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Zusammenfassung

Diese Arbeit behandelt die Physik der Resonatorquantenelektrodynamik im sogenannten ultra-

starken Kopplungsregime, in dem die Kopplungsstärke zwischen einem einzelnen Photon und einem

einzelnen Dipol mit der inneren Energie des Photons vergleichbar wird. In diesem Regime verlieren

die meisten der gewöhnlich verwendeten theoretischen Modelle sowie auch unsere physikalische In-

tuition ihre Gültigkeit und es Bedarf einer neuen Art der Beschreibung.

In dieser Arbeit wird zuerst die Theorie der Resonatorquantenelektrodynamik nochmals von

Grund auf neu abgeleitet, um ein minimales Modell zu bekommen, welches auch im ultrastarken

Kopplungsregime seine Gültigkeit behält. Dazu wurden viele der gewöhnlichen Näherungen im

Detail überprüft und gezeigt, dass zum Beispiel die Gültigkeit der Einzel-Moden Approximation für

den Resonator und die Zwei-Niveau Approximation für die Dipole im ultrastarken Kopplungsregime

von der Eichung abhängen. Nur durch die Wahl der richtigen Eichung erhält man dann eine gültiges

Modell für beliebige Kopplungsstärken.

Basierend auf diesem vereinfachten Model werden in dieser Dissertation dann die Eigenschaften

des Grundzustands und der thermischen Zustände eines Multi-Dipol-Resonator-QED-Systems un-

tersucht. Dabei ergeben sich als Funktion der Licht-Materie Kopplungstärke qualitative sehr un-

terschiedliche Phasen. Für diese Phasen findet man auch sehr unterschiedliche thermodynamische

Eigenschaften, welche in einem Experiment durch die Messung der Schwarzkörperstrahlung oder

der Suszeptibilität der Dipole bestimmt werden können.

Im letzten Teil der Arbeit diskutieren wir die quantentheoretische Beschreibung der Licht-

Materie-Wechselwirkungen in photonischen Strukturen, in denen die Photonen durch ein synthetis-

ches Magnetfeld beeinflusst werden. Es wird gezeigt, dass ein schwach gekoppelter Quantenemitter

mit einem einzelnen zirkulierenden Photon einen chiralen gebundenen Zustand bilden kann. Darüber

hinaus wird eine effektive Theorie entwickelt, um solche chiralen Atom-Photon Hybridzustände auch

für Systeme mit mehreren Atomen und mehreren Photonen zu beschreiben. Diese Analyse zeigt,

dass ein solches System eine vielversprechende Plattform darstellt, um die Physik des fraktionalen

Quanten-Hall-Effekts zu simulieren.
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Abstract

In this thesis we explore the physics of cavity quantum electrodynamics in the so-called ultrastrong

coupling regime, where the coupling strength between a single photon and a single dipole is com-

parable to the internal energy of the photon itself. Under such conditions most of the frequently

employed theoretical models ceased to be valid and a lot of our common intuition about light-matter

interactions breaks down. In this thesis we reconsider the theory of cavity QED by starting from

the quantization of the electromagnetic field and then carefully deriving a simplified minimal model,

reevaluating the validity of all the approximations involved. We show that the usual single-mode

approximation for the cavity and the two-level truncation for the dipoles become highly non-trivial

in the ultra-strong coupling regime and depend, for example, on the chosen gauge of the original full

QED Lagrangian. By clarifying these subtleties, we obtain a consistent model for a set of two-level

dipoles that are coupled to a single field mode, which is valid for arbitrary coupling strength.

Based on this simplified model, we then calculate the main properties of the ground state of

a multi-dipole cavity QED system. Here we highlight the presence of different phases related to

different quantum phase transitions as a function of the microscopic parameters. We then evalu-

ate also the thermal equilibrium states of cavity QED. Here we calculate several thermodynamic

quantities, highlighting their observability in realistic experiments through quantities like the black

body radiation or the dipole’s electric susceptibility.

In the last part of the thesis we discuss the quantum theory of light-matter interactions in

photonic structures where the photon is subjected to a synthetic magnetic field. Here we show that

a weakly coupled quantum emitter can form a chiral bound state with a single circulating photon.

We develop an effective theory to describe such chiral atom-photon bound states also for systems

with multiple atoms and multiple photons and show that such a system can be a promising platform

to simulate the physics of fractional quantum Hall effect.
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Introduction

The interaction between light and matter was a central topic in the understanding of the microscopic

world and the advent of quantum mechanics. After more than a century it still constitutes a point

of fundamental interest in the development of technologies based on the law of quantum mechanics

[1]. Although in conventional systems the physics of light-matter interactions is by now well-

understood, still many surprising effects can emerge when such processes are studied in structure

electromagnetic environments or under extreme coupling conditions. In this thesis we explore two

such unconventional scenarios for light-matter interactions, where our common intuition, but also

our usual theoretical descriptions break down. The first and main topic concerns the physics of

light-matter interactions in the non-perturbative coupling regime, where the atom-photon coupling

exceeds the energy of the photon itself. In the last part of the thesis we will then study the coupling

of atoms to “topological” photons, i.e., to photons that are subject to synthetic magnetic field.

Ultra-strong coupling regime of cavity quantum electrodynamics

In a prototype cavity quantum electrodynamics (cavity QED or cQED) setup one or few atoms are

located between two parallel mirrors, where a single photon is trapped, bouncing back and forth

between the two mirrors [1]. This setup was first used to demonstrate how to create entangled states

between a single atom and a single photon and now it is one of the building blocks of the emerging

field of quantum technologies. Here we study systems which operate at the single photon level, that

can be engineered to fulfil a specific tasks, for example implementing a quantum simulator for a

specific complex system, or a universal quantum computer [2].

Usually cavity QED systems are studied under the condition that the coupling between the atom

a single photon is very small. This is somehow very limiting, because the coupling strength also

determines the speed at which a device based on such a technology could operate. So the develop-

ment of quantum technologies based on light-matter interactions requires also the development of

strategies to increase this coupling strength. A major effort has been made to implement the same

kind of physics in different systems, such as electronic transitions in solid-state [3] and supercon-

ducting circuits [4], in order to explore all the possibilities that we have to make this coupling as

1
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large as we want.

But it was also realized that making the light-matter coupling bigger and bigger could actually

change the physics qualitatively and not just quantitatively. To highlight this qualitative difference,

in [5] it was first introduced the expression ultrastrong coupling regime for cavity QED systems

where the vacuum Rabi splitting becomes comparable to the absolute energy scales of the system.

In this reference it was shown that the large coupling strength in solid-state cavities would make

clearly visible the so-called dynamical Casimir effect if the system is subjected to a time modulation

of the coupling itself.

But the idea of non-perturbative effects due to large coupling in cQED is actually much older,

and it can be traced back to Hepp and Lieb and their original proposal of superradiance phase

transition [6]. Accepting the Dicke model [7] as the minimal approximated toy model to describe an

ensemble of molecules collectively coupled to a resonant cavity mode, they predicted the existence

of a quantum phase transition when the light-matter coupling is large enough. This has opened

a long debate about the real existence of this phase transition and its meaning, which has lasted

until our recent years. A series of no-go theorems have convinced the community that this phase

transition is impossible in atomic/molecular systems, but, with the advent of circuit QED, new fuel

was pumped into the debate [8, 9].

While the debate about the superradiant instability was for a long time a purely theoretical

discussion, in recent years the USC regime has been reached in solid-state cavity QED [10, 11], in

circuit QED [12, 13] and in molecular cavity QED [14]. A big debate is currently going on in the

context of molecular cavity QED with particular focus on the possibility of modify chemical bonds

by injecting the molecules in cavity where USC is achieved. Experiments have shown that this

possibility cannot be excluded [15, 16], but from theoretical perspective the underlying mechanism

is not at all clear. Moreover in solid-state cavity QED some data suggested that a Dicke-like

instability might occur [17]. Also in this system a clear and simple intuition on what is going on is

currently not available.

In this thesis we devote a large part of our discussion to carefully analyse how to model a

cavity QED system, starting from the generic non-relativistic QED Lagrangian. Then we will

illustrate systematically what are the simplification that we need in order to keep just the relevant

degrees of freedom. This passage is of crucial importance to be sure to avoid artefacts related to

an oversimplified modelling. We will see that a large part of the debate regarding the superradiant

phase transition is actually flawed in principle by assuming a model which does not represent the

description of the considered system in that parameters regime. This applies first to the prediction

of the superradiant phase transition itself, because it turns out that the Dicke model cannot be

considered a good description of the system when the coupling is sufficiently large, but also to the
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related no-go theorems that assume that the Dicke model must be corrected at large coupling by

the so-called A2-term, although that derivation is invalid due to the impossibility of performing the

two level truncation in the Coulomb gauge. Although gauge dependent artefacts in effective light-

matter models have been discussed in the literature before [18, 19], they are usually thought of small

quantitative corrections. However, as we show in this thesis, it turns out that in the USC regime

effective models derived in different gauges give both quantitatively and qualitatively drastically

different predictions. This is an important new insight that could already clarify some of the most

controversial predictions in this field.

A second important issue that we specifically highlight in this thesis is the correct distinction

between electrodynamical and purely electrostatic effects. It has already been pointed out in several

earlier works in this field that the superradiant phase transition can be interpreted as a ferro-electric

phase transition, when electrostatic effects are included [20, 21, 22]. However, in these models the

effect of dipole-dipole interactions was still treated inconsistently and the superradiant instability

is still interpreted as a cavity-mediated effect. A very important point about the effective models

derived in this thesis is that a clear distinction between electrostatic dipole-dipole interactions

and dynamical cavity interactions are made. In particular, this allows us to distinguish between

conventional ferro-electric phase transitions, which do not involve the cavity mode, and the actual

modification of the dipolar ensemble, which genuinely induced by quantum fluctuations of the

dynamical field mode. Having an effective theory that enables us to have this clear distinction is

particularly useful to isolate the new physical phenomena that we can relate to the ultra-strong

coupling regime. We will explore in particular the consequences on the ground state of an arbitrary

cavity QED system and its finite temperature equilibrium states.

Light-matter interactions with topological photons

The simplest way that we have to think about the propagation of electromagnetic radiation is the

light ray. In quantum mechanics we may think that an atom emits a photon through light rays

directed along all possible directions. Despite its hand-wavy nature, this simple picture is actually

not so wrong, because the probability amplitudes in quantum mechanics are, to leading order, given

by the path of least action, which, in the case of a photon, is a straight line [23]. But, what would

happen if the usual light rays are instead bent into closed loops? How does it look a world in which

the path of least action of a photon is a circle?

In the last part of this thesis we will study light-matter interactions in a system where the

photons are forced to follow circular trajectories. This idea seems a bit odd and not connected to

reality, but it is actually very relevant in the context of topological photonics systems [24].

Here the idea is to confine photons in arrays of coupled resonators, implementing a photonic
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lattice, in which the photons hop between neighboring lattice sites. The photons thus propagate

through this lattice with an engineered dispersion and tunable speed of light [25]. By modulating the

coupling between the resonators one can also imprint a nontrivial phase in the hopping amplitudes.

This phase chosen in a way that it mimics the presence of a synthetic magnetic field for the photons

[24]. In this way such photonic structures can be used to simulate the physics of electrons in strong

magnetic fields and all the physics related to the quantum Hall effect [26] and fractional quantum

Hall effect [27]. From this analogy with charged particles in a magnetic field, where the Lorentz

force bends its trajectory into a loop, we also see the photons in such topological lattices move in

circles, rather than light-rays.

One can immediately understand that a photon emitted in such an environment cannot really

escape. The emitted photon must be reabsorbed by the atom, once the cyclotron trajectory is

completed. The consequence is that the spontaneous emission is broken, and replaced by a bound

state, in which the photon “orbits” forever around the atom.

The driving motivation behind this part of the thesis comes from very recent experiments where

artificial emitters are placed on the edge of a topological photonic system [28, 29]. In these kind of

experiments the light-matter interactions enable one to use the platform for chiral quantum optical

purposes [30]. In almost all these recent works the photonic bulk modes are barely considered,

and the focus is mostly on the edge physics. In this thesis we show that the coupling of atoms

or other emitters to the circulating bulk photons gives rise to a much richer physics dominated

by non-Markovian and strong coupling effects. Specifically, we will discuss the properties of a new

type of quasi-particles that form under such conditions, which we named Landau-Photon Polaritons

(LPP).

Outline of the thesis

This thesis summarises my scientific contributions achieved during the five years of my PhD. The

thesis is essentially split in two parts: the first five chapters (Ch. 1-5) are devoted to the study of

the ultra-strong coupling regime in cavity QED, while the last chapter (Ch. 6) is about light-matter

interactions with topological photons.

Ch. 1 and 2 discuss the main approximations used to derive a minimal toy model to describe

cavity QED under non-perturbative light-matter coupling. In particular in Ch. 1 we review the

quantisation of the electromagnetic field and its coupling with non-relativistic matter. Starting

from Maxwell’s equations we try to take the simplest path to arrive at the generic electromagnetic

Hamiltonian in Coulomb gauge. Then we perform a series of approximation and we switch to the

so-called dipole gauge to finally arrive at the general form of a light-matter Hamiltonian for a single

cavity mode, but keeping all the electrostatic contributions.
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In Ch. 2 we focus in a next step on how to simplify the matter description in presence of a

single electromagnetic mode. In particular we reinvestigate the common two-level truncation, where

we just keep two levels of every microscopic matter constituents. We show that this approximation

is critically sensitive to the gauge choice when the light-matter coupling is strong enough and we

proof that this approximation is most accurate in the dipole gauge.

In Ch. 3 we discuss a concrete implementation of our abstract cavity QED models. We consider

an LC circuit, where the capacitor is filled by dipolar matter. The matter is described by an

ensemble of dipoles fixed on a grid, with dipole moment always perpendicular to the capacitor

plates. Such a toy model is very helpful to visualise what is going on in such a system when the

coupling is ultra-strong and to provide a simple physical intuition. A particular emphasis is placed

on the treatment of electrostatic dipole-dipole interactions in the presence of boundaries, which

becomes highly relevant for predicting the properties of dense ensembles of dipoles.

In Ch. 4 we present the main novel predictions of our cavity QED model by analysing in detail

its ground state phases. In particular, we point out the distinction between electrostatic effects and

“pure quantum corrections”, establishing what is the correct parameter regime to have one or the

others as the most relevant contribution.

In Ch. 5 we proceed by generalising these considerations for the ground states to equilibrium

states at fixed temperature T . We then discuss some of the most interesting thermodynamic features

that a cavity QED system exhibits in the ultra-strong coupling regime, again pointing out the

distinction between basic electrostatic effects and genuine quantum corrections.

Finally in Ch. 6 we change the subject from ultrastrong coupling to light-matter interactions

in topological photonic systems. After having introduced the concept of a synthetic magnetic field

for photons, we discuss the coupling between these topological photons and an ensemble of atoms,

or other types of quantum emitters. We show how the common spontaneous emission is completely

replaced by the formation of chiral atom-photon bound states, giving rise to the concept of Landau-

photon polariton. Having multiple atoms and multiple photons in this platform can lead to new

interesting physics, becoming a prototype of a tunable quantum simulator for the fractional quantum

Hall effect, for instance.

List of publications

The thesis is based on the following peer-reviewed articles:

PHYSICAL REVIEW A 97, 043820 (2018) [31]

Cavity quantum electrodynamics in the non-perturbative regime

Daniele De Bernardis, Tuomas Jaako, and Peter Rabl
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We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to

the electric field of a single-mode LC resonator. This setup is used to derive a minimal quantum

mechanical model for cavity QED, which accounts for both dipole-field and direct dipole-dipole

interactions. The model is applicable for arbitrary coupling strengths and allows us to extend the

usual Dicke model into the non-perturbative regime of QED, where the dipole-field interaction can

be associated with an effective finestructure constant of order unity. In this regime, we identify three

distinct classes of normal, superradiant and subradiant vacuum states and discuss their characteris-

tic properties and the transitions between them. Our findings reconcile many of the previous, often

contradictory predictions in this field and establish a common theoretical framework to describe

ultrastrong coupling phenomena in a diverse range of cavity-QED platforms.

PHYSICAL REVIEW A 98, 053819 (2018) [32]

Breakdown of gauge invariance in ultrastrong-coupling cavity QED

Daniele De Bernardis, Philipp Pilar, Tuomas Jaako, Simone De Liberato, and Peter Rabl

We revisit the derivation of Rabi- and Dicke-type models, which are commonly used for the

study of quantum light-matter interactions in cavity and circuit QED. We demonstrate that the

validity of the two-level approximation, which is an essential step in this derivation, depends explic-

itly on the choice of gauge once the system enters the ultrastrong coupling regime. In particular,

while in the electric dipole gauge the two-level approximation can be performed as long as the Rabi

frequency remains much smaller than the energies of all higher-lying levels, it can dramatically fail

in the Coulomb gauge, even for systems with an extremely anharmonic spectrum. We extensively

investigate this phenomenon both in the single-dipole (Rabi) and multi-dipole (Dicke) case, and

considering the specific examples of dipoles confined by double-well and by square-well potentials,

and of circuit QED systems with flux qubits coupled to an LC resonator.

Quantum 4, 335 (2020) [33]

Thermodynamics of ultrastrongly coupled light-matter systems

Philipp Pilar, Daniele De Bernardis, and Peter Rabl

We study the thermodynamic properties of a system of two-level dipoles that are coupled ultra-

strongly to a single cavity mode. By using exact numerical and approximate analytical methods,

we evaluate the free energy of this system at arbitrary interaction strengths and discuss strong-

coupling modifications of derivative quantities such as the specific heat or the electric susceptibility.

From this analysis we identify the lowest-order cavity-induced corrections to those quantities in the

collective ultrastrong coupling regime and show that for even stronger interactions the presence of a



CONTENTS 7

single cavity mode can strongly modify extensive thermodynamic quantities of a large ensemble of

dipoles. In this non-perturbative coupling regime we also observe a significant shift of the ferroelec-

tric phase transition temperature and a characteristic broadening and collapse of the black-body

spectrum of the cavity mode. Apart from a purely fundamental interest, these general insights will

be important for identifying potential applications of ultrastrong-coupling effects, for example, in

the field of quantum chemistry or for realizing quantum thermal machines.

SciPost Phys. 9, 066 (2020) [34]

The Vacua of Dipolar Cavity Quantum Electrodynamics

Michael Schuler, Daniele De Bernardis, Andreas M. Läuchli and Peter Rabl

The structure of solids and their phases is mainly determined by static Coulomb forces while the

coupling of charges to the dynamical, i.e., quantized degrees of freedom of the electromagnetic field

plays only a secondary role. Recently, it has been speculated that this general rule can be overcome

in the context of cavity quantum electrodynamics (QED), where the coupling of dipoles to a single

field mode can be dramatically enhanced. Here we present a first exact analysis of the ground

states of a dipolar cavity QED system in the non-perturbative coupling regime, where electrostatic

and dynamical interactions play an equally important role. Specifically, we show how strong and

long-range vacuum fluctuations modify the states of dipolar matter and induce novel phases with

unusual properties. Beyond a purely fundamental interest, these general mechanisms can be im-

portant for potential applications, ranging from cavity-assisted chemistry to quantum technologies

based on ultrastrongly coupled circuit QED systems.

PHYSICAL REVIEW LETTERS 126, 103603 (2021) [35]

Light-Matter Interactions in Synthetic Magnetic Fields: Landau-Photon Polaritons

Daniele De Bernardis, Ze-Pei Cian, Iacopo Carusotto, Mohammad Hafezi, and Peter Rabl

We study light-matter interactions in two-dimensional photonic systems in the presence of a

spatially homogeneous synthetic magnetic field for light. Specifically, we consider one or more

two-level emitters located in the bulk region of the lattice, where for increasing magnetic field the

photonic modes change from extended plane waves to circulating Landau levels. This change has

a drastic effect on the resulting emitter-field dynamics, which becomes intrinsically non-Markovian

and chiral, leading to the formation of strongly coupled Landau-photon polaritons. The peculiar

dynamical and spectral properties of these quasiparticles can be probed with state-of-the-art pho-

tonic lattices in the optical and the microwave domain and may find various applications for the

quantum simulation of strongly interacting topological models.
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Chapter 1

Light-matter interactions in dipolar

systems

In this chapter we review the main aspects of non-relativistic light-matter interactions, and intro-

duce the general theoretical framework used throughout this thesis: light-matter interactions with

electric dipoles. Dipolar transitions are probably the simplest processes that manifest the interac-

tion between matter and the electromagnetic field at the microscopic level. Indeed the interest in

this subject has never stopped since the advent of quantum mechanics. Despite its simplicity, it can

still lead to arbitrary complicated problems, making additional approximations necessary. While in

the regime of weak interactions of the use the two-level or single-mode approximations is frequently

employed, the same approximations become very subtle for larger coupling strength and have led in

the past to many inconsistent predictions. For this reason we focus the entire first three chapters of

this thesis on the derivation of an effective theory for light-matter interactions, keeping track of ev-

ery approximation, transformation and change in representation. The idea is to arrive at the end of

Ch. 3 with a minimal Hamiltonian which describes an ensemble of dipoles inside a resonant cavity,

but remaining “continuously” connected to the original theory, and providing physical intuition.

We start this chapter by briefly reviewing the quantization of the electromagnetic field in the

Coulomb gauge. We take a very pragmatic approach, starting from Maxwell’s equations and intro-

ducing the scalar and vector potentials. The Coulomb gauge condition arises very naturally in order

to be able to solve Maxwell’s equations in their potential formulation. After imposing the Coulomb

gauge, we derive a light-matter Lagrangian and consequently its related Hamiltonian. In doing so

we need to take care of the constraint we imposed to fix the gauge, which leads to the definition of

longitudinal and transverse delta functions. In our approach we do not pass through the standard

relativistic treatment, introducing the anti-symmetric tensor Fµν , nor will we discuss the theory of

Dirac’s constraints when we introduce the canonical formalism. Indeed, in this context, these are

9
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just unnecessary mathematical sophistications. For a general treatment we refer to [36]. To proceed,

we switch to the so-called dipolar gauge, and we treat the paradigmatic example of a system made

of point-like positive and negative charges, localised in regions where the total charge sum up to

zero, which in the end is just a general way to introduce the concept of point-like dipoles. In this

framework we discuss the role of the direct Coulomb interaction, which, in this gauge, is absorbed

into the definition of the dynamical field.

We close this chapter by discussing the electrostatic and radiation limits in the Coulomb and the

dipolar gauge and how to finally arrive at an approximated description, which interpolates between

these two limiting cases.

1.1 Maxwell’s equations and the Coulomb gauge Lagrangian

All classical electromagnetic phenomena known so far are explained by Maxwell’s equations:

M∇ · ME =
ρ

ε0
(1.1)

M∇× MB =
1

c2

�
MJ

ε0
+

∂

∂t
ME

�
(1.2)

M∇ · MB = 0 (1.3)

M∇× ME = − ∂

∂t
MB (1.4)

where ME and MB are the electric and the magnetic field, respectively, and ρ and MJ are the density

of charge and its current. Taking the divergence of Eq. (1.2), we see that consistency of Maxwell

equations enforces the charge conservation

∂

∂t
ρ+ M∇ · MJ = 0. (1.5)

From now on, we will take Maxwell’s equations as a starting axiom, from which we will derive

the quantum theory of the electromagnetic field. In order to switch to the canonical formalism and

to unambiguously determine the relevant degrees of freedom, we need to introduce the scalar and

the vector potential, Φ and MA, which satisfy

ME = −M∇Φ− ∂

∂t
MA, MB = M∇× MA. (1.6)

Using this definition we see that the so-called structural equations (1.3), (1.4) are identically sat-

isfied. In a relativistic context this is the so called Bianchi’s identity [36]. Instead the other two
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equations give

∂2

∂t2
MA = −c2M∇× M∇× MA+

1

ε0

�
MJ − ε0M∇(∂tΦ)

�
,

−∇2Φ =
1

ε0

�
ρ+ ε0

∂

∂t
M∇ · MA

�
.

(1.7)

At this point we must fix the gauge. Indeed the above equations cannot be solved without a further

constraint on the potentials. This can be intuitively understood by the fact that the functional map

defined by equations (1.6) is not injective in Φ and MA. Indeed all potentials given by Φ = −∂tf , and
MA = M∇f (where f is a sufficiently smooth function) generate the zero field solution. While we can

in principle invert Maxwell’s equations in order to express the fields in terms of their sources, this

is no longer possible when we introduce the potentials. To circumvent this problem we just need

to make the “potential map” injective. The usual strategy here is to reduce the domain from which

we pick our potentials, introducing a new constraint on their choice. One possibility to do so is to

impose the standard Coulomb gauge condition,

M∇ · MA = 0. (1.8)

Considering the vector calculus identity M∇ × M∇ × MA = −∇2 MA + M∇(M∇ · MA), we are finally able to

re-write Maxwell’s equations as

−∇2 MA+
1

c2
∂2

∂t2
MA =

1

ε0c2

�
MJ − ε0M∇(∂tΦ)

�
,

−∇2Φ =
ρ

ε0
.

(1.9)

Note that the scalar potential Φ is not a dynamical degree of freedom, it doesn’t have a second order

time derivative involved in the equations of motion. Consequently, given a charge distribution and

boundary conditions, we can find the electrostatic scalar potential introducing the Green’s function

of the Laplace operator

−∇2G(Mr, Mr �) = δ(3)(Mr − Mr �). (1.10)

The scalar potential follows as

Φ(Mr) =
1

ε0

�
d3r�G(Mr, Mr �)ρ(Mr �). (1.11)

Now we can eliminate the electrostatic potential from the equations, making it clear which are the

real dynamical degrees of freedom. To do so we make use of the continuity equation (1.5) and the
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identity ΦM∇ · MJ = M∇ · (Φ MJ)− M∇Φ · MJ , from which we obtain

∂

∂t
Φ =

1

ε0

�
d3r�M∇�G(Mr, Mr �) · MJ(Mr �), (1.12)

where ∇� is the gradient with respect to Mr �, and where we considered a vanishing current (and

Green’s function) on the boundary. At the end we find that the dynamical degrees of freedom of

the electromagnetic field are fully determined by the equation

−∇2 MA+
1

c2
∂2

∂t2
MA =

1

ε0c2

�
MJ −

�
d3r�M∇M∇�G(Mr, Mr �) · MJ(Mr �)

�
, (1.13)

together with the Coulomb gauge condition. We can immediately see that in the right-hand-side

(RHS) of the equation there appears a modified current, the transverse current. It can be written

in coordinates as J i
⊥ =

'
j

�
d3r�δ⊥ij(Mr, Mr

�)J j(Mr �), where we introduced the generalised transverse

delta function [37, 22]

δ⊥ij(Mr, Mr
�) = δijδ

(3)(Mr − Mr �)− ∂2

∂ri∂r �jG(Mr, Mr �). (1.14)

The generalised transverse delta function is a projector, that projects any vector field in the sub-

space of divergenceless vector fields. It ensures that the Coulomb gauge condition is always re-

spected. We will see in the next section that the generalised transverse delta is a crucial concept to

derive the canonical formalism and finally to quantize electromagnetism.

After this long tour of formal manipulation of the Maxwell’s equations, we arrive to the goal of

this first section: the general Lagrangian density of electromagnetism in Coulomb gauge

LCoulomb =
ε0
2

�
| ṀA|2 + c2 MA · ∇2 MA

�
+ MJ⊥ · MA− 1

ε0
ρG G ρ+ LMatter, (1.15)

where we keep implicit the dependence on Mr. The Lagrangian is then given by L =
�
d3rL(Mr). We

also introduce the short-hand notation ρGGρ = ρ(Mr)
�
d3r�G(Mr, Mr �)ρ(Mr �), which is nothing else than

the usual Coulomb interaction, just written in a general form.

1.2 The Coulomb gauge Hamiltonian

Given the Lagrangian density above we can use the Legendre transform to derive the correspond-

ing Hamiltonian. The procedure is rather standard and we don’t report it here. The resulting

Hamiltonian density is

HCoulomb =
|MΠ|2
2ε0

− ε0c
2

2
MA · ∇2 MA− MJ⊥ · MA+

1

ε0
ρG G ρ+HMatter, (1.16)
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where the canonical momentum of the vector potential is just the transverse component of the

electric field
MΠ = ε0 ṀA. (1.17)

Naturally, also the transverse current and the matter Hamiltonian must be expressed using the

appropriate canonical momenta of the matter’s degrees of freedom. We will come back to this point

later below. What is really important is that we finally have the Hamiltonian of the electromagnetic

field, coupled with a certain non-relativistic system of charges (continuous or discrete), from which

we can derive its quantized theory. In order to do so we need to impose the canonical commutation

relations. A naive approach would suggest us to just impose

[Ai(Mr),Πj(Mr
�)] = i�δijδ(3)(Mr − Mr �), (1.18)

but this isn’t quite right. Indeed it is inconsistent with the Coulomb gauge condition M∇ · MA = 0,

as one can directly verify from the equation above. This inconsistency comes from the fact that we

are quantising the theory in a constrained domain. A full mathematical explanation would require,

as already mentioned, the theory of Dirac’s brakets in presence of constraints, but for our purposes

it is sufficient to fix it “by hand”. Indeed we see that the left-hand-side (LHS) of equation (1.18)

contains operators (fields, in case of Poisson brakets) that are defined in the “transverse space”. The

RHS instead is defined everywhere. If we multiply both sides by the transverse delta function the

RHS remains the same, while the LHS becomes the transverse delta function itself. So we found

the correct commutation relations

[Ai(Mr),Πj(Mr
�)] = i�δ⊥ij(Mr, Mr �). (1.19)

We can now consider the following normal mode expansion, which holds in bounded domains

MA(t, Mr) =
1√
ε0V

&
k,λ

qk,λ(t)Mf
k,λ(Mr),

MΠ(t, Mr) =

%
ε0
V

&
k,λ

Pk,λ(t)Mf
k,λ(Mr),

(1.20)

where we make explicit the sum over the eigenvalues index k and the sum over the different polar-

izations λ = 1, 2, V is the total quantization volume. The normal modes are eigenfunctions of the

Laplace operator −∇2 Mf k,λ = ω2
k/c

2 Mf k,λ, together with the Coulomb gauge constraint M∇ · Mf k,λ = 0,

which reduces the independent polarizations from three to two. These normal modes are orthogonal,
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but they don’t sum up to a delta function, as usual, but rather to the transverse delta function

1

V

�
d3r Mf k,λ(Mr) · Mf k	,λ	

(Mr) = δkk	δλλ	 ,

1

V

&
n,λ

f k,λ
i (Mr)f k,λ

j (Mr �) = δ⊥ij(Mr, Mr
�).

(1.21)

To respect the commutation relations (1.19), we impose [qk,λ, Pk	,λ	 ] = i�δk,k	δλ,λ	 . Using this

expansion we can see that the purely electromagnetic part of our Coulomb Hamiltonian is nothing

more than a set of harmonic oscillators

HE.m. =
&
k,λ

P 2
k,λ

2
+

ω2
k

2
q2k,λ =

&
k,λ

ωka
†
k,λak,λ, (1.22)

where ak,λ = qk,λ
$

ωk/2 − iPk,λ/
√
2ωk. From here on, we use a short notation, where we absorb

the polarization index λ in the mode index k. We also use � = 1 in all main equations and in the

expression of Hamiltonians, while we keep regular units for other quantities where the scaling with

� is non obvious. In general we use “frequency” as a synonym of “energy”.

1.3 Localised neutral system of charges: the dipole Hamiltonian

After having developed the correct formalism to describe light-matter interactions in a generic non-

relativistic system (bounded or unbounded), we introduce here a few new assumptions, which lead

to the final approximated form of the light-matter Hamiltonian that we will use for the rest of

this thesis. We restrict ourself here to the case of neutral systems, such as molecules or electron-

hole pairs in semiconductors. Then we focus on the cases in which the short wavelengths of the

electrodynamic field can be neglected. This leads us to the long wavelength approximation. Finally

we introduce the dipole Hamiltonian.

Let us consider a system of localised regions containing an equal amount of negative and positive

charges, where the distance between different regions RAB is much larger than their own size ξ, as

schematically depicted in Fig. 1.1. As in the main textbooks [18, 38], we consider for simplicity a

system in which we have just two separated subsets of charges A/B, but the generalisation to other

sets of charges is straightforward. In the generic Coulomb Hamiltonian density (1.16) we consider

ρ(Mr) =
'

i qiδ
(3)(Mr − Mri), and MJ(Mr) =

'
i qiṀriδ

(3)(Mr − Mri), where qi is the charge of the i-th particle.
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Figure 1.1: A sketch of a system in which charges are well localised in two well separated regions in space.

The total Coulomb Hamiltonian becomes

HC =
&
α∈A

1

2mα

�
Mpα − qα MA(MRA)

�2
+

&
β∈B

1

2mβ

�
Mpβ − qβ MA(MRB)

�2
+ V AA

Coul. + V BB
Coul. + V AB

Coul.

+
&
k

ωk

�
a†kak +

1

2

�
,

(1.23)

where we make the fundamental assumption that the vector potential does not change on a length

scale on the order of the localised region’s size or smaller. This allows us to replace the particle’s

position inside the vector potential with the center of mass position of the whole neutral spot,
MA(Mrα) ≈ MA(MRA). The canonical momentum of each particle is then given by

Mpα = mαṀrα + qα MA(MRA), (1.24)

which is different from its kinetic momentum. We also introduce the standard notation for the

Coulomb electrostatic potential 1
ε0
ρG G ρ = V AA

Coul. + V BB
Coul. + V AB

Coul., where V
AA (BB)
Coul. contains all

the terms that represent the Coulomb interactions between charges of the same region and V AB
Coul.

the cross terms between the different regions. To stay consistent with the long-wavelength approxi-

mation introduced in the vector potential, we need to introduce it also in this Coulomb cross term.

Because of the assumption of having distant localised regions, centred on MRX (where X = A,B...

labels the possible spots), the position of each charge can be rewritten as Mrα = δMrα + MRA. The

displacement from the center of mass position MRA is intended to be small, so we can expand V AB
Coul.
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to lowest order, and obtain

V AB
Coul. =

&
α∈A,β∈B

qαqβ
G(Mrα, Mrβ)

ε0
+ α ↔ β

≈ 1

2ε0

&
i,j

µi
Aµ

j
B

∂2G

∂ri∂r�j

((((((
?RA, ?RB

+ α ↔ β +O(δr3),

(1.25)

where all the terms of lower order gives exactly zero contribution because of the charge neutrality

condition. We introduced the dipole’s moment of each localised region,

MµA(B) =
&

α∈A(B)

qαδMrα. (1.26)

Note that the kernel of the AB-Coulomb interaction, under the long-wavelength approximation, is

proportional to the complement of the transverse delta function defined in (1.14). This term can

be called longitudinal delta function

δ


ij(Mr, Mr

�) =
∂2G

∂ri∂r�j

(((((
?r,?r 	

= δijδ
(3)(Mr − Mr �)− δ⊥ij(Mr, Mr

�). (1.27)

Comments on HC :

• A and B denotes the two subsets of charges, always well separated. In each subset we have

MA (MB) charges, each of them with arbitrary charge qα ∈ R and arbitrary mass mα > 0.

The two subsets are electrically neutral
'

α∈A,B qα = 0.

• Under the long wave-length approximation we assume that the electromagnetic vector poten-

tial MA is constant across each subset. In each subset its value is approximated by the value

that it takes in the center of mass MRA, MRB. This means that we are actually following the

modes of the electromagnetic field in which the wave-length is much larger than the typical

size of each subset.

• We neglect the motional degrees of freedom of the center of mass of A and B. Including

motional degrees of freedom for centres of mass makes everything more complicated, but, in

the (reasonable) regime in which we have a decoupling of energy scales, it doesn’t change the

general picture that we are going to develop in the next sections.

• The interaction between the charges inside each subset is just the instantaneous Coulomb

force, given by V AA
Coul., V

BB
Coul.. This follows again from the long wave-length approximation.

We are looking for events that take place at larger distances, everything that happens inside

each subset’s spot can be considered instantaneous.
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• As usual in the Coulomb gauge, we have a residual instantaneous interaction between A and

B, V AB
Coul., on top of the photon-mediated one. In free space, this term has the shape of

dipole-dipole interaction between A and B,

V AB
Coul. =

1

4πε0

�
MµA · MµB

R3
AB

− 3(MµA · MRAB)(MµB · MRAB)

R5
AB

�
, (1.28)

where MRAB is the distance between the two centres of mass. More generally this term is

proportional to the longitudinal delta function, which is defined by the Laplace Green’s func-

tion. In App. A one can find all the details about the Laplace Green’s function in bounded

domains, with the full calculation of the case in which the system is confined between two

parallel mirrors.

As it will become clear later in the next chapters, the Coulomb gauge is not the best gauge to

perform calculations of light-matter interactions (actually in the early days of electrodynamics it

was introduced to describe radiation from a far-away source, that is why it is also called radiation-

gauge [39]) and it can cause some problems in the quantum mechanical framework [32]. So it is

preferable to pick a more convenient and intuitive gauge: the dipole gauge. Starting from (1.23),

we implement the gauge-change by a canonical transformation given by the generating function

F (Mrα, MA) = MµA · MA(MRA) + MµB · MA(MRB). (1.29)

In the Hilbert space, it would correspond to making a unitary transformation

U = exp

�
− i

�
F

�
. (1.30)

The effect of this transformation is just to displace the canonical momenta of both the particles and

the electromagnetic field:

UMΠ(Mr)U † = MΠ(Mr)− i

�

��
d3r� MP (Mr �) · MA(Mr �), MΠ(Mr)

�
= MΠ(Mr) + MP⊥(Mr)

UMpα(β)U
† = Mpα(β) −

i

�

��
d3r� MP (Mr �) · MA(Mr �), Mpα(β)

�
= Mpα(β) + qα(β) MA(MRA(B)),

(1.31)

where we have introduced the polarization density MP (Mr) = MP (Mr)A + MP (Mr)B =
'

α Mµαδ
(3)(Mr − MRα) +'

β Mµβδ
(3)(Mr − MRβ). It is worth noticing that the new canonical momentum of the electromagnetic

field is displaced by the transverse part of the polarization density. This is due to the constrained

commutation relations (1.19) described in the previous section. After the transformation the new

canonical momentum of the particles coincide with their kinetic momentum, Mp �
α(β) = mα(β)Ṁrα(β),
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while the momentum of the electromagnetic field no longer describes the transverse part of the

electric field ME, but rather the displacement field, MD [39]. Using the polarization density we can

rewrite the direct Coulomb interaction between A and B as

V AB
Coul. =

1

ε0

�
d3r� MP 


A(Mr
�) · MP 


B(Mr
�). (1.32)

This term is non-local, and makes distant dipoles to interact. However, we see that when we expand

the square of the new canonical momentum of the electromagnetic field, another similar term pops

up in the new Hamiltonian, which is given by ∼ 1/ε0
�
d3r� MP⊥

A (Mr �) · MP⊥
B (Mr �). When we sum up the

two terms we get a new, completely local, term ∼ 1/ε0
�
d3r� MPA(Mr

�) · MPB(Mr
�) ≈ 0. This term is zero

because of the assumption of having localised regions. The resulting Hamiltonian is [18, 38]

HD ≈
�&

α

Mp 2
α

2mα
+ V AA

Col. + %Adip.

�
+

&
β

Mp 2
β

2mβ
+ V BB

Col. + %Bdip.

+
&
k

ωka
†
kak

− MµA ·
MD(MRA)

ε0
− MµB ·

MD(MRB)

ε0
,

(1.33)

where the dipolar self energies are %
A(B)
dip. = 1/(2ε0)

�
d3r�|MP⊥

A(B)(Mr
�)|2. The electromagnetic part

takes again the shape of a set of harmonic oscillators:

HEM =

�
d3r

| MD(Mr)|2
2ε0

+
ε0c

2

2
| MB(Mr)|2 =

&
k

ωka
†
kak, (1.34)

where
MD(Mr) = −

%
ε0
2V

&
k

√
ωki(ak − a†k)Mf

k(Mr), (1.35)

and
MA(Mr) =

%
1

2ε0V

&
k

%
1

ωk
(ak + a†k)Mf

k(Mr). (1.36)

We can immediately generalise the result to the N -dipoles case from which we get the very general

structure

H =
N&
i=1

H i
m +HEM −

N&
i=1

Mµi ·
MD(MRi)

ε0
. (1.37)

(See App. B for an equivalent derivation valid also in the polarization continuum limit).

Comments on HD:

• The light-matter interaction is now completely local. No residual dipole-dipole interactions

between A and B are present [18, 38]. The interaction between A and B is now fully mediated

by the electromagnetic field, which is represented by the vector potential and its canonical
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momentum, the electric displacement.

• A photon is not always a photon. The annihilation (creation) operator ak has a different

physical meaning than in the Coulomb gauge, because of the transformation of the canonical

momentum of the electromagnetic field.

• The new dipole Hamiltonian gives infinite energies. The two dipole self-energies %Adip. and

%Bdip. require an explicit cut-off in the electromagnetic wavelengths, otherwise these quantities

diverge. This is not surprising, since we are working in the long-wavelength limit, and a

natural cut-off is given by the typical size of A and B. In this way it is possible to regularise

these self-energies, which give a correction to the energy levels of each region, as one can see in

[40]. Otherwise these terms are often simply dropped. In our treatment we keep these terms.

We will see that they are automatically cancelled when the higher modes are adiabatically

eliminated.

1.4 The electrostatic limit in different gauges

In this section we discuss the limit in which the dynamics of the electromagnetic field is much faster

than the motion of the charges and what is left is just the usual electrostatic Coulomb interaction.

The argument proposed here is mainly classical, but because it relies only on the structure of the

Hamilton equations it can be generalised to the quantum case by using second order perturbation

theory (see for instance Ch. 6 of [38]). Mathematically this can be quite cumbersome, so the aim

of this section is primarily to develop a basic intuition about the meaning of the electrostatic limit

in the Hamiltonian formalism.

In the Coulomb gauge it is clear that completely neglecting the dynamics of the electromagnetic

field would only leave the electrostatic Coulomb interaction, which is the correct expected limit,

when radiation effects are negligible. In order to explicitly see this, it would be sufficient to set
MA = 0 and MΠ = 0, and the Coulomb Hamiltonian would be reduced just to the matter Hamiltonian,

together with the electrostatic Coulomb interaction.

