ~l,p,m〉). (2.9)

Measuring the first qubit of the state in Equation (2.9) gives |0〉|ψ~l,p,m〉 with prob-
ability 1/|T | and 1√

|T |−1

∑|T |−1
m=1 ω

−j0m|1〉|ψ~l,p,m〉 with probability 1− 1/|T |.

Applying U †C to the result gives |S0
~l,p
〉|χ~l〉 in the first case and

1√
|T | − 1

|T |−1∑
m=1

ω−j0m|Sm~l,p〉|χ~l〉

in the second case.
Finally, the state is measured in the standard basis. In the first case, when a

zero is measured in the first bit, which happens with probability 1/|T |, a vector
~b′ 6= ~b is measured with probability 1 − 1/|T | in the last step. In the second case
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when a one is measured the amplitude of |~b(j0), χ~l〉 in
1√
|T |−1

∑|T |−1
m=1 ω

−j0m|Sm~l,p〉|χ~l〉
is

1√
|T | − 1

|T |−1∑
m=1

ω−j0m〈~b(j0), χ~l|S
m
~l,p
〉|χ~l〉 = 1√

|T | − 1

|T |−1∑
m=1

ω−j0m〈~b(j0)|Sm~l,p〉

= 1√
(|T | − 1)|T |

|T |−1∑
m=1

ω−j0mωj0m = |T | − 1√
(|T | − 1)|T |

.

Thus, the probability that the measurement gives ~b′ 6= ~b is 1 − (|T |−1)2

(|T |−1)|T | = 1/|T |.
Therefore, the probability the algorithm returns ~b′ 6= ~b is 2

|T |(1−
1
|T |).

By Claim 2.6.1 the probability that a randomly chosen ~l satisfies |T~l,p| ≤ poly(k)
is at least 1/poly(k) when k = logN + c log logN . Thus, the random collision
problem can be solved by repeating the algorithm poly(k) times.

Now we consider the case where an arbitrary basis can be used within each
subspace spanned by solutions of a given subset sum instance ~l, p as in Defini-
tion 2.5.1. Let ŨC be a unitary that maps every state in B̃ to quantum state
whose first qubit indicates if the state is in B̃0 or B̃⊥

Corollary 2.5.6. If Algorithm 2.5.2 is run with ŨC on input ~l,~b, then it solves
the collision problem with probability at least 1

|T~l,p|
(1 − 1

|T~l,p|
), where p = ~l · ~b. In

particular, if k ≤ logN + c log logN then it solves the random collision problem in
quantum polynomial time.

Proof. Suppose ŨC maps |S0
~l,p
〉 to a state |0〉|ψ~l,p,0〉 and maps |S̃m~l,p〉 to |1〉|ψ~l,p,m〉

for m ∈ [1 : |T | − 1], where the set of vectors {|ψ~l,p,m〉 : m ∈ [1 : |T | − 1]} are
an arbitrary orthonormal set of quantum states. The analysis is similar to the
proof above, but we only consider the case when the state collapses to m = 0.
Specifically, after applying ŨC to |~b, χ~l〉, the state is

ŨC |~b, χ~l〉 = 1√
|T |
|0〉|ψ~l,p,0〉+

√√√√ |T | − 1
|T |

(
|T |−1∑
m=1

cm|1〉|ψ~l,p,m〉). (2.10)

The probability the state collapses to |0〉|ψ~l,p,0〉 after measuring the first qubit is
1/|T |. After applying Ũ †C and measuring the state a vector ~b′ 6= ~b is measured
with probability 1 − 1/|T |. In total the probability of success is at least |T |−1

|T |2 .
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For the choice of k given, this is at least 1/poly(k) with probability 1/poly(k) by
Claim 2.6.1.

2.6 Appendix

Claim 2.6.1. Let ~b ∈ Zk2 be an arbitrary fixed vector with k = logN + c log logN
for some constant c. Then over random choices of ~l ∈ ZkN , the probability that
|T~l,~b·~l| ≤ poly(k) is at least 1

poly(k) .

Proof. Fix ~b ∈ Zk2 and let X~b′ be a random variable over ~l such that X~b′ = 1 if
~b′ ·~l = ~b ·~l and X~b′ = 0 otherwise. Then |T~l,~l·~b| =

∑
~b′∈Zk2

X~b′ = ∑
~b′∈Zk2\{~b}

X~b′ + 1.
For ~b′ 6= ~b, the expected value of X~b′ is E[X~b′ ] = Prob~l(X~b′ = 1) = Prob~l(~l ·~b′ =

~l ·~b) = 1
N
. The last equality can be seen by choosing i such that b′i = 1 and bi = 0

without loss generality (~b and ~b′ can be swapped if needed). Then by fixing lj for
j 6= i, and choosing li uniformly, ~b · ~l is fixed while ~b′ · ~l is uniformly distributed.
The variance of X~b′ is Var(X~b′) = 1

N
− 1

N2 .

Therefore, the expected value of |T~l,~l·~b| − 1 is

E[
∑

~b′∈Zk2\{~b}

X~b′ ] =
∑

~b′∈Zk2\{~b}

E[X~b′ ] = 2k − 1
N

,

and the variance of |T~l,~l·~b| − 1 is

Var(
∑

~b′∈Zk2\{~b}

X~b′) =
∑

~b′∈Zk2\{~b}

Var(X~b′) +
∑

~b′ 6=~b′′,~b′,~b′′∈Zk2\{~b}

Cov(X~b′ , X~b′′)

≤ 2k − 1
N

+
∑

~b′′ 6=~b′,~b′,~b′′∈Zk2\{~b}

Cov(X~b′ , X~b′′). (2.11)

This results in Var(∑~b′∈Zk2\{~b}
X~b′) ≤

2k−1
N

provided that the covariences are all zero,
which we show below. First we finish proving the claim by applying Chebyshev’s
inequality to get

Prob(|T~l,~b·~l| ≥ poly(k)) ≤ 2k − 1
N

1
poly(k) = 1

poly(k) ,

when k ≤ logN + c log logN .
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In the following, we show that X~b′ and X~b′′ are independent when ~b, ~b′, and
~b′′ are all different values, which implies Cov(X~b′ , X~b′′) = 0. To see this let 1 be a
coordinate such that b′1 = 1 and b′′1 = 0 without loss of generality (b′j and b′′j can
be swapped). If b1 = 0, then

Prob~l(X~b′ = 1, X~b′′ = 1)

=
N−1∑

l2,...,lk=0:
Probl1(X~b′ = 1, X~b′′ = 1|l2, . . . , lk) · Prob(l2, . . . , lk)

= 1
Nk−1

N−1∑
l2,...,lk=0

Probl1(X~b′ = 1|l2, . . . , lk) · Probl1(X~b′′ = 1|l2, . . . , lk)(2.12)

= 1
N
· 1
Nk−1

N−1∑
l2,...,lk=0

Probl1(X~b′′ = 1|l2, . . . , lk)

= 1
N
· 1
Nk−1 ·N

k−2 = 1
N2 . (2.13)

Equation 2.12 is true because Xb′′ is fixed after fixing l2, . . . , lk. For Equation 2.13
note that ~b and ~b′′ differ in at least one bit besides position i = 1. Therefore a 1/N
fraction of the Nk−1 choices for l2, . . . , lk satisfy ~l ·~b = ~l ·~b′′.

In the case where b1 = 1 the properties of X~b′ and X~b′′ are reversed:

Prob~l(X~b′ = 1, X~b′′ = 1)

=
N−1∑

l2,...,lk=0
Probl1(X~b′ = 1, X~b′′ = 1|l2, . . . , lk) · Prob(l2, . . . , lk)

= 1
Nk−1

N−1∑
l2,...,lk=0

Probl1(X~b′ = 1|l2, . . . , lk) · Probl1(X~b′′ = 1|l2, . . . , lk)(2.14)

= 1
N

1
Nk−1

N−1∑
l2,...,lk=0

Probl1(X~b′ = 1|l2, . . . , lk)

= 1
N
· 1
Nk−1 ·N

k−2 = 1
N2 . (2.15)

Equation 2.14 is true because X~b′ is fixed to 0 or 1 for all l1. Equation 2.15 is true
because ~b and ~b′ differ in at least one bit besides i = 1.

Therefore, the covariance of X~b′ and X~b′′ is 0.
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Chapter 3 |
On basing one-way
permutations on NP-hard
problems under quantum
reductions

3.1 Introduction
A fundamental question in complexity theory is whether or not worst-case problems
have reductions to average-case problems. When reducing worst-case problems to
average-case problems of the same type, these are called random-self-reductions.
These have many applications (see [FF93]), including the question of whether or
not cryptographic primitives can be based on NP-complete problems. Random-
self-reductions exist for complete sets of some classes such as PSPACE, EXP and
#P. It is unknown if such reductions exist for NP-complete problems. Fortnow
and Feigenbaum [FF93] showed that sets which are complete for any level of the
polynomial hierarchy are not (non-adaptively) random-self-reducible unless the
polynomial hierarchy collapses, giving negative evidence for this possibility.

More broadly, one can ask when the worst-case instances of one problem can
be reduced to random instances of a different problem. Basing cryptography on
NP-hardness is by reducing NP-complete problems to breaking average-case se-
curity of cryptosystems. However, the pursuit along this line has largely ended
up negative. For instance, if one can reduce NP-complete problems to inverting
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one-way permutations [Bra79], size-verifiable one-way functions [AGGM06,BB15],
single-server single-round private information retrieval [LV15], or weak fully ho-
momorphic evaluation of sensitive collection of functions [BL13], then the poly-
nomial hierarchy collapses. In this paper we bring this question in the quantum
computing paradigm: can cryptographic primitives be based on NP-complete or
QMA-complete problems if we allow quantum reductions?

