Wilson loops and their gravity duals
in AdS,/CFTjy

Daniel FARQUET
Lincoln College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy in Mathematics
Hilary 2015



To my wife and my parents



Acknowledgments

This thesis would not have been possible without the support and the help of
many people. I am extremely grateful to my supervisor James Sparks whose vast
knowledge of theoretical physics and mathematics have been of great help. James
is always keen to help and he takes the time to explain everything in detail. It has
been a pleasure to work alongside him and I have greatly benefited from his valuable
advice during my time in Oxford.

I would like to thank the Oxford Mathematics Department and the Oxford String
Theory Group for providing an excellent work environment. I am thankful to Lincoln
College for creating such a nice social environment for its graduate students. I have
made very good friends during my time at Lincoln and the Lincoln MCR has certainly
played an important role. I am also very grateful to the Berrow Foundation, I could
not have studied in Oxford without its support.

I want to thank my parents for their constant support that has always been much
appreciated. Finally, I would like to express my gratitude to my wife. She contributed
the most to my happiness in Oxford and she played an essential role in the successful

completion of this thesis.



Statement of originality

This thesis presents results from the papers [1-3] of the author in collaboration
with James Sparks [1-3] as well as Dario Martelli and Jakob Lorenzen [2|. Not
all the content of those papers have been included in this document due to space
constraints. On the other hand, for clarity and self-consistence, some of the details
have been expanded upon. The second chapter of this thesis is based on [1] whereas

the third and fourth chapters are based on [2| and [3| respectively.



Abstract

In the first part of this thesis, we study the duality of Wilson loops and M2-
branes in AdS,;/CFT3. We focus on supersymmetric M-theory solutions on AdS, x Y7
that have a superconformal dual description on S® = 9AdS,. We will find that the
Hamiltonian function hj,; for the M-theory circle plays an important role in the
duality. We show that an M2-brane wrapping the M-theory circle is supersymmetric
precisely at the critical points of hj;, and moreover the value of this function at
those points determines the M2-brane actions. Such a configuration determines the
holographic dual of a Wilson loop for a Hopf circle in S3. We find agreement in large
classes of examples between the Wilson loop and its dual M2-brane and also that the
image h,,(Y7) determines the range of support of the eigenvalues in the dual large N
matrix model, with the critical points of hj; mapping to points where the derivative of
the eigenvalue density is discontinuous. We will then move away from the three-sphere
and construct gravity duals to a broad class of N' = 2 supersymmetric gauge theories
defined on a general class of three-manifold geometries. The gravity backgrounds
are based on Euclidean self-dual solutions to four-dimensional gauged supergravity.
As well as constructing new examples, we prove in general that for solutions defined
on the four-ball the gravitational free energy depends only on the supersymmetric
Killing vector. Our result agrees with the large N limit of the free energy of the
dual gauge theory, computed using localisation. This constitutes an exact check of
the gauge/gravity correspondence for a very broad class of gauge theories defined on
a general class of background three-manifold geometries. To further verify that our
gravitational backgrounds are indeed dual to field theories on their boundaries, we
compute Wilson loops and their M2-brane duals in this general setting. We find that
the Wilson loop is given by a simple closed formula which depends on the background
geometry only through the supersymmetric Killing vector field. The supergravity
dual M2-brane precisely reproduces this large NN field theory result. This constitutes
a further check of AdS,;/CFT; for a very broad class of examples.
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Chapter 1

Introduction

The AdS/CFT correspondence, also sometimes referred to as gauge/gravity duality,
is a duality in string theory that relates gravitational theories to conformal gauge
theories. It is an instance of the holographic principle which states that in a quantum
theory of gravity there are the same number of gravitational degrees of freedom that
live in a region of space as non-gravitational degrees of freedom on the boundary of
that space. The famous Bekenstein-Hawking formula [4] showing that the entropy of
a black-hole is proportional to its area is an early example of holography.

String theory was originally studied in order to describe strong interactions but
was quickly replaced by QCD. It is not until the discovery of a massless spin-two
particle in the spectrum of string theories that physicists became interested in string
theory again and realised that it can be seen as a quantum theory of gravity. All
string theories have a massless spin-two particle that can be interpreted as a graviton
and gauge theories are naturally present. String theory is thus the first successful
attempt at combining general relativity and gauge theories.

The AdS/CFT correspondence relates a gravitational theory coming from string
theory to a conformal field theory on the boundary of the background geometry. In
principle, any observable on one side of the correspondence can be matched to an

observable on the other side of the correspondence and their value must agree. The



beauty of AdS/CFT lies in the fact that when the gravitational theory is weakly cou-
pled, the dual field theory is strongly coupled and vice-versa. This allows us to study
strongly coupled systems and check field theory results against classical gravitational
calculations. One might even hope that one day we will be able to use AdS/CFT
to gain insight into M-theory at strong coupling. Studying the gauge/gravity dual-
ity is thus of importance for the advancement of string theory and quantum gravity
but also for other fields, like strongly-coupled condensed matter systems, where the
correspondence can be applied.

Testing the conjecture is not easy in general, precisely because of its strong/weak
nature. One of the useful practical applications of AdS/CFT is to gain insight into
condensed matter systems by assuming that the duality holds and use classical grav-
ity to compute field theory results. However, the technique of localisation, that we
will review in chapter 2, allows to do gauge theory calculations exactly and inde-
pendently of the coupling regime. Using this method, it is possible to check exact
field theory results against classical gravity calculations and see that they indeed
agree as predicted by AdS/CFT. This is currently the best we can do to probe the
correspondence as strongly coupled quantum gravity is not understood at all.

The first example of AdS/CFT was given by Maldacena [5]. The duality re-
lates type IIB string theory on AdSs x S® to N' = 4 super-Yang-Mills in flat four-
dimensional Minkowski space-time. The AdSs x S® geometry is obtained as the
near-horizon limit of a stack of N D3-branes in supergravity while the geometry re-
mains flat far away from the branes. On the other hand, the world volume theory of
those N coincident D3-branes created by strings stretching between the D-branes is
N = 4 super-Yang-Mills. Hence, those two theories were conjectured to be equiva-
lent to each other. It is then surprising, but nonetheless true, that the gravitational
degrees of freedom in ten dimensions are encrypted into a field theory on the bound-
ary of AdSs; the gravitational theory can be seen as a holographic projection of the
boundary field theory. A crucial point for the duality to work is that the global

symmetries of the two dual theories are the same. In the case at hand, the isometry



group of AdSs x S® corresponds to the conformal group multiplied by the internal
R-symmetry group of supersymmetry in N’ = 4 super-Yang-Mills.

Known AdS/CFT pairs are not limited to AdSs and four-dimensional conformal
field theories. In this thesis we will focus on AdS,/CFTj3. The first example of such
a pair appeared in the seminal paper [6] by Aharony, Bergman, Jafferis, and Mal-
dacena (ABJM). Starting from ABJM we now have large classes of supersymmetric
AdS, x Y; gravity backgrounds of M-theory that are associated with particular three-
dimensional supersymmetric gauge theories, typically Chern-Simons theories coupled
to matter. The construction of the gauge theory usually relies on a dual description
in terms of type ITA string theory, which in turn involves a choice of M-theory cir-
cle U(1)y; acting on Y7. In [6] the highly supersymmetric case where Y7 = S7/Z;,
equipped with its round Einstein metric and with N units of flux through this in-
ternal space, was related to a large N dual description as an N = 6 superconformal
U(N)xU(N) Chern-Simons-matter theory (the ABJM theory), with k& € Z being the
Chern-Simons coupling. Here Z; C U(1)ys, with the M-theory circle action U(1),
being the Hopf action on S7, so that S7/U(1)y; = CP?. Hence, one can equivalently
chose to work with M-theory on AdSy x S7/Z, which is the near-horizon geometry
of a stack of N M2-branes, or type IIA string theory on AdS, x CP?. There are
now many families of examples of a similar type [7-23|, generally with A/ > 2 super-
symmetry, in which Y7 is a Sasaki-Einstein seven-manifold and the dual description
typically involves supersymmetric Chern-Simons-matter theories whose gauge groups
are products of unitary groups, and with matter in various representations.

In chapter 2 of this thesis, we will be interested in looking at Wilson loops in
conformal field theories that have a dual M-theory description on AdS; x Y. Wilson
loops are natural observables in gauge theories and are defined for a closed loop and
a representation of the gauge group. Roughly speaking, a Wilson loop is (classically)
the holonomy of the gauge field. A supersymmetric version of the loop is also available
for supersymmetric gauge theories. In QCD, Wilson loops measure the free energy of

a pair of quark-antiquark propagating along the loop. More abstractly, Wilson loops



are interesting to study because they are non-local gauge invariant observables and
provide additional non-trivial information about the gauge theory. In the AdS/CFT
context, one expects a Wilson loop to be dual to a fundamental string when viewed
from a type IIA perspective 24|, with the string worldsheet having boundary on the
loop. Equivalently, this fundamental string can be viewed as an M2-brane in M-theory
and this is the point of view that will be taken in this thesis. As we will explore in
detail in chapter 2, the computations for the Wilson loops and the M2-branes agree
in large classes of examples as predicted by the AdS/CFT correspondence.

As noted before, there has been many new pairs of dual theories discovered since
ABJM. One can try to look for new pairs by changing the internal space S7/Z
of ABJM by another manifold Y7. Because the Calabi-Yau cone over the internal
manifold Y7 is the moduli space of the CFT for N = 1, the brane constructions of
those theories can be significantly different from ABJM and give various field theories,
from Chern-Simons matter theory to super-Yang-Mills theories. In all those cases,
the field theory lives on a three-sphere S* at the boundary of AdS;. One can then
wonder if it is possible to deform the three-sphere with AdS/CFT still applying. The
answer to that question must be positive because it is the symmetries and asymptotic
form of AdS that matter for the correspondence to hold. Some examples have be
constructed for some particular deformations of the sphere in [25-28| and it was shown
that the free energy of the CF'T indeed matches the action of the supergravity dual
[26,29-31]|. More recently, the partition function of a large class of three-dimensional
Chern-Simons theories defined on a general manifold with three-sphere topology was
computed explicitly in [32]. This has provided a unified understanding of all previous
computations on deformed three-spheres. On the gravity side this yields a universal
prediction for the action of the corresponding supergravity solutions. In chapter 3, we
will study the gravity duals on a four-manifold My of those supersymmetric theories
defined on a general class of three-manifold M3 = M. It will be shown that the
gravity action precisely matches the field theories partition function in the large N

limit. This constitutes an exact check of the gauge/gravity correspondence for a



broad class of gauge theories defined on a general class of background three-manifold
geometries. We are now a long way from the original ABJM whose duality related
AdS, x S7/Z; to a conformal field theory on S as we now have large classes of
supergravities on M, x Y7 dual to field theories on Mj3.

At this point, it is natural to ask if it is possible to construct Wilson loops on M3y
and find their M2-brane gravity duals in M, x Y7. Relying on the results of chapters
2 and 3 we will construct those objects and compute them in chapter 4. As one
can anticipate, those observables match, thus verifying the duality of supergravity
on My x Y7 and field theories on M3 beyond the matching of the supergravity action

and the free energy.



Chapter 2

Wilson loops, matrix models and

Hamiltonian geometry

2.1 Introduction

Our understanding of the AdS,/CFTj correspondence has improved considerably
over the last few years. Broadly speaking, this has involved developments on two
fronts. Firstly, as mentioned in the introduction, we now have large classes of very
explicit examples of dual pairs; that is, gravity backgrounds for which we have some
precise description of the dual superconformal field theories. Secondly, there are new
quantitative tests of these conjectured dualities, based on supersymmetric localisation
in the field theories. The aim of this chapter is to extend this quantitative analysis
further, by examining the computation of certain BPS Wilson loops on both sides of
the correspondence. In the process we will also understand how other structures are
related via the duality.

Quantitative tests of these conjectured dualities arise by putting the Euclidean
field theories on a compact three-manifold. The simplest case, in which this three-
manifold is taken to be S* equipped with its round metric, was studied in [33-35].

This can be done for a completely general N’ = 2 supersymmetric gauge theory, in



such a way to preserve supersymmetry. Moreover, using a standard argument [36|
one can show that the path integral, with any BPS operator inserted, reduces exactly
to a finite-dimensional matrix integral. This implies that the VEVs of BPS operators
may be computed exactly using a matrix model description, with the large N limit of
this then expected to reproduce certain supergravity results. In practice this has been
used to compute the free energy F (minus the logarithm of the partition function)
on both sides of the correspondence [37-44], where on the supergravity side this is
proportional to N3/2 with a coefficient depending only on the volume of Y7.!

It is natural to try to extend these results further, by inserting non-trivial BPS
operators into the path integral, computing the corresponding large N behaviour in
the matrix model, and comparing to an appropriate dual semi-classical supergravity
computation. In the original papers on the ABJM theory [33,37,45-48| the supersym-
metric Wilson loop for the gauge field around a Hopf circle S' C S® was studied. This
is 1/2 BPS, and is readily computed in the large N matrix model [33,37]. Generally
speaking, one expects such a Wilson loop to be dual to a fundamental string when
viewed from a type ITA perspective [24], with the Euclidean string worldsheet having
boundary on the Hopf S* at conformal infinity. More precisely, this will be semi-
classically a supersymmetric minimal surface ¥y in Euclidean AdS,, with the VEV
calculated via the regularised area of the string worldsheet. Such a string must then
be pointlike in the internal space, and for the ABJM theory this is CP* = S7/U(1);.
Equivalently, this ITA string lifts to an M2-brane wrapping the M-theory circle. Notice
that since CP? is a homogeneous space all positions for the ITA string are equivalent.
The two computations (large N matrix model and area) of course agree.?

This Wilson loop is 1/2 BPS in a general N' = 2 supersymmetric gauge theory on

53, as we review in section 2.3, and can be computed using the large N matrix model

'For a general AdS, x Y7 solution this is the contact volume of Yz, rather than the Riemannian
volume, as we shall review in section 2.3.

2Similar Wilson loops have been considered in five-dimensional superconformal field theories on
S5 [49], which may also be computed using localisation techniques. The gravity duals are described
by warped AdSg x S*/7Z,, solutions of massive ITA supergravity, and thus the geometry of the internal
spaces here is fixed and in fact unique [50].



description. The supergravity dual computation will naturally involve an M2-brane
wrapping the M-theory circle, leading to the same fundamental string configuration
in Fuclidean AdS, (see Figure 2.1). The only issue is which copy of the M-theory
circle is relevant? When the internal space is Y7 = S7/Z; all choices are equivalent
by symmetry, but on a general Sasaki-Einstein manifold Y7, this is clearly not the
case. Equivalently we may ask which ITA fundamental strings in AdS, x Mjg, that

are pointlike in Mg = Y7/U (1), preserve any supersymmetry.

2.2 Summary of results

Given the technical nature of the computation of the the action of the M2-brane in
supergravity and in particular the use of various differential geometric tools to achieve
it, we will start by summarising the results of this chapter in order for the reader to get
a better view of what will be done. The mathematical details will be explained and
expanded upon in the subsequent sections. The starting point is to consider BPS M2-
branes in general N = 2 supersymmetric AdS, x Y7 solutions of eleven-dimensional
supergravity. These backgrounds were studied in detail in [51,52|, where it was shown
that provided the quantised M2-brane charge N of the background (measured by a
certain flux integral) is non-zero, then there is always a canonical contact one-form n
defined on Y7. Concretely, 1 is constructed as a bilinear in the Killing spinors on Y7,
and it was shown in the latter reference that this contact structure entirely captures
both the gravitational free energy of the background, and also the scaling dimensions
of BPS operators arising from supersymmetric M5-branes wrapped on five-manifolds
Y5 C Y7,

In this chapter we will show that the same contact form 7 captures the Wilson loop

VEV (W) of interest, computed semi-classically from the action of a BPS M2-brane.



calibrated M-theory circles O O SAI/I
"
|

type IIA internal space

Mg = Y3/ U1y, ™

supersymmetric points
in Mg= fixed points of &

minimal surface

Hopf S'c §°
Euclidean AdS,

conformal boundary S 3

Figure 2.1: A depiction of the total spacetime AdS,x Y7, with a choice of M-theory cir-
cle U(1) s, together with the supersymmetric M2-branes of interest which are shown
in red. These M2-branes are pointlike in the type IIA internal space Mg = Y7/U (1),
wrapping copies of the M-theory circle over these points, and are calibrated by the
contact form 7. The supersymmetric points in Mg are precisely the points where
the projection of the R-symmetry/Reeb vector field ¢ is zero (giving fixed points on
Ms), and in general the calibrated circles over such points have different lengths. The
remaining worldvolume of the M2-brane wraps a minimal supersymmetric surface ¥,
in Euclidean AdS,. The latter may be viewed as a hyperbolic 4-ball, with confor-
mal boundary S2, and 3, then has the topology of a 2-ball, with boundary a Hopf
Stc S

Concretely, we derive the general formula

2
(27T) fs}lw n N1/2

lo w ravity —
8 {(Wermiy 96 Vol, (Y7)

: (2.2.1)
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where we have defined the contact volume of Yz as

Vol, (V) = % /Y 0 A (dn)? (2.2.2)

In particular, a supersymmetric M2-brane is calibrated with respect to n, which is
why the integral of n along the M-theory circle S}, appears in the formula (2.2.1).
A contact form 7 always has an associated unique Reeb vector field &, defined via
the equations {.n = 1, £udn = 0, and in [51,52] it was shown that £ is also the
R-symmetry Killing vector field, that is expected since an N' = 2 superconformal
theory in three dimensions has a u(1)z symmetry in the superconformal algebra. We
will show that an M2-brane wrapping a copy of the M-theory circle S}, is super-
symmetric precisely when the generating vector field (s of U(1),, is proportional to
¢. Geometrically, this means that the corresponding fundamental string at a point
p € Mg is supersymmetric precisely when p is a fixed point of &, considered as a
vector field on Mg (on Y7, on the other hand, ¢ is always nowhere zero).

There is another way to describe which wrapped M2-branes are supersymmetric

which involves the Hamiltonian function for the M-theory circle, defined as

har = (Cur) - (2.2.3)

This is a real function h,; : Y7 — R, invariant under (»;, and we show that the
supersymmetric M-theory circles S, C Y7 lie precisely on the critical set dhy; = 0.
The action of a supersymmetric M2-brane corresponding to a point p € Mg may then

also be written as
) e

Y o6Vol, (Ya)

where p € Y7 is any point that projects to p € Mg = Y;/U(1)p. Since (2.2.4)

(2.2.4)

depends only on 1 we may compute this expression in examples using the same
methods employed in [51,52], [53-57]. For example, for toric solutions (2.2.4) may

be computed entirely using toric geometry methods. In general there are multiple
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supersymmetric Si, circles, which can have different lengths with respect to n and
thus leading to different actions (2.2.4). In the semi-classical computation one should
sum over all such configurations, which in the large N limit then implies that in
(2.2.1) it is the longest S}, that gives the leading contribution to the Wilson loop.
In the families of examples that we shall study, the dual field theory computation
of the Wilson loop VEV reduces to a computation in a large N matrix model. As we
shall review in section 2.3, in this matrix model the eigenvalues at large N take the
general form A = zN'/2+iy!(x), where the index I runs over the number of factors of
U(N) in the gauge group G = [[; U(N), and are described by an eigenvalue density
function p(z) which is supported on some interval [Zpin, Tmax] C R. To leading order

at large N it is straightforward to compute
lOg <W>QFT = Tmax N1/2 5 (225)

which should be compared to the dual supergravity result (2.2.1).

Remarkably, in all examples that we study we find that the interval [Zyin, Zmax]
in the matrix model coincides, in a precise way, with the image of the Hamiltonian
function hj/(Y7). Since Y7 is compact and connected, the latter image is also neces-
sarily a closed interval, and more precisely we find hp(Y7) = [Cimin, Cmax], Where the

field theory quantity x is proportional to the geometrical quantity c:

r = ﬂc. (2.2.6)
96 Vol, (Y7)

The Hamiltonian hj; is a Morse-Bott function on the symplectic cone over Y7, and
on general grounds we know that the image interval [Cpin, Cmax] 18 divided into P
subintervals cpin = ¢ < ¢ < --- < €py1 = Cmax, Where the critical set maps as
har ({dhpyy =0}) = {¢; | i =1,..., P+ 1}. For all ¢ € (¢;,¢i41) the level surfaces
hy/(c) C Yz are diffeomorphic to a fixed six-manifold, with the topology changing

precisely as one passes a critical point ¢;. Even more remarkable is that we find
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that the corresponding points x;, related to ¢; via (2.2.6), are precisely the points
where p'(x) has a jump discontinuity in the matrix model. These points are then also
related to the fixed points of the Reeb vector £ on Mg. Hence, every point ¢; where
p'(z) is discontinuous corresponds to a BPS M2-brane whose action —Sy = ;N 1/2
can be computed from ¢; using (2.2.6), or equivalently computed via (2.2.4), and the
largest action of those M2-branes equals de Wilson loop VEV.

The outline of the rest of this chapter is as follows. In section 2.3 we review the
definition of the BPS Wilson loop in N' = 2 Chern-Simons-matter theories, and how it
may be computed in the large N matrix model. Section 2.4 analyses supersymmetric
M2-branes in a general class of AdS; x Y7 backgrounds in M-theory, and we derive
the general formula for the action (2.2.4), leading to the holographic Wilson loop
result (2.2.1). Finally, in section 2.5 we compute the Wilson loop on both sides of

the correspondence in a variety of examples.

2.3 Wilson loops in NV = 2 gauge theories on S°

The dual superconformal field theories of interest are N' = 2 Chern-Simons gauge
theories with matter on S3. We begin in this section by defining the BPS Wilson loop
in such a theory, summarise how it localises in the matrix model, and explain how it
can be efficiently calculated. This section is mainly a review of material already in

the literature.

2.3.1 The Wilson loop

In NV = 2 supersymmetric gauge theories the gauge field A; is part of a vector
multiplet that also contains two real scalars ¢ and D, that are auxiliary fields, and a

two-component spinor A, all of which are in the adjoint representation of the gauge



13

group G. The BPS Wilson loop in a representation R of G is given by

g [Powp ( f astiai s olap)| @23

v

W =

where z'(s) parametrises the worldline v C S? of the Wilson line and the path

ordering operator has been denoted by P. For a Chern-Simons theory the gauge

multiplet has a kinetic term described by the supersymmetric Chern-Simons action
ik

2
SChern—Simons = E Tr <A NdA + gA ANANA+ (QDU - )\T)\)VOI;;) s (232)

where vols is the volume form of the round metric on S3, and k denotes the Chern-
Simons coupling. When G is a product of unitary groups, G = [[, U(Ny), one
can in general take different k; € Z for each factor. In this case we will denote
k = ged{k;} [8].