On the other side, in the dipolar gauge, there is no obvious way to extract the electrostatic

limit, since all the interactions are mediated by the dynamical field. Indeed taking MA = 0 and
MΠ� = − MD = 0 does not really work in this case, since it would give back just the non interacting

matter Hamiltonian. The presence of the electrostatic Coulomb term even in the absence of radiation

implies that in the dipolar gauge we need to relax the assumptions of zero field. The new assumption

is that just the time derivative of the fields is zero, ṀA = 0 and ṀD = 0. Taking the Hamilton equations
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for the electromagnetic field

ṀA =
1

ε0

�
MΠ � + MP⊥

�
,

ṀΠ� = ε0c
2∇2 MA,

(1.38)

and using the assumption of vanishing time derivative we have

MΠ � = −MP⊥, (1.39)

where the transverse polarization shows up here as a consequence of the Poisson brakets (commu-

tation relation) (1.19). We see now that reinserting this expression in the Hamiltonian (1.37), we

obtain

HD
electrostatic−−−−−−−→ HMatter − 1

2ε0

�
d3r|MP⊥(Mr)|2. (1.40)

This correspond exactly to the correct Hamiltonian in the electrostatic limit. It is particularly

insightful to explicitly work out the example of the two charge spots A and B:

HD ≈
�&

α

Mp 2
α

2mα
+ V AA

Col.

�
+

&
β

Mp 2
β

2mβ
+ V BB

Col.


− 1

ε0

�
d3r MP⊥

A (Mr) · MP⊥
B (Mr)

+

�
%Adip. + %Bdip. −

1

2ε0

�
d3r|MP⊥

A (Mr)|2 − 1

2ε0

�
d3r|MP⊥

B (Mr)|2
�
.

(1.41)

The dipolar self energies in the third line identically vanish, while the second line gives

− 1/ε0

�
d3r MP⊥

A (Mr)MP⊥
B (Mr) = 1/ε0

�
d3r MP



A(Mr)

MP


B(Mr) = V AB

Coul.. (1.42)

This means that

HD ≈
�&

α

Mp 2
α

2mα
+ V AA

Col.

�
+

&
β

Mp 2
β

2mβ
+ V BB

Col.

+ V AB
Coul., (1.43)

as it has to be.

What can we say more about it? Electrodynamics is mainly characterised by radiation and

electrostatic forces. Those two phenomena typically live in completely separated time scales, where

electrostatics mainly reveals itself at very slow velocities, while radiation is typically relevant for fast

degrees of freedom. This is also closely linked to a fundamental aspect of QED: the small value of

the fine structure constant αfs . 1/137, and the consequential perturbative character of QED. The
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fine structure constant is indeed the fundamental adimensional constant that regulates light-matter

interactions. It is worth noticing that this fundamental constant can be re-interpreted as the ratio

between the Coulomb energy of two electrons at distance d between each other, and the energy to

create a confined photon with wavelength ∼ 1/d, (in SI units)

αfs =
e2

4πε0c�
=

Ec

Eph
. 1

137
, (1.44)

where Ec = e2/(4πε0d) and Eph = c�/d.

In the Coulomb gauge neglecting the radiation means to neglect the transverse part of the field,

which is the dynamical degree of freedom of the electromagnetic field. So we can say that this gauge

choice makes more explicit this two sides of electromagnetism, radiation and electrostatics. In the

dipolar gauge on contrary the dynamical transverse field carries both radiation and electrostatic

forces. Here the correct way to neglect radiation is evidently to take the limit in which the field is

static, and then to adiabatically eliminate it.

1.5 Resonant processes in the electrostatic limit

The process of adiabatic elimination works properly provided that there are no resonances between

the matter frequencies and the electromagnetic modes. If this is the case adiabatic elimination loses

its meaning. However, it is still possible to have an intermediate situation, in which the matter

system is resonant with the lowest mode of the electric field, but, because there are large energy

gaps between the modes, we can either just neglect or adiabatically eliminate the higher modes,

depending by the gauge we decide to use.

Again it is particularly insightful to see the outcome on our bipartite system. In the Coulomb

gauge we have Hamiltonian (1.23). The vector potential is given by Eq. (1.36). It is now particu-

larly important to notice that the vector potential scales with the inverse square root of the mode

frequencies. If the matter system is mainly resonant with the lowest mode k = c (labelled as the

cavity mode), the other modes are off-resonant and also more weakly coupled. Here it depends a bit

on the details of the problem, but in an ideal situation we can imagine that the other frequencies

ωk �=c are so far detuned that their influence on the matter system is completely negligible (In Ch.

3 we discuss an explicit setup, where this is indeed the case). If so, we are left with the single mode

Coulomb Hamiltonian

HC ≈
&
α∈A

�
1

2mα

�
Mpα − qα MAc(MRA)

�2
+ V AA

Coul.

�
+

&
β∈B

�
1

2mβ

�
Mpβ − qβ MAc(MRB)

�2
+ V BB

Coul.

�

+ V AB
Coul. + ωc

�
a†cac +

1

2

� (1.45)
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where
MAc(MR) =

%
1

2V ε0ωc

Mf c(MR)(ac + a†c), (1.46)

is the cavity mode vector potential. Now we can switch to the dipolar gauge just by adopting the

gauge transformation given by

U = exp

�
− i

�
F

�
, (1.47)

where

F =

%
1

2V ε0ωc

�
MµA · Mf c(MRA) + MµB · Mf c(MRB)

�
(ac + a†c), (1.48)

and Mµ are the dipole moments, as defined in Eq. (1.26). The effect of this transformation is exactly

the same as for the full dipolar gauge unitary, as in Eq. (1.31), and the resulting Hamiltonian is

what we will call the cavity QED Hamiltonian

HAB
cQED = ωc

�
a†cac +

1

2

�
+

&
α∈A

�
Mp 2
α

2mα
+ V AA

Coul.

�
+

&
β∈B

�
Mp 2
β

2mβ
+ V BB

Coul.

�

+ i

%
ωc

2V ε0
(a† − a)

&
i=A,B

µc
i +

1

2V ε0

 &
i=A,B

µc
i

2

+ V AB
Coul..

(1.49)

Here to shorten the notation, we introduced the cavity-projected dipole moment

µc
i = Mµi · Mf c(MRi). (1.50)

Comments on HcQED:

• The cavity QED Hamiltonian interpolates between a fully electrostatic Hamiltonian and the

usual single mode Hamiltonians that are typically used to model dilute atoms in a cavity [1].

In the standard scenario, relevant for atomic physics, the matter system is so dilute that the

direct Coulomb interaction is always negligible with respect to the typical energy scales in the

game, which are on the order of the optical frequencies. In this way we would be allowed to

set VAB ∼ 0.

• A more refined derivation would treat the higher k modes in perturbation theory, instead of

just neglecting them. This would provide corrections to the direct Coulomb potential V AB
Coul.,

as well as in molecular physics the transitions rate are different from the one given by just

standard dipole-dipole interaction, and that result is recovered just in the limit where the

transition energy is very small with respect to the optical scales [38]. Anyway this does not

affect the general form of the cavity QED Hamiltonian. Another approach can be instead
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to keep a few modes other than the cavity mode, like it is done in [41]. This treatment is

necessary when the coupling strength is as large as the energy of the higher modes.

• In this cavity QED setting the direct Coulomb interaction VAB is always affected by the

boundary of the confined system. In Ch. 3 we will show a simple realistic setting where the

presence of the boundaries is clearly visible.

• If the dipole moments are small (or their matrix elements in a quantum framework), such as

all interaction energies can be regarded as small compared to the bare Hamiltonian, we are in

the dilute regime, and weakly interacting with the single cavity mode. We notice that all the

interaction terms scale with the dipole square ∼ (µ)2, except for the light-matter interaction

cross-term ∼ (a+ a†)µ, which is linear, and thus is the dominant contribution.

• The term

HP 2 =
1

2V ε0

 &
i=A,B

µc
i

2

(1.51)

is called P 2-term, because it is proportional to the dipole’s polarization square. Apparently

it looks like an interaction between the two dipoles, which does not depend on the distance.

This sounds of course a bit strange. However, the presence of this term is fundamental in

order to recover the correct electrostatic limit. Indeed we can see that, repeating the adiabatic

elimination for the cavity mode too, the contribution from the cavity is exactly cancelled by

this term in the electrostatic limit. So in the end we are left just with the Coulomb interaction,

as it has to be. This term can be interpreted as the single mode version of the dipole’s self

energies that we encountered in the dipolar gauge. Also there those contributions are exactly

cancelled in the electrostatic limit.

With the help of the polarization density this result is readily generalised to many dipoles, as we

will see in Ch. 3.
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Chapter 2

Two-level approximation in light-matter

interactions

In the previous chapter we developed a general theory that treats arbitrary dipoles interacting

among each other via the electrostatic force and at the same time collectively interacting with a

single radiative mode of the electromagnetic field. By restricting the discussion to electric dipole

transitions and excluding all but one dynamical mode of the electric field, the Hamiltonian already

simplified considerably. But in order to perform numerical or analytical calculations we need further

approximations on the internal degrees of freedom of the dipoles.

Indeed, in the last chapter we assigned to each i-th localised spot of charges (e.g. a dipole)

its own matter Hamiltonian H i
m, without making any further comments on it. Naturally, having

H i
m as complicated as we want will make the whole problem of light-matter interactions at least as

complex, and in general intractable when systems with multiple dipoles are considered.

Fortunately, atoms, molecules, quantum dots and other types of dipoles that are of interest in

cavity QED have a very nonlinear spectrum. For weakly coupled systems this usually allows us to

restrict the internal dynamics of the dipoles to only two internal states that are in resonance with the

cavity mode. This two-level approximation (TLA) is obviously a great simplification, which allows

us to treat problems that are otherwise impossible to solve. However, in the ultrastrong coupling

regime the validity of this approximation is not at all obvious. More importantly, It turns out that

depending on the chosen gauge, implementing the TLA can lead to drastically different prediction,

a fact that has been ignored in this field for a long time. In this chapter we will systematically

investigate the TLA and we will show that even in extremely simple and idealised scenarios it can

lead to inconsistencies and erroneous predictions when the light-matter coupling is considered. But,

at the same time this analysis also answers the question which gauge is most suitable for describing

cavity QED systems in the USC regime.

25
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The history of gauge issues in non-relativistic light-matter interactions in the quantum regime

is very long, including important contributions from Lamb, Cohen-Tannoudji, Scully, Power, Zoller,

but also many others [42, 19, 43, 44, 45, 46, 47]. It was often referred to as the “p ·A” versus “µ ·E”

debate. Despite the large amount of work which has already been done on this subject a clean

view with details and examples was still missing. Moreover all the previously mentioned works just

consider the case of a dipole in an external field and they never consider the fundamental case in

which the electric field is itself another quantised degree of freedom. In our work we provide a

general framework, discussing the TLA from weak to ultra-strong coupling. We show that when

the system is in a weak coupling regime the truncation can be done efficiently in all gauges, while

fundamental discrepancies arise in the USC regime.

The results contained in this chapter have been obtained in collaboration with Philipp Pilar,

Tuomas Jaako, Simone De Liberato and Peter Rabl and were published in Physical Review A 98,

053819 (2018). In this work I contributed as the leading author doing most of the analytical and

numerical calculations. Philipp Pilar had a very large contribution in producing the finally published

figures. Sec. 2.10 is mainly based on the analysis by Philipp Pilar and Tuomas Jaako. The whole

work was done under the supervision of Peter Rabl.

2.1 A single particle with a single cavity mode

A common way to describe the dynamics of the dipole transition of our matter system is to model

all its degrees of freedom as a single effective particle in a potential well

H i
m =

Mp 2
ξ

2mi
+ Vi(Mξi). (2.1)

Here the dynamical variable is the dipole displacement, Mξ (we remind that it is related to the dipole

moment by Mµ = qMξ, where q is the charge, it is in principle a vector, but from now on we will

always consider just its z component), the effective mass mi and the effective potential Vi must be

determined from the full microscopic model. In cases where we deal with true dipoles composed

out of two point particles with charges +q and −q this description is exact, but it is usually also a

good model to describe dipole transitions in more complex systems. From now on we just simply

assume that this model is valid, focusing on its consequences rather than its justifications.

Once the description of our dipole in terms of a particle in a potential well is established, we need

to pick a choice for a specific system. Despite the fact that at the the end of the day every particular

problem will have its own particular treatment, it is possible to make a few general remarks, and

then restrict our discussion to just a few paradigmatic cases.

We start from noticing that no matter how complicated the potential looks like, if it has a
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minimum, it can always be approximated by an harmonic potential

V (ξ) ∼ ω2
0

2
(ξ − ξmin)

2 +O(ξ4), (2.2)

provided that the dynamics will remain in the energy range in which the expansion is reasonable.

This approximation makes always sense classically [48], if we know that our dipole is stuck around

the minimum ξmin, and we impose that the maximal energy that our dipole can reach is always small

enough, for which the dipole can only make small oscillations around ξmin. Quantum mechanically

the situation is a bit more subtle, and the quadratic expansion of the potential around a certain

minima can only make sense if that is the only one absolute minimum. Indeed, if we consider a

double well potential with two minima that are very close in energy (the absolute minimum could

be unique here, but it does not matter if the second minimum is very close!) then, because of

tunnelling, any low energy process cannot be described by just considering one minimum or the

other. So, it is clear that the double well potential in quantum mechanics should be regarded as

another paradigm next to the harmonic oscillator. In between these two cases there is another

potential that is worth to be included, in which the center is flat, or almost flat. The simplest

realisation of this situation is certainly square well potential, another standard textbook example.

We can say that these three cases represent the simplest paradigmatic cases, and so we will restrict

our treatment just to these ones. To simplify the number of parameter that we need to specify for

each potential, we introduce a characteristic length scale ξ0 and a characteristic energy scale Ed.

These two scales are determined by the original parameters of each potential. Rescaling lengths as

ξ̃ = ξ/ξ0 and energies as H̃m = Hm/Ed allows us to pick just the minimal number of parameters

required to describe the system. So finally we can list our three potentials:

• Harmonic potential: Vharm(ξ) =
mω2

0
2 ξ2.

The scales are given by ξ0 = (�/(mω0))
1/2, Ed = �ω0 and the total Hamiltonian becomes

H̃m =
p̃2ξ
2

+
ξ̃2

2
(2.3)

• Double well potential: Vdw(ξ) = − b
2ξ

2 + λ
4 ξ

4.

The scales are given by ξ0 =
�
�2/(mλ)

�1/6, Ed = �2/(mξ20),and the total Hamiltonian be-

comes:

H̃m =
p̃2ξ
2

− β

2
ξ̃2 +

ξ̃4

4
, (2.4)

where a single rescaled parameter β = bmξ40/�2 remains.

• Square well potential: Vsw(ξ) = 0 if |ξ| < L/2, Vsw(ξ) = +∞ if |ξ| ≥ L/2
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The scales are given by ξ0 = L, Ed = �2/(mL2):

H̃m =
p̃2ξ
2
, (2.5)

with the dynamical variable defined in ξ̃ ∈ [−1/2, 1/2], and assuming Dirichtlet boundary

conditions.

The shape of these three potentials are shown in Fig. 2.1, together with their first four energy levels

with relative wavefunctions.

(a)

(c) (d)(b)

Figure 2.1: (a) Sketch of a dipole in a resonant cavity. (b) Harmonic potential (c) Square well potential, (d)
Double well potential. The dashed lines indicate the first for eigenenergies and the solid lines
indicate the corresponding wavefunctions.

Once we have clarified the details of our dipole, we need to include the photon’s degree of

freedom. To do so we adopt a simplified description, in which the electromagnetic field is just

described by one harmonic mode with frequency ωc. The vector potential (projected on the z-axis)

is then given by A = A0(a+ a†), where A0 is kept as a generic parameter for the moment. In the

Coulomb gauge, the resulting minimal coupling Hamiltonian for the combined systems is

HC =
(p− qA)2

2m
+ V (ξ) + ωca

†a. (2.6)

As we did in Ch. 1, we can change the representation for the canonical variables, and switch to

another gauge. Among all this possibilities, there is one of them, which is particularly relevant: the

dipole gauge. Using the unitary transformation U = exp [−iqAξ/�], we simultaneously shift the
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particle’s canonical momentum and the photon’s annihilation operator

p #−→ p+ qA,

a #−→ a+ iqA0ξ,
(2.7)

giving the Hamiltonian for our system in the dipole gauge

HD = UHCU
† =

p2

2m
+ V (ξ) +

mD2

2
ξ2 + ωca

†a− iωcqA0(a− a†)ξ, (2.8)

where for later convenience we introduced the frequency

D2 = 2q2A2
0ωc/(�m), (2.9)

and the “bare coupling”
g0
ωc

=

#
2�D2

Edωc

|
ϕ0|ξ|ϕ1�|
ξ0

. (2.10)

2.2 The quantum Rabi model

Having established the details regarding the “quasi-microscopic” description of our cavity-dipole

system, we will now introduce what is considered the most paradigmatic model to represent light-

matter interaction at the quantum level: the quantum Rabi model. We will present it by deriving

it.

Consider the dipole linearly coupled to the single-mode electric field

Hlinear = ωpa
†a+Hd + σ(a+ a†)X, (2.11)

where Hd is the dipole’s Hamiltonian, X is a generic dipole’s operator, linear in p and ξ, and ωp

and the coupling parameter σ are free parameters. We expand the dipole’s Hamiltonian in its own

eigenstates, and we re-express the X operator in this diagonal basis:

Hd =

∞&
n=0

ωn|ϕn�
ϕn|, X =
&
m,n

Xmn|ϕm�
ϕn|, (2.12)

where Xmn = 
ϕm|X|ϕn�. The last step is to truncate m,n = 0, 1, so we introduce the pseudo-spin

notation

sz =
1

2
(|ϕ1�
ϕ1| − |ϕ0�
ϕ0|) sx =

1

2
(|ϕ1�
ϕ0|+ |ϕ0�
ϕ1|) , (2.13)
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having the same spin-1/2 algebra. Our linear Hamiltonian now becomes

Hlinear . ωXa†a+ ω10sz + σX01(a+ a†)sx +
ω0

2
1. (2.14)

We drop the identity contribution, and to shorten the notation we set ω10 = ωd, and we introduce

the generalised coupling constant gX = σX01, where X01 can be considered a real number without

loss of generality. In this way we obtain the quantum Rabi model

HRabi = ωpa
†a+ ωdsz + gX(a+ a†)sx. (2.15)

This model has been the subject of extensive investigations [49] and nowadays is considered as

the most basics build-block of light-matter interactions at the quantum level. Instead of focusing

directly on its predictions, we rather address here the question about its validity in the USC regime.

The first thing we want to understand here is the relation between the microscopic parameters and

the parameters in the Rabi model. Even though it seems to be simple to answer, it brings up a

non-trivial problem that is often ignored in the literature: as a starting point for our derivation

we can use one of the two unitarily equivalent Hamiltonians in Eq. (2.6) and Eq. (2.8), which

both can be written in the form given in Eq. (2.11). Since the original parameters may combine

together differently in the two different representations, we may end up with two Rabi models but

with different parameters. So the relevant question is, are the two Rabi models derived in different

gauges identical and if not, which one is the correct one? Let’s go through it, and calculate the

Rabi parameters in both gauges to make this discussion concrete:



2.3. NO-GO AND COUNTER NO-GO THEOREMS 31

Coulomb gauge

• ωp =
$

ω2
c +D2 =: ω̃c

The A2-contribution deriving from the

minimal substitution has been included

in the photon’s Hamiltonian, shifting

the cavity frequency and rescaling the

photon’c annihilation operator accord-

ing to (a+ a†) #→ $
ωc/ω̃c(a+ a†).

• ωd = ω10 =: ω0

The dipole’s frequency is just given by

the ground state - first excited state

energy difference of the bare dipole’s

Hamiltonian Hd = Hm.

• gX = 2qA0|p10|/(�m)
$
ωc/ω̃c =: gC

The Coulomb Rabi coupling has a non-

linear dependence on the charge q,

through the shifted cavity frequency

ω̃c, and depends on the dipole’s canon-

ical momentum matrix element.

Dipole gauge

• ωp = ωc

The photon’s frequency is just the bare cav-

ity frequency.

• ωd = ω̃10 =: ω̃0

The dipole’s frequency is given by the first

energy difference of the modified dipole’s

Hamiltonian

Hd = Hm +mD2/2ξ2. (2.16)

If Hm is non-harmonic ω̃0(D) has a different

dependence from D than the cavity case.

• gX = 2qA0ωc|ξ̃10|/(�m) =: gD

The dipole Rabi coupling is non-linear in the

dipole’s charge q, because the dipole’s dis-

placement matrix element 
ϕ̃m|ξ|ϕ̃n� is cal-

culated with respect the eigenstate of the

modified dipole’s Hamiltonian Hd.

2.3 No-go and counter no-go theorems

Although in the previous section we have seen that in the two gauges we end up with two Rabi

model with different sets of parameters, SC = {ω̃c, ω0, gC}, SD = {ωc, ω̃0, gD}, it could still happens

that their combination in the Rabi model would give invariant predictions. However, it turns out

that this is not the case and the predictions of the two models are even drastically different in the

USC regime. As a relevant quantity we consider the coupling parameter of the Rabi model

ζX =
g2X
ωpωd

, (2.17)

which tells us how much the dipole and the cavity are coupled together. If this parameter comes

out different in the two gauges it means that the two models, for the same microscopic parameters,

have a very different spectrum, so there must be something wrong.
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Figure 2.2: The dimensionless coupling parameters ζC and ζD as defined in Eq. (2.18) and (2.23) are
plotted as a function of the bare coupling strength g0 ∼ q for (a) a square-well potential and
(b) a double-well potential with β ≈ 2.4. For both plots ωc = ω10 and the charge q is used as a
tunable parameter to vary the coupling strength.

Using what we have explained just above in the last section, we compute the Coulomb gauge

coupling parameter

ζC =
D2

ω2
c +D2

f, (2.18)

where we used that

pnk = im(ωn − ωk)ξnk, (2.19)

and where we introduced the oscillator strength

f =
2mω10

�
|ξ10|2. (2.20)

The oscillator strength plays an important role in the so called Thomas-Reiche-Kuhn (TRK) sum

rule, &
n

(ωn − ωk)|ξnk|2 = �
2m

, (2.21)

which follows directly from [ξ, [ξ,Hd]] = −�2/m and is valid for arbitrary potentials and arbitrary

level k. Using the TRK sum rule we have f ≤ 1, which implies

ζC ≤ 1. (2.22)

This inequality is actually a sort of no-go theorem for USC. Following this inequality we are lead

to say there exists no system that can reach the USC regime of the Rabi model.

The situation looks completely different in the dipole gauge. Indeed, the dipole coupling pa-

rameter is

ζD =
D2

ω̃2
10

f̃ ≤ D2

ω̃2
10

, (2.23)
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where, again, in the last inequality we have used the TRK sum rule for the oscillator strength

f̃ = 2mω̃10|ξ̃10|2/� ≤ 1. If the dipole is in a harmonic potential, V (ξ) = mω2
10ξ

2/2, we have

ω̃2
10 = ω2

10 + D2 > D2 and Eq. (2.23) reproduce the same bound as in the Coulomb gauge.

The situation is drastically different if the dipole follows a strongly anharmonic potential, where

ω̃2
10 < D2. In this case ζD > 1 is possible and the two gauges disagree. This can be seen in Fig.

2.2, where we calculate ζC and ζD for the square well case and the double well case as a function

of the bare coupling g0. It is clear that in the Coulomb gauge we will never reach the USC regime,

accordingly to our bound (2.22), for both the square well and the double well. In contrast, in the

dipole gauge we can reach the USC regime in the case of the double well potential.

It is worth noticing that the bound in Eq. (2.22) was used in the proof for the no-go theorem of

the so called superradiant phase transition [50]. Our analysis above shows that this no-go-theorem

only holds in the Coulomb gauge and not in the dipole gauge. At this stage it is still not clear why

we have this ambiguity nor which is the correct description. But we already see that clarifying this

issue goes far beyond the validity of the quantum Rabl model and is of essence of the whole field of

USC.

2.4 Role of the potential shape in the dipole gauge

From the example above we can see that the dipole’s potential plays a crucial role in defining

the properties of the dipole Rabi model. In particular, the potential’s shape tells us immediately

whether the system can or cannot reach the USC regime in the dipole gauge. To understand better

this point we consider the limit where q → ∞. In this limit the quadratic shift due to the light-

matter interaction ∼ q2ξ2 dominates and the dipole’s potential V (ξ) becomes a perturbation to it.

In principle we should calculate ω̃10 by using second order perturbation theory, and then plug the

result in the definition of ζD. But we can take an easier way and arrive to the same result. In

this limit the confining potential is mostly harmonic, and so the eigenstates will be mainly localised

around ξ = 0. Therefore, we only need to compute the corrections that arise when expanding V (ξ)

around ξ = 0 to lowest order. For a symmetric potential the lowest order is quadratic and so we

find

lim
q→∞

�
mD2

2
ξ2 + V (ξ)

�
. m

2
ω̃2
10ξ

2, ω̃2
10 = (D2 +Ω2), (2.24)

where

Ω2 =
1

m

∂2V

∂ξ2

((((
ξ=0

, (2.25)
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is given by the curvature of the potential at the origin. Considering that the oscillator strength

limq→∞ f̃ = 1, because the system is harmonic in this limit, we then obtain

lim
q→∞ ζD =

D2

(D2 +Ω2)
. (2.26)

When Ω2 < 0 this value is larger than one, which means that it has a maximum in the USC regime

for a finite value of the charge q (or, equivalently, the bare coupling g0).

2.5 Two level truncation: the validity depends on the gauge

To understand what is going on we take a step back and return to our general linear coupling

Hamiltonian (2.11). The general assumption we make in order to justify our TLA is that the

coupling between the dipole and the electromagnetic mode does not drive the system outside of the

two-level subspace of the dipole. In this sense the discrepancy that we found above must be related

to the different matrix element between the ξ and p operators that are involved in the different

gauges. In particular, for a standard bounded, quadratic in p Hamiltonian we have the fundamental

relation Eq. (2.19) which says that p matrix elements grow with the energy difference, effectively

connecting all distant levels. Therefore, we expect that this explains the failure of the TLA in the

Coulomb gauge.

Let us elaborate this argument in more detail. Assuming a resonance condition between the

photon and the two level subspace, ωc . ω0 we thus need a condition on the matrix element of

the coupling Hamiltonian. In particular we want to have large transition elements inside the TL

subspace and small ones for anything outside. In the whole thesis we only consider the ground state

and the first excited state as TL-subspace, but the argument can be generalised to TL-subspaces

in the excited spectrum. Of course in such a situation all the conclusions we draw here might

be completely different and in general one should re-do the whole analysis with care every time a

different system is considered.

In order to understand whether the TL-subspace is preserved by the coupling to the cavity we

need a comparison between the coupling energy scale within the TL-subspace and the coupling

energy scale to bring the system outside the TL-subspace. The most relevant energy scale that

represents the coupling inside the TL-subspace is Ein ∼ σ|X10| (where we use the general notation

as in Eq. (2.11)). The relevant energy scale that brings the system outside of the TL-subspace

can be given in perturbation theory as Enm
out ∼ σ2|Xnm|2/(ωnm − ωc), where m = 0, 1 and n > 1.

Evidently we have multiple energy scales that bring us outside the TL-subspace. If the energy that

keep the system in the TL-subspace is greater than all these outside transitions summed together the

TLA is valid. So we have Eout ∼ σ2
'

n>1 |Xnm|2/(ωnm). The energy difference in this denominator
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is minimized by ωnm − ωc ≤ ω21 − ω10 (where we used the resonance condition ωc . ω10). So the

condition we look for is

1

2

σ

|ω21 − ω10|

�&
n>1

|Xn0|2 +
&
n>1

|Xn1|2
�

< |X10|, (2.27)

where we put a factor 1/2 to take an average between transitions from the “0” level and the “1”

level. By summing and subtracting |X10|2 we have

1

2


1|X2|1�+ 
0|X2|0�
|X10| − |X10| < |ω21 − ω10|

σ
. (2.28)

Accordingly with the definitions given in Sec. 2.2 we have

σ =
gX
|X10| . (2.29)

Then the quantity

ΔX =
1

2

�
1|X2|1�+ 
0|X2|0�
| 
0|X|1� |2

�
− 1, (2.30)

becomes a good estimator of the strength of the transitions that would eventually breakdown the

TLA. By definition we have ΔX ≥ 0. If ΔX < 1 the matrix element are larger for transitions inside

the TS-subspace than outside, and it is the opposite for ΔX > 1. For ΔX = 1 all in/out transitions

have the same weight, which is the case, for instance for the ξ and p operators in the harmonic case.

This has to be compared to the out-coupling scale of the dipole

αg =
|ω21 − ω10|

gX
. (2.31)

αg . 0 indicates a quite harmonic system, for which the TLA is hardly applicable, while αg � 1

is a system where the coupling is small enough with respect to the anharmonicity of the system.

Following usual perturbative arguments it is quite natural to combine ΔX and αg in an estimate

condition on the applicability of the TLA in our linearly coupled system

ΔX < αg. (2.32)

It is worth to relate this condition to the recipe we gave to obtain the TLA in the dipole gauge.

In particular we notice that in the dipole gauge we need to modify the bare dipole’s Hamiltonian

to include the ξ2-term, as shown in Eq. (2.16). When the condition (2.32) is fulfilled this term is

negligible. Indeed in this regime if we truncate the ξ2 operator in the TL-subspace we obtain

ξ̂2TLA ≈ |ξ10|21̂. (2.33)
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Since it is approximated by the identity operator it doesn’t give any contribution and one may just

drop it. Notice that the condition in Eq. (2.33) was identified as the validity condition for the TLA

in [51]. Despite of what is claimed in this reference, what is derived in [51] is no more and no less

of what is written here, only using a different language.
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Figure 2.3: The matrix element estimator ΔX for the ξ and p operators (solid blue/red lines) and the
parameter αg defined in Eq. (2.31) in the case of the double well potential given by Eq. (2.4),
as a function of β.

In Fig. 2.3 we show a simple example for the double well potential, where we sweep the parameter

from β < 0 (almost harmonic system, single well) to β > 0 (strongly anharmonic system, double

well regime). Here we fix the gauge dependent coupling to be just the bare coupling, gX ∼ g0. We

can see that Δξ and Δp have completely opposite behaviour, and in particular we notice that in

this specific example

Δξ � 1, (2.34)

and

Δp ≥ 1. (2.35)

Despite that the first inequality is not true in general and only valid for the double well potential

case (without proof, but just through numerical observation), this second inequality can be proved

in general using the TRK sum rule (see App. C). This means that in any gauge in which the

coupling is proportional to the momentum operator p the TLA would not work except for very

small coupling. Any interpolation between the Coulomb and the dipole gauge would not give good

results, except if the system is fully in the dipole gauge. Note this conclusion contradicts the recent
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claim in [52], where an intermediate gauge was found to be optimal. However, a closer inspection

shows that this is only the case in situations were the TLA as a whole is no longer valid. Quite

surprisingly we further notice from Fig. 2.3 that the condition (2.32) is not satisfied for the p

coupling even at small coupling if β is large enough. This is somehow very counter intuitive if we

think just in terms of energy scales, where αg � 1. To have a better understanding of this point

we consider the Rabi model (2.15) in the dipole and Coulomb gauge HD
Rabi, H

C
Rabi and we expand

their eigenvalues for low coupling g0/ωc < 1. Always keeping the resonance condition ωc = ω10 we

obtain

ΔEC
1,2 = EC

1,2 − EC
0 . �ωc ∓ �g0

2
+

�g20
4ωc

1

f
, (2.36)

for the first two excitation energies in the Coulomb gauge and

ΔED
1,2 = ED

1,2 − ED
0 . �ωc + �ω̃10

2
∓ �g0

2
, (2.37)

in the electric dipole gauge. At first order in g0/ωc both gauges gives the correct expected Rabi

splitting, but the second order there is a clear disagreement. While in the dipole gauge the second

order vanishes it is present in the Coulomb gauge with a peculiar scaling in 1/f . The oscillator

strength can be seen as another measure of the anharmonicity of the dipole and it is f = 1 for an

harmonic oscillator, while f " 1 for a strongly anharmonic dipole (such as a double well potential).

This discrepancy

ΔEC
1 −ΔED

1 . �g20
4ωc

1

f
, (2.38)

is thus more evident when f " 1, which exactly matches our expectation from the analysis above

on Δξ and Δp. Here we can have another hint about the invalidity of TLA in the Coulomb gauge.

This artificial shift proportional to 1/f represent a quadratic Bloch-Siegert shift, which has never

been observed, in contrast to the third order shift that one obtains in the dipole gauge [53].

Putting together these general considerations already suggests that the Coulomb gauge is heavily

non optimal to perform the dipole’s two level truncation, while the dipole gauge seems to be much

more favourable in this sense. In particular from the analysis of the matrix elements, given in

general by the quantity Δξ, it emerges that the dipole gauge has a clear monotonic link between the

dipole’s anharmonicity and the increasing quality of the TLA. For these reasons, under our general

assumptions, the dipole gauge represent the correct basis in which to operate with the dipole’s

truncated Hilbert space.
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2.6 Examples: double well and square well dipole

In this section we focus on two practical examples: the dipole in a double well potential with large

anharmonicity, described by the Hamiltonian in Eq. (2.4), and the dipole in a square well potential

which is described by Eq. (2.5).
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Figure 2.4: Double-well potential. (a) Comparison of the energy spectra obtained from the full model HC

(solid blue line), the quantum Rabi model HD
Rabi derived in the dipole gauge (green dashed line)

and the quantum Rabi model HC
Rabi derived in the Coulomb gauge (red dotted line). For these

plots a double-well potential with parameters β ≈ 3.7 and ω10 = ωc (which fixes the value of
Ed) have been assumed. The inset shows a zoom of the predicted Rabi splitting between the
first two excited energy levels. (b) Matrix elements of the dimensionless position operator ξ
and (c) matrix elements of the dimensionless momentum operator pξ evaluated for the lowest
eigenstates |ϕn� of the same double-well potential. For the sake of clarity, the values of the
matrix elements have been normalized by the largest matrix element in each plot.

Starting with the double well dipole, we solve numerically the coupled linear Hamiltonian, in

the Coulomb and dipole gauge, with and without the TLA. We consider β ≈ 3.7, which gives a

quite large anharmonicity |ω21 − ω10|/ω10 ≈ 100. In Fig. 2.4(a) we plot the lowest part of the

spectrum as a function of the coupling strength g0/ωc, keeping fixed all the other parameters, and

always considering resonance ω10 = ωc. The full numerics is obtained by including a large number of

dipole’s states. In this case the Coulomb gauge and the dipole gauge correctly give the same result

(the numerics is constructed just following what discussed in Sec. 2.2. The dipole’s Hamiltonian

and coupling operator is represented in its energy eigenbasis and then truncated up to a certain

level. If the truncation is high enough the lowest levels are correctly reproduced). The situation is

drastically different when just two dipole’s levels are included in the whole Hamiltonian. The dipole

gauge TLA correctly reproduces the spectrum up to very large couplings g0/ωc ≈ 10. This is in line

with what one can expect from our estimate criterion (2.32). The Coulomb gauge instead already

visibly fails at rather weak coupling g0/ωc ≈ 0.1. Moreover, one clearly sees the artificial “1/f -shift”
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in the Coulomb gauge at weak coupling, given by Eq. (2.38). In Fig. 2.4(b-c) we represent the

matrix elements of the ξ and p operators. The ξ operator has a well defined TL-subspace, for which

all the matrix elements that connect it with the rest of the spectrum are strongly suppressed. This

is exactly opposite in the p operator, confirming our simple argument from the previous section.
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Figure 2.5: Square-well potential. (a) Comparison of the energy spectra obtained from the full model HC

(solid blue line), the quantum Rabi model HD
Rabi derived in the dipole gauge (green dashed line)

and the quantum Rabi model HC
Rabi derived in the Coulomb gauge (red dotted line). For these

plots a square-well potential and ω10 = ωc (which fixes the value of Ed) has been assumed.
The inset shows a zoom of the predicted Rabi splitting between the first two excited energy
levels. (b) Matrix elements of the dimensionless position operator ξ and (c) matrix elements
of the dimensionless momentum operator pξ evaluated for the lowest eigenstates |ϕn� of the
same square-well potential. For the sake of clarity, the values of the matrix elements have been
normalized by the largest matrix element in each plot.

In Fig. 2.5(a) we show the same plot for the square well case. The anharmonicity is |ω21 −
ω10|/ω10 = 8/3, so it is not so large with respect to the previous case. For small coupling strength

the spectrum is correctly reproduced by both gauges, and, in particular, we see that the artificial

1/f shift introduced by the Coulomb gauge is much less relevant here. This is a consequence of the

oscillator strength, which is very close to unity f ≈ 0.96. But when the coupling starts to be close

to the USC regime, g0/ωc ≈ 0.1 we see that the TLA is not giving good results any more. For large

couplings the TLA fails in both gauges. In Fig. 2.5(b-c) we see the ξ and p matrix elements of the

square well. There is no TL-subspace which is possible to isolate and in general all neighbouring

levels are similarly coupled. This is in line to what we expect from Fig. 2.3 when β = 0, which

represents a case very similar to the square well potential.
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2.7 Multiple dipoles, Dicke and extended Dicke model

A crucial point in the research about USC regime concerns the collective coupling of a dipole

ensemble to a single resonant mode. We already introduce the formalism to treat this system

in Ch. 1, and we will discuss it further in all the remainder of the thesis. Light-matter ultra-

strong interactions through collective matter excitation is actually the first example of a successful

experiment where the USC regime has been reached [54]. Since also in this context the TLA is

widely used, it becomes very important to see whether the discrepancies between different gauges

encountered before survive even in the collective case.

As already anticipated in Ch. 1 the Coulomb gauge Hamiltonian for an ensemble of dipoles

collectively coupled to a single resonant mode is

HC =

N&
i=1

�
(pi − qA)2

2m
+ V (ξi)

�
+ �ωca

†a+Hdd. (2.39)

The last term Hdd is the direct dipole-dipole interaction. This term is gauge independent so it

plays no role in the following discussion. For this reason we simply neglect it, focusing only on the

dynamical part of the light-matter interaction, where, instead, the TLA plays a subtle role.

The collective Coulomb Hamiltonian is unitary equivalent to the collective dipole Hamiltonian

HD = UHCU
†, where U = exp(−iqA

'
i ξi/�). After this transformation we obtain

HD =
&
i

�
p2i
2m

+ Ṽ (ξi)

�
+ �ωca

†a+ iωcqA0(a
† − a)

&
i

ξi +
mD2

2

&
i�=j

ξiξj . (2.40)

Notice that the last term is the collective version of the ξ2-term that we encountered before. It

looks like an infinite range interaction but it is not, as explained in Ch. 1. Moreover the last term

generates also a “local” ξ2-term (by taking the i = j contribution), which is already included in the

dipole’s potential Ṽ (ξi) = V (ξi) +mD2ξ2i /2 as usual.

In contrast to what we discussed so far, the relevant regime for this type of collective cavity QED

is weak coupling for each single dipole g0/ωc " 1, but strong or ultra-strong collective coupling

coupling G0/ωc =
√
Ng0/ωc � 1. The concept of collective USC will be discussed in more details

later in the thesis, but now we just need to grasp its basic idea: each dipole is weakly coupled to

the cavity, but the whole ensemble is instead strongly coupled because it is composed out of many

dipoles. In order to have a finite collective coupling G0 the single dipole coupling must scale at most

as g0 ∼ 1/
√
N . Under this condition it seems straightforward to apply the TLA in every gauge and

for every potential and always to obtain reasonable answers.
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Performing the TLA on HC we arrive at the well known Dicke model

HDM = �ω̃ca
†a+ �ω10Sz + �gC(a+ a†)Sx, (2.41)

where Sk = 1/2
'

i σ
i
k are collective spin operators and ω̃c =

$
ω2
c +ND2. In the thermodynamic

limit N → ∞ one can apply the Holstein-Primakoff approximation to the collective spin operators

(see App. D for more detail) and obtain an Hamiltonian of two coupled harmonic oscillators

HDM ≈ ω̃ca
†a+ ω10b

†b+
√
NgC
2

(a+ a†)(b+ b†). (2.42)

This Hamiltonian can be diagonalised by two polariton modes, having frequencies

ω2
C± =

1

2

�
ω2
10 + ω̃2

c ±
"

(ω̃2
c − ω2

10)
2 + 4Ng2C ω̃cω10

�
. (2.43)

The stability of the system requires that ω2
C± > 0, which is satisfied as long as the collective coupling

parameter

Nζ
(N)
C =

Ng2C
ω̃cω10

< 1. (2.44)

This inequality is very similar to the one proved in the no-go theorem for USC (2.22) (except for

the factor of N). In the same way as we did in that case, one can use the TRK sum rule to show

that this inequality is always true

Ng2C
ω̃cω10

≤ ND2

ω2
c +ND2

< 1. (2.45)

So the Coulomb gauge Dicke model is always stable. This is a very important point that we will

re-discussed in Ch. 4 in the context of the debate around the superradiant phase transition.

Now we repeat the same reasoning for the dipole gauge. In the single dipole case we found an

inconsistency due to the TLA by just looking at the coupling parameter in the different gauges,

so that is the first thing to check here. In the collective case in particular the collective coupling

parameter is related to the stability of the polariton modes, so if there is a discrepancy it would be

really striking. Applying the TLA to (2.40) we obtain the extended Dicke model [55]

HEDM = �ωcc
†c+ �ω̃10Sz + �gD(c+ c†)Sx +

�g2D
ωc

S2
x. (2.46)

Again using the Holstein-Primakoff approximation we arrive to a two coupled oscillators Hamilto-
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nian, from which we extract the eigenfrequencies

ω2
D± =

1

2

�
Ω2
10 + ω2

c ±
"�

Ω2
10 − ω2

c

�2
+ 4Ng2Dω̃10ωc

�
, (2.47)

where Ω10 =
"
ω̃10(ω̃10 +Ng2D/ωc). If Ng2D > Ω2

10(ωc/ω̃10) the lower polariton frequency becomes

imaginary and the system is unstable. By repeating the same calculation using the TRK sum rule

one can show that
Ng2D

Ω2
10(ωc/ω̃10)

≤ ND2

ω̃2
10 +ND2

< 1, (2.48)

ensuring the stability also in the dipole gauge.

On contrary to the single dipole case it seems that, in the collective regime, the TLA approxi-

mation does not introduce any dramatic discrepancies.

2.8 The fake depolarization shift in the Coulomb gauge

We have shown so far that the TLA preserves the stability of the two gauges in the collective regime.