Quantum reductions have been shown to be useful in cryptography. In [Reg04],
Regev showed that the unique shortest vector problem reduces to random subset
sum problems via a quantum reduction. In addition, gapSVP and SIVP reduce
to LWE via quantum reductions [Reg05]. There are no known classical reduc-
tions between these problems under the same parameters. Therefore, these are
examples where quantum reductions appear to be more powerful than classical re-
ductions, when reducing from worst-case to average-case problems. Kawachi and
Yamakami [KY10] proved several hard-core predicates using quantum reductions,
inspired by earlier work on the quantum Goldreich-Levin theorem [AC02] and the
quantum algorithm for the Legendre symbol [VDHI06].

In order to draw conclusions based on the existence of reductions, it is important
to define a general model that captures a wide range of reduction types. Classically
there are two types of reductions which we will consider. The first is called a locally
random reduction [FF93]. In this model, there are two classical algorithms G and
R, where the first algorithm G generates queries to the oracle for the average-case
problem according to a given distribution, and the second algorithm R uses the
answers to solve the worst-case problem.

The second type of reduction is called a worst-case to average-case reduction,
defined by Bogdanov and Trevisan [BT06]. In this model there are also two classical
algorithms G and R, one to generate queries and the other to use the answers and
solve the problem. However, in this model, G can generate queries in an arbitrary
way, but the oracle is allowed to answer incorrectly on some predefined set of
queries.

In this work, we give two examples where quantum reductions from worst-
case to average-case reduction exist but classical reductions do not. The main
contribution, however, is showing that the existence of some quantum reductions
implies unknown consequences in complexity. We consider the quantum analogues
of locally random reductions and worst-case to average-case reductions. We define
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locally quantum reductions to consist of two quantum circuits G and R. The uni-
tiary G generates superposition queries for the oracle of the average-case problem
with the restriction that the coefficients of those queries match a given distribu-
tion. The unitary R solves the problem based on the answers from the oracle.
We define quantum worst-case to average-case reductions to also be described by
two quantum circuits G and R. The unitary G generates arbitrary superposition
queries for the average-case problem. The unitary R uses the results of the queries
to solve the worst-case problem. As in the classical case, this oracle may answer
incorrectly on some predefined set of queries. Both locally random reductions and
worst-case to average-case reductions are special cases of their quantum analogues.
We describe our main theorems informally:

Theorem 3.1.1. The existence of locally quantum reductions or worst-case to
average-case reductions with the restriction that the queries are non-adaptive and
are according to known smooth-computable distributions from NP-complete prob-
lems (or QMA-complete problems) to the task of inverting one-way permutations
implies coNP ⊆ QIP(2) (or coQMA ⊆ QIP(2)).

A distribution is smooth-computable if its maximum and minimum are only
polynomially larger and smaller than the average. In particular, this handles uni-
form distributions.

The containment coNP ⊆ QIP(2) is not as strong as the classical result that the
polynomial hierarchy collapses. However, we note that so far only a few problems
are known to be in QIP(2) that are not known to be in AM or QMA. Hence, if
coNP is not contained in AM and QMA, then it also appears unlikely to be in
QIP(2).

In order to describe the approach, we first describe the classical approach. The
classical proof strategy is to assume that a language L has a random reduction
to some problem L′, and then construct an interactive proof for L that creates
a collapse. For example, if L is NP-complete and has a random reduction to
inverting a one-way permutation, then there is a two round protocol for deciding
if x ∈ L. The verifier runs the generator G to generate the queries for the one-
way permutation and sends them to the prover. The prover then sends back the
answers. Because the verifier can evaluate the one-way permutation, the prover’s
answers can be checked, and then R is run to decide if x ∈ L. Finally, the verifier
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can give the opposite answer. This results in a two round protocol for L. Then one
can conclude that if such a reduction exists, then coNP ⊆ AM, giving a collapse.
There are much more complicated constructions, for example, for reducing to NP-
complete problems. It is more difficult to find an interactive proof in this case
because if the prover answers y 6∈ L′, then the verifier has no way to verify this.
Nevertheless, with classical reductions it is possible to construct a protocol for L.

In order to follow the same proof strategy as the classical case, we use the
unitaries G and R from the reduction to create a quantum interactive proof for L.
First the unitary G is used to create superposition queries which are sent to the
prover. An honest prover will answer the superposition queries for the average-
case language and send the states back. The verifier can then use the unitary R
to decide whether to accept or reject. The first difficultly that arises in following
this approach is that superposition queries are being used, which makes it harder
to verify that the prover is not cheating than it is for classical answers. Another
limiting factor also immediately arises in the quantum case that does not exist
in the classical case. For classical reductions and protocols, it is fine to create a
protocol with many (but still constant) rounds of communication, because there is
an equivalent two round protocol. This is done in [BT06] where upper and lower
bound protocols are used to bound the sizes of sets. However, in the quantum
case, we are limited to finding quantum interactive proofs with only two rounds
to begin with, since QIP(m) = QIP(3) = PSPACE. Finding a quantum protocol
that is limited even to three rounds would only allow the conclusion that coNP ⊆
QIP(m) = PSPACE, which does not yield a non-trivial result.

The main technical problem we must solve is how to ensure that the prover
provides the answers in superposition to the average-case problem. A cheating
prover would try to return some other state that makes the unitary R answer in
the opposite way than it should. We must show that if the prover returns such a
state, then the verifier has some way to detect this. In order to do this, we show
it is possible to send a superposition of two states: the query state that is needed
for the reduction, and a trap state with the property that it can be used to detect
that the prover is cheating. We show that there is a trap state so that whenever
the prover changes the query part of the superposition, then the trap part of the
superposition must also change, and that this can be detected by the verifier.

One interesting aspect of this work is that it provides an example of a QIP(2)
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protocol. Compared to QIP(3) = PSPACE and QIP(1) = QMA, less is known
about the power of QIP(2). Rosgen defined a complete problem for QIP(2), called
the close image problem. This problem resembles the acceptance condition for
the verifier in a quantum interactive proof system [Ros09]. There are two QIP(2)
protocols for other problems. The first is for testing the separability of a bipartite
state generated by a quantum circuit [HMW14]. The second studies a generalized
version of public coins to the quantum setting, where instead of coins, EPR pairs
are used [KLGN15]. Both of these protocols have a definition which lends itself to
QIP(2). The problems in [HMW14,KLGN15] are defined in a way that is close to
the statement of Ulhmann’s theorem, which makes it possible to apply Uhlmann’s
theorem to construct a QIP(2) protocol for these problems.

There are several open questions. Do adaptive and/or non-smooth-computable
quantum reductions from NP-complete problems to inverting one-way permuta-
tions exist? For cryptographic primitives which security are not based on NP-
complete problems under classical reductions, can NP-complete problems reduce
to them if quantum reductions are allowed? Is it possible to rule out a non-adaptive
reduction from NP-hard problems to average-case problems in NP, as in [BT06]?
Since we know very little about QIP(2), can we show that QIP(2) 6= QMA, QIP(2)
6= AM, or coNP* QIP(2)?

3.2 Preliminaries
For a finite set X, |X| denotes the size of X. We use x ← X to mean that x is
drawn uniformly at random from X. poly(·) denotes an unspecified polynomial,
and negl(n) denotes a negligible function in n. A function ε(n) is negligible if for all
polynomials p(n), ε(n) < 1/p(n) for large enough n. Classical efficient computation
is described by probabilistic polynomial time (PPT) algorithms.

We assume basic familiarity with quantum information formalism. In this
paper, quantum register represents a collection of qubits that we view as a single
unit. We typically use captial letters to denote a register and the Hilbert space
associated with it. A quantum channel Φ describes any physically admissible
transformation of quantum states, which is mathematically a completely positive,
trace-preserving linear map.

We recall the definitions of quantum interactive proofs (QIP) and one-way per-
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mutations.

Definition 3.2.1 (QIP(m)). A promise problem A = (Ayes, Ano) is in the complex-
ity class QIP(m) if there exists a polynomial-time quantum verifier which exchanges
quantum messages with a prover and has the properties:

• (Completeness) For x ∈ Ayes, there exists a prover who can convince the
verifier to accept x with probability at least 2/3 by exchanging at most m
messages.

• (Soundness) For x ∈ Ano, no prover can convince the verifier with probability
greater than 1/3 by exchanging at most m messages.

The length of the messages exchanged between the verifier and the prover can be
bounded by O(poly(|x|)).

Without loss of generality, the behaviors of the prover and the verifier can al-
ways be described as unitaries. It has been shown that QIP(m)=QIP(3)=PSPACE
form > 3 [KW00,JJUW11]. In this work, we focus on the class QIP(2). It is known
that completeness and soundness can be reduced to negligibly small [JUW09].

Definition 3.2.2 (One-way permutation). f : {0, 1}∗ → {0, 1}∗ is a one-way
permutation if

• for every n, f is a polynomial-time computable permutation over {0, 1}n by
either quantum or classical algorithms, and

• for every quantum polynomial-time algorithm A, Prx←{0,1}n(A(f(x)) = x) =
negl(n).

We denote the task of inverting a one-way permutation as Inv-OWP.

3.2.1 Locally random reductions and worst-case to average-case
reductions

We review classical definitions of worst-case to average-case reductions. The basic
notion is a distributional problem. We denote P ′ an arbitrary decision problem,
search problem or promise problem. We will only consider the case where P ′

corresponds to inverting one-way permutations.
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Definition 3.2.3. Let P ′ be a problem and D a collection of distributions {Dn}n∈N.
The distributional problem (P ′,D) is: given an instance x chosen randomly ac-
cording to Dn, compute P ′(x).

We first adapt a notion of Feigenbaum and Fortnow [FF93].