There are four Killing spinors on S3, two satisfying each choice of sign in the
equation Ve = :t%Tié, where the gamma matrices 7; in an orthonormal frame gener-
ate the Clifford algebra Cliff(3,0), and may thus be taken to be the Pauli matrices.
A natural orthonormal frame {€%},,—123 on S* is provided by the left (or right)
invariant one-forms under the isometry group SU(2)ief, X SU(2)right-

The full supersymmetry transformations for a vector multiplet and matter multi-
plet may be found in [33-35]. For our purposes we need note only that localisation of
the path integral, discussed in the next section, requires one to choose a Killing spinor
e, which without loss of generality we assume solves Ve = %Tié. Supersymmetry
generators must be Killing in order to be able to construct invariant supersymmetric
actions. This choice of Killing spinor then has the two associated supersymmetry

transformations

o = —=\Ne. (2.3.3)
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If one varies the Wilson loop (2.3.1) under the latter supersymmetry transformation

one obtains

1 )
W o éﬂ(mﬁ — |&|)e . (2.3.4)

The Wilson loop is then invariant under supersymmetry provided
(iz* — |Z))e =0 . (2.3.5)

Choosing s to parametrise arclength, so that || = 1 along the loop, we see that 7,1
must be constant. In the left-invariant orthonormal frame €7 one may then align &
along one direction, say e%;. The integral curve of this vector field is a Hopf S* C S3

(or equivalently a great circle). The supersymmetry condition then becomes
(3 —1)e=0. (2.3.6)

The two possible choices of ¢ satisfying Ve = %Tzf have opposite chirality and only
one of them survives the projection condition above. This implies that the Wilson
loop (2.3.1) is indeed a 1/2 BPS operator provided one takes v to be a Hopf circle.
We will see later on that the condition (2.3.6), plus the fact that the supersymmetry
generators are Killing spinors, also arises as the condition for supersymmetry of a

probe M2-brane.

2.3.2 Localisation in the matrix model

The VEV of the BPS Wilson loop (2.3.1) is, by definition, obtained by inserting
W into the path integral for the theory on S3. The computation of this is greatly
simplified by the fact that this path integral localises onto supersymmetric configu-
rations of fields. We summarise the main steps and results in this section, following
in particular [33,34,37,38|, and refer the reader to the original papers for further
details.

The central idea is that the path integral, with W inserted, is invariant under the
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supersymmetry variation § corresponding to the Killing spinor ¢ satisfying (2.3.6).
We have written two of the supersymmetry variations in (2.3.3), and the variations
of other fields (including fields in the chiral matter multiplets) may be found in the
above references. Crucially, §2 = 0 is nilpotent. There is then a form of fized point
theorem that implies that the only net contributions to this path integral come from
field configurations that are invariant under 0 [58].

Alternatively, and more practically for computation, one may add a conveniently
chosen d-exact positive definite term to the action, which a standard argument shows
does not affect the expectation value of any supersymmetric (J-invariant) operator.
For the vector multiplet one can add the term tTr[(0A)T5)] to the action (a similar
term exists for a matter multiplet), without affecting the path integral. Sending
t — oo one notes that, due to the form of this term added to the Lagrangian,
only configurations with 0\ = 0 contribute to the path integral in a saddle point
approximation. This saddle point then gives the same value as if the path integral
had been calculated with ¢ = 0, which is the quantity we are interested in. The
saddle point approximation requires one to compute a one-loop determinant around
the d-invariant field configurations, which in the terminology of fixed point theorems
is the contribution from the normal bundle to the fixed point set in field space.

For the N' = 2 supersymmetric Chern-Simons-matter theories of interest, one

finds that the d-invariant configurations on S® are particularly simple:
A;=0, and D = —o = constant , (2.3.7)

with all fields in the matter multiplet set identically to zero. Here we may diagonalise
o by a gauge transformation. For a U(N) gauge group we may thus write o =
diag(g—}r, o ’;—fr’), thus parametrising 27o by its eigenvalues ;. The theories of interest

will have a product gauge group of the form G = [[7_, U(N), and for ¢ = oo the
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partition function then takes the saddle point form

1:=1 =1

g N d Ik N
3 I one oop
I= =1
where the one-loop determinant is given by

)\
Fone—loop — HH2Slnh H detm exp [ﬁ(l — A + 10‘)] . (239)

I=1 i#j matter o
Here the first exponential term in (2.3.8) is simply the classical Chern-Simons action
in (2.3.2), evaluated on the localised constant field configuration (2.3.7). The one-loop
determinant factorises, and the first term in (2.3.9) is the one-loop determinant for
the vector multiplet. The second term in (2.3.9) involves a product over chiral matter
multiplets, labelled by a. We have taken the o® multiplet to be in representation R,
and with R-charge A,. The determinant in the representation R, is understood to
be a product over weights p in the weight-space decomposition of this representation,
and o is then understood to mean p(¢) in (2.3.9). Finally,
im

6(2) = —Zlog (1 2771Z) _‘_% |:7TZ2 =+ %LIQ (627riz):| i

. 2.3.10

In this set-up, the VEV of the BPS Wilson loop (2.3.1) reduces to

(2.3.11)

Notice the integrand is the same as that for the partition function (2.3.8), with an

additional insertion of Trp(e?™) arising from the Wilson loop operator. Note also

that we have normalised the VEV relative to the partition function Z, so that (1) = 1,
as is usual in quantum field theory.

Localisation has reduced the partition function Z and the Wilson loop VEV to

finite-dimensional integrals (2.3.8), (2.3.11) over the eigenvalues ! of o, but in prac-
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tice these are difficult to evaluate explicitly due to the complicated one-loop effective
potential (2.3.9). For comparison to the dual supergravity results we must take the
N — oo limit, where the number of eigenvalues, and hence integrals, tends to infinity.
One can then attempt to compute this limit using a saddle point approximation of
the integral (this is then our second application of the saddle point method). With
the exception of the N' = 6 supersymmetric ABJM theory, where this matrix model
is well-understood [59], for general A = 2 theories the large N limit of the matrix
integrals is not understood rigorously. However, in [37]| a simple ansatz for the large
N limit of the saddle point eigenvalue distribution was introduced. This ansatz is
based on a partial analytic analysis of the matrix model, and also on a numerical
approach to computing the saddle point. One seeks saddle points with eigenvalues
of the form

M =a;NP +iy! | (2.3.12)

with z; and y! real and assumed to be O(1) in a large N expansion, and § > 0. In
the large NV limit the real part is assumed to become dense. Ordering the eigenvalues
so that the x; are strictly increasing, the real part becomes a continuous variable z,
with density p(z), while y/ becomes a continuous function of z, y’(z).

Substituting this ansatz into the partition function expression (2.3.8), the sums
over eigenvalues become Riemann integrals over z, and one finds that the double
sums appearing in the one-loop expression (2.3.9) effectively have a delta function

7 one then

contribution which reduces them to single integrals over x. Writing Z = e~
obtains a functional F[p(x),y’ ()], with z supported on some interval [Tmin, Zmax),
and to apply the saddle point method one then extremises F with respect to p(z),

y!(z), subject to the constraint that p(z) is a density

/ " ) =1 (2.3.13)

Zmin

The existence of such a saddle point fixes the exponent 5 = % in (2.3.12). One then
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finally also extremises over the choice of interval, by varying with respect to iy,
Tmax, t0 obtain the saddle point eigenvalue distribution p(z), y*(z).

We shall be interested in evaluating the Wilson loop VEV (2.3.11) in the funda-
mental representation because it is the one dual to a fundamental string. In this case,
the Wilson loop is proportional to > 7_, vazl eM. In the large N limit, described by
the saddle point density p(x) and imaginary parts y’(z) of the eigenvalues, the VEV

reduces simply to

_ 2
<W>QFT - Tr% (6 7"0') |at the saddle point

9 Tmax
= Z / N @ p(z)da (2.3.14)
I=1Y7

min

9 Tmax 12401
= E / N Y@ ()
I=1 ZLmin

Because of the form of Flp(z),y’(z)] for N' = 2 Chern-Simons-matter theories, the
saddle point eigenvalue density p(x) is always a continuous, piecewise linear function
on (Zmin, Tmax), see for example section 2.5. A simple computation then shows that,

to leading order in the large N limit, the matrix model VEV (2.3.14) reduces to
log (W) qpr = Zmax N . (2.3.15)

This is our final formula for the large N limit of the Wilson loop VEV. We see that
it computes the maximum value of the real part of the saddle point eigenvalues.

In our summary above we have suppressed the dependence on the R-charges
A, of the matter multiplets, labelled by «, appearing in (2.3.9). If these are left
arbitrary, one obtains a free energy F that is a function of A,, and according to [34]
the superconformal R-symmetry of an N' = 2 superconformal field theory further

extremises F as a function of A, (in fact maximising F [60]). For theories with
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M-theory duals of the form AdS, x Y7 one finds the expected supergravity result

2 3/2

= /———_N
F 27 Vol,,(Y7) ’

(2.3.16)
but as a function of R-charges A, [38], where on the right hand side it is in general
the contact volume (2.2.2) of Y7 that appears. This has by now been demonstrated

in many classes of examples in the literature [37-44,52].

2.4 BPS M2-branes

This section will analyse the dual objects to the Wilson loops that have been just built.
From a type IIA perspective, the dual object is a fundamental string and it can be
equivalently viewed as an M2-brane from a M-theory viewpoint. The supersymmetric,
or BPS, probe M2-branes must therefor reproduce the holographic dual of the Wilson
loop VEV (2.3.15). First, we review the form of the supergravity backgrounds. We
then define the M2-brane of interest and recast its condition of supersymmetry into
a geometric condition. After that, we derive the formula (2.2.4) for the action of the
M2-brane, and finally describe how this may be computed in practice using different

geometric methods.

2.4.1 Supergravity backgrounds

We will study the general class of N' = 2 supersymmetric AdS; x Y7 backgrounds
of M-theory described in [51,52]|. We begin by recalling some relevant results and
formulae.

The bosonic field content of D = 11 supergravity consists of [61] a metric g;; and

a three form C' with four form field strength G = dC. The signature of the metric is
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taken to be (—,+,...,+) and the action is
1 1 1

The metric ¢g;; has Ricci scalar R, C' is the three-form potential and ¢, denotes the
eleven-dimensional Planck length. The equations of motion for the metric and C-field

follow immediately:

1 ] 1
Rap — E(G,cxcl(JQ(JgGBCICQC5 - EQABGQ) = 0,
1

where we have defined G = dC', R 45 is the Ricci tensor and A, B,C' =1,...,11. We

consider AdS, solutions of the warp product form:

4

G = %Vol4+F4, (2.4.3)

1
gn = e <—9Ads4+gy7) ;

where the metric on AdS, has unit AdS radius, with volume form voly. The warp
factor A is taken to be a function on Y7, m is a constant, and F} is a four-form on Y7.
The Bianchi identity dG = 0 requires that the four-form Fj be closed. This is the
most general ansatz compatible with the symmetries of AdS,. The eleven-dimensional

Majorana spinor takes the form
_ A2 A/2 .
€11 = e~y ® x4 + e/ Y- ® x_ + charge conjugate , (2.4.4)

where x4 are complex spinors on Yz, ¢, are the usual Killing spinors on AdS, (the
+ signs are related to the charge under the R-symmetry, discussed below), and the
factors of /2 have been introduced for convenience.

In general, the vanishing of the variation of the gravitino, giving the general
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Killing spinor equation in eleven dimensions, implies that the spinors x4 solve quite
a complicated system of coupled first order equations on Y7, that may be found
in [51,52]. These equations are then necessary and sufficient for supersymmetry of
the AdS; x Y7 background. For our purposes we need note only a few key formulae.

We first define the real one-forms

e 6 sn_
§= XZYX- n = —EGP’AX+7(1)X+ ) (2.4.5)
where in general we denote Yn) = 2Ymym, dy™ A -+ A dy™, with y', ...,y local

coordinates on Y7, and the superscript ¢ on the spinors denotes charge conjugation.
By an abuse of notation, we will more generally regard £ as the dual vector field
defined by the metric gy,. We then note that the differential equations for y+ imply

the equations

XiX+ = Xox- = 1, %e‘w = —Im [Yix-] . Re[xix-] =0,
Re [XTvmx-] = 0, X47mX+ = —X-Tm)X-
12
dn = —EeSARe [Xivex-] - (2.4.6)

These equations may all be found in reference [52].
The one-form 7 is a contact form on Yz, meaning that the top form n A (dn)?

is nowhere zero, see section 2.4.4 for more detail on contact geometry. Indeed, one

finds [52] that
794

2'3
n A (dn)® = —3e9Avol7 : (2.4.7)
m

where vol; is the Riemannian volume form defined by gy.. It is a general fact that a

contact form 7 has associated to it a unique Reeb vector field, defined by the relations
Em=1, Eidn = 0, (2.4.8)

and remarkably one finds that £ and 1 defined by (2.4.5) indeed satisfy these equa-



22

tions. Moreover, ¢ is a Killing vector field under which y4 carry charges 42, i.e.
Lex+ = £2ix+, and as such is the expected R-symmetry vector field.

Dirac quantisation in this background implies that

1 1

should be an integer. This may be identified with the M2-brane charge of the back-

ground, and a computation [51,52] gives

N = L om n A (dn)? (2.4.10)
(270,)6 2532 .
relating the quantised M2-brane charge to the contact volume (2.2.2) of Y7 and m.
Since this is proportional to m?, in fact the contact form in (2.4.5) may be defined
only when this charge is non-zero, so that m # 0. We assume this henceforth.

The above supergravity solution of M-theory is valid only in the large N limit,
even for solutions with non-trivial warp factor A and internal four-form flux F;. To
see this [52], note that the scaling symmetry of eleven-dimensional supergravity in
which the metric g;; and four-form G have weights two and three, respectively, leads
to a symmetry in which one shifts A — A + k and simultaneously scales m — e3m,
Fy — ¥ Fy, where k is any real constant. We may then take the metric gy, on Y7 to
be of order O(1) in N, and conclude from the quantisation condition (2.4.10), which
has weight 6 on the right hand side, and the expression for me™2 in (2.4.6) that
e® = O(NY6). Tt follows that the AdS, radius, while dependent on Y7 in general, is
Rags, = ¢® = O(N'/%), and that the supergravity approximation we have been using

is valid only in the N — oo limit.

2.4.2 Choice of M-theory circle

In addition to the supergravity background we must also pick a choice of M-theory

circle. Geometrically, this means we also choose a U(1) = U(1)ys action on Y7. In
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terms of the supergravity solution described in the previous section, a choice of U(1)
implies the choice of a (non-U(1)g) Killing vector field (5 on (Y7, gy;), whose flow
generates the M-theory circle action. In particular (5; should preserve the Killing
spinors x+ on Y7, and hence also the contact one-form 7. The type ITA spacetime is
then a warped product AdSy; x Mg, where Mg = Y7/U (1), is the quotient space.
Of course globally we must be careful when writing Mg = Y7/U(1),,. Although
in principle one might choose any U(1),, action on Y7, in practice the gauge theories
we study arise from ‘nice’ actions of U(1)y,. In particular, if the action is free,
i.e. only the identity fixes any point on Y7, then Mg inherits the structure of a
smooth manifold from Y7, the simplest example being that of the ABJM theory with
Mg = CP? = S7/U(1)gopt- If one embeds S7 C C* as a unit sphere in the obvious
way, then recall that U(1)pops may be taken to have weights (1,1,—1,—1) on the
four complex coordinates (z1,29,23,24) on C*. In this case the dual field theory
is the N/ = 6 ABJM theory, which in N' = 2 language is a U(N) x U(N) Chern-
Simons gauge theory with two chiral matter fields A;, A, in the bifundamental (N, N)
representation of this gauge group, two chiral matter fields By, By in the conjugate

(N, N) representation, and a quartic superpotential.

2.4.3 BPS M2-brane probes

The supersymmetric M2-brane which is conjectured to be holographically dual to
the Wilson loop on S® must necessarily have as boundary a Hopf circle in S®. A

convenient explicit form for the Euclidean AdS,; metric can be taken to be

2

gAdS; = +¢*dQs (2.4.11)

q
1+ ¢?
with dQ3 the round metric on the unit sphere S?, and ¢ € [0, 00) a radial coordinate.
The M2-branes of interest then wrap ¥y x Si,, where the surface ¥y C AdS, has
boundary 9%, = S, C S°, and Sy, C Y7 is the M-theory circle. The submanifold

Yo is then parametrised by the radial direction ¢ in AdS,, and a geodesic Hopf circle
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Stepe i 5%, whilst Sy, C Y7 is a priori arbitrary (imposing supersymmetry will later
give restrictions on S};). The area of the surface Xy in AdS, is divergent, but can
be regularised by subtracting the length of its boundary, i.e. the length of the Sﬁopf
geodesic in S? at ¢ — co. Notice this is then a local boundary counterterm. Including

also the warp factor one finds the regularised area to be

™

Vol(%,) = —§e2A : (2.4.12)
The action of the M2-brane then reads

SM2 = oo

e Vol(Xy x S}y) + / C
p

ZQXS&

1 3A
= - lg1 24.13
(27)263 2 /VSle e volgt ( )

where volg: is the volume form on S1, induced from the metric gy, and it is easily
seen from the form of G = dC' in (2.4.3) that the C field does not contribute to the
action.

As mentioned above, imposing that the M2-brane Y5 x Si, is supersymmetric
gives restrictions on the possible circles Si,. To see this, we need to split the Clifford
algebra Cliff(11,0) generated by gamma matrices I'4 satisfying {T'4, 5} = 2045 into
Cliff (4, 0) ® Cliff(7,0) via

I, =T,®1, Tors = I5@7, (2.4.14)

where p,v =0,1,2,3 and a,b =1, ..., 7 are orthonormal frame indices for Euclidean
AdSy and Y7 respectively, {I',,T,} = 26,0, {7a, W} = 204 and we have defined
['s =o' [ols. If we denote by XM the embedding coordinates of the worldvolume

of the M2-brane into the target geometry, the amount of preserved supersymmetry is
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equal to the number of spinors €11, as in (2.4.4), satisfying the projection condition [62]

1 i 5
Pe;y = 0, where P = 3 <1—%50‘578QXM85XN67XPFMNP) . (2.4.15)

with «a, 3,7 indices on the worldvolume. We now choose an orthonormal frame in

eleven-dimensions as (c.f. (2.4.3))

0 A m A m 3+a A _a
E° = —2e —1 7 , BT = —26 gegs , B = e"ey. , (2.4.16)

where {€s }—1,2,3 is an orthonormal frame on 53 and {e$. Ya=1,..7 is an orthonormal
frame on (Y7, g7), with ey, (or rather its dual vector field) aligned along the M-theory
circle vector field (. Taking e%; to be aligned along the Hopf circle, as in section

2.3.1, the projector P then takes the simple form

N | —

and the constraints that follow on the spinors ¥, x4+ on Euclidean AdS; and Y7,

respectively, are

(]_ — 1F5F03)¢i =0 s and (1 — WI)X:N: = 0. (2418)

In order to determine how much supersymmetry is preserved by the brane in
AdS,, we must count the number of Killing spinors . that satisfy the last projection
equation. We may decompose the four-dimensional gamma matrices into 'y = 1 ® 73
and I'; = 7;®7, with the Pauli matrices 7;, 1 = 1,2, 3. These matrices act on spinors of
the form ) = (11, 12)T, with 1)1 5 2-component spinors. The Killing spinors on AdS,
may then be constructed from Killing spinors on the S? at fixed radial coordinate g.

Explicitly, if € solves the Killing spinor equation

Vié' = —TiE , (2419)
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on S3, then

(q+V/1+q%)"%

P = , (2.4.20)
(q+V/1+¢) %

is a Killing spinor on Euclidean AdS,;. Equation (2.4.19) has two solutions, one

being chiral and one anti-chiral, i.e. 736 = 4. One then easily shows that the first

projection equation in (2.4.18) is satisfied if we restrict to chiral € in the last solution,

which singles out one of these two spinors on AdS43. Hence the M2-brane preserves

half of the supersymmetry in AdS;. Note that the same positive chirality condition

also appeared in the supersymmetry condition derived in the field theory context,
c.f. (2.3.6).

The second projection equation in (2.4.18) tells us which circles S}, give rise to

supersymmetry-preserving M2-branes. Following a standard argument one notices

that

_ (1-m . I—m f 11— _ I—m
X+ 9 X+ X+ 5 9 X+ 5 X+

using 7, = ”yir and ¥ = 1. This immediately gives volgt 2> X4Y(1)X+ (with a pull-

2

Z 0 9
(2.4.21)

back understood), with equality if and only if some supersymmetry is preserved by

Si;- The action (2.4.13) for a supersymmetric brane is then

Vol(35 x Si)) 1 7

Syp = ——— ML ———/ A X X - (2.4.22)
(2m)263 @262 fo O

With the help of equations (2.4.5) and (2.4.10) the action of a supersymmetric M2-
brane can be rewritten in terms of the contact form 7 as (taking a convention in

which m < 0)

Sz = — M___ N2 (2.4.23)

3The other two Killing spinors on AdS, are constructed from spinors on S° satisfying V;e =
—5T7i€. We set the corresponding spinors to zero in section 2.3, as they are not used in the super-
symmetric localisation. Again, one chirality is broken by the M2-brane.
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2.4.4 Contact geometry, Hamiltonian functions and Sasaki-

Einstein manifolds

Because the next two sections are more mathematical and require the use of some
results coming from differential geometry, this section will present some definitions
and results that will be of importance.

As we mentioned in section 2.4.1, the supergravity solution naturally yields a
contact form 7 on Y;. More generally, a manifold Y of dimension 2n — 1 is called
contact if there exists a one-form 7, called the contact form, such that the top form
n A (dn)"! is nowhere zero. It is a general fact that a contact form 7 has associated

to it a unique Reeb vector field, defined by the relations

Enm=1, Eadn = 0. (2.4.24)

Moreover, dn is a symplectic form on ker 7, the rank (2n—2) subbundle of the tangent
bundle TY of Y defined as vectors having zero contraction with n. We recall that
a symplectic form is a closed non-degenerate differential two-form. Hence, since this
means that dn is non-degenerate on this rank (2n — 2) bundle, the tangent bundle
can be decomposed as TY = kern @ (£), where (£) is the real line bundle spanned

by vectors proportional to &.
Every contact manifold is equivalent to a symplectic cone (X = C(Y) = RT x

Y,w = 1d(r*n)) with metric
ds% = dr? + r?ds} (2.4.25)

and symplectic form w. On a symplectic manifold, if there exists a vector field V'

generating a U(1) action on X such that
Vow=—dH (2.4.26)

then H : X — R is called a moment map or Hamiltonian function for V. It is a gen-
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eral fact that any component of the moment map for a compact group action on a sym-
plectic manifold is a Morse-Bott function. A Morse-Bott function on a compact and
connected symplectic manifold X is such that the image interval H(X) = [Amin, Pmax]
is divided into P subintervals hyy, = hy < hy < --+ < hpy1 = hpax, Where the critical
set maps as H ({dH =0}) = {h; | i = 1,...,P 4+ 1}. For all h € (h;, hi41) the
level surfaces H'(h) C X are diffeomorphic to a fixed (2n — 2)-manifold, with the
topology changing precisely as one passes a critical point h;.