But it is still unclear whether the truncation in the two gauges produces equivalent results. The

answer is no, and it emerges clearly when the dipole potential is strongly anharmonic (for instance

in the double well potential), with a striking effect in the collective USC G0/ωc � 1.

To show how the discrepancy emerges we consider again the polariton frequencies in the two

gauges, but rearranging the terms differently from above

ω2
C± =

1

2

�
ω2
10 + ω2

c +ND2±
"�

ω2
10 + ω2

c +ND2
�2 − 4ω2

cω
2
10 − 4N(1− f)D2ω2

10

�
, (2.49)

ω2
D± =

1

2

�
ω2
10 + ω2

c + fND2±
"�

ω2
10 + ω2

c + fND2
�2 − 4ω2

cω
2
10

�
, (2.50)

where we introduced the oscillator strength f = 2mω10|ξ10|2, which is a measure of the single

dipole’s anharmonicity. Expanding the two frequencies at lowest order in G0/ωc " 1 (and assuming

ωc = ω10 as usual) we find

ωC± − ωD± . G2
0

4ωc

�
1

f
− 1

�
. (2.51)

This discrepancy resembles quite a lot the artificial 1/f -shift found in Sec. 2.6.

But there is more. Indeed if we take the collective USC limit we found that the lower polariton

in the Coulomb gauge approaches a finite value

lim
G0→∞

ωC− = ω10

$
1− f > 0. (2.52)
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Figure 2.6: The frequencies ω± of the two lowest polariton modes are plotted in the limit N � 1 as a
function of the collective coupling strength G0 = g0

√
N and for ω10 = ωc. In (a) the case of a

square-well potential (fsq ≈ 0.96) and in (b) the case of a double-well potential with β ≈ 2.3,
and fdw ≈ 0.71 is considered. The different lines represent the results obtained from the Dicke
model HDM derived in the Coulomb gauge (ωC±, red solid-dotted), the extended Dicke model
HEDM derived in the electric dipole gauge (ωD±, green squares) and the two lowest branches of
the full spectrum (blue solid line). In both plots, the horizontal dashed line represents the fake
depolarization shift in the Coulomb gauge, as given in Eq. (2.52).

In Fig. 2.6 we can see the Coulomb gauge always approaches this asymptotic frequency, while the

dipole gauge seems to go always to zero (at very large collective couplings). The effect is more evident

for dipole’s potentials with larger anharmonicity, as we can see comparing Fig. 2.6 (a) and (b).

In the language of electrodynamics such a shift in the lower Coulomb gauge polariton frequency is

often called depolarization shift. The depolarization shift in photonic system is a physical observable

[56] which is related to the direct interaction between the dipoles (we will see this in detail in the

next chapter). In the current analysis we dropped any direct interaction between the dipoles, so we

do not expect any depolarization shift. We can actually prove this in the next section, proving also

in a fully analytical way that the TLA goes wrong in the Coulomb gauge even in the collective case.

2.9 The TRK sum rule forbids the depolarization shift

In this section we want to prove that the depolarization shift (2.52) found in the Coulomb gauge

after the TLA is an artefact of the TLA. To do so we would need to solve the full many body

Hamiltonian, which is of course very difficult, to not say impossible. Fortunately, for a very large

number of dipoles the description can be simplified again.

We start noticing that the collective coupling operators in both gauges involve a sum over the

whole ensemble

Π =
&
i

pi, Ξ =
&
i

ξi. (2.53)

We can then re-think these operators represented on a many-body basis, made of symmetric or

anti-symmetric states [57]. The most relevant transitions due to our collective coupling operators
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Figure 2.7: Sketch of the relevant energy levels of the full multi-dipole Hamiltonian HC in the weak-
excitation regime. In this limit, most dipoles occupy the lowest potential state with energy
E0 and cavity-induced transitions between pairs of higher states can be neglected.

are between dipole states of this form

|Coll. ex.� ∼ 1√N (|n1, n2 . . . nN �+ all possible permutations), (2.54)

where N is a suitable normalization factor, and where each j-th dipole is in its nj level. Notice that

if all the dipoles are in the same state N = 1, while in any other case the normalization must scale

at least as N ∼ N . This immediately implies that matrix elements of collective operators such as

(2.53) scale as ∼ √
N if taken between a collective state where all the dipoles are in the same state

and a state where at least one dipole is different, while they scale at most as ∼ 1 between states

where the dipoles are in different states. To ensure having a finite collective coupling the single

dipole coupling must scale as g0 ∼ 1/
√
N , meaning that light-matter induced transitions between

collective excited states go as ∼ 1/
√
N . If we are just interested in low energy processes (as we are!)

then this means that only transitions from the ground state to excited states are relevant when the

thermodynamics limit is considered N → ∞. To this end we define quasi-bosonic operators

b†n =
1√
N

N&
i=1

|ni�
0i|, (2.55)

which creates a collective excitation in the n-th energy level of the bare dipole Hamiltonian. In the

thermodynamic limit they obey bosonic commutation relation [58]

[bn, b
†
m] . δnm. (2.56)
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Expressing the collective light-matter Hamiltonian in this collective basis and then discarding tran-

sitions between excited states we are left with the low energy effective Coulomb Hamiltonian

HC . ω̃ca
†a+

&
n

ωnb
†
nbn − GC

2

�
a+ a†

�&
n

νn

�
bn + b†n

�
, (2.57)

where ω̃c =
$

ω2
c +ND2, GC =

√
NgC = G0ω10/

√
ωcω̃c and νn = (ξn0/ξ10)(ωn0/ω10). This low

energy approximation is basically exact in the thermodynamic limit and since we didn’t perform

a TLA, it is still gauge invariant. One can still apply the unitary transformation to switch to the

dipole gauge in this low energy manifold and find exactly the low energy version of HD as it would

appear repeating the same approximation starting from HD itself.

We can now compute the spectrum of Eq. (2.57). Following standard procedure for bosonic

quadratic Hamiltonians, we find that the eigenfrequencies ω are solutions of the equation

ω2 +G2
0

&
n

ν2nω
2
10/(ωn0ωc)

1− ω2/ω2
n0

= ω2
c +ND2, (2.58)

where we recall that D = g20ω10/(ωcf). This equation looks generally different for each different

gauge, but its eigenfrequencies are gauge invariant, as one can directly verify. We focus now on

the lower polariton solutions. To this end we consider that ω− " ωc, ωn0, so we can expand the

equation for ω ∼ 0. We then get the approximate result

ω2
− . ω2

c +ND2
�
1− 2m

�
'

n ξ
2
n0ωn0

�
1 +G2

0

'
n

ν2nω
2
10

ω3
n0ωc

, (2.59)

which holds only in the USC regime, for G0/ωc � 1. If all the levels are included the only coupling

dependent term in the numerator is zero

ND2

�
1− 2m

�
&
n

ξ2n0ωn0

�
= 0, (2.60)

as a consequence of the TRK sum rule. We thus conclude that

lim
G0→∞

ω− = 0. (2.61)

The lowest solutions of Eq. (2.58) are represented as solid blue lines in Fig. 2.6, and they

perfectly match the polariton frequencies predicted by the dipole gauge under the TLA.
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2.10 A simple circuit implementation and the few-dipoles case

The theory that we have developed so far have a broad range of applicability in various fields of

physics. In order to give a taste of concreteness to this otherwise quite abstract chapter we present

an example from one of the most lively branches of QED: circuit QED.

(a)

0 4

0

-4

20

(b) (c)

40

60

80

-8 8

Figure 2.8: Circuit QED with flux qubits. (a) Sketch of a multi-qubit circuit QED system, where two flux
qubits are coupled to a lumped-element LC resonator with inductance Lr and capacitance Cr.
In the simplest case, each flux qubit is realized by an rf-SQUID circuit and can be modeled as an
effective particle with a dimensionless coordinate φ = ΔΦ/Φ0 moving in an effective potential
V (φ). (b) Typical shape of the potential V (φ) for a generic flux-qubit where the two lowest
tunnel-coupled states form an isolated two-level subspace. (c) Shape of the potential V (φ) and
the lowest eigenstates |ϕn� for a specific flux qubit with parameters ELq/h = 7 GHz, ECq/h = 12
GHz and EJ/h = 50 GHz.

We focus on a prototype circuit setup where N = 2 flux qubits are coupled in series to an LC

circuit with inductance Lr and capacitance Cr. In this example the LC circuit plays the role of the

cavity mode, while the qubits play the role of the dipoles. The system is represented in Fig. 2.8(a).

We introduce the generalised flux variables

Φη(t) =

� t

−∞
ds Vη(s), η ∈ {r, 1, 2}, (2.62)

where Vη is the voltage at the respective node (see the nodes in Fig. 2.8(a) ). The equations of

motion for the variables Φη are derived by considering the Lagrangian L = T − Vtot, where

T =
CrΦ̇

2
r

2
+

N&
i=1

Cq(ΔΦ̇i)
2

2
, (2.63)
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is the capacitive energy, which plays the role of the kinetic energy, while the energy stored in the

inductance, equivalent to potential energy, is

Vtot =
(Φr − Φ2)

2

2Lr
+

N&
i=1

�
(ΔΦi)

2

2Lq
− EJ cos

�
ΔΦi +Φext

Φ0

��
. (2.64)

Here we introduce the relative variables ΔΦ1 ≡ Φ1 and ΔΦ2 = Φ2 − Φ1, which represent the

phase jumps across each of the qubits. Then Φ0 = �/(2e) is the reduced flux quantum and Φext

is the external flux through each of the qubit. Here we consider Φext/Φ0 = π, such that for a

Josephson energy EJ > Φ2
0/Lq we obtain a double-well potential for the fluxes ΔΦi. To finally

have the Hamiltonian of the system we calculate the canonical momenta Qr = ∂L/∂Φ̇r = CrΦ̇r,

and Qi = ∂L/∂ΔΦ̇i = CqΔΦ̇i, which represent the charges on each capacitor. As a standard

procedure we introduce the rescaled variables φr = Φr/Φ0, φi = ΔΦi/Φ0 and Qη = Qη/(2e), and

we then impose the canonical commutation relations [φη,Qη	 ] = iδη,η	 . The Hamiltonian for the

two qubits-LC system is then given by

HΦ = 4ECrQ2
r +

ELr

2

�
φr −

N&
i=1

φi

�2

+
N&
i=1

�
4ECqQ2

i + EJ cos (φi) +
ELq

2
φ2
i

�
, (2.65)

where ELr,q = Φ2
0/Lr,q and, ECr,q = e2/(2Cr,q). We show now that this Hamiltonian is com-

pletely equivalent to HD as it is defined in Eq. (2.40). In order to do so we introduce the cre-

ation/annihilation operators for the LC circuit such that

φr =
4

#
2
ECr

ELr

(a† + a),

Qr = i 4

#
ELr

32ECr

(a† − a),

(2.66)

which diagonalise the LC Hamiltonian with frequency ωc =
$

8ECrELr/�. The qubit variables φi

and Qi represent the coordinate and momentum of an effective particle moving in a potential

V (φi) = EJ cos (φi) + ELqφ
2
i /2. (2.67)

The light-matter coupling in the dipole gauge is then given by

gD = ωc

�
ELr

2ECr

� 1
4

|
ϕ̃0|φ|ϕ̃1�|, (2.68)
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where ω̃10 and the eigenstates |ϕ̃n� are obtained diagonalising the modified qubit Hamiltonian

H̃q = 4ECqQ2 + V (φ) + ELrφ
2/2, (2.69)

with the inclusion of the φ2-term, which is the circuit equivalent of the previously discussed ξ2-term

for the dipole.

We can now represent the flux Hamiltonian (2.65) in the so-called charge gauge, which is equiv-

alent to the Coulomb gauge. We then introduce the unitary transformation U = e−iQr
�

i φi , and

the charge Hamiltonian HQ = UHΦU
†, given by

HQ = 4ECrQ2
r +

ELr

2
φ2
r +

&
i

�
4ECq (Qi −Qr)

2 + V (φi)
�
. (2.70)

Introducing ω̃c =
$

8(ECr +NECq)ELr/� and the light-matter coupling in the Coulomb gauge

gC =
8ECq

�

%
ωc

ω̃c

�
ELr

2ECr

� 1
4

|
ϕ0|Q|ϕ1�|, (2.71)

we can directly map this Hamiltonian on HC , given by Eq. (2.39).

We can then consider the TLA for HΦ and HQ in the relevant case with two qubits. We use

rather realistic parameters EJ , ELq and ECq in order to have the frequency ω10 ≈ 3 GHz and

anharmonicity |ω10 − ω21|/ω10 ≈ 15 in line with current experiments [59]. In Fig. 2.9(a) we show

the spectrum as a function of g0 ∼ 4
$

1/Lr, always keeping fixed the resonance condition ωc = ω10.

The TLA in the charge gauge fails already for quite small coupling, while it remains quite accurate

in the flux gauge. Nevertheless we see that also in the flux gauge the TLA gives quite incorrect

energies at large coupling. This is the effect of having included in the bare dipole’s Hamiltonian the

φ2-correction (in the dipoles language ξ2-term), accordingly to (2.69). However if we completely

neglect this term we still find a quite acceptable prediction, as we can see in Fig. 2.9(b). The reason

is that the ξ2-term gives a positive contributions to the energies that should be exactly compensated

by the light-matter coupling term. This compensation involves higher levels transitions. If we keep

this term in the single particle Hamiltonian, but we truncate it in the light-matter coupling term,

we make an inconsistent approximation. The right way to go would be to include it in perturbation

theory together with the perturbative terms originating from higher levels transitions. But this

would end up in quite complicated low energy Hamiltonian, so, unless it is necessary we wish to

avoid such complications. In Fig. 2.9(c) we show that characteristic ground state quantities such as

mean photon number 
a†a� or single qubits entropy S1 = Tr[ρ1 log2[ρ1]] are still nicely represented

up to very large coupling strength.
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Figure 2.9: Two-qubit circuit QED. (a) Comparison of the energy spectra obtained from the full model HΦ

(solid blue line), the extended Dicke model HEDM derived from HΦ (green dashed line) and the
Dicke model HDM derived from Hamiltonian HQ (red dotted line) for N = 2 flux qubits. The
inset shows a zoom of the first three excitation energies for small couplings. (b) Dependence
of the ground-state photon number 
a†a� and the single qubit entanglement entropy S1 =
−Tr{ρ1 log2(ρ1)} on the coupling strength g0. Here ρ1 is the reduced density matrix for a single
qubit obtained from the density matrix of the ground state ρ = |GS�
GS| evaluated for the full
model HΦ and for the corresponding effective model HEDM. (c) The lowest eigenenergies (dashed
orange lines) of the extended Dicke model without the x2-correction, H

(bare)
EDM , are compared

with the corresponding energies of the full model (solid lines). For all the plots the value
of Lr has been used as a tuning parameter and Cr has been adjusted to keep the resonance
condition ω10 = ωc =

$
8ECrELr/� fixed. The parameters for the flux qubits are the same as

in Fig. 2.8(c).
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Chapter 3

A minimal model of cavity QED

In this chapter we review the main regimes of cavity QED that can be found in the current research

and we explain how to formulate a theory able to capture (at least qualitatively) them all. This is

done by putting together the notions of the last two chapters to finally arrive at the minimal model

of cavity QED. The idea behind the minimal model is to find the simplest model which holds up to

arbitrary large coupling strength and which treats consistently electrostatic and dynamics effects.

The results of this chapter are mostly contained in Physical Review A 97, 043820 (2018). In

this project I was the leading author, in collaboration with Tuomas Jaako and Peter Rabl. All the

results here reported are obtained by me, under the supervision of Peter Rabl.

3.1 Dipoles coupled to a single electromagnetic mode

From the general considerations about the quantization of the electromagnetic field, we have al-

ready argued that when restricted to a single near-resonant mode the Hamiltonian for light-matter

interactions is of the form

H ≈ ωca
†a+Hmatter

+

%
ωc

2ε0V
(a+ a†)

�
d3r Mfc(Mr) · MP (Mr) +

1

2ε0V

��
d3r Mfc(Mr) · MP (Mr)

�2

+
1

2ε0

�
d3r MP
(Mr) · MP
(Mr).

(3.1)

Here Mfc(Mr) is the cavity mode function, MP (Mr) is the matter polarization density, and MP
(Mr) is its

longitudinal part. The first line of this Hamiltonian represent the free cavity and the free matter.

The second line describes the cavity-matter interaction and the third line represents the matter-

matter interaction due to the electrostatic force. What is left to do now is to specify the parameters

of the cavity, its mode functions, and specify a model for the free matter and its polarization.

51
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Figure 3.1: A simple toy model for cavity QED. Many different systems, ranging from atomic gases to more
complex structures in solid state can be classified as cavity QED systems. Collecting all their
basics common properties we arrive at an abstract idealised mathematical description, presented
by an Hamiltonian which couples together two-level systems and harmonic modes. A faithful
physical realization of such an abstract Hamiltonian is given by an ensemble of dipoles inside
the capacitor of a single-mode LC resonator.

As one of the simplest examples for a material system, we will consider in the following discussion

an ensemble of point-like dipoles, located at fixed positions on a lattice. In the case of a simple

square lattice we can rewrite the total number of dipoles in terms of their number along each

direction

N = NxNyNz. (3.2)

For the dynamics of each dipole we consider the two extreme cases of two-level dipoles or fully

harmonic dipoles. Concerning the cavity, the simplest situation is when the cavity mode function is

approximately homogeneous across the ensemble in space, in this case dipoles are resonant with a

spatially homogeneous electric field, and we assume that the frequency of that mode is much lower

than all the other electromagnetic modes. This last requirement seems a bit tricky in a standard

Fabry-Perot resonator, where the cavity frequencies are typically equispaced. To overcome this

limitation one needs to “slow-down” the resonant mode in a controlled way. The simplest physical
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realization of such a system is an LC circuit. When the capacitor is large enough, the electric field

due to the charge oscillating through the circuit is to a good approximation homogeneous, while the

frequency can be tuned, in principle without constraints, by changing the values of the inductance

or the capacitance. The dipolar matter can be placed inside the capacitor, realising a genuine

collective coupling with the current flowing in the circuit. As sketched in Fig. 3.1 this system is

an exact representation of many approximated descriptions used for a large variety of cavity QED

systems. To arrive at the final cQED Hamiltonian is worth to proceed in a more pedagogical way,

constructing it step by step from the equations of motions of our toy model, and at the end verifying

that it matches the general shape (3.1).

The LC-resonator frequency is given by ωc = 1/
√
LC, where L is its inductance and C its

capacitance. The dipoles are fixed on a lattice, with positions Mri = (xi, yi, zi). We assume that

each dipole is formed by two charges q and −q, and we label the displacement between them as ξ.

Therefore, the dipole moment of each i-th dipole is

µi = qξi, (3.3)

where we assume for simplicity that they are all directed just along the z-axis (perpendicular to the

capacitor plates). The schematic view on the system is shown in Fig. 3.2(a).
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Figure 3.2: (a) Sketch of the cavity QED setup considered in this work. (b) Different effective potentials
V (ξ) for the dipole variable ξ are used to model either harmonic or two-level dipoles of frequency
ω0. (c) Illustration of the two different contribution to the total charge Q = QU + Qin on the
upper capacitor plate. See text for more details.

The dynamics of the dipole moment can be thought as the dynamics of a particle in one dimen-

sion, with coordinate ξ, mass m, and subjected to the given potential V (ξ), as shown in Fig. 3.2(b).

We will mainly focus on the two most paradigmatic examples: the harmonic potential, and the
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double-well potential. In particular, we will use the harmonic dipoles to discuss all the features that

can be classified as “classical”, in the sense that the same properties would be encountered as well

in the classical theory of dielectrics (see Drude-Lorentz theory for instance [39]). The double well

potential instead represents a “fully quantum scenario”, in the sense that, since tunneling dynamics

has no classical counter-part, in this case we will find strong deviations from the classical predictions

once we enter the ultrastrong coupling regime. To handle this case in a reasonably simple way we

will make use of the two-level approximation developed in the previous chapter.

The LC circuit dynamics instead is determined by its Kirchhoff equations. The voltage between

the capacitor plates is related to the flux through the inductor by U = Φ̇, where Φ is the magnetic

flux (which is the dynamical coordinate of the circuit). The flux is related to the current flowing out

from the capacitor by Q̇ = −Φ/L. When the dipoles (or, more generally, the dielectric material) are

located between the capacitor plates the total charge Q can be written as Q = QU+Qin. Here QU is

the charge that accumulates on the capacitor giving rise to a voltage drop. The second contribution

Qin is the charge induced by the dipoles, which still accumulates on the capacitor, but does not give

rise to any voltage drop, because it exactly compensate the electric field produced by the dipoles

themselves (it is actually a consequence of having metallic plates as boundary of the dipole system).

We have a sketch of this idea in Fig. 3.2(c). Using all these relations we obtain the equation of

motion for the LC circuit

CΦ̈ +
Φ

L
= −Q̇in . q

d

&
i

ξ̇i, (3.4)

where in the last step we used the fact that, for large enough system, the total charge induced by

a single dipole is given by ∼ −qξ/d, where d is the distance between the plates.

The motion of the dipoles instead is just given by equating the dipole’s acceleration to the sum

of the forces acting on it. The forces on the dipole are given by the “internal” dipole potential,

and the total electric field at the dipole’s position. For the i-th dipole we have the equation

mξ̈i = −∂ξV (ξi) + qE(Mri). The electric field can be further decomposed into the electric field due

to a voltage drop between the capacitor plates and the electric field generated by the surrounding

dipoles

qE(Mri) = −q

d
Φ̇−mω2

P

&
j

Dijξj , (3.5)

where we introduce the plasma frequency

ωP =

#
q2

ε0mr30
, (3.6)

and the matrix Dij gives the adimensional amplitude of the electric field at the position Mri generated
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by a dipole in the position Mrj . In free space it takes the shape

Dij =
r30
4π

r2ij − 3(Mrij · Mez)2
r5ij

, (3.7)

where Mrij = Mri − Mrj . Following the discussion in the first chapter, we will show that this quantity

is strongly influenced by the boundaries, due to the presence of image charges. It is important to

notice that, when i = j, Dii has a divergent part, which is reminiscent of the divergent self energy

%A that we found in the first Ch. 1, and a finite part. The divergent part is independent of the

boundaries and it should be removed by mass-renormalization [60]. In our case, we just drop it. The

finite part instead depends on the boundaries and it is a physical effect which should be considered.

However, since it is just a quadratic energy shift, it can be safely absorbed in the definition of

the dipole potential, V (ξi) +mω2
PDiiξ

2
i /2 #→ Ṽ (ξi). In conclusion, we obtain the equations for the

dipoles inside the capacitor of the LC circuit

mξ̈i + ∂ξV (ξi) +mω2
P

&
j

Dijξj = −q

d
Φ̇. (3.8)

3.2 The LC-dipole system and the generic cavity QED Hamiltonian

From general physical considerations we have derived the main equations describing the system in

Fig. 3.2(a). So we are in the position to derive the corresponding Lagrangian, then the Hamiltonian,

and finally to quantize the system. The Lagrangian of the system is given by

L = C
Φ̇2

2
− Φ2

2L
+ Φ̇Qin +

&
i

�m
2
ξ̇2i − V (ξi)

�
− mω2

P

2

&
i�=j

Dijξiξj . (3.9)

The canonical momenta are given as usual by

Π =
∂L
∂Φ̇

= cΦ̇ +Qin, pi =
∂L
∂ξ̇i

= mξ̇i. (3.10)

We note that Π represents the total physical charge accumulated on the capacitor, thus Π =

Q = QU + Qin, while pi just represents the kinetic momentum of the dipole’s displacement. The

Hamiltonian follows as

H =
(Π−Qin)

2

2C
+

Φ2

2L
+

&
i

Hd
i +

mω2
P

2

&
i�=j

Dijξiξj , (3.11)
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where Hd
i = p2i /(2m) + V (ξi). Using Qin . −q

'
i ξi/d we can rewrite this Hamiltonian as the

expected general cQED Hamiltonian (3.1) derived in the first Ch. 1

H . ωca
†a+

&
i

�
p2i
2m

+ V (ξi)

�

+
q

d

%
ωc

2C
(a+ a†)

&
i

ξi +
1

2C

�
q

d

&
i

ξi

�2

+
mω2

P

2

&
i�=j

Dijξiξj .

(3.12)

To match the general expression given by (3.1), we need to consider that the matter polarization

vector is given by MP (Mr) #→ q
'

i ξiMezδ
(3)(Mr − Mri), where Mez is a unit vector directed along the z-axis

(normal to the capacitor plates). Since the electric field inside the capacitor is to good approximation

homogeneous, and normal to the plates, the cavity mode function is approximately Mfc(Mr) ≈ Mez. The

parameters are matched considering ε0V #→ Cd2, which is actually consistent with having V = A ·d,
and with the usual capacitance of a parallel plate capacitor, C = ε0A/d (where A is the area of the

plates).

3.3 Polaritons and dynamical instabilities in LC cavity

In this section we take a closer look at equations (3.4)-(3.8). In particular, we focus on the case of

harmonic dipoles, for which

V (ξ) . mω2
0

2
ξ2. (3.13)

In this case the equations of motion can be solved by introducing their own normal modes, as it

is common practice in all coupled harmonic systems [48]. Then the “quantum problem” and the

classical one coincide, i.e. finding the normal modes is equivalent to finding the eigenstates of the

quantized system. The normal modes will be given in terms of polaritons, because the coupling

between the dipoles and the cavity will hybridize light and matter. But there is another impor-

tant feature here which is given by the dipole-dipole interactions. The dipole-dipole interactions,

expressed in terms of the matrix Dij will also give rise to dipolar modes, in which the oscillation

can be shifted in a non trivial way. In the end the system exhibits something that we could name

dipolar-polaritons, meaning that the normal modes will be a complicated mixture of dipolar modes

and the LC resonance. To proceed further we first consider the dipolar modes, which are solutions

of the eigenvalues equation &
j

Dijcn(j) = ηncn(i). (3.14)
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Since Dij is real and symmetric, the modefunctions cn(i) are an orthonormal basis, from which we

can reconstruct the dipole ensemble

ξi =
&
n

Xncn(i). (3.15)

The equations of motion become

Ẍn = −(ω2
0 + ηnω

2
P)Xn − ωP

%
ω0

ωc

√
νnΦ̇,

Φ̈ = −ω2
cΦ+ ωP

%
ωc

ω0

&
n

√
νnẊn,

(3.16)

where we introduce the mode-dependent filling factor

νn =
r30|

'
i cn(i)|2|
V

, (3.17)

which measures the overlap between the n-th dipole mode and the cavity. It is important to notice

that the filling factor is sensitive to the phase of the given dipole modes, and, for instance, it is

zero if the dipoles oscillate completely out of phase (anti-ferroelectric dipolar mode), while it is

maximum when the dipoles oscillate in-phase (ferroelectric dipolar mode). Moreover, the filling

factor tells us about the importance of the cavity-dipole coupling compared to the dipole-dipole

interaction. This can be seen by considering a ferroelectric mode (fe), in which all dipoles are in

phase. For such a mode cn(i) = 1/
√
N ∀ i, so the filling factor is νfe = r30N/V = Vd/V , which the

ratio between the volume occupied by the dipoles and the total cavity volume. For a dense dipole

ensemble it could be the case where the dipole volume is very small with respect to the cavity,

the plasma frequency is very large, but the overall cavity-dipole coupling is very small. Note that

the strength of light-matter coupling in this context is given by the plasma frequency ωP, which

regulates both the dipole-dipole and the cavity-dipole interaction.

Moving on, we can transform Eq. (3.16) in Fourier space and derive the polynomial eigenvalue

equation for the polariton frequencies ω

(ω2 − ω2
c )

!
n

(ω2 − ω2
n)

�
1−

&
n

νnω
2
Pω

2

(ω2 − ω2
c )(ω

2 − ω2
n)

�
= 0, (3.18)

where we used the compact notation ω2
n = ω2

0+ηnω
2
P. When the system is large and regular enough,

the dipolar modes become sines and cosines, and only the zero-th mode has a relevantly large filling

factor. This zero-th mode, which is often called the collective mode, is completely ferroelectric, so
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Figure 3.3: The spectrum of the two bright polariton branches is plotted as a function of ωp and for ωc = ω0.
In (a) a positive value of η ≈ 0.3 and in (b) a negative value of η ≈ −0.2 has been assumed. In
both plots the orange (lower) and the dark blue (upper) lines represent the spectrum obtained
from Eq. (3.20), while the shaded area indicates the range of frequencies of all other dark
polariton modes obtained from the numerical solution of the full eigenvalue problem given by
Eq. (3.18). The values of η and the full coupling matrix Dij used in the calculations of the
polariton spectra in (a) and (b) have been obtained for the case Nx = 10, Ny = Nx, with three
layers on z, Nz = 3, and a total number of dipoles N = NxNyNz. The values of h/d = ν ≈ 0.2
and h/d = ν ≈ 0.9, respectively. See section 3.5 for the definition and explanation of h/d and
for further details.

all the dipoles are in phase, therefore c0(i) . 1/
√
N ∀ i, which gives ν0 . r30N/V and

X0 =

'
i ξi√
N

, η0 =
1

N

&
i �=j

Dij , (3.19)

(for simplicity of notation we will drop the index “0” in the following). In this limit the other

dipolar modes are basically decoupled from the cavity, and, because the dipoles are harmonic, also

uncoupled among each other. Therefore we have N − 1 dark modes, while the collective mode gets

strongly hybridized with the EM field and splits into two polariton modes, as depicted in Fig. 3.3.

Restricting ourselves to this collective mode, we can solve Eq. (3.18), which gives the two polariton

frequencies

ω2
± =

ω2
d + ω2

c + νω2
P ±

"
(ω2

d + ω2
c + νω2

P)
2 − 4ω2

dω
2
c

2
, (3.20)

where ω2
d = ω2

0 + ηω2
P is the frequency of the collective dipolar mode. In Fig. 3.3(a-b) we see

two examples of the polariton spectrum, indicated by the blue and red lines. In the first case (a)

η > 0 and we see that the polariton frequencies are always positive, meaning that the system is

dynamically stable. In the second case (b) instead η < 0, and we can see from Fig. 3.3(b) that the

lower polariton branch goes to zero at sufficiently large coupling. Despite the fact that from this

perspective it might seem to be related to the light-matter coupling, this instability is actually just

due to an instability occurring in the collective dipolar mode itself. Indeed setting the condition
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ω2− = 0, we find that
√−ηωP = ω0, (3.21)

which just means that ω2
d = 0. This is not surprising because the light-matter coupling is propor-

tional to ωP, which also regulates the strength of the dipole-dipole interaction. Looking at Fig. 3.3

we see that eventually most of the dipolar modes (the grey shaded region) go unstable when the

plasma frequency is large enough.

A vanishing oscillation frequency means that dipolar system becomes unstable and the assumed

harmonic approximation is no longer valid. In particular what has to be reconsidered here is the

harmonic approximation for the dipoles. If we reintroduce a finite non-linearity, which is the case

in every real physical system, the instability can be cured and eventually replaced by a phase

transition. This phase transition will be one of the subjects of the next chapters, and for now we

limit ourself to acknowledging that something happens when the dipolar energy becomes negative

and comparable to the bare dipole frequency, in general for any given dipole mode ηnω
2
P = −ω2

0.
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Figure 3.4: Plot of the frequencies ω± of the two bright polariton modes as a function of the plasma frequency
ω2
P. See Eq. (3.20). The three plots show the cases of (a) η > 0, (b) η = 0 and (c) η < 0.

Focusing just on the two polariton modes, we see that depending on the value of η, there are

three different limiting cases for the behaviour of the lower polariton mode at very large couplings:

η = 0 ⇒ lim
ωP→∞ω− = 0,

η > 0 ⇒ lim
ωP→∞ω− = ωc

%
1− ν

ν + η
,

η < 0 ⇒ lim
ωP→ωc

P

ω− = 0 Instability.

(3.22)

These three different cases are illustrated in Fig. 3.4. In the next section we will go a bit more in

the details of the η-parameter, focusing on the physical realisation of these three cases.
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3.4 The η-parameter and the macroscopic field inside a dielectric

Since the filling factor is bounded by νn ≤ 1 ∀ n, when ωP ∼ ωc, ω0 the dipole-dipole interaction

gives a dominant contribution to the physics of cavity QED, giving a central role to the parameter

η = 1/N
'

i �=j Dij . This bring us from the field of dilute emitters (e.g. atoms) to the field of

strongly interacting dielectrics. We want here to establish a connection between our theory and the

usual theory of macroscopic dielectrics. To do so, we need to understand the static case, where all

dipoles are polarised and where there is no dynamics. This analysis will give us the correct intuition

that we will apply to the dynamical case where the external electric field is given by the cavity and

it is also a dynamical degree of freedom itself.

Let’s consider the case in which the dipolar ensemble is subjected to an external electric field.

The total electric field in space is given by (considering all fields just directed along z)

E = Eext − Edip(Mr), (3.23)

where Edip(Mr) is the field generated by all the dipoles and it is in general non homogeneous. The

dipolar field can be expressed in terms of the longitudinal delta function and the polarization density

P (Mr)

Edip(Mr) =
1

ε0

�
d3r�δ
zz(Mr, Mr

	
)P (Mr

	
) =

1

4πε0

�
d3r�

|Mr − Mr �|2 − 3 [(Mr − Mr �) · Mez]2
|Mr − Mr �|5 P (Mr �), (3.24)

where the last equality holds only in free space, while it should be corrected by additional terms

in cavities, to take account of the image charges. A crucial question in the physics of macroscopic

dielectric is how to relate the macroscopic polarization, which is measured, to the electric field inside

the dielectric and finally to the microscopic polarization. To this end we introduce the average dipole

electric field,

ED =
1

N

N&
i=1

Edip(Mri), (3.25)

which is the average field that each dipole sees, due to the other dipoles. Note that in this average

we remove by hand the contribution of the self-field which is generated by the dipole itself (which

is actually infinite). The total average field inside of the dielectric is given by

Eavg = Eext − ED. (3.26)

Assuming a meanfield approach we describe the dynamics of each dipole as if it feels the average
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electric field rather than the true local one

mξ̈i ≈ F (ξi) + qEavg, (3.27)

where F (ξi) is the generic internal force of each dipole.

If we consider a strong enough external field, we can assume that all the dipoles are polarized

in the same way, having all the same dipole moment µi . µ0 = qξ0 ∀i. So we are considering an

homogeneously polarized medium. Its induced total electric field is then given by

qED = mω2
P

 1

N

&
i �=j

Dij

 ξ0 = ηmω2
Pξ0. (3.28)

Here we see the central result of this section, the η-parameter just represents the average electric

field amplitude felt by each dipole, due to the others. If we want now to calculate the equilibrium

value of ξ0 subjected to the external electric field we have

ξ0 =
q

mω2
0

Eavg (3.29)

where we consider that each dipole has an harmonic dynamics with frequency ω0 (as usual). Using

the definitions (3.23), (3.28) and the definition of η (3.19) we find the final closed expression for

each single dipole displacement

ξ0 =
Nσ

1 + ηNσ

ε0r
3
0

q
Eext, (3.30)

where Nσ = ω2
P/ω

2
0. Defining the collective static polarization density as P = qξ0/r

3
0, we have

P =
Nσ

1 + ηNσ
ε0Eext. (3.31)

For a non-interacting system we would have P = Nσε0Eext, which corresponds to have η = 0.

For any η > 0 the consequent static polarization is smaller than the non-interacting one, so we

say that the dipole-dipole interaction has a de-polarizing effect. As shown in the last section, this

de-polarization can be observed in the polariton spectrum too, through the relative depolarization

shift, see Fig. 3.4(a).

For η < 0, instead, the static polarization becomes larger than the non-interacting one. At the

critical density, expressed by the relation Nσ = −1/η the static polarization diverge. As anticipated

in the previous section, this signals the onset of a ferroelectric phase transition. At this density the

harmonic approximation for the dipoles ceases to be valid, and a more detailed description must

be assumed. We will see in the next chapters that it will be still possible to keep a reasonably

simple description of our dipoles to grasp the physics at this high densities, thanks to the two-level
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approximation. But this requires to restrict ourself to a more special class of systems.

3.5 Dipole-dipole interactions and geometry

So far we have never really commented on how to obtain different values for η. Since η does not

depend on any of the other parameters, it can only be influenced by the geometry of the dipolar

lattice and the boundaries. Indeed from the classical theory of dielectrics [61] we know that the

geometrical shape of the dielectric plays an important role for its response to an electric field. This

translates in our language in a variety of values for η, which in the end determines most of the

important properties of the system (above all its dynamical stability).
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Figure 3.5: Schematic view of the three different most relevant dipoles configurations. The three figures are
three dimensional, but just their projection on the (x, z) plane is represented.

The three situations above, η > 0, η = 0, and η < 0 corresponds to different geometrical

realisations of the dipole’s lattice, due to the anisotropy of the dipole-dipole interaction:

• η > 0, this is the case of a pancake-like arrangement, where the dipoles are placed on a simple

square lattice on (x, y) plane, and directed along z (as usual). If we take a single infinite layer

in the (x, y) plane, we have

η =
1

4π

&
(n,m)∈Z2/0

1

(n2 +m2)3/2
=

ζ(3/2)L(3/2, χ4)

π
≈ 0.72, (3.32)

where the last equality is calculated in Ref. [62, 63]. This value is the largest value that one

achieves on a regular square lattice. It still holds in a thin slab, where many layers are packed

on top of each other, provided that the number of dipoles along z is smaller than the in-plane

dipole’s number, as it is schematically represented in Fig. 3.5(a). In App. E.4 one can find a

few numerical example while in App. E the same calculation is performed in the continuum

polarization limit, including the famous Lorentz correction term [39].

• η = 0 does not necessarily mean that the system is non-interacting or so dilute that electro-

static forces are negligible. Indeed in a simple cubic lattice, assuming that the dipole is located
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in the center of the cell, the electric field at the center, generated by the six nearest neighbour

dipoles, is exactly zero for any density. Actually in a infinite cubic lattice all positive contri-

butions coming from in-plane dipoles are exactly compensated by the negative contributions

from all the dipoles along z. In a finite system this cancellation still holds provided that the

system has the shape of a sphere, as indicated in Fig. 3.5(b). In a cube there will be still a

very small contribution from the surface boundary.

• η < 0, this is the case of a dipolar ensemble elongated along the z-axis. In the limiting case

where all the dipoles are aligned on top of each other one obtains

η = − 1

2π

&
n∈Z/0

1

|n|3 = −ζ(3)

π
≈ −0.38. (3.33)

This value is the minimum value achievable. It still holds for a quasi one-dimensional, cigar

shaped system, as in Fig. 3.5(c).
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Figure 3.6: (a) Sketch of an ensemble of N = 3 × N2
x dipoles, which are arranged in three layers on a

square lattice with spacing r0 and placed between two capacitor plates. For this configuration
the resulting value of η is plotted in (b) for varying d ≥ h and different Nx.

The value of η actually strongly depends on the boundary condition of our electrostatic problem.

In particular all the discussion reported above is valid in free space. When the system is enclosed in

a finite region, with metallic boundaries (such as our capacitor of the LC cavity), the dipole-dipole

interaction is modified by the presence of the image charges (see Ch. 1), and so is η. For a thin

slab, consisting of a few layers with very large area, we obtain

η ≈ 2

3
− h

d
, (3.34)

where h is the thickness of the dipolar slab. This effect is reported in Fig. 3.6 and it is discussed in

more detail in App. E.5. This linear dependence on h is necessary in order to keep the zero potential



64 CHAPTER 3. A MINIMAL MODEL OF CAVITY QED

drop across the plates. It can be easily understood considering the relation between the induced

charge (the charge needed on the capacitor plates to satisfy the metallic boundary conditions) and

the surface charge on the flat dielectric slab Qsurf = AP , where A is the surface’s area of the

dielectric. Following the result in Ch. 1 we have

Qim =

'
i qξi
d

=
qξ0
d

N
nd

nd
= qξ0nd

Vd

d
= PA

h

d
= Qsurf

h

d
, (3.35)

where nd is the density of dipoles, Vd = h × A is the volume occupied by the dipolar lattice, and

we use the fact that for an homogeneously polarised medium the polarisation density is P = qξ0nd.

The electric field generated by this image charge is in opposition to the field generated from the

dipoles and contributes to the average local field as

ED #−→ ED − h

d

Qsurf

ε0A
≈

�
2

3
− h

d

�
P

%0
. (3.36)

This means that in the case of a slab inserted in between two grounded metallic plates, with h ≈ d,

we expect

η . −1

3
. (3.37)

As we have verified numerically, this means that the presence of the plates can change the sign of

the macroscopic field inside of the dielectric, potentially inducing a ferroelectric phase transition in

the dipole’s ground state.

3.6 Coupling parameters and effective fine structure constant

In this section we take a closer look at the coupling parameter in our cavity QED system. We start

from the generic Hamiltonian (3.12) describing a dipolar ensemble inside the capacitor of an LC

circuit, and assign an intrinsic length scale to the dipoles, ξ0. This can be, for instance, the matrix

element between two levels. The single particle coupling is then given by

g =
qξ0
d

%
2
ωc

�C
= ωc

√
8πα. (3.38)

Here we introduced the effective fine structure constant

α = αfs

�q
e

�2
�
ξ0
d

�2 Z

Z0
, (3.39)

where αfs = e2/(4πε0�c), e and c are the elementary electron’s charge, and the speed of light,

Z =
$

L/C is the LC impedance, and Z0 =
$

1/(ε0c) is the vacuum impedance. The effective fine
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structure constant is a useful concept which highlights the connection between cavity QED and the

underlying general theory of quantum electrodynamics. In particular it is important to notice that

we have just two ways to boost it above unity (we recall that αfs ∼ 1/137): either increasing the

charge of the dipole or increasing the impedance of the cavity (the LC circuit). It is also important

to stress that just increasing the effective size of the dipole will not be enough, since, in order to

fit into the cavity, it must be that ξ0 < d. This last point was crucial in setting the bound for USC

with Rydberg atoms in optical cavities [64]. Instead in an “artificial” cavity, where its impedance is

different from the vacuum one, it is possible in principle to achieve arbitrary coupling strength.

It is important to emphasize that the coupling “g” defined in Eq. (3.38) is the coupling between

a single dipole and the cavity field. This must not be confused with having a large coupling

between the cavity and the ensemble as a whole. Indeed, as a consequence of the long-wavelength

approximation, which leads to the collective coupling, we could define a collective coupling, for the

collective polarization P ∼ '
i ξi. The matrix element of such operator between the dipoles ground

state and their first excited state scales like P01 ∼ √
Nξ0, assuming the dipoles are not correlated.