Definition 3.2.4 (non-adaptive locally random reduction (G,R) ). Let k and ` be
variables polynomial in the input length n and let r ← {0, 1}`. A decision problem
P is non-adaptively locally random reducible to a distributional problem (P ′,D)
if there are polynomial-time algorithms R and G satisfying:

• For all n and x ∈ {0, 1}n, P(x) = R(x, r,P ′(G(1, x, r)), . . . ,P ′(G(k, x, r)))
for at least 3/4 of all r ∈ {0, 1}`.

• For 1 ≤ i ≤ k, if x1 6= x2 and |x1| = |x2| then Prr[G(i, x1, r) = y] =
Prr[G(i, x2, r) = y] = Pr[y ∼ D|x1|].

We note that Definition 3.2.4 is equivalent to the Definition 2.1 in [FF93]. In
Definition 3.2.4, we assume that all queries are drawn from the same distribution
instead of different distributions. However, the assumption can be made without
loss of generality since one can apply a random permutation to the queries before
sending them to the oracle and undo the permutation before applying R. This
way, the distributions of each query are the same.

If we only consider D to be the uniform distribution, then this reduction is
a special case considered by Feigenbaum et al. in [FKN90]. One can also define
adaptive locally random reductions by allowing the algorithm G in Definition 3.2.4
to generate queries depending on the previous queries and answers.

If P = P ′, then the reduction is also called a random-self reduction [FF93].
It has been shown that the set of complete problems in PSPACE, EXP and #P
are random-self reducible [FF93]. On the other hand, it has been shown that NP-
complete problems are not non-adaptive random-self reducible unless the polyno-
mial hierarchy collapses to the third level [FF93].

The definition of Feigenbaum and Fortnow assumes a perfect solver for the
average-case problem [FF93]. This restriction is weakened in a later work by
Bogdanov and Trevisan [BT06].

Definition 3.2.5 (non-adaptive worst-case to average-case reduction). Let k and
` be variables polynomial in the input length n, and r is a random string chosen
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uniformly at random from {0, 1}`. A decision problem P is non-adaptive worst-case
to average-case reducible to (P ′,D) with average hardness δ if there are polynomial-
time algorithms R and G satisfying the properties that: For any n ∈ N

• On all inputs x ∈ {0, 1}n, G(x, r) outputs y1, . . . , yk.

• For any P ′′ which is δ-close to P ′ with respect to D,

Pr
r

[R(x, r,P ′′(y1), . . . ,P ′′(yk)) = P(x)] > 2/3.

Similarly, an adaptive worst-case to average-case reduction is defined by in-
cluding previous queries and answers to the arguments of G.

It has been shown that NP-complete problems are not non-adaptive worst-case
to average-case reducible to themselves, unless the polynomial hierarchy collapses
to the third level [BT06]. In addition, the existence of a non-adaptive worst-case
to average-case reduction from NP-hard problem to inverting a one-way function
implies that the polynomial hierarchy collapses to the second level [AGGM06] and
the existence of a worst-case to average-case reduction from an NP-hard problem to
inverting a size verifiable one-way function implies that the polynomial hierarchy
collapses to the second level [AGGM06,BB15].

3.3 Locally quantum reductions and quantum
worst-case to average-case reductions
In this section we define the quantum analogues of non-adaptive locally random
reductions given in Definition 3.2.4 and non-adaptive worst-case to average-case
reductions given in Definition 3.2.5, which are introduced in Section 3.2.1.

Definition 3.3.1 (non-adaptive locally quantum reduction (G,R)). A decision
problem P is non-adaptive locally quantum reducible to a distributional problem
(P ′,D) if there are two polynomial-time implementable unitaries R and G such
that for all n and x ∈ {0, 1}n

• The generator G creates k superposition queries, with query amplitudes based
on the distribution D: G|0〉MV |x〉 = |Qx,1〉 ⊗ · · · ⊗ |Qx,k〉|x〉 where |Qx,i〉 =
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∑
q∈Zm2

√
dq|q, 0〉M |wx,i(q)〉V for i ∈ [k] and dq is the probability that q is drawn

from Dn

• R takes responses of the queries and decides whether or not P(x) is true:

R|QH
x,1, . . . , Q

H
x,k〉 = √p|P(x)〉|ψ0

x〉+
√

1− p|1− P(x)〉|ψ1
x〉

where p ≥ 2/3 and |QH
x,i〉 = ∑

q∈Zm2

√
dq|q,P ′(q)〉M |wx,i(q)〉V , for i ∈ [k].

We introduce δ-close problems to defint the generalized notion of worst-case to
average-case reduction.

Definition 3.3.2. A problem P ′′ is δ-close to another problem P ′ with respect to
D if for all n, Prx∼Dn(P ′′(x) 6= P ′(x)) < δ.

Definition 3.3.3 (non-adaptive quantum worst-case to average-case reduction). A
decision problem P is non-adaptive quantum worst-case to average-case reducible
to (P ′,D) with average hardness δ if there are polynomial-time computable unitaries
R and G such that for any n ∈ N and x

• The generator G creates k superposition queries:

G|0〉MV |x〉 = |Qx,1〉 ⊗ · · · ⊗ |Qx,k〉|x〉, (3.1)

where |Qx,i〉 = ∑
q∈Zm2 cx,q,i|q, 0〉M |wx,i(q)〉V , for i ∈ [k].

• R: for any P ′′ which is δ-close to P with respect to D,

R|QH
x,1, . . . , Q

H
x,k〉 = √p|P(x)〉|ψ0

x〉+
√

1− p|1− P(x)〉|ψ1
x〉, (3.2)

where p ≥ 2/3 and |QH
x,i〉 = ∑

q∈Zm2 cx,q,i|q,P
′′(q)〉M |wx,i(q)〉V , for i ∈ [k].

The variables m and k are polynomial in the input length n.

Compared to locally quantum reductions, quantum worst-case to average-case
reductions do not require the queries to be drawn from a certain distribution.
Instead, we consider an oracle for P ′ that can err sometimes, which is captured by
δ-close problems P ′′.

1 − p is called the error of the reduction. The choice of p = 2/3 is arbitrary,
since it can be reduced effectively.
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3.3.1 Discussion of the definitions: special cases

Classical queries. If G outputs classical queries, then we can already derive a
negative result, analogous to a classical result by Brassard [Bra79].

Theorem 3.3.4. If there is a non-adaptive quantum reduction L ≤R,G Inv-OWP
where G produces classical queries, then L ∈ QIP(2) with classical interactions.

Proof. The protocol is as follows: The verifier first applies G to generate queries
and sends these queries to the prover. Then, the prover simulates the oracle for
Inv-OWP and sends the responses back. Finally, the verifier checks if the responses
are correct by computing the permutation. If the prover is not cheating, the
verifier applies R and accepts if R accepts. Otherwise, the verifier rejects. Note
that the prover can only give the correct answer for Inv-OWP. Otherwise, the
verifier rejects.

The proof for Theorem 3.3.4 above is similar to the proof in [Bra79] except that
the verifier who applies quantum reduction needs to send the queries by itself. The
reason is that the randomness of a quantum circuit is from the nature of quantum
mechanism. So, the verifier cannot make its randomness to be public. In addition,
we do not know if the theorem above is correct when the quantum reduction is
adaptive.
EPR queries. As another special case, we consider that wx,i(q) is the identity
function in Definition 3.3.1. Namely G generates k identical copies of |Ψ〉⊗m =∑
q |q〉|q〉, where Ψ = 1√

2(|00〉+ |11〉) is an EPR-pair. Then half of the EPR-pairs
are submitted as queries to the solver of the average-case problem. Note the re-
duced density of each query is totally mixed, and this looks a natural generalization
of classical uniform queries. Nonetheless, we show that this is too strong a con-
straint that trivializes the study of worst-to-average reductions, as far as OWP is
concerned.

Proposition 3.3.5. If there is a reduction L ≤R,G Inv-OWP where G issues EPR-
queries, then L ∈ BQP.

Proof. The key (and simple) observation is that a uniform superposition over a set
is invariant under an arbitrary permutation. This means that a quantum reduction
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could create the correct state that otherwise would require invoking an inverting
oracle I of the OWP f . Namely applying I on an EPR query gives us

∑
q

|q, q〉 I7→
∑
q

|q, q, f−1(q)〉 .

This can be created without help of I as follows:

|0, 0, 0〉 7→
∑
q

|q, 0, 0〉

f7→
∑
q

|q, f(q), f(q)〉 =
∑
q′
|f−1(q′), q′, q′〉

SWAP1,37→
∑
q′
|q′, q′, f−1(q′)〉 .

Remark 1. Consequently, it is necessary that the query states maintain more
sophisticated correlations between the query register and the work register of the
reduction. We note the same phenomenon also occur classically. Namely, although
the marginal distribution of each query is uniformly random, it is important that the
internal state of the reduction should not be independent of the queries. Otherwise,
existence of such a reduction will trivialize the language under consideration to fall
in BPP.

3.4 Uniform one-query locally quantum reduction to
Inv-OWP
In this section we consider quantum reductions that make one-query only. It
demonstrates the main idea of our general result with a cleaner analysis. Section 3.5
will handle multiple non-adaptive queries. Let f be a one-way permutation on
{0, 1}n, and let Uf be a unitary quantum circuit computing it. That is, Uf |x, 0〉 =
|x, f(x)〉. Note that Uf |f−1(x), 0〉 = |f−1(x), x〉. A uniform one-query locally
quantum reduction for L works as follows:
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|x, 0〉|0〉 G−→ 1√
2m

∑
q∈Zm2

|q, 0〉|wx(q)〉 (3.3)

Of−1
−→ 1√

2m
∑
q∈Zm2

|q, f−1(q)〉|wx(q)〉

R−→ a0|0〉|ψx,0〉+ a1|1〉|ψx,1〉, (3.4)

where |a1|2 ≥ 1− ε if x ∈ L and |a1|2 ≤ ε if x /∈ L is the probability the reduction
accepts.

