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Sub-subleading soft gravitons: New symmetries of quantum gravity?
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Due to the seminal work of Weinberg, Cachazo and Strominger we know that tree level quantum 
gravity amplitudes satisfy three factorization constraints. Building on previous works which relate two 
of these constraints to symmetries of gravity at null infinity, we present strong evidence that the third 
constraint is also equivalent to a new set of symmetries. Our analysis suggests that the symmetry group 
of quantum gravity may be richer than the BMS group –or infinite dimensional extension thereof–
previously considered.
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There has been significant recent progress in our understanding 
of symmetries associated to quantum gravity in asymptotically flat 
spacetimes. We now understand that at least at perturbative level, 
these symmetries contain an infinite dimensional group which is 
one of two possible extensions of the Bondi–Metzner–Sachs (BMS) 
group [1] that has long been known to be a symmetry of classical 
general relativity.1 The key evidence for these groups come from 
their relation with certain soft theorems in perturbative quantum 
gravity. In particular as shown in [3], the statement that super-
translations are symmetries of the gravitational S matrix is en-
coded in Weinberg’s soft graviton theorem [4]. In [5] this idea was 
extended to the Cachazo–Strominger subleading soft theorem [6]
where it was argued it implied a Virasoro symmetry of locally 
conformal Killing vector fields of the sphere at null infinity [7]. 
Based on these developments we showed [8] that the subleading 
soft theorem can alternatively be understood as the statement that 
the group of diffeomorphisms of the sphere at null infinity is a 
symmetry of the S matrix.

The soft theorems in themselves are rather fascinating state-
ments. As argued in [6], when in a gravitational scattering process 
one of the gravitons becomes ‘soft’ (its energy goes to zero), the 
tree level scattering amplitude factorizes upto first order in the 
soft graviton energy Eq:

Mn+1(k1, . . . ,kn;q) =
(E−1

q S(0) + S(1) + Eq S(2))Mn(k1, . . . ,kn) + O (E2
q). (1)
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Since both S(0) and S(1) are associated to (one of the two possible) 
extensions of BMS, one may wonder if the final factorization term, 
namely S(2) , is also associated to symmetries of quantum gravity. 
In this paper we present rather strong evidence that this is the 
case. As summarized below, our strategy involves looking at the 
problem from a slightly new perspective [9] that includes a dual 
or ‘magnetic’ version of the usual charges.

The expansion (1) yields the three equations:

lim
Eq→0

EqMn+1 = S(0)Mn (2)

lim
Eq→0

Mn+1|fin = S(1)Mn (3)

lim
Eq→0

E−1
q Mn+1|fin = S(2)Mn (4)

(in the last two lines one keeps the finite piece and discard terms 
proportional to E−1

q and E−2
q ). Since the emitted soft graviton has 

two possible polarizations, each of these equations provides two 
independent identities (per point on the sphere of soft graviton di-
rections). One would like to realize such identities as Ward identi-
ties associated to appropriate charges. In [3] it was shown that (2)
corresponds to supertranslations Ward identities:

〈out|[Q f , S]|in〉 = 0, (5)

where Q f is the charge associated to a supertranslation vector 
field ξa ∼ f ∂u and 〈out|S|in〉 = Mn(k1, . . . , kn). Now, since (5)
is parametrized by functions on the sphere f , it counts as one 
identity per point on the sphere. Where is the second identity? 
In [3] this second identity is associated to certain Christodoulou–
Klainerman (CK) condition imposed on the free data [10]. Now, it 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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turns out that this second condition may also be realized as Ward 
identities of ‘dual’ supertranslation charges [11]:

〈out|[Q ∗
f , S]|in〉 = 0. (6)

Here Q ∗
f is the ‘magnetic’ version of Q f that is obtained by du-

alizing the Weyl tensor [11,12]. Thus, the two identities contained 
in (2) are equivalent to the two identities (5) and (6).

