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Due to the seminal work of Weinberg, Cachazo and Strominger we know that tree level quantum
gravity amplitudes satisfy three factorization constraints. Building on previous works which relate two
of these constraints to symmetries of gravity at null infinity, we present strong evidence that the third
constraint is also equivalent to a new set of symmetries. Our analysis suggests that the symmetry group

of quantum gravity may be richer than the BMS group -or infinite dimensional extension thereof-

previously considered.
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There has been significant recent progress in our understanding
of symmetries associated to quantum gravity in asymptotically flat
spacetimes. We now understand that at least at perturbative level,
these symmetries contain an infinite dimensional group which is
one of two possible extensions of the Bondi-Metzner-Sachs (BMS)
group [1] that has long been known to be a symmetry of classical
general relativity.! The key evidence for these groups come from
their relation with certain soft theorems in perturbative quantum
gravity. In particular as shown in [3], the statement that super-
translations are symmetries of the gravitational S matrix is en-
coded in Weinberg’s soft graviton theorem [4]. In [5] this idea was
extended to the Cachazo-Strominger subleading soft theorem [6]
where it was argued it implied a Virasoro symmetry of locally
conformal Killing vector fields of the sphere at null infinity [7].
Based on these developments we showed [8] that the subleading
soft theorem can alternatively be understood as the statement that
the group of diffeomorphisms of the sphere at null infinity is a
symmetry of the S matrix.

The soft theorems in themselves are rather fascinating state-
ments. As argued in [6], when in a gravitational scattering process
one of the gravitons becomes ‘soft’ (its energy goes to zero), the
tree level scattering amplitude factorizes upto first order in the
soft graviton energy Eg:

Mupgi1ke, .. ke @) =
(Eg'S@ +5M + EgS@) Mu(ki, ... kn) + O (ED). (1)
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1 See [2] for the fundamentals of BMS in quantum gravity.
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Since both S and SV are associated to (one of the two possible)
extensions of BMS, one may wonder if the final factorization term,
namely S@, is also associated to symmetries of quantum gravity.
In this paper we present rather strong evidence that this is the
case. As summarized below, our strategy involves looking at the
problem from a slightly new perspective [9] that includes a dual
or ‘magnetic’ version of the usual charges.
The expansion (1) yields the three equations:

lim EqMpy1 =SOM, (2)
Eq—0
lim My 1lan = SP M, 3)
Eq—0
lim E;" Myl = S@ M, (4)
Eq—0

(in the last two lines one keeps the finite piece and discard terms
proportional to E; T and Ef 2). Since the emitted soft graviton has
two possible polarizations, each of these equations provides two
independent identities (per point on the sphere of soft graviton di-
rections). One would like to realize such identities as Ward identi-
ties associated to appropriate charges. In [3] it was shown that (2)
corresponds to supertranslations Ward identities:

(out|[Qy, S]lin) =0, (5)

where Qy is the charge associated to a supertranslation vector
field €% ~ fd, and (out|S|in) = M;(kq,...,k;). Now, since (5)
is parametrized by functions on the sphere f, it counts as one
identity per point on the sphere. Where is the second identity?
In [3] this second identity is associated to certain Christodoulou-
Klainerman (CK) condition imposed on the free data [10]. Now, it
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turns out that this second condition may also be realized as Ward
identities of ‘dual’ supertranslation charges [11]:

(0ut|[Q?, S]lin) = 0. (6)

Here Q? is the ‘magnetic’ version of Qj that is obtained by du-
alizing the Weyl tensor [11,12]. Thus, the two identities contained
in (2) are equivalent to the two identities (5) and (6).

In [8] we showed that (3) is equivalent to certain Diff(52) Ward
identities,

(out|[Qv, S]lin) =0, (7)

associated to ‘generalized BMS' vector fields £ ~ VA34. In this
case the charges are parametrized by arbitrary sphere vector fields
VA and so (7) counts as two identities per sphere point. This was
a key point in showing the equivalence with (3) without further
CK-type conditions. What about the magnetic version of (7)? It
turns out [11] that in this case Q;A = Qegvg and hence no fur-
ther charges arise (in consistency with the number of independent
identities). We finally come to the results presented in this paper.
We will show that (4) is equivalent to two identities,

(out|[Qrx, SIlin) =0,  (out|[Qx, S]lin) =0, (8)

associated to vector fields &7 ~ rX494. The charges are now
parametrized by divergence-free sphere vector fields X# and so
each equation corresponds to one identity (per point on the sphere).
We will show that Q,x can be computed by phase space methods
in the same way as done for Qy and Q. We currently lack a first

principles derivation of Q,x. From the structure of the leading and
subleading cases in gravity and electromagnetism we expect that
Q,x is the magnetic version of Qx. We will later comment further
on this point, whose final clarification is left for future investiga-
tions.