The main theorem we are going to prove in this section is

Theorem 3.4.1. Suppose there exists a one-query uniform locally quantum re-
duction with exponentially small error ε from a worst-case decision problem L to
the task of inverting a polynomial-time computable permutation. Then there exists
a QIP (2) protocol with completeness 1− ε/2 and soundness 1/2 + 2

√
ε for L

To prove Theorem 3.4.1, we are going to give a QIP(2) protocol for L by using
the reduction.

3.4.1 The protocol for L

We are given the uniform one-query locally quantum reduction (G,R). We enlarge
the size of register V and define a unitary C which performs a CNOT on the first
register of M into the second register of V : |q, x〉M |y, z〉V C−→ |q, x〉M |y, z ⊕ q〉V .
The whole protocol takes place in the space HP ⊗HM ⊗HV ⊗HΠ where P is the
private register of the prover, M is the register exchanged between the prover and
the verifier, V and Π are registers which are private to the verifier.

We describe some states that are crucial in the protocol.

• The verifier prepares the state |S〉MVΠ = 1√
2(|Q〉MV |0〉Π + |T 〉MV |1〉Π), where

|Q〉MV = 1√
2n

∑
q∈Zm2

|q, 0〉M |wx(q), q〉V (3.5)

without the extra copy of q in the register V is the query state generated

36



from G as in Equation 3.3, and

|T 〉MV = 1√
2n

∑
q∈Zm2

|q, 0〉M |0, q〉V (3.6)

is the trap state, which will be used to catch a cheating prover.

• The honest prover replies |SH〉MVΠ = 1√
2(|QH〉MV |0〉Π + |TH〉MV |1〉Π), where

|QH〉MV = 1√
2n

∑
q∈Zm2

|q, f−1(q)〉M |wx(q), q〉V (3.7)

|TH〉MV = 1√
2n

∑
q∈Zm2

|q, f−1(q)〉M |0, q〉V . (3.8)

The state |QH〉 without the extra copy of q in register V is the state the
actual reduction R gets after querying the oracle as in Equation 3.4. The
state |TH〉 can be mapped to |0〉MV efficiently as shown below. This gives
the verifier an efficient way to check if |TH〉 has been changed a lot.

We do the following to map |TH〉MV back to |0〉MV efficiently

∑
q∈Zm2

|q, f−1(q)〉M |0, q〉V C−→
∑
q

|q, f−1(q)〉M |0, q ⊕ q〉V

Uf−→
∑
q

|q ⊕ f(f−1(q)), f−1(q)〉M |0, 0〉V

F−→ |0, 0〉M |0, 0〉V .

Here Uf is applied from the second register of M into the first, and F is applied
to the second register of M . The last two steps use the property that f can be
evaluated efficiently and f is a permutation.

Given the reduction (G,R), we can get a QIP(2) protocol for L by answering
the same as R and a protocol for L by flipping R’s answer. The QIP(2) protocol
for L is described in Protocol 1.

3.4.2 Lemmas for proving Theorem 3.4.1

In this section, we prove Lemma 3.4.2, Lemma 3.4.4 and Claim 3.4.3, which we
use to prove Theorem 3.4.1.
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Protocol 1 QIP(2) protocol for L using a one-query locally quantum reduc-
tion.

The protocol takes place in the space HP ⊗ HM ⊗ HV ⊗ HΠ where P is the
private register of the prover, M is the register exchanged between the prover
and the verifier, and V and Π are registers which are private to the verifier.

1. The verifier’s query. The verifier prepares |S〉MVΠ := 1√
2(|Q〉MV |0〉Π +

|T 〉MV |1〉Π).
The message register M is sent to the prover, and the verifier keeps V
and Π. This is generated by conditioning on the register Π, which is
initialized in |+〉. If Π = 0, G is applied and then q is copied to the
second part of the verifier’s internal register V , which produces |Q〉MV .
If Π = 1, compute the Fourier transform followed by CNOT to create
|T 〉MV , a trap state we use to catch a cheating prover.

2. The prover’s response. The prover applies some unitary UPM on register
M and its private register P and sends the message register back to the
verifier.

3. The verifier’s verification. The verifier applies C to erase q in V . The
verifier then measures Π to obtain b ∈ {0, 1}, and does the following:

• (Computation verification) If b = 0, apply R on MV and measure
the output qubit. Accept if the outcome is 0.

• (Trap verification) If b = 1, apply VT on MV and measure MV .
Accept if the outcome is all 0, (i.e., if the reduction rejects).

Lemma 3.4.2 is an immediate consequence of the fact two purifications of the
same state are related by an isometry. In fact, this exactly explains why the
entanglement fidelity is well defined [Sch96].

Lemma 3.4.2. Let ρA be a state in some Hilbert space. Let |φ〉AB and |ψ〉AB be two
purifications of ρA, i.e., TrB(|φ〉〈φ|AB) = TrB(|ψ〉〈ψ|AB) = ρA. Let ΨA : HA →
HA be a quantum channel. Let ρAB := (ΨA ⊗ IB)(|φ〉〈φ|AB) and σAB := (ΨA ⊗
IB)(|ψ〉〈ψ|AB), where the notation ΨA⊗ IB means that the channel is only applied
on the space HA and space HB is not changed. Then 〈φ|ρAB|φ〉 = 〈ψ|σAB|ψ〉.

Proof. Observe that (e.g., by Schmidt decomposition) there is a unitary UB oper-

38



ating only on B such that IA ⊗ UB|ψ〉AB = |φ〉AB. Then

〈φ|ρAB|φ〉

= 〈φ|(ΨA ⊗ IB)((|φ〉〈φ|)AB)|φ〉

= 〈ψ|(IA ⊗ U †B)(ΨA ⊗ IB)(IA ⊗ UB(|ψ〉〈ψ|)ABIA ⊗ U †B)(IA ⊗ UB)|ψ〉

=
∑
`

〈ψ|(IA ⊗ U †B)(E`
A ⊗ IB)(IA ⊗ UB(|ψ〉〈ψ|)ABIA ⊗ U †B)

(E`†
A ⊗ IB)(IA ⊗ UB)|ψ〉 (3.9)

=
∑
`

〈ψ|(E`
A ⊗ IB)((|ψ〉〈ψ|)AB)(E`†

A ⊗ IB)|ψ〉 (3.10)

= 〈ψ|(ΨA ⊗ IB)((|ψ〉〈ψ|)AB)|ψ〉

= 〈ψ|σAB|ψ〉.

The operators {E`
A} in Equation 3.9 are the operation elements of the channel

ΨA, where (ΨA⊗ IB)((|φ〉〈φ|)AB) = ∑
`(E`

A⊗ IB)((|φ〉〈φ|)AB)(E`†
A ⊗ IB) and (ΨA⊗

IB)((|ψ〉〈ψ|)AB) = ∑
`(E`

A ⊗ IB)((|ψ〉〈ψ|)AB)(E`†
A ⊗ IB). Equation 3.10 is correct

due to the property that (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Without loss of generality, we can always represent the prover’s operator UPM
as U ′PMOf−1 where U ′PM is an arbitrary unitary the cheating prover may apply.
Let

σU
′

Q = TrP (U ′PM ⊗ IV (|0〉〈0| ⊗ |QH〉〈QH |)U ′†PM ⊗ IV )

and
σU
′

T = TrP (U ′PM ⊗ IV (|0〉〈0| ⊗ |TH〉〈TH |)U ′†PM ⊗ IV ).

The following claim shows that for any unitaries the prover applies, the change on
|TH〉 is as much as the change on |QH〉.

Claim 3.4.3. For an arbitrary U ′PM , let |QH〉MV and |TH〉MV be as defined in
Equation 3.7 and Equation 3.8, and let σU ′Q and σU ′T be as above. Then

〈QH |σU ′Q |QH〉 = 〈TH |σU ′T |TH〉.

Proof. We represent the prover’s behavior U ′PM on the state |QH〉 and |TH〉 as a
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noisy channel ΨU ′
M operating on register M , which is formally defined as follows:

For all ρ ∈ HP ⊗HM ⊗HV , (ΨU ′

M ⊗ IV )(ρ) := TrP ((U ′PM ⊗ IV )ρ(U ′†PM ⊗ IV )).

Therefore,
(ΨU ′

M ⊗ IV )(|QH〉〈QH |) = σU
′

Q

and
(ΨU ′

M ⊗ IV )(|TH〉〈TH |) = σU
′

T .

|TH〉 and |QH〉 are actually two purifications of a mixed state on register M since
TrV (|QH〉〈QH |) = TrV (|TH〉〈TH |), and by Lemma 3.4.2, we can conclude that

〈QH |σU ′Q |QH〉 = 〈TH |σU ′T |TH〉.

Given a state |φ〉 and a projector ΠS, Lemma 3.4.4 is shows that the state
ρ which maximizes the quantity Tr(ΠSρ) + 〈φ|ρ|φ〉 is the bijection of |φ〉 and its
projection on ΠS.

Lemma 3.4.4. Let S ⊆ H be a subspace and ΠS be the projection operator on S.
Let |φ〉 be a state such that 〈φ|ΠS|φ〉 = sin2 θ, for some θ ∈ [0, π/2]. Then for any
density operator ρ ∈ D(H), Tr(ΠSρ) + 〈φ|ρ|φ〉 ≤ 1 + sin θ.