Then the collective coupling can be defined as

G =
√
Ng. (3.40)

This quantity can be very large even for weakly interacting dipoles. The collective coupling is

directly related to the plasma frequency, defined in (3.6), by

G =
√
νωP

%
2mξ20
�

ωc .
√
νωP

%
ωc

ω0
(3.41)

Here the last equality follows when the dipoles can be approximated as harmonic oscillators. This

relation clearly shows that the collective coupling essentially depends only on the dipole density and

is thus directly proportional to the typical scale of the dipole-dipole interactions, i.e., the plasma

frequency.

3.7 Coupling regimes of cavity QED

In this last section we partially review the usual classification of light-matter regimes [65, 66]. They

can be characterised by comparing the energy stored in the dipole-field coupling to the other energy

scales in the system. We restrict this discussion to the case of a single dipole. In general the

dipole-field coupling can be characterised by the quantity

ḡ =
µ0E0

�
, (3.42)
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where µ0 =
$
µ̂2� is the ground state expectation value of the dipole operator of our dipole, while

E0 =

"

Ê2� is the vacuum expectation value of the electric field operator. In general matter and

cavity have multiple energy scales, but in the simplest scenario we can say that they are characterised

by at least two energy scales

ωc , ω0, (3.43)

i.e., the cavity frequency and the dipole frequency. There are actually other two scales that we need

to consider even in the simplest situation which are the cavity losses and the dipole friction

γ , κ. (3.44)

In the standard quantum optical literature three regimes are mainly reported, based on the

relations between these three energy scales

• Weak coupling (WC) is characterized by the hierarchy g " γ, κ " ωc, ω0. The losses are weak

enough to resolve the individual transitions of the cavity and the dipole, but larger than the

coupling between them. So it is impossible to resolve the Rabi oscillations between dipole

and cavity. A photon has to bounce back and forth in the cavity too many times before being

absorbed, so it is more likely it leaves the cavity before starting to “talk” with the atom.

• Strong coupling (SC) is characterized by the hierarchy γ, κ " g " ωc, ω0. In this regime

it is possible to observe the coherent coupled dynamics. The eigenstates of the system are

polariton states, where light and matter degrees of freedom hybridize. One of the main

achievement in recent technology was to have access to this regime on various platforms of

cavity QED, from optical cavities [1], to solid state devices [67], or superconducting circuits

[68]. When the harmonic or the two-level approximation holds for the dipoles, this regime

supports an approximate conservation law, the conservation of the total excitation number.

For example, considering just two-level dipoles, the total excitation number is defined as

N = a†a+
'

i s
i
z. Promoting this quantity to a conserved one, means that we need [N,H] ∼ 0.

This is possible just neglecting some terms in the light-matter interaction, which is often

presented in the literature as rotating-wave approximation (RWA). In particular the ground

state of the approximated system coincide with the ground state of the uncoupled system.

Because this ground state is characterised by having 
GSRWA|N |GSRWA� = 0, it is often call

the vacuum state.

• Ultra-strong coupling (USC) is characterised by the hierarchy γ, κ " ωc, ω0 " g. The dom-

inant energy scale is the light-matter coupling. This regime can be also considered “non-

perturbative”, in the sense that the coupling cannot be addressed perturbatively with respect
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to the matter and cavity bare energies (as opposed to the previous two regimes). The RWA is

no longer applicable. As a consequence the ground state is no longer empty. It is often said

that the vacuum state in USC is populated by virtual excitations. The role of these virtual

excitations has caused many debates in the literature [69]. Note that in parts of the literature

another distinction between ultra-strong coupling, where g ∼ ωc, ω0, and deep-strong coupling

where g > ωc, ω0 is made [66, 65]. This distinction is physically not well motivated, so we will

not adopt it in this thesis.

Although this is the standard nomenclature in cQED, it is not the optimal one. The reason is that

“weak coupling” (WC) and “strong coupling” (SC) were introduced historically having in mind a

comparison between losses and coupling, taking for granted that the bare energies where anyway

fixed on a complete different scale, which is the case in atomic physics. With the rise of artificial

atoms in solid state or circuit QED all the energy scales have a broad variability, making this

nomenclature obsolete. In the specific case of “ultra-strong coupling” (USC) it is clear that we must

consider all three energy scales. In order to have all the possibilities without too much confusion one

should use a more complete nomenclature, based on the importance of losses, and the importance of

the coupling. We have three regimes for the damping (for simplicity we denote all possible damping

rates by γ and the other internal energy scales of the dipoles or the cavity by generically ω1, ω2, . . . )

• Ideal, where the damping is smaller than all the internal energy scales of the system γ "
ω1, ω2 . . . .

• Damped, where some internal energy scales are smaller than the damping and some other are

larger ω1 " γ " ω2 . . . .

• Over-damped, where all internal energy scales of the system are smaller than the damping rate

ω1, ω2 · · · " γ.

We have then two coupling regimes (here we explicitly consider only the cavity frequency ωc

and the dipole frequency ω0 as the internal energy scales of the system to compare to the coupling

strength g)

• Weak coupling, g " ωc, ω0.

• Strong coupling ωc, ω0 " g.

This discussion assumes in any case a general resonance condition, for which g > |ωc−ω0|. Without

this condition a further classification concerning the detuning is needed.

Anyway, we will not really adopt any strict classifications on coupling regimes and we will

typically refer to USC or WC, with the meaning “coupling large” or “coupling small” with respect

to the bare energies. Except if specified, we will always assume ideal systems with negligible losses.
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Chapter 4

The vacua of cQED

In this chapter we start to investigate the physics implied by our minimal model for cavity QED,

developed in the previous chapters. We mainly focus here on the predicted ground state (or vacuum

state) as a function of the model’s parameters, giving particular attention to the transition from

weak coupling to ultra-strong coupling. The study of the ground state of cavity QED is of a

fundamental importance and it still remain the center of an 40-years old debate about the existence

of the so-called superradiant phase transition.

The concept of a superradiant phase arose from analysing the ground state of the Dicke model

[7], which was used to model the collective decay of an ensemble of molecules collectively coupled

to a single resonant mode [70] (in the original paper by Dicke the electric mode was not treated

as a degree of freedom, and the main focus was on calculating the spontaneous emission rate by

using Fermi’s golden rule. The quantized electric field as an independent degree of freedom was

later introduced by Tavis and Cummings [71], following the notorious approach which led to the

Jaynes-Cummings model [72], for just a single dipole). The idea of Dicke was mainly to show that

when an ensemble of emitters decay in resonance with a single mode, there are collective effects,

even in the absence of direct interaction, which significantly enhance the spontaneous emission rate.

In particular the emission rate of the system, taken as a coherent ensemble, is largely increased,

from which Dicke coined the term superradiant emission.

Roughly 20-years later Hepp and Lieb [6] took a closer inspection of the Dicke model (or,

better to say, the Tavis-Cummings model), and they noticed that, as a function of the light-matter

coupling strength, a phase transition arises in the thermodynamic limit. This phase transition is

a second order transition with the emergence of an order parameter that spontaneously breaks a

symmetry. This order parameter is the ground state expectation value of the photon’s annihilation

operator ϕ = 
0|a|0� and the broken symmetry is the discrete Z2 symmetry of flipping the sign of

the electric field and simultaneously flipping the sign of the dipole moments. The peculiarity of this

transition is that it is controlled by the light-matter coupling suggesting a crucial role played by

69
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the vacuum fluctuations of the electromagnetic field. This also opened a quite interesting link to

other vacuum properties in quantum electrodynamics, like the Casimir effects or Unruh radiation,

topics which always remain among the most popular leitmotivs in modern physics [69]. Moreover

the macroscopic presence of photons in the ground state makes this prediction quite intriguing and

also a little mysterious, as it represents a Bose-Einstein condensate of photons, which is also another

recurrent topic in modern debate [67, 73]. All these implications generated a lot of interest in this

seemingly new type of phase transitions. However, there was also a lot of scepticism about the

applicability of the Dicke model to describe real light-matter systems. It all ended up in a 40 years

long debate, with a series of no-go theorems and counter no-go theorems, examples and counter

examples [6, 21, 74, 8, 75, 76, 22, 77, 78, 79, 50, 20, 80, 81]. Here we try to clarify this issue, and

to understand what is really behind the Dicke model and its phase transition. To do so we will not

just rely on mathematical statements derived from our heavily approximated models, but we will

always try to link every prediction with some generic physical intuition, which we believe is, in the

end, the most solid proof.

The results reported in this chapter are mainly based on the two publications Physical Review

A 97, 043820 (2018) and SciPost Phys. 9, 066 (2020). In the first article I am the first author, but

for the results reported in Sec. 4.3, 4.4, 4.5, 4.6, 4.8 Tuomas Jaako made essential contributions to

the numerical and analytical results. The result reported in Sec.4.9 have been primarily obtained

by Michael Schuler, but are included in this thesis for the completeness of the physical discussion.

4.1 A quick review of the Dicke model and its phase transition

We consider an ensemble of two-level dipoles (atoms, quantum dots...emitters), which are all iden-

tical. Their Hamiltonian is just the sum of each individual Hamiltonian Hd = ω0
'N

i siz = ω0Sz,

where it is convenient to use collective spin operators. We assume that all the molecules are coupled

to a single cavity mode with Hamiltonian Hph = ωca
†a. The molecules couple to the electric field

via the usual dipole coupling ∼ 'N
i
Mξi · ME, which gives HI = g(a+a†)Sx, where the coupling constant

g ∼ Mξ01 · ME0 is just the product of the matrix element between the two levels of the individual dipole

and the vacuum field amplitude. Altogether we end up with the Dicke model

HDicke = ωca
†a+ ω0Sz + g(a+ a†)Sx. (4.1)

Since this model was intended to be used for this specific situation not too much care has been

given to its derivation and its range of validity. This completely made sense at that time, because

the model was compatible with the simplest physical intuition and its basic core idea of collective

coupling was subsequently proved experimentally by the discovery of superradiance [82].
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As already mentioned above the ground state of the Dicke model can undergo a so-called su-

perradiant phase transition. The presence of this phase transition can be easily spotted by con-

sidering the Holstein-Primakoff approximation (see App. D) for the dipoles, which reduces the

collective spin operators to operators of a single harmonic oscillator, by identifying Sz . b†b−N/2,

Sx . √
N/2(b + b†). This approximation can be justified when we are only interested in the dy-

namics of small fluctuations around the state for which 
Sz� = −N/2. In our particular case this

condition is motivated by the fact that the intuitive ground state of such a system should be the

so-called normal ground state |GS� . |0ph, Sz = −N/2�, where zero photons are present and the

dipoles are all in their individual ground state. The Dicke Hamiltonian is thus reduced to the

Dicke-Holstein-Primakoff Hamiltonian

HDicke . HD−HP = ωca
†a+ ω0b

†b+
g
√
N

2
(a+ a†)(b+ b†). (4.2)

Summing and subtracting the quantity g2N/(4ωc)(b+ b†)2 we can complete the square, leading to

HD−HP = ωcã
†ã+ ω̃0b

†b, (4.3)

where ã = a + g
√
N/(2ωc)(b + b†) is a hybrid light-matter operator (which, however, is not an

independent degree of freedom) while the dipoles are still described by the same harmonic degree

of freedom with renormalised energy

ω̃0 = ω0

#
1− g2N

ωcω0
. (4.4)

Although the Dicke-Holstein-Primakoff Hamiltonian appears to be diagonal, it is not, because the

ã and b operators do not commute. But we can still learn something about its range of stability.

The stability of this Hamiltonian requires that all the frequencies involved are real and larger than

zero. But at the critical coupling gc =
$

ω0ωc/N the dipoles frequency vanishes ω̃0 = 0, while for

larger coupling it becomes imaginary and the Hamiltonian is no longer hermitian. This means that

we are crossing the range of validity of the Holstein-Primakoff approximation and the ground state

in such a regime is no longer given by the normal ground state |GS� . |0ph, Sz = −N/2�.

4.2 General considerations about the vacuum of dipolar QED

Here we want to introduce some very basics thoughts that shine light on the Dicke model and the

Dicke transition, contextualised in equilibrium electrodynamics.

In particular we want to clarify the apparent prediction of a ground state BEC of photons
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and how the existence of this phase transition can be understood from a very general ground. To

fully see the relation with BEC, we explicitly write the Dicke superradiant ground state in the

thermodynamics limit [7]

lim
g→∞ |GSDicke� = |α�| →→ . . . �, (4.5)

where α = −g
√
N/ωc indicates the amplitude of a coherent state of photons [83], and | →� is

an eigenstate of sx. This state has the property that 
a� = α, thus it spontaneously breaks the

symmetry of the original Hamiltonian, in complete analogy with the BEC transition, characterised

by a non-vanishing ground state expectation value of the field operator 
ϕ̂� = ϕ [84]. However, this

interpretation is rather misleading, or at least ambiguous. Indeed, as we have seen in the previous

chapters, the photon’s annihilation operator appearing in the Dicke model involves a combination of

the canonical momentum and the transverse vector potential of the electromagnetic field, projected

on a certain mode. We can schematically say that

a ∼ Pk − iqk. (4.6)

This means that an eventual finite expectation value of this operator implies a non-vanishing ex-

pectation value of the momentum or the vector potential. Because the canonical momentum is

not gauge invariant, we need to specify which gauge we intend to use. Here we focus only on the

Coulomb gauge and the dipole gauge.

In the Coulomb gauge the canonical momentum expectation value (for the ground state, and

more general for an eigenstate) is always zero. This can easily be verified by considering that


GS|MΠC|GS� = ε0
GS| ṀA|GS� = −iε0
GS|[ MA,H]|GS� = M0, (4.7)

where we used the fact that any time derivative operator expectation value vanishes over an eigen-

state of the full Hamiltonian. On the other side the vector potential does not have to vanish, but

instead it follows the relation

− ε0c
2
GS|∇2 MA|GS� = 
GS| MJ⊥|GS�, (4.8)

which, again, follows from the fact that ε0c
2∇2 MA + MJ⊥ = ṀΠ. This implies that we can write the

expectation of the vector potential convoluting the transverse current with the Laplace Green’s

function


GS| MA|GS� = 1

ε0c2
G G 
GS| MJ⊥|GS�. (4.9)

Therefore, in the Coulomb gauge the only way to have a photon’s annihilation operator with non-
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vanishing expectation in the ground state is to have a non-vanishing transverse current. But this

means that we are just observing the average magnetostatic field generated by a permanent magnet.

In this case our “photon BEC” would just be the magnetic field outside a polarized magnet. The

electromagnetic field without matter cannot fulfil the requirements of a BEC. However, since we

didn’t include the spin degree of freedom in our theory, also the expectation value of the transverse

current will always be zero in the ground state. This follows again from taking the expectation

value over an eigenstate of a time derivative of an operator (for instance, when we take the dipole

approximation we have explicitly ṀP⊥ = MJ⊥, as detailed in App.B. ).

It’s worth to repeat the same calculation in the dipole gauge. Following the same reasoning as

above, we find that the canonical momentum expectation does not vanish in this case, while it is

the vector potential to be always vanishing here.


GS|MΠD|GS� = 
GS|MP⊥|GS�, (4.10)


GS| MA|GS� = M0. (4.11)

We notice that, in a quite complementer way, in the dipolar gauge the expectation value over the

ground state of the canonical momentum is equal to the transverse polarization. This means that

in this gauge a “photon BEC” would appear as the electrostatic field generated by a ferroelectric

material ( a material which spontaneously polarizes even at zero temperature). Despite the fact it

seems that the two gauges give different predictions, this is not the case. Indeed the only difference

is that they deal with different variables. In particular in the Coulomb gauge it seems that there

is no electrostatic field linked to the matter polarization. This is obviously wrong, cause we are

forgetting the direct Coulomb interaction, which is not present in the definition of the canonical

momentum, since we take it as just the transverse component of the electric field. So in Coulomb

gauge we have that the electrostatic field in the ground state is just given by the direct Coulomb

term, which gives the transverse polarization (i.e. the expectation of the canonical momentum in

dipolar gauge) under the dipole approximation


GS| ME|GS� = −
GS|M∇φ|GS� Dip.approx.−−−−−−−→ −
GS|MΠD|GS�. (4.12)

Even though it is clear that a ground state BEC of photons is a misleading concept it is still often

presented like this in the current literature [85, 86, 87].

From the previous analysis it is clear that any phase transition in the photon’s field is just a

mirror of a phase transition in the matter part. But the way in which this mirroring is implemented

depends on the representation we choose for the electromagnetic field in terms of its potential. Thus

it is crucial to specify how we derived the Dicke model. This ambiguity was actually central in the
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debate around the Dicke model, but somehow there was never a clear statement about it. A lot of

words were spent to discuss whether or not the “A2-term” should or shouldn’t be included in the

Dicke Hamiltonian, as a direct proof of the existence of this phase transition. However a quick look

to the constrained relations between the degrees of freedom involved already says that yes, it exists,

it is a transition between having or not having a static field generated by spontaneously polarized

matter [20, 21, 76].

4.3 The extended Dicke model and a the phase diagram of cQED

As discussed in the last section, the proof of the existence of a phase transition in the quantized

electromagnetic field does not require any specific approximated model (as the Dicke model, for

instance). But it can be argued already based on from basics considerations. In contrast, to have

more information about the role of the quantized field in the phase transition and to start to

have quantitative prediction, we do need a specific model. In particular, we want to understand

the possible ground state phases in cavity QED and the role of quantum fluctuations in their

realisation. In our case we take the model we developed in the previous chapters, which is given by

the Hamiltonian

HcQED = ωca
†a+ ω0Sz + g(a+ a†)Sx +

g2

ωc
S2
x +

g2

ωc

N

ν

&
ij

sixDijs
j
x. (4.13)

This model strongly depends on the arrangement of the dipoles, through the dipole-dipole inter-

action described by Dij . In general this term introduces a large complexity, making the problem

very hard to solve, or even unsolvable. In order to have at least a first grasp on what is going on,

we introduce a very important simplification: we replace the finite range dipole-dipole interaction

with an infinite range interaction, weighted by the average value of the dipole force over the given

geometry

N
&
ij

sixDijs
j
x #−→ ηS2

x. (4.14)

With this approximation the cavity QED Hamiltonian becomes the so-called extended Dicke model

(EDM)

HcQED ≈ HEDM = ωca
†a+ ω0Sz + g(a+ a†)Sx +

g2

ωc
(1 + ε)S2

x, (4.15)

where ε = η/ν, and all the geometrical information is now contained in the average dipole-dipole

energy

η =
1

N

&
ij

Dij . (4.16)
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The great simplification of this model is that it commutes with the total collective-spin operator,

[HEDM, S2] = 0, (4.17)

where S2 = S2
x + S2

y + S2
z . This symmetry makes the Hamiltonian block diagonal, with each block

given by a spin sector, labelled by the quantum number s = 0 . . . N/2 − 2, N/2 − 1, N/2 . The

Hilbert space related to each sector (assuming a cutoff in the photon’s number Nph) has dimension

dimH = Nph × (2s+1), which scales linearly with the number of dipoles. Now the problem can be

efficiently tackled with both analytical and numerical methods.

1 2 30.1 0.5

0.1

-0.1

0 “normal”

“superradiant”

“subradiant”

crossover

2nd order

1st order

Figure 4.1: Ground-state phase diagram of the extend Dicke model HEDM as a function of the effective
finestructure constant α = g2/(2πω2

c ) (horizontal axis) and the average dipole-dipole interaction
strength ε = η/ν (vertical axis). For this plot ω0/ωc = 1 and N = 8. The red dotted line
indicates the value of the critical coupling strength given in Eq. (4.24) and the other phase
boundaries are defined in the text. For each phase, the insets illustrate the reduced state of
the dipoles, ρd, in terms of a Bloch-sphere representation. The color shows the value of the
Q-function Q(Mn) = 
Mn|ρd|Mn� ∈ [0, 1], where Mn is a unit vector and |Mn� the corresponding coherent
spin state. Note that for a better visibility, the three insets have been plotted with different
colorscales.

To proceed we restrict ourself to the resonant case, where ω0 = ωc and we move between the

different regimes varying (g, ε), the light-matter coupling and the dipole-dipole energy. The sign

of the dipole energy indicates attraction, ε < 0, or repulsion, ε > 0, between the dipoles. As a

consequence ferroelectric states, where all the dipoles align, are favoured when ε < 0, while anti-

ferroelectric states are favoured when ε > 0. The case of non-interacting dipoles, ε = 0, is also very

relevant, because in this limit the influence of the quantized photon’s field is most prominent. It

is worth noticing that the extended Dicke model is not just an approximated model for dipoles in

a cavity, but it also shows up in circuit QED [55] and in more complicated solid state light-matter

systems, for instance in the field of intersubbands transitions [88]. Therefore, it represents a model
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which is fundamental in our understanding of light-matter interaction, where the standard Dicke

model is contained as the special case ε = −1. This corresponds to a system where dipoles are

arranged in a geometry which favours ferroelectric order.

In Fig. 4.1 we show the phase diagram of the ground state of the EDM parametrised by the

adimensional effective fine structure constant α = g2/(2πω2
c ) and the adimensional dipole-dipole

energy ε. The system is mainly divided into three phases:

• Normal phase. Virtual photons are mostly absent, 
a†a� ≈ 0, and the dipoles are approxi-

mately in their individual ground state, giving 
Sz� ≈ −N/2. This phase is characteristic of

the weak coupling regime, where α " 1. In this regime, for a small numbers of dipoles, one

can still obtain accurate predictions by neglecting the dipole-dipole interaction and imple-

menting the RWA (even though counter-rotating terms could still provide important pertur-

bative corrections). When the number of dipoles becomes large dipole-dipole interaction and

counter-rotating terms are non-negligible, the ground state is still well represented by the nor-

mal ground state, but one has to add the corrections that comes from the Holstein-Primakoff

approximation on top of it. So the normal ground state picks up some harmonic polaritonic

contributions. The majority of cavity QED experiments operate in this regime.

• Superradiant phase (or also ferroelectric phase). The Z2 symmetry of the EDM is sponta-

neously broken and 
a� (= 0. This implies the presence of an electrostatic field, generated by

the polarized dipoles, which also give 
Sx� (= 0. The ground state in this phase is qualitatively

identical to the superradiant Dicke ground state. This phase requires ε < 0 and large-enough

α. While this phase exists for arbitrary small coupling, its boundary to the normal phase is

strongly modified by the coupling to the cavity mode in the USC regime.

• Subradiant phase (or also anti-ferroelectric phase). As in the normal phase the symmetry

is preserved and this phase is characterised by anti-aligned dipoles, which gives 
Sx� ≈ 0,


Sz� ≈ 0. Virtual photons are mostly gone, giving 
a†a� ≈ 0. It is possible to show that

no entanglement is present between the dipoles and the cavity, so we can say that light and

matter are effectively decoupled. As we discuss in more detail below this phase is separated

only by a smooth crossover from the normal phase. In contrast to the superradiant phase, it

only appears for α > 1 and is thus a genuine feature of the USC regime.

In the phase diagram in Fig. 4.1 the border between the normal and the superradiant phase is

derived by considering the maximum in the dipoles fluctuations ΔS2
x = 
S2

x� − 
Sx�2, while the

crossover to the subradiant phase is defined by the maximum in the photon number expectation

value. Specifically, the subradiant phase is defined through the condition ∂
a†a�/∂g < 0. In every

numerical simulation we have added a small bias perturbation Hperturb ∼ λSx, which explicitly
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breaks the Z2 symmetry. This is needed in order to observe the superradiant phase even for finite

N .

4.4 Normal phase

The normal phase is characterised by small light-matter coupling, α " 1, and moderate values of

ε (which could be both positive and negative). For a single dipole, N = 1, the EDM reduces to

the standard Jaynes-Cummings model, where the ground state is simply |GS� = |0ph, ↓�. When

N > 1 the solution is more complicated, and, in particular for N � 1, counter-rotating terms

and dipole-dipole interaction are non-negligible. However, in the limit N � 1 the model is still

approximatively solvable. Indeed it can be verified that in this regime the true ground state has

just minor corrections on top of the normal ground state,

|GS� = |0ph, ↓, ↓ . . . ↓�+ |δ(GS)�. (4.18)

Therefore, we can proceed by expanding the collective spin operators according to the Holstein-

Primakoff approximation, meaning that we consider just small perturbations on top of the normal

ground state

Sz ≈ −N

2
+ b†b,

Sx ≈
√
N

2
(b+ b†).

(4.19)

The EDM becomes

HEDM ≈ HHP = ωca
†a+ ω0b

†b+
G

2
(a+ a†)(b+ b†) +

G2

4ωc
(1 + ε) (b+ b†)2, (4.20)

and the collective coupling is given by G = g
√
N . This Hamiltonian can be diagonalised introducing

the two polaritons modes

HHP = Ω+d
†
+d+ +Ω−d

†
−d−, (4.21)

with polaritons frequencies

Ω2
± =

ω2
0

�
1 + (1 + ε) G2

ωcω0

�
+ ω2

c ±
%�

ω2
0

�
1 + (1 + ε) G2

ωcω0

�
+ ω2

c

�2 − 4ω2
cω

2
0

�
1 + ε G2

ωcω0

�
2

. (4.22)

Using these Holstein-Primakoff polaritons modes, it is possible to calculate various quantities,
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for instance the ground state photon’s number, which, for moderate collective coupling scales as


a†a� . G2

4(ω0 + ωc)2

�
1− ε

G2

ωcω0

�
. (4.23)

These kind of results, regarding the normal phase and its linearised excitations, can be found,

treated in more detail, in many previous works such as [89, 90].

4.5 Superradiant (ferroelectric) phase

The superradiant phase can only emerge when the dipole-dipole interaction is attractive, i.e. ε < 0.

Under these conditions the Holstein-Primakoff Hamiltonian has an unstable point when

g = gc =

%
ωcω0

−εN
. (4.24)

At this value of the coupling strength (fixed ε) the HF Hamiltonian becomes unstable and the

whole approximation breaks down. This instability is the key signature of a phase transition, which

sharply changes the ground state. This instability is exactly the Dicke phase transition, which leads

to a superradiant state, generalised for various values of ε. For g ≥ gc it is possible to calculate the

order parameter 
a�, which breaks the symmetry, and the collective spin polarization [91]


a� = ± g

ωc

N

2

#
1−

�
gc
g

�4

,


Sx� = ∓N

2

#
1−

�
gc
g

�4

.

(4.25)

It is important to point out that the two quantities are not just coincidentally related. Indeed,

as explained in Sec. 4.2, the expectation value of the matter polarization is always linked to the

expectation of the electromagnetic canonical momentum in the dipole gauge. In the context of the

EDM this can be easily verified by considering the following equation of motion

i∂ta = ωca+ gSx, (4.26)

from which we get (remember that any time derivative operator expectation value over an eigenstate

gives zero)


a� = − g

ωc

Sx�. (4.27)

In Fig. 4.2(a) we show the behaviour of the order parameter |
a�| from a numerical simulation,

and its fluctuations Δa2 = 
a†a� − |
a�|2, together with the fluctuations of the polarization ΔS2
x =
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Figure 4.2: Superradiant phase transition. (a) Dependence of the mean value 
a� and the spin- and field
fluctuations across the superradiant phase transition point. (b) Illustration of the two possible
superradiant ground states in terms of polarized dipoles and the corresponding induced charges.
(c) Comparison of the spin fluctuations ΔSx evaluated with the extended Dicke model and the
Lipkin-Meshkov-Glick (LMG) Hamiltonian for two different numbers of dipoles. The value of
αc, where the fluctuations reach there maximum, as well as the width of the fluctuations at half
of the maximum, δα are plotted in (d) for varying N . (e) Plot of the fluctuations of the voltage
operator U (solid lines) and flux operator Φ (dashed lines) for different numbers of dipoles. The
horizontal dashed line marks the approximate analytic result given in Eq. (4.33). In all plots
ω0 = ωc and a value of ε = −0.1 have been assumed and the vertical dotted lines indicate the
analytic phase transition point given in Eq. (4.24). In all numerical simulations a symmetry-
breaking bias field, Hbias = λSx, where λ/ωc = 10−3, has been added to the bare Hamiltonians
HEDM and HLMG.


S2
x�−
Sx�2. As expected from a second order phase transition near the critical point we experience

a narrow peak in fluctuations, which eventually diverges in the N → ∞ limit.

It is worth to spend again a few words on the phase transition condition (4.24). We can

express this condition invoking again the coupling parameter, generalised to contain the dipole-

dipole parameter

ζε = −ε
g2N

ωcω0
, (4.28)

where the superradiant phase appears when

ζε > 1. (4.29)

We recall that we can write g/ωc =
√
2πα, where α = αfs(qξ0)

2/(ed)2Z/Z0 is the effective fine

structure constant, associated with the artificial dipole coupled to the cavity, where Z is the gen-

eralised impedance of the cavity. Apparently the coupling parameter depends both on the dipoles

and the cavity. But, after rearranging the terms, we can see that this is not the case. The coupling
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parameter depends only on dipole parameters (and the real fine structure constant and the vacuum

impedance)

ζε = −2παfsη
�q
e

�2 Zd

Z0
, (4.30)

where we introduced the dipole’s impedance

Zd =
ξ20

ε0r30ω0
. (4.31)

(to avoid confusion in the notation, ε0 here is the vacuum electric permeability!). The message

here is again very clear, modifications of the cavity degree of freedom have no influence on the

superradiant phase transition, which is only a property of the dipoles. The only modifications we

can introduce are related to the electrostatic environment and they enter through a change in the

value of the dipole-dipole parameter η.

We can take profit of our toy model, discussed in Ch. 3, to fully visualise the physical meaning of

the SR phase. Fig. 4.2(b) illustrates what happens when the dipoles spontaneously polarize. This

leads to an accumulation of charge on the boundaries of the system, in order to compensate the

electric field generated by the dipoles. This is the physical meaning of Eq. (4.26). In this system,

the charge on the capacitor Q represents the canonical momentum of our photon, conjugated to

the dynamical variable Φ, the magnetic flux through the inductor. The charge is a proper and legit

observable, however it is not the most convenient one in any realistic experiments. Instead what is

really important for observations is its kinetic momentum, which in our setup corresponds to the

voltage across the capacitor

U = Φ̇ = U0

�
a+ a† +

2g

ωc
Sx

�
. (4.32)

Here U0 = Q0/C = ωcΦ0 = ωc

"
�Z
2 is the vacuum voltage amplitude, which plays the role of the

vacuum electric field amplitude in the more general framework of QED. Again, as for the electric

field, since the voltage is the time derivative of the flux, its expectation value over the ground state is

always zero. This makes a direct observation of this transition just by looking at cavity-observables

quite difficult. But, even if one cannot directly observe the order parameter of this transition, it

is still possible to detect clear signatures of the change of phase. This is given for instance by the

fluctuations in the voltage, 
U2�, which are shown in Fig. 4.2(e). We can see a characteristic kink,

precisely at the transition point for N � 1, which is reminiscent of the famous Lambda-transition

in super-fluids. The kink’s maximum scales approximately as


U2�
U2
0

≈
#

1 +
1

|ε|
�
ω0

ωc

�
. (4.33)
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This maximum does not scale with α, nor with N (even if some information regarding the dipole’s

number is still contained in the parameter ε). It is also accompanied by a minimum in the flux-

fluctuations Φ2
g=gc . �2/(4C2
U2�), which suggests that the cavity is in a squeezed state.

Until this point we have found that the cavity does not play any role in the origin of the

superradiant phase transition, which is only a property of the interacting dipoles. The cavity seems

just “to passively watch” the transition through the fluctuations in voltage and flux. But this is not

entirely true. Actually we found that the cavity has instead an important feedback on the dipoles,

but this, again, is just manifested by the fluctuations of the dipoles. In Fig. 4.2(c) and 4.2(d) we

compare the predictions from the Lipking-Meshkov-Glick (LMG) Hamiltonian to the EDM, where

HLMG = ω0Sz + ε
g2

ωc
S2
x. (4.34)

The LMG model basically represents the EDM in absence of the cavity field. When |ε|N " 1 the

transition appears at rather large values of g/ωc and the two model give significantly different pre-

dictions regarding the transition point and the range of polarization fluctuations, ΔS2
x. Therefore,

although the cavity mode cannot by itself induce a superradiant phase transition, it can still change

its properties once the system enters the USC regime.

4.6 Subradiant (anti-ferroelectric) phase

When the dipole-dipole interaction is repulsive and ε > 0, we expect that the ground state is

very close to the normal state, presenting eventually a certain amount of squeezing in its virtual

population. This can be seen by considering our Holstein-Primakoff approximation expressed by

Eq. (4.20). Following this approach we can compute the ground state photon’s number, finding

that it saturates at a finite value when the light-matter coupling is sufficiently high

lim
α→∞
a†a�|HP =

1 + 2ε− 2
$
ε(ε+ 1)

4
$
ε(ε+ 1)

> 0. (4.35)

In this sense it looks like the USC limit of a repulsive dipolar ensemble has a ground state very

similar to what we call the normal ground state. However this is true only under the approximation

that each dipole behaves as an harmonic oscillator. In the extreme case, as considered in this

chapter, where the dipoles are represented by two level systems, the USC ground state in the

presence of repulsive dipole-dipole interactions is surprisingly very different from the normal one.

Already looking at the photon’s number in the ground state, we see that it goes to zero for an even

number of dipoles, while it keeps growing for an odd number, and it never saturates as we can see

in Fig. 4.3(a). This observation is motivates us to define a new subradiant phase. This phase can
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Figure 4.3: Subradiant phase. (a) Plot of the ground state photon number as a function of the coupling pa-
rameter α for an even and an odd number of dipoles. (b) Dependence of the voltage (solid lines)
and flux (dashed lines) fluctuations on the coupling strength g. In both plots the parameters
ε = 0.05 and ωc = ω0 = 1 have been assumed and the dotted lines shows the correspond-
ing results for 
a†a� and 
U2� obtained from the ground state of the Holstein-Primakoff (HP)
Hamiltonian HHP for N = 10. In all numerical simulations a symmetry-breaking bias field,
Hbias = λSx, where λ/ωc = 10−4, has been added to the bare Hamiltonians HEDM.

be defined by the abstract condition
∂

∂g

a†a� ≤ 0, (4.36)

which is exactly what we have used to mark the phase boundary in Fig. 4.1. Also looking at more

realistic observables, such as voltage/flux fluctuations, we see a strong disagreement between the

full predictions and the approximated HP approach, Fig. 4.3(b). In particular, it shows that the

voltage (flux) fluctuations grow (decrease) to a maximum (minimum), and then both approach their

uncoupled values when the coupling reach larger values. In this case there is no difference between

even/odd dipole numbers.

These last two observations somehow suggest that the subradiant ground state is composed out

of the cavity in its uncoupled vacuum state and the dipoles in another state, completely disentangled

from the cavity. In order to test this intuition we quantify the degree of entanglement between the

dipoles and the cavity by considering the von Neumann entropy of the dipolar ensemble

Sd = −Tr[ρd log2(ρd)], (4.37)

where ρd = Trc[ρ] is the reduced density matrix of the dipolar ensemble. From Fig. 4.4(a) we

immediately see the disentangling crossover in the case of N even, while for N odd the cavity-

dipoles entanglement seems to saturate at a maximally entangled state. This maximally entangled

state for the N odd case is very similar to the USC state of just N = 1 dipole. This state is a “cat”
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Figure 4.4: Entanglement entropy of the dipole’s ensemble for ε = 1 in various cases. (a) Low bias field
Hbias = λSx added to the bare Hamiltonians HEDM, where λ/ωc = 10−7. This value is smaller
than the usual one, in order to maintain the system fairly symmetric. Doing so it is clear that
the decay of entanglement in the N = 4 case is really due to a different physical mechanism,
while the case N = 3 converges to an highly entangled state. (b) High bias field λ/ωc = 10−2.
This has negligible impact on the N even case, so it is not reported here. Instead we compare
N = 1, 3, 5. The effect of the bias field manifests itself at large coupling in both cases.

state which can be written as

|GSN=1� ≈ 1√
2
(|α�| ↓� ± | − α�| ↑�) , (4.38)

which is very similar to the superradiant case, with the only difference that it needs a fixed finite

value of λ/ωc to break the symmetry through the perturbation of the bare Hamiltonian Hbias = λSx

(while for the large N superradiant phase one only needs an infinitesimal amount). The very similar

behaviour between N = 1 and N > 1 odd is shown in Fig. 4.4(b), where we compare Sd(g/ωc) for

N = 1, 3, 5. For moderate coupling the two cases have different behaviours, which is expected to

increase in difference for larger dipole’s number. In particular it seems that there is the formation

of a plateau with increasing N . For larger coupling all cases collapse to Sd ≈ 0. This sudden change

happens for all cases at very similar coupling, suggesting that the basic mechanism can be already

grasped from the N = 1 case, even though is clear that there is a certain dependence from N . Here

the effect of the bias field is simply to collapse the “cat” ground state, giving back a factorised state

without any entanglement between cavity and dipole

|GSN=1� ≈ |α�| ↓�. (4.39)

A less hand-wavy explanation for this curious difference in even/odd dipole’s number entanglement
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behaviour is non trivial and it requires some care. We will postpone it for the next section, where

we will develop an effective theory that will provide a generic picture of the USC phases.
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Figure 4.5: Subradiant phase. (a) Plot of the residual single-spin entropy ΔS of the ground state of HEDM

for ω0 = ωc and N = 4. (b) The entanglement entropies for a single dipole and for all dipoles
are plotted for a fixed g/ωc = 2 and otherwise the same parameters as in (a). In all numerical
simulations a symmetry-breaking bias field, Hbias = λSx, where λ/ωc = 10−4, has been added
to the bare Hamiltonians HEDM.

Another interesting consequence of the subradiant phase is the order picked by the dipoles

themselves. Indeed, focusing on the case N even, we can see that the dipoles enter in a state which

exhibits a high degree of entanglement between the dipoles. So the dipoles disentangle from the

cavity, but at the same time they get highly entangled among each other. This can be quantified

by considering the entropy of a single dipole

S1 = −Tr[ρ1 log2(ρ1)], (4.40)

where ρ1 = TrN−1[ρd] is the reduced density matrix of a single dipole. It is worth to notice that in

the EDM this quantity does not depend on the particular dipole, since, within this approximated

model, they are all equivalent. To avoid any effect of the cavity we consider the difference between

those two entropies

ΔS = S1 − Sd. (4.41)

In Fig. 4.5(a) we can see a complete phase diagram of ΔS(g/ωc, ε), which can be thought as

another way to derive our generic phase diagram in Fig. 4.1. In this phase diagram we have

ΔS = 0 when the dipoles are not entangled between them, but there could be still entanglement

between the dipoles and the cavity. In this way the normal and the superradiant phase cannot

really be distinguished. However it is possible to see the boundary between these two phases, given

by a negative spike in the entropy difference. This marks the region where the phase transition

happens, which is characterised by strong fluctuations both in the dipoles and in the cavity. The
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subradiant phase, instead, is well separated and well recognisable from all the other phases. As we

did for the superradiant phase, also the subradiant phase can be compared to the antiferroelectric

phase of the LMG model (4.34). For small g/ωc the two models give similar predictions concerning

the subradiant phase, but for large coupling there are significant deviations. This will be clarified

in the next section.

4.7 The polaron frame EDM

Before continuing our exploration of the various phases of cavity QED we take a short technical

detour.

A large boost in the understanding of a physical system is often given by a clever choice of

coordinates. In our case it turns out that the EDM, as it is expressed in Eq. (4.15), is not the best

representation for that Hamiltonian, at least to derive approximated predictions regarding the USC.

Indeed we have to keep in mind that the form of the EDM expressed in Eq. (4.15) is a consequence

of the chosen dipolar gauge in the original QED Hamiltonian and it is dictated by the the two-level

and the single-mode approximations. On the other hand, once the EDM is derived, we still have

the freedom to re-express it through another unitary equivalent Hamiltonian H̃EDM = UHEDMU †.

For various spin-bosons models it is known that is possible to build a disentangling unitary U in

such a way to minimize the ground state entanglement between light and matter [92, 93]. Using

this approach the feedbacks between light and matter are minimized for particular states (typically

the lowest part of the spectrum, as these are basically low energy approaches), giving rise the

possibility of generating low energy effective descriptions of the system which are very easy to handle

numerically. Because of the unwritten rule of the “conservation of complexity” this simplifications

are always related to the fact that U is always inversely complicated. The variables transformed

according to our disentangling unitary will be complicated combinations of our original variables.

Since in our case we can solve almost all the relevant cases using simple numerics, an involved and

complicated construction of U , to just simplify the numerics, has basically no benefit. Luckily, in

this case, there exists a transformation that partially simplifies the system, without messing up the

physical meaning of our variables. This is the so called polaron transformation

U = exp

�
g

ωc
(a† − a)Sx

�
. (4.42)

The polaron transformation can be seen as photon-dependent spin-rotation around x-axis or as a

spin-dependent photon displacement

U = exp
�
−iθ̂Sx

�
= exp

�
α̂(a† − a)

�
, (4.43)
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where θ̂ = ig/ωc(a
† − a), and α̂ = g/ωcSx. Following this last consideration, it is straightforward

to see how the EDM Hamiltonian transforms. One just needs to consider that

UaU † = a− α̂ = a− g

ωc
Sx,

USzU
† = cos(θ̂)Sz − sin(θ̂)Sy

= cosh
�
g/ωc(a

† − a)
�
Sz − i sinh

�
g/ωc(a

† − a)
�
Sy,

(4.44)

where the hyperbolic operators can be written in terms of standard displacement operators

cosh
�
α(a† − a)

�
=

eα(a
†−a) + e−α(a†−a)

2
,

sinh
�
α(a† − a)

�
=

eα(a
†−a) − e−α(a†−a)

2
.

(4.45)

Then the extended Dicke model in the polaron frame becomes

H̃EDM = ωca
†a+ ε

g2

ωc
S2
x +

ω0

2

�
e

g
ωc

(a†−a)S̃− + e−
g
ωc

(a†−a)S̃+

�
, (4.46)

where the collective ± operators along x-axis are given by S̃± = Sz ± iSy. These operators are the

same as the usual spin up/down operators, just with respect to the eigenstates of Sx. We conclude

this derivation by noticing that the polaron transformation used above represent the Coulomb gauge

transformation Eq. (1.30) restricted to the two-level subspace (this can be checked directly recalling

the correspondence between photon/spin operators and the original electric-field/dipole operators).

At first sight, the polaron EDM doesn’t seem to give any advantage. It looks actually more

complicated than the original frame, since we transformed a linear coupling to a very non-linear one,

mediated by the displacement operators, which contains all powers of photon’s creation operator.