In [8] we showed that (3) is equivalent to certain Diff(S2) Ward 
identities,

〈out|[Q V , S]|in〉 = 0, (7)

associated to ‘generalized BMS’ vector fields ξa ∼ V A∂A . In this 
case the charges are parametrized by arbitrary sphere vector fields 
V A and so (7) counts as two identities per sphere point. This was 
a key point in showing the equivalence with (3) without further 
CK-type conditions. What about the magnetic version of (7)? It 
turns out [11] that in this case Q ∗

V A = Q ε A
B V B and hence no fur-

ther charges arise (in consistency with the number of independent 
identities). We finally come to the results presented in this paper. 
We will show that (4) is equivalent to two identities,

〈out|[Q r X , S]|in〉 = 0, 〈out|[Q̃ r X , S]|in〉 = 0, (8)

associated to vector fields ξa ∼ r X A∂A . The charges are now 
parametrized by divergence-free sphere vector fields X A and so 
each equation corresponds to one identity (per point on the sphere). 
We will show that Q r X can be computed by phase space methods 
in the same way as done for Q V and Q f . We currently lack a first 
principles derivation of Q̃ r X . From the structure of the leading and 
subleading cases in gravity and electromagnetism we expect that 
Q̃ r X is the magnetic version of Q r X . We will later comment further 
on this point, whose final clarification is left for future investiga-
tions.

We motivate our search for the new symmetry by looking 
at how soft theorem → Ward identities is accomplished in the 
known cases. To simplify the analysis we restrict attention to the 
case where the external particles are massless scalars. Let us for 
concreteness look at the leading soft theorem (2). Using the rela-
tion between the graviton Fock operator and the Fourier transform 
of the radiative free data [2]:

a−(ω, q̂) = √
γ 2π i C zz(ω, q̂), (9)

(
√

γ is the area element on the sphere of soft graviton directions q̂
parametrized by stereographic coordinates (z, ̄z)) one can rewrite 
Eq. (2) (for an outgoing negative helicity soft graviton) as:

√
γ 2π i lim

ω→0
ω〈out|C zz(ω, q̂)S|in〉 = S(0)−〈out|S|in〉, (10)

where S(0)− = ω
∑n

i=1
kμ

i ε−
μνkν

i
ki ·q is a function of the soft graviton di-

rection q̂ and the external momenta ki . On the other hand the ‘soft’ 
(linear in C zz) part of the supertranslation charge can be written 
as [3]:

Q soft
f = i lim

ω→0
ω

∫
d2z

√
γ f D2

z C zz(ω, q̂) + c.c. (11)

This motivates one to perform the operation 
∫

d2zf D2
z on both 

sides of (10). The identity

1

2π
D2

z S(0)− = −
n∑

i=1

Eiδ
(2)(z, zi) (12)

(zi parametrizes the direction of the i-th external particle with en-
ergy Ei ) allows one to write the right hand side term as a local 
function of the external particle momenta and subsequently iden-
tify it with the action of the ‘hard’ (quadratic) part of the super-
translation charge Q hard

f . Thus, by smearing both sides of the soft 
theorem (10) with f D2

z one arrives at (5) with Q f = Q soft
f + Q hard

f .
Similar strategy applies to the subleading case where the ap-

propriate smearing is 
∫

d2zV z D3
z . Whence the way to deduce the 

asymptotic charge from the soft theorem hinges on smearing both 
sides of the soft theorems with appropriate tensors. We use the 
same logic to find asymptotic charges from the sub-subleading soft 
theorem. We will then show that these charges are associated to 
certain symmetries of (perturbative) gravity.

In the notation of Eq. (10) the sub-subleading relation (4) for a 
negative helicity soft graviton takes the form
√

γ 2π i lim
ω→0

ω−1〈out|C zz(ω, q̂)S|in〉|fin = S(2)−〈out|S|in〉, (13)

where S(2)− = ω−1 ∑n
i=1(2 ki · q)−1(ε

μ
−qν J i

μν)2 is a function of q̂
and a differential operator on the external particles. Looking at the 
smearing employed in the leading and subleading cases, it is natu-
ral to attempt a smearing of the form 