Proof. We first prove this lemma for any pure state ρ = |ψ〉〈ψ|. Let dim(S) = k.
Let |v0〉 := ΠS |φ〉

‖ΠS |φ〉‖ and |vk〉 := |φ〉−|v0〉
‖|φ〉−|v0〉‖ . Clearly, |vk〉 ⊥ |v0〉, and |φ〉 = sin θ|v0〉+

cos θ|vk〉. Then we pick {|v1〉, . . . , |vk−1〉} in S such that {|v0〉, . . . , |vk−1〉} form an
orthonormal basis for S. As a result, {|v0〉, . . . , |vk〉} will be an orthonormal basis
for S̃ := span(S ∪ |φ〉). Consider any ρ = |ψ〉〈ψ| with |ψ〉 ∈ S̃. Then |ψ〉 can be
writen as

|ψ〉 =
k∑
i=0

αi|vi〉,
∑
i

|αi|2 = 1 . (3.11)

We have that

〈φ|(|ψ〉〈ψ|)|φ〉 = |α0 sin θ + αk cos θ|2

= |α0|2 sin2 θ + |αk|2 cos2 θ + sin θ cos θ(α0α
∗
k + α∗0αk) ;
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Tr(ΠS|ψ〉〈ψ|) =
k−1∑
i=0
|αi|2 = 1− |αk|2 .

Therefore

Tr(ΠS|ψ〉〈ψ|) + 〈φ|(|ψ〉〈ψ|)|φ〉 (3.12)

= 1 + sin2 θ|α0|2 + (cos2 θ − 1)|αk|2 + sin θ cos θ(α0α
∗
k + α∗0αk)

= 1 + sin θ ·
(
sin θ(|α0|2 − |αk|2) + cos θ(α0α

∗
k + α∗0αk)

)
≤ 1 + sin θ · (sin θ(|α0|2 − |αk|2) + 2 cos θ(|α0||αk|)). (3.13)

Since the expression in Equation 3.13 is strictly increasing with |α0| and inde-
pendent to |α1|, . . . |αk−1|, we can suppose the optimal |ψ〉 for Equation 3.12 is
on the subspace spanned by |v0〉 and |vk〉 without loss of generality. Thus we let
|α0| = cos θ0 and |αk| = sin θ0 and the upper bound for Equation 3.13 as below

1 + sin θ · (sin θ(|α0|2 − |αk|2) + 2 cos θ(|α0||αk|))

= 1 + sin θ(sin θ(cos2 θ0 − sin2 θ0) + 2 cos θ cos θ0 sin θ0)

= 1 + sin θ(sin θ cos 2θ0 + cos θ sin 2θ0)

= 1 + sin θ(sin(θ + 2θ0))

≤ 1 + sin θ.

The maximum is achieved when θ0 = 1
2(π/2 − θ), i.e., when |ψ〉 bisects |φ〉 and

|v0〉.
For an arbitrary mixed state ρ := ∑

i pi|ψi〉〈ψi| with
∑
i pi = 1, pi ≥ 0.

Tr(ΠSρ) + 〈φ|ρ|φ〉 =
∑
i

pi (Tr(ΠS|ψi〉〈ψi|) + 〈φ|(|ψi〉〈ψi|) |φ〉) ≤ 1 + sin θ .

3.4.3 Proof of Theorem 3.4.1

The intuition behind the soundness proof is that the two branches (conditioning
on register Π) of verifier’s verification are competing and the prover cannot cheat
one without also changing the other. When the input x /∈ L, a cheating prover
must apply an operation far from Of−1 on |Q〉 to make R accept. We will show
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that when it applies such an operation, it must move the trap state |T 〉 far from
the correct state |TH〉 which will be detected by the verifier. Now, we can finish
the proof by showing the completeness and soundness of the protocol.

Proof of Theorem 3.4.1. We introduce some notation first. Let the state of the
entire system after the prover’s action be

1√
2

(|ψ0〉PMV |0〉B + |ψ1〉PMV |1〉B) .

If the prover is honest, then |ψ0〉 = |0〉P |QH〉, |ψ1〉 = |0〉P |TH〉.
If the prover is dishonest, we can always assume that Of−1 is applied honestly,

followed by an arbitrary unitary Ũ on its work register P and message register M .
In this case

|ψ0〉 = Ũ ⊗ IV (|0〉P |QH〉MV ), |ψ1〉 = Ũ ⊗ IV (|0〉P |TH〉MV ) .

For ease of notation, define ρ0 := TrP (|ψ0〉〈ψ0|PMV ) and ρ1 := TrP (|ψ1〉〈ψ1|PMV ).
Let ΠR be the projection to the acceptance subspace Sacc ⊆ HM ⊗HV induced

by R. Observe that the verifier accepts with probability

psucc := 1
2(p0 + p1) , where p0 = Tr(ΠRρ0) , p1 = 〈TH |ρ1|TH〉 .

Completeness. If x ∈ L̄, then ρ0 = |QH〉〈QH | and ρ1 = |TH〉〈TH |. Therefore,
p0 = Tr(ΠRρ0) ≥ 1 − ε by our hypothesis on the reduction. Meanwhile p1 =
〈TH |ρ1|TH〉 = 1. Therefore psucc = 1

2(p0 + p1) ≥ 1− ε/2.
Soundness. Suppose that x /∈ L̄. By Claim 3.4.3, we have that

p1 = 〈TH |ρ1|TH〉 = 〈QH |ρ0|QH〉.

Therefore
psucc = 1

2(p0 + p1) = 1
2(Tr(ΠRρ0) + 〈QH |ρ0|QH〉) .

Since x /∈ L̄, we know that RC|QH〉 =
√
δ|0〉|φx,0〉 +

√
1− δ|1〉|φx,1〉 with δ ≤ ε.

Therefore, 〈QH |ΠR|QH〉 ≤ ε, i.e., |QH〉 is almost orthogonal to the acceptance
subspace Sacc. Then from the prover’s perspective, to maximize the verifier’s
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accepting probability, it needs to find a state whose projection on |QH〉 and
Sacc combined is maximized. By Lemma 3.4.4, the maximum is achieved by a
state bisecting |QH〉 and its projection on Sacc, and we conclude that psucc =
1
2(Tr(ΠRρ0) + 〈QH |ρ0|QH〉) ≤ 1

2(1 +
√
ε).

Corollary 3.4.5. If there exists a uniform one-query locally quantum reduction
from a worst-case NP-hard decision problem to inverting a one-way permutation,
then coNP ⊆ QIP(2).

Proof. Suppose L is NP-hard, and it reduces to Inv-OWP via a uniform one-
query quantum locally random reduction. By Theorem 3.4.1, L ∈ QIP (2), hence
coNP ⊆ QIP (2).

Corollary 3.4.6. If there exists a uniform one-query locally quantum reduction
from a worst-case promise problem which is QMA-hard to inverting a one-way
permutation, then coQMA ⊆ QIP(2)

Proof. Suppose L is QMA-hard and there exists a uniform one-query quantum
locally random reduction from L to Inv-OWP. By Theorem 3.4.1, L ∈ QIP (2).
This implies coQMA ⊆ QIP (2).

3.5 Uniform non-adaptive locally quantum reduction
to Inv-OWP

In Section 3.4, we concern the special case of locally quantum reduction with
only one query and negligible error. In this section, we are going to generalize
Theorem 3.4.1 such that the existence of a uniform non-adaptive (multiple-queries)
locally quantum reduction with constant error implies coNP⊆QIP(2).

Let f be a one-way permutation, and let Uf be a circuit computing it. A
uniform non-adaptive locally quantum reduction (G,R) from a decision problem
to the task of inverting f is defined as:

|x, 0〉 G−→ 1√
2mk

∑
q1,...,qk∈Zm2

|q1, 0, wx,1(q1)〉 ⊗ · · · ⊗ |qk, 0, wx,k(qk)〉
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Of−1
−→ 1√

2mk
∑

q1,...,qk∈Zm2

|q1, f
−1(q1), wx,1(q1)〉 ⊗ · · · ⊗ |qk, f−1(qk), wx,k(qk)〉

R−→ a0|0〉|ψx,0〉+ a1|1〉|ψx,1〉,

where |a1|2 ≥ 2/3 if x ∈ L and |a1|2 ≤ 1/3 if x /∈ L is the probability the reduction
accepts.

Theorem 3.5.1. Suppose there exists a uniform non-adaptive locally quantum
reduction (G,R) from a worst-case decision problem L to Inv-OWP. Then, there
exists a QIP (2) protocol with completeness 1 − ε/2 and soundness 1/2 + 2

√
ε for

L, where ε is negligible.

3.5.1 Main theorem

Before giving the main theorem, we first show that the error of locally quantum
reductions and quantum worst-case to average-case reductions can be reduced by
parallel repetition.

Lemma 3.5.2 (Error reduction). The error of locally quantum reductions and
quantum worst-case to average-case reductions can be reduced to an exponential
small parameter ε in polynomial time and polynomial number of queries.

Proof. The error of both reductions can be reduced by parallel repetition. The
new reduction (R′, G′) is described as follows:

1. G′ operates G t times to generate t copies of |Qx,1〉 ⊗ · · · ⊗ |Qx,k〉 and send
all copies to the oracle in parallel, where t is polynomial in the input length
n.

2. After getting all t responses |QH
x,1, . . . , Q

H
x,k〉 from the oracle, R′ operates R t

times and make the majority vote. If more than t/2 copies are accepted, R′

accepts; otherwise, R′ rejects.

For completeness, the probability that (G′, R′) rejects is ∑u< t
2

(
t
u

)
2
3
u(1− 2

3)t−u.
For soundness, the probability that (G′, R′) accepts is ∑u> t

2

(
t
u

)
1
3
u(1− 1

3)t−u. Both
are negligible.

We are going to show that such reduction does not exist unless coNP ⊆ QIP(2).
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Proof. The error can be reduced to an exponentially small parameter ε by applying
Lemma 3.5.2. The idea of the protocol for multiple queries is the same as the
protocol in Protocol 1 for one query. The verifier generates a superposition of
the query state and the trap state and sends part of the state to the prover. In
the following, we will give a QIP(2) protocol which is similar to the protocol in
Protocol 1 for L.