But it is precisely because of this displacing coupling that this frame is suitable for interesting

approximations. The reason is due to the fact that the displacement operator is unitary, which

implies that all its matrix elements are smaller than one

|
n|e− g
ωc

(a†−a)|m�| ≤ 1. (4.47)

When ω0 ≤ ωc this calls for perturbation theory, where we take

H0 = ωca
†a+ ε

g2

ωc
S2
x,

HI =
ω0

2

�
e

g
ωc

(a†−a)S̃− + e−
g
ωc

(a†−a)S̃+

�
,

(4.48)

as the bare Hamiltonian and the perturbative interaction, respectively.
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4.8 Ultrastrong-coupling effective theory

What we want to do here is to derive an effective Hamiltonian, simpler than the original one, that

we can use to deepen our understanding about the phases of cavity QED. In particular we want to

understand what is the effect of the cavity on the dipole ensemble. This last point emerges quite

naturally from the fact that most of the basics properties of the cQED ground state are a direct

consequence of direct dipole-dipole interactions, meaning that the internal properties of the dipole

ensemble are of primary importance in the characterization of the system. On the other hand we

have seen that in the USC regime certainly something different happens, which is just given by the

presence of the cavity.
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Figure 4.6: (a) Ground state photon’s number 
a†a� of the EDM in the standard frame. (b) Spectrum
En − E0 of the EDM. This simulation has been done with N = 4, ωc = ω0 = 1, η = 0.

When ω0 ≤ ωc the polaron Hamiltonian can be split into a bare part, H0, plus an interacting

part, HI , accordingly to Eq. (4.48). From Fig. 4.6(a) we can see that even for ω0 = ωc the ground

state photon number remains always small 
a†a� ≈ 0, meaning that the photon part of the ground

state must be something close to the photon’s vacuum |GS� ≈ |0ph�|ψspins�. When ε ≈ 0 it can also

be seen that for large g/ωc the spectrum is organized in quasi-degenerate manifolds, see Fig. 4.6(b).

Each of these manifold is separated by an energy E ∼ ωc from the other nearest one. This seems

to suggest that the spectrum in the polaron frame (when dipole-dipole interactions are small!) is

given by states like

|E� ∼ |n,m� = |nph�|ψ(n,m)
spins �. (4.49)

With this in mind we can build an effective Hamiltonian as described in the App. F using Eq.

(F.2) where the low energy manifold Hlow is given by all the states with zero photons, ∼ |n =

0ph�|ψ(n=0,m)
spins �, and the high energy ones are all the other states in which there is at least one

photon. The full expression is derived in App. F and, in principle, it is valid for any value of the
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light-matter coupling. Unfortunately, in this way it is not possible to write it in a close form, which

makes this expression not very useful for intuitive understanding. A further simplification comes

when the coupling is larger than unity g/ωc > 1. In this regime the effective Hamiltonian can be

written as [55]

Heff ≈ ω0e
− g2

2ω2
c Sz +

ω2
0ωc

2g2

�
S2
x − MS2

�
+ ε

g2

ωc
S2
x. (4.50)

We compare now this effective Hamiltonian with the LMG model, defined in Eq. (4.34), which

represents the dipole ensemble without the cavity photons. Defining

ω̃0 = ω0e
−g2/(2ω2

c ), ε̃ = ε+ (ω2
0ω

2
c )/(2g

4), (4.51)

we can rewrite the effective dipole model as an effective LMG model

Heff = ω̃0Sz + ε̃
g2

ωc
S2
x −

ω2
0ωc

2g2
MS2, (4.52)

with the additional “total spin” contribution proportional to MS2. From this effective Hamiltonian

we can already say quite a lot about the origin of the ground state. First we notice that the most

convenient basis to express the dipoles state is the spin-x basis, given by all states |S,mx�, where

MS 2|S,mx� = S(S + 1)|S,mx�, Sx|S,mx� = mx|S,mx�. (4.53)

Indeed, when the coupling is large, the Sz component is exponentially suppressed, such that the

ground state is mainly determined by the terms S2
x and MS 2. In particular, because of the high

symmetry of the EDM expressed in Eq. (4.17), we can immediately say that the ground state lies in

the sub-space with highest total spin, i.e., with quantum number S = N/2. Of course, as assumed

from the very beginning, the cavity remains approximately in its vacuum state |0ph�. For this reason

we speak about light-matter decoupling when the system reaches this regime. When transformed

back to the original frame we can say that the ground state is a superposition of spin-dependent

displaced photon’s states

|GS� ≈
N/2&

mx=−N/2

cmxe
−mx

g
ωc

(a†−a)|0ph�|S = N/2,mx�. (4.54)

In the USC regime, when ω̃0/ωc ≈ 0, the ground state is then completely determined by the

S2
x-term, and it is characterised by a single mx quantum number. If ε̃ < 0 the dipoles are in

the state with maximum spin-x projection, which is mx = ±N/2. If ε̃ > 0 the ground state

depends on the parity of the number of dipoles, and it gives mx = 0 if N is even, or mx = ±1/2
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if N is odd. It is remarkable that the vacuum effect from the cavity is to suppress an eventual

ferroelectric instability of the dipolar ensemble by shifting the dipole-dipole energy accordingly to

Eq. (4.51)(right). Combined with the exponential suppression of the internal dipole’s energy, given

in Eq. (4.51)(left), we can derive the critical dipole-dipole strength to have a ferroelectric transition

in the USC

εc ≈ −ω2
0ω

2
c

2g4
. (4.55)

We notice that this expression is independent from the number of dipoles. If we look back to the

“standard” condition for the superradiant phase in Eq. (4.29), we find

εHP
c = −ω0ωc

Ng2
, (4.56)

where we used the label HP to highlight that this equation is valid just in the Holstein-Primakoff

approximation, where ultra-strong coupling effects from the cavity are considered negligible. This

type of approach can be used to study a transition from the normal state to the superradiant one,

but when g/ωc > 1 one has to take into account that the normal ground state cannot be used, not

even when the dipole-dipole interaction is exactly zero, as it is clearly visible from Fig. 4.7(a).

Finally, in order to have a major understanding of the transition between ferroelectric and anti-

ferroelectric, we make use of the so-called adiabatic potential (in the standard representation of the

EDM)

Vad(X) =
X2

2
+ E0(X), (4.57)

where X = (a + a†)/
√
2 is interpreted as a simple c-number. E0(X) is the ground state energy of

the bare spin Hamiltonian, parametrised by X,

HEDM(X) = ω0Sz +
√
2gXSx +

g2

ωc
(1 + ε)S2

x. (4.58)

In Fig. 4.7(b) we plot this adiabatic potential for the three cases, ε > εc, ε ≈ εc, and ε < εc, in

the case of N even. From a full numerical calculation, shown in Fig. 4.7(c), we can see that the

transition from ferroelectric to anti-ferroelectric as a function of ε is characterised by a sharp jump

in 
a�, as well as in a pronounced peak in the voltage fluctuation 
U2�. This is somehow reminiscent

of a first order phase transition with the peculiarity that at the phase transition point all possible

states become degenerate.
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Figure 4.7: Subradiant-to-superradiant phase transition. (a) Zoom of the ground state phase diagram in
the region |ε| ≈ 0. The color scale shows the ground state photon number and the red solid
lines indicate the same phase boundaries as in Fig. 4.1. The dashed line is the critical value
εc given Eq. (4.55) and the dotted line indicates the value of εc obtained from the classical
transition point in Eq. (4.56). (b) The adiabatic potential Vad(X) = X2/2 + E0(X) for the
cavity mode is plotted together with the resulting ground state wavefunction for different values
of the interaction parameter ε. (c) Dependence of the mean cavity field and the voltage and
spin fluctuations as a function of ε for α = 2. In (b) we have used N = 4 qubits and in (a)
and (c) N = 8. In all plots ω0 = ωc and a symmetry-breaking bias field, Hbias = λSx, where
λ/ωc = 10−3, has been assumed.

4.9 Beyond the EDM: short range interactions

In this chapter we have studied the ground state properties of cavity QED always from the perspec-

tive of the extended Dicke model. Of course it is natural to ask what modifications appear when we

abandon this highly idealised scenario. A complete understanding here is naturally hopeless, but

it is still possible to relax some approximations and have a feeling of a more realistic system. We

have at least up to three crucial approximations:

1. single mode approximation,

2. two level approximation,

3. collective dipole-dipole interaction approximation.

In the following we keep the first two approximations, but investigate what happens when more

realistic, short-range dipole-dipole interactions are taken into account. Instead it is highly relevant

to understand what can be achieved without having the collective dipole-dipole interaction ∼ εS2
x
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which characterised the EDM.

So here we consider what we called the cavity QED Hamiltonian

HcQED = ωca
†a+ ω0Sz + g(a+ a†)Sx +

g2

ωc
S2
x + J

&
ij

Dijs
i
xs

j
x, (4.59)

where Dij is the full adimensional electrostatic dipole-dipole interaction, where all the dimensional

parameters are condensed into the single free parameter J . Notice that, in principle, this parameter

in our dipole-LC circuit toy model is fixed to be J = (g2N)/(ωcν), but, in order to have a more

general picture, valid also for generic cavities we simply keep it as a free parameter.
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Figure 4.8: The ground state of cQED for a planar simple square lattice of dipoles. (a) Phase diagram of the
ground state of HcQED for finite N number of dipoles. The lines show the boundaries between
the different phases, and the dotted lines show the boundary between the different crossovers. In
the insets we show the sketch of each dipole’s configuration. (b) Observables which characterise
the different phases for a cut at g/ωc = 4. (c-d) Ground state photon number and order
parameter for the paraelectric/subradiant transition. For J/ωc . 0 the collective subradiant
regime appears for large g/ωc, which is fundamentally different from the antiferroelectric Néel
order one encounters for finite J/ωc > 0, as it is clearly shown by the behaviour of the staggered
momentum.

We can re-derive the ground state phase diagram in Fig. 4.1 and look for modifications to the

various phases due to the finite range dipole-dipole interaction. In order to catch all the different

ordered phases we introduce the normalised structure factor

Σ(Mk) =
4

N

N&
i=1

ei
?k·(?ri−?r0) 
sixs0x� . (4.60)

Contrary to the EDM case, here the geometry of the dipolar lattice is of central importance. In a

simple square lattice all the phases are characterised by the structure factor calculated in the points
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Γ = (0, 0) and M = (π, π), that we call, respectively, standard and staggered momenta

Σ(Γ) =
4

N2

p2� ,

Σ(M) =
4

N2

p2stag� .

(4.61)

Here p and pstag denotes the two order parameters for ferroelectric and antiferroelectric phases,

defined by

p =

N&
i=1

six

pstag =
&
i∈A

six −
&
i∈B

six,

(4.62)

where in the staggered order parameter we split the polarization between two sublattices A and B.

In Fig. 4.8(a) we can see the phase diagram for a planar two dimensional simple square lattice,

where we approximated the dipole-dipole interactions just as nearest neighbour interactions

Dij . δij , (4.63)

(this approximation is almost exact when the image charges are included). As already described in

the previous sections, we have three main phases: the normal phase, which we also call paraelectric,

because the dipole’s polarisation is very weak, a ferroelectric one (or superradiant) and an anti-

ferroelectric phase (or subradiant). When the single particle coupling is in the USC regime, g/ωc >

1, we see a smooth crossover into what we call the collective subradiant phase. While we are not

sure that this phase is a proper phase, since it is not clear that it will survive in the thermodynamics

limit when N → ∞, it is highly relevant for finite N when the system is in the USC regime. The

collective subradiant phase is characterised by some sort of anti-ferroelectric state which is not

triggered by the dipole-dipole interaction, but by the ultra-strong coupling with the cavity mode,

as we can see from the fact that it exist even for J/ωc = 0. In Fig. 4.8(b) we plot the ground

state’s expectation value of a few observables as a function of J/ωc, for a fixed value of g/ωc > 1.

We can see that the collective subradiant phase is well separated from the superrdiant phase, but

also from the Néel subradiant phase. This rather sharp separation means that the collective sub-

radiant state is fundamentally different from the anti-ferroelectric Néel state, where the latter is

stabilized by sufficiently strong positive dipole-dipole interactions. This collective subradiant phase

was also present in our first phase diagram in Fig. 4.1, but, because of the particular scaling of the

dipole-dipole interaction, linked to the cavity-dipole coupling as J ∼ g2/ωc, the phase boundaries

looked different. Also, in the case of collective coupling, there was no transition to a competeing,
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Néel -ordered subradiant phase. In Fig. 4.8(c-d) we illustrate this difference. We see that both the

collective subradiant and the Néel subradiant state decouple from the cavity, as we see from the

photon number operator 
a†a� ≈ 0, when g/ωc � 1. But when we look at the staggered momentum,

we see that, while it becomes different from zero in the anti-ferroelectric transition at finite J > 0,

it vanishes for all values of g/ωc when J = 0.
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Figure 4.9: The ground state of cQED for a planar triangular lattice of dipoles. (a) Ground state phase
diagram of HcQED for a finite system with N = 24. The insets shows a sketch of each dipole’s
configuration. Solid lines mark the phase transitions, while dotted lines are the crossovers. The
red dashed line mark the boundary between the 3SL superradiant phases with different value
of Sx. (b) Some observables which characterise the different phases for a cut at g/ωc = 4. (c)
Histograms of the dipole’s polarization in the 3SL norma, subradiant and superradiant phases.
(d) Photon’s number fluctuations. The peaks of this quantity are used to mark the boundaries
to the 3SL superradiant phase. We have used the general notation 
ΔO� = 
O2� − 
O�2.

As already argued in the previous section, we see that the cavity-dipole coupling can substantially

modify the ground state properties of the dipolar lattice, due to the presence of the quantum

fluctuations provided by the cavity field. It is then interesting to ask what happens if we couple the

cavity field to a dipolar lattice which is already characterised by strong dipolar quantum fluctuations.

We explore this possibility by looking at the triangular lattice of dipoles. In this case, because of the

geometric frustration due to the triangular configuration, when J > 0, the lattice is heavily affected

by fluctuations. The main quantity here is the structure factor calculated at the K = (±4/3π, 0)

point, which is related to the three sub lattices (3SL) order parameter

Σ(K) =
4

N2

p23SL� , (4.64)



94 CHAPTER 4. THE VACUA OF CQED

where the 3SL order parameter operator is defined by

p3SL =
&
i∈A

six + e−i4/3π
&
i∈B

six + e+i4/3π
&
i∈C

six, (4.65)

in which A, B, C represent the three different sub lattices.

The phase diagram for the planar triangular lattice in a cavity is shown in Fig. 4.9(a). We can

see that new USC phases have appeared, which can be characterised by different polarizations of

the three sub lattices. The paraelectric and collective subradiant phases do not change, since they

exist in the region of weak dipole-dipole interactions, where the effect of the geometry is negligible.

At small light-matter coupling g/ωc < 1, the antiferroelectric Neel subradiant state is replaced by

the 3SL normal state, which is the proper ground state for the frustrated triangular lattice, with

positive dipole-dipole interaction. The situation drastically changes at large light-matter coupling,

depending on the dipole-dipole interaction strength. Indeed, for moderate J/ωc ∼ O(1) and g/ωc >

1 we encounter the 3SL subradiant phase, where the ground state combines the features of the

collective subradiant phase with the 3SL state. At large J/ωc > 1, quite surprisingly, we see that

the state partially polarises and 
Sx� (= 0. There is still a 3SL type of ordering, but with some

left over polarization. This characterisation of the USC part of the phase diagram is shown in Fig.

4.9(b), by looking at different observables which take very different values in all the different phases.

In Fig. 4.9(c) we further characterise the various phases by looking at the Sx-components of the

ground state, which highlight a strong difference between the three different 3SL phases, the normal

one, the subradiant one and the superradiant one. The difference between 3SL subradiant and 3SL

superradiant is also remarked in Fig. 4.9(d), where we plot the photon number fluctuations as a

function of g/ωc for various J/ωc. In the 3SL subradiant phase the photon fluctuations are strongly

suppressed, similarly to the light-matter decoupling of the collective subradiant phase, while they

remain well visible in the 3SL superradiant phase.

In conclusion to this chapter we have discussed the ground states (or vacua) of cavity QED when

the electrostatic interaction is treated consistently with the single cavity mode. By approximating

the dipole-dipole interaction as infinite range we obtained the extended Dicke model (EDM) which

is particularly useful to draw a minimal ground state phase diagram. The collective USC is char-

acterised mainly by the normal phase and the superradiant phase, which is triggered by geometries

in which the mean dipole-dipole interaction is negative. When the system is pushed into the single

particle USC regime the situation is much richer and a new subradiant phase appears. In the case

where the short range of the dipole-dipole interaction is kept new other phases that mix subradiance

and superradiance appear in this regime dependently on the geometry of the lattice cell.



Chapter 5

Thermodynamics of the extended Dicke

model

After having studied the ground state of cavity QED through a detailed analysis of the approximated

extended Dicke model and a couple of paradigmatic examples using the full cQED Hamiltonian,

it naturally raises the question: what’s about the excited states? As usual this problem becomes

very quickly intractable, and a complete understanding of the dynamics is far beyond the scope of

this thesis. Nevertheless, we can still have a glimpse of the excited states properties by looking at

what we can consider the “continuation” of ground state physics: the equilibrium states. Indeed,

by assuming that the system is in thermal equilibrium with an external bath with temperature T ,

the system is fully characterised by its thermal density matrix [94]

ρ̂ =
e−Ĥ/(kBT )

Z
, (5.1)

where

Z = Tr[e−Ĥ/(kBT )] (5.2)

is the partition function and kB is the Boltzmann constant. Therefore probing the thermodynamics

properties of the system is equivalent to take a first look at its excited states. Even though exploring

a system by warming it up seems to destroy all quantum features, one should keep in mind that the

very discovery of quantum mechanics is based on thermodynamical observations, from the theory

of the black body radiation to the first observations of atomic lines by burning different types of

materials.

In this chapter we first review the basics of thermodynamics in quantum mechanics and then

we will explore the thermodynamics of cavity QED from the weak coupling to the USC regime. In

doing so we will always work with the extended Dicke model, which permits a sufficiently simple

95
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treatment. A more detailed study with the full cQED Hamiltonian is left for future works.

The results contained in this chapter are published in Quantum 4, 335 (2020). This project

was done by Philipp Pilar as leading author under the supervision of Peter Rabl. I contributed

as second author with analytical and numerical calculations. In particular I derived most of the

analytic formulas regarding the Dyson expansion and the black body radiation. All the figures have

been produced by Philipp Pilar.

5.1 Thermodynamics in the quantum theory

Thermodynamics is the theory of infinitesimal transformation between equilibrium states. These

transformations are expressed by changes in the Hamiltonian or the bath parameters and they give

rise to various relations between the observables. Since we work just in the canonical ensemble the

only parameter characterising the bath is its temperature T . On the other hand the Hamiltonian

can depend on an arbitrary number of parameters, which we just summarise as λ, and so we have

H = H(λ). (5.3)

We take for granted that every equilibrium state is described by a density matrix of the form

(5.1). All the thermodynamics quantities are considered to be expectation values of a particular

observable, which are calculated as


O� = Tr[ρ̂O]. (5.4)

These expectation values are in general functions of the temperature and the internal parameters

of the Hamiltonian


O� = f(T, λ). (5.5)

We explore now how the derivatives of various observables are linked together giving rise to the

usual thermodynamics relations.

From here on we will set kB = 1 for simplicity. We will also often use β = 1/T , as usual in

statistical mechanics. Very intuitively we define the internal energy of the system as

U = 
H� , (5.6)

which then gives

dU = d 
H� = 
dH�+Tr (Hdρ) . (5.7)
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From the usual definition of the von Neumann entropy for a quantum system

S = −Tr [ρ log[ρ]] , (5.8)

we find the entropy variation of the system

dS = −dTr (ρ log[ρ]) = − 1

T 2
(
HdH� − 
H� 
dH�) + 1

T 3

�

H2� − 
H�2

�
dT =

1

T
Tr (Hdρ) . (5.9)

Consistently with this definition we recover

dU = dW + TdS, (5.10)

where we identify the work done by/on the system as

dW = 
dH� . (5.11)

The free energy is defined as the Legendre transform of the internal energy,

F = U − TS, (5.12)

where, combining with the definition we gave for U and S we recover the correct statistical mechanics

relation

F = −T log[Z]. (5.13)

Following the usual thermodynamical relations we find

dF = (dU − TdS)− SdT = dW − SdT

= −(Td log(Z) + log(Z)dT ) = 
dH�+ (F − 
H�) dT
T

,
(5.14)

which gives the thermal expectation value of the derivative of the Hamiltonian from the derivative

of the free energy with respect to the internal parameter λ

∂λF (λ) = 
∂λH� . (5.15)

Note that this remains true even if [∂λH,H] (= 0 (see App. [G] ). From this equation we find

that every observables can be computed as the derivative of a perturbed free energy. Indeed let’s

consider the observable O, and let’s consider the perturbed Hamiltonian H̃ = H + λ̃O, with its



98 CHAPTER 5. THERMODYNAMICS OF THE EXTENDED DICKE MODEL

corresponding free energy F̃ (λ̃). Then we have

∂λ̃F̃ (λ̃ = 0) = 
O� , (5.16)

where the expectation value is taken over the unperturbed state. From this relation we can introduce

the susceptibility of the system to the λ̃ perturbation as

χλ̃ = ∂λ̃ 
O� ((
λ̃=0

= ∂2
λ̃
F̃ (λ̃ = 0) (5.17)

If, instead, we want to probe the response of the system to a change in the temperature (which is

the only bath parameter we have in our system), the central quantity is the specific heat C, which is

defined from the variation of internal energy due to the temperature. Using the various definitions

above we have the following equalities

C =
dU

dT
=

1

T 2

�

H2� − 
H�2

�
= T

dS

dT
= −T

d2F

dT 2
,

(5.18)

and we see that it is also related to the second derivative of the free energy, confirming it as the

temperature-susceptibility.

5.2 The free energy of the extended Dicke model

We investigate the thermodynamics of cavity QED by using the extended Dicke model defined in

Eq. (4.15). In contrast to the previous chapter, here we leave the dipole-dipole interaction as a free

parameter, through the replacement

η
g2

ωc
#−→ J

N
, (5.19)

where J is now free, and we introduce a rescaling over the number of dipoles just for future con-

venience. The high symmetry of the EDM, expressed in Eq. (4.17) makes the thermodynamics

description very convenient to handle numerically. Indeed the EDM Hamiltonian results in a block

diagonal form, where each blocks can be labelled by its total spin quantum number s, which is

defined by
MS2|s� = s(s+ 1)|s�. (5.20)
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So the partition function can be expressed as a sum over the different spin-sectors, but every term

in the sum must be weighted according to its degeneracy. The resulting form is

Z =

N/2&
s=0

ζs,NZs, (5.21)

where the degeneracy factor is given by [6]

ζs,N =
N !(2s+ 1)

(N/2− s)!(N/2 + s+ 1)!
, (5.22)

and s = 0, 1, 2 . . . N/2− 2, N/2− 1, N/2.

We also consider two different ways to look at the EDM, which will be very useful in the

examination of the WC (weak coupling) and USC regimes. For WC it is convenient to split the

EDM in the following contributions

H = HLMG +Hc +Hg, (5.23)

where

HLMG = ω0Sz +
J

N
S2
x, Hc = ωca

†a, Hg = g(a+ a†)Sx +
g2

ωc
S2
x, (5.24)

In this form it is quite evident that Hg is amenable of a perturbative treatment with respect to

HLMG and Hc. Notice that HLMG represent actually a well known model, the Lipkin-Meshkov-Glick

model [95], used to describe strongly interacting dipoles. To have a better idea of the impact of the

interaction on the free energy, we also define the interaction part of the free energy

Fg = F − FLMG − Fc, (5.25)

where FLMG is the free energy of the LMG Hamiltonian, and Fc = T log[1−e−βωc ] is the free energy

of the bare cavity mode. In general Fg must be evaluated numerically by computing the total free

energy of the EDM and then by subtracting the other two free energies (which can be calculated

analytically when J = 0).

In the USC regime instead g/ωc > 1 and one has to rethink a bit the hierarchy. Here we indeed

consider the different split

H = He.m. +Hz, (5.26)
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where

He.m. = ωc

�
a+

g

ωc
Sx

�†�
a+

g

ωc
Sx

�
+

J

N
S2
x, Hz = ω0Sz. (5.27)

This kind of repartition put an emphasis on what it could be called “the electromagnetic energy” of

the system, represented by He.m. and the “quantum fluctuations of the dipoles” represented by Hz.

Using the polaron transformation defined in Eq. (4.42) we can further bring this Hamiltonian into

the form

H̃e.m. = UHe.m.U
† = ωca

†a+
J

N
S2
x, H̃z = UHzU

† = ω0

�
cos(θ̂)Sz − sin(θ̂)Sy

�
, (5.28)

where θ̂ = ig/ωc(a
† − a). This representation is very convenient to study a USC regime in which

ω0 < ωc, J/N , where we can profit from a perturbative treatment on H̃z for any value of g/ωc (due

to the fact that cos and sin are bounded operators).

5.3 The free energy in the collective USC regime

First of all we want to clarify the role of the “collective” USC regime, which means that the single

particle coupling g/ωc " 1, but the collective coupling G/ωc =
√
Ng/ωc � 1. This type of analysis

is motivated by the growing interest on the question whether the vacuum quantum fluctuations

of a single cavity mode can eventually change the properties of matter, for instance, the binding

energy of molecules and their reaction rate, or the band structure of semiconductor materials [96,

97, 98, 99, 100]. Following what we have seen in the last chapter there is no doubt that in the

USC there will be important modifications properly due to the vacuum fluctuations of the cavity

mode, but this is true only when the single particle coupling g/ωc > 1. In the collective USC regime

each single particle is weakly coupled posing some doubts whether there can be any significant

quantum vacuum effects. In thermodynamics we can introduce another simple argument regarding

the absence of quantum vacuum effects in the collective USC regime. We just need to count the

degrees of freedom and acknowledge that the dipolar ensemble has a macroscopically large number

of degrees of freedom, compared to the cavity, which has just one. How can a single degree of

freedom have a so large impact on a macroscopic property or system? So, when G/ωc > 1 and

g/ωc < 1, we expect that actually nothing extraordinary happens. Now we are going to prove this

intuition more rigorously in the EDM framework (the generalisation to HcQED with the real short

range dipole-dipole interaction is actually straightforward, but numerically more demanding.

Since the single particle coupling is small, it is reasonable to apply perturbation theory in Hg

following the partition of Eq. (5.23).
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Using the Dyson series to implement second order perturbation theory in g/ωc we find (see App.

H for the derivation of interacting free energy through the Dyson expansion)

F (2)
g =

g2

ωc

S2

x�0 −
g2

β

� β

0
dτ1

� τ1

0
dτ2C(τ1, τ2)
Sx(τ1)Sx(τ2)�0, (5.29)

where we took as the free Hamiltonian H0 = HLMG + Hc, and where 
·�0 is the expecation value

over the thermal state given by H0. Under the integral we have the two “thermal correlators”

C(τ1, τ2) = 
[a(τ1) + a†(τ1)][a(τ2) + a†(τ2)]�0 = (Nth + 1)e−ωc(τ1−τ2) +Nthe
ωc(τ1−τ2), (5.30)


Sx(τ1)Sx(τ2)�0 = 1

ZLMG

&
n,m

e−βEn+(τ1−τ2)(En−Em) × |
En|Sx|Em�|2, (5.31)

where we introduced the energies En and eigenstates |En� of HLMG and the thermal cavity occupa-

tion is Nth = 1/(eβωc − 1). In general, to obtain these quantities we need to diagonalise the LMG

model numerically.

0

0.1

0.2

0

0.1

0.2

0.3

0.4

1
2
3

10-3

1.0 10.01 10 1.0 10.01 10

10.0 1.0 10.0 1.0

10-3

0

2

4

exact

0110.0 10.1

-310

0
1
2
3
4

0.01 0.1

0110.0 10.1
0

0.1

0.2
-310

0.01 0.1
0
1

3
2

0

0.1

0.2

Figure 5.1: Dependence of the coupling-induced part of the free energy, Fg, on the cavity-dipole coupling
strength, g. This dependence is shown in the individual plots for different temperatures and
dipole-dipole coupling strengths, J , and for ωc = ω0. In each plot the exact numerical results
for N = 20 dipoles are compared with approximate results obtained second-order perturbation
theory (F (2)

g ) .
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In Fig. 5.1 we compare this perturbative approach with the exact numerics for some important

cases. We see that the matching is very good in the WC regime and even holds for the collective

USC regime, G � ωc. We see that the effect of the interaction always leads to a positive contribution

in the free energy. This is in stark contrast to the case of the Dicke model, where the effect of the

interaction lowers the free energy [101]. Based on the Eq. (5.29) we can actually prove it in complete

generality. Due to the “thermal ordering” τ1 > τ2, we have


Sx(τ1)Sx(τ2)�0 ≤ 
S2
x�0. (5.32)

We thus find that

0 ≤ g2

β

� β

0
dτ1

� τ1

0
dτ2C(τ1, τ2)
Sx(τ1)Sx(τ2)�0 ≤ g2

ωc

S2

x�0
ωc

β

� β

0
dτ1

� τ1

0
dτ2C(τ1, τ2) =

g2

ωc

S2

x�0,
(5.33)

where the last equality is due to the fact that the cavity integral can be computed analytically

ωc

β

� β

0
dτ1

� τ1

0
dτ2C(τ1, τ2) = 1. (5.34)

We conclude that

0 ≤ F (2)
g ≤ g2

ωc

S2

x�0. (5.35)

It is then convenient to introduce the rescaling

F (2)
g =

Ng2

4ωc
fg. (5.36)

The bound on the interacting free energy can be made even stricter, by replacing 
S2
x�0 #→ (ΔSx)

2 =


S2
x�0 − 
Sx�20. This can be justified by displacing the annihilation operator in the EDM with

a #→ a − g/ωc
Sx�0 and then repeating the calculation. It then gives a bound on the rescaled

adimensional free energy

0 ≤ fg <
4(ΔSx)

2

N
. (5.37)

Evidently, the coupling part of the free energy is bounded by the fluctuations in the polarization

rather than its mean amplitude. In any dipolar system in which the dipole-dipole correlation length

is finite (basically any regular system far from a critical point), we find that (ΔSx)
2 ∼ N . This

means that

fg ∼ O(1), (5.38)



5.4. THE FREE ENERGY IN THE LOW FREQUENCY REGIME 103

bringing us to the main result of this section

lim
N→∞

F
(2)
g

N
= 0. (5.39)

This limit is very important because it says that in the collective USC regime the interacting

free energy per particle vanishes, stating the impossibility that the light-matter coupling could non-

perturbatively change the single particle properties of the dipolar ensemble in the usually considered

thermodynamic limit.

It is worth to mention that for free dipoles, when J = 0, we can actually find an analytical

solution for the thermal correlator in (5.31), and consequently for F
(2)
g . In this case we have


Sx(τ1)Sx(τ2)�0 = 1

4
e(τ1−τ2)ω0
S+S−�0 + 1

4
e−(τ1−τ2)ω0
S−S+�0 (5.40)

and 
S±S∓�0 = N [1∓ tanh (ω0/2T )] /2. We then obtain

Nfg = N − (Nth + 1)
S+S−�0I(ω0 − ωc)− (Nth + 1)
S−S+�0I(−ω0 − ωc)

−Nth
S+S−�0I(ω0 + ωc)−Nth
S−S+�0I(ωc − ω0),
(5.41)

where

I(Δ) =
ωc

β

� β

0
dτ1

� τ1

0
dτ2 e

Δ(τ1−τ2). (5.42)

Combining everything together, we find

fg(J = 0) =
ω2
0 − ω0ωc tanh

�
ω0
2T

�
coth

�
ωc
2T

�
(ω2

0 − ω2
c )

. (5.43)

With this solution, which is also depicted in Fig. 5.1, we can explore the low temperature and

high temperature limits. When T → 0 we recover the perturbative corrections to the ground state

energy [5]

E
(2)
0 = F (2)

g (T → 0, J = 0) = N
g2

4ωc

ω0

ω0 + ωc
. (5.44)

Instead, when T → ∞ the cavity induced corrections to the free energy vanish quadratically

F (2)
g (T → ∞) . N

g2ω2
0

48ωcT 2
. (5.45)

5.4 The free energy in the low frequency regime

Here we consider the EDM using the partition in Eq. (5.26). Specifically, we consider the system

in the polaron basis, where the electromagnetic Hamiltonian and the z-Hamiltonian take the shape
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given in Eq. (5.28). As we already anticipated before, this way of looking at the EDM in the

polaron basis is perfectly suitable for perturbative treatment in ω0. So, placing no constraint on

the coupling constant, we consider the detuned regime where

ω0

ωc
" 1. (5.46)

Here we can safely apply the perturbation theory developed in App. H, where we take H0 = H̃e.m.

and HI = H̃z. The corrections to the electromagnetic free energy are given by

F (2)
ω0

= − ω̃2
0

β

∞&
r,q=0

� β

0
dτ1

� τ1

0
dτ2 e

(q−r)ωc(τ1−τ2) × �
Krq 
Sz(τ1)Sz(τ2)�0 +Qrq 
Sy(τ1)Sy(τ2)�0



,

(5.47)

where the full calculation is detailed in the App. H.6, and where

ω̃0 = ω0e
− g2

2ω2
c
(1+2Nth)

. (5.48)

The two matrices in the sums are given by

Krq =
[1 + (−1)r+q]

2

�
g

ωc

�2(r+q) (1 +Nth)
rN q

th

r! q!
,

Qrq =
[1− (−1)r+q]

2

�
g

ωc

�2(r+q) (1 +Nth)
rN q

th

r! q!
.

(5.49)

We can interpret this q, r-sums as the contribution of multiphotons processes, where r-photons are

emitted and q-photons are absorbed. This expression can be rewritten in a more compact form as

F (2)
ω0

= −βω̃2
0

2

 ∞&
r,q=0

KrqΔzz(β, (q − r)ωc) +

∞&
r,q=0

QrqΔyy(β, (q − r)ωc)

 . (5.50)

By introducing the dipole’s thermal response functions

Δαα(β, ωc) =
2

β2

�
dωSαα(ω)

�
eβ(ωc−ω) − 1

(ωc − ω)2
− β

ωc − ω

�
. (5.51)

Here the structure factor S is defined as

Sαα(ω) =
&
m

e−βEdip
m

Zdip

&
k

|Skm
α |2δ(Edip

km − ω), (5.52)
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where Edip
m is the energy of the electrostatic dipoles,

Hdip =
J

N
S2
x, (5.53)

and Edip
km = Edip

k − Edip
m , and Skm

α are the matrix elements of collective spin-α operator. Note that

the structure factor respects the detailed balance condition

Syy(ω) = eβωSyy(−ω). (5.54)

It is now clear that Δαα(β,−ωc) is associated with the probability to jump to a lower spin state by

emitting a photon, while Δαα(β,+ωc) is the reverse process, in which a photon is absorbed and the

spins can jump up to an higher state. When the resonance condition |Edip
km − ωc|/T " 1 is fulfilled

the response function takes its maximum value

Δαα(β, ωc) . e−βEdip
m

Zdip
|Skm

α |2. (5.55)

It is worth mentioning that this could be an interesting approach to generate multiphoton states

from a strongly interacting USC system in thermal equilibrium.

5.5 USC modifications of the Curie law

The perturbative free energy developed just above is particularly useful for the investigation of the

z-susceptibility

χz = − 1

N

∂2 
Sz�
∂ω2

0

((((
ω0=0

= − 1

N

∂2F

∂ω2
0

((((
ω0=0

. (5.56)

When J = 0, and g = 0 this quantity just gives the famous Curie law

χz =
αC

T
, (5.57)

where the Curie constant is αC = 1/4 (with � = kB = 1). In the context of magnetic dipoles it

represents the susceptibility of the magnetization of a paramagnet at temperatures above the Curie

temperature. In the current setting it characterizes the change in population of the two-level dipole

in response to a change in the transition frequency.

Considering F
(2)
ω0 in Eq. (5.50), we obtain

χz . e
− g2

ω2
c
(1+2Nth)

T

 ∞&
r,q=0

Krq
Δzz(β, (q − r)ωc)

N
+

∞&
r,q=0

Qrq
Δyy(β, (q − r)ωc)

N

 . (5.58)



106 CHAPTER 5. THERMODYNAMICS OF THE EXTENDED DICKE MODEL

First we notice that in the low temperature limit, T → 0, the only term that is non-negligible in

the sum is for r = q = 0, for which K00 = 1, Q00 = 0. This means that everything in this regime

just depends on Δzz(β, 0). For the special case of non interacting dipoles, J = 0 (where Hdip = 0),

we find that

Δzz(β, 0) . 
S2
z � =

N

4
. (5.59)

Therefore, we obtain

lim
T→0

χz =
αc(g)

T
, (5.60)

where the Curie constant gets exponentially suppressed by the coupling to the cavity,

αc(g) =
1

4
e
− g2

ω2
c
(1+2Nth)

. (5.61)

This is somehow not completely surprising if we follow the intuition developed from the USC low

energy theory in Ch. 4.8. Indeed, for zero temperature

χz ∼ ∂2
ω0
E0 ∼ e−g2/ω2

c . (5.62)

This shows that the susceptibility can be directly used to observe USC effects. But there is more.

(a) (b)
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Figure 5.2: (a) Plot of the zero-field susceptibility χz (solid lines) for different coupling parameters g/ωc.
The dashed lines indicate the predictions from the approximate formula given in Eqs. (5.63)-
(5.64). The x-markers show the results obtained from the perturbation theory given by Eq.
(5.58). (b) Dependence of the Curie constant αC(g) on the dipole-field coupling strength. The
exact numerical results are in perfect agreement with the analytic scaling derived in Eq. (5.61).
For all plots N = 20, ωc = ω0 and J = 0 have been assumed.

In Fig. 5.2 we show the dependence of χz as a function of the temperature for different values of

the light-matter coupling. First we see that the perturbation theory given in Eq. (5.58) is basically

exact and the modified Curie constant fits perfectly at low temperature. This is expected, since
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the susceptibility is evaluated at ω0 → 0, where the perturbation theory must hold. Secondly, we

see that for larger temperatures we have an intermediate regime where the susceptibility develops

a plateau when g/ωc > 1, followed by a bump and then falling again as a modified Curie law. This

is a very important observation since it is directly linked to the USC and cannot be observed in the

standard WC regime.

To better understand the formation of the USC-plateau at intermediate temperatures we con-

sider a simple toy model where the z-susceptibility is made by the modified Curie law plus some

corrections due to the derivatives of the first excited states

χz ≈ αC(g)

T
− 1

N�
&
n

pn
∂2En

∂ω2
0

((((
ω0=0

, (5.63)

where pn and En are the thermal occupation probabilities and the energy of the n-th eigenstate,

respectively. If we consider the low energy USC theory from Ch. 4.8 we can explicitly calculate

also the second term in this equation. Assuming that all the lowest levels are equally populated

(because they are almost degenerate) pn ≈ 1/2N , we have

− 1

N�
&
n

pn
∂2En

∂ω2
0

((((
ω0=0

≈ ωc

2g2
. (5.64)

In Fig. 5.2 we can see that this simple toy model perfectly fits both the low and intermediate

temperature regime, with the correct reproduction of the USC-plateau. This is an important obser-

vation because it explicitly relates the z-susceptibility to the vacuum energy and the lowest excited

states, which in the USC limit of the EDM form an almost degenerate ground-state manifold.

5.6 Black body radiation

When one thinks about thermodynamics and quantum mechanics the first thing that comes to

mind is the black body radiation. It is indeed well known that the very origin of the quantum

theory lies in the understanding of radiation in thermal equilibrium inside a body where it cannot

escape, precisely a black body. Here we calculate the black body spectrum of our LC cavity QED

system and we explicitly show how it can be used to directly observe the USC regime. We also

provide a detailed operational description about how to measure it in a realistic situation. The

main idea is represented in Fig. 5.3 where the cavity QED system is attached to a transmission line

via a small capacitor. Warming up the system generates excitations, which eventually decay into

the transmission line and leave the system. At the end of the line there is a detector which scans

through the frequencies of the emitted excitations, effectively measuring the black body radiation.

Keeping the capacitive coupling extremely weak leaves the system always thermalised, since the
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Figure 5.3: Sketch of a cavity QED setup where an ensemble of dipoles is coupled to the electric field of a
lumped-element LC resonator. The system is in thermal contact with a bath of temperature
T . The black-body spectrum of the cavity mode, Sbb(ω), can be measured through a weak
capacitive link to a cold transmission line. See text for more details.

emitted excitations are just a negligible fraction of the whole thermal excitations contained in the

system. This is exactly the idea behind the back body radiation: the radiation is fully confined in

the box, in thermal equilibrium with its walls, but we can probe it by a small hole from where just

a tiny fraction of the radiation can escape. In such a regime, Ct " C, the coupling Hamiltonian

between the circuit and the transmission line is

Hc−t = CtV Vt, (5.65)

where Ct is the capacitor between the transmission line and the LC circuit and C is the capacitance

of the LC circuit, V is the voltage drop across the capacitor C and Vt is the voltage drop at the end

of the line. As usual in circuit QED we model the transmission line as a bosonic chain [68], where

Vt =
&
k

Vk(b
†
k + bk), (5.66)

and [bk, b
†
k	 ] = 1. The transmission line is then fully characterised by the frequency of each mode,

ωk, and the corresponding coupling parameter λk = CtV0Vk/�. It is also convenient to introduce a

rescaled voltage operator for the LC circuit V = V0X. Then the Hamiltonian of the system coupled

to the transmission is

Htot = H +
&
k

ωkb
†
kbk +

&
k

λk(b
†
k + bk)X. (5.67)

For a conventional transmission line we have λk ∼ √
ωk.