We motivate our search for the new symmetry by looking
at how soft theorem — Ward identities is accomplished in the
known cases. To simplify the analysis we restrict attention to the
case where the external particles are massless scalars. Let us for
concreteness look at the leading soft theorem (2). Using the rela-
tion between the graviton Fock operator and the Fourier transform
of the radiative free data [2]:

a_(w,q) =y 27i (¥ (w, ), (9)

(/7 is the area element on the sphere of soft graviton directions §
parametrized by stereographic coordinates (z,z)) one can rewrite
Eq. (2) (for an outgoing negative helicity soft graviton) as:

Jy2mi limoa)(out|CZZ(a), §)Slin) = S©~ (out|S|in), (10)
w—>

ke k¥ . . . .
where SO- =@ Y7 | - ,i“; L is a function of the soft graviton di-
rection ¢ and the external momenta k;. On the other hand the ‘soft’
(linear in C?#*) part of the supertranslation charge can be written

as [3]:

Q;Oft:ial)iglo w/dzzﬁfnﬁcﬂ(w, §) +c.c. (11)

This motivates one to perform the operation [ d%zf Df on both
sides of (10). The identity

1 ~ n
5- D307 =-3 E6® . 2) (12)
i=1

(z; parametrizes the direction of the i-th external particle with en-
ergy E;) allows one to write the right hand side term as a local

function of the external particle momenta and subsequently iden-
tify it with the action of the ‘hard’ (quadratic) part of the super-
translation charge Q}"’rd. Thus, by smearing both sides of the soft
theorem (10) with fD? one arrives at (5) with Qf = Q}Oft—k Q'f“rd.

Similar strategy applies to the subleading case where the ap-
propriate smearing is fdszZDg. Whence the way to deduce the
asymptotic charge from the soft theorem hinges on smearing both
sides of the soft theorems with appropriate tensors. We use the
same logic to find asymptotic charges from the sub-subleading soft
theorem. We will then show that these charges are associated to
certain symmetries of (perturbative) gravity.

In the notation of Eq. (10) the sub-subleading relation (4) for a
negative helicity soft graviton takes the form

Wzmal)iglow—l (out|C#(w, §)S|in)|an = S~ (out|S|in), (13)

where S@~ =w 1Y 2k -q)’l(eﬁq”];w)z is a function of §
and a differential operator on the external particles. Looking at the
smearing employed in the leading and subleading cases, it is natu-
ral to attempt a smearing of the form fdzzY”D‘z‘. One then finds
an identity

1 n
ED;‘S(Z)_ =-3Y E '8Pz, 2)d2 + ... (14)
i=1

in which all terms are proportional to (derivatives) of delta func-
tions. Hence upon smearing with Y”D‘z‘ the right hand side of (13)
becomes a differential operator that is local in the external mo-
menta. Furthermore, each term may be realized as the action of a
hard charge Q{}ard. Thus, just as in the case of the previous soft
theorems by smearing both sides of the sub-subleading theorem
with [d?zY?D% we arrive at a relation of the form

(out|[Qy, S]lin) =0 (15)
where Qy = Q°ft + Qb with [11]:

o0 u
oyt = / du f du//dZZ«/?Y”DﬁC”(u/,@)+C~C~ (16)
e

o0
Qhard — _ / du f d*z,/y (3Y%0,49,¢ — D2Y*¢?
—00

2
u
+2uD,Y?8,¢0 0y + 7D§yﬂ(au¢)2) +c.c. (17)

The double integral in (16) comes from the w~! factor in (13).
The field ¢ in (17) is the radiative data of the external massless
particles.> As in the leading and subleading cases, one can also
go in the reverse direction by an appropriate choice of Y#* and
recover (4) from (15). Note that we have only explicitly shown
negative helicity contributions. The positive helicity terms appear
in the complex conjugated (c.c.) piece.