By Lemma 3.5.2, the error of a quantum locally random (G,R) can be reduced
to an exponentially small parameter ε by parallel repetition, where we suppose
G is operated t times and each time it generates k queries. We denote the new
reduction as (G′, R′).

Now, we introduce the new query state and the trap state the verifier generates.
By applying G′ and C, the verifier generates

|Q1,1〉|Q1,2〉 ⊗ · · · ⊗ |Qt,k〉,

where
|Qi,j〉 = 1√

2m
∑
q∈Zm2

|q, 0〉|wx,j(q), q〉 for 1 ≤ i ≤ t, 1 ≤ j ≤ k.

Note that i indicates the i-th copy which is generated from the parallel repeti-
tion in Lemma 3.5.2. Also, the verifier generates |T 〉⊗tk, where |T 〉 is defined in
Equation 3.6.

Then, we rearrange the qubits such that the first two registers of all |Qi,j〉 and
|T 〉 are moved to the beginning in sequence as follows:

|Q1,1, . . . , Qt,k〉 → |Q̂〉MV = 1
2mkt/2

∑
q̂∈Zmkt2

|q̂, 0〉M |wx(q̂), q̂〉V (3.14)

and

|T 〉⊗k → |T̂ 〉MV = 1
2mkt/2

∑
q̂∈Zmkt2

|q̂, 0〉M |0, q̂〉V . (3.15)

where q̂ = [q1,1, . . . , q1,k, . . . , qt,1, . . . , qt,k] and wx(q̂) = [wx,1(q1,1), . . . , wx,k(qt,k)].
For example, given a state of two queries ∑q,q′ |q, 0〉|wx,1(q), q〉|q′, 0〉|wx,2(q), q′〉,
following the rearrangement, we represent it as ∑q,q′ |qq′, 0〉|wx,1(q)wx,2(q′), qq′〉.
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Similarly, we define

|Q̂H〉MV = 1
2mkt/2

∑
q̂∈Zmkt2

|q̂, f−1(q̂)〉M |wx(q̂), q̂〉V

and

|T̂H〉MV = 1
2mkt/2

∑
q̂∈Zmkt2

|q̂, f−1(q̂)〉M |0, q̂〉V ,

where f−1(q̂) = (f−1(q1,1), . . . , f−1(qt,k)).

Protocol 2 QIP(2) protocol for L using a non-adaptive locally quantum re-
duction.

The protocol takes place in the space HP ⊗ HM ⊗ HV ⊗ HΠ where P is the
private register of the prover, M is the register exchanged between the prover
and the verifier, and V and Π are registers which are private to the verifier.

1. The verifier’s query. The verifier prepares the state below. The message
register M is sent to the prover.

|Ŝ〉MVΠ := 1√
2

(|Q̂〉MV |0〉Π + |T̂ 〉MV |1〉Π).

2. The prover’s response. The prover applies some unitary UPM on register
M and its private register P and sends the message register back to the
verifier.

3. The verifier’s verification. The verifier applies C to erase q̂ in V . The
verifier then measures Π to obtain b ∈ {0, 1}, and does the following:

• (Computation verification) If b = 0, apply R′ on MV and measure
the output qubit. Accept if the outcome is 0.

• (Trap verification) If b = 1, apply VT on each |T 〉 in MV and mea-
sure MV . Accept if the outcome is the all 0 string.

The QIP(2) protocol for L is shown in Protocol 2. Note that the prover’s
behavior UPM can be represented as U ′PMOf−1 where U ′PM is an arbitrary unitary
a cheating prover may apply. In the following, we show that the protocol in
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Protocol 2 is a QIP(2) protocol for L .
For the completeness condition, when x ∈ L, the verifier accepts with proba-

bility ≥ 1− ε/2 via the same calculation in Section 3.4.
For the soundness condition, assume x /∈ L. Let

σ̂U
′

Q = TrP (U ′PM ⊗ IV (|0〉〈0| ⊗ |Q̂H〉〈Q̂H |)U ′†PM ⊗ IV )

and
σ̂U
′

T = TrP (U ′PM ⊗ IV (|0〉〈0| ⊗ |T̂H〉〈T̂H |)U ′†PM ⊗ IV ).

Since |T̂H〉 and |Q̂H〉 are two purifications of the mixed state TrV (|Q̂H〉〈Q̂H |) on
register M ,

〈Q̂H |σ̂U ′Q |Q̂H〉 = 〈T̂H |σ̂U ′T |T̂H〉 (3.16)

by Lemma 3.4.2. Then, we do a similar calculation as in the proof of soundness
for Theorem 3.4.1, which gives an upper bound 1/2 +

√
ε on the probability that

the verifier accepts.

The following two corollaries follow from Theorem 3.5.1, which proofs are the
same as the proof for Corollary 3.4.5 and Corollary 3.4.6.

Corollary 3.5.3. If there exists a uniform non-adaptive quantum locally random
reduction from a worst-case decision problem which is NP-hard to the task of in-
verting a one-way permutation, then coNP ⊆ QIP(2).

Corollary 3.5.4. If there exists a uniform non-adaptive quantum locally random
reduction from a worst-case promise problem which is QMA-hard to the task of
inverting a one-way permutation, then coQMA ⊆ QIP(2).

3.6 Smooth locally quantum reductions to
Inv-OWP
In this section, we study non-adaptive quantum reductions which generate queries
according to smooth-computable distributions. We show that the existence of such
reductions also imply coNP ⊆ QIP (2).
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The difficulty to apply Protocol 1 and Protocol 2 to non-uniform distributions
is that we do not know how to construct a trap state that can be mapped to |0〉
efficiently and has the state in the message register be indistinguishable from the
actual query state. Here we show that if the distribution is smooth-computable,
then the verifier can use the same trap state by applying quantum rejection sam-
pling [ORR13] to prevent the prover from cheating.

Definition 3.6.1 (Smooth-computable distributions). A distribution D = {Dn :
n ∈ N} is said to be smooth-computable if it satisfies the following properties. Let
dq = Pr[q ∼ Dn], dmin,n = minq∈{0,1}n dq and dmax,n = maxq∈{0,1}ndq.

1. For n ∈ N, for all q where |q| = n, the function fn : fn(q) = dq is polynomial-
time computable.

2. For n ∈ N, 2ndmin,n ≥ 1
poly(n) and 2ndmax,n ≤ poly(n).

Loosely speaking, smooth-computable distributions are point-wise close to the
uniform distribution. It is worth noting that Protocol 2 can handle those that
have negligible statistical distance to the uniform distribution. However, there
exists some smooth-computatble distribution that has inverse-polynomial distance
from the uniform distribution. In such cases, it is unclear if soundness still holds
in Protocol 2.

Again, we start with the special case of one-query reductions with negligible er-
ror. Generalizing to multiple non-adaptive queries is similar to the case of uniform
distributions before.

Let f be a one-way permutation on {0, 1}n, and let Uf be a quantum cir-
cuit computing it. A smooth one-query locally quantum reduction according to a
smooth-computable distribution D = {Dn : n ∈ N} proceeds as follows:

|x, 0〉|0〉 G−→ 1√
2m

∑
q∈Zm2

√
dq|q, 0〉|wx(q)〉 (3.17)

Of−1
−→ 1√

2m
∑
q∈Zm2

√
dq|q, f−1(q)〉|wx(q)〉

R−→ a0|0〉|ψx,0〉+ a1|1〉|ψx,1〉, (3.18)

where |a1|2 ≥ 1− ε if x ∈ L and |a1|2 ≤ ε if x /∈ L is the probability the reduction
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accepts and dq is the probability that q is drawn from Dn for n = |q|. We can show
the following theorem.

Theorem 3.6.2. Suppose there exists a one-query smooth locally quantum reduc-
tion with exponentially small error ε from a worst-case decision problem L to the
task of inverting a polynomial-time computable permutation. Then there exists a
QIP (2) protocol with completeness 1− ε/2 and soundness 1/2 + 2

√
ε for L

3.6.1 Quantum Rejection Sampling

The proof of Theorem 3.6.2 relies on the quantum rejection sampling technique
in [ORR13]. We give the definition of the quantum rejection sampling problem
and we adapt their tool in the Lemma 3.6.4.

Definition 3.6.3 (Quantum rejection sampling problem QRSP (D,D′, n)). Given
an oracle OD : |0〉 → ∑2n

x=1
√
dx|ξx〉|x〉 as a unitary, where dx ∼ Dn and |ξx〉 are

some unknown fixed states. The Quantum rejection sampling problem is to prepare
the state ∑2n

x=1

√
d′x|ξx〉|x〉 for d′x ∼ D′n.

Lemma 3.6.4. Let D = {Dn : n ∈ N} be a smooth-computable distribution
and U be the uniform distribution. There exists a quantum poly-time algorithm
QRSampling(D → U) that takes γ = (d 1

2ndmin,n e)
2 copies of ∑2n

x=1
√
dx|ξx〉|x〉 and

outputs a state that has negligible trace distance δ to ∑2n
x=1

√
1

2n |ξx〉|x〉. Similarly
QRSampling(U → D) takes γ′ = (d2ndmax,ne)2 copies of ∑2n

x=1

√
1

2n |ξx〉|x〉 and
outputs a state that has negligible trace distance δ′ to ∑2n

x=1
√
dx|ξx〉|x〉.

Note that γ and γ′ are polynomial in n when D is smooth according to Defini-
tion 3.6.1.

Proof. We first show the sample complexity. It has been shown in [ORR13] that
Algorithm 3 can solve the QRSP (D,D′, k) exactly with 1 − e−β with β2 samples
generated from OD for 1

β
= minxdx/d

′
x. In case D = U , we have 1

β
= minx

1
2ndx =

1
2ndmax,n . In case D′ = U , we have 1

β
= 2ndmin,n.