Using the equations of motion, we can obtain the formal solutions for the Heisenberg operators

bk

bk(t) = bk(0)e
−iωkt − iλk

� t

0
dt� e−iωk(t−t	)X(t�), (5.68)
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and assuming that the transmission line is initially in the vacuum state we have


b†kbk� (t) = λ2
k

� t

0

� t

0
dt�dt�� eiωk(t

		−t	) 
X(t�)X(t��)� . (5.69)

We introduce now the positive/negative frequency coupling operators by X(t) = X−(t) + X+(t),

such that X+(t) =
'

n≥mXnmeiωnmt contains only contributions that oscillate with a positive

frequency, ωnm = (En − Em)/� ≥ 0, and X−(t) = X†
+(t). We then introduce the thermalization

rate of our system γ, and for times t � γ−1 we have


b†kbk�(t) . λ2
kt× 2Re

� ∞

0
dτ 
X+(τ)X−(0)�0 e−iωkτ . (5.70)

The total power emitted into the transmission line is

Prad =
&
k

�ωk∂t
b†kbk�(t) (5.71)

and by writing Prad =
�∞
0 dω Sbb(ω) we obtain the general expression for the black-body spectrum

Sbb(ω) = �ωJ(ω)CX(ω). (5.72)

Here we introduced J(ω) =
'

k λ
2
kδ(ω − ωk), the spectral density of the transmission line, and

CX(ω) = 2Re

� ∞

0
dτ 
X+(τ)X−(0)�0 e−iωτ . (5.73)

We assume that the spectral density is Ohmic and so we can write J(ω) = κω/(2πωc), where κ is

the leakage rate from the cavity into the transmission line. For a completely isolated system the

correlation function of the system operator X is given by

CX(ω) = 2π
&
n>m

e−βEn

Z
|
n|X|m�|2δ(ω − ωnm). (5.74)

The effect of having a finite thermalization rate γ is that the delta functions in this correlation

function get broadened and acquire a finite linewidth. This effects can be modelled by hand by

replacing δ(ω − ωnm) #→ δγ(ω − ωnm), where δγ is a smeared delta function. In our case we

chose a Lorentzian profile. Since the linewidth is still assumed to be very small with respect to

the level spacing we approximate ωJ(ω) . ωnmJ(ωnm). By re-expressing the voltage operator as

V = V0(A+A†) we have the final expression for the black body spectrum seen by a detector at the

end of the line

Sbb(ω) =
�κγ
2πωc

&
n>m

e−βEn

Z

ω2
nm|
n|A+A†|m�|2
(ω − ωnm)2 + γ2/4

. (5.75)
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Notice that we have introduced the “gauge invariant cavity annihilation operator” A. In the polaron

frame A = a, but in general it is a combination of dipole and cavity operators. For instance in the

standard frame A = a+ g/ωcSx.
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Figure 5.4: The black-body spectrum Sbb(ω)/(�κ) is plotted on a logarithmic scale as a function of g for
three different temperatures. The green dashed lines indicate the frequencies ω± of the two
polariton modes obtained from a Holstein-Primakoff approximation. For all plots N = 6, J = 0
and γ/ωc = 0.04 have been assumed.

In Fig. 5.4 we plot the spectrum as a function of the light-matter coupling g. For very small

coupling g " ωc the most populated states are given by the polariton frequencies ω± given in

Eq. (4.22) in Ch. 4. If the temperature is large enough also other lines get populated, effectively

appearing as a linewidth broadening for the two polaritons. This effect is particularly evident for

large N dipoles. It is worth noticing that the two polaritons are not equal in amplitude, and,

in particular, the upper polariton is brighter than the lower one. This seems to be a bit counter

intuitive, but it will be clear later when we discuss in more detail the matrix elements of the voltage

operator. When the system is in the USC regime, and g � ωc, we observe a rather sharp collapse

of the two polariton branch and the spectrum is reduced to a single line at the cavity frequency

ω = ωc = ω0. Somehow it seems that the coupling between dipoles and photons has disappeared.

This collapse is a signature of what we called light-matter decoupling, which we encountered in the

discussion of the ground state properties of cavity QED in Ch. 4.8.

By integrating the spectrum over all positive frequencies we get the emitted radiation

Prad =
�κ
ωc

&
n>m

e−βEn

Z
ω2
nm|
n|A+A†|m�|2. (5.76)

Without the dipoles we have just the free LC circuit radiation, which gives

P 0
rad = �ωcκNth. (5.77)

We will use this value of P 0
rad as normalisation constant, in order to highlight the coupling effects.
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Figure 5.5: Plot of the total emitted power, Prad, and the average value of the EM energy, 
Hem�/(�ωc) =

A†A�+ 1/2, for the same parameters. Note that for better visibility we have included for this
plot the offset �ωc/2 (indicated by the dashed line) into the definition of Hem. For all plots
N = 6, J = 0 and γ/ωc = 0.04 have been assumed.

In Fig. 5.5 we plot the normalised radiated power as a function of the coupling strength g for a

few fixed temperatures. Together with the radiated power we also plot the expectation value of the

electromagnetic Hamiltonian for J = 0, i.e. when the electrostatic dipole-dipole interaction is zero


He.m.

((
J=0

� = ωc
A†A�. (5.78)

This value represents the electromagnetic radiation energy stored in the LC-circuit and we would

intuitively expect that it follows the behaviour of the radiated power. Quite surprisingly, for small

temperatures, the electromagnetic energy seems to be anti-correlated with the radiated power, as

we can see in the first two figures in Fig. 5.5.

To obtain a better understanding of this behaviour we investigate the system under the Holstein-

Primakoff approximation, which is explained in App. D. The extended Dicke model is then approx-

imated by two bosonic modes

H ≈ Ω+

�
c†+c+ +

1

2

�
+Ω−

�
c†−c− +

1

2

�
, (5.79)

where the two polaritons frequencies are given by Eq. (4.22). We can then rewrite the two quadra-

tures of the A operator in terms of this polaritons

A† +A = V+

�
c†+ + c+

�
+ V−

�
c†− + c−

�
, (5.80)

(A† −A) = Φ+

�
c†+ − c+

�
+Φ−

�
c†− − c−

�
, (5.81)

where V± and Φ± are the adimensional matrix element of the voltage/flux operators. We plot these

matrix elements as a function of the collective light-matter coupling G =
√
Ng in Fig. 5.6(a).
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Figure 5.6: (a) The dimensionless matrix elements V± and Φ±, which determine the decomposition of the
voltage and the magnetic flux operators in terms of the polariton operators c± [see Eqs. (5.80)
and (5.81)] are plotted as a function of the collective coupling strength, G. (b) Plot of the
ratio between the total power emitted from the coupled cavity QED system (Prad) and from
the bare cavity (P 0

rad) as a function of temperature. The solid lines are obtained from exact
numerical calculations for N = 6 and the dashed lines show the corresponding results predicted
by Eq. (5.82) based on a Holstein-Primakoff approximation.

Under the HP approximation we can also derive an approximated expression for the emitted power

Prad

P 0
rad

. V 2
+

�
ω2
+

ω2
c

�
Nth(ω+)

Nth(ωc)
+ V 2

−

�
ω2−
ω2
c

�
Nth(ω−)
Nth(ωc)

. (5.82)

From Fig. 5.6(a) we see that the upper polariton has a matrix element of the voltage operator

which increases with G, while it is the opposite for the lower polariton. At the same time the

upper polariton increases its frequency, while the lower decreases. This means that the thermal

population of the upper polariton gets exponentially suppressed, while the thermal population of

the lower one is non-negligibly populated even for small temperatures. Together with the fact that

the Ohmic spectral density of the line filters low frequencies, we can put together these observations

and explain why the power decreases when increasing coupling G (before the collapse due to USC).

In Fig. 5.6(b) we see that this competition of effects gives a very non-monotonic behaviour in the

emitted power.

We can also understand why the electromagnetic energy increases instead. To do so we consider

the electromagnetic energy in the HP approximation


Hem�
�ωc

=
(V 2

+ +Φ2
+)

2
Nth(ω+) +

(V 2− +Φ2−)
2

Nth(ω−) +
�
V 2
+ +Φ2

+ + V 2− +Φ2−
4

− 1

2

�
. (5.83)
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In the last part of this equation we see that a new vacuum energy term has appeared. This is

responsible for the increasing of the electromagnetic energy, but it is not due to thermal fluctuations

and so it is not really detectable in the emitted radiation.

So Eq. (5.82) correctly predicts the drop of the emitted power for intermediate coupling strengths

g in Fig. 5.5 , but we see that at higher temperatures this trend may be reversed. It turns out

that this effect is also present at very low temperatures, as we can see in Fig. 5.6(b). This can be

intuitively understood considering that when T " ωc the upper polariton’s population is completely

suppressed, but the population of the lower polariton instead scales like

Nth ∼ T

Ω−
, (5.84)

and can takes quite large values when G/ωc ∼ 1, since Ω− → 0. In this regime we also observe

Prad/P
0
rad � 1.

5.7 USC modifications of the ferroelectric transition

In Ch. 4 we have studied in details the ground state superradiant phase transition which is induced

by the dipole-dipole interaction (which is here modelled by the generic parameter J). In particular,

we have seen that strong modifications appear in the USC regime. Here we repeat this study, but

including the effect of the temperature.

By using a mean-field approach, very common in the study of the LMG or Dicke model [102, 103,

104], one can derive a simple formula for the critical dipole-dipole coupling strength as a function

of the critical temperature

tanh

�
�ω0

2kBTc

�
= −ω0

Jc
. (5.85)

We see that for T → 0 we recover the usual ferroelectric transition in the LMG model, with

Jc = −ω0. On the other side, when ω0 → 0, the ferroelectric transition exists just below the critical

temperature

Tc = −J

2
. (5.86)

In Fig. 5.7(a) we report the phase diagram of this system, where the dashed line indicates the LMG

transition given by Eq. (5.85). The color scale plot instead represents

m̄ =
$


S2
x�, (5.87)

which is the relevant order parameter in a finite system [104] . However in a system with only a few

dipoles, where N is small, m̄ is still rather smooth and it is quite difficult to identify the critical
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Figure 5.7: (a) Phase diagram of the LMG model without cavity, where the color scale shows the value of
the parameter m̄ =

$
S2
x� for N = 20 dipoles. For each point, we also evaluate the probability

distribution p(mx) for the projection quantum number mx, which exhibits a single maximum
in the paraelectric phase (I) and two maxima in the ferroelectric phase (II). The transition
between the single- and bi-modal distribution is indicated by the solid line, while the dotted
line depicts the phase boundary obtained from mean-field theory, see Eq. (5.85), combined with
the cavity-induced exponential suppression of ω0. The same boundaries are shown in (b) for
different coupling strengths g, where for the mean-field results ω0 has been replaced by ω̃0. (c)
Dependence of the critical temperature Tc on the coupling parameter g/ωc for a fixed inter-dipole
coupling strength of J/ωc = −1.5. In all plots ω0 = ωc and N = 20.

point. An even better indicator for the phase transition in these cases is the polarization probability

distribution

p(mx) = Tr{Pmxρth}, (5.88)

where Pmx =
'

s Ps,mx and Ps,mx is the projector on all states with Sx |ψ� = mx |ψ� and total spin

s. One can define unambiguously the phase transition point when p(mx) transforms from a single

peak distribution to a bi-modal distribution. An example is reported in Fig. 5.7(a), the two panels

on the right. Using p(mx) we estimated numerically the phase boundary (Tc, Jc) for various values

of the light-matter coupling g. This is reported in Fig. 5.7(b), where the dashed line indicates the

mean-field result in Eq. (5.85), where we replaced ω0 #→ ω0 exp[−g2/(2ω2
c )(1 + 2Nth)]. This crude

approximation is actually not so bad, at least qualitatively, and it follows from the intuition that

we have developed in the Ch. 4, from the USC low energy theory. In Fig. 5.7(c) we plot again the

transition temperature, but for a fixed Jc and continuously varying the light-matter coupling. We
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thus conclude that the USC helps to stabilise the ferroelectric phase against thermal fluctuations.

In summary this chapter shows that non-perturbative modifications of the thermodynamic of

a cavity QED system are possible but only in the single particle USC regime. On contrary the

collective USC regime does not influence the thermodynamics at all. Despite based on a very

simple toy model the conclusions drawn in this chapter are extensible also to more complicated and

realistic settings. In particular we expect to have a deep impact on the debate about polaritonic

chemistry and its applications.
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Chapter 6

Light-matter interactions with

topological photons

In this final chapter of the thesis we leave the USC regime behind and address a different aspect

of light-matter interactions, namely the coupling of two-level emitters to photonic lattice systems

with synthetic magnetic fields.

The system we will consider is sketched in Fig. 6.1. It consists of a two dimensional simple

square lattice of coupled cavities, with a few quantum emitters coupled to it. The photon can hop

from one cavity to the other and if an emitter is contained in the cavity it can be absorbed. This

system can be generically described by

H = Hph +
ω0

2

N&
n=1

σn
z + g

N&
n=1

�
Ψ(Mrne )σ

n
+ + h.c.



(6.1)

where Hph is the photon’s Hamiltonian, which will be given later. In general we can say that,

two-level
emitterphotonic

lattice

Figure 6.1: Sketch of a system of two-level emitters coupled to a photonic lattice with a synthetic magnetic
field B.

117
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defining Ψ(Mr) as the photon’s annihilation operator at the position Mr, Hph will be just a quadratic

combination of these creation/annihilation operators. All the emitters are described as two levels

atoms, with fixed resonance ωe, the coupling to the electromagnetic field is local at the position Mr n
e

which is the position of the n-th two level emitter. Note that different ways to realize such systems

have been discussed in the literature and later below we will give a quick outline how to realize such

systems in the context of cavity QED.

In this context we want to still look at some new exotic realisation of light-matter interaction,

but, instead of looking at non-trivial effects due to large coupling with just one mode, we consider

small coupling but many modes. And it is properly tailoring the system in the correct way that

we can explore new non-perturbative light-matter phenomena. Here we focus on a two dimensional

photonic lattice where the photon feels a synthetic magnetic field perpendicular to the lattice, as

represented in Fig. 6.1 and we explore the atom/photon interactions in this exotic scenario.

The results contained in this chapter are published in Physical Review Letters 126, 103603

(2021). This project was done together with Ze-Pei Chan, Iacopo Carusotto, Mohammad Hafezi

and Peter Rabl, and I was the leading author. All the results in this publication have been derived

by me under the supervision of Peter Rabl.

6.1 Synthetic magnetic fields for photons

We describe here the details of this two dimensional lattice for photons and the implementation

of the synthetic magnetic field. Considering just a single mode per lattice site, we realise a tight

binding model for confined photons, with frequency ωp and a tunneling amplitude Jij between

neigbouring sites i and j. The Hamiltonian reads [25]

Hph = ωp

M&
i=1

Ψ†
iΨi −

&
ij

�
JijΨ

†
iΨj + h.c.

�
, (6.2)

where we use Ψi to indicate the annihilation operator of a confined photon in the i-th cavity.

If the system is engineered to break time reversal symmetry the hopping matrix is complex, so

we can write it generically in terms of amplitude and phase

Jij = |Jij |eiφij . (6.3)

With an accurate construction of our system these phases can be chosen as

φij =
e

�

� ?ri

?rj

MA(Mr) · dMr, (6.4)
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(a) (b)

Figure 6.2: (a) Sketch of the photonic lattice with synthetic magnetic field. The magnetic field is imple-
mented by adjusting the hopping phases φij between neighbouring lattice sites such that around
each plaquette

'
� φij = 2πα. (b) Spectrum of the magnetic photonic lattice in function of its

magnetic flux α. The color scale shows the projected density of states, ρ(Mri, ω) for a lattice of
M = 20×20 sites. For this plot, Mri = (10, 10) and each resonance is represented by a broadened
δ-function with a finite width of γ/J ≈ 10−3.

where we introduced a fictitious charge e and the two lattice positions Mri, Mrj are adimensional. In

this way we may associate to our phase a synthetic, magnetic field

MB(Mr) = M∇× MA(Mr). (6.5)

The origin of this identification comes from the physics of electrons in lattices when the system is

embedded in a magnetic field. Such systems are usually described by a tight binding Hamiltonian,

in which each electron can hop between different sites. In the presence of a magnetic field, one

must correct the hopping rate with the complex phase in Eq. (6.4), which is the so called “Peirls

substitution” [105]. So by analogy, we say that a photon following the same hopping dynamics is

coupled to a magnetic field.

In the following we specialise on the case of a simple square lattice in two dimensions with

nearest neighbour hopping. The hopping matrix is

Jij = Jδ�ij�eiφij , (6.6)

where 
·� indicates nearest neighbour sites. This system is pictorially represented in Fig. 6.2(a).

The photon’s Hamiltonian can in general be rewritten as

Hph =
&
λ

ωλΨ
†
λΨλ, [Ψλ,Ψ

†
λ	 ] = δλλ 	 , (6.7)
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where Ψλ =
'

i f
∗
λ(Mri)Ψi and the fλ(Mri) are the eigenmodes, which obey

(ωλ − ωp)fλ(Mri) = −J
�
e−iφxfλ(Mri + Mex) + eiφxfλ(Mri − Mex) + e−iφyfλ(Mri + Mey) + eiφyfλ(Mri − Mey)

�
.

(6.8)

For a short-hand notation we introduce the unit vectors Mex,y pointing in x or y directions and

Φx,y =
e

�

� ?ri+?ex,y

?ri

MA(Mr) · dMr . e

�
MA(Mri) · Mex,y. (6.9)

The continuum limit is taken by approximating

fλ(Mri + Mex) . fλ(Mri) + l0
∂

∂x
fλ(Mri) +

l20
2

∂2

∂x2
fλ(Mri), (6.10)

where we introduced the lattice spacing l0. Up to second order in l0 we have

−J
�
e−iφxf(Mri + Mex) + eiφxfλ(Mri − Mex)

�
. −2Jfλ(Mri)−Jl20

�
∂

∂x
− i

e

�
Ax(Mri)

�2
fλ(Mri)+O(l30), (6.11)

leading to the differential equation

�(ωλ − ωb)fλ(Mr) =
1

2m

�
−i�M∇− e MA(Mr)

�2
fλ(Mr), (6.12)

where ωb = ωp− 4J and m = �/(2Jl20) is the effective mass in the lattice. At this point the discrete

field operators are approximated as a continuous quantum field

Ψi #−→ Ψ(Mr) =
&
λ

fλ(Mr)Ψλ. (6.13)

The photon Hamiltonian in the continuum limit becomes

Hph .
�

Ψ†(Mr)
1

2m

�
−i�M∇− e MA(Mr)

�2
Ψ(Mr)d2r, (6.14)

which is exactly the second quantized form of a bosonic field in a magnetic field.

6.2 The Hofstadter butterfly and the Landau-photon

In our work we consider the simplest case of a homogeneous magnetic field perpendicular to the

lattice plane
MB(Mr) = BMez, (6.15)
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Figure 6.3: The projected density of states, ρ(Mre, ω), is plotted on a logarithmic scale (arbitrary units) as
a function of α and for a lattice of M = 20 × 20 sites. For this plot, Mre/l0 = (10, 10) and each
resonance is represented by a broadened δ-function with a finite width of γ/J ≈ 10−3.

where B is a constant and Mez is a unit vector perpendicular to the (x, y) plane. Using the so-called

symmetric gauge, the associated vector potential is given by

MA(Mr) =
B

2
(−y, x, 0). (6.16)

When we use this vector potential to generate the magnetic phase in our hopping model (6.2), we

obtain the Hofstadter-Harper model [106]. The magnetic phase can be rewritten as

φij = 2πα
�
−yi

2
(xj − xi) +

xi
2
(yj − yi)

�
, (6.17)

where we remind that the lattice’s positions Mri are given in units of the lattice constant l0. The

parameter α = eBl20/(2π�) represents the magnetic flux enclosed in a single plaquette, as illustrated

in Fig. 6.2(a). Solving the eigenvalue equation, generically given by (6.8), we obtain the spectrum

of the system. A good way to visualise this spectrum is to introduce the local density of states

ρ(Mri, ω) =
&
λ

|fλ(Mri)|2δ(ω − ωλ). (6.18)

The plot of ρ(Mri, ω) as a function of α, for a fixed lattice position far away from the borders,

represents the famous Hofstadter butterfly [106], which is shown in Fig. 6.2(b). The Hofstadter

butterfly is a spectrum enclosed in the finite bandwidth given by ΔHB ∼ 8J , and symmetrically

centred around ωp. Increasing the magnetic field, controlled by α, the spectrum collapses into a set

of narrow bands, well separated by spectral gaps. With further increasing α, new patterns with a

self-replicating fractal structure appear.

In the last section we have shown that this system supports a continuous limit, which might be
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quite convenient to extract some analytical properties. To see when this continuum limit can be

applied we must compare the two intrinsic length scales in the system, the lattice spacing l0 and

the magnetic length lB, as well as the size of the system, L, in case it is finite. For the expansion in

Eq. (6.10) we require that the functions fλ don’t vary too much over the lengthscale given by l0. In

this way we can neglect higher order derivatives. The same must be applied to the magnetic phase,

requiring that it does not vary too much in the same interval. The scale of spatial variation of the

magnetic potential is exactly given by lB, and the phase scales consistently as e MA ·dMr ∼ l20/l
2
B. Since

it gets smoother with larger magnetic length, the correct limit in which we need to stay is lB � l0.

When the system has finite size we realise that the vector potential is bounded by |e MA| < �L/l2B.

Assuming we are in the correct continuous limit, i.e. lB > l0 still holds, we need to compare it with

the smallest momentum scale in the system, which is given by |Mp| ∼ �/L. In order to have effects

beyond the perturbative regime we require

|e MA|
|Mp| � 1, (6.19)

which implies lB " L. This can be interpreted semiclassically as the condition that the system

must be large enough to contain at least one quanta of cyclotron orbit. So we can finally say that

the regime of applicability of the continuous limit is given by

l0 < lB < L. (6.20)

Since lB = l0/
√
2πα, we can translate this condition on the magnetic length into a condition on the

magnetic flux α
1

2πM
< α <

1

2π
, (6.21)

where M is the total number of lattice sites. The continuous limit is then valid in an intermediate

regime of magnetic flux.

We can actually visualise these three regimes by an inspection of the Hofstadter butterfly in a

logarithmic scale, as shown in Fig. 6.3. The intermediate regime extends up to values of about

α . 1/6, but with some quantitative disagreements, one can show numerically that it can be

stretched till α . 1/4, which is the value of the magnetic flux realized in a recent experiment [107].

Using the expression in Eq. (6.16) and plugging it into Eq. (6.12), we recognise the Schrödinger

equation for a charged particle in two dimensions in an homogeneous magnetic field. This equation

was first solved in [108], its eigenfrequencies are equispaced and given by ω+ = ωb + ωc(3 + 1/2),

with 3 = 0, 1, 2 . . . . Here

ωc =
eB

m
= 4παJ (6.22)
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is the cyclotron frequency. It turns out that each energy level is infinitely degenerate, and each

degenerate state is labelled by another quantum number k. The eigenfunctions are given by

f+k(Mr) =
l0"
2πl2B

%
3!

k!
ξk−+e−

|ξ|2
2 Lk−+

+ (|ξ|2), (6.23)

where

lB = �/
√
eB (6.24)

is the magnetic length, Lα
n(x) is the generalised Laguerre polynomial, and ξ = (x+ iy)/

"
2l2B. They

form an orthogonal basis in the continuum, so we obtain�
d2rf∗

+	k	(Mr)f+k(Mr) = l20δ++	δkk	 . (6.25)

Notice that in a finite system each level cannot be consider infinitely degenerate, but we can estimate

the degeneracy of the lowest level as

kmax ∼ αM, (6.26)

where M is the total number of lattice sites. For later convenience we give a special name to the

wave function having k = 3 and we define

Φ+(Mr) = f++(Mr). (6.27)

These states are circularly symmetric, composed out of a Gaussian envelope and a radial Laguerre

polynomial, which results in concentric circles separated by a node, around a central bump at a

radial distance ∼ √
23+ 1 × lB. Page [108] first used these wavefunctions to create an analogy

between the classical cyclotron trajectories and the quantized problem. This is why we can also

refer to lB as the quantum cyclotron radius.

The equation (6.12) can be solved equivalently in the so-called Landau gauge MA(Mr) = B(0, x, 0),

giving the same results, but having all the degenerate wave functions in each level expressed in a

different basis [109] (with Hermite polynomials, instead of Laguerre). Even though Page and Landau

solved this problem at the same time, the degenerate energy levels are known in the literature only

as Landau levels, so we just stick to this convention.

Since the continuous approximation is only exact in the limit α → 0, it is worth to have a look

at higher order corrections due to the discreteness of the lattice. Indeed in the continuous approxi-

mation the energy levels are just equispaced, with the spacing given by the cyclotron frequency ωc,

but, by looking at the Hofstadter butterfly 6.2(b), it is clear that this is not exactly the case in the

lattice, even for quite small α. Since the resulting corrections are gauge independent, to proceed
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with the calculation it is more convenient to work in the Landau gauge. In this case the eigenvalues

equation (6.8) takes a quite compact shape and is called the Harper equation [110]

− J [χλ(xj + 1) + χλ(xj − 1)]− 2J cos (2παj − ky)χλ(xj) = (ω+ − ωp)χλ(xj). (6.28)

Here ky labels the momentum in the y-direction, which is a good quantum number in the Landau

gauge, and fλ(Mrj) = χ(xj)e
ikyyj . Without loss of generality we can set ky = 0. Following the

derivation of the continuous limit above, we can repeat the same expansion, but this time we keep

terms up to fourth order in l0 (restoring the correct units of length, i.e. Mri → Mri/l0)

− J [χλ(x+ l0) + χλ(x− l0)] . −2Jχλ(x)− Jl20
∂2

∂x2
χλ(x)− Jl40

12

∂4

∂x4
χλ(x), (6.29)

and

− 2J cos (2παj)χλ(x) .
�
−2J + J

l20
l4B

x2 − J
l40

12l8B
x4

�
χλ(x). (6.30)

We obtain again our Schrödinger equation for a charged particle in a magnetic field in the Landau

gauge, including the corrections O(l40) due to the discrete nature of the lattice

�(ω+ − ωp − 4J)χλ(x) =

�
− �2

2m

∂2

∂x2
+

1

2
mω2

cx
2

�
χλ(x)− 1

48�J

�
�4

m2

∂4

∂x4
+m2ω4

cx
4

�
χλ(x). (6.31)

The first term in parenthesis on the right hand side is just the Hamiltonian of an harmonic oscillator,

which gives a spectrum ω+ = ωc(3 + 1/2), as expected for Landau levels. The second term can

be instead included by using first order perturbation theory, which amounts to calculating the

expectation values of 
3|p4|3� and 
3|x4|3�, where |3� is the 3-th harmonic oscillator eigenstate and p

and x are momentum and position operators. Since these expectation values are well known from

any standard textbook of quantum mechanics, we can finally write the corrected energies as

ω+ . ωb + ωc

�
3+

1

2

�
− ω2

c

32J
(232 + 23+ 1). (6.32)

For instance, the gap between the zeroth and the first Landau level is now given by

ω1 − ω0 ≈ 4παJ
�
1− π

2
α
�
. (6.33)

For a value of α = 0.08, which we will assume in many of the following examples, we obtain

ω1 − ω0

J
≈ 0.874. (6.34)

This value is off from the continuous approximation by about 13%.
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6.3 Photon propagator and Landau Green’s function

As already anticipated in the introduction of the chapter, after having introduced the properties of

a photonic lattice with an homogeneous synthetic field, our task will be to study the light-matter

dynamics when the photons follows this unusual dynamics imposed by the magnetic force. We

have already anticipated that the light-matter coupling in this system is generally weak, so we

will just consider a linear interaction between photons and atoms, subjected to the rotating wave

approximation. Under such conditions the central quantity that gives all the information about the

photons is the two point correlator, also called the photon propagator [111]

G(t, Mri, Mrj) = 
vac|Ψi(t)Ψj(0)
†|vac� . (6.35)

Decomposing the field operator using the mode functions of the hopping matrix, the photon’s

propagator is given by

G(t, Mri, Mrj) =
&
λ

fλ(Mri)f
∗
λ(Mrj)e

−iωλt. (6.36)

In the continuum limit it represents the Green’s function of the time dependent Schrödinger equa-

tion, since

i�∂tG(t, Mr, Mr
	
) =

1

2m

�
−i�M∇− e MA(Mr)

�2
G(t, Mr, Mr

	
), (6.37)

with initial condition

G(t = 0, Mr, Mr
	
) = δ(3)(Mr − Mr

	
). (6.38)

In general deriving a closed expression for this Green’s function is not possible, but in the specific

case of the homogeneous magnetic field discussed above, and in particular employing the continuum

limit, we do have an analytical result. To derive it we start by approximating the mode functions

by Landau orbitals

G(t, Mri, Mrj) .
&
+k

f+k(Mri)f
∗
+k(Mrj)e

−iω�t, (6.39)

and make use of the fact that, thanks to the exact degeneracy of the continuum approximation, the

time dependent exponential depends only on the principal quantum number 3. So we can sum over

the degenerate index k. To do so, we notice that each of these wave functions can be expressed as

a matrix element between Fock states of the displacement operator

f+k(Mri) =
√
α 
k|D(ξi)|3� , (6.40)

where ξ = (xi + iyi)/
"

2l2B, and D(ξ) = eξa
†−ξ∗a with a the annihilation operator for a fictitious



126 CHAPTER 6. LIGHT-MATTER INTERACTIONS WITH TOPOLOGICAL PHOTONS

harmonic oscillator. Using the property D†(ξ)D(β) = D(β − ξ)e−
1
2
(ξβ∗−ξ∗β), we have

&
k

f+k(Mri)f
∗
+k(Mrj) = α

&
k


3|D†(ξj)|k� 
k|D(ξi)|3�

= α 
3|D†(ξj)D(ξi)|3� = αe
1
2
(ξiξ

∗
j−ξ∗i ξj) 
3|D(ξi − ξj)|3� ,

=
√
αeiθijΦ+(Mri − Mrj),

(6.41)

where

θij = − i

2
(ξiξ

∗
j − ξ∗i ξj) = − 1

2l2B
(xiyj − xjyi). (6.42)

From the first to the second line we have used a completeness relation 1 . '
k |k�
k|, which in

principle holds if the approximated degeneracy is large enough, i.e. kmax ∼ Mα � 1, which is

equivalent to the condition about finite size derived above, L � lB.

In summary the approximated photon Green’s function in the continuum limit is given by

G(t, Mri, Mrj) .
√
αeiθij

&
+=0

Φ+(Mri − Mrj)e
−iω�t. (6.43)

This is a very remarkable result, since now it allows us to express everything within this system in

terms of a rather simple analytic function.

Before we start to use this machinery to discuss actual physical predictions, we want to discuss

two interesting aspects of this Green’s function, which will be useful in the next sections.

We first notice that the Schrödinger equation for the Landau Green’s function possesses what

is know as a gauge symmetry. This is not very surprising since we know that a basics property of

electromagnetism expressed in terms of potentials is that it is defined only up to a gauge transfor-

mation. Indeed by replacing MA(Mr) #−→ MA(Mr)− M∇Λ(Mr), with Λ(Mr) an arbitrary function, the resulting

physical predictions do not change. In order to preserve Eq. (6.37), this means that the Green’s

function changes accordingly to

G(t, Mri, Mrj) #−→ eie(Λ(?ri)−Λ(?rj))/�G(t, Mri, Mrj). (6.44)

But this means that the Green’s function splits into a gauge dependent phase and a gauge indepen-

dent part (which may be still complex)

G(t, Mri, Mrj) = eiθ
gauge
ij Ginv.(t, Mri, Mrj). (6.45)

Notice that this applies as well to the discrete case, in exactly the same way. In the continuum
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approximation we find that the gauge invariant part is given by

Ginv.(t, Mri, Mrj) =
√
α
&
+=0

Φ+(|Mri − Mrj |)e−iω�t, (6.46)

while the phase θij needs an explicit gauge fixing to be determined. It is interesting that Eq. (6.45)

is true in general even for the discrete case.

The second important property that we want to show here is that the Green’s function can

be used a projector on a specific Landau level. In particular, let us consider the expression in Eq.

(6.43), which is explicitly decomposed into a sum over its harmonics, and each harmonic is a Landau

level. Isolating one harmonic in that sum, for a particular 3, we have a real-space projector into

that specific 3-th Landau level

G+(Mri, Mrj) =
√
α/l20e

iθgaugeij Φ+(|Mri − Mrj |) = 1

l20

&
k

f+k(Mri)f
∗
+k(Mrj) = 
ri|P̂+|rj�, (6.47)

where P̂+ is the projection operator in the abstract Hilbert space and the last equality just follows

from the fact that the mode functions form an orthonormal set. This observation can be quite useful

to define new creation/annihilation operators that creates/destroys a photon in a given Landau level.

But one has to be careful that the merely projected operator Ψ̃+(Mri) =
'

j G+(Mri, Mrj)Ψ(Mrj) does not

fulfill the correct commutation relation. However we will see that, once we introduce the emitter’s

degrees of freedom, the Landau projector will be a quite useful tool.

6.4 Single photon emission and resonant dynamics

In this section we present the simplest observations of light-matter dynamics mediated by magnetic

photons. We also highlight the striking difference to the case without magnetic field. We start by

restricting our investigation to the class of states that contain only a single excitation

|ψ�(t) =
�

N&
n=1

cn(t)σ
n
+ +

&
λ

ϕλ(t)Ψ
†
λ

�
|g�|vac�. (6.48)

The excitation number operator is defined by

Nexc =
&
λ

Ψ†
λΨλ +

1

2

N&
n=1

(σz + 1) , (6.49)

and one can immediately verify that 
ψ|Nexc|ψ�(t) = 1, ∀ t. Moreover, the light-matter Hamiltonian

in Eq. (6.1) has the property

[Nexc, H] = 0, (6.50)
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which makes the excitation number a good quantum number.

Considering the Schrödinger equation

i∂t|ψ�(t) = H|ψ�(t), (6.51)

and then projecting the two orthogonal components, we obtain the equations of motion for the

emitter’s and photon’s amplitudes

iċn = (ωe − iγe/2) cn + g
&
λ

fλ(Mr
n
e )ϕλ,

iϕ̇λ = (ωλ − iγp/2)ϕλ + g
&
m

f∗
λ(Mr

m
e )cm,

(6.52)

where we recall that Mrne is the position of the n-th emitter, fλ(Mrne ) is the lattice’s mode function

calculated at the emitter’s position. Note that here we have also included the decay of the emitter

and the photon with rates γe and γp, respectively, to model a realistic open system dynamics. We

can now integrate the equation for the photon’s amplitude and obtain

ϕλ(t) = −ig
&
m

f∗
λ(Mr

m
e )

� t

0
e−i(ωλ−iγp/2)(t−t	)cm(t�)dt�. (6.53)

Plugging this expression into the equation for the emitter amplitudes cn we end up with a closed

integral-differential equation

ċn(t) = −i(ωe − iγe/2)cn − g2
&
m

� t

0
G(t− t�, Mr n

e , Mr
m
e )e−γp(t−t	)/2cm(t�)dt�, (6.54)

where the photon’s contribution is given by the convolution in time between the emitter’s amplitude

and the photon’s Green’s function. This result is completely general and shows that the light-matter

interaction dynamics is completely determined by the photonic Green’s function.

In the following we briefly review the standard case of spontaneous emission in a two dimensional

non-magnetic lattice using the formula derived just above. The single emitter equation is

ċe(t) = −g2
� t

0
G(t− t�)eγ̄(t−t	)/2ce(t

�)dt�, (6.55)

where we have made the transformation ce(t) #→ ce(t)e
−i(ωe−iγe/2)t, γ̄ = γe−γp, and where G(t−t�) =

G(t− t�, Mre, Mre). The integral kernel, given by the Green’s function, can be expressed in terms of the

photonic density of states

G(t) =

� +∞

−∞
ρ(Mre, ω)e

−i(ω−ωe)tdω, (6.56)

with ρ(Mre, ω) =
'

λ |fλ(Mre)|2δ(ω − ωλ), as defined previously. When the system is large enough, we
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can consider this density of states as a continuous function in ω, and, considering a weak enough

light-matter coupling, and having the emitter’s resonance far away from eventual singularities, we

can approximate it as constant

ρ(Mre, ω) . ρ(Mre, ωe) = τ/(2π). (6.57)

The integral kernel becomes G(t− t�) . τδ(t− t�), reducing the single emitter’s dynamics to

ċe(t) = −g2τ

2
ce(t), (6.58)

which describes an exponentially decaying emitter’s population, with decay rate Γ = g2τ . In

particular, focusing on a two dimensional lattice, with plane waves eigenmodes, fλ ∼ ei
?k·?r, and

particle-like quadratic dispersion ωk . ωb + J |Mk|2, we have τ . 1/(2J) and the decay rate takes the

explicit value of

Γ . g2

2J
. (6.59)

Notice that the decay process itself does not depend on the details of the photon’s dynamics, nor

whether we consider a lattice or a continuum. The only thing that matters here is the assumption

that we have a smooth density of states which does not vary too much around the energy scales of

the emitter.

We now focus our attention on the case in which we do have a synthetic magnetic field in the

two dimensional lattice, as described in Sec. 6.2. The main difference in treating Eq. (6.55) is that

the density of states is not smooth at all. Indeed, if we consider the intermediate flux regime we

have

ρ(Mre, ω) . α
&
+=0

δ(ω+ − ω), (6.60)

and the integral kernel cannot be approximated by a delta function in time G(t) (= δ(t). But we

can make another approximation. We still assume that the coupling is very small, more precisely

that the light-matter coupling is much smaller than the separation between the Landau levels

g " |ω+ − ω+±1|. (6.61)

In addition we now assume that the emitter is in resonance with the 3-th Landau level

|ωe − ω+| " g. (6.62)

Under these conditions we can isolate a single Landau level out of the discrete density of states and



130 CHAPTER 6. LIGHT-MATTER INTERACTIONS WITH TOPOLOGICAL PHOTONS

obtain

ċe(t) . − γ̄

2
ce − αg2

� t

0
ce(t

�)dt�, (6.63)

where γ̄ = γe− γp is the difference between the loss rates. Taking another time derivative we arrive

at the equation of a damped harmonic oscillator

c̈e(t) . − γ̄

2
ċe − αg2ce, (6.64)

with frequency

Ω =
√
αg. (6.65)
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Figure 6.4: (a) Evolution of the excited-state population, pe(t), of an emitter located at Mre/l0 = (25, 25)
in a lattice of 50 × 50 sites. The parameters are α = 0 and δe/J = 1.35 (blue line), α = 0.08
and δe/J = 1.35 (orange line), and α = 0.08 and δe/J = 1.76 (green dashed line). (b) Plot of
the lowest eigenfrequencies ωλ of the two photonic lattices as used for the simulation shown in
blue and orange in (a). The dashed black lines indicate the corresponding emitter’s frequencies.
(c) Photon density, |ϕ(Mri, tπ)|2, combined with the profile of the photon current, 
Mjp�(Mri, tπ),
after half a Rabi-cycle, tπ = π/(2Ω), for α = 0.08 and ωe = ω�=0,1,2. For all plots g/J = 0.14
and for each lattice site in the bulk (on the edge) a photon decay rate of γp/J = 4 × 10−4

(γedge/J ∼ 10−1) has been introduced.

In Fig. 6.4(a) we show a simple numerical experiment that reproduces both the results with

and without magnetic field in a two dimensional square lattice

pe(t) . e−Γt, α = 0,

pe(t) . cos2(Ωt), α (= 0,
(6.66)
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where pe = |ce|2. Moreover we also show the case in which the emitter is not resonant with any of

the Landau levels. The spectral gap is filled only with states that are exponentially localised at the

boundary of the lattice [112], and thus do not couple to the emitter. The emission is then strongly

suppressed and, apart from it slow bare decay, the emitter remains just in its excited state.

Using Eq. (6.53) and the definition of the photon’s wave function, ϕ(Mri, t) =
'

λ ϕλ(t)fλ(Mri), we

obtain

ϕ(Mri, t) = −i
sin(Ωt)√

α
G+(Mri, Mre). (6.67)

For a time tπ = π/(2Ω) the excitation is fully converted into a photon localised in a Landau orbital

∼ Φ+(Mri − Mre), centred around the emitter. This photon carries a current 
Mjp�(Mri, tπ), due to its

circulating nature, which can be calculated from the operators

jxp (Mri) = i
J

2

��
eiφxΨ†(Mri + Mex)− e−iφxΨ†(Mri − Mex)

�
Ψ(Mri)−H.c.

�
, (6.68)

jyp (Mri) = i
J

2

��
eiφyΨ†(Mri + Mey)− e−iφyΨ†(Mri − Mey)

�
Ψ(Mri)−H.c.

�
. (6.69)

In the continuous limit it takes the shape of the usual gauge invariant current

Mjc(Mr) =
1

2m

�
Ψ†

c(Mr)
�
−i�M∇

�
Ψc(Mr)−H.c.

�
− e

m
MA(Mr)Ψ†

c(Mr)Ψc(Mr). (6.70)

In Fig. 6.4(c) we see three numerical examples of the photon’s wave function at time tπ and the

corresponding current profile. The emitter’s resonance select a particular Landau level, which then

defines the extension and the shape of the photon’s wave packet. From this plot it is also evident

that for the considered values of α the continuum description gives very accurate results.

All the above discussion can be generalised quite easily to the case of multiple emitters, giving

the general single excitation equation

c̈n(t) = − γ̄

2
ċn(t)− g2

&
m

G+(Mr
n
e , Mr

m
e )cm(t), (6.71)

where n = 1, 2 . . . N . The complete solution of this system of equations can be obtained considering

the Fourier transform of the cn(t) in Eq. (6.71), giving the eigenvalues equation

(ω2 + iωγ̄/2− Ω2)cn(ω) = g2
&
m �=n

G+(Mr
n
e , Mr

m
e )cm(ω). (6.72)

Solving this equation we can derive the complex eigenvalues of the dissipative system, which repre-

sent the resonance frequencies and the decay rates of the coupled eigenmodes. This eigenmodes are

actually the polariton modes of the system. Because they involve the Landau photons, we name

them Landau-photon polariton. After transforming back into the original frame, these complex
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eigenvalues are

ων = ωe − i
γe + γp

4
± Ω

$
1 + Λν − γ̄2/(16Ω2), (6.73)

where the Λν are the eigenvalues of the matrix

M =
1

α

���
0 G+(Mr

1
e , Mr

2
e ) G+(Mr

1
e , Mr

3
e ) · · · G+(Mr

1
e , Mr

N
e )

G+(Mr
2
e , Mr

1
e ) 0 G+(Mr

2
e , Mr

3
e ) · · · G+(Mr

2
e , Mr

N
e )

...
. . . · · ·

��� . (6.74)
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Figure 6.5: (a) Excitation spectrum Sn
e (ω) of N = 2 emitters resonant with the 3 = 1 Landau level, as a

function of their relative distance d. The excitation spectrum is normalised to one, and the color
scale is linear.(b) Photon’s density of the lowest eigenstate for N = 2 emitters resonant with
the Landau level 3 = 3 and at the distance of d/B = 6.