If a 2n-dimensional manifold X is equipped with a complex structure J, i.e.
a smooth vector bundle isomorphism J : TX — TX which squares to J? = —1
and whose Nijenhuis tensor vanishes, then X is said to be a complex manifold and
holomorphic coordinates can be defined on X. When (X,w, J,g) is symplectic and
complex with Riemannian metric g and if the triplet (w,.J, g) is compatible, i.e.
w(u,v) = g(Ju,v) for all u,v € TX then (X, J,g) is called a Kdhler manifold with
Kihler form w. Kéahler manifolds have very interesting properties. For example, their
holonomy group is contained in U(n) and there always exists a canonical spin® spinor
on such manifolds. This fact will turn out to be very useful in the next chapter.

If the symplectic cone X = C(Y") defined above is also Kahler then the manifold Y
is by definition called Sasakian. In this case, the contact volume defined in equation
(2.2.2) coincides with the Riemannian volume. Furthermore, if X is Kéhler and Ricci-
flat, which is our definition of Calabi- Yau, then the base manifold Y is necessarily
an Einstein manifold, i.e. its Ricci tensor is proportional to its metric, and we will
call it a Sasaki-Einstein manifold. Interestingly, if the manifold Y is Einstein but not
necessarily Sasakian, its contact volume is also equal to its Riemannian volume. In
all examples of Wilson loops and M2-branes calculations that we will look at, Y7 is
a Sasaki-Einstein manifold with an extra toric structure. Those complex differential
geometric structures will allow us to develop a rather general and simple method to

compute the M2-brane actions, see section 2.4.6.
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2.4.5 M-theory Hamiltonian function

In this section we further elucidate the geometry associated to the supersymmetric
M2-branes. This geometric structure will both be of practical use, when we come
to compute the M2-brane actions (2.4.23) in examples, and also, as we will see, is
realised rather directly in the large N dual matrix model.

We begin by introducing the M-theory Hamiltonian function

where (j; generates the M-theory circle action. This is a real function on Y7, and
since (jy is assumed to preserve the Killing spinors and metric on Y7, it follows that
(s preserves hy; and commutes with the Reeb vector field £&. We then have that the
contact length of an M-theory circle S}, over a point p € Mg = Y7/U (1), is given
by f s 1= 2mhy(p), where p € Y7 is any lift of the point p. This directly leads to
the form of the M2-brane action (2.2.4).

One way to characterise the supersymmetric M-theory circles S}, is to note that
on TY7 | st the vector (j; is necessarily proportional to the Reeb vector. Indeed,

using (2.4.6) one can show that at these supersymmetric points
Cpadn =0 (2.4.28)

To see this one takes the projection condition (2.4.18) with x_, applies X% 7, on
the left, and then takes the real part of the resulting equation. Using Re [y x-] =
Re [X$7aXx-] = 0 and the relation between dn and Re [ y2)x~] in (2.4.6) then leads
to (2.4.28). That this then implies {3y o £ follows from the fact that T'Y; = ker n (€)
and that d7n is non-degenerate on kern because Y7 is a contact manifold. Equation
(2.4.28) implies that the projection of (j; onto kern is zero, i.e. that (y o &.

The condition (2.4.28) is then also the condition that we are at a critical point

of the Hamiltonian hjy;. To see this, (5 preserving n is written L¢,, 7 = 0 and, using
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the Cartan formula, (2.4.28) is equivalent to
dCyon) =0 & dhy = 0. (2.4.29)

Thus the supersymmetric M2-branes lie precisely on the critical set {dh,, = 0}, and
their action (2.2.4) is determined by hy, evaluated at the critical point. Recall that
the cone C(Y7) is symplectic, with symplectic form w = 1d (r?). The M-theory circle
action then gives a U(1),, action on this cone, with moment map p = %T2h wm because
(pow = —dp. Thus p is Morse-Bott, and the restriction of p to Y7 at » = 1 is our
Hamiltonian function hjy;/2. We thus know that the image hy(Y7) = [Cimin, Cmax] 1S @
closed interval, and this is further subdivided into P intervals via cpim = ¢1 < ¢ <
-+« < Cpy1 = Cmax, Where the ¢; are images under hy; of the critical set {dhy, = 0}.
On each open interval ¢ € (c;, c;iy1) the level surfaces hyj(c) are all diffeomorphic
to the same fixed six-manifold, with the topology changing as one crosses a critical
point ¢;.

Finally, since at a supersymmetric Si, we have (j; o< &, it follows that the corre-
sponding point p € Mg = Y7/U (1) is a fized point under the induced Reeb vector
action on Mg = Y;/U(1)p. That is, over every fixed point p € Mg of £, there
exists a calibrated and supersymmetric M-theory circle S}%p whose corresponding
supersymmetric M2-brane action is given by (2.2.4).

In the holographic computation of the Wilson loop VEV via the M2-brane action,
one should sum e~M2r over all contributions. In some cases we shall find that the
supersymmetric points p € Mg form submanifolds which are fixed by &, and this sum
in fact becomes an integral over the different connected submanifolds. Notice that
hyr is constant on each connected component of the fixed point set. In any case, in
the large N limit only the longest circle S, survives, the others being exponentially
suppressed relative to it in the sum/integral, hence proving formula (2.2.1).

The calculation of the action of a supersymmetric M2-brane can be completely

carried out once the Reeb vector field ¢ and the M-theory circle generator (,; are
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known. Indeed, the contact volume Vol, (Y7) is a function only of the Reeb vector [53],
and the length of a calibrated circle fS}W‘p n = 2mwhy(p) depends only on &, (j and
the point p. Even though this could appear to be involved, the computation of
these two quantities is relatively straightforward for appropriate classes of Y7. In
particular, if we focus on toric Sasaki-Einstein manifolds, some geometrical techniques
can be exploited to straightforwardly find all calibrated circles, i.e. the connected
components of the critical set {dhy; = 0} C Y7, as well as the contact volume [57].

This is the subject of the next section.

2.4.6 Toric Sasaki-Einstein manifolds and BPS M2-brane ac-

tions

For appropriate classes of examples, namely toric Sasaki-Einstein manifolds Y7, vari-
ous quantities we have been discussing can be efficiently computed. When Y7 is toric
there exists a U(1)* action that acts on Y7 and preserves the contact form 7. In this
case there are some pretty geometric methods, first developed in [56,57], that may
be utilised to calculate the length of the calibrated M-theory circles, as well as the
volumes of the internal spaces. We will thus focus on this class of solutions.

Let us begin with the symplectic cone C(Y') of section 2.4.4 in general dimension
2n. Equivalently, (Y,n) is contact with dimY = 2n — 1. The toric condition means
that U(1)" acts on the symplectic cone C(Y) preserving the symplectic form w,
and we may parametrise the generating vector fields as 0,,, with ¢; € [0,27) and
i = 1,...,n. This allows one to introduce symplectic coordinates (y;, ¢;) in which

the symplectic form on C'(Y') has the simple expression

wo= Y dy Adg; . (2.4.30)

i=1
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The coordinates y; are moment maps for the U(1)" generated by the 0, as
Oy, w = —dy; . (2.4.31)

Moreover, when the toric cone is such that & lies in the Lie algebra of U(1)™, which
will be assumed here, the coordinates y; take values in a convex polyhedral cone
C* C R™ [63]. If this cone has d facets, we have corresponding outward primitive
normal vectors to these facets, v, € Z", a = 1,...,d, with the facets corresponding
to the fixed point sets of U(1) C U(1)™ with weights v,. In particular this set-up
applies to toric Sasakian Y [56], in which the symplectic cone C(Y) is also Kéhler.
In this case, if one adds the condition that C'(Y') is Calabi-Yau, it is equivalent to the
existence of an SL(n,Z) transformation such that the normal vectors take the form
vy = (1,w,), for all a, with w, € Z"~1. In this basis, the first component of the Reeb
vector is necessarily £ = n [56].

In general the components of { = )" | &0,, form a vector £ = (&1,...,&,) that
defines the characteristic hyperplane in R™: {y € R™ | 7= +}. This hyperplane
interesects C* to form a finite polytope A, and the contact volume of the base Y is

related to the volume of this polytope by*
Vol,(Y) = 2n(27)"Vol(A¢) . (2.4.32)

Moreover, each of the d facets §,, intersected with the characteristic hyperplane,
are images under the moment map of (2n — 3)-dimensional subspaces ¥, of Y. The
volumes of these submanifolds may be calculated once the volumes of the facets are
known, for

Vol,(Sa) = (2n — 2)(27)" ' ——Vol(3.) . (2.4.33)

|Ua|

4Remember that in the Sasakian case the Riemannian volume and contact volumes coincide.
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In addition, the volume of the base manifold Y is simply given by

Vol, (Y) = (Q?n

Zd: L vol(3.) . (2.4.34)

‘Ua’

In [57] the idea is to study the space of Kéhler cone metrics on C(Y), and thus
Sasakian structures on Y. One then considers the Einstein-Hilbert action (with a
fixed positive cosmological constant) restricted to this space of Sasakian metrics on Y,
so that a Sasaki-Einstein metric on Y is a critical point. In fact the action is minimised
and proportional to the volume of the base Vol(Y) when the metric on Y is Sasaki-
Einstein. In this case there is unique Reeb vector of the form E = (n,&,...,&,) such
that the Einstein-Hilbert action, or equivalently Vol(Y'), is minimised as a function
of £&. Thus, for any given toric diagram one calculates Vol(Y') with formula (2.4.34)
as a function of the Reeb vector, and determines 5 for the Sasaki-Einstein metric on
Y by minimising this function®.

In this thesis we need only apply this method for n = 4. A way to compute
Vol(F,) as a function of the Reeb vector for n = 4 has been described in [13]. If the
facet §, is a tetrahedron, its vertex is at the origin in C* and its base is a triangle lying
in the characteristic hyperplane. This is generated by three edges passing from the
characteristic hyperplane to the origin, and bounded by four hyperplanes creating the
polyhedron. In addition to v,, three other facets are then involved in the construction
of the tetrahedron, and we denote their normal vectors as v, 1, V4.2, Va,3. The volume

of the tetrahedron may be expressed as

1 1 (Uayva lava2ava3)2
Vol(F.) = — : - , 2.4.35
|Ua| ( ) 48 |(€7va7Ua,hva,Q)(favaaUa,laUa,?:)(favaava,%va,?;” ( )
with (-, -, -, ) the determinant of a 4 x 4 matrix. If the facet §, is not a tetrahedron,

i.e. there are more than 3 edges that meet at a vertex in the toric diagram (c.f.

below), the volume can be computed with the same formula by breaking up the facet

>That the Sasaki-Einstein metric indeed always exists was proven in [64].
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into tetrahedrons.

The toric diagram for the toric Calabi-Yau cone is by definition the convex hull
of the lattice vectors w, in n — 1 = 3 dimensions. To each vertex in this diagram
corresponds a facet §,. If the vertex is located at the intersection of three planes, or
equivalently three edges of the toric diagram meet at the vertex, then it corresponds
to a tetrahedron. If instead four edges meet at the vertex, the facet is a pyramid that
can be split into two tetrahedrons, and so on. A given facet §, then corresponds to
a vector v, = (1,w,), with w, a vertex in the toric diagram; the other three vectors
Ua,1,Va,2, Va3 are the outward-pointing primitive vectors corresponding in the toric
diagram to the three edges that meet at the vertex v,. Let us also note that the base
Y7 of the cone is a smooth manifold only if each face of the toric diagram is a triangle,
and there are no lattice points internal to any edge or face.

It should now be clear that once a toric diagram is given for a toric Calabi-Yau
cone C'(Y'), one can calculate the volume of the base Vol, (Y") as a function of the toric
data and the Reeb vector that is parametrised by £ = (4,&2,&3,&4). After minimising
the volume with respect to &, &3, &y, one obtains the Reeb vector and Vol,(Y) as a
function of the toric data only.

Next we turn to the M-theory Hamiltonian function h,;, and the computation of
the calibrated circles in Y7 and their lengths. This involves, by definition, the choice
of an M-theory circle (ys, as described in section 2.4.2. As we proved in this section,

supersymmetric calibrated Si, exist where (y is parallel to €. This is equivalent to

Cr = n(Cm)é = hué, (2.4.36)

as follows by taking the contraction of each side with 1. We can conclude that if we
know the proportionality constant between (,; and &, the length of the corresponding
calibrated M-theory circle, located over a fixed point p under £ in Mg, is then simply

2mhy (p) with p € Y7 any point projecting to p. In terms of the toric geometry above,
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notice that with ¢y = Y5, (4,05, we have

Cyaw = —d (Z ysz) = —d (%TQhM) , (2.4.37)
=1

and it follows that on Y7, i.e. at r =1,
hy = 22%6\/[ ) (2.4.38)
i=1

This may be regarded as a function on the polytope Ag, that is the image of Y7 under
the moment map.

The only remaining question is how to find where the two vectors (s, £ are
proportional to each other, or equivalently what the critical points of h,; are, and
also what the value of hy; at those points is. With the formalism at hand, this is
straightforward to answer. Once a toric diagram and (,; are given, the Reeb vector
and the volume can be found with the method described above. We may then find

the solutions to the equation

(v = BEHD g, (2.4.39)
ac€l
with 3, a, real numbers, and I C {1,...,d} a subset of three facets which intersect.

Geometrically, the intersection of three facets defines an edge of C*, which corresponds
to a circle S* C Y7. This circle is a fixed point set of U(1)* € U(1)* defined by the
three vectors v,, a € I, meaning that the generating U(1) vector fields corresponding
to v, are zero over this circle, and hence (), is parallel to £. Thus this S! is precisely
a calibrated circle. The proportionality constant is then hy, = 1n((y) = 3, and its
length is 27why,;. Thus our problem boils down to linear algebra on the polyhedral
cone.

We make a few further geometrical observations. First, if (2.4.39) holds with
3 = 0 then (y; actually fixes the S'. The M-theory circle then has zero length on
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such loci, formally leading to M2-branes with zero action; if (; acts freely on Y7 this
cannot happen. Next we note that (2.4.39) cannot hold with «, = 0 for all a € I,
since then (3; would be everywhere parallel to &, and this cannot happen since (y; is
a non-R symmetry. However, it may happen that (2.4.39) holds with one or two (but
not all three) of the coefficients o, = 0. Geometrically, this means that in this case
(s is parallel to & over the intersection of the corresponding two or one facets with
non-zero o, coefficients, leading to three-dimensional or five-dimensional subspaces of
Y7 which are fibred by calibrated S, circles. These then descend to two-dimensional
or four-dimensional fixed point sets of £ on Mg = Y7/U (1), respectively. We shall
see examples of this in section 2.5. Finally, if the toric diagram contains faces which
have more than three sides, then (2.4.39) may hold for I being the corresponding set
of 4 or more vectors v,. In this case the manifold has a locus of singularities along
the corresponding S! in Y7, and our theory above does not directly apply to these
singular circles.

Even though the above theoretical background may appear cumbersome, it is ef-
fectively not difficult to find the volume of Y7, its Reeb vector ¢ and all the calibrated
circles and their lengths. Thanks to equation (2.2.4), the action for each correspond-
ing M2-brane follows straightforwardly, and can be compared to the data extracted
from the matrix model of the dual field theory. We examine these computations in a

variety of examples in section 2.5.

2.4.7 Hamiltonian function and density

In [65,66] a relation was also found between p(x), and other matrix model variables,
and certain geometric invariants. In particular, p(x) is related to the derivative of a
function that counts operators in the chiral ring of the gauge theory according to their
R-charge and monopole charges. In the language of the current paper, the monopole

charge is the charge under U(1),,. With our notations and conventions, using [66]
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one can rewrite their conjecture for p(x) in the following form:

() = 4 (2m)3 Oyvol(P,.)
P R a6 VoL, (V) €A Cul

where P, = {yEC*

Y

r=1

- r - c
€=, G- Cu == 2.4.40

where the variable ¢ is related to « by (2.2.6). Using equation (2.4.38), we know that

for the toric case 3/ - 5M = %hM. If we introduce
P. = {yeC|huy = ¢}, (2.4.41)

we see that P,.is nothing but the intersection of P, with the characteristic hyperplane.
But since the pre-image under the moment map of P, in Y7 is the same as h;/ (c),
which changes topology every time we pass through a critical point of Ay, we know
that the topology of the pre-image of P,. in Y7 also changes every time a critical
point is crossed. Thus we expect a change of behaviour of vol(P,.) and hence p(z)
at the critical points z; that are related to the ¢; by (2.2.6). In other words, the
eigenvalue density has a different behaviour in each subset (¢;, c;11), as we will see
in the examples in the next section, because there are supersymmetric M2 branes
located at the c;, which are critical points of a Hamiltonian function. That explains

why the function p(z) has a jump in its derivative precisely at the critical points.

2.5 Examples

In this section we illustrate the duality between geometries and matrix models in a
wide variety of examples. In particular we will compute the image of the M-theory
Hamiltonian hy(Y7) = [Cimin, Cmax), and show that it coincides with the support of
the matrix model eigenvalues [Zyin, Tmax] Via (2.2.6). The critical points of hy, will
be shown to map to the points z = x; where p/(x) has a jump discontinuity, with the

matching of Wilson loops being a corollary of this result for x = .
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2.5.1 Duals to the round S~

We begin by studying two superconformal duals to AdSy x S7, where S7 is equipped
with its standard round Einstein metric. These differ in the choice of M-theory circle
U(1)y acting on S7. In this case the geometry is particularly simple, allowing us to

illustrate the geometric structures we have described very explicitly.

ABJM theory

The ABJM theory [6] is an N = 6 superconformal U(N); x U(N)_; Chern-Simons-
matter theory. In A/ = 2 language, there are two chiral matter fields A;, Ay in the
bifundamental (N, N) representation of this gauge group, two chiral matter fields B,
B, in the conjugate (N, N) representation, and a quartic superpotential. Here the
subscript k£ € Z in U(N); denotes the Chern-Simons level for the particular copy
of U(N), as in (2.3.2). This theory is dual to AdSy x S7/Z; with N units of flux
(2.4.10), where Zj, C U(1)gopt = U(1) -

We may realise S as the unit sphere S” C R® = C* and take U(1)pept to have
weights (1,1, —1,—1) on the four complex coordinates (21, 2», 23, 24) on C*. In this
description the U(1)p symmetry of the N/ = 2 subalgebra of the N' = 6 manifest
superconformal symmetry of the theory has weights (1,1,1,1) on C*, which gives a
different Hopf action on C*.

In these coordinates S” = {(21, 22, 23, 24) € C* | |21]* + |22]* + |23]? + |24|* = 1},

while the M-theory Hamiltonian function on S7/Z;, is

ha = = (|21 + |22f* — |28” — |24]?) (2.5.1)

| =

In the toric geometry language of section 2.4.6, we have the symplectic coordinates
yi = 3|zi|>. The level sets hy;/ (c) are diffeomorphic to S* x S*/Zy, for ¢ € (=1, 1)

Indeed, notice that these level sets are also described by

1 1
|21]? + |22|* = 5(1 +ck) , | 23| + |24 = 5(1 —ck) . (2.5.2)



39

When ¢ — +4 the S x $%/Z;, level sets thus collapse to two copies of S®/Z;, at

{23 = 24 = 0} and {21 = 2, = 0}, respectively. Thus the image hy(S7) = [—1,1],

with the endpoints ¢pax = —Cin = % being the only two critical points of the Morse-
Bott function hy,.

The contact form in these coordinates is
P 4
— = = 2  __ 2
=52 ; (zdz — zdz) , 7 = ; 2] . (2.5.3)

Being Einstein, the contact volume of S7/Z; is equal to the Riemannian volume, with

4

Vol(S7/Zy) = g—k . (2.5.4)

Our general formula (2.2.6) thus implies that the matrix model variable  should be

related to the geometric quantity ¢ above via

3
r = (2r) c = m™V2ke. (2.5.5)
96 Vol(S7 /7

The large N saddle point eigenvalue distribution for the ABJM theory was given

in [37]. The eigenvalues for the two gauge groups are related by

M(z) = N(z) = zNY? +iy(z) , (2.5.6)
where y: y:
k k

T)=—7=, r) = —=x, 2.5.7

plo) = ue) = S 257

and the eigenvalues are supported on [Ty, Tmax], Where Ty = —Zmin = m4/2/k.

This of course agrees with the geometric formula (2.5.5), and since the density p(x)
is constant on (Zmin, Tmax) (see Figure 2.2) its derivative is in particular continuous

on this region. It is then automatic that the gravity formula (2.2.1) agrees with the
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Figure 2.2: Eigenvalue density p(x) for the ABJM theory.

field theory formula (2.2.5) for the Wilson loop, giving in both cases

log (W) = W\/%NW : (2.5.8)

Mirror theory

The mirror to the ABJM theory (with k& = 1) arises by choosing a different M-theory
circle action on S7. We will not go into the details of why this theory is called
mirror to ABJM but rather see it as another example of an AdS/CFT pair where
Wilson loops can be studied. The field theory [18] is N = 8 U(N) super-Yang-Mills
theory coupled to two additional fields ¢, ¢ in the fundamental and anti-fundamental

representation of U(N), respectively. The superpotential is
W =Tr (¢X1q+ X3[X1, Xa]) (2.5.9)

where X1, X5, X3 are the adjoint chiral fields of the A' = 8 theory, in N' = 2 language.
In this case the M-theory circle U(1)ys has weights (1,—1,0,0) on S7 C C*, which
has a codimension four fixed point set .# = 5% = {2, = 2o = 0} C S7. Tt follows that
the type IIA internal space is Mg = SS.