Algorithm 3 can also be done in polynomial time. Consider the case where
D′ = U . The Step 2 in Algorithm 3 can be viewed as a control rotation on the
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first and the third register.

S =
2n∑
i=1

1
di

√di − 1
2nγ −

√
1

2nγ√
1

2nγ

√
di − 1

2nγ

⊗ I ⊗ |i〉〈i|
By Solovay-Kitaev theorem, any known one-qubit unitary V can be approximated
by V ′ which is implemented by polynomial number of gates from a finite universal
gate set with an exponentially small error δ = max|ψ〉‖(V − V ′)|ψ〉‖. Since D and
U are polynomial-time computable as in Definition 3.6.1, we can approximate S
in polynomial time. This completes the proof. The analysis for the case where
D = U is the same.

Algorithm 3 QRSampling(D → D′)
1: Let 1

β
= minx dx

d′x
.

2: Apply OD to generate ∑2n
x=1
√
di|ξi〉|i〉.

3: Pick ~α ∈ R2n
+ where αi = d′i

β
and rotate the state in the first register by S

S : |0〉(
2n∑
x=1

√
di|ξi〉|i〉)→

2n∑
x=1

(
√
di − αi|0〉+√αi|1〉)|ξi〉|i〉.

4: Measure the first qubit, which gives ∑2n
i=1

√
d′i|ξi〉|i〉 with probability 1

β
.

5: By repeating steps 2 to 4 Θ(β2) times, one can prepare the state∑2n
i=1

√
d′i|ξi〉|i〉

with probability 1− e−β .

3.6.2 The new protocol for L using quantum rejection sampling

Here we describe some states which are used in the protocol.

|QD〉MV = 1√
2n

∑
q∈Zm2

√
dq|q, 0〉M |wx(q), q〉V , (3.19)

where |QD〉MV without the copy of q in V is the query state generated from G as
in Equation 3.17.

|QH
D 〉MV = 1√

2n
∑
q∈Zm2

√
dq|q, f−1(q)〉M |wx(q), q〉V , (3.20)
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where |QH
D 〉 without the extra copy q in register V is the state the actual reduction

R gets after querying the oracle as in Equation 3.18.
By applyingQRSampling(D → U), one can prepare the state |Q̃〉 from |QD〉MV

such that D(|Q̃〉, |Q〉) ≤ δ, where δ is an exponentially small error. We also
define |Q̃H〉 := Of−1|Q̃〉. Similarly, one can prepare the state |Q̃H

D 〉 from |Q̃H〉 by
QRSampling(U → D) such that D(|Q̃H

D 〉, |QH
D 〉) ≤ δ′, where δ′ is exponentially

small.
We give Protocol 4 for L with non-adaptive smooth locally quantum reductions.

Its analysis and proof of Theorem 3.6.2 are deferred in Section 3.6.3.

Protocol 4 QIP(2) protocol for L with non-adaptive smooth locally quantum
reductions.

Let γ = (d 1
2ndmin e)

2 and γ′ = (d2ndmaxe)2, where dmin = minq∈{0,1}n Pr[q ∼ Dn]
and dmax = maxq∈{0,1}n Pr[q ∼ Dn].

1. The verifier’s query. The verifier prepares the state

|S〉MVΠ := 1√
2

(|Q̃〉M1V1 ⊗ · · · ⊗ |Q̃〉Mγ′Vγ′
|0〉Π

+|T 〉M1V1 ⊗ · · · ⊗ |T 〉Mγ′Vγ′
|1〉Π).

The message registersM1, . . . ,Mγ′ are sent to the prover, and the verifier
keeps V1, . . . , Vγ′ and Π. |Q̃〉 can be prepared from γ copies of |QD〉 by
applying QRSampling(D → U).

2. The prover’s response. The prover applies some unitary UPM1...Mγ′
on

registers M1 . . .Mγ′ and its private register P and sends the message
registers back to the verifier.

3. The verifier’s verification. The verifier applies C to erase q in V1 . . . Vγ′ .
The verifier then measures Π to obtain b ∈ {0, 1}, and does the following:

• (Computation verification) If b = 0, apply QRSampling(U → D)
to get a state |Q̃H

D 〉, apply R on |Q̃H
D 〉 and measure the output qubit.

Accept if the outcome is 0.
• (Trap verification) If b = 1, apply VT on MiVi for i ∈ [γ′] and

measure. Accept if the outcome is all 0.
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3.6.3 Proof of Theorem 3.6.2

Proof of Theorem 3.6.2. Let the state of the entire system after the prover’s action
be

1√
2

(|ψ̃〉PM1...Mγ′V1...Vγ′ |0〉B + |φ〉PM1...Mγ′V1...Vγ′ |1〉B) .

To simplify the notation, we let M = M1M2 . . .Mγ′ and V = V1V2 . . . Vγ′ . If the
prover is honest, then

|ψ̃〉 = |0〉P |Q̃H〉 ⊗ · · · ⊗ |Q̃H〉, |φ〉 = |0〉P |TH〉 ⊗ · · · ⊗ |TH〉 ,

where F (|Q̃H〉, |QH〉) ≥ 1−δ according to Lemma 3.6.4. If the prover is dishonest,
we can always assume that the the prover first applies Of−1 honestly and then
applies an arbitrary unitary Ũ on its work register P and message register M . In
this case

|ψ̃〉 = ŨPM ⊗ IV (|0〉P |Q̃H〉 ⊗ · · · ⊗ |Q̃H〉), |φ〉 = ŨPM ⊗ IV (|TH〉 ⊗ · · · ⊗ |TH〉) .

For ease of notation, we define

ρ̃0 := TrP (|ψ̃〉〈ψ̃|); ρ1 := TrP (|φ〉〈φ|) .

Let ΠR be the projection to the acceptance subspace Sacc ⊆ HM ⊗HV induced
by the verifier’s verification. Observe that the verifier accepts with probability

psucc := 1
2(p0 + p1) , where p0 = Tr(ΠRρ̃0) , p1 = 〈TH |⊗γ′ρ1|TH〉⊗γ

′
.

Completeness. If x ∈ L̄, then ρ̃0 = |Q̃H〉〈Q̃H | and ρ1 = |TH〉〈TH |. Therefore,
p0 = Tr(ΠRρ̃0) ≥ 1−ε−2δ where ε is from our hypothesis on the reduction and δ is
the error from the quantum rejection sampling. Meanwhile p1 = 〈TH |ρ1|TH〉 = 1.
Therefore psucc = 1

2(p0 + p1) ≥ 1− (ε+ 2δ)/2.
Soundness. Suppose that x /∈ L̄. Let |ψ〉 = ŨPM ⊗ IV (|0〉P |QH〉 ⊗ · · · ⊗ |QH〉)
and ρ0 := TrP (|ψ〉〈ψ|). By Claim 3.4.3, we have that

〈TH |⊗γ′ρ1|TH〉⊗γ
′ = 〈QH |⊗γ′ρ0|QH〉⊗γ′ ,
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and then we are going to show that 〈TH |⊗γ′ρ1|TH〉⊗γ
′ is close to 〈QH |⊗γ′ ρ̃0|QH〉⊗γ′

except for a exponentially small error.
First, by monotonicity of the fidelity, F (ρ0, ρ̃0) ≥ F (|QH〉, |Q̃H〉) ≥ 1−δ. Then

we define the angles between states |QH〉⊗γ′ , ρ0 and ρ̃0 as

A(|QH〉⊗γ′ , ρ0) = arccosF (|QH〉⊗γ′ , ρ0), A(ρ̃0, ρ0) = arccosF (ρ̃0, ρ0), and

A(|QH〉⊗γ′ , ρ̃0) = arccosF (|QH〉⊗γ′ , ρ̃0).

By the triangular inequality,

A(|QH〉⊗γ′ , ρ̃0) ≤ A(|QH〉⊗γ′ , ρ0) + A(ρ̃0, ρ0).

This gives

F (|QH〉⊗γ′ , ρ̃0) ≥ cos (A(|QH〉⊗γ′ , ρ0) + A(ρ̃0, ρ0))

= F (|QH〉⊗γ′ , ρ0)F (ρ̃0, ρ0)−
√

1− F (|QH〉⊗γ′ , ρ0)
√

1− F (ρ̃0, ρ0)

≥ F (|QH〉⊗γ′ , ρ0)− 2
√
δ.

We can also get an upper bound on F (|QH〉⊗γ′ , ρ̃0) as follows: By triangular in-
equality,

A(|QH〉⊗γ′ , ρ̃0) ≥ A(|QH〉⊗γ′ , ρ0)− A(ρ̃0, ρ0),

which implies

F (|QH〉⊗γ′ , ρ̃0) ≤ cos (A(|QH〉⊗γ′ , ρ0)− A(ρ̃0, ρ0))

= F (|QH〉⊗γ′ , ρ0)F (ρ̃0, ρ0) +
√

1− F (|QH〉⊗γ′ , ρ0)
√

1− F (ρ̃0, ρ0)

≤ F (|QH〉⊗γ′ , ρ0) +
√
δ.

We can conclude that

〈QH |⊗γ′ ρ̃0|QH〉⊗γ′ = 〈QH |⊗γ′ρ1|QH〉⊗γ′ + c
√
δ = 〈TH |⊗γ′ρ1|TH〉⊗γ

′ + c
√
δ

for c a small constant. Therefore

psucc = 1
2(p0 + p1) = 1

2(Tr(ΠRρ̃0) + 〈QH |⊗γ′ ρ̃0|QH〉⊗γ′ + c
√
δ) .
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By Lemma 3.4.4, we can give an upper bound on psucc as follows.

psucc = 1
2(Tr(ΠRρ0) + 〈QH |ρ0|QH〉) ≤ 1

2(1 +
√
ε+ c

√
δ) .