It is quite interesting to study Eq. (6.73) for a few paradigmatic case as a function of the

distance between the emitters. The simplest extension is the case of two emitters. Considering the

emitters at a relative distance d the spectrum is given by two symmetrical branches below and above

the emitter’s frequency (which is assumed the same for all emitters and to be in resonance with a

specific Landau level). Each branch is composed of two sub-branches. In this case the problem can

be solved analytically, giving the frequencies

ω±
+,low = ωe − Ω

#
1± e

− d2

4l2
B L0

+

�
d2

2l2B

�
,

ω±
+,up = ωe +Ω

#
1± e

− d2

4l2
B L0

+

�
d2

2l2B

�
.

(6.75)

We can see the behaviour of these two polariton branches in Fig. 6.5(a), where we plot the excitation
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Figure 6.6: (a)Sketch a lattice of N = 4×4 emitter. (b) Excitation spectrum of N = 4×4 emitters resonant
with the 3 = 1 Landau level. The emitters are arranged in a square lattice with lattice spacing
d, which is then varied across the plot. We take Mrne as the position of one of the four inner
emitters. The excitation spectrum is normalised to one, and the color scale is linear.

spectrum, given by

Sn
e (ω) =

((((
G|σn
−

1

H − ω − iγe2
'

m σm
+σm−

σn
+|G�

((((2 , (6.76)

where |G� is the ground state and γe is the bare decay rate of the emitters. When d � lB the two

sub-branches are almost degenerate and reproduce the spectrum of a single emitter. This is due

to the fact that the emitters are so far apart that the respective Landau orbitals do not overlap.

When the separation becomes on the same order of d ∼ lB, the two Landau orbitals start to have

a significant overlap. This leads to a hybridisation of the orbitals, in analogy to a pair of atoms

forming a molecule. In Fig. 6.5(b) we see an example of a hybridised orbital. When the distance

is close to zero d ∼ 0 the emitters can be considered as being all localized in the same orbital and

we recover the physics of the Tavis-Cummings model [71], where multiple emitters are collectively

coupled to a single harmonic mode.

When more than two emitters are present the situation is very similar, but the spectrum looks

much more complicated, exhibiting curious patterns, reminiscent of the Hofstadter butterfly. In

Fig. 6.6(b) we see the spectrum of a square array of emitters, with d being the separation between

nearest neighbours.

The last important case, which will be further discussed also in the following sections, is an

equilateral triangle of emitters with distance d. The spectrum has the same structure as before,

with two symmetric branches, and three sub-branches each

ων
+,up/low = ωe ± Ω

#
1 + e

− d2

4l2
B L0

+

�
d2

2l2B

�
λν , (6.77)
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where λν=1,2,3 = 2 cos[(θ� + 2πν)/3] and

θ� = θ12 + θ23 + θ31 = eBA�/� (6.78)

is the normalized magnetic flux through the area A� =
√
3/2d2 enclosed by the three emitters.

6.5 Landau-projected Hamiltonian and multiphotons physics

The last section can be incorporated into a more generic framework. We have seen that the single

excitation physics is fully described in terms of Landau orbitals surrounding each emitter, forming

a local polariton, and that the multi emitters polaritonic states are just given by considering the

overlapping orbitals of each local polariton. It thus seems that the actual degrees of freedom involved

are much less than the total number of emitters and lattice sites, which would give a single excitation

Hilbert space scaling like ∼ N +M , where N is the number of emitters and M � N the number

of lattice sites. It seems more appropriate instead to think that the number of relevant degrees of

freedom here are given by the emitters and their Landau orbitals, giving a single excitation Hilbert

space scaling ∼ N +N . This would be of course a huge simplification, especially when we consider

the multi photons case, where the Hilbert space is exponentially large in M . We will see now that

this simplification is possible and that it will also give very nice conceptual insights.

When we re-express the light-matter Hamiltonian in the Landau level basis (assuming the con-

tinuous limit) we have

H =
&
+=0

ω+

&
k

Ψ†
+kΨ+k +

ω0

2

N&
n=1

σn
z + g

&
+

N&
n=1

&
k

�
f+k(Mr

n
e )Ψ+kσ

n
+ + h.c.



. (6.79)

If we assume that just a single Landau level contributes we can neglect all the terms but that

particular 3, assuming that ω+ . ω0 (the resonance condition). Switching to a rotating frame, we

then obtain the interaction Hamiltonian

HI . g

N&
n=1

&
k

�
f+k(Mr

n
e )Ψ+kσ

n
+ + h.c.



. (6.80)

Using the identity &
k

f+k(Mr
n
e )Ψ+k =

�
G+(Mr

n
e , Mr)Ψ(Mr)d2r = Ψ̃n, (6.81)

which still holds in the lattice, just replacing the integrals with the sum over all lattice sites, we
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have

HI . g

N&
n=1

�
Ψ̃nσ

n
+ + h.c.

�
. (6.82)

From this perspective it is pretty clear that N emitters interact only with N degrees of freedom.

But we need to be careful because

[Ψ̃n, Ψ̃
†
m] = G+(Mr

n
e , Mr

m
e ) (= δnm, (6.83)

meaning that the Ψ̃n do not represent canonical degrees of freedom. To find again the correct

commutation relation we need to introduce the normalised operators

B+n =

N&
m=1

(K−1)nmΨ̃m, (6.84)

and we choose the normalisation is such a way that

[B+n, B
†
+n	 ] =

&
m,m	

K−1
nm(K−1

n	m	)
∗&

ij

G+(Mr
m
e , Mri)G

∗
+ (Mr

m	
e , Mrj)δij

=
&
m,m	

K−1
nm(K−1

n	m	)
∗G+(Mr

m
e , Mrm	

e )

=
�
K−1G(K−1)†

�
nn	

!
= δnn	 .

(6.85)

This means that the K-matrix must be the square root of the matrix with entries Gnm = {G+(Mr
n
e , Mr

m
e )}.

Introducing this new normalised operators we can rewrite the interaction Hamiltonian as

HI = g

N&
n,m=1

�
σn
+KnmB+m +B†

+mK∗
nmσn

−
�
, (6.86)

transforming back to the static frame we have the Landau-photon polariton Hamiltonian

H . H
(+)
LPP =ω+

N&
n=1

B†
+nB+n +

ωe

2

N&
n=1

σn
z + g

N&
n,m=1

�
σn
+KnmB+m +B†

+mK∗
nmσn

−
�
. (6.87)

Each emitter interacts with the photonic field localised in a Landau orbit centered on the emitter

position, and with the photonic field localised around the other emitters by the overlap between

their Landau orbitals. We can thus say that each emitter is surrounded by its own cavity, which is

given by the Landau orbital, and when the orbitals overlap each emitter can exchange photons with

its own orbital or with the overlapping orbital of another emitter. Importantly, this Hamiltonian

now only describes N emitters and N photonic modes, which reduces quite a lot the complexity of
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the system. So we can easily explore the multi-photons physics. Of course all the results will be

given in the space of Landau orbitals, which we can call the B-space, but we can translate them to

the lattice (or real space) Hilbert space with the help of the photon Green’s function. From here on

we will just use the continuous Green’s function, which gives cleaner and analytic results. But in

principle one could generate an arbitrary Green’s function numerically and then use it to translate

the results from one space to the other.
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Figure 6.7: (a) The spectrum of H(�)
LPP in the single- and two- excitation sector for N = 3 equidistant emitters

with varying spacing d and for 3 = 1 and ωe = ω1. (b) Plot of the two-photon correlation function
C(Mri, Mr

1
e ) for the different two-photon eigenstates indicated in (a). The green crosses represent

the emitters position, and the red circle marks the reference emitter’s position Mr 1
e .

Here we use the LPP Hamiltonian to investigate a system of three emitters in the equilateral

triangle configuration and in the two excitation sector. In Fig. 6.7(a) we see the polariton spectrum

as a function of the distance between the emitters, for the one and the two excitation sector.

Focusing on the two excitation sector, centered around the frequency 2ωe, we notice that for the

large distance limit, when d � lB, the spectrum collapses into five degenerate manifolds, symmetric

around 2ωe. For large distances the three emitters are basically not coupled with each other, and

they are just coupled with their own Landau orbital. Therefore, these different degenerate states

represent all the possible combination of Jaynes-Cummings (JC) dressed states with two excitations

on three uncoupled cavity QED systems. In particular, the lowest manifold, which is marked by

“1” in Fig. 6.7(a), consists of states in which two over three emitters contains one excitation. Just

above this manifold we have the manifold marked by “2”. This manifold contains all the JC-states in

which the two excitations are localised on the same emitter. The energy separation between these
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Figure 6.8: (a) Evolution of the excited state populations pne (t) of N = 3 emitters arranged in a triangle
of length d/l0 = 4. For this plot 3 = 0, and α = 1/(16

√
3) ≈ 0.036, such that the enclosed

effective flux is θ� . π/2 and the dipole-dipole interactions become fully chiral. In the upper
panel the initial state contains two excitations in emitter 1 and 2. In the lower panel the initial
state contains just one excitation in emitter 1. (b) Single-excitation spectrum of Heff for a
square lattice of 20 × 20 emitters and normalized to the nearest-neighbor coupling strength
J̃ = |J̃12|. The two spectra are obtained for the spacings d/l0 = 2 (αeff = 0.32) and d/l0 = 5.39
(αeff = 2.32) and in both cases α = 0.08 and 3 = 0 has been assumed.

two manifolds is given by

U = Ω(2−
√
2), (6.88)

which can be seen as an effective repulsion between single photons (it costs more energy to push

two photons into the same orbital rather than spreading them between two different orbitals). We

can further explore this feature by measuring the two body correlation function

C(Mr, Mr
	
) =


Ψ†(Mr 	
)Ψ†(Mr)Ψ(Mr)Ψ(Mr

	
)�


Ψ†(Mr 	)Ψ(Mr 	)� . (6.89)

In Fig. 6.7(b) we report four examples, where the correlation function is calculated for the states

indicated in the spectrum in Fig. 6.7(a). As expected the states in the lowest manifold at large

distance d � lB exhibit strong antibunching and the two photons remain always separated and

localised on different emitters. For smaller distances d ∼ lB more patterns emerge and the strong

antibunching smoothly disappears. For distances d " lB the system behaves like all the three

emitters would be coupled to the same orbital, reproducing the Tavis-Cummings model. In the

upper manifold instead we see that there is strong bunching and the two photons always want to

stay together localised on the same emitter.
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6.6 Band-gap effective emitter-emitter interaction

So far we have discussed the case in which the emitters were in resonance with a particular Landau

level. Now we want to explore the case in which the emitter’s frequency lies in a band gap of the

magnetic photonic lattice, following the condition

|ωe − ω+| � g. (6.90)

In this regime the emitters are just weakly dressed by the Landau-photon, and cannot really be

described as polaritons. By using perturbation theory [25] we can eliminate the photons in favour

of an effective Hamiltonian just for the undressed emitters

Heff =
&
m,n

�
J̃nmσn

+σ
m
− + h.c.

�
, (6.91)

where

J̃nm . g2

ωe − ω+
|G+(Mr

n
e , Mr

m
e )|eiθnm . (6.92)

The effective hopping between the emitters is still complex, with its phase given by Eq. (6.42), so

it will still keep all the magnetic properties of the underlying lattice. This is quite striking when we

consider again the equilateral triangle configuration. The amplitude of the effective hopping is the

same for all the emitters, but the phase changes, which makes a big difference. The single excitation

sector is fully described by the matrix

J̃ = G0

��
0 eiθ12 eiθ13

e−iθ12 0 eiθ23

e−iθ13 e−iθ23 0

�� , (6.93)

where, in the continuum limit, G0 = g2/(ωa −ω+)Φ+(|Mr n
a − Mrm

a |) can be regarded constant, since we

consider an equilateral triangle geometry. The equation for the single-excitation eigenvalues is then

given by

λ3 − 3G2
0λ− 2G3

0 cos(θΔ) = 0, (6.94)

which is exactly the same polynomial that already appeared in the LPP spectrum in Eq. (6.77).

When the magnetic flux through the triangle is θΔ = nπ/2 two eigenstates become degenerate and

one expects that something special occurs. By considering the eigenstates of the single excitation

sector, we can see that this is actually the case. The population amplitude of the three emitters
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can be expressed by using the eigenstates of Eq. (6.93),

cn(t) =
&
ν

&
m

cm(t = 0)fν(m)fν(n)e
−iλνt, (6.95)

where m,n, ν = 1, 2, 3 and
3&

m=1

J̃nmfν(m) = λνfν(n). (6.96)

If we consider the initial condition in which the excitation is loaded just in a single emitter cm(t =

0) = δm1, we can explicitly find the solution of the equations of motion for the case in which

θΔ = nπ/2

|c1(t)| =
((((13 +

2

3
cos

�√
3G0t

� ((((,
|c2(t)| =

((((13 +
2

3
cos

�√
3G0t+

4π

3

� ((((,
|c3(t)| =

((((13 +
2

3
cos

�√
3G0t+

2π

3

� ((((.
(6.97)

This solution exhibits a chiral circulation of the excitation, which is fully reproduced by the numerics

in Fig. 6.8(a) (upper figure). The other interesting case is when θΔ = nπ and there is no degeneracy

between the three eigenstates, but one eigenvalue is zero. In this case one finds no chirality. This

simple observation can be recovered again in the two excitation sector. In this case we have identical

dynamics, but with opposite sign of circulation. The simplest interpretation is that with two

excitation on three emitters we have a single “hole”. The hole follows the equations of a single

excitation, but with opposite charge. Therefore it circulates in the opposite direction. This can be

seen explicitly in Fig. 6.8(a)(lower figure).

Moving forward, the effective Hamiltonian Heff can be used more generally to generate setups of

lattices of magnetic hardcore bosons models with tunable parameters. For example, the phase can

be tuned by varying the relative position of the emitters. For a simple square lattice arrangement

of the emitters we recover a phase with an effective flux

αeff = α

�
d

l0

�2

. (6.98)

Furthermore, the effective hopping is not constrained to neighboring lattice sites, opening up the

possibility to explore a whole zoo of magnetic models with various band structures. In Fig. 6.8(b)

we show a simple example of a square lattice of emitters with spacing d/l0 = 5.39 and d/l0 = 2, but

equivalent effective field strengths. In the first case, only nearest-neighbor couplings are relevant and

we recover the regular Hofstadter butterfly with αeff ≈ 2.32 (which is equivalent to αeff ≈ 0.32).
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In the second example, long-range hoppings are important and the spectrum of the bulk modes

becomes essentially flat. This situation falls in the class of the so-called Kapit-Muller Hamiltonians

[113], which are toy models to study the fractional quantum Hall effect.

6.7 Disorder

One of the main feature characterising systems with magnetic fields or non-trivial topologies is

their robustness with respect to disorder [24]. In the case of a two dimensional lattice subject to a

homogeneous magnetic field, as in our case, it is well known that the edge states are robust against

disorder, while the bulk states are sensitive to its presence. In particular, in the presence of disorder

each 3-th Landau levels acquires a finite width J+ [114]. However, contrary to what is often assumed,

this does not mean that all the physics involving bulk states is not robust against disorder. Indeed,

intuitively one expects that up to the point where the bandwidth J+ of a Landau level is smaller

than separation from neighboring Landau levels,

J+ " |ω++1 − ω+|, (6.99)

the system still retains its magnetic features. Similarly, we expect that the physics of the LPP

discussed above remains robust against disorder as long as the condition

ωc � g � J+, (6.100)

is fulfilled. If we consider only emitter in the bandgap, as discussed in the last section, the condition

(6.99) is enough.

In this section we explore numerically the validity of these conditions by focusing on the case in

which the photonic lattice is subjected to local disorder, where we replace

ωp #−→ ω̃i
p = ωp + δωi

p. (6.101)

Here the δωi
p are sampled from a Gaussian distribution with a width Δωp and centered around zero.

Using Eq. (6.76), we define the average spectrum by

S̄n
e (ω) =

1

Ndis

Ndis&
k=1

Sn
e (ω), (6.102)

where Ndis is the number of independent disorder realisations, where in each realisation we take

a new random set of {δωi
p}. In Fig. 6.9(e) we show the average spectrum as a function of the

disorder strength Δωp, for the paradigmatic case of a single emitter, resonantly coupled to the
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Figure 6.9: (a-d) Disorder averaged excitation spectrum S̄n
e (ω) for fixed value of the disorder strength (as

indicate in each plot). Each plot is averaged over Ndis = 1000 realisations. (e) Disorder averaged
excitation spectrum S̄n

e (ω) as a function of Δωp. For each value of Δωp the excitation spectrum
is averaged over Ndis = 50 realisations. (f) Plot of the photon wavefunction |ϕ(Mrn)|2 of the
lowest LPP. The disorder strength in this plot is chosen as Δωp/g = 0.7. The left panel shows
the case without disorder, the center panel the wavefunction for a single disorder realisation and
the right panel depicts the average over Ndis = 200 realisations. For all figures we have assumed
a M = 20 × 20 photonic lattice, α = 0.08, δe/J = 0.47 (corresponding to the resonance with
the 3 = 0 Landau level) and g/J = 0.08.

zeroth Landau level. When the disorder is very weak, Δωp " g < ωc, the Rabi splitting is clearly

visible and the only effect of the disorder is to broaden the two Rabi peaks. This situation holds

even up to disorder strengths of about Δωp/g . 1. When the disorder crosses this threshold the

condition in Eq. (6.100) is no longer satisfied and the Rabi splitting disappears in favour of a single

broadened resonance, peaked around ωp. This can be seen from the cuts in Fig. 6.9(a-d) taken

at fixed disorder strength. In Fig. 6.9(f) we plot an example of the photon’s wave function in the

lowest LPP state. Local disorder deforms the wave function profile, generally breaking its rotational

symmetry. Averaging the photon’s density over many realisation we can see that its original shape

is approximately recovered. Notice that for this simulation we have used quite strong disorder,

Δωp/g . 0.7.
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Figure 6.10: (a1-a4) Plot of the lowest eigenvalues ωλ of Hph in the presence of disorder and for a 31× 31
triangular lattice. (b1-b4) Disorder averaged evolution of the excited state population, p̄e,
for three equidistant emitters with d/l0 = 4. Here the bar denotes the average over Ndis =
100 realizations, see Eq. (6.103). The disorder strength used is the same as reported in the
respective panel (a) plots. (c1-c4) Single realization of the population’s time evolution under
the same conditions as the panel (a-b) plots. The other parameters used in all the plots are
ωp = 9.5, ωe = 0.5, J = 0.75, g = 0.1, α = 1/(16

√
3), d/l0 = 4, γ = 10−5 (all frequencies are

given in arbitrary units).
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We continue with the case in which the emitters are not resonant with any Landau level. In

particular, we study the case of three emitters in an equilateral triangle, as discussed above. Focusing

on the chiral circulation expressed in Fig. 6.10(b), we consider the average emitter’s population

p̄e(t) =

(((( 1

Ndis.

&
dis.

ce(t)

((((2. (6.103)

In Fig. 6.10 we plot four examples. In each row we consider a different disorder strength, in

increasing order. In the first column we plot a single sample of the lowest part of the photon’s

spectrum given by Hph. In the second column there is the average population evolved in time.

The third column displays a single shot of the population’s time evolution. When the disorder is

small compared to the cyclotron frequency Δωp/ωc � 0.1 the chirality is still clearly visible and

the dynamics is very regular even without averaging. The effect of disorder manifests itself on

the average population through an effective damping induce by the dephasing effect. When the

disorder starts to be comparable to the cyclotron frequency the chirality is still present clearly, but

the damping induced by dephasing becomes dominant. Finally, when Δωp/ωc ≥ 0.5, even though

the gap between the last two Landau level is still open, the dynamics is completely destroyed. On

average the damping is too extreme to still see any oscillations, and on the single shots the chirality

is completely broken.

6.8 Experimental implementations

In this very last section we briefly comment on the possibility to realize such LPP systems in

experiments. As anticipated in the introduction of this chapter this kind of physics could in principle

be realized in a quite broad variety of systems. For example photons subjected to synthetic magnetic

fields are already available in the optical as well microwave regime [28, 107]. An recent review about

different experimental approaches for implementing effective fields can be found in [24]. Here we

focus on the specific case of microwave photons, which are experimentally most promising.

ωp ωe J g γp,e Δωp

5.4× 103 5× 103 100 20 0.05 1 MHz

Table 6.1: A possible choice of realistic set of parameters to observe the LPP physics with microwave photons
in circuit QED.

Microwave photonic systems are implemented using superconducting circuits architectures [115].

In recent experiments [107] it was demonstrated that these systems can be used to realize complex

hopping amplitudes which mimic an homogeneous magnetic field with α = 1/4, 1/6. Despite the

fact that these values of the synthetic magnetic flux in the lattice are on the edge of the intermediate



144 CHAPTER 6. LIGHT-MATTER INTERACTIONS WITH TOPOLOGICAL PHOTONS

regime, they are still small enough to use the continuum approximation without introducing a huge

error. The onsite frequency of this system can vary from hundreds of MHz to tens of GHz, having

a quality factor of Q = 103 − 105. The tunneling rate amplitude can be designed to be around

J ∼ 100 MHz, and the onsite disorder can be made quite small, Δωp � 1 MHz [116].

In the experiment in Ref. [107] there was no quantum emitter coupled to the lattice. But is

has been shown in many other experiments that it is possible to couple to these types of lattices

quantum emitters, for example, in the form of non-linear elements based on Josephson junctions.

In such experiments couplings of about g ∼ 1−100 MHz have been demonstrated [117, 118]. These

emitters, or superconducting qubits, have internal frequency typically around ωe ∼ 3− 5 GHz, and

coherence times of about ∼ 0.1− 1 ms, which is given by a decay time γe ∼ 1 kHz. The frequencies

of these qubits can be easily tuned over a range of many 100 MHz, so it is possible to tune them

into resonance with one of the first Landau levels. The current estimates are summarised in the

table 6.1, which represents an example of a concrete realistic implementation.



Summary and outlook

In conclusion, in this doctoral thesis we have discussed the theory to describe light-matter interac-

tions with non-perturbative single photon coupling, and its possible observations for a multi-qubits

system in equilibrium. Moreover we have discussed the non-trivial behaviour of light-matter interac-

tions in photonic structures where the photon is subjected to a synthetic magnetic field. In particular

we have shown the strong relation with the physics of atom-photon bound states in waveguide QED

and its relevance in the field of quantum simulations of quantum Hall and fractional quantum Hall

physics. We briefly summarise here the content of the thesis.

In the first two chapters we mainly focus on the abstract theory, discussing all the approximations

that we need to arrive to a simple basic description and eventual issues, confusions and mistakes

related to the different representations given by different gauges.

First we introduced the general theory of non-relativistic light-matter interactions, with great

care for the boundary conditions of the electromagnetic field. This is a very important aspect to

develop a consistent theory of cavity QED, where the light modes are confined and the Dirichtlet (or

metallic) boundary conditions are applied. Introducing the Green’s function of the Laplace operator

we generalised the definition of the transverse and longitudinal delta function. Then we were able to

repeat the usual derivation of the non-relativistic light-matter Hamiltonian in the Coulomb gauge,

keeping all the information related to the boundary conditions in the new transverse/longitudinal

delta functions. Having assumed the dipole approximation (or long wavelength approximation)

we developed the equivalent description in the dipole gauge. Here we showed that the resulting

dipole Hamiltonian for a system of localised dipoles is fully local and the usual direct dipole-

dipole interaction is cancelled. However this cancellation is only apparent, because the dipole-

dipole interaction is recovered by taking the electrostatic limit and adiabatically eliminating the

electromagnetic modes. This is one of the main points in the correct derivation of a cavity QED

Hamiltonian which is valid also in the USC regime. Indeed, once we assume resonance with a

single cavity mode, we cannot just throw away the other modes but we need to keep them in their

electrostatic limit. This introduced two new terms with respect to the usual simplified models

considered in the literature: the direct dipole-dipole interaction and the so-called P 2-term, which
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compensate for the resonant mode that we did not eliminate.

After having developed a reasonable single mode theory for a cavity resonant with a dipole

ensemble, we focus on the dipoles themselves. We discussed the possibility to truncate the dipole’s

Hilbert space to just two levels, in such a way to have a strongly simplified theory. We remark

here that this is not just a convenient way to treat numerically and analytically our dipoles, but it

has also a conceptual relevance. Indeed for technological applications we want to be sure that our

system is composed of two level systems, that represent the qubits of our eventual machine. We

then showed that in the USC regime the TLA is far from trivial and it depends crucially on the

gauge which was originally chosen. In most of the relevant cases the dipole gauge is the only one

that guarantees the correct TLA even for large coupling strength.

In the Ch. 3 and 4 we discussed the consequence of the USC in a realistic setting of an LC

circuit where the capacitor is filled by dipoles. We first focused our discussion on the large collective

coupling regime (relevant in solid state materials). We showed how the polariton branches are

modified by the dipole-dipole interaction. In particular we identified three main scenarios which

depend from the geometry of the dipole ensemble. We also commented on the usual definition

around the coupling regimes of light-matter interactions, introducing the concept of effective fine

structure constant, and highlighting the difference between collective USC and single dipole USC.

After having review the properties of the celebrated Dicke superradiant phase transition, we establish

the connection between our theory and the Dicke model. We explicitly showed that the superradiant

phase transition must be interpreted as a standard ferroelectric transition, which just depends on the

details of the electrostatic environment of the dipoles. Moving on we focused on the ground-state of

an USC system with major attention to the single particle USC regime. We made a phase diagram

to represent all the main different phases achievable in this system, and we explore all the three

main phases that emerges under approximating the dipole-dipole interaction with an infinite range

interaction. The last part of this section was devoted to study the consequence of dropping this last

approximation, keeping the dipole-dipole interaction as a short range one. With few paradigmatic

examples we showed that even more interesting phases appear from the competition between short

range dipole-dipole interaction and single dipole USC regime.

In Ch. 5 we completed our tour in the physics of USC regime by illustrating the effect of

USC on the thermodynamic of cavity QED. After developing an approximated free energy, based

on the imaginary-time ordered Dyson expansion, we analysed the consequence of the light-matter

coupling on the free energy. We realised that the collective USC coupling do not play any role in

the thermodynamics properties, giving a negligible contribution in the free energy. However the

single particle USC is highly relevant. We showed that it can be probed nicely from a susceptibility

measure, giving strong deviations from the expected Curie law. Moreover it gives a substantial shift
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in the ferroelectric transition point. We also computed the black body radiation expected from this

system. Interestingly, even for few dipoles, the polariton branches are well visible for small coupling.

In the USC limit we saw a sharp collapse of the polaritons, indicating the so-called light-matter

decoupling that we already commented in the ground state properties.

The thesis ended with the chapter about light-matter interactions with synthetic magnetic fields.

Here we started explaining the theory of photonic lattices with an homogeneous synthetic magnetic

field. After having introduced the single photon spectrum of the lattice in function of the synthetic

magnetic flux, we found three main regimes, characterised by comparing the three length scales:

the system size, the lattice spacing and the magnetic length. In the intermediate flux regime we

approximated the low energy modes as continuous Landau levels and we were able to explicitly

find the Green’s function of the magnetic photonic lattice. We then showed that coupling a two

level emitter to this lattice one can generate new emitter-photon bound states, which carry a chiral

current. We called these type of bound states Landau-photon polariton states, because they are

hybrid light-matter polaritonic states, where the photonic part is provided by Landau levels. Going

further in the exploration of the chiral emitter-photon bound states, we developed an effective theory

to treat multiple emitters and multiple photons bound states. We were then able to investigate a

simple system with two excitations and to show that the bound state physics in this case looks

very similar to what one could expect from a fractional quantum Hall photonic system. In the

end we developed the effective band-gap interaction between different emitters that emerge from

the exchange of virtual photons in the case where the emitters are far detuned from any photonic

Landau level. Also in this case various features proper of fractional quantum Hall systems arise.

In conclusion in this thesis we went deep into the theory of light-matter interactions applied

to the ultra-strong coupling regime of cavity QED. We showed that such theoretical modelling is

fundamentally important to avoid mistakes and misunderstandings due to representational issues.

By considering a simple toy model we showed the main consequences of USC on the ground state

and on thermal states. Doing this we hoped to bring novel clarity on the debate about superradiance

phase transition and modifications of chemistry due to USC effects. We developed all the discussion

in a rather abstract way, because we kept it as simple as possible, trying to avoid the complications

related to a more realistic modelling of the matter part. This is motivated by our focus on the

cavity, and about what the cavity can and cannot do as a function of the coupling strength. In

particular we were able to make a clear distinction between fully electrostatic and dynamical effects,

understanding their consequences on the ground-state of cavity QED and on its finite temperature

equilibrium states. At the end we discussed a different system, where the photons can propagate

in a multimode photonic structures with a synthetic magnetic field. Interacting with atoms, or,

more generally, two level emitters the photon can be trapped in a chiral bound state around the
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emitter. This opens up a new of physics, where atoms can interact through the overlap between

these new bound states. Playing with the position of the emitters and their detuning with respect

to the photonic lattice one can simulate physical situations reminiscent of fractional quantum Hall

physics.
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Appendix A

Transverse modes and Laplace Green’s

function

A.1 Transverse and longitudinal projectors

Here we construct explicitly the transverse and longitudinal delta functions (or projectors). This

correspond to finding the Helmholtz decomposition [22] for a vector field

MV (x) = M∇Φ(x) + M∇× MA(x), (A.1)

where we use x = (x1, x2 . . . xD) to indicate generically a D-dimensional coordinate.

A key step is to consider the normalised eigenfunctions of the Laplace operator

−∇2φk(x) = ω2
kφk(x), (A.2)

from which we immediately get the Laplace Green’s function

G(x, y) =
&
k

φ∗
k(x)φk(y)

ω2
k

. (A.3)

We point out that in order to solve for the Laplace eigenfunctions one must specify the boundary

conditions. But then the whole discussion proceeds independently on this choice.
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A suitable basis on which we can decompose any given smooth vector field is

Mvλ,k(x) =

����������������

(φk(x), 0, 0 . . .)

(0, φk(x), 0 . . .)

(0, 0, φk(x) . . .)

...

(A.4)

where we introduced the polarization index λ = 1, 2, 3 . . . D. It is clear that

&
λ,k

viλ,k(x)v
j
λ,k(y) = δijδ

(D)(x− y). (A.5)

We introduce now the longitudinal modes

Mgk(x) =
M∇φk(x)

ωk
, (A.6)

where we notice that they have only one polarization. We define the longitudinal delta function as

δ


ij(x, y) =

&
k

(gik(x))
∗gjk(y) =

∂2

∂xi∂yj

&
k

φ∗
k(x)φk(y)

ω2
k

=
∂2

∂xi∂yj
G(x, y).

(A.7)

When the system has vanishing boundary conditions (Dirichtlet or von Neumann in a bounded

domain, or simply vanishing at infinity in an unbounded space), the longitudinal delta function is

a projector, with the property P 2 = P ,

&
l

�
dsδ



il(x, s)δ



lj(s, y) =

&
l

�
ds

∂2

∂xi∂sl

&
k

φ∗
k(x)φk(s)

ω2
k

∂2

∂sl∂yj

&
k	

φ∗
k	(s)φk	(y)

ω2
k	

=
&
kk	

&
l

∂2

∂xi∂yj
φk(x)φk	(y)

ω2
k

1

ω2
k	

�
ds

∂

∂sl
φk(s)

∂

∂sl
φk	(s)

= δ


ij(x, y),

(A.8)

where we used
'

l −∂2/∂(sl)2φk(s) = −∇2
sφk(s) = ω2

kφk(s), and
�
dsφk(s)φk	(s) = δkk	 . It is then

straightforward to see that it projects any given vector field on the longitudinal subspace of vector

fields with vanishing rotor, in a symbolic way, δ
 G MV = MV 
, where M∇× MV 
 = 0.

The transverse delta function is simply given by its own complement with respect to the identity
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(the Dirac’s delta function)

δ⊥ij(x, y) = δijδ
(D)(x− y)− δ



ij(x, y)

= δijδ
(D)(x− y)− ∂2

∂xi∂yj
G(x, y).

(A.9)

Also in this case, it is straightforward to check that the transverse delta function is a projector on

the subspace of vector fields with vanishing divergence, in a symbolic way, δ⊥ G MV = MV ⊥, where
M∇ · MV ⊥ = 0.

A.2 The Laplace Green’s function in bounded domains

We briefly review here the main points related to the Laplace Green’s function in three dimensions:

−∇2G(x, y) = δ(3)(x− y). (A.10)

In unbounded domain, i.e. D = R3, imposing vanishing boundary conditions at infinity, it is given

by the well known Coulomb potential [119]

Gunb.(x, y) = − 1

4π

1

|x− y| . (A.11)

When we consider a bounded domain D ⊂ R3, with vanishing boundary condition,

−∇2G(x, y) = δ(3)(x− y) x ∈ D

G(x, y) = 0 x ∈ ∂D,
(A.12)

the new Green’s function can be written in general as

G(x, y) = Gunb.(x, y) + g(x, y), (A.13)

where g(x, y) is itself a solution of the Poisson equation

−∇2g(x, y) = 0 x ∈ D

g(x, y) = −Gunb.(x, y) x ∈ ∂D.
(A.14)

It is possible to show that such a solution exists as the solution generated by an external charge

distribution which mirrors the internal one [119],

g(x, y) =

�
R3\D

ρ̃(s, y)Gunb.(x, s)d
3s. (A.15)
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A.3 The Laplace Green’s function between parallel mirrors

In this section we consider the “capacitor problem”, where we need to compute the electrostatic

potential from the Laplace Green’s function assuming its domain is bounded on the z-axis by the

two capacitor plates. We assume that the capacitor plates are grounded and built out of ideal

metal, which means that they act as perfect mirrors for the electromagnetic field, imposing zero

field and zero potential on the boundary. In the simplest case of metallic (Dirichtlet) boundary

conditions along the z-axis and periodic boundaries along the (x, y)-plane it is possible to find a

general solution of this problem, involving the Green’s function of the Laplacian. Notice that here

we restore the standard three-dimensional notation Mr = (x, y, z),

−∇2G(Mr, Mr�) = δ(3)(Mr − Mr�). (A.16)

Applying Fourier transform with respect to (x, y) on both sides of equation (A.16) we obtain

�−∂2
z + k2

�
Gk(z, z

�) = δ(z − z�), (A.17)

with the metallic boundary conditions

Gk(z = 0, z�) = Gk(z = d, z�) = 0. (A.18)

Here we used k =
"
k2x + k2y and d is distance between the capacitor plates.

The solution of Eq. (A.17) is well know in the literature [119] and is given by:

Gk(z, z
�) = gk(z, z

�)Θ(z − z�) + gk(z
�, z)Θ(−(z − z�)), (A.19)

where

gk(z, z
�) =

e−k(z−z	)

2k
− 1

2k sinh(kd)

�
sinh(kz)e−k(d−z	) + sinh(k(d− z))e−kz	

�
, (A.20)

and Θ(z) is the usual Heaviside step-function. It is straightforward to verify that this is the solution

of (A.17) with the correct boundary conditions, in the interval z, z� ∈ [0, d]. Thus the total Green’s

function is

G(Mr, Mr�) =
1

L2

&
kx,ky

e
?k�·(?r−?r	)Gk(z, z

�), (A.21)

where L2 is the area of the square plates and Mk
 = (kx, ky, 0). To compute the Green’s function in
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real space we write

Gk(z, z
�) =

1

2k

&
n∈Z

�
e−k|z−z	+2dn| − e−k|z+z	+2dn|

�
, (A.22)

where we used the expansion
1

sinh(kd)
= 2

∞&
n=0

e−kd(2n+1). (A.23)

Continuing the calculation, we use the following identity

e−k|z|

k
=

�
dxdy

ei
?k�·?r

r
. (A.24)

Altogether, we then obtain

Gk(z, z
�) =

&
n∈Z

�
dxdy

�
ei
?k�·(?R+2?ln)

|MR+ 2Mln|
− ei

?k�·(?R∗+2?ln)

|MR∗ + 2Mln|

�
, (A.25)

where Ml = (0, 0, d), MR = (x, y, z− z�) and MR∗ = (x, y, z+ z�). Thus the Green’s function in real space

is

G(Mr, Mr�) =
1

L2

&
n∈Z

�
dxdy

&
kx,ky

�
ei
?k�·(?r−?r	)

|Mr + 2Mln|
− ei

?k�·(?r∗−?r	)

|Mr∗ + 2Mln|

�
, (A.26)

where we used the fact that Mk
 · (Mr − Mr� + 2Mln) = Mk
 · (Mr − Mr�), and Mr∗ = (x, y,−z). When we

consider periodic boundary conditions along the (x, y) plane we can conclude the calculation using

the Poisson formula from the theory of distributions, which states that

1

L2

&
kx,ky

ei
?k�·?r =

&
?m∈Z2

δ(2)(Mr
 − LMm). (A.27)

The Green’s function of Eq. (A.16) with metallic boundaries along z and periodic boundary condi-

tions along (x, y) is

G(Mr, Mr�) =
&
m∈Z3

�
1

|Mr − Mr� − Mh|
− 1

|Mr − Mr�∗ − Mh|

�
, (A.28)

where Mh = (Lmx, Lmy, 2dmz)

In our particular case we give the charge distribution as a collection of point-like dipoles,

ρ(Mr) =

N&
i=1

qiMξi · ∇δ(3)(Mr − Mri), (A.29)

where qi, Mξi and Mri are the electric charge, the dipole moment and the position of the i− th dipole,
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respectively. The general expression for the Coulomb potential is now

φ(Mr) =
1

%0

N&
i=1

qiMξi · ∇iG(Mr, Mri), (A.30)

where ∇i is the gradient with respect the positions of the dipoles Mri. Now we can write down the

full local field
MElocal = −∇φ(Mr), (A.31)

which is given by

MElocal(Mr) = − 1

4π%0

&
?m∈Z3

N&
i=1

∇
∇i ·

 qiMξi(((Mr − Mri − Mh
((( + eiMξ∗i(((Mr − Mr∗i − Mh

(((
 , (A.32)

where Mh = (Lmx, Lmy, 2dmz), Mξ∗i = (−ξxi ,−ξyi , ξ
z
i ) and Mr∗i = (xi, yi,−zi). This compact expression

is nothing else but the field generated by the N dipoles, plus the field generated by the infinite

series of images of each dipole reflected by the metallic boundaries along z, plus the field generated

by the infinite copies of the system because of the periodic boundaries along (x, y). For our aims we

don’t need such a general expression and we can simplify it just assuming that the dipole moment

is always directed along the z-axis and that all the dipoles have the same charge q. Then, only

the component along z of the local field evaluated at the position of the i − th dipole becomes

relevant for our discussion. It’s worth noticing that when we used the Poisson formula (A.27) we

artificially introduced in the system the field generated by infinite copies of the system in adjacent

cells. This is clearly a consequence of the periodic boundary conditions along the plane. Relaxing

this assumption to an infinite plane with vanishing field at infinity we can use an integral instead

of the Fourier sum
1

L2

&
kx,ky

#−→ 1

(2π)2

�
dkxdky, (A.33)

and the Poisson formula simplifies to

1

(2π)2

�
R2

dkxdky ei
?k�·?r = δ(2)(Mr
). (A.34)

A.3.1 Dipoles along z

For the sake of simplicity, in this section we define ξ = ξz and q = qi. In the infinite plane the local

field becomes the same as (A.32), but without the summation over the infinite adjacent copies. We

can rewrite it in a nice expression, which is just the sum of the field generated by the dipoles in free
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space plus the field generated by an infinite series of image dipoles,

Ez
local(Mri) =

q

4π%0

&
j �=i

Di,jξj +
&
i,j

&
n>0

(Fn,+
i,j + Fn,−

i,j )ξj

 , (A.35)

where

Di,j =
3(zi − zj)

2

|Mri − Mrj |5 − 1

|Mri − Mrj |3 , (A.36)

Fn,+
i,j =

3(zi − ζuj,n)
2

|Mri − MRu
j,n|5

− 1

|Mri − MRu
j,n|3

, (A.37)

Fn,−
i,j =

3(zi + ζ lj,n)
2

|Mri − MRl
j,n|5

− 1

|Mri − MRl
j,n|3

. (A.38)

Here MR
u/l
n = (x, y,±ζ

u/l
n ), ζ

u/l
j,n is the z-coordinate for the n-th image of the j-th dipole on the

upper/lower plate, respectively, and Muz is the unit vector along z. The explicit expression for ζ
u/l
j,n

is:

ζuj,n = nlc + (−1)nzi upper plate,

ζ lj,n = nlc − (−1)nzi lower plate.
(A.39)

Here we have assumed that the origin of the coordinate system is located in the center of the cavity.

A.3.2 Tilted dipoles

Here we consider again the electric field only along the z axis, but we allow that all the dipole

moments are tilted by the same azimuthal angle θ, pointing in the positive x direction. Moreover,

we use a different scheme to organize the contributions coming from the images. Instead of classi-

fying the images as "upper/lower" images (like from the upper/lower plates), we classify them as

"same/opposite" images. The dipole moment of each dipole can be written as

dipole

O - image

charged

S - image

O - image

S - image

L

Surface
charge

QI

-QI

Surface
charge

QI

-QI

Figure A.1: Schematic representation of the charge/dipole and its images. This figure is taken from [120].
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Mξi = ξi(sin(θ), 0, cos(θ)). (A.40)

Now we must consider the component of the local field along the dipole (which is not any more

fully oriented along the z axis). To evaluate it we just rotate the frame, in such a way that the z

axis coincides with the direction of the dipole moments. Thus the local field is still written as

Elocal(Mri) =
q

4π%0

&
j �=i

Di,jξj +
&
i,j

&
n∈Z/{0}

(Fn,S
i,j + Fn,O

i,j )ξj

 . (A.41)

The bare dipole dipole interaction is given by

Di,j =
3((zi − zj) cos(θ) + (xi − xj) sin(θ))

2

|Mri − Mrj |5 − 1

|Mri − Mrj |3 , (A.42)

the S images contribution is given by

Fn,S
i,j =

3((zi − zj + 2dn) cos(θ) + (xi − xj) sin(θ))
2

|Mri − Mrj − Mhn|5
− 1

|Mri − Mrj − Mhn|3
, (A.43)

and the O images one is

Fn,O
i,j =

3((zi + zj + 2dn) cos(θ) + (xi − xj) sin(θ))((zi + zj + 2dn) cos(θ)− (xi − xj) sin(θ))

|Mri − Mr∗j − Mhn|5

− 1

|Mri − Mr∗j − Mhn|3
,

(A.44)

where Mhn = (0, 0, 2dn) and Mr∗ = (x, y,−z).