Although the background geometry is the same as in the previous subsection, i.e.
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AdS, x S7, the M-theory Hamiltonian is now®
har = |z1]* — |22)* . (2.5.10)
The level surfaces h); (c) are described by
221+ |zl + P =14c,  2zmP+|zsf+lu? = 1-c¢, (2.5.11)

so that ¢ € [—1,1]. However, the critical point set of hy, is quite different to that for
the ABJM model. The endpoints ¢ = +1, ¢ = —1 are now the copies of S C S7 at
{22 = 23 = 24 = 0} and {21 = z3 = zy = 0}, respectively. (Compare to the ABJM
model, where for £k = 1 also ¢ € [—1,1], but with the endpoints being images of
copies of S3, rather than S.) Moreover, there is an additional critical point at ¢ = 0.

Indeed, on S” we have

dhy = (z1dZ) + Z1dzy) — (22d2Zs + Z2d2s)
0 = i(zidéi + z;dz;) & 0 = dr. (2.5.12)
i=1
Thus in addition to the endpoints {z; = 23 = 24 = 0} and {21 = 23 = 24 = 0}, we
also have dhy; = 0 at {z; = 25 = 0} = S®, which is the fixed point set of U(1),
where hy; = 0. Thus we have the three critical points ¢; = cpim = —1, o = 0,
€3 = Cmax = 1.

The topology of the level sets )} (c) is the same for ¢ € (—1,0) and ¢ € (0, 1), but
with different circles collapsing on each side. For ¢ € (0, 1) we may ‘solve’ hy; = ¢ as
|21|* = |22/ +¢ > 0, and note that consequently z; # 0 on this locus. From (2.5.11) it
follows that hy; (c) = S} x S°, where S} is parametrised by the phase of z; = |2]el*t.

On the other hand, for ¢ € (—1,0) instead we solve hy = ¢ as |z3|> = |71]* — ¢ > 0,

®We could similarly choose to quotient by Zj, C U(1)y;. However, here we restricted to k =1 in
order to compare to the k = 1 ABJM theory, which is also dual to AdS, x S7 (the point being that
the Zy quotients in each case are different). In fact the general k case is a = k, b = 0 of section
2.5.3.
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so that )} (c) = S x S, where S} is parametrised by the phase of 2, = |2z|el?2.
The general formula (2.2.6) implies that the matrix model variable z should be

related to the geometric quantity ¢ again via

= —<27T>3 cC = T C
T = Vo T - V2e, (2.5.13)

which is the same formula as for the ABJM model with & = 1. The large N saddle
point eigenvalue distribution is in fact a special case of the models in section 2.5.3,
with a = 1, b = 0 in the notation of that section, and appears in [40]. In this case

there is only a single gauge group, and one finds the eigenvalue density

1
W(z - xmin) ) Tmin < T < 0

plz) = , (2.5.14)
755 (Tmax — ) , 0 <& < Tax

where Tmax = —Zmin = V2, thus agreeing with (2.5.13). Moreover, the derivative of

p(x) A

»

Xmin 0 Xmax

Figure 2.3: Eigenvalue density as a function of x. There are three points where p/(x)
is discontinuous, corresponding to critical points of hy,.

p is discontinuous at the endpoints and at the point z = 0. The Wilson loop is again

given by (2.5.8), with £ = 1.

2.5.2 Dual to Q'1/7Z,;

Our next example is that of the homogeneous and toric Sasaki-Einstein manifold

QY11 /Zy,. The manifold Q1! is the total space of an S! fibration over the product
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of three copies of S2, i.e. St QUM — §% x §? x S2, which describes its structure
as a regular Sasaki-Einstein manifold. Even though this manifold is toric, and the
geometrical techniques described in section 2.4.6 can be applied, we will instead take
advantage of the fact that the metric is known explicitly on this space.

7171

The Sasaki-Einstein metric on Q%! can be written as

=1

3 2 3
1 1
T (dw + g cos Hidgoi> + 3 E (d6? + sin? 0;de?) , (2.5.15)
i=1

where the coordinates 6; € [0,7] and ¢; € [0,27) are the usual S? coordinates, and

the coordinate ¢ € [0,47) parametrises the S* fibre. The contact form is simply

3
1
n =7 (dzﬂ%—;cosﬁidgoi) : (2.5.16)

and for the field theory model below the M-theory circle is generated by (3, = %(apl +

Op,). The M-theory Hamiltonian follows straightforwardly and reads

1
har = () = E(cosﬁl—i—cos%). (2.5.17)

The length of a supersymmetric M-theory circle is always given by 2mhy(p),
where p € Y7 covers a fixed point p of &, with p € Mg = Y7/U(1)y. However,
when the Sasaki-Einstein manifold is regular, as in the case at hand, we may also
describe the supersymmetric M-theory circles in terms of the base Kéhler-Einstein
manifold Bg = Y7/U(1)g, where U(1)g is generated by the Reeb vector £. In this
point of view, the supersymmetric M-theory circles cover fixed points of (; on By,
which in the case at hand is Bs = S* x S? x 52 because £ = 49,,. These points are
located at {(0y,602) | 6, € {0,7}, 05 € {0,7}}. Thus one obtains three critical values
C1 = Cmin = —ﬁ, co =0, c3 = Cax = ﬁ Notice these are S? loci of critical points,
parametrised by (63, ¢3).

717

Being Einstein, the contact volume of Q%1!/Z; is equal to the Riemannian vol-
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ume, with

Vol(QVM /7)) = — (2.5.18)

and as usual the Zj quotient is along U(1),, generated by (y;. The general formula
(2.2.6) tells us that the matrix model variable . = —Zmin predicted from the

gravity calculation is

_ (2m)° _ 2
= N ARIGEEIA Cmax = T (2.5.19)

xmax

A dual field theory to Q"!1/Z; has been proposed in [16,18]. This theory is
closely related to the ABJM theory. In addition to the bifundamental fields A;, B;, a
pair of field in the (anti-) fundamental representation is added to each gauge group

node, and one adds a cubic term to the superpotential
Wewsiec = Tr (141G + ¢242G2) - (2.5.20)

The corresponding matrix model has been worked out in [39]|, where it was found

that the density of the real part of the eigenvalues is

k
p(x) = (2xmax - |x|) fOI‘ ajmin < T < xmax P (2521)
472

with Zp. = ;—;Lk, thus agreeing with (2.5.19). Moreover, the derivative of p is dis-

px) A

-

Xmin 0 Xmax

Figure 2.4: Eigenvalue density p(x). There are three points where p'(x) is discontin-
uous, associated with supersymmetric M-theory circles.
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continuous at the endpoints and at the point = 0, as predicted by ¢y, co and c3
above. The Wilson loop calculated from the field theory then agrees with the gravity
computation, and reads

2
log (W) = \/%NW . (2.5.22)

2.5.3 N = 8 super-Yang-Mills with flavour

In this section we consider a family of theories that generalise the mirror to the
ABJM theory discussed in section 2.5.1. These were discussed in [40], having been
first introduced in [18].

One begins with A/ = 8 super-Yang-Mills with gauge group U(N), which is the
theory on N D2-branes in flat space. In N' = 2 language we have three adjoint chiral
matter fields X7, Xo, X3, together with the cubic superpotential Tr X3[X;, X5|. To
this we add matter fields in the fundamental and anti-fundamental representations,
which breaks the supersymmetry generically to NV = 2. More precisely, we add n,
fields (q](l), (jj(-l)), no fields (q](-z), QJ(-Q)) and ns fields (q](-g), c]j(-?’)), together with the cubic

superpotential

ni ng ns
W=Tr > ¢"X1q" + > ¢ Xe0” + 3 qPXaqY + X (X1, Xo] |, (2.5.23)
j=1 j=1 j=1
so that the mirror theory of section 2.5.1 is simply ny; = 1, ny = ng = 0.
In [18] it was shown that the quantum corrected moduli space of vacua of these
theories, for ' = 1, may be parametrised by the three coordinates X;, Xy, X3, to-

gether with the monopole operators T, T, which satisfy the constraint
TT = XM X2 X5 (2.5.24)

This defines a Calabi-Yau cone C(Y7) as a hypersurface singularity in C°. The
M-theory circle is straightforward to identify in this case, since by definition the

monopole operators T', T have charges +1, respectively, under U(1),;, while the X;
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are uncharged.
The matrix model for this gauge theory can be analysed as described in section

2.3.2 and carried out in [40]. The eigenvalue density is given by

() nili—2Am)

- - (.T - xmin) ) Tmin < T < 0
p(z) = : AAAAM , (2.5.25)
(Ziﬁ%:rrgzlAijAg m) (xmax - l’) ) 0 <z < Lmax
and the endpoints are
ST2A A A (52 mA; F 2A,,
Imax/min - \/ T 3 =2 3(2?3:1 n i ) . (2526)
(D iy i) (Qoimy il £2A,)

Here A; = A(Xj;), i = 1,2,3, are the R-charges of the fields X;, while A,,, = A(T) =
A(T) is the R-charge of the monopole operators. As described in section 2.3.2,
these may be left a priori arbitrary at this point, the only restriction being that the
superpotential YW has R-charge A(W) = 2. This leads to the constraint Z?Zl A =2.

The shape of p as a function of z is shown in Figure 2.5.

px) A

-

Xmin 0 Xmax

Figure 2.5: Eigenvalue density as a function of x. There are three points where p/(x)
is discontinuous, and we correspondingly expect to find three critical points of hyy,
with associated supersymmetric circles.

The superconformal R-charges are determined by maximising the free energy F

as a function of the R-charges. This immediately leads to A,, = 0, and then

_ 2\/§7T\/A1A2A3 (Z?:l niAi) N3/2 (2.5.27)

F 3 ,
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which must be further maximised subject to the constraint Z?Zl A; = 2. In practice
the formulae are rather too unwieldy for general n;, so following [40] we restrict to

the case ny = a,ny = b,n3 = 0. In this case the free energy is maximised by

_9 2 2 _ _9 2 2 _
Alza b++va?+b ab)Azzb a+va*+b —ab
2(b—a)

2(a—0)
JANPAY:
max/min — +2 TN A - 2.5.29
e "V A, v oA, (2:5.29)

The moduli space equation (2.5.24) correspondingly reduces to 77 = X¢X%. The

and thus

field X3 is then unconstrained, and the Calabi-Yau cone takes the product form
C(Y7) = C x C(Ys), where X3 is a coordinate on C and C(Y5) is precisely the

Ys = L*" toric singularity. The toric diagram has lattice vectors

wy = (07070)7 Wy = (07170)7 ws = (17070)7

wy = (0,0,a), ws = (0,1,b), (2.5.30)

and is shown in Figure 2.6. Recall that we parametrise the Reeb vector by & =
(4,&5,&3,&4), and that the four-dimensional outward-pointing vectors to the facets
are v, = (1,w,). With the method described earlier in section 2.4.6, the volume of
the base Y7 and the Reeb vector can be found and expressed in terms of A; and As,

and one finds

it 1
Vol(Y) = G XA aA TIA (2.5.31)
and
€= (4,1,280, a0 +bA,) . (2.5.32)

The M-theory circle in this basis is given by (3 = (0,0,0,—1); one can derive
this by writing the functions T, T, X; in terms of the toric geometry formalism above
(see, for example, section 4.3 of [53]). Recall also that in this formalism the M-

theory Hamiltonian function is given by (2.4.38). Thus in this case we have simply
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A
ws = (0,0,2) ¢
ws = (0,1,b)
w=000/ & / L >
W2 (05 1 ’O)
A wy=(1,0,0)
N

Figure 2.6: Toric diagram corresponding to C(Y7) = {TT = X¢X}} x C. The apex
is not an isolated singularity, as one sees from the non-triangular face with vertices
(1,2,4,5).

hy = —2y4. The critical points of hj; must always lie on the boundary of the
polyhedral cone, which are coordinate singularities, and thus it is easiest to determine
this critical set using the method described at the end of section 2.4.6. We denote the
face of the toric diagram which has vertices {v,, vp, ve, ...} by (a,b,¢,...). Equation

(2.4.39) then has two types of solution:

har = 0 on  (2,3,5), (1,3,4), (1,2,4,5),
1

h = — 1,2,3), (3,4,5 2.5.33
|M’ aA1+bA2 on (77)?(77)7 ( )

and correspondingly one has the critical values hy; = ¢; given by

1

_ =0. 2.5.34
N and ¢y 0 (2.5.34)

C3 = —C1 =

Notice here that the face (1,2, 4,5) (being non-triangular) corresponds to the S* locus

of L#" conical singularities in Y7. Using the general formula (2.2.6) we then find
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that these values of ¢; precisely match the corresponding positions x1, z2, x3 at which
the derivative of the eigenvalue density p/(x) is discontinuous. Finally, using (2.2.4)

the Wilson loop is

ALA,
log <W>gravity=2m/mzvl/2 = Tpax V% = log (W)qer,  (2.5.35)

where we used (2.5.29).

2.5.4 L%*%% Chern-Simons-quivers

In this section and the next we study two families of examples whose matrix models
were first analysed in [44].

The N = 2 field theories begin life as low-energy theories on N D2-branes at
an L*»® Calabi-Yau three-fold singularity. This may be simply described as the
hypersurface {wz = v’} C C*, where (w, z,u,v) are the coordinates on C*. This
geometry also appeared in the previous subsection of course, but there the M-theory
Calabi-Yau four-fold was a product C x C'(L**%), whereas here instead C'(L**%) arises
as the type IIA spacetime. The low-energy theory on the N D2-branes is known
from [67-69], and is described by a U(N)*** gauge theory, with a superpotential W
consisting of both cubic and quartic terms in the bifundamental and adjoint chiral
matter fields. Without loss of generality we may take b > a, in which case there are
b — a adjoint chiral superfields associated to b — a of the a + b U(N) gauge group
factors, and a total of 2(a + b) bifundamental fields. We refer the reader to the above
references for further details of these gauge theories.

Following [17] and in particular the construction in [11|, the D2-brane theories
become M2-brane theories at a Calabi-Yau four-fold. Geometrically the M-theory
circle is fibred over the base C'(L**%), and Chern-Simons couplings for the gauge
group are introduced in the field theory, described by a vector of Chern-Simons levels
k= (K1, s kary) = (K1, ko—allkb—as1, - - -, katp), Where the double bar separates
the copies of U(N) with adjoint fields from those without. This construction is
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described in more detail in [44].

Our first class of examples arise from L%?%® quiver theories, where the vector of
Chern-Simons levels is k& = 0,...,0,—2k||k, k, =k, k,—k,... k,—k, k), with k € Z.
These theories generalise the model first studied in [38]. The matrix model may be
solved using the general large N saddle point method described in section 2.3.2, and

one finds [44] the eigenvalue density

;

dakmz(1-A)+

TarS(1I_A)AZ - — T (A <% < T A)

plz) = A M) 0 e <L < tamr Ay (2.5.36)
dakmz(1-A)—
L B 16a7‘r3(17A)Ag ’ ZGkWéfA) <z < 4ak7réL17A)
where we have defined”
EA(2 — 3A + A2)2

=8 2\/ ) 2.5.37
= 8am 1 3A ( )

Here the single R-charge variable A parametrises the R-charges of all the chiral matter

fields, as in [44]. The eigenvalue density p(x) is shown in Figure 2.7.

px) A

-
X1= Xmin %2 X3 X4~ Xmax

Figure 2.7: Eigenvalue density as a function of . There are 4 points x1, xo, 23, 24
where p/(z) is discontinuous, corresponding to critical points of h .

The free energy, as a function of A, is given by

_ 8am [EA(L—A22-A2 .,
F== \/ A 3A) N3/2 (2.5.38)

"The variable p arises as a Lagrange multiplier, enforcing that p(x) is a density satisfying (2.3.13).
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One may then maximise F to determine the superconformal A, finding the cubic

irrational

| 37 13
A=— |19 —(431—18\/417) ] ~ 0.319. (2.5.39)

18 (431 — 18v/417)""*

This agrees with the value computed in [38], which was for the particular case a = 1.
Turning to the dual geometry, the Calabi-Yau four-fold that arises as the Abelian
N =1 moduli space of these theories has toric data (for k = 1)

w; = (0,2a,0), wy = (=1,a,0), w3 = (—=1,0,0),

wy = (0,a,a), ws = (0,a,—a), wg = (0,0,0), (2.5.40)

and with toric diagram shown in Figure 2.8. The volume of Y7 may be computed as

A

Wy = (Oaaaa)

ws=(0,a,-a)

Figure 2.8: Toric diagram of the L%?*% Chern-Simons-quiver theories with k& = 1.

described in section 2.4.6, and one obtains

(4 — 3A)

1(Y7) =
VolY?) = S6 kA (A — 1y2(A — 2

(2.5.41)
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with corresponding Reeb vector field

—

£=(4,—4A,2a(2 — A),0) . (2.5.42)

The M-theory circle for this field theory is given in this basis by (y = (0,0,0, 1),
so that Y7 is given by a Zj; quotient of the geometry appearing in Figure 2.8, with
Zy C U(1)p. We may again compute the critical points of the M-theory Hamiltonian
hy = 2y, using the method at the end of section 2.4.6. Equation (2.4.39) has solutions

associated to the following faces of the toric diagram:

(hM ~ 0 on (1,4,5,6)) ,
1
= — 4 254
‘h‘M’ 4(1(1—A) on (2737 )7 (27375)7 ( 5 3)
1
|hM’ = m on (1,2,4), (1,2,5), (3,4,6), (3,5,6),

and correspondingly one has the critical values hy; = ¢; given by

1 1

Cp—=—C —= —————— and C3:—02:m.

PN (2.5.44)

Note here that the face (1,4,5,6) describes a singular S' locus in Y7, and thus
although hj; = 0 here, formally leading to zero-action M2-branes, the tangent space
is singular. Using the general formula (2.2.6) we then find that these values of ¢;
precisely match the corresponding positions x1, xo, x3, x4 at which the derivative of
the eigenvalue density p'(x) is discontinuous. Explicitly, the actions of M2-branes
wrapped on the corresponding calibrated S' C Y; are then

—Sye(c2) = 4n(1—A) m]\fl/2 ,

log (W) = —Swa(cs) = 27(2 - A) mNW, (2.5.45)

with the latter determining the Wilson loop VEV, and showing that the field theory
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and gravity computations of it agree.

2.5.5 L*"¢ Chern-Simons-quivers

Our second family within this class are the L»»® Chern-Simons theories, with the
vector of Chern-Simons levels now given by k= (0,...,k, —2k||k,0,...,0). One finds
the eigenvalue density [44]

(

dkmx(1—A)+ _ M I
167r3(1—A)A((b—2)(lﬁA)—i-aA) ) Tor(1=A) <% < 7 3 (b(i—A)Fad)
ple) = 4 TG (I=AYA(I=A)TaA) — e aTan) < ¥ < A TaA)
Akra(1—A)—
\ _167r3(1—A)A((b—2)(1ﬁA)+aA) ; T < % < T A
(2.5.46)
where we have defined
Y TN UTEPSERINY 2547
b—2)(1—A) +aA

Again, the R-charge variable A parametrises the R-charges of all the chiral matter
fields, as detailed in [44]. The eigenvalue density p(x) is shown in Figure 2.9.

plx) A

X1 = Xmin X2

Figure 2.9: Eigenvalue density as a function of x. There are again 4 points
X1, T9, T3, x4 where p'(x) is discontinuous, corresponding to critical points of hyy.

The free energy, as a function of A, is given by

_ 81 k(1= APABA = A) +ad)? o
;_?\/ b A+ ah N3/?2 (2.5.48)
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One may then maximise F to find an expression (not presented) for the superconfor-
mal A that depends on a and b.
The corresponding Calabi-Yau four-fold that arises as the Abelian N/ = 1 moduli

space of these theories has toric data (for k = 1)

wy; = (0,0,0), wy = (1,-1,0), wg = (1,1,0) , wy = (b—1,—-1,0),
ws = (b—1,1,0), wg = (b,0,0), w; = (0,0,1), wg = (a,0,1),

(2.5.49)

and with toric diagram shown in Figure 2.10. The volume of Y7 may be computed

Wy = (b_la_lao)

) W5:(b-1,190)
47 ws=(0,0,0)

Figure 2.10: Toric diagram of the L**% Chern-Simons-quiver theories with k = 1.

as described in section 2.4.6, and one obtains

7 ((b+2)(1 - A)+ad)
VolY?) = GEA(L = A)2(6(1 — A) 1 0y

(2.5.50)

with corresponding Reeb vector

—

€= (4,2(b(1 — A) + aA),0,4A) | (2.5.51)
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The M-theory circle for this field theory is given in this basis by (y; = (0,0, 1,0),
so that again Y7 is given by a Z; quotient of the geometry appearing in Figure 2.10,
with Zy C U(1)p. The M-theory Hamiltonian is hy; = 2ys, and its critical points
may be computed from equation (2.4.39), which has solutions on the following faces

of the toric diagram:

(hM — 0 on  (1,2,3,4,5,6) )
1
hyl = ——— 2,4 2.5.52
Il = T o (2478, (3578), (25.52)
1
ht| = on  (1,2,7), (1,3,7), (4,6,8), (5,6,8)

and correspondingly one has critical values hy; = ¢; given by

1 1

m, and C3 — —Cy = 2]{;(b(1—A)+aA) . (2553)

Cp — —C1 =

Using the general formula (2.2.6) we then find that these values of ¢; precisely match
the corresponding positions x1, x2, x3, x4 at which the derivative of the eigenvalue
density p'(z) is discontinuous. Explicitly, the actions of M2-branes wrapped on the

corresponding calibrated S' C Y7 are

_ A
—SMQ(CQ) = 47T(1 — A)\/k((2+b)(1—A)+aA) N1/2 ’

log (W) = —Swa(cs) = 27r(b(1—A+aA))\/k((m)(léA)m)Nl/z , (2.5.54)

with the latter determining the Wilson loop VEV, and showing that the field theory

and gravity computations of it agree.



Chapter 3

Gravity duals of field theories on

three-manifolds

3.1 Introduction

Non-perturbative computations can be performed in certain supersymmetric field
theories defined on curved Euclidean manifolds, using the technique of localisation
described in the last chapter. This has motivated the systematic study of rigid
supersymmetry in curved space |70], and it has also prompted the exploration of the
gauge/gravity duality in situations when the boundary supersymmetric field theories
are defined on non-trivial curved manifolds. This programme has been initiated in
[26], where a simple Euclidean supersymmetric solution of four-dimensional minimal
gauged supergravity was proposed as the dual to three-dimensional supersymmetric
Chern-Simons theories defined on a squashed three-sphere (ellipsoid), for which the
exact partition function had been computed previously in [25]. Generalisations have
been discussed in [29-31].