Our goal now is to show that such charges are associated to
large spacetime diffeomorphisms. At first this may seem impossi-
ble as the charges are parametrized by Y#* or equivalently by sym-
metric, trace-free sphere tensors YAE. However every such tensor
can be written as (symmetric, trace free part of) DAX® for some
sphere vector field XA. We will show that for divergence-free X4
the charge Qyas_pays is associated to a spacetime vector field
with a leading O (r) component £ ~ rX"3,. This however captures

2 Throughout the paper we assume Cag = O (u2"¢)and ¢ = O (u"1/27€) at u —
+00 to ensure convergence of u integrals.
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only ‘half of the Qy charges, the remaining half being labelled
by YAB =B DAX’C with X'# divergence-free. This is the second
charge alluded to in Eq. (8), namely

QrX’ = QGBCDAX/C' (18)

In short, using the splitting Y4® = DAXB 4 €BDAX'C (with
XA, X'A divergence-free), the charges Qy are reinterpreted as a
pair of charges Q,x and Q,x.>

As generalized BMS symmetries are known to be equivalent to
leading and subleading soft graviton theorems we know that we
need a genuine extension of this group. Looking for such an exten-
sion is subtle in Bondi gauge as generalized BMS appear to exhaust
all such symmetries as far as smooth diffeomorphisms are con-
cerned [8]. Whence we look for such an extension in de Donder
gauge. That is, we look for vector fields on flat spacetime which
satisfy the wave equation

g% = 0. (19)

The computation of asymptotic charges associated to symmetries
in de Donder gauge also brings a nice structural coherence to the
entire program. As the soft theorems are usually formulated in de
Donder gauge as opposed to Bondi gauge, our analysis has a nice
corollary which shows that the “Ward identities = soft theorem”
can be formulated in de Donder gauge for all generators of the
generalized BMS group [11]. In the present case, taking a cue from
the large gauge transformations in QED which give rise to the sub-
leading theorem [9] we look for large diffeomorphism generators
such that the 0 (%) component of £4 is linear in u.

It turns out that a self-consistent asymptotic solution of (19)
compatible with the prescribed boundary behavior is given by

EA=rXA + S(A+5XA + 00
4 (20)
g=00"", =00,
with X4 a divergence-free, u-independent sphere vector field that
plays the role of ‘independent data’ in terms of which the remain-
ing components are determined. The form of the solution (20)
ensure the asymptotic charges satisfy certain regularity condi-
tions detailed below. The vector field shares with generalized BMS
generators the property of being asymptotically divergence free,
Va€?® — 0 [8].

It is important to note that at this stage we do not understand
in what sense these large gauge transformations are symmetries
of asymptotically flat spacetimes. Due to their diverging behavior
at infinity, they naively do not seem to preserve asymptotic flat-
ness. However as the Ward identities associated to their charges
capture the sub-subleading soft theorem, we believe there should
be a characterization of these large gauge transformations as sym-
metries of the theory. We leave this important question for future
investigation.

We now proceed to compute the associated charges and show
that they precisely yield the charge obtained from the sub-
subleading theorem. The computation of charges is best done via
covariant phase space techniques [14]. Instead of considering pure
gravity (for which the sub-subleading theorem is originally de-
rived) we consider gravity coupled to massless scalar field as it
simplifies the analysis.

3 The situation is analogous to the subleading case in QED where the charges are
parametrized by vector fields YA [13]. For YA = DA the charge is associated to
O (r) large gauge transformations with leading piece ru. The magnetic dual of such
charge is associated to YA =eABDpp [9].

In the context of tree-level amplitudes we are interested, it suf-
fices to consider the phase space of linearized gravity coupled to
the massless scalar field. Given a symmetry generator &9, its asso-
ciated charge has two contributions. One contribution comes from
the matter phase space and is given by

Qmattel‘[s] = — lim d3V Ttbéby (21)
t—o00
¢

where X; is a t = constant hypersurface approaching null infinity
and T¢ the stress tensor of the scalar field. The other contribution
comes from the gravitational phase space and is given by

5QEV[E] = tlggo 86 (8) — 86:(8¢) (22)

where 6;(8) = %f& v Fgcéhbc is the symplectic potential in lin-
earized gravity.

As shown in [11], the computation of such a charge requires
determining the linearized metric which is sourced by the matter
stress tensor. As we are working in de Donder gauge, we need to
analyze solutions to linearized Einstein’s equations

Ohgy = —2Tgp (23)

where hgp = hay — 37™ hmnhap. -
A solution to this equation can be written as hgp = h1gp + h2gp
where hq, hy satisfy

l:|Eab =0

_ (24)
Uhzgp = —2Tgp.

Here h; is the linearized metric which is determined by the radia-
tive data C4p at null infinity and h; is the linearized metric which
is sourced by the matter and is independent of the radiative grav-
itational data.