∫
d2zY zz D4

z . One then finds 
an identity

1

2π
D4

z S(2)− = −3
n∑

i=1

E−1
i δ(2)(z, zi)∂

2
zi

+ . . . (14)

in which all terms are proportional to (derivatives) of delta func-
tions. Hence upon smearing with Y zz D4

z the right hand side of (13)
becomes a differential operator that is local in the external mo-
menta. Furthermore, each term may be realized as the action of a 
hard charge Q hard

Y . Thus, just as in the case of the previous soft 
theorems by smearing both sides of the sub-subleading theorem 
with 

∫
d2zY zz D4

z we arrive at a relation of the form

〈out|[QY , S]|in〉 = 0 (15)

where QY =Qsoft
Y +Qhard

Y with [11]:

Qsoft
Y =

∞∫

−∞
du

u∫

−∞
du′

∫
d2z

√
γ Y zz D4

z C zz(u′, q̂) + c.c. (16)

Qhard
Y = −

∞∫

−∞
du

∫
d2z

√
γ

(
3Y zz∂zφ∂zφ − D2

z Y zzφ2

+ 2u DzY zz∂zφ ∂uφ + u2

2
D2

z Y zz(∂uφ)2) + c.c. (17)

The double integral in (16) comes from the ω−1 factor in (13). 
The field φ in (17) is the radiative data of the external massless 
particles.2 As in the leading and subleading cases, one can also 
go in the reverse direction by an appropriate choice of Y zz and 
recover (4) from (15). Note that we have only explicitly shown 
negative helicity contributions. The positive helicity terms appear 
in the complex conjugated (c.c.) piece.

Our goal now is to show that such charges are associated to 
large spacetime diffeomorphisms. At first this may seem impossi-
ble as the charges are parametrized by Y zz or equivalently by sym-
metric, trace-free sphere tensors Y AB . However every such tensor 
can be written as (symmetric, trace free part of) D A X B for some 
sphere vector field X A . We will show that for divergence-free X A

the charge QY AB =D A X B is associated to a spacetime vector field 
with a leading O (r) component ξa ∼ r X A∂A . This however captures 

2 Throughout the paper we assume C AB = O (u−2−ε ) and φ = O (u−1/2−ε ) at u →
±∞ to ensure convergence of u integrals.
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only ‘half’ of the QY charges, the remaining half being labelled 
by Y AB = εB

C D A X ′ C with X ′ A divergence-free. This is the second 
charge alluded to in Eq. (8), namely

Q̃ r X ′ := QεB
C D A X ′ C . (18)

In short, using the splitting Y AB = D A X B + εB
C D A X ′ C (with 

X A, X ′ A divergence-free), the charges QY are reinterpreted as a 
pair of charges Q r X and Q̃ r X ′ .3

As generalized BMS symmetries are known to be equivalent to 
leading and subleading soft graviton theorems we know that we 
need a genuine extension of this group. Looking for such an exten-
sion is subtle in Bondi gauge as generalized BMS appear to exhaust 
all such symmetries as far as smooth diffeomorphisms are con-
cerned [8]. Whence we look for such an extension in de Donder 
gauge. That is, we look for vector fields on flat spacetime which 
satisfy the wave equation

�ξa = 0. (19)

The computation of asymptotic charges associated to symmetries 
in de Donder gauge also brings a nice structural coherence to the 
entire program. As the soft theorems are usually formulated in de 
Donder gauge as opposed to Bondi gauge, our analysis has a nice 
corollary which shows that the “Ward identities ≡ soft theorem” 
can be formulated in de Donder gauge for all generators of the 
generalized BMS group [11]. In the present case, taking a cue from 
the large gauge transformations in QED which give rise to the sub-
leading theorem [9] we look for large diffeomorphism generators 
such that the O (r0) component of ξ A is linear in u.