Using localisation, the partition function Z of a large class of N' = 2 three-
dimensional Chern-Simons theories defined on a general manifold with three-sphere

topology was computed explicitly in [32]. This has provided a unified understand-

56
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ing of all previous localisation computations on deformed three-spheres [25-28|, and
has shown that the partition function on these manifolds depends only on a single
parameter by /bs, related to a choice of almost contact structure. Specifically, for a
general toric metric on the three-sphere, the real numbers by, by specify a choice of
Killing vector K in the torus of isometries. For a broad class of Chern-Simons-quiver
theories, the large N limit of the free energy F = —log|Z| can be computed using
saddle points methods [26], giving the general result

2
i 7, 1)

: Jrroun 3 3.1.1
N—oo by 4|blb2’ d ( )

where Froung is the large N limit of the free energy on the round three-sphere scaling
with N3/2, see equation (2.3.16). All computations in chapter 2 were done for a round
three-sphere boundary and we did not emphasise it by adding the index ‘round’ to
the free energy and the Wilson loops. However, we will now denote the free energy
and Wilson loops by F and W for the more generic backgrounds developed in this
chapter and use the notation Fiounq and Wioung for the free energy and Wilson loops
of chapter 2 on the round sphere.

On the gravity side, (3.1.1) yields a universal prediction for the holographically
renormalised on-shell action of the corresponding supergravity solutions. Indeed, the
on-shell action of the solutions of [26], [29], [30], and [31] reproduced this formula,
for certain choices of metrics and background gauge fields. More precisely, these
are all supersymmetric solutions of minimal four-dimensional gauged supergravity in
Euclidean signature, and comprise a negatively curved Einstein anti-self-dual metric
on the four-ball', with a specific choice of gauge field with anti-self-dual curvature,

that we refer to as an instanton. The result of [32] raises two questions:

e Given an arbitrary toric metric on the three-sphere, with a background gauge

field satisfying the rigid Killing spinor equations [71,72], can one construct a

IReferences [29] and [30] also discuss several solutions with topology different from the four-ball;
however, at present the precise field theory constructions dual to these remain unknown. In this
thesis we will not discuss topologies different from the four-ball.
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dual supergravity solution?

e Assuming such a supergravity solution exists, can one compute the correspond-

ing holographic free energy and show that it matches (3.1.1)7

The purpose of this chapter is to address these two questions. Working in the
context of four-dimensional? minimal gauged supergravity, and assuming an ansatz
that the solutions are anti-self-dual and have the topology of the ball, we will be able
to provide rather general answers to both these questions.

Regarding the first question, we will show that given an anti-self-dual metric on
the ball with U(1)? isometry, and a choice of an arbitrary Killing vector therein,
we can construct an instanton configuration, such that together these give a smooth
supersymmetric solution of minimal gauged supergravity. Moreover, assuming this
metric is asymptotically locally AdS, we will show that on the conformal boundary the
four-dimensional solution reduces to a three-dimensional geometry solving the rigid
Killing spinor equations of [71,72], in the form presented in [32]. We will illustrate
this construction through several examples, including previously known as well as
new solutions.

We will be able to answer the second question, regarding the computation of the
holographic free energy, independently of the details of a specific solution. Namely,
assuming only that a smooth solution with given boundary conditions exists, we will

show that the holographically renormalised on-shell action takes the form

(162 + [ba])”

[:
4]b1bs|

: ]round 5 (312)

precisely matching the large N field theory prediction from localisation (3.1.1). Here,
we made use of the fact that Founa = lrouna has been checked in many classes of

examples; see end of section 2.3.2 for a reminder. We emphasise that (3.1.2) will

2We will show in section 3.2 how the eleven-dimensional supergravity can be reduced to four-
dimensional supergravity for the the purpose of finding a gravity dual to field theories on generic
three-manifolds.
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be derived without reference to a specific solution, and that it receives non-zero
contributions from the boundary, as well as from the bulk, specifically from the
‘centre’ of the ball.

The rest of this chapter is organised as follows. In section 3.2 we explain how find-
ing a supergravity dual to a superconformal field theory on a generic three-manifold
can be reduced to minimal four-dimensional gauged supergravity computations. In
section 3.3 we discuss the local geometry of FEuclidean supersymmetric solutions of
minimal four-dimensional gauged supergravity. In section 3.4 we turn to global and
smooth asymptotically locally Euclidean AdS solutions, with the topology of the
four-ball. Section 3.5 contains the derivation of the general formula (3.1.2) for the
holographic free energy. Finally, in section 3.6 we present specific examples. Some

details about the geometry can be found in appendices A and B.

3.2 Reduction to four-dimensional supergravity

Our starting point on the gravity side is eleven-dimensional supergravity in Euclidean
signature. An Euclidean signature will be used for the rest of this thesis. We are
interested in a class of N' = 2 supersymmetric M, x Y7 backgrounds of M-theory. In
Euclidean signature there are certain factors of i that appear relative to the eleven-
dimensional supergravity solution in Lorentzian signature of [73]. Those factors will
be very important for correctly computing M2-brane actions in chapter 4.

The action of D = 11 supergravity in Euclidean signature is

1

1 .
S = —W (/ dllxvgll R — / idC A x11dC + %C’ AdC A dC) . (321)
p

Here we have denoted by ¢;; the eleven-dimensional metric, with associated Ricci

scalar R, C'is the three-form potential and ¢, denotes the eleven-dimensional Planck
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length. The equations of motion for the metric and C-field follow immediately:

1 1
Rap — E(GAclcQC’gGBClCQCS - EQABG2) = 0,

d*11G+%G/\G ~- 0, (3.2.2)

where we have defined G = dC, R 4p is the Ricci tensor and A, B,C' =1,...,11. It
is also useful to define G7 = i(x1;G + £C' A G) so that the equation of motion for G
is simply dG7 = 0.

An ansatz to the last system of equations in Lorentz signature was given in [73].
There is an internal space Y; taken to be any Sasaki-Einstein seven-manifold Y7
with contact one-form 7, transverse Kéhler-Einstein six-metric ds2 with Kéhler form
wr = dn/2, and with the seven-dimensional metric normalised so that Ric = 6gy;.

The ansatz in Euclidean signature is then

1 1\
dS%l = R2 Z—ldsﬁ/]‘l—f—(’l’]—f-EA) +d8%~ s
G = —iR*(Svoly— 2, FAd (3.2.3)
= 3 4 1 4 ny o, L

and is compatible with (2.4.3). The warp factor A of the last chapter is now constant
and encoded into R and the metric on Y7 is more explicit. It is the more specific?
form of solutions (3.2.3) that will be used for the rest of this thesis. Here, ds3,, is a
four-dimensional metric on a manifold M, with abelian gauge field A, field-strength

F' = dA and volume form vols. The radius R is

RS — (27m0,) N

= SVol(v) (3.2.4)

3This solution is more specific on the internal part as the metric on Y7 couples to A and the G
form has a precise dependence on 7 but it allows us to generalise the AdS, part to a more generic
four-manifold M,.
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where N is the number of units of flux

Substituting the ansatz (3.2.3) into the equations of motion (3.2.2), we find the latter

are equivalent to the metric g, corresponding to ds?\/l,4 and F' satisfying

1
R,u,u + Sguu = 2 (FupFup - ZLFQQMV> ;

dxF = 0. (3.2.6)

The ansatz (3.2.3) then solves the eleven-dimensional Euclidean equations of motion if
and only if the four-dimensional metric g,,, and gauge field A are a solution of minimal
four-dimensional Euclidean gauged supergravity. One can show that if the ansatz
(3.2.3) is plugged into the action (3.2.1), we get the four-dimensional supergravity
action [74]

1
JBUGRA — ST / (R+6— F?) \/detgd*z , (3.2.7)
Ty

where R denotes the Ricci scalar of the four-dimensional metric g,,,, we have defined
F? = F,,F*_ and we have a cosmological constant A = —3. The four-dimensional

Newton constant G4 is defined by

1 2
=N 3.2.8
167G \/ 2535Vol, (17) (3:2.8)

Interestingly, if we vary the action (3.2.7) for the four-dimensional metric g, and

gauge field A we recover the equations of motion (3.2.6) showing that the ansatz
(3.2.3) is consistent.

A truncation to a lower dimensional theory is said to be consistent if the solution to
the lower dimensional theory necessarily solves the original equations of motion. More
generally, one has to carry out a Kaluza-Klein reduction on the internal manifold (Y7

here) which leads to a lower dimensional theory with an infinite tower of fields. The
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reduction is consistent if it is in fact consistent to set all the non-lowest energy fields
in the Kaluza-Klein tower to zero and obtain the equations of motion for the lower
dimensional theory. As shown in [73], the supergravity solution (3.2.3) consistently
reduces to minimal four-dimensional gauged supergravity and we can safely focus on
the four-dimensional geometry in what follows.

At this point, it is interesting to note that when My =AdS,, the reqularised super-

gravity action together with the appropriate counterterms, see examples in section

T 276
Iroun == = N3/2 = .Froun . 3.2.9
172G, \ 27 Vol (v7) a (329)

where we have used (3.2.8) and the expression for Fiounq in (2.3.16).

3.6, becomes

In what follows, we assume that the eleven-dimensional supergravity solution
has the form given in equation (3.2.3) and we will work with four-dimensional su-
pergravity to construct gravity duals to supersymmetric field theories on generic

three-manifolds.

3.3 Local geometry of self-dual solutions

The action for the bosonic sector of four-dimensional N' = 2 gauged supergravity
is given in equation (3.2.7). In our context, this action is seen as a truncation to
four dimensions of the full eleven-dimensional supergravity as explained above. The
graviphoton is an Abelian gauge field A with field strength F' = dA. The equations
of motion are (3.2.6). They are simply Einstein-Maxwell theory with a cosmological
constant A = —3. Notice that when F'is anti-self-dual, i.e. *,F" = —F, the right hand
side of the Einstein equation in (3.2.6) is zero, so that the metric g, is necessarily
Einstein as R, = —3¢,., and that d x4 F' = 0.

A solution is supersymmetric provided it admits a Dirac spinor e satisfying the
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Killing spinor equation

L
(v# —id, + 50+ ;lFl,pF”pF#) e=0. (3.3.1)

This takes the same form as in Lorentzian signature, except that here the gamma ma-
trices generate the Clifford algebra Cliff(4,0) in an orthonormal frame, so {I',, ', } =
2g,,- Notice that we may define the charge conjugate of the spinor € as ¢ = Be”,
where B is the charge conjugation matrix satisfying B~'I", B = I, BB* = —1 and
may be chosen to be antisymmetric BT = —B [26]. Then provided the gauge field A
is real (as it will be here) € satisfies (3.3.1) with A — —A.

In [75,76] the authors studied the local geometry of Euclidean supersymmetric
solutions to the above theory for which F'is anti-self-dual, x4 F' = —F'. It follows that
the metric g,, then has anti-self-dual Weyl tensor, and adopting a standard abuse of
terminology we shall refer to such solutions as ‘self-dual’. Supersymmetry also equips
this background geometry with a Killing vector field K. Self-dual Einstein metrics
with a Killing vector have a rich geometric structure that has been well-studied (see
for example [77]), and are well-known to be related by a conformal rescaling to a local
Kahler metric with zero Ricci scalar. Such metrics are described by a solution to a
single PDE, known as the Toda equation, and this solution also specifies uniquely
the background gauge field A. In fact we will show that F' = dA is % the Ricci-form
of the conformally related Kéahler metric. Moreover, we will reverse the direction of
implication in [75,76] and show that any self-dual Einstein metric with a choice of
Killing vector field admits locally a solution to the Killing spinor equation (3.3.1).
This may be constructed from the canonically defined spin® spinor that exists on any

Kahler manifold.

3.3.1 Local form of the solution

In this section we briefly review the local geometry determined in [75,76]. The

existence of a non-trivial solution to the Killing spinor equation (3.3.1), together with
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the ansatz that F' is anti-self-dual and real, implies that the metric g,, is Einstein
with anti-self-dual Weyl tensor. Because F’ is real for this solution we assume that
A is real throughout this thesis. There is then a canonically defined local coordinate

system in which the metric takes the form?*

1
dsgpp = 7 [V dy + ¢)* + V (dy® + 4e*dzdz)] | (3.3.2)
where
1
Vo= 1-cyduw, (3.3.3)
d¢ = 10,Vdy Adz —10;Vdy A dz + 2i0,(Ve”)dz A dZ , (3.3.4)

and w = w(y, 2, Z) satisfies the Toda equation
9.0:w + 92" =0 . (3.3.5)

Notice that the function w determines entirely the metric. The two-form d¢ is easily
verified to be closed provided the Toda equation (3.3.5) is satisfied, implying the
existence of a local one-form ¢.

The vector K = 0, is a Killing vector field, and arises canonically from supersym-
metry as a bilinear K* = ie/T'*T's¢, where € is the Killing spinor solving (3.3.1) and
['s = T'g123. Using the Killing spinor equation one can verify that K* is indeed Killing
as V(, K,y = 0. Notice that the corresponding bilinear in the charge conjugate spinor
€€ is i(€°) T 5¢¢ = —K*. Thus as in the discussion after equation (3.3.1) we may
change variables to € = ¢¢, A = —A. In the tilded variables the equations of motion
(3.2.6) and Killing spinor equation (3.3.1) are identical to the untilded equations,
but now A = —A and K = —K. Thus the sign of the instanton is correlated with a

choice of sign for the supersymmetric Killing vector, with charge conjugation of the

4SDE stands for self-dual Einstein. As explained before, we call the metric self-dual for conve-
nience even though it has anti-self-dual Weyl tensor.
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spinor changing the signs of both A and K.

As we shall see in the next section, the coordinate y determines the conformal
factor for the conformally related Kéhler metric, and is also the Hamiltonian function
for the vector field K = J, with respect to the associated symplectic form. The
graviphoton field is given by

] . .
A= _Zv—layw(d¢ + ¢) + i@zwdz — i&gwdé . (3.3.6)

We are of course free to make gauge transformations of A, and we stress that (3.3.6)
is in general valid only locally.

Having summarised the results of [75,76], in the next two sections we study this
local geometry further. In particular we show that any self-dual Einstein metric with
Killing vector K = 0y, which then takes the form (3.3.2), admits a Killing spinor €
solving (3.3.1), where A is given by (3.3.6).

3.3.2 Conformal Kahler metric

As already mentioned, every self-dual Einstein four-metric with a Killing vector is

conformally related to a scalar-flat Kéahler metric. This is given by

2 1.2 219
dsianer = d8° = y7dsgpg

= V Hdy+¢)* +V (dy* + 4e“dzdz) . (3.3.7)
Introducing an associated local orthonormal frame of one-forms
O =V12dy, & = VI2dy+¢), E+i8® = 2(Ver)Vdz (3.3.8)

the Kahler form is
w=¢e" 462 , (3.3.9)
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where we have denoted ¢ A e = ¢, etc. That (3.3.9) is indeed closed follows

immediately from the expression for d¢ in (3.3.4). The Kéhler form is self-dual with

0123

respect to the natural orientation on a Kéhler manifold, namely é above, and it

is with respect to this orientation that the curvature F' and Weyl tensor are anti-
self-dual. We denote the corresponding orthonormal frame for the self-dual Einstein
metric (3.3.2) as e* =y~ 1% a =0,1,2,3.

Next we introduce the Hodge type (2, 0)-form
Q= (" +ieh) A (&% +ie) (3.3.10)
and recall that the metric (3.3.7) is Kéahler if and only if
dQ =iQAQ (3.3.11)

where @ is then the Ricci one-form, with Ricci two-form R = dQ. It is straightfor-
ward to compute dS2 for the metric (3.3.7), and one finds that

Q=24, (3.3.12)

where A is given by (3.3.6). The curvature is correspondingly F' = dA = 1R, where
recall that R, = %prgwf"’ where pra denotes the Riemann tensor for the Kéhler

metric. A computation gives
1 2 w] 40123
2R ANw = W [aﬁgw + 3ye } € , (3313)

so that the Kéhler metric is indeed scalar flat if the Toda equation holds. An explicit
computation shows that with respect to the frame (3.3.8) F' = dA is

F = —}lay [VTiow] (€ = é%) + [i((?z — 0:)[Vo,w] (&% +é%)

Sew/2
— (0. + 0:) [V ayuw) (6% — ¢12) ] , (3.3.14)
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which is then manifestly anti-self-dual. One can also derive the formula
F = — (AydK’+ K" N IK?) (3.3.15)

where K’ denotes the one-form dual to the Killing vector K (in the self-dual Einstein
metric), and J is the complex structure tensor for the Kéahler metric (3.3.7), and a
further short computation leads to

.o~ \ 1.5 1 .

F= (—1883/) = Zi00y + — (Ay)w , (3.3.16)

Y Y 4y
where 0 denotes the standard operator on a Kihler manifold, the superscript “—”
in (3.3.16) denotes anti-self-dual part, and A denotes the scalar Laplacian for the

Kahler metric.

Let us note that the Kéahler form is explicitly
w=dy A (dy + ¢) + 2iVe"dz AdZ . (3.3.17)

Thus dy = —0y_w, which identifies the coordinate y as the Hamiltonian function for
the Killing vector K = 9. Of course, y* is also the conformal factor relating the

self-dual Einstein metric to the K&hler metric in (3.3.7).

3.3.3 Killing spinor: sufficiency

In this section we show that a self-dual Einstein metric with Killing vector K =
Oy, which necessarily takes the form (3.3.2), admits a solution to the Killing spinor
equation (3.3.1) with gauge field given by (3.3.6). The key to this construction is to
begin with the canonically defined spin® spinor that exists on any Kéhler manifold.

On any Kahler manifold there is always a complex spinor ( satisfying the spin®
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Killing spinor equation®

(Vi—3Q.)¢=0. (3.3.18)

Here the hat denotes that we will apply this to the conformal Ké&hler metric (3.3.7)
in the case at hand, and @ is the Ricci one-form potential we encountered above.

Using the result earlier that Q@ = 2A the equation (3.3.18) may be rewritten as
(% - iAM) =0, (3.3.19)

which may already be compared with the Killing spinor equation (3.3.1).

More concretely, the solution to (3.3.18), or equivalently (3.3.19), is simply given
by a constant spinor ¢, so that d,( = 0. This equation makes sense globally as ¢
may be identified with a complex-valued function. To see this it is useful to take the

following projection conditions
[¢=ilo¢, T3¢ = ila(, (3.3.20)

following e.g. reference [78]. Here I'y, a = 0,1,2,3, denote the gamma matrices in
the orthonormal frame (3.3.8)5. The covariant derivative of  is then computed to be

. 1., - . .

V(= (au + 79 Pryp) ( = 00+ 5 (0N +02) ¢ = 9.0+iA(,  (3.3.21)
where w # is the spin connection of the conformal Kéhler metric, and we have used
the explicit form of this in appendix A together with the formula (3.3.6) for A. It
follows that simply taking ¢ to be constant, 9,( = 0, solves (3.3.18). This is a general

phenomenon on any Kéhler manifold.

Using the canonical spinor ( we may construct a spinor e that is a solution to the

5We sometimes refer to this spinor as the canonical Killing spinor of the Kihler manifold, or the
canonical spinor for simplicity.

6Strictly speaking the hats are redundant, but we keep them as a reminder that in this section
the orthonormal frame is for the Kéhler metric.



69

Killing spinor equation (3.3.1). Specifically, we find

€= \/% (1 + V’1/2f0> ¢. (3.3.22)

To verify this one first notes that the spin connections of the Kéhler metric and the

self-dual Einstein metric are related by
. I
V[AC = V,uc + §F# (81/ IOg y)C ) (3323)

where fu = yI', in a coordinate basis. The Killing spinor equation (3.3.1) then takes
the form

~ 1- 1 -~ i A A
Out 38,T0y = 50,7 (D logy) —id,+ L+ LyF, [T, e = 0. (3.3.24)

2y 4

B |

To verify this is solved by (3.3.22) one simply substitutes (3.3.22) directly into the
left-hand-side of (3.3.24). Using the explicit expressions for the spin connection, the
gauge field, the field strength, as well as the projection conditions on the canonical
spinor ¢ and (3.3.19), one sees that (3.3.24) indeed holds.

From this analysis we can conclude that the self-dual Einstein metric (3.3.2)
and the gauge field (3.3.6), which are solutions to Einstein-Maxwell theory in four
dimensions, yield a Dirac spinor € that is solution to the Killing spinor equation
(3.3.1). This implies that these self-dual Einstein backgrounds are always locally
supersymmetric solutions of Euclidean N = 2 gauged supergravity. Using those
backgrounds, one can lift them to supersymmetric solutions of eleven-dimensional

supergravity with the help of (3.2.3). We turn to global issues in the next section.

3.4 Asymptotically locally AdS solutions

In this section and the next we will assume that we are given a complete self-dual

Einstein metric with a Killing vector, which then necessarily takes the local form
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(3.3.2). Moreover, we shall assume this metric is asymptotically locally Euclidean
AdS7, and in later subsections also that the four-manifold A, on which the metric is
defined is topologically a ball. A two-parameter family of such self-dual solutions on
the four-ball, generalising all previously known solutions of this type, was constructed
in [31]. In section 3.6 we shall review these solutions, and also introduce a number
of further generalisations. In particular, the results of the current section allow
us to deform the choice of Killing vector (which was essentially fixed in previous
results), and we will also explain how to generalise to an infinite-dimensional family
of solutions satisfying the above properties, starting with the local metrics in [79].

With the above assumptions in place, we begin in this section by showing that
if the Killing vector K = 0, is nowhere zero in a neighbourhood of the conformal
boundary three-manifold Mj then it is a Reeb vector field for an almost contact
structure on M3. We then reproduce the same geometric structure on M3 studied from
a purely three-dimensional viewpoint in [72|. In particular the asymptotic expansion
of the Killing spinor € leads to the same Killing spinor equation as [72|. This is
important, as it shows that the dual field theory is defined on a supersymmetric
background of the form studied in [72], for which the exact partition function of a
general N' = 2 supersymmetric gauge theory was computed in [32] using localisation.
Having studied the conformal boundary geometry, we then turn to the bulk in 3.4.4.
In particular we show that, with an appropriate restriction on the Killing vector
K, the conformal Kéhler structure of section 3.3.2 is everywhere non-singular. This
allows us to prove in turn that the instanton and Killing spinor defined by the Kéhler
structure are everywhere non-singular.

In particular this means that each of the self-dual Einstein metrics in section 3.6
leads to a one-parameter family (depending on the choice of Killing vector K) of
smooth supersymmetric solutions. In other words, if the self-dual Einstein metric

depends on n parameters, the complete solution will depend on n + 1 parameters.

"Since the metric has Euclidean signature one might more accurately describe this boundary
condition as asymptotically locally hyperbolic, which is often used in the mathematics literature.
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We emphasise that in the previously known solutions the only example of this phe-

nomenon is the solution of [26]. There the Einstein metric was simply AdS4, which

does not have any parameters.