A.3.3 Homogeneous induced charge

From the local field we can also evaluate the induced charge QI on the lower plate, using

QI =

�
dxdy σ(x, y) =

�
dxdy %0E

z
local(x, y, z = 0). (A.45)

Note that the charge evaluated at d is nothing else than −QI , for symmetry (for this calculation we

considered the origin of the reference frame centred on the lower plate). This calculation has been

performed in the infinite capacitor case, but the same procedure holds also in the finite capacitor

with periodic boundaries (one has just to be careful with the definition of delta functions and Fourier
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transform). To do this we use the exact expression (A.30). Together with the fact that

1

(2π)2

�
dxdye

?k·?r = δ(2)(Mk), (A.46)

and
1

L2

&
kx,ky

#−→ 1

(2π)2

�
dkxdky (A.47)

we get

QI = −q
N&
i=1

ξi cos(θ)∂z∂ziGk=0(z, zi)

((((
z=0

, (A.48)

where we used Mξ = (sin(θ)ξ, 0, cos(θ)ξ), as in the previous section. To evaluate Gk=0 we use

lim
k−→0

Gk(z, zi) =
(z + zi − |z − zi|)

2
− zzi

d
, (A.49)

from which we immediately obtain

QI = q
&
i

ξi cos(θ)

d
. (A.50)

Thus the induced current in the circuit, due to the dipole dynamics is

Iext = Q̇i = q
&
i

ξ̇i cos(θ)

d
. (A.51)

We notice that this expression is independent of the choice of the boundaries along the (x, y) plane,

and indeed, in the case of a finite system with periodic boundary conditions, it doesn’t depend on

the planar size L.
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Appendix B

An alternative derivation of the dipolar

Hamiltonian

Let’s consider the electromagnetic Lagrangian density in the Coulomb gauge in SI units (we use

here, for brevity, Einstein sum convention)

L =
ε0
2
(∂tAi)

2 +
ε0c

2

2
Ai∇2Ai + Lmatter + Lcoulomb + Ji(t, Mx)Ai(t, Mx), (B.1)

where, for point-like particles

MJ(t, Mx) :=
&
n

qnṀxnδ
(3)(Mx− Mxn), (B.2)

and Lcoulomb contains the usual direct instantaneous Coulomb interaction. When we consider the

matter system represented by an ensemble of dipoles, we can introduce the dipole approximation,

for which we assume that the negative charges of the microscopic dipoles can be displaced from the

positive nuclei only for a very short length, which means that the position of the negative charge is

roughly the position of its nucleus, thus

δ(3)(Mx− Mxn) . δ(3)(Mx− MRn), (B.3)

where MRn is the fixed position of the n− th nucleus. Under this assumption we have the following

identity:

∂t MP (t, Mx) . MJ(t, Mx), (B.4)

where
MP (t, Mx) =

&
n

qn

�
Mxn(t)− MRn

�
δ(3)(Mx− MRn) (B.5)
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is the polarization vector related to the matter. The light-matter interaction is now described by

the Lagrangian density

LI . ∂tPi(t, Mx)Ai(t, Mx). (B.6)

We can make a gauge transformation

L #−→ L− d

dt
(PiAi) . (B.7)

At this point it’s worth noticing that the vector potential Ai is a transverse vector field, because of

the Coulomb gauge ∂iAi(t, Mr) = 0 ⇐⇒ kiAi(t,Mk). This means that all the longitudinal terms in the

Lagrangian density drop out when we integrate over the whole volume. Therefore, we are allowed

to write

PiȦi = P⊥
i Ȧi, (B.8)

where P⊥
i is the projected transverse polarization, which is defined by taking the convolution be-

tween the polarization vector and the transverse delta function defined in Eq. (1.14). In free space

it takes the form

P⊥
i (Mx) =

2

3
Pi(Mx)− 1

4π

�
d3r�

�
δi,j

|Mx− Mx�|3 − 3(Mx− Mx�)i(Mx− Mx�)j
|Mx− Mx�|5

�
Pj(Mx

�). (B.9)

Then we switch to the Hamiltonian formalism:

Di := ε0Ȧi + P⊥
i , (B.10)

Πi :=
∂Lmatter

∂Ṗi

, (B.11)

H =
(Di − P⊥

i )2

2ε0
− ε0c

2

2
Ai∇2Ai +Hmatter +Hcoulomb. (B.12)

Under the dipole approximation we can write

Hcoulomb . 1

2ε0
(P 2 − PiP

⊥
i ), (B.13)

and

H =
D2

i

2ε0
− ε0c

2

2
Ai∇2Ai +Hmatter − DiP

⊥
i

ε0
+

1

2ε0
P 2
i , (B.14)

which is another way to express the result in Eq. (1.37).



Appendix C

Matrix element inequality

We consider here the two quantities

Δξ =

'
n>1 | 
1|ξ|n� |2 +

'
n>1 | 
0|ξ|n� |2

2| 
1|ξ|0� |2 ,

Δp =

'
n>1 | 
1|p|n� |2 +

'
n>1 | 
0|p|n� |2

2| 
1|p|0� |2 .

(C.1)

By definition Δξ ≥ 0, Δp ≥ 0.

Assuming the dipole’s Hamiltonian can be written as Hd = p2/(2m) + V (ξ), where V (ξ) is a

bounded from below potential for which limξ→±∞ V = +∞, we want to prove that

Δp ≥ 1. (C.2)

First we rewrite

Δp = Δξ +Δres, (C.3)

where the “residual” quantity is

Δres =

'
n>1

�
(ωn0+ω10)

ω10
(ωn0 − ω10)|ξn0|2 + (ωn1+ω10)

ω10
(ωn1 − ω10)|ξn1|2

�
2ω10|ξ10|2 . (C.4)

Using (ωn0 + ω10)/ω10, (ωn1 + ω10)/ω10 ≥ 1 we have

Δres ≥ −Δξ +

'
n>1

�
ωn0|ξn0|2 + ωn1|ξn1|2



2ω10|ξ10|2 . (C.5)

In the last term we can add and remove ω10|ξ10|2 in the numerator and then use the TRK sum rule

to obtain

Δres ≥ −Δξ +
1

2mω10|ξ10|2 . (C.6)
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Using again the TRK sum rule to say that ω10|ξ10|2 ≤ 1/(2m) we have

Δres ≥ −Δξ + 1, (C.7)

which immediately implies

Δp ≥ 1. (C.8)



Appendix D

Holstein-Primakoff approximation

The Holstein-Primakoff map for the dipoles reduces the collective spin operators to bosonic operators

of a single harmonic oscillator. This is an exact map and indeed the bosonic representation of spin

operators is strongly nonlinear. Consider the spin-S operators

Ŝ2|S,m� = S(S + 1)|S,m�,
Ŝz|S,m� = m|S,m�,
Ŝ±|S,m� =

$
S(S + 1)−m(m± 1)|S,m�.

(D.1)

We can then define Sx = (S− + S+)/2, Sy = i(S− − S+)/2. The total spin operator is then given

by S2 = S2
x + S2

y + S2
z . The spin operators Sx, Sy, Sz obey the SU(2) algebra

[Sα, Sβ ] = i%αβγSγ , (D.2)

from which we also obtain

[S+, S−] = 2Sz. (D.3)

One can show [121] that, introducing the bosonic operators [b, b†] = 1, one can represent such

spin operators and their algebra with

Ŝz = b†b− S,

Ŝ− =
√
2S

%
1− b†b

2S
b,

Ŝ+ =
√
2Sb†

%
1− b†b

2S
,

(D.4)

provided that 
b†b� ≤ 2S.

If we then assume that the spin is almost polarized 
Sz� ≈ −S, with just small fluctuations
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around it, we can expand these operators in b†b/(2S). To lowest order we obtain

Sz . b†b− S,

Sx .
√
2N

2
(b+ b†),

Sy . −i

√
2N

2
(b− b†).

(D.5)



Appendix E

Macroscopic dielectrics

Here we briefly review the electrostatic properties of a dielectric medium, treated as a polarizable

object. Let’s start from the most generic electrostatic problem:

∇2Φ(Mr) =
ρ(Mr)

4π%0
. (E.1)

Using the Green function of the Poisson operator, we have immediately the general solution for any

integrable distribution ρ :

Φ(Mr) =
1

4π%0

�
d3r�

ρ(Mr�)
|Mr − Mr�| . (E.2)

Using an expansion in spherical harmonics of the Green’s function 1
|?r−?r	| , we express the general

solution of the Poisson equation as a series expansion (multipole expansion); the first two terms of

the expansion represent the monopole (the Coulomb potential) and the dipole contribution:

Φ(Mr) . 1

4π%0

�
q

r
+

Mµ · Mr
r3

+ · · ·
�
, (E.3)

where q =
�
d3r ρ(Mr) is the total electric charge, and Mµ =

�
d3r Mrρ(Mr) is the dipole moment of

the charge distribution. From now we will consider just distributions of charge in which only the

first two terms of the multipole expansion are non negligible. Now let’s consider a macroscopic

dielectric. It consists of microscopic constituents (atoms or molecule) that we will model as dipoles.

By superposition, the total electric potential in the material is given by:

Φ(Mr) =
&
i

Φi(Mr, Mri), (E.4)

where the sum runs over all the microscopic constituents. The potential generated by every micro-

scopic constituent is :

Φi(Mr, Mri) =
1

4π%0

�
qi

|Mr − Mri| +
Mµi · (Mr − Mri)

|Mr − Mri|3
�
. (E.5)
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What we want to do now is to pass from a discrete microscopic description to a continuous one,

which is more appropriate to discuss the macroscopic problem. For every microscopic constituent we

can define a microscopic density of charge and density of polarization, defined in the characteristic

volume ΔVi containing the i-th microscopic constituent:

ρ(Mri) =
qi
ΔVi

,

MP (Mri) =
Mµi

ΔVi
.

(E.6)

The potential in the dielectric becomes:

Φ(Mr) =
&
i

1

4π%0

�
ρ(Mri)

|Mr − Mri| +
MP (Mri) · (Mr − Mri)

|Mr − Mri|3
�
ΔVi. (E.7)

Considering the sum goes to infinity and each microscopic volume go to zero, ΔVi → 0, we can

replace the sum as an integral:

Φ(Mr) =

�
d3r�

1

4π%0

�
ρ(Mr�)
|Mr − Mr�| +

MP (Mr�) · (Mr − Mr�)
|Mr − Mr�|3

�
. (E.8)

Using
Mr − Mr�

|Mr − Mr�|3 = M∇�
�

1

|Mr − Mr�|
�
, (E.9)

integrating by parts and considering the usual Gauss theorem for volume integrals of divergences,

we obtain

Φ(Mr) =
1

4π%0

�
V
d3r�

�
ρ(Mr�)
|Mr − Mr�| −

M∇� · MP (Mr�)
|Mr − Mr�|

�
+

1

4π%0

�
∂V

dMS� ·
MP (Mr�)
|Mr − Mr�| . (E.10)

The first two terms are, respectively, the free charge bulk contribution and the dipole density bulk

contribution. The last term is a surface term, coming from the accumulated charge on the boundary

∂V enclosing the volume V in which the dielectric is defined. From this point on we will always

consider the case of a charge-neutral medium, so ρ = 0. The total electric field inside the dielectric

can be written as
ME = MEbulk + MEsurface, (E.11)

where
MEbulk =

1

4π%0

�
V
d3r�

M∇� · MP (Mr�)
|Mr − Mr�|3 (Mr − Mr�), (E.12)

and
MEsurface = − 1

4π%0

�
∂V

dMS� ·
MP

|Mr − Mr�|3 (Mr − Mr�). (E.13)

From these formula it seems that in a homogeneously polarised medium MEbulk = 0, since the
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polarization in the bulk does not depend on the position, M∇ · MP (Mr) = 0. However we must consider

the correction due to the discrete orgin of our medium, which is a collection of point like dipoles.

So the vanishing contribution from the bulk is an artefact of the continuum description, and it must

be corrected by introducing the famous “Lorentz sphere”, [39], correcting the bulk field to

MEbulk ≈ −
MP

3%0
, (E.14)

where MP is the homogeneous polarization, oriented on a certain fixed direction.

In the following sections we discuss the results for a dielectric sphere and a dielectric thin, large

slab. These are two very paradigmatic examples that help to clarify the role of the η-parameter in

the main text.

E.1 The macroscopic field inside a polarized sphere

We consider a polarized sphere of radius R. The polarization is homogeneous and directed only

along z. The total electric field along the z-axis is given by

Esphere
z = − P

3%0
+ Esurface

z , (E.15)

where

Esurface
z (Mr) = − 1

4π%0

�
dθdφ R2 sin(θ)

P cos(θ)

|Mr − MR|3 (z − Z). (E.16)

While it is straightforward to find the solution of this integral when Mr = 0 (the field in center of the

sphere), the general solution it is not so simple to compute. But there is another way to compute

it, which is much easier. The idea is to find first of all the potential and then derive the field.

The potential is given by a solution of Poisson equation. Using a general expansion in terms of

the Legendre polynomials (which is very suitable because of the cylindric symmetry) and using the

constraints given by the boundary conditions, it is possible to find the potential, and so the field,

in a very straightforward way. The solution for the field inside of the sphere is (see [122] pag. 142,

ex. 3.9 )

Esurface
z (Mr) = +

P

3%0
. (E.17)

This means that the total electric field generated by the homogeneous polarised medium inside the

sphere is zero

Esphere
z = 0. (E.18)
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E.2 The macroscopic field inside a polarized slab

Here we consider a cylindrical flat slab of dielectric, with very large radius R and very small thickness

h. Again, the polarization is homogeneous and directed only along z. The surface contribution is

given by

Esurface
z (Mr) = +2

P

4π%0

�
dx�dy�

h

((x− x�)2 + (y − y�)2 + h2)3/2
. (E.19)

The factor of 2 takes account of the fact that the surface is made by two parallel plates charged with

opposite charge, while the ’+’ sign comes from the fact that we are inside the slab. The integral

can be easily computed considering

I =

�
A
dxdy

h

(x2 + y2 + h2)3/2
= 2π

� R/h

0
dr

r

(1 + r2)3/2
= 2π

�
1− 1

(1 +R2/h2)1/2

�
. (E.20)

Taking the limit R → ∞, but keeping h fixed, this integral becomes I = 2π So we end up with

Esurface
z (Mr) = +

P

%0
. (E.21)

The total electric field, again considering the Lorentz correction, is

Eslab
z = +

2

3

P

%0
. (E.22)

E.3 The macroscopic field inside a polarized elongated-cigar shape

We consider here the same conditions as before. But the dielectric is now a cylinder elongated along

z. Evidently we have to repeat the same calculation above, with the only difference that now we

take the limit h � R. Under this condition I ≈ πR2/h2 ≈ 0, which gives

Ecigar
z ≈ −1

3

P

%0
. (E.23)

E.4 Dipole ensemble as a macroscopic dielectric

In this appendix we show how to explicitly connect the results obtained using the standard methods

of macroscopic dielectrics to the discrete microscopic model that we use in the main text.

We define the local field as the electric field generated by solving the Poisson equation for

the exact microscopic distribution of charge. We will make assumptions only on the shape of the

microscopic distribution of charge, but no coarse graining assumption will be made here. We model

the dielectric as an ensemble of dipole fixed on a lattice (which may be regular or not regular), the
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charge distribution it is given by

ρ(Mr) =
&
i

Mµi · M∇δ(3)(Mr − Mri). (E.24)

The electric field given by this charge distribution is the well known dipole field:

ME(Mr) =
1

4π%0

&
i

1

|Mr − Mri|3
�
Mµi − 3(Mr − Mri) · Mµi

|Mr − Mri|2 (Mr − Mri)

�
, (E.25)

where the sum over i is in such a way that Mr (= Mri. Now we want to find a relation between the

polarization density MP and the field felt by each dipole. Of course for each dipole the field could

be very different, so we pose the question in a slightly different way: what is the field felt by each

dipole on average in the sample? So we define the spatial average local field


 ME� = 1

N

&
i �=j

1

4π%0

1

|Mrj − Mri|3
�
Mµi − 3(Mrj − Mri) · Mµi

|Mrj − Mri|2 (Mrj − Mri)

�
. (E.26)

We use the assumption of homogeneous polarization and oriented along the z axis, which means

Mµi = µ0ûz, (E.27)

and the electric field is just given by its z-component 
Ez�. The lattice is a simple cubic lattice,

with lattice constant r0. The relation between microscopic polarization and polarization density is

then

P =
µ0

r30
. (E.28)

The average local field is thus:


Ez� = P

4π%0

1

N

&
i �=j

1

|Mj −Mi|3

�
1− 3(jz − iz)

2

|Mj −Mi|2

�
. (E.29)

Here Mi, Mj represent the coordinate on the lattice of the i-th and j-th dipoles. Let’s define

η =
1

4πN

&
i �=j

1

|Mj −Mi|3

�
1− 3(jz − iz)

2

|Mj −Mi|2

�
. (E.30)

so we have the compact form


Ez� = η
P

%0
. (E.31)

Accordingly to the results derived with the continuum theory in E.1-E.2-E.3, we have numerically

evaluated η for simple similar geometries. In all cases we have found good agreement with the



172 APPENDIX E. MACROSCOPIC DIELECTRICS

predictions of the continuum theory, which we summarise in the following. For a system consisting

of one or multiple finite layers, and much larger in extension on the (x, y)-plane we have

η . 2

3
, (E.32)

while for a sphere

η . 0, (E.33)

and a cigar (or tower) shape

η . −1

3
. (E.34)

In the next subsection we explicitly report the calculation for a single layer and for multiple

layers. We will show that these numerical results match quite well the predictions for a thin slab

from the continuum theory.

E.4.1 Single layer

For an infinite single layer we can find the analytic solution of η. Indeed we have

η =
1

4πN

&
ix,iy ,jx,jy

1

((ix − jx)2 + (iy − jy)2)3/2
, (E.35)

where N = NxNy. From this we can define m = ix − jx and n = iy − jy from which we obtain

immediately

η =
1

4π

&
m,n �=0

1

(m2 + n2)3/2
. (E.36)

For this sum there exist an expression in terms of special functions when we take the limit N −→ ∞

lim
N−→∞

η =
ζ(3/2)L(3/2, χ4)

π
≈ 0.71, (E.37)

where ζ is the usual Riemann-zeta function, L is the Dirichtlet L-function with primitive character

χ4. This sum is well reproduced by the numerics in Fig. E.3. It is worth noticing that it is very

close to the value predicted by the continuum theory η ≈ 0.66, but still a bit larger. We will see

that this discrepancy is resolved by adding more layers, which effectively recreates the thin slab

discussed in the continuum theory in Sec. E.2.
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Figure E.1: η as a function of the number
of dipoles N . Despite the slow
convergence of the four sums
in (E.35), one can see that the
average local field approaches
the value expected from the
macroscopic description.
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Figure E.2: η as a function of the num-
ber of dipoles N . Thanks
to the simplification given
by (E.36), the computational
time is strongly decreased and
it is possible to reach clear con-
vergence.

Figure E.3: Numerical evaluation of η as a function of the total number of dipoles N for a square monolayer.

E.4.2 Multilayer

For a multilayer system, in which we have many layers stacked one above the others we have:

η = − 1

N

&
ix,iy,iz ,jx,jy ,jz

�
3(iz − jz)

2

((ix − jx)2 + (iy − jy)2 + (iz − jz)2)5/2
− 1

((ix − jx)2 + (iy − jy)2 + (iz − jz)2)3/2

�
.

(E.38)

Defining

mx = ix − jx,

my = iy − jy,

mz = iz − jz,

(E.39)

and considering N = NxNyNz, we have

η = −
&

mx,my,mz

�
3m2

z

(m2
x +m2

y +m2
z)

5/2
− 1

(m2
x +m2

y +m2
z)

3/2

�
, (E.40)
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which is worth to rewrite as

η = −
&
mz

3m2
z

&
mx,my

1

(m2
x +m2

y +m2
z)

5/2
−

&
mx,my

1

(m2
x +m2

y +m2
z)

3/2

 . (E.41)

The sum is considered on mα ∈ [−Nα;Nα]. We can see from Fig. E.6 that the multilayer sum
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Figure E.4: η as a function of the number
of dipoles N for a 3-layers sys-
tem.
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Figure E.5: η as a function of the number
of dipoles N for a 7-layers sys-
tem.

Figure E.6: Numerical evaluation of η as a function of the total number of dipoles N for a square multilayer
system.

converges exactly to the continuum result for a thin slab.

E.5 Dipole ensemble between two grounded electrodes

When a polarised dielectric is placed in between two grounded parallel metallic plates the local

electric field is modified in such a way that on the plates it is still identically zero. Under this metallic

boundary condition, the electric field becomes equivalent to the usual dipole local field, plus the field

generated by an infinite series of image dipoles, as we have seen in chapter 1. When we consider the

case of a macroscopic homogeneously polarized system, we can say that the modifications coming

from the bulk’s images are negligible, and that all the contributions are due to the surface’s images.

The surface’s image charges are the opposite of the surface charges of the dielectric, which is given

by the polarization projected on the normal to the surface. So the local field inside of the dielectric

will be given by


Ez� = 
Ez�bulk + 
Ez�surface + 
Ez�images , (E.42)
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where, for a infinitely large thin slab we have


Ez�bulk ≈ − P

3%0


Ez�surface =
P

%0


Ez�images = −h

d

P

%0
,

(E.43)

where h is the thickness of the dielectric slab, and d is the distance between the two plates (of course

h ≤ d). This linear dependence on h is necessary in order to keep the zero potential drop across

the plates. This can be easily understood considering the relation between the induced charge (the

charge needed on the capacitor plates to satisfy the metallic boundary conditions) and the surface

charge on the dielectric (which is Qsurf. = AP , where A is the surface’s area of the dielectric):

QIm =

'
i µi

d
=

µ0

d
N

r30
r30

=
µ0

r30

Vd

d
= PA

h

d
= Qsurf.

h

d
. (E.44)

So we have:


Ez� = − P

3%0
+

�
1− h

d

�
P

%0
. (E.45)

This means that in the case of a slab inserted in between two grounded metallic plates, with h = d,

we expect

η . −1

3
, (E.46)

meaning that the presence of the plates could eventually change the sign of the macroscopic field

inside of the dielectric, potentially inducing a ferroelectric phase transition in the dipole’s ground

state.

E.5.1 Single layer

The effect of the metallic boundaries is to introduce in the system an infinite number of mirror

image dipoles. The potential is thus modified in such a way that

η =
1

N

&
?i,?j

(Di,j +
∞&
n=1

Fn
i,j + F̄n

i,j), (E.47)

where N = NxNy,

Di,j =
1

((ix − jx)2 + (iy − jy)2)3/2
, (E.48)

Fn
i,j =

�
3(iz − ζnj,u)

2

((ix − jx)2 + (iy − jy)2 + (iz − ζnj,u)
2)5/2

− 1

((ix − jx)2 + (iy − jy)2 + (iz − ζnj,u)
2)3/2

�
,

(E.49)
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where ζnj,u is the n-th-upper-plate image dipole z coordinate (in lattice constant units), which is

defined as

ζnj,u/p = n
d

r0
± (−1)n(jz − Nz − 1

2
)± Nz − 1

2
. (E.50)

(the + holds for the upper plate images, while the − for the lower plate ones). The lower plate

contribution is represented by F̄ and is given by:

F̄n
i,j =

�
3(iz + ζnj,l)

2

((ix − jx)2 + (iy − jy)2 + (iz + ζnj,l)
2)5/2

− 1

((ix − jx)2 + (iy − jy)2 + (iz + ζnj,l)
2)3/2

�
.

(E.51)

The numerical result is reported in Fig. E.7. The monoloayer does not completely converge to

the result expected for a thin slab between two metallic plates, but it anyway shows a very similar

trend.

Figure E.7: η as a function of the ratio between the monolayer thickness and the plates distance h/d. The
different color lines correspond to different sizes of the monolayer. We can see that by increasing
the size, the dependence of the average local field on h/d approaches a linear behaviour with a
knee, separating two regions with different slope. The dashed lines are just guides for the eyes.

E.5.2 Multilayer

The average local field of a dipole multilayer between two grounded plates is thus given by

η =
1

N

&
?i,?j

(Di,j +

∞&
n=1

Fn
i,j + F̄n

i,j), (E.52)

where N = NxNyNz,

Di,j =
1

((ix − jx)2 + (iy − jy)2 + (iz − jz))3/2
− 3

(iz − jz)
2

((ix − jx)2 + (iy − jy)2 + (iz − jz)2)5/2
, (E.53)
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Fn
i,j =

�
3(iz − ζnj,u)

2

((ix − jx)2 + (iy − jy)2 + (iz − ζnj,u)
2)5/2

− 1

((ix − jx)2 + (iy − jy)2 + (iz − ζnj,u)
2)3/2

�
,

(E.54)

where ζnj,u is the n-th-upper-plate image dipole z coordinate (in lattice constant units), which is

defined as

ζnj,u/p = n
d

r0
± (−1)n(jz − Nz − 1

2
)± Nz − 1

2
. (E.55)

(the + holds for the upper plate images, while the − for the lower plate ones). The lower plate

contribution is represented by F̄ and is given by:

F̄n
i,j =

�
3(iz + ζnj,l)

2

((ix − jx)2 + (iy − jy)2 + (iz + ζnj,l)
2)5/2

− 1

((ix − jx)2 + (iy − jy)2 + (iz + ζnj,l)
2)3/2

�
.

(E.56)

Using a similar argument as in Sec. E.4.1, we can reduce the sum from six variables to only three.

So we have

η =
&

mx,my ,mz

(Dmx,my ,mz +
∞&
n=1

Fn
mx,my,mz

+ F̄n
mx,my ,mz

), (E.57)

where

Dmx,my,mz =
1

(m2
x +m2

y +mz)3/2
− 3

m2
z

(m2
x +m2

y +m2
z)

5/2
, (E.58)

the image charge contribution becomes

Fn
mx,my ,mz

=

�
3(mz − d

r0
)2

(m2
x +m2

y + (mz − d
r0
)2)5/2

− 1

(m2
x +m2

y + (mz − d
r0
)2)3/2

�
, (E.59)

F̄n
mx,my ,mz

=

�
3(mz +

d
r0
)2

(m2
x +m2

y + (mz +
d
r0
)2)5/2

− 1

(m2
x +m2

y + (mz +
d
r0
)2)3/2

�
, (E.60)

and mα ∈ [−Nα, Nα]. We can see in Fig. E.8 the results from the numerics. The linear behaviour

expected from the continuum calculation of the thin slab is recovered for increasing system sizes.
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Figure E.8: η in function of the ratio between the k-layers thickness and the plates distance h/d, calculated
with the formula (E.57). The different color lines correspond to different sizes of the k-layers
system. We can see that increasing the size the dependence of the average local field from h/d
approaches clearly to a linear behaviour, as expected for a macroscopic dielectric.



Appendix F

Effective Hamiltonian from perturbation

theory

We develop here the effective low energy Hamiltonian given in Eq. (4.52). We start by making use

of the fact that in the USC regime the spectrum of the EDM is separated into in almost degenerate

manifolds, which are labelled by their photon’s number. So it is convenient to consider the framework

of quasi-degenerate perturbation theory. The concept is very simple and just relies on the standard

pertrubation theory of quantum mechanics. We consider an Hamiltonian H = H0 + HI , where

H0 is degenerate or almost degenerate with respect to the energy scales of HI . We then split the

Hilber space in two subsets, labelled by “high energy” and “low energy” Hhigh, Hlow, and together

they give the total Hilbert space H = Hlow ⊕ Hhigh. We then restrict our total Hamiltonian on

the low energy space H|low, and then diagonalise it, in this way we split the degeneracy of H0. Its

eigenvectors are labelled as |n� ∈ Hlow. We then apply second order perturbation theory to correct

these eigenvectors with the high energy contributions from HI

|n̄� = |n� −
&

+∈Hhigh

Hn+
I

E0
+ − E0

n

|3�, (F.1)

where Hn+
I = 
3|HI |n� and E0

+ , E
0
n are the eigenvalues of H0. Evidently these new eigenvectors have

some component in Hhigh. Let’s now project the whole H on those perturbed eigenvectors and keep

the terms up to second order in the matrix elements of HI . The result is an effective Hamiltonian

which reproduce approximatively the lowest energy states of the system


m|Heff |n� = E0
nδmn + 
m|HI |n� − 1

2

&
+∈Hhigh

�
m|HI |3�
3|HI |n�
E0

+ − E0
m

+

n|HI |3�
3|HI |m�

E0
+ − E0

n

�
. (F.2)

Notice that Heff just lives in Hlow.
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In our case we consider H0 = ωca
†a+ ε g2

ωc
S2
x and HI = ω0

�
cos(θ̂)Sz − sin(θ̂)Sy

�
. When |ε| " 1

the states |0ph, Sx� are almost degenerate eigenstates of H0. So we take them to form Hlow. We just

need to apply Eq. (F.2) and the result is in principle done. To arrive to our final form we need to

apply another approximation. First we notice that the cross terms ∼ SzSy that appear taking the

modulus square of HI exactly vanish. This is due to the fact that, in the photonic part, they involve

matrix elements such as 
0| cos(θ̂)|3� 
3| sin(θ̂)|0�. These matrix elements must be zero because the

sin and cos operators have opposite parity. At the end the only terms which survive are

Heff = ω0e
− g2

2ω2
c Sz + ε

g2

ωc
S2
x −

ω2
0

ωc

&
+

�
| 
0| cos(θ̂)|3� |2

3
S2
z +

| 
0| sin(θ̂)|3� |2
3

S2
y

�
. (F.3)

Using θ̂ = ix(a† − a), with the decomposition of the trigonometric operators via displacement

operator in Eq. (4.45) and the properties of displacements [83] we have


3| cos(θ̂)|0� =
%

1

3!
e−x2/2L+

0(x
2)

�
1 + (−1)+

2

�
|x|+,


3| sin(θ̂)|0� = i

%
1

3!
e−x2/2L+

0(x
2)

�
1− (−1)+

2

�
|x|+.

(F.4)

It is possible to show that

&
+�=0

| 
3| cos(θ̂)|0� |2
3

= e−x2
&
+ �=0

|x|2+
3!3

(L+
0(x

2))2
�
1 + (−1)+

2

�2

. 1

2x2
,

&
+�=0

| 
3| sin(θ̂)|0� |2
3

= e−x2
&
+ �=0

|x|2+
3!3

(L+
0(x

2))2
�
1− (−1)+

2

�2

. 1

2x2
,

(F.5)

where x = g/ωc, and in the last equality we used x � 1. Putting everything together we have

Heff . ω0e
− g2

2ω2
c Sz + ε

g2

ωc
S2
x −

ω2
0ωc

2g2

�
MS2 − S2

x

�
, (F.6)

which is exactly Eq. (4.52).



Appendix G

Derivatives of the free energy

Let’s consider

∂λF ∼ Tr
�
∂λe

−βH(λ)
�
, (G.1)

with [∂λH,H] (= 0, in general. When writing out explicitly the derivative of the exponential we

obtain

∂λe
−βH(λ) =

&
n

1

n!
∂λ(H(λ)H(λ) · · · n− times · · ·H(λ))

=
&
n

1

n!
(∂λH(λ)H(λ) · · ·H(λ) +H(λ)∂λH(λ) · · ·H(λ) + all possible permutation in ∂λ).

(G.2)

Non-commutativity leaves us with a very complicated expression of the derivative of the exponential

operator. Luckily, when the trace is taken, this doesn’t matter anymore, due to its cyclic properties.

Specifically

Tr [∂λH(λ)H(λ) · · ·H(λ)] = Tr [H(λ)∂λH(λ) · · ·H(λ)] = · · · = Tr [H(λ)H(λ) · · · ∂λH(λ)] , (G.3)

meaning that

Tr
�
∂λe

−βH
�
= −βTr

�
(∂λH)e−βH

�
. (G.4)

This result then implies

∂λF = 
∂λH� . (G.5)
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Appendix H

The Dyson series in thermal

perturbation theory

Let’s consider a generic system described by the following Hamiltonian

H = H0 +HI . (H.1)

The canonical partition function for this system is given by

Z = Tr
�
e−β(H0+HI)

�
, (H.2)

and (setting kB = � = 1) its free energy is

F = −T log [Z] . (H.3)

In analogy with the perturbative approach of the Dyson series in the interaction picture, we

define

U := exp[βH0] exp[−β(H0 +HI)]. (H.4)

The partition function is rewritten as

Z = Tr
�
e−βH0U

�
= Z0 
U�0 , (H.5)

which is the expectation value of the operator U over a thermal state of the free system. To evaluate

U in perturbation theory we use that it obeys the following equation

∂

∂β
U = −H̃I(β)U , (H.6)
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where

H̃I(β) = eβH0HIe
−βH0 . (H.7)

Equation (H.6) is solved by

U = Texp

�
−
� β

0
dβ�H̃I(β

�)
�
, (H.8)

in which T is the time ordering operator, considering β as the imaginary time of the problem

(β = −it). This operator can now be expanded in the usual Dyson series,

U ∼ I−
� β

0
dβ�H̃I(β

�) +
� β

0
dβ�

� β	

0
dβ��H̃I(β

�)H̃I(β
��) + · · · . (H.9)

H.1 Explicit expression of the perturbative terms

The first order can be easily rewritten as


U1�0 = β
HI�0, (H.10)

where we used the cyclic properties of the trace to get rid of the β� dependence in the integral.

Using the cyclic properties of the trace in the average and the relation

� t

0
dt�

� t	

0
dt��f(t� − t��) =

� t

0
dt�

� t	

0
dτf(τ), (H.11)

we obtain the second order contribution as


U2�0 =
� β

0
dβ�

� β	

0
dβ��
H̃I(β

��)H̃I(0)�0, (H.12)

which is a time integral over a correlation function (notice that H̃I(0) = HI).

Inserting the identity and making explicit the trace we find this term has two components:


U2�0 =
&
n

e−βEn

Z0

&
m�=n

�
β

Enm
+

1

E2
nm

�
e−βEnm − 1

��
|Hnm

I |2+

+
β2

2

&
n

e−βEn

Z0
(
n|HI |n�)2.

(H.13)

Here we used the eigenstates and eigenenergies of the free hamiltonian, H0|n� = En|n�, then we

defined Enm = Em − En and Hnm = 
n|HI |m�.
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H.2 Magnus expansion

We consider now a cumulant expansion for the mean value of the interaction operator (also know

as Magnus expansion)


U�0 = exp[−
∞&
n=1

βnFn]. (H.14)

In order to determine how to write the Magnus series in terms of our Dyson expansion, we must

derive a relation between terms of the same order. One could simply expand the exponential, in

the spirit of a high temperature expansion, then just equate the terms with the same power in β,

and re-sum the series for low temperature. We start noticing that for high temperatures

U2 ∼β→0 β
2, (H.15)

(from here on we drop the angle brakets for the sake of simplicity).

To be consistent with this observation we truncate the Magnus series at the second order, keeping

just the terms of the same order and we find that

F1 =
U1

β
,

F2 = −U2

β2
+

(U1)
2

2β2
.

(H.16)

In this way the partition function becomes

Z . Z0e
−U1−

�
U2− (U1)

2

2

�
(H.17)

and the free energy is approximately given by

F . F0 + F (2) = F0 + TU1 − T

�
U2 − (U1)

2

2

�
. (H.18)

H.3 Low temperature limit

We consider here the limit in which T −→ 0, which means β −→ ∞. The free partition function

goes to

Z0 −−−→
β→∞

e−βE0 . (H.19)

The first order Dyson expansion gives

U1 −−−→
β→∞


0|HI |0� . (H.20)
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The second order Dyson term gives

U2 −−−→
β→∞

β
&
n�=0

|H0n
I |2

E0n
+

β2

2
| 
0|HI |0� |2. (H.21)

Note that the term in U2
1 from the Magnus expansion exactly compensates the β2 component in U2

in this limit. The total partition function reads

Z −−−→
β→∞

e
−β

�
E0+�0|HI |0�−

�
n�=0

|�0|HI |n�|2
E0n

�
. (H.22)

The free energy is

F −−−→
β→∞

E0 + 
0|HI |0� −
&
n �=0

| 
0|HI |n� |2
E0n

, (H.23)

which is consistent with regular perturbation theory. We note that, in this limit, the free energy

equals the internal energy.

H.4 High temperature limit

The high temperature limit is even simpler than the low temperature one. Indeed here we keep just

the terms which are small in β and obtain

U2 − (U1)
2

2
∼ β2

2

�

H2

I �0 − 
HI�20
�
. (H.24)

The partition function is

Z −−−→
β→0

Z0e
−β�HI�0+β2

2 (�H2
I �0−�HI�20). (H.25)

The free energy becomes the bare free energy with just the first order correction,

F −−−→
β→0

F0 + 
HI�0 −
β

2

�

H2

I �0 − 
HI�20
�
. (H.26)

It’s interesting to note that it seems that the temperature washes out the interaction.

H.5 Generalised displacement

We consider here the generalized displacement operator

T̂ (f, g) = efa
†−ga. (H.27)
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We want to compute its expectation value over a photon thermal state ρ = e−βa†a/Z. We have

Tr

�
e−βa†a

Z
T̂

�
= e−fg/2

&
n

e−βn

Z

n|efa†ega|n�

= e−fg/2
&
n

e−βn

Z

&
r,q

(−1)q
f r

r!

gq

q!

n|(a†)raq|n�

= e−fg/2
&
n

e−βn

Z

n&
q=0

(−1)q
(fg)q

q!

n

q


= e−fg/2

&
n

e−βn

Z
Ln(fg)

= e−fg/2(1+Nth(β)),

(H.28)

where Nth(β) = 1/(eβ − 1). Ln(x) is the Laguerre polynomials.

H.6 General Dyson formula for the EDM

Here we show the main ingredients to explicitly calculate Eq. (5.47) and (5.50). The starting point

is Eq. (H.12). Note that using H0 = He.m., as it is given by Eq. (5.27), the bare dipole eigenstates

are all Sx-eigenstates. This implies that the first order of the perturbation vanishes, since it is

proportional ∼ 
Sz�0. In the case of the EDM, the integrand in Eq. (H.12) is


H̃I(τ)H̃I(0)�0 = ω2
0

�

cos[θ̂](τ) cos[θ̂]�0
Sz(τ)Sz�0 + 
sin[θ̂](τ) sin[θ̂]�0
Sy(τ)Sy�0

�
. (H.29)

To shorten the notation we consider ωc = 1. To simplify the calculation we introduce a couple

of definitions

D := eg(a
†−a),

D̃ := eτH0De−τH0 ,

˜̃D := eτH0D†e−τH0 .

(H.30)

Using that eτH0ae−τH0 = ae−τ , we realise that all the above defined operators are generalised

displacements, as in Eq. (H.27). We then express the sin and cos photonic operators using these

generalised displacements

4 cos[θ̂](τ) cos[θ̂] = D̃D + D̃D† + ˜̃DD + ˜̃DD†, (H.31)

4 sin[θ̂](τ) sin[θ̂] = − ˜̃DD† + ˜̃DD + D̃D† − D̃D. (H.32)
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We then obtain the following expectation values


D̃D� = eg
2[sinh(τ)−cosh(τ)(1+2Nth(β)]e−g2(1+2Nth),


D̃D†� = e−g2[sinh(τ)−cosh(τ)(1+2Nth(β)]e−g2(1+2Nth),


 ˜̃DD� = 
D̃D†� ,

 ˜̃DD†� = 
D̃D� .

(H.33)

For this calculation we made use of the fact that we are only dealing with generalized displacement

operators, for which we can use the formula in Eq. (H.28). It’s then possible to explicitly calculate

all the cavity correlators and put them in a compact form

cos[θ̂](τ) cos[θ̂] = e−g2(1+2Nth) cosh
�
g2

�
e−τ (1 +Nth) + eτNth

�

,

sin[θ̂](τ) sin[θ̂] = e−g2(1+2Nth) sinh
�
g2

�
e−τ (1 +Nth) + eτNth

�

.

(H.34)

This form is actually not the best to complete the calculation of U2. Indeed, the dependence on

τ looks really complicated, making it impossible to solve the convolution integral with the spin

correlators. The integral can be actually performed if we expand the sinh and cosh in a power

series. This make the expression a little bit nasty, but it allows us to complete the calculation.

cos[θ̂](τ) cos[θ̂] = e−g2(1+2Nth)
∞&

r,q=0

[1 + (−1)r+q]

2
g2(r+q) (1 +Nth)

rN q
th

r! q!
e(q−r)τ

= e−g2(1+2Nth)
∞&

r,q=0

Krqe
(q−r)τ ,

(H.35)

sin[θ̂](τ) sin[θ̂] = e−g2(1+2Nth)
∞&

r,q=0

[1− (−1)r+q]

2
g2(r+q) (1 +Nth)

rN q
th

r! q!
e(q−r)τ

= e−g2(1+2Nth)
∞&

r,q=0

Qrqe
(q−r)τ .

(H.36)

Note that we recompactificate the result introductiong the two matrices K and Q. It’s important

to notice that

Krq (= 0 ⇐⇒ r + q = 2n, n ∈ N,

Qrq (= 0 ⇐⇒ r + q = 2n+ 1, n ∈ N.
(H.37)

We can interpret this in the following way: r is the number of photons emitted by the spins

(downgrade them to a lower state), q is the number of photons absorbed by the spins (exciting

them to a higher state). K is the matrix containing all the processes which involve an even number

of photons (we could interpret it as spins-photons scattering). Q is the matrix containing all the
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processes in which is involved an odd number of photons (we could interpret this as pair of spins

decaying to photons).

Note that all the dependence on τ in the photonic correlators comes from the factor e(q−r)τ .

With this in mind we can put it together with the dipole’s correlators and then integrate it. The

result can be easily computed by introducing a couple of completeness relation and it gives (replacing

(q − r) with a generic ω for generality)

� β

0
dτ �

� τ 	

0
eωτ 
Sα(τ)Sα�0 =

1

β2

&
m

e−βEdip
m

Zdip

&
k

|Skm
α |2

�
eβ(ω−Edip

km) − 1

(ω − Edip
km)2

− β

ω − Edip
km

�
. (H.38)

By using the definition given in Eq. (5.51) in the main text we can combine everything and

write the final expression as

U2 =
β2ω2

0

2
e
− g2

ω2
c
(1+2nth(β))

 ∞&
r,q=0

KrqΔzz(β, (q − r)ωc) +

∞&
r,q=0

QrqΔyy(β, (q − r)ωc)

 . (H.39)

The perturbative correction to the free energy is then given by

F (2)
ω0

= −TU2. (H.40)
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