It turns out that a self-consistent asymptotic solution of (19)
compatible with the prescribed boundary behavior is given by

ξ A = r X A + u

4
(� + 5)X A + O (r−1)

ξu = O (r−1), ξ r = O (r−1),

(20)

with X A a divergence-free, u-independent sphere vector field that 
plays the role of ‘independent data’ in terms of which the remain-
ing components are determined. The form of the solution (20)
ensure the asymptotic charges satisfy certain regularity condi-
tions detailed below. The vector field shares with generalized BMS 
generators the property of being asymptotically divergence free, 
∇aξ

a → 0 [8].
It is important to note that at this stage we do not understand 

in what sense these large gauge transformations are symmetries 
of asymptotically flat spacetimes. Due to their diverging behavior 
at infinity, they naively do not seem to preserve asymptotic flat-
ness. However as the Ward identities associated to their charges 
capture the sub-subleading soft theorem, we believe there should 
be a characterization of these large gauge transformations as sym-
metries of the theory. We leave this important question for future 
investigation.

We now proceed to compute the associated charges and show 
that they precisely yield the charge obtained from the sub-
subleading theorem. The computation of charges is best done via 
covariant phase space techniques [14]. Instead of considering pure 
gravity (for which the sub-subleading theorem is originally de-
rived) we consider gravity coupled to massless scalar field as it 
simplifies the analysis.

3 The situation is analogous to the subleading case in QED where the charges are 
parametrized by vector fields Y A [13]. For Y A = D Aμ the charge is associated to 
O (r) large gauge transformations with leading piece rμ. The magnetic dual of such 
charge is associated to Y A = ε AB D Bμ [9].
In the context of tree-level amplitudes we are interested, it suf-
fices to consider the phase space of linearized gravity coupled to 
the massless scalar field. Given a symmetry generator ξa , its asso-
ciated charge has two contributions. One contribution comes from 
the matter phase space and is given by

Q matter[ξ ] = − lim
t→∞

∫

�t

d3 V T t
bξ

b, (21)

where �t is a t = constant hypersurface approaching null infinity 
and T a

b the stress tensor of the scalar field. The other contribution 
comes from the gravitational phase space and is given by

δQ grav[ξ ] = lim
t→∞ δξ θt(δ) − δθt(δξ ) (22)

where θt(δ) = 1
2

∫
�t

d3 V �t
bcδhbc is the symplectic potential in lin-

earized gravity.
As shown in [11], the computation of such a charge requires 

determining the linearized metric which is sourced by the matter 
stress tensor. As we are working in de Donder gauge, we need to 
analyze solutions to linearized Einstein’s equations

�hab = −2Tab (23)

where hab = hab − 1
2 ηmnhmnhab .

A solution to this equation can be written as hab = h1ab + h2ab
where h1, h2 satisfy

�h1ab = 0

�h2ab = −2Tab.
(24)

Here h1 is the linearized metric which is determined by the radia-
tive data C AB at null infinity and h2 is the linearized metric which 
is sourced by the matter and is independent of the radiative grav-
itational data.

The gravitational contribution to the charge is hence given by

Q grav[ξ ] = Q grav
soft [ξ ] + Q grav

hard[ξ ] (25)

where

Q grav
soft [ξ ] = 1

2
lim

t→∞

∫
d3 V

(
�t

ab[h1]δξ hab − δξ�
t
abhab

1

)
(26)

Q grav
hard[ξ ] = 1

2
lim

t→∞

∫
d3 V

(
�t

ab[h2]δξ hab − δξ�
t
abhab

2

)
. (27)

The ‘soft’ piece is linear in the radiative gravitational mode C AB . 
The ‘hard’ piece is linear in the matter stress tensor and adds to 
the contribution coming from the matter phase space (21).

Collecting all terms one finds the resulting charge is divergent. 
However the nature of the divergent terms points to a natural pre-
scription for obtaining the finite charge. More in detail, one finds

Q [ξ ] = lim
t→∞

(
t Q (1)[ξ ] + Q (0)[ξ ]

)
, (28)

with Q (1)[ξ ] the charge associated to generalized BMS sphere vec-
tor fields. Thus, extracting the finite piece in (28) amounts to 
discarding the contributions from the subleading soft gravitons 
(see [9] for similar prescription in QED). It is at this stage that 
the form (20) of ξa is crucial: Other vector fields satisfying (19)
yield divergent contributions that cannot be associated to general-
ized BMS charges.