3.4.1 Conformal boundary at y =0

We are interested in self-dual Einstein metrics of the form (3.3.2) which are asymp-

totically locally Euclidean AdS (hyperbolic), in order to apply to the gauge/gravity

correspondence. From the assumptions described above there is a single asymptotic

. . 2 .
region where the metric approaches % + rzds?ws as r — 00, where M3 is a smooth

compact three-manifold. In fact the metrics (3.3.2) naturally have such a confor-

mal boundary at y = 0. More precisely, we impose boundary conditions such that

w(y, 2, z) is analytic around y = 0, so
w(y, 2, 2) = w)(2, 2) + ywy (2, 2) + 397w (2, 2) + O(y°) .
It follows that
V(y7 Z, 2) =1- %yw(l)(za 2) - %yzw@)(z7 2) + O(ys) 5
and that the metric (3.3.2) is
dy? 1
)

ds? =1+ 0@)] = +
spE = | ()] o2 y

Setting r = 1/y this is to leading order

d 2
dsgpp = 7,_7; + 72 [(dv + ¢0))* + 4e” @ dzdz] |

[(d@/} + ¢(0))2 + 4e*@dzdz + O(y)} )

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)
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as r — 00, so that the metric is indeed asymptotically locally Euclidean AdS around

y = 0. Here we have also expanded the one-form tangent to M;

Oy, 2,2) |my= () (2, 2) + yo) (2, 2) + O(1?). (3.4.5)

In fact by expanding (3.3.4) one can show that ¢y = 0. Of course, as usual one is
free to redefine r — rQ(1, 2, 2), where Q is any smooth, nowhere zero function on
Ms, resulting in a conformal transformation of the boundary metric ds3,, — Q*ds3,,.
However, in the present context notice that » = 1/y is a natural choice of radial
coordinate.

With the analytic boundary condition (3.4.1) for w it follows automatically that
K = 0y is nowhere zero in a neighbourhood of the conformal boundary y = 0 because
||K||> = 1/(y*V) # 0 near the conformal boundary. The ansatz (3.4.1) is certainly a
restriction on the class of possible globally regular solutions, although all examples
in section 3.6 have choices of Killing vector for which this expansion holds.

Returning to the case at hand, the conformal boundary is a compact three-
manifold Mj (by assumption), and from the above discussion a natural choice of

representative for the metric is
dsiy, = (A + ¢(0))” + 4e"©dzdz . (3.4.6)

Notice that the form of the metric (3.4.6) is precisely of the form studied in [32]
where localisation of N' = 2 supersymmetric field theories on generic three-manifolds

is carried out. In that reference an important role is played by the one-form
o = d¢+¢(0) , (347)
which has exterior derivative

do = do) = 2i0,(Ve") |y=0 dz A dZ = iwm)e"@dz Adz . (3.4.8)
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The form o is a global almost contact one-form on Ms. The most straightforward
way to derive this is to note the form of the boundary Killing spinor equation in
section 3.4.2 and appeal to the results of [72].

The Killing vector K = 9y, is the Reeb vector for the almost contact form o, as

follows from the equations

Kio=1, Kido = 0. (3.4.9)

The orbits of K thus foliate Mj3, and moreover this foliation is transversely holomor-
phic with local complex coordinate z. When the orbits of K all close it generates a
U(1) symmetry of the boundary structure, and the orbit space M3/U(1) is in general
a complex surface, on which z may be regarded as a local complex coordinate. On the
other hand, if K has at least one non-closed orbit then since the isometry group of a
compact manifold is compact, we deduce that Mz admits at least a U(1) x U(1) sym-
metry, and the structure defined by o is a toric almost contact structure. In this case
we may introduce standard 2m-period coordinates @1, o on the torus U(1) x U(1)

and write

K = aw = bla,pl +b28¢2 . (3410)

From (3.4.8) we deduce that the Taylor coefficient w) is a globally defined basic
function on M3 — that is, it is invariant under K = d,,. Moreover, the almost contact
form o is a contact form precisely when the function w(;) is everywhere positive. We
shall see later that there are examples for which o is contact and not contact. On the
other hand, the coefficient w(g) is in general only a locally defined function of z, z, as

8

one sees by noting that the transverse metric gr = e*©dzdz is a global two-tensor®.

It will be useful in what follows to define a corresponding transverse volume form

voly = 2ie¥®dz A dz . (3.4.11)

8If it was not singular, the transverse metric would be defined everywhere making the space Ms
non-compact, which we assume is not true.
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This tensor is related to the contact form o by

do = dgg) = %volT . (3.4.12)

3.4.2 Boundary Killing spinor

In this section we show that the Killing spinor € induces a Killing spinor y on the
conformal boundary Mj that solves the Killing spinor equation in [72].

We begin by recalling the orthonormal frame of one-forms

1 1 2
= -V2dy, e = V2dY+¢), E+ie® = Z(Ve)V2dz, (3.4.13)
Y y y

for the self-dual Einstein metric (3.3.2). We introduce a corresponding frame for the

three-metric ds3,, on the conformal boundary:
e = U+ o), el + iely = 2e"©/%dz (3.4.14)

and will use indices i, j, k = 1,2, 3 for this orthonormal frame.

We next expand the four-dimensional Killing spinor equation (3.3.1) as a Taylor
series in y. One starts by noting that I'* = e#,I'* = O(y). But as I', = ¢*,I', =
O(1/y) and the field strength expands as F' = Fio) + yF1) + O(y?) we see that

i 14
7T, = 0(y) . (3.4.15)

After a computation we then obtain

_ 1 1 Z.
[V}(E,) ~ Aot g, (1 " Zywu)) i —T) +Oy) e = 0, (3.4.16)

where p = 1, 2, Z, and where

1 i, L
A) = _Zw(l)e(l3)‘|‘§e (0)/2(52—32)10(0)6%3)—56 (°>/2(0Z+05)w(0)e?3), (3.4.17)
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is the lowest order term in the expansion of A given by (3.3.6). The Killing spinor e
then expands as

1 1
=——|1+Tg+- I'o+ O 2] 3.4.18
€ Ty 0 4yw(l) 0 (?J ) o ( )

where () is the lowest order (y-independent) part of the Kéhler spinor {. Substituting
this into (3.4.16) gives a leading order term that is identically zero. The subleading

term then reads
. 1
[(Vz@ - 1A(O)z‘> (1+To) + gwu)(Fio —T)] G =0. (3.4.19)
The projections (3.3.20), in the current context, read

I'1Go =1l0Go ['3¢0 = il'9¢o - (3.4.20)
We may choose the following representation of the gamma matrices:

0 Ti 0 1H2
T, = , T, = , (3.4.21)

T; 0 —1]12 0

with 7; the Pauli matrices?. The projection conditions then force ¢, to take the form!®

X X0
Co = where x = . (3.4.22)

0 Xo

Here y is a two-component spinor and Y is simply a constant. The three-dimensional

9In this basis the charge conjugation matrix B, appearing in € = Be*, is B = < ; 06 ) where
0 -1
1 0
ONotice that although our frame coincides with that of [72], our three-dimensional gamma ma-
trices are a permutation of those in the latter reference, which is why the spinor solution takes a
slightly different form.

£ =
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Killing spinor equation then becomes

This three-dimensional Killing spinor equation is precisely of the form found in [72],
and studied in [32]. More precisely, this is the form of the Killing spinor equation
in the case where the background geometry has real-valued fields, with the metric
given by (3.4.6), and the Killing spinor x and its charge conjugate x¢ give rise to
an N = 2 supersymmetric background. In the notation of these references we have
that the three-dimensional gauge field V' = 0 (or rather there exists a gauge in
which this is true — see appendix B), while A = A and the function H = —}Lw(l).
This result shows that there indeed exists a spinor xy with the required properties
to construct supersymmetric field theories on Mj3. Thus our four-dimensional self-

dual Einstein manifolds with background gauge field A are the supergravity duals to

supersymmetric field theories on M3 with metric (3.4.6) and Killing spinors y and

C

X

We close this subsection by remarking that supersymmetry singled out a natural
representative (3.4.6) of the conformal class of the boundary metric. However, one is
free to make the change in radial coordinate r — 7€), with €2 any smooth, nowhere zero
function on Ms, resulting in a conformal transformation of (3.4.6) by ds3,, — Q*ds3,,.
In particular, in the metric (3.4.6) the Killing vector K = 0, has length 1, while the
latter conformal rescaling gives ||K|[a, = €. In this case one instead finds that
the vector V in [32,72] is non-zero, with gauge-invariant and generically non-zero
components V5 = d3log ) and V3 = —0ylog Q. This is then in agreement with the
three-dimensional results of [32]. For further details of this conformal rescaling we

refer the reader to appendix B.
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3.4.3 Non-singular gauge

In a neighbourhood of the conformal boundary the Kéhler metric is defined on [0, €) x
Ms, for some € > 0. This follows since via the conformal rescaling (3.3.7) the Kéhler

metric asymptotes to

dSKanter = dy* + ds7,, (3.4.24)

near the conformal boundary y = 0. In particular the Kéhler structure is smooth
and globally defined in a neighbourhood of this boundary. In this section we analyse
the case where M3 = S3. The gauge field A restricts to a one-form A on the
conformal boundary, but as we shall see the explicit representative (3.4.17) is in a
singular gauge. Correspondingly, since the boundary Killing spinor y is constructed
with the help of A, equation (3.3.19), the solution (3.4.22) to (3.4.23) is similarly in
a singular gauge. In this section we correct this by writing A as a global one-form
on My = S3.

The expression (3.4.17) for the restriction of A to the conformal boundary is of
course only well-defined up to gauge transformations. We may rewrite the expression

in (3.4.17) as
oca. 1 1 1 _
Al(o) = _Zw(1)<dw + o)) + Z—lﬁzw(o)dz - Z—lagw(o)dz : (3.4.25)

adding the superscript label ‘local’ to emphasise that in general this is only a local
one-form. The first term is —}Lw(l)a, which is always a global one-form on M3,
independently of the topology of M3. However, the last two terms are not globally
defined in general. We may remedy this in the case where M3 = S3 by making a

gauge transformation, adding an appropriate multiple of di:

1 i i
Ao = —qwmo +7 |dy + Bazwm)dz - Hégw(o)dz : (3.4.26)

This is then a global one-form on Ms =2 S3 if and only if the curvature two-form of the

connection in square brackets lies in the same basic cohomology class as do = d¢(q).
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Concretely, we write
~dap + i@zw(o)dz - iagw(o)dz —Ad)+B = yo+a, (3.4.27)
and compute

dB = —%azagw(o)dz ANdz = (w(Zl) + w(g)) e %dz Adz

(wiy + wz) volr (3.4.28)

A

where we used the Toda equation (3.3.5) and Taylor expanded. Since o is a global
one-form on M3 = S3. it follows that (3.4.26) is a global one-form precisely if «
defined via (3.4.27) is a global basic one-form, i.e. « is invariant under Ly, and

satisfies Jy_a = 0. In this case we have

1
/ oA\ —dB = / oANdo (3.4.29)
Ms g Ms

which may be interpreted as saying that [%ydB] = [do] € HZ ;. (M3) = R lie in the
same basic cohomology class. Indeed, this is the case if and only if %dB and do differ
by the exterior derivative of a global basic one-form.

The integral on the right hand side of (3.4.29) is the almost contact volume of
Ms:

Vol, E/ oNdo = / %UAVOIT = / %\/detgﬂ/f3 d*z . (3.4.30)
M3

This played an important role in computing the classical localised Chern-Simons
action in [32], which contributes to the field theory partition function on M. Using
(3.4.28), (3.4.29) and (3.4.30) we see that A in (3.4.26) is a global one-form if we

choose the constant v via

1
4y M

(i) +we) /det gu, d*x = Vol, . (3.4.31)
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We shall return to this formula in section 3.4.5

3.4.4 Global conformal Kahler structure

Recall that at the beginning of this section we assumed we were given a complete
self-dual Einstein metric with Killing vector K = 0y, of the local form (3.3.2). We
would like to understand when the conformal Kéahler structure, studied locally in
section 3.3.2, is globally non-singular. As we shall see, this is not automatically the
case. Focusing on the case of toric metrics on a four-ball (all examples in section 3.6
are of this type), with an appropriate restriction on K we will see that the conformal
Kéhler structure is indeed everywhere regular. It follows in this case that the Kéhler
spinor and instanton F' = %R are globally non-singular, and thus that the Killing
spinor € given by (3.3.22) is also globally defined and non-singular. Before embarking
on this section, we warn the reader that the discussion is a little involved, and this
section is probably better read in conjunction with the explicit examples in section
3.6. In fact the Euclidean AdS, metric in section 3.6.1 displays almost all of the
generic features we shall encounter.

The self-dual Einstein metrics of section 3.6 are all toric, and we may thus pa-

rameterise a choice of toric Killing vector K as
K =004, + b20,, , (3.4.32)

where we have introduced standard 27-period coordinates ¢1, (2 on the torus U(1) x
U(1). It will be important to fix carefully the orientations here. Since the metrics
are defined on a ball, diffeomorphic to R* = R? ¢ R? with U(1) x U(1) acting in the
obvious way, we choose 9, so that the orientations on R? induce the given orientation
on R* (with respect to which the metric has anti-self-dual Weyl tensor). This fixes
the relative sign of b; and by. Given that we have also assumed that K has no fixed
points near the conformal boundary, we must also have b; and by non-zero. Thus

b1 /by € R\ {0}, and its sign will be important in what follows.
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Since the self-dual Einstein metric is assumed regular, the one-form K° and its
exterior derivative dK” are both globally defined and regular. We introduce the
self-dual two-form

1

U= (dK)" = JK +#dK) (3.4.33)

and the invariant definition of the function/coordinate y in section 3.3 is given in
terms of its norm by
2 1

i 19[* = 50, w. (3.4.34)

The complex structure tensor for the conformal Kéhler structure is correspondingly
JH, = —yU* | (3.4.35)

where indices are raised and lowered using the self-dual Einstein metric. It is then an
algebraic fact that J? = —1. The conformal Kihler structure will thus be everywhere
regular, provided the functions y and 1/y are not zero. Of course y = 0 is the
conformal boundary (which is at infinity, and is not part of the self-dual Einstein
space). We are free to choose the sign when taking a square root of (3.4.34), and
without loss of generality we take y > 0 in a neighbourhood of the conformal boundary
at y = 0. Everything is regular, and in particular the norm of ¥ cannot diverge
anywhere (except at infinity), and thus y # 0 in the interior of the bulk M,. Tt
follows that y is everywhere positive on Mjy.

The Killing vector K is zero only at the ‘NUT’, namely the fixed origin of
R* =~ R? @ R%. At this point the two-form dK”, in an orthonormal frame, is a
skew-symmetric 4 X 4 matrix whose weights are precisely the coefficients by, by in

(3.4.32).1 Tt follows from the definitions (3.4.33) and (3.4.34), together with a little

1 This is perhaps easiest to see by noting that to leading order the metric is flat at the NUT,
so one can compute dK” in an orthonormal frame at the NUT using the flat Euclidean metric on
R? @ R2.
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linear algebra in such an orthonormal frame, that

1

_ 3.4.36
by + ba| ( )

YNUT =

The conformal Kahler structure will thus be regular everywhere, except poten-
tially where 1/y = 0. Suppose that 1/y = 0 at a point p € My \ {NUT}. Then
K =0y |, # 0, and thus from the metric (3.3.2) we see that ||K||*> = 1/(Vy?) |, # 0.
It follows that the function V' must tend to zero as 1/y? as one approaches p. We may
thus write V = -5 + O(1/y?), where ¢ = ¢(z, Z) is non-zero at p. Using the definition
of V in terms of w in (3.3.3) we thus see that d,w = % — % +0(1/y?). There are then
various ways to see that the corresponding supersymmetric supergravity solution is
singular. Perhaps the easiest is to note from the Killing spinor formula (3.3.22),

together with the fact that we may normalise (¢ = 1, we have

1
P -1
ele = 5 (1+v), (3.4.37)

which from the above behaviour of V' then diverges as we approach the point p. It
follows that the Killing spinor € is divergent at p, and the solution is singular.

The solutions are thus singular on M, \ {NUT} if and only if {1/y = 0} \{NUT} is
non-empty. Since ynut = 1/|b1 +bs|, the analysis will be a little different for the cases
b1/by = —1 and by /by # —1. We thus assume the latter (generic) case for the time
being. As in the last paragraph, let us suppose 1/y |,= 0. Due to the behaviour of V'
and w near p, it follows from the form of the metric (3.3.2) that p must lie on one of
the axes, i.e. at p; = 0 or at ps = 0, where (p;, ;) are standard polar coordinates on
cach copy of R* @ R* = R* = My, ¢ = 1,2."* This must be so because ds3;, |, ~ di?
but diy ~ dp; + dys is two-dimensional unless p; = 0 or p; = 0. In either case there
is then an S' 3 p locus of points where 1/y = 0, as follows by following the orbits of

the Killing vector 0, or 0

., respectively.

12Notice that when by /by = —1 in fact 1/y = 0 at the NUT itself, p; = ps = 0.
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To see when this happens, our analysis will be based on the fact that, since
the Killing vector has finite norm in the interior of My, one can straightforwardly
show that y diverges if and only if ||dy|| = 0. This is because ||dy||> = V/y? and
V=054t O(1/y?) when y diverges, as explained above. It is then convenient to
consider the function y restricted to the relevant axis, i.e. y |{p,=0}= ¥2(p2) or
Y |{po=0y= ¥1(p1). We have y,(0) = 42(0) = ynur > 0. Suppose that y;(p) (for either
i = 1,2) starts out decreasing along the axis as we move away from the NUT. Then
in fact it must remain monotonically decreasing along the whole axis, until it reaches
y = 0 at conformal infinity where p = oo. The reason for this is simply that if y;(p)
has a turning point then dy = 0, which we have already seen can happen only where
y diverges: but this contradicts the fact that y;(p) is decreasing from a positive value
at p =0 (and is bounded below by 0). On the other hand, suppose that y;(p) starts
out increasing at the NUT. Then since at conformal infinity y;(c0) = 0, it follows
that y;(p) must have a turning point at some finite p > 0. At such a point y will
diverge, and from our above discussion the solution is singular.

This shows that the key is to examine dy at the NUT itself. Recall that the
coordinate y is a Hamiltonian function for the Killing vector K, i.e. dy = —K _w.
From (3.4.35), we also know that w is related to the two-form ¥ = (de)Jr by
w = —y3¥, yielding dy = 3> K_ (de)Jr. At the NUT we may again use the polar
coordinates (p;, ;) for the two copies of R?, where the metric is to leading order the
metric on flat space. In the usual orthonormal frame for these polar coordinates,

using the above formulae we then compute to leading order

_(bl—ll)——lbg)Q sign(b1 + bg)pl

0

(dy)|vur =~ : (3.4.38)

_(lebr—ng)Q sign(b1 + bg)pg

0

Thus when by /by > 0 we see that y;(p) starts out decreasing at the NUT, for both
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1 = 1,2, and from the previous paragraph it follows that the solution is then globally
non-singular. On the other hand, the case by /by < 0 splits further into two subcases.
For simplicity let us describe the case where by > 0 (with the case by < 0 being
similar). Then when b;/by < —1 we have y(p) starts out increasing at the NUT,
which then leads to a singularity along the axis p; = 0 at some finite value of py; on
the other hand, when —1 < by /by < 0 we have that y;(p) starts out increasing at the
NUT, which then leads to a singularity along the axis p; = 0 at some finite value of
p1- Notice these two subcases meet where b /by = —1, when we know that 1/y = 0
at the NUT itself, py = ps = 0.

This leads to the simple picture that all solutions with b;/bs > 0 are globally
regular, while all solutions with b; /by < 0 are singular, ezcept when by /by = —1. In
this latter case y is infinity at the NUT. As one moves out along either axis y is then
necessarily monotonically decreasing to zero, by similar arguments to those above.
Thus the b;/by = —1 solution is in fact also non-singular, although qualitatively
different from the solutions with b;/b; > 0. One can show that, regardless of the
values of b; and by, the complex structure (3.4.35) is always the standard complex
structure on flat space at the NUT, meaning that when b, /by > 0 the induced complex
structure at the NUT is C?, while when b;/by = —1 the NUT becomes a point at
infinity in the conformal Kéhler metric, with the Kéhler metric being asymptotically
Euclidean. In particular the instanton is zero at the NUT in this case, and so is
regular there.

Notice that, for the regular solutions, since K is nowhere zero away from the NUT
we may deduce that also dy = —K uw is nowhere zero (as w is a global symplectic
form on My \ {NUT?}). In particular y is a global Hamiltonian function for K, and
in particular it is a Morse-Bott function on M. This implies that y has no critical
points on My \ {NUT}, and thus that ynyr is the mazimum value of y on Mj.
Moreover, the Morse-Bott theory tells us that constant y surfaces on My \ {NUT}
are all diffeomorphic to Mz = S3.

We shall see all of the above behaviour very explicitly in section 3.6 for the case
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when the self-dual Einstein metric is simply Euclidean AdS;. The more complicated
Einstein metrics in that section of course also display these features, although the
corresponding formulae become more difficult to make completely explicit as the

examples become more complicated.

3.4.5 Toric formulae

In this subsection we shall obtain some further formulae, valid for any toric self-dual
Einstein metric on the four-ball. These will be useful for computing the holographic
free energy in the next section.

We first note that for M3 = S3 with Reeb vector (3.4.10) the almost contact

volume in (3.4.30) may be computed using equivariant localisation to give

2 2
Vol, = / NP Loy (3.4.39)
Ms b1by

This formula also appeared in [32], although in the present paper we have been more
careful with sign conventions. One proves (3.4.39) by using equivariant localisation,
explained below, but we first need to rewrite the integral in (3.4.39) as an integral

on the manifold M. We define a two-form
w = 3d(o%0) , (3.4.40)

on My, where p is a choice of radial coordinate with the NUT at p = 0 and the con-
formal boundary at ¢ = co. Note how this form is similar to the symplectic structure
on a symplectic cone defined in section 2.4.4 of the last chapter. A straightforward

computation shows that the almost contact volume can be written
— 2/2 1 ~ ~
Vol, = — e ® 5@ NG . (3.4.41)

The minus sign arises here because the natural orientation on M3 defined in our set-
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up is opposite to that on the right hand side of (3.4.41). Specifically, y is decreasing
towards the boundary of My, so that dy points inwards from M3 = 0M,, while o is
increasing towards the boundary, with dp pointing outwards'®. One then evaluates

the right hand side of (3.4.41) using equivariant localisation.