By the same proof as in Section 3.5, we can generalize Theorem 3.6.2 to The-
orem 3.6.5.

Theorem 3.6.5. Suppose there exists a one-query smooth locally quantum reduc-
tion with constant error from a worst-case decision problem L to Inv-OWP. Then
there exists a QIP (2) protocol with completeness 1− ε/2 and soundness 1/2 + 2

√
ε

for L, where ε is negligible.

3.7 Quantum worst-case to average-case reduction
to Inv-OWP
Here, we consider the non-adaptive quantum worst-case to average-case reduction
defined in Definition 3.3.3. We show that if the queries are generated arbitrarily
according to smooth-computable distributions, i.e., the distributions of each query
can be different but are smooth-computable, then the existence of such reductions
also implies coNP⊆ QIP(2). We call this reduction smooth non-adaptive quantum
worst-case to average-case reduction.

Theorem 3.7.1. Suppose there exists a smooth non-adaptive quantum worst-case
to average-case reduction with average hardness δ (G,R) from a worst-case decision
problem L to Inv-OWP. Then, there exists a QIP(2) protocol with completeness
1− ε/2 and soundness 1/2 + 2

√
ε for L

Proof. Suppose (G,R) is the reduction and G generates k uniform queries. Given
any function g which is δ-close to f−1 as Definition 3.3.2. Then, the smooth non-
adaptive worst-case to average-case reduction is as follows:

|x, 0〉 G−→ (
∑
q

√
d1,q|q, 0, wx(q)〉)⊗ · · · ⊗ (

∑
q

√
dk,q|q, 0, wx(q)〉)

Og−→ (
∑
q

√
d1,q|q, f−1(q), wx(q)〉)⊗ · · · ⊗ (

∑
q

√
dk,q|q, f−1(q), wx(q)〉)
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R−→ √
p|L(x)〉|ψx,0〉+

√
1− p|1− L(x)〉|ψx,1〉,

where p ≥ 2/3 and di,q are the probability that q is drawn from a smooth-
computable distribution D(i)

|q| . Note that D(i)
|q| can be difference from D(j)

|q| for i 6= j.
The error of the reduction can be reduced to an exponentially small parameter ε
by Lemma 3.5.2.

It is not hard to show that given such a reduction from L to Inv-OWP, Protocol 4
decides L. For completeness, the honest prover always simulates Of−1 , which is
the same honest prover considered in Theorem 3.6.2. Hence, the verifier accepts
with probability at least 1− ε

2 . For soundness, if the prover’s operation is δ-close
to Of−1 , then the verifier accepts with probability ≤ (1 + ε)/2. Else if it chooses
an operation U ′PM which is not close to any δ-close oroacle for Of−1 , then the
modified trap state must be far from the original trap state. By the calculation in
Section 3.6, we get the same upper bound on the soundness.

The following two corollaries follow from Theorem 3.7.1.

Corollary 3.7.2. If there exists a smooth non-adaptive quantum worst-case to
average-case reduction from a worst-case decision problem which is NP-hard to
Inv-OWP, then coNP ⊆ QIP(2)

Corollary 3.7.3. If there exists a smooth non-adaptive quantum worst-case to
average-case reduction from a worst-case promise problem which is QMA-hard to
Inv-OWP, then coQMA ⊆ QIP(2)

3.8 Separation examples
We give two examples demonstrating the distinct landscapes of classical and quan-
tum worst-case to average-case reductions. Namely, relative to some oracle and
under reasonable computational assumptions, there exist problems (a worst-case
problem and an average-case problem) where there are no classical reductions, but
they admit an efficient quantum reduction. In fact, the quantum reduction issues
non-adaptive classical queries only. This makes the separation examples strong.

The idea behind the examples is simple. We design the average-case problem
in such a way that to make a meaningful query to a solver for this average-case
problem, one has to solve a problem that is (assumed to be) hard for classical
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algorithms but easy on a quantum computer. Our first example is based on a oracle
problem provably hard classically (Simon’s Problem), and the quantum reduction
needs quantum access to the oracle. The second example needs to assume the
existence of problem in BQP that is outside BPP (e.g., factorization). In return,
we remove the need of quantum access to the oracle.

Both constructions rely on the following assumption.

Assumption 1. There exists language L /∈ BQP (hence L /∈ BPP too) that admits
a random self-reduction L ≤(R,G) (L,D) for some distribution D.

A candidate is the PSPACE-complete problem TQBF, which is known to have
a non-adaptive random self-reduction [FF93]. Assumption 1 will follow, if BQP
( PSPACE holds. Hereafter we treat G as non-adaptive in Assumption 1 for
simplicity.

Let N = 2n, and for each i ∈ [N ], let fi : {0, 1}n → {0, 1}n be some function,
and si ∈ {0, 1}n. We define an oracle O := Os0,...,sN−1 that generalizes Simon’s
oracle [Sim97].

O : |i, x, y, z〉 → |i, x, y ⊕ fi(x), z〉 ; where fi(x) = fi(x′) iff. x′ = x⊕ si .

We assume that all si, i ∈ [N ] are chose uniformly at random. As an immediate
corollary of Simon’s result. We have that

Lemma 3.8.1. Given O, any classical algorithms needs Ω(2n/2) queries to O to
find si for some i ∈ [N ]. For any i ∈ [N ], there is a quantum algorithm that can
find si with O(n2) queries and time.

Construction 1. We construct our first separation example.

• L1 = TQBF = {φ = φ(v1, . . . , vn)} containing satisfiable quantified n-
variable formulae in 3-CNF. Let LO1 be the language L1 relative to oracle
O, which simply ignores O.

• L̂O1 := {x = (i, s, φ) : s = si and φ is true}. We associate L̂O1 a distribution
D̂1, which is uniform on N × {0, 1}n and samples a formula according to D
(the distribution in Assumption 1).
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Theorem 3.8.2. Under Assumption 1, there does not exist a PPT reduction from
LO1 to (L̂O1 , D̂1). In contrast, there is a quantum poly-time non-adaptive reduction
LO1 ≤RQ1 ,GQ1 (L̂O1 , D̂1).

Proof. Let A be an algorithm that solves the average-case problem (L̂O1 , D̂1). For
simplicity, we assume that A is a perfect decider, i.e., for a random input x =
(i, s, φ) ← D̂1, A(i, s, φ) = 1 iff. s = si and φ = 1. Any classical reduction
is unable to find si in polynomial time, hence the solver A is useless. Formally
speaking, if there were such a reduction LO1 ≤ (L̂O1 , D̂1), one can turn it into an
efficient solver for Simon’s problem or an efficient decider for L. This violates
Lemma 3.8.1 or Assumption 1.

For the second part, we construct a quantum reduction (RQ
1 , G

Q
1 ) as follows.

Recall that there is a random self-reduction L ≤(R,G) (L,D). Given a worst-case
input φ, GQ

1 (φ) runs G(φ) to get random {φj}kj=1. Then for j = 1, . . . k, GQ
1

generates random ij ← [N ], and runs Simon’s algorithm to find sij efficiently.
Then the queries to A are {ij, sij , φj}kj=1, which are correctly distributed according
to D̂1. Therefore A will respond correctly with {φj ?= 1}. Then RQ

1 runs the
decision procedure R, which correctly decides φ.

Remark 2. We have designed O to encode exponentially many instances of Si-
mon’s problem for the technicality of non-uniform reductions. Because otherwise,
a classical reduction could hardwire the solution s and make use of an average-case
solver.

Construction 2. We give another separation example. It is still in the oracle
setting, and we need to make an additional assumption. What we gain is that
the quantum reduction does not need quantum access to the oracle, as opposed to
Example 1 where we need to run Simon’s algorithm with quantum access to the
oracle.

Assumption 2. There exists a classically secure one-way function f : X → Y ,
which is invertible by an efficient quantum algorithm.

A natural candidate would be adaption of Factorization. Let (p, q) ←
Gen(1n) be an efficient algorithm that generates two large primes at random, and
define f(p, q) = pq. Then it is reasonable to assume that there exists a Gen
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algorithm relative to which f is hard to invert. In fact this is necessary for the
RSA assumption, which is the basis of modern public-key cryptography. This
assumption is hence likely to be true given the current state of art.

Given a function f as in Assumption 2, we define an oracle H : i 7→ yi for
i ∈ [N ]. Here we sample zi ← X randomly and set yi := f(zi).

• L2 = TQBF = {φ = φ(v1, . . . , vn)} containing satisfiable quantified n-
variable formulae in 3-CNF. Let LO2 be the language L relative to oracle
H, which ignores H.

• L̂H2 := {x = (i, z, φ) : f(z) = yi and φ is true}. We associate L̂H2 a distribu-
tion D̂2, which is uniform on [N ]×X and samples a formula according to D
(the distribution in Assumption 1).

Remark 3. For the same reason as above, we introduce the oracle H to encode
superpolynomial-many instances of inverting f to avoid a non-uniform classical
reduction that can hardwire solutions to (at most poly-many) inversion instances.

Following similar arguments to Theorem 3.8.2, we can prove the theorem below.
The only change is that in the quantum reduction, we query classically a random
index ij to H, and obtain yij . Then we run Shor’s quantum factorization algorithm
to find zij := f−1(yij), and then form correct queries to the solver of (L̂H2 , D̂2).

Theorem 3.8.3. Under Assumption 1 and 2, there does not exist a classical reduc-
tion from LH2 to (L̂H2 , D̂2). In contrast, there is a quantum poly-time non-adaptive
reduction LH2 ≤RQ2 ,GQ2 (L̂H2 , D̂2).
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