The total, finite charge associated to ξa is finally given by Q ξ :=
Q (0)[ξ ] = Q hard + Q soft with [11]:
ξ ξ
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Q soft
ξ = 1

16

∫
du d2 V sAB(x̂)

u∫

−∞
C AB(u′, x̂)du′, (29)

Q hard
ξ = 1

4

∫
du d2 V

(
3D A X B T (−2)

AB + u(�X A + X A)T (−2)
u A

)
, (30)

where:

sAB = �2 D A X B − 6�D A X B + 8D A X B , (31)

and T (−2)
AB = (∂Aφ ∂Bφ)TF, T (−2)

u A = ∂uφ ∂Aφ are leading terms of the 
stress tensor. Upon the identification Y AB = − 1

4 D A X B and using 
D A X A = 0 one finds that (29) and (30) exactly match the re-
spective charges (16) and (17) that were obtained from the sub-
subleading theorem.

As the large gauge transformations are parametrized by di-
vergence free-vector fields on the sphere it corresponds to one 
factorization theorem for each direction of soft graviton as op-
posed to the two factorization theorems given in Eq. (4). Whence 
we are missing “half” of the Ward identities which would corre-
spond to the remaining half of the sub-subleading theorem. It is 
here that we take a motivation from [9] where it is shown that 
a single large gauge transformation gives rise to both sub-leading 
relations (for two photon helicities) in massless QED. This is due 
to the fact that the magnetic and electric charge for a large gauge 
transformation are unequal and their Ward identities are equiva-
lent to the subleading soft photon theorem. Whence a couple of 
questions naturally arise: (i) Is the charge Q ξ we have computed 
analogous to the electric charge in the case of QED? and if it is 
(ii) What is the corresponding magnetic charge? There are strong 
reasons to believe that the answer to the first question is in the 
affirmative due to a reinterpretation of generalized BMS charges 
presented in [11]. As shown there, these charges can be obtained 
from the “electric” part of the Weyl tensor. Electric and magnetic 
part of the Weyl tensor whose leading piece contains information 
about radiative mode can be defined as4

Ea
b := r Cat

br, Ba
b := r ∗ Cat

br . (32)

Using these tensors, the generalized BMS charges can be obtained 
as [11]:

QE [ξ ] = lim
t→∞

∫

�t

d3 V ∂a(Ea
b ξb). (33)

The ‘magnetic’ dual charges are then defined by replacing Ea
b with 

Ba
b in (33). Thus for a supertranslation vector field ξa

f ∼ f ∂u , 
QE [ξ f ] reproduces the usual supertranslation charge. The corre-
sponding magnetic charge turns out to be5:

QB[ξ f ] =
∫

du

∫
d2 V f ε AB D A D M∂uCM B . (34)

The charge is linear in the graviton and putting it equal to zero 
precisely gives the so-called CK condition used in [3]. For the re-
maining generators of generalized BMS, ξa

V ∼ V A∂A , it can also be 
shown that the electric charges match with those obtained in [8]. 
Whence we expect that the charge associated to ξa ∼ r X A∂A com-
puted above can be obtained as an electric charge whose mag-
netic counterpart provides the ‘remaining’ information of the QY
charges, Eq. (18). However a detailed proof of this statement re-
mains outside the scope of this work.

4 This is not the standard definition of E and B but it contains complete infor-
mation of the Weyl tensor and at null infinity has trivial projection in the outgoing 
null direction.

5 This charge was first obtained in [12] by conformal methods.
We thus believe to have provided enough evidence that the ex-
tensions of the BMS algebra previously considered in the literature 
are not the end of the story. The sub-subleading theorem of tree 
level quantum gravity amplitudes suggests the existence of a fur-
ther extension of such algebras to a potentially larger symmetry. 
However in what sense this extension is a symmetry of asymp-
totically flat spacetimes and hence whether sub-subleading soft 
gravitons can also be understood as Goldstone modes of a spon-
taneously broken symmetry remains to be seen.
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