Equivariant localisation

Before getting into the detail of the computation of (3.4.41), let us explain how
equivariant localisation works on a general even-dimensional manifold M. Let M be
a manifold of dimension 2n that admits a Riemannian metric g with a Killing vector
V for the Levi-Civita connection. The space of k-form over M is denoted A*M and

we define AM = @7_ A% M. The equivariant derivative is defined by
dy =d+ V. (3.4.42)
and is an operator that acts on AM. We say that o € AM is dy-closed if and only if
dya = 0. (3.4.43)

Note that any dy-closed form automatically satisfies Ly = d¥a = 0, where we
used the Cartan formula. The integral of any form o« € AM is defined by the
integral of its top form component. In other words, any o € AM is given by a =

a® 4 a2 4 4+ a® 40O with o® € A*M and its integral over M is defined

by
/ o = / o (3.4.44)
M M

13Notice that we could have avoided this by choosing y to be strictly negative on the interior of
My, rather than strictly positive.
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We can now state the Berline-Vergne theorem. If the Killing vector V' has a discrete

zero set, then for any dy-closed form « we have the following localisation formula

NO

/ a = 20" Y ) (3.4.45)
M petaero(v))
where A(p) is the product of the weights of V' at p.

Let us now apply the localisation formula to the integral in (3.4.41). We define
the form « by

2 2 1
a = —exp [—% —i—cb] = —e /2 <1 +w+ 5&)/\&)) : (3.4.46)

Using (3.4.9) and the definition of @, we have K & = —d(g—;) and it is easy to show
that « is equivariantly closed under dg. The NUT is the only point where K has
a vanishing action and the corresponding weights are b; and b,. The Berline-Vergne

theorem then gives

1
/ a = —/ 6792/2—(1)/\@:\/'010
My My 2
—p*/2 271)2
= —(2m) eb 7 :_(b? : (3.4.47)
192 | o 102

where we have used (3.4.41) in the first line and the fact that the NUT is located at
p = 0 in the second line. This then proves (3.4.39) for the almost contact volume!4.

Finally, let us return to the equation (3.4.31). In fact there is another interpreta-
tion of the constant v, in terms of the charge of the Killing spinor under K. To see
this, recall that the solution (3.4.22) to the three-dimensional Killing spinor equation
(3.4.23) is simply constant in our frame, but that was for the case where the gauge
field A is given by (3.4.25), which as we saw in section 3.4.3 is always in a singular

gauge on Mz = S The gauge transformation Ay — A(g) + vde that we made in

14This formula is known as the Duistermaat-Heckman formula when & is a symplectic form, i.e.
when o is a contact form.
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(3.4.26) to obtain a non-singular gauge implies that the correct global spinor x has

a phase dependence

: X0
yeobal = v : (3.4.48)

X0
where g is a constant complex number. Since the frame is invariant under K = 0,
we thus deduce that ~ is precisely the charge of the Killing spinor ¢ under K. On
the other hand, the total four-dimensional spinor is constructed from the canonical
spinor ¢ on the conformal Kéhler manifold, via (3.3.22). Thus ~ is also the charge of
¢ under K.

Let us now explicitly show how ~ is related to b; and by when the metric is
regular, i.e. by/by > 0 or by/by = —1. When b;/by > 0 the associated complex
structure identifies My = R? ® R? = C2. The orientation in which the Weyl tensor is
anti-self-dual is the same as the canonical orientation on C?. One can then introduce
standard complex coordinates z; = p;e¥i, i = 1,2, on C2. The spinor ¢ being the
canonical spinor that exists on any Kéhler manifold we have

i

€=¢€, i = 1,2. (3.4.49)

Lo 5

.

Denoting the complex structure tensor by J we also have that J(V19,) = 9y = K.
Since y is decreasing as we move away from the origin of C?, where recall that the
origin is at y = ynyur > 0, this means that for b, > 0 and by > 0 we must then
identify ¢; = —1;, where ¢; are the coordinates on U(1) x U(1) in (3.4.32). This
is because for r any radial coordinate on C* we have J(rd,) = a19y, + aa0y, where
necessarily a1, as > 0 (that is, the Reeb cone is the positive quadrant in R? — see, for
example, [80]). On the other hand for b; < 0 and by < 0 we instead have p; = +,
i=1,2.

The other non-singular case is by /by = —1. This is qualitatively different from
the case b;/bs > 0 in the last paragraph, as here ynur = oo (3.4.36). Moreover,
the origin y = ynur of My = R? @ R? is now identified with the point at infinity
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in C2, rather than the origin, and the origin is at y = 0. One can see this from
the conformal Kéhler metric ds&,, .. = y*dsipg, which is asymptotically Euclidean
around y = yyyur. Thus now y increases as we move away from the origin and V=19,
has the correct orientation for a radial vector on C2. We deduce that for b; < 0 and
by > 0 we have p; = —1, 3 = +19, while for by > 0 and b, < 0 we instead have
o1 = +i1, P2 = —to.

Putting all of the above together, we may compute the charge of the Killing spinor

e under the supersymmetric Killing vector K = 0y:

Le = iye, (3.4.50)
where
v = —sign by i & [b] : (3.4.51)
by 2

This immediately allows us to write down that

_ |b1] + |2

el 5

(3.4.52)

Now that we have an expression for A in a global gauge and that the value of ~ is

known, we can turn to the computation of the free energy.

3.5 Holographic free energy

In this section we compute the regularised holographic free energy for a supersymmet-
ric self-dual asymptotically locally Euclidean AdS solution defined on the four-ball,
deriving the remarkably simple formula (3.1.2) quoted in the introduction.

The computation of the holographic free energy follows by now standard holo-

graphic renormalisation methods [81,82]. The total on-shell action is

[=IE% 4 17 4[5 4 15 (3.5.1)
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Here the first two terms are the bulk Euclidean supergravity action (3.2.7)

1
[SUGRA _ pmav | pF e /M (R+6—F?) \/detgd'z , (3.5.2)
4

evaluated on a particular solution with topology M,. The boundary term IE{Y in

(3.5.1) is the Gibbons-Hawking-York term, required so that the equations of motion
(3.2.6) follow from the bulk action (3.5.2) for a manifold M, with boundary. This
action is divergent, but we may regularise it using holographic renormalisation. In-
troducing a cut-off at a sufficiently small value of y = § > 0, with corresponding

hypersurface Ss = {y = d} = M3, we have the following total boundary terms

grav grav
[bdry + I ct -

/ (=K +2+ iR(h)) Vdet hd’z . (3.5.3)
87TG4 Ss

Here R(h) is the Ricci scalar of the induced metric h;; on S5, and K is the trace
of the second fundamental form of Sy, the latter being the Gibbons-Hawking-York

boundary term. It is convenient to rewrite it using

KVdethd®s = L, | Vdethd®z (3.5.4)

Ss Ss

where n is the outward pointing normal vector to the boundary Ss. In the rest of
this section we evaluate the total free energy (3.5.1) in the case of a supersymmetric
self-dual solution on the four-ball M, = B* = R*.

We deal with each term in (3.5.1) in turn, beginning with the gauge field contri-

bution

1
IF = F?\/detgdlz = — / FAF :/ Aoy A Flgy . (3.5.5
167rG4 / ¢ v 871Gy i, oy (0) 0 - ( )

Here in the second equality we have used the fact that x4,F = —F' is anti-self-dual,
while in the last equality we used the fact that on the four-ball M, = B* =~ R*

the curvature F' = dA is globally exact. Thus we may apply Stokes’ theorem with
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M3 = OMy, recalling that the natural orientation on Mj3 is induced from an inward-
pointing normal vector'®. Notice also that here the gauge field action is already finite,
so there is no need to realise the conformal boundary Mj3 as the limit lims_,o S5. Next
we compute the integrand in (3.5.5) using the global form of A« (3.4.26). Recall
that this reads

1 1
Ao =—qwmotydy+ B = —wao +y0 +a, (3.5.6)

where in particular « is a global basic one-form. We then compute

3

A Yy 1 7. 2
(0) A F(O) = 50’ A VOlT — Zw(l)a ANdB — gw(l)a A VOIT
1
+yo NdB — 10 ANdway Ao . (3.5.7)

When we integrate this over Mj, the last term may be integrated by parts, giving an
integral that is equal to the integral of —71110(1)0 A da, which then combines with the
first line of (3.5.7). On the other hand, the first term on the second line of (3.5.7)
may be evaluated in the U(1) x U(1) toric case using (3.4.28), the integral (3.4.31)
and the formula (3.4.52) for |y|. This leads to

bil+ [Ba)? |1 Wy
o= o= b / Vdet ga, &
G dbiby | 8nGy Jy, 32 VOO

1 1
871Gy /M 5 (W + waywe)v/det gu, (3.5.8)
3

Notice that the first term closely resembles the free energy appearing in (3.1.2) — we
shall see momentarily that this combines with a term coming from the gravitational
contribution.

We turn next to the bulk gravity part of the action, which when evaluated on-shell

15Concretely, the integral over y is fyONUT dy, where we chose the convention that yxyr > 0.
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18
1
gy = — 6voly . 3.5.9
bulk 167Gy /M;f VOly ( )

Here M} is cut off along the boundary S5 = {y = d} = M3, which is necessary as the

volume is of course divergent. The volume form of interest is
1
voly = —dy A (dy + ¢) A Ve 2idz Adz . (3.5.10)
Y
A computation reveals that this may be written as the exact form
—3voly =d7T | (3.5.11)
where we have defined the three-form
1 1 wa- _
T = 2—y2(dw+¢)/\d¢+ﬁ(dw+¢)/\‘/e 2idz A dZ . (3.5.12)

We may then integrate over M7 using Stokes’ theorem. To do this let us define o
to be the geodesic distance from the NUT. We then more precisely cut off the space
also at small p > 0 and let p — 0, so that we are integrating over Mf’g. The form T
may be written

1 1
T:Q—yQ(d¢+¢)/\d¢+§(dw+¢)Aw, (3.5.13)

where w is the conformal Kéahler form. As argued in section 3.4.4, when ynuyr is finite
w is everywhere a smooth two-form, and thus in particular in polar coordinates near
the NUT at o = 0 it takes the form w ~ odo A 31 + 05> to leading order, where /3
and [, are pull-backs of smooth forms on the S* = S ;1 at constant ¢ > 0. Because
of this, the second term in (3.5.13) does not contribute to the integral around the

NUT (if ynur = oo this term also clearly does not contribute) but does contribute
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around y = 0 — 0. Notice that Stokes’ theorem allows to write

0:/M4 [(d¢+¢)Ad¢] /Mg_(dergzﬁ/\dqb /NUwaJr(p)Ad(b (3.5.14)

—0

which then gives

/ (de) + ¢) Adp = (dy+¢) Adp =Vol, = — @) (3.5.15)
S 0

Mg: b] b2

3
NUT
where we have used the almost contact volume (3.4.39). Using the fact that ynyr =

1/]b1 + b2| one thus obtains

(27)[by + bo|? / )
L= 253 T 82 t 5.1
/M5 o 6b1by + =0 [353 + 452 ] \/Wd (3.5.16)
4 3
so that
by + by 1
L = - o det Br
bulk 2G4 201 by * 81y (53 Myf \/m
3 1
Y det gy, &z . 5.1
+32’/TG4 52 Mgzo w(l)\/m X (3 5 7)

In particular notice that the O(0) term at the conformal boundary is zero. This

follows from the identity

/ (wiy) + Bwywe +we) Vdet g, d*r =0, (3.5.18)
M3

which arises from Taylor expanding the Toda equation (3.3.5) as

0 = 828210(0) + % (w(Ql) + w(g))

+y [0.0:w() + €*© (w(l) + 3wmwe) +we)] +OY?) . (3.5.19)

In particular, because w(i) is a smooth global function on M3, the second line implies

(3.5.18).
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It remains to evaluate the boundary terms Ify7 + 15" . After a computation, and

again using (3.5.18), one obtains

1 3
[E e Vdet gap Bz — — 2 /det gap, d3
bary et 87 G463 /M_ CIMs C T 30 02 /M_ WV aet gu, 4

1 , .
256G, /M (3uwiy + 4waywe ) Vdet g, & (3.5.20)

Adding (3.5.20) to the bulk gravity term (3.5.17) we see that the divergent terms
do indeed precisely cancel, and further combining with (3.5.8) we see that the terms
involving the integrals of w;) also all cancel.

The computations we have done are valid only for globally regular solutions, and
recall these divide into the two cases by /by > 0, and b; /by = —1. In the first case the
first term in (3.5.8) combines with the first term in (3.5.17) to give

T ([ba] + [o])?
[=—. 3.5.21
2G,  A|bibs| (3:5.21)

where notice |by+by| = |b1|+|b2|. On the other hand the isolated case with by /by = —1
has b; + by = 0, so that the free energy comes entirely from the first term in (3.5.8),
which remarkably is then also given by the formula (3.5.21). Thus for all regular
supersymmetric solutions we have shown that (3.1.2) holds and is indeed equal to

the free energy (3.1.1) computed using localisation of a supersymmetric field theory

on M3.

3.6 Examples

In this section we illustrate our general results by discussing three explicit families
of solutions. These consist of three sets of self-dual Einstein metrics on the four-ball,
studied previously in [26,29-31]. We begin with AdS; in section 3.6.1. Although
the metric is trivial, the one-parameter family of instantons given by our general

results is non-trivial, and it turns out that this family is identical to that in [26].
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The solutions in sections 3.6.2 and 3.6.3 each add a deformation parameter, meaning
that the metrics in each subsequent section generalise that in the previous section.
Particular supersymmetric instantons on these backgrounds were found in [29-31],
but our general results allow us to study the most general choice of instanton, leading
to new solutions. Furthermore, in section 3.6.4 we indicate how to generalise these

metrics further by adding an arbitrary number of parameters.

3.6.1 AdS,

The metric on Euclidean AdS, can be written as

2

d
dspaas, = TQQ + ¢* (d9? + cos® Idp + sin® Ide3) . (3.6.1)
q

Here ¢ is a radial variable with ¢ € [0,00), so that the NUT is at ¢ = 0 while the

conformal boundary is at ¢ = oo. The coordinate ¥ € [0, 7], with the endpoints
being the two axes of R? @ R? = R*. The AdS, metric is of course both self-dual and
anti-self-dual.

Writing a general choice of Reeb vector field as K = 0,0,, + b20,,, as in our
general discussion (3.4.32), the function y is then defined in terms of K via (3.4.33)

and (3.4.34). Using these formulae one easily computes

y(g,v) = ! : (3.6.2)

\/(b2+b1\/q2 +1)2cos2 ¥ + (by + byy/q? + 1)2sin? 9

Notice that indeed ynyr = 1/]b1 + bal, in agreement with (3.4.36). Using (3.6.2) one

can also verify the general behaviour of section 3.4.4 very explicitly. In particular we
see the very different global behaviour, depending on the sign of by /by. If by /by > 0
then 1/y is nowhere zero, while if b, /by < 0 instead 1/y has a zero on M,. More
precisely, if —1 < by/by < 0 then 1/y = 0 at {9 = 0,q = /b3 — b3/|b1|}, while if
bi/by < —1then 1/y =0 at {¢ = Z,q = /b7 — b3/|b2|}. These are each a copy of S*

at one of the ‘axes’ of R? @ R?, at the corresponding radius given by ¢. In the special
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case that by = —by we have 1/y = 0 at the NUT itself, where the axes meet. These
comments of course all agree with the general analysis in section 3.4.4, except here
all formulae can be made completely explicit.

We thus indeed obtain smooth solutions for all b; /by > 0, as well as the isolated
non-singular solution with b; /by = —1. In fact it is not difficult to check that the
former are precisely the solutions first found in [26], where the parameter b* = by /by .

To see this we may compute the instanton using the formulae in section 3.3, finding

(b T) dont (b4 b/ T) e
2\/(b2 +biy/q2 + 1)2cos2 9 + (by + bar/q? + 1)2sin? ¥

, (3.6.3)

which agrees with the corresponding formula in [26]. In particular one can check
that this gives a regular instanton when b; /by > 0, with the particular cases that
b1 /by = +1 giving a trivial instanton, and correspondingly the conformal Ké&hler
structure is flat. We shall comment further on this below. Moreover, one can also
check that the singular instantons with b /by < 0 are singular at precisely the locus
that 1/y = 0, again in agreement with our general discussion.

In this case we may also compute all other functions appearing in sections 3.3,

3.4 and 3.5 very explicitly. For example, we find

V(g 9) = (bo + b1y/q® + 1)% cos® ¥ + (b1 + bor/q? + 1)?sin® ¥ (364
R q2(b? cos? ¥ + b3 sin® ¥)) ’ o

while the functions wgy and we) on dMy = My = S® appearing in the free energy
computations are given by
—4by1by —2 (3b3b% + b cos® ¥ + b3 sin® V)

= . (3.6.5
Vb2 cos? 9 + B2sin? 0 v b? cos? ¥ + b3 sin? ¥ ( )

wa) =

Using these expressions one can verify all of the key formulae in our general analysis
very explicitly. For example, the integrals in (3.4.39), (3.5.8), (3.5.17) and (3.5.20)

are all easily computed in closed form.
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Finally, let us return to discuss the special cases by /by = £1, where recall that
the instanton is trivial and the conformal Kéhler structure is flat. The latter is thus
locally the flat Kihler metric on C?, but in fact in the two cases by /by = +1 the
Euclidean AdS, metric is conformally embedded into different regions of C2. Notice
this has to be the case, because the conformal factor y of the by /by = +1 solution has
ynur = 1/(2]b1|), while for the b; /by = —1 solution instead yxyur = co. We may see

this very concretely by writing the flat Kdhler metric on C? as
dsj,, = dR* + R® (d192 + cos® ¥dep? + sin? ﬁd@%) ) (3.6.6)

In both cases the change of radial coordinate to (3.6.1) is

2R

q(R) = o1 (3.6.7)

However, for the by /by = 41 case the range of R is 0 < R < 1, with the NUT being
at R = 0 and the conformal boundary being at R = 1; while for the b; /by = —1
case the range of R is instead 1 < R < oo, with the NUT being at R = oo (and the
conformal boundary again being at R = 1). In particular the two conformal factors

are

y(R) = 52— |R* — 1] . (3.6.8)

2[b1 |

The two solutions by /by = +1 thus effectively fill opposite sides of the unit sphere
in C2, and because of this they induce opposite orientations on S3. Again, this may
be seen rather explicitly in various formulae. For example, w(y = F4|bi| in the
two cases, so that the boundary Killing spinor equation (3.4.23) on the round S3
becomes!® respectively v§3) X = :F%|b1|%'x, where one can take the gamma matrices

to be the Pauli matrices 7; = 7; in an orthonormal frame.

16The gauge field Ay = %(dgpl + dgs) can be gauged away and that is why it does not appear
in the Killing spinor equation.
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3.6.2 Taub-NUT-AdS,

The Taub-NUT-AdS,; metrics are a one-parameter family of self-dual Einstein metrics

on the four-ball, and have been studied in detail in [29,30]. The metric may be written

as
r?—s? 45%Q(r
dsi = a0 dr? 4+ (12 — ) (u? +ul) + ﬁggug , (3.6.9)
where
Qr) = (r Fs)’[1+ (r ¥ 5)(r £3s)] (3.6.10)

and w1, ug, uz are left-invariant one-forms on SU(2) ~ S3. The latter may be written

in terms of Euler angular variables as
up + iug = e7*(df + isin fdy) , us = dg+ cosfdy . (3.6.11)

Here ¢ has period 4w, while 6 € [0, 7] with ¢ having period 27. The radial coordinate
r lies in the range r € [s,00), with the NUT (origin of the ball = R?) being at r = s.
The parameter s > 0 is referred to as the squashing parameter, with s = % being
the Euclidean AdS,; metric studied in the previous section. Indeed, the metric is

asymptotically locally Euclidean AdS as r — oo, with

d 2
ds? ~ S r?(u 4 uj + 4s%u3) | (3.6.12)

r2
so that the conformal boundary at r = oo is a biaxially squashed S3.

Using the results of this chapter we may write a general choice of Reeb vector
field as K = (b1 + b2)0, + (by — b)0,, as in our general discussion (3.4.32), and the
function y is then defined in terms of K via (3.4.33) and (3.4.34). Using these one

computes

= [2(by = b2)(r — 8)s + (b1 + b)) (1 + 2(r — s)s) cos 6]2

y(r,0)
+(by 4+ ba)? [1 + (r — s)(r + 35)] sin® 6 . (3.6.13)
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Notice that indeed yxuyr = lim, s y(r,8) = 1/|by + ba|. We see that if by /by > 0 or
b1/by = —1 then 1/y is indeed never zero (except at the NUT in the latter case),
as expected. In this way we obtain a two-parameter family of regular supersymmet-
ric solutions, parametrised by the squashing parameter s and by /by. One can also
compute explicitly the corresponding instanton F' for a general choice of s and by /bs.
This was done in [2] and the expression for F' is not reported here. In the remainder
of this subsection we shall instead discuss further some special cases, making contact
with the previous results [29, 30].

While the Taub-NUT-AdS metric (3.6.9) has SU(2) x U(1) isometry, a generic
choice of the Killing vector K = (b + b2)0, + (b1 — b2)0. breaks the symmetry of
the full solution to U(1) x U(1). In particular, this symmetry is also broken by the
corresponding instanton A. On the other hand, in [29,30] the SU(2) x U(1) symmetry
of the metric was also imposed on the gauge field, which results in two one-parameter
subfamilies of the above two-parameter family of solutions, which are 1/4 BPS and
1/2 BPS, respectively. In each case this effectively fixes the Killing vector K (or

rather the parameter by /by) as a function of the squashing parameter s.

1/4 BPS solution: This solution is simple enough that it can be presented in
complete detail. The coordinate transformation to the (3.3.2) form for the 1/4 BPS
solution reads

r—s = 1/y, —2su3 = dv+¢, (3.6.14)

and

r2 _ g2

Q(r)

POt = VL) =¥V (3615)

Notice immediately that at the NUT r = s we have 1/y = 0, so that this solution
must have b; = —by — we shall find this explicitly below. The metric (u? + u3) is

diffeomorphic to the Fubini-Study metric on CP' 22 S

4dzdz
uf%—uQ =<

2 = a+p? (3.6.16)
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The metric functions then simplify to

1+ 2sy

B 1+ 4sy + 12
o l4dsy+y2 ]

R (3.6.17)

w(y, z,z) = log

V(y)

and it is straightforward to check these satisfy the defining equation (3.3.3) and Toda

equation (3.3.5). The conformally related scalar-flat Kéhler metric is

14 2sy 45%(1 + 4sy + y?)
2 _ 2 2, .2 2
dsKanter = H—Ty—l—y?dy + (14 2sy)(uy + u3) + 125y U5 (3.6.18)
with Kéhler form

w=—dy A2suz + (1 4+ 2sy)us ANug = —d[(1+ 2sy)ug] . (3.6.19)

Using the formula (3.3.6) for the gauge field A, we compute
A=t o) =5, ¢ (3.6.20)

= —(4s* — U ure gauge 6.
2 r+s 3 p gauge ,

which we see reproduces the 1/4 BPS choice of instanton of [30]'". The supersym-
metric Killing vector is K = 0y = —2%(1 and so generates the Hopf fibration of S3.