The gravitational contribution to the charge is hence given by

QE™[E] = QR [8] + Qppnglé] (25)

where

Qo €1= %tlirgo/fv (ng[hl](sshab — SEFébh‘}b) (26)
1

Qa1 tl—i>r1<;lo/ PV (T lhaldch® —5eThd). (27)

The ‘soft’ piece is linear in the radiative gravitational mode Cgp.
The ‘hard’ piece is linear in the matter stress tensor and adds to
the contribution coming from the matter phase space (21).
Collecting all terms one finds the resulting charge is divergent.
However the nature of the divergent terms points to a natural pre-
scription for obtaining the finite charge. More in detail, one finds

Qlel = Jim (cQVigl+QVel). (28)

with Q M[£] the charge associated to generalized BMS sphere vec-
tor fields. Thus, extracting the finite piece in (28) amounts to
discarding the contributions from the subleading soft gravitons
(see [9] for similar prescription in QED). It is at this stage that
the form (20) of &% is crucial: Other vector fields satisfying (19)
yield divergent contributions that cannot be associated to general-
ized BMS charges.

The total, finite charge associated to £ is finally given by Q¢ :=

Q(O)[E] — Qghard + ngft with [11]:
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u
1 . A
Qft = = f dud®v s*B (%) f Cap(u', R)du’, (29)
—00

1
hard 2 AyBr(=2) A A\1(=2)
Qpar _—/dud v BDAXETS Y +uax? + xHTL?), (30)

where:

sAB = A2DAXB —6ADAXE +8DAX5E, (31)
and T;}z) = (9p¢ )T, T;;z) = 3u¢ da¢ are leading terms of the
stress tensor. Upon the identification Y48 = —XDAX® and using

DaX? =0 one finds that (29) and (30) exactly match the re-
spective charges (16) and (17) that were obtained from the sub-
subleading theorem.

As the large gauge transformations are parametrized by di-
vergence free-vector fields on the sphere it corresponds to one
factorization theorem for each direction of soft graviton as op-
posed to the two factorization theorems given in Eq. (4). Whence
we are missing “half’ of the Ward identities which would corre-
spond to the remaining half of the sub-subleading theorem. It is
here that we take a motivation from [9] where it is shown that
a single large gauge transformation gives rise to both sub-leading
relations (for two photon helicities) in massless QED. This is due
to the fact that the magnetic and electric charge for a large gauge
transformation are unequal and their Ward identities are equiva-
lent to the subleading soft photon theorem. Whence a couple of
questions naturally arise: (i) Is the charge Q¢ we have computed
analogous to the electric charge in the case of QED? and if it is
(ii) What is the corresponding magnetic charge? There are strong
reasons to believe that the answer to the first question is in the
affirmative due to a reinterpretation of generalized BMS charges
presented in [11]. As shown there, these charges can be obtained
from the “electric” part of the Weyl tensor. Electric and magnetic
part of the Weyl tensor whose leading piece contains information
about radiative mode can be defined as*

&=rC",,  Bp:=r*xC%,. (32)

Using these tensors, the generalized BMS charges can be obtained
as [11]:

Qstél= lim [ &V au(ege) 33)
P

The ‘magnetic’ dual charges are then defined by replacing & with

L in (33). Thus for a supertranslation vector field 5? ~ fay,
Qel&f] reproduces the usual supertranslation charge. The corre-
sponding magnetic charge turns out to be’:

QB[gf]:/dudeerABDADMauCMB. (34)

The charge is linear in the graviton and putting it equal to zero
precisely gives the so-called CK condition used in [3]. For the re-
maining generators of generalized BMS, & ~ VA3, it can also be
shown that the electric charges match with those obtained in [8].
Whence we expect that the charge associated to £ ~rX49, com-
puted above can be obtained as an electric charge whose mag-
netic counterpart provides the ‘remaining’ information of the Qy
charges, Eq. (18). However a detailed proof of this statement re-
mains outside the scope of this work.

4 This is not the standard definition of £ and B but it contains complete infor-
mation of the Weyl tensor and at null infinity has trivial projection in the outgoing
null direction.

5 This charge was first obtained in [12] by conformal methods.

We thus believe to have provided enough evidence that the ex-
tensions of the BMS algebra previously considered in the literature
are not the end of the story. The sub-subleading theorem of tree
level quantum gravity amplitudes suggests the existence of a fur-
ther extension of such algebras to a potentially larger symmetry.
However in what sense this extension is a symmetry of asymp-
totically flat spacetimes and hence whether sub-subleading soft
gravitons can also be understood as Goldstone modes of a spon-
taneously broken symmetry remains to be seen.
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