Since ¢ = @1 — @Yo, © = 1 + o we hence find

1
by = —by = —— 3.6.21
1 2 As ) ( )
which using (3.1.2) yields
7r
I = —. 3.6.22
1/4BPS = 5 ( )

This formula matches the result of [30].

1"Notice that in [30] the opposite orientation convention was chosen, so that the instanton in [30]
is self-dual, rather than anti-self-dual. Recall also from the discussion above equation (3.3.6) that
the overall sign of the instanton is correlated with the sign of the supersymmetric Killing vector K.
Here K = —3-0,, which is minus the expression in [30], hence leading to the opposite sign for the
instanton gauge field A.
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1/2 BPS solution: The Taub-NUT-AdS metric (3.6.9) also admits a 1/2 BPS
solution [29,30]. We hence have two linearly independent Killing spinors, which may

be parametrised by an arbitrary choice of constant two-component spinor x) =

€ C?\ {0}. The corresponding Killing vector is given by the unlikely expres-

sion

K = (2s+V4s?2—1) [ZIm [€pg)ds + (Ip|* — |al” + 2Re [e*pg] cot 6) 84 (3.6.23)

+ [(\p|2 +1q/?) (21—3 — 25 — /45?2 — 1)) — 2Re [epg](2s + V452 — 1) csc 8} o, .

Since multiplying x () by a non-zero complex number A € C* simply rescales K by
||, this leads to a CP' family of choices of Killing vector K in this case. Of course,
the vector (3.6.23) is not toric for generic choice of x(y). Nevertheless, one can still
compute the various geometric quantities in section 3.3. In particular one can check

that the formula (3.3.15) for the instanton gives

uz + pure gauge , (3.6.24)

A:sv482—1r18
-

S

for any choice of K in (3.6.23), which agrees with the expression in [29,30]. Notice
that the instanton is invariant under the SU(2) x U(1) symmetry of the metric, even
though a choice of Killing vector K breaks this symmetry. Indeed, in this case the
conformal factor y = y(r, #) for toric solutions given by (3.6.13) depends non-trivially
on both 7 and 6, thus also breaking the SU(2) symmetry of the underlying Taub-
NUT-AdS metric. This is to be contrasted with the 1/4 BPS solution, where instead
(3.6.13) reduces simply to y = y(r) = 1/(r — s) (see (3.6.14)).

The toric choices of K for these 1/2 BPS solutions correspond to the poles of the

CP! parameter space. For example, choosing p = 1, q = 0 above gives

K= (25 + @) 0, + (QL 25— VAs? — 1) o, . (3.6.25)
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so that
1 1
bi=—, by = ——+25+vAs2—1. (3.6.26)
4s 4s
The free energy (3.1.2) is thus
2ms?
J = 3.6.27
G4 ) ( )

which of course matches the result obtained in [30].

3.6.3 Plebanski-Demianski

The Taub-NUT-AdS metric has been extended to a two-parameter family of smooth
self-dual Einstein metrics on the four-ball in [31], which lie in the Plebanski-Demianski
class of local solutions [83] to Einstein-Maxwell theory. We will henceforth refer to

the solution of [31] as ‘Plebanski-Demianski’. The metric may be written as

P(q) P(p) ¢ —p ¢ —p?
ds?, = dr + p*dv)? — dr + ¢Adv)? + dg® — dp?,
T e T g T gy
(3.6.28)
where
P(x) = (x = p1)(x — p2) (= — ps)(z — pa) - (3.6.29)

The roots of the quartic P(z) can be expressed in terms of the two parameters of the

solution, a and v, as

1 1
o= —§—v1+a2—v2, Ps =35
1 1

_a7

The coordinate p € [ps, p4] is essentially a polar angle variable, while g € [p4, 00) plays
the role of a radial coordinate, with the conformal boundary being at ¢ = oo. The
NUT /origin of R?* is located at p = p3, ¢ = ps. The Killing vectors 0., 9, generate the

U(1)? torus symmetry of the solution, with the coordinates related to our standard
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2m-period coordinates ¢y, @9 on U(1)? via

2p3 2p]
T = — ,
P,(p3)g01 P,(p4)902
2 2
v = — + . 3.6.31
P,(pg)gpl P,(p4)302 ( )

In order that the metric is smooth on the four-ball the parameters must obey v? >
2|a|, with the a = 0 limit being the Taub-NUT-AdS metric of the previous section,
and further setting v = 1 one recovers Euclidean AdS, (we refer the reader to [31]
for further details).

It is straightforward, but tedious, to express the metric (3.6.28) in the form (3.3.2),

with an arbitrary choice of toric Killing vector K = b,0,, + b20,

.- For the special

case of the Killing vector/instanton in the solution of [31] the change of coordinates
was worked out in [2].

In the (7,v) coordinates an arbitrary Killing vector may be written as

K =b.0.+b,0, (3.6.32)

where

25, _ 2P 2 2

bT: 7 b 5 bV = -
P (ps) P (p4) ?

by . (3.6.33)

Using (3.4.33) and (3.4.34) one can calculate

b _ bt 1 2P(0) _ )
y(p.q)? 4@2—p%2{ <q_p P(®>(@=+mp) (3.6.34)
B (qu—(];) ”’m) (b +b,4%) | — 40P(@)P (@) +p>2} .

Notice that this is a sum of two non-negative terms. Furthermore, these terms may

vanish only when evaluated at the roots p = p3, p = ps or ¢ = p4, which correspond
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to the axes of R* = R?2 @ R?. Let us calculate these limits:

li 1 o (bl + bg)vz + 2ab1 + b2(2q — ]_) 2

pops y: v2 + 2a ’
1 2_9 2¢—1)\"

fm L = (bt = 20k 0= D) (3.6.35)
p—pa Y v?2 — 2a

. 1 (bl + bg)UQ - 2ab2 + b1(2p - 1) 2

lim — = )
q—pa Y> v2 — 2a

A careful analysis of the above limits shows that 1/y does not vanish, and hence
the metric is regular, whenever b; /by > 0, while 1/y = 0 only at the NUT when
b1/bs = —1. On the other hand, the solution is indeed singular if b; /by < 0 and
b1 /by # —1. Notice that we also easily recover the formula (3.4.36) for the conformal
factor at the NUT: lim, ., gp, ¥ = 1/]b1 + bal.

In [31] particular supersymmetric instantons (particular choices of by /b, for fixed a
and v) were studied for this two-parameter family of metrics, which by construction lie
within the Plebanski-Demianski ansatz. The results of this subsection extend these
results to a general choice of instanton on the same background, parametrised by
by /b, leading to a three-parameter family of regular supersymmetric solutions. The
general expression for this instanton is lengthy, but computable, and the interested

reader may find the details in [2].

3.6.4 Infinite parameter generalisation

In each subsection we have generalised the metrics of the previous subsection by
adding a parameter, and one might wonder whether one can find more general self-
dual Einstein metrics on the four-ball. In fact from the gauge-gravity point of view
it is more natural to ask the question of which conformal structures on S® may
be filled by a self-dual Einstein metric. Of course one expects this problem to be
overdetermined, and some general results in this direction appear in [84]. Roughly

speaking, as long as the conformal class of the boundary metric [ggs] is sufficiently
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close to the round metric [¢%;], then one can write [gss] = [9%] 4 [9ds] + [9gs], where
[9%] + [9%] bound self-dual/anti-self-dual Einstein metrics on the four-ball B*, re-
spectively. Equivalently, viewed as self-dual fillings these induce opposite orientations
on S3. Another important general result is that these fillings are unique: that is, two
self-dual Einstein four-manifolds (M. f), gM), ( f), ¢?) inducing the same conformal
structure on My = M, are isometric [85].

However, starting with a particular conformal three-metric and trying to construct
a global filling explicitly is likely to be very difficult. In order to construct further
explicit examples one might instead attempt to directly generalise the Plebanski-
Demianski metrics of the previous subsection. In [79] the authors studied the general
local geometry of toric self-dual Einstein metrics, which thus includes all the solutions
(locally) above. In appropriate coordinates the metric takes the form
4p2(.7:3 + F2) — F?

4F?

4
P4 (F2 + F2) — )

can can 2 can can can can 2
+(vyS™ — pyg™)de)” + (Y5 dr + (pyS™ + vy — Y )de) ]

ds3z + [(yzandy

2 _
dstoric -

(3.6.36)
where we have defined
Yy (p,v) = /pF(p,v) , (3.6.37)
and
dp? + dov?
ds3. = g (3.6.38)

is the metric on hyperbolic two-space H?, regarded as the upper half plane with
boundary at p = 0. The metric (3.6.36) is entirely determined by the choice of
function F = F(p,v), and the metric is self-dual Einstein if and only if this solves

the eigenfunction equation

3
MpF=1F = FptFu = 5F, (3.6.39)

4p?
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where F, = 0,F, etc. Unlike the Toda equation (3.3.5) this is linear, and one may

add solutions. In particular there is a basic solution

P 0= AP
F(p,v;\) = , 3.6.40
( ) NG ( )
where A is any constant. Via linearity
Fp,v) = Zai]:(ﬂ7v; Ai) (3.6.41)
i=1

also solves (3.6.39), for arbitrary constants «;, A;, i = 1,...,m. We refer to (3.6.41)
as an m-pole solution. Of course, one could also replace the sum in (3.6.41) by an
integral, smearing the monopoles in some chosen charge distribution.

Thus the local construction of toric self-dual Einstein metrics is very straightfor-
ward — the above gives an infinite-dimensional space. However, understanding when
the above metrics extend to complete asymptotically locally hyperbolic metrics on
a ball (or indeed any other topology for M) is more involved. In [2] some steps
were taken in this direction by showing that the general 2-pole solution is simply Eu-
clidean AdS,, while the general 3-pole solution is precisely the Plebanski-Demianski
solutions of section 3.6.3. This requires taking into account the symmetries of (3.6.36)
(in particular the PSL(2,R) symmetry of H?), and then making a number of rather
non-trivial coordinate transformations. Some work has also been done on global
properties of the metrics (3.6.36) in [86], although the focus in that paper is on con-
structing complete asymptotically locally Euclidean scalar-flat Kéhler metrics, which
are conformal to (3.6.36). It remains an interesting open problem to understand when

the general m-pole metrics extend to complete metrics on the ball.



Chapter 4

M2-brane duals of Wilson loops on

three manifolds

4.1 Introduction and summary

In the second chapter of this thesis, we showed how to compute Wilson loops on
S3 and find their M2-brane gravity duals in AdS; x Y7 and compute their actions
when Y7 is any toric Sasaki-Einstein manifold. In the last chapter, we showed how
the sphere S® can be replaced by any three-manifold M; with S® topology that
allows for supersymmetric theories and how this yields a supergravity dual of the
form M, x Y; where M, is a self-dual Einstein four-manifold with metric (3.3.2)
and background gauge field (3.3.6). At this point, a question naturally arises: is
it possible to reproduce the Wilson loop/M2-brane computation of chapter 2 in the
more general background of chapter 3 and match their respective actions, hence
verifying the gauge/gravity duality beyond the matching of the free-energy for non-
trivial M3 = OM, = S manifolds? The answer to that question is positive and it is
what we will look at in this chapter.

The partition function Z of three-dimensional N’ = 2 supersymmetric gauge the-

ories on M3 depends on the background geometry only through the supersymmetric

106
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Killing vector field K. As explained in the last chapter, when Mj is diffeomorphic to
S?% with the standard action of U(1) x U(1) on S* C R? ¢ R?, one finds the large N
free energy F = —log Z satisfies

2
N (AR )

- Fround 4.1.1

where Frouna is the large N limit of the free energy on the round three-sphere, which
scales as N3/2. In the last chapter the field theory result (4.1.1) was reproduced
in a dual computation in four-dimensional gauged supergravity. Here M; = S3
arises as the conformal boundary of a self-dual Einstein four-manifold M}, where the
supersymmetric Killing vector K also extends over M4. The asymptotically locally
Euclidean AdS metric on My is conformally Kéhler, and supersymmetry requires one
to turn on a graviphoton field A proportional to the Ricci one-form of this Kéhler
metric. A remarkable feature of the computation of the holographic free energy in
section 3.5 is that one does not need to know the form of the Einstein metric on M,
explicitly — rather (4.1.1) is proven for an arbitrary such metric.

In chapter 2 the vacuum expectation values of BPS Wilson loops on the round
sphere were computed for a variety of gauge theories, and matched to regularised
M2-brane actions in AdS; x Y;7. Here the choice of internal space Y7 determines
the gauge theory on Mj3. In this chapter however, we extend these computations to
general supersymmetric backgrounds Mz = 0M,. A Wilson loop is BPS if it wraps
an orbit of K, and we will find that the large N Wilson loop VEV satisfies

lim log (W) = Sy, b, - 10g ( Wiound) » (4.1.2)

N—oo

where
Sy by = | 1| | 2|

by = (4.1.3)

Here (W,ouna) denotes the large N limit of the Wilson loop on the round sphere,
given by (2.2.1) or equivalently (2.2.5), and 27/ denotes the length of the orbit of K.
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Such orbits always close over the poles of S3, i.e. at the origins of each copy of R?
in S? C R? & R?, where the lengths are then ¢ = 1/|b;| and £ = 1/|by]|, respectively.
For these Wilson loops (4.1.2) becomes a function of b; /by, exactly as in (4.1.1). The
supergravity dual configurations are given by M2-branes wrapping a supersymmetric
copy of the M-theory circle in Y7 and a complex curve ¥y C My, with boundary
0%5 C Mj3 being the Wilson line. Identifying the logarithm of the VEV with minus
the holographically renormalised M2-brane action, we prove that (4.1.2) holds in
general, thus verifying the matching of this observable in AdS/CFT in a very broad
class of backgrounds.

The outline of the rest of this chapter is as follows. In section 4.2 we review the
geometry of Mj, the definition of the BPS Wilson loop and how it may be computed
using localisation techniques in the large N limit to find (4.1.2). Section 4.3 analyses
supersymmetric M2-branes in M, x Y7 backgrounds in M-theory and we also derive
the formula (4.1.2) in supergravity. Since our arguments are for general backgrounds
they are somewhat implicit; in section 4.4 we therefore look explicitly at AdS, and

Taub-NUT-AdS,, to exemplify our general formulae.

4.2 Wilson loops in N = 2 gauge theories on M;

In this section, we will review the geometry of M3 and the computation of the BPS
Wilson loops using localisation. Our discussion will be, of course, very similar to
the one of section 2.3 as it is a generalisation of it. We will nonetheless expose all
the steps of the computation in order to have the whole picture but we will be more
concise than in section 2.3.

The field theories of interest have UV descriptions as N’ = 2 Chern-Simons gauge
theories coupled to matter on Mj;, where M3 is a supersymmetric three-manifold.
After first reviewing the geometry of M3, we explain how the Wilson loop VEVs

localise in the matrix model and take the large N limit to derive (4.1.2).
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4.2.1 Three-dimensional background geometry

The manifold Mj belongs to a general class of ‘real’” supersymmetric backgrounds,
with two supercharges related to one another by charge conjugation [72]. If x denotes

the Killing spinor on M3 then there is an associated Killing vector field
K =x"x0, = 0, . (4.2.1)

This Killing vector is nowhere zero and therefore defines a foliation of the three-
manifold. This foliation is transversely holomorphic with local complex coordinate

2. In terms of these coordinates the background metric may be written as'
ds3y, = (dY + ¢))* + 4e“®dzdz, (4.2.2)

where ¢y = ¢(0)(2, 2)dz + ¢(0)(2, Z)dZ is a local one-form and wg)(z, Z) is a function.

We use the orthonormal frame (3.4.14) for the three-metric ds3,,:
e = W+ o), el + iely = 2%z (4.2.3)

with indices i, j, k = 1,2, 3 for this frame.

It is important to stress here that arbitrary choices for ¢y and wy (subject to
M3 being smooth) lead to supersymmetric backgrounds. The corresponding Killing
spinor equation for x may be found in (3.4.23). Choosing the three-dimensional
gamma matrices, in the frame (4.2.3), to be the Pauli matrices, one finds that the
Killing spinor solution is

. - X0
x = ele=?) : (4.2.4)

X0

where Y is a constant and «(v, z, Z) is a phase. From this three-dimensional point

More generally there is a conformal factor for this metric [72]. However, as in the last chapter
we are interested in conformal field theories with gravity duals, and we may hence set this conformal
factor to 1.
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of view, the phase (1,2, 2) is a priori an arbitrary function and does not play a
significant role. As we already know, when viewed as a boundary supersymmetric

field theory dual to supergravity this phase is chosen to be

by

O{(wa Z, 2) = 7¢, with v = —Sign (b_)
2

. |b1| + |b2]

o (4.2.5)

in order to have a global expression for the gauge field A. Here, we have assumed
that M3 = S3 with a toric structure, so that we have a U(1) x U(1) symmetry. If we

realise M3 = S3 C R? @ R? then we may write
K = 0,0, + by, | (4.2.6)

where ¢1, o are standard 27-period coordinates on U(1) x U(1).

4.2.2 The Wilson loop

In NV = 2 supersymmetric gauge theories the gauge field A; is part of a vector
multiplet that also contains two real scalars o and D and a two-component spinor A,
all of which are in the adjoint representation of the gauge group G. The BPS Wilson

loop in a representation R of GG is given by

W:

di;mm‘ [P exp (j[ ds(iA;3" + Uli’|>>} , (4.2.7)

v

where z'(s) parametrises the worldline v C Mj3 of the Wilson loop and the path
ordering operator has been denoted by P. The supersymmetry transformations of
the gauge field A; and the scalar o were given in equation (2.3.3) and we recall them
here:

i 1
0A; = —%)\TTiX , do = —EATX ,
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where 7; are the Pauli matrices. If one varies the Wilson loop (4.2.7) under the latter

supersymmetry transformation one obtains
Loy 0.
W x 5)\ (2" — |2])x - (4.2.8)
The Wilson loop is then invariant under supersymmetry provided
(iz" — |Z))x =0 . (4.2.9)

Choosing s to parametrise arclength, so that || = 1 along the loop, it is straightfor-
ward to show that (4.2.9) is satisfied if and only if the Wilson loop lies along the 6%3)
direction. From (4.2.3) we see that 6%3) is the one-form dual to the supersymmetric
Killing vector K = 0. Thus the Wilson loop (4.2.7) is indeed a BPS operator pro-
vided one takes v to be an orbit of K. Notice that the topology of M3 has not been
used in this subsection, and thus any Wilson loop wrapped along an orbit of K is

BPS, regardless of the topology of Ms;.

4.2.3 Localisation in the matrix model

The VEV of the BPS Wilson loop (4.2.7) is, by definition, obtained by inserting W
into the path integral for the theory on M3. The computation of this is greatly simpli-
fied by the fact that this path integral localises onto supersymmetric configurations of
fields. The localisation of the Wilson loop was explained in detail in section 2.3 for the
round S? case. This section generalises that discussion to a generic supersymmetric
manifold M5 =2 S3.

The central idea is that the path integral, with W inserted, is invariant under the
supersymmetry variation § corresponding to the Killing spinor x. Crucially, 62 =
is nilpotent and the only net contributions to this path integral come from field
configurations that are invariant under 9.

For the N' = 2 supersymmetric Chern-Simons-matter theories of interest, one
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finds that the d-invariant configurations on Mz = S? are particularly simple:
A;=0, o = constant, D = —oh, (4.2.10)

where the function h = (6(3) A de(g)) and with all fields in the matter multiplet
set identically to zero [32]. Here we may diagonalise o by a gauge transformation.

The exact localised partition function then takes the saddle point form [32]

_imk ToQ iQ o(o)
Z = /dae orbal H 4sinh 7% |b1 @ sinh 77 ™ 1;[35 [7(1—7“)— \/W] :
(4.2.11)
Note that b; and by now appear in Z. Here k denotes the Chern-Simons level and
the first product is over positive roots a € A, of the gauge group, while the second
product is over weights o in the weight space decomposition for a chiral matter field

in an arbitrary representation R .t Of the gauge group. We have also defined

by
by

@
Il

Q=B+, (4.2.12)

™| =

the R-charge of the matter field is denoted r, and sz(z) denotes the double sine
function.

In this set-up, the VEV of the BPS Wilson loop (4.2.7) reduces to

1 __imk oy oo
W) = ——— d [Brba] 17 4 h h 4.2.13
(W) Zdim%/ o o7 T 4sin |b1 ® Gin - (4.2.13)

aEAL

i Q<O> 2nlo
XEISB [7(1—7*)— |b1b2|] Tro (€7™7) .

Notice the integrand is the same as that for the partition function (4.2.11), with an

27r€0')

additional insertion of Trgp(e arising from the Wilson loop operator. Note also

that, as in chapter 2, we have normalised the VEV relative to the partition function
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Z, so that (1) =1, as is usual in quantum field theory. We have also defined

j{ds = 2/ (4.2.14)

so that ¢ parametrises the length of the Wilson line. More precisely, the integral
(4.2.14) is well-defined only for a closed orbit of the Killing vector K. A generic orbit
is closed only when b, /by € Q is rational, so that K generates a circle subgroup of
U(1l) x U(1). Writing b /by = m/n with m,n € 7Z relatively prime integers, these
define torus knots via v C T? C S3, where the homology class [v] = (m,n) €
H\(T? Z) 2 Z®Z. These have been studied in the present context in [87]. If on the
other hand b, /b is irrational, then the only closed orbits are at the two ‘poles’ of
M; = S?, where 8, = 0 and 8, = 0, respectively. Over these poles § ds = 2m/|b,|,
27 /|b1|, respectively. Wherever the loop is located, we denote its length fv ds by 27/
as above.

For a U(N) gauge group we may write o = diag(;\—;, e ’\2—1;), thus parametrising
2mo by its eigenvalues \;. Localisation has then reduced the partition function Z
and the Wilson loop VEV to finite-dimensional integrals (4.2.11), (4.2.13) over these
eigenvalues, but in practice the formulae are difficult to evaluate explicitly. For
comparison to the dual supergravity results we must take the N — oo limit, where
the number of eigenvalues, and hence integrals, tends to infinity. One can then
attempt to compute this limit using a saddle point approximation of the integral. As
in chapter 2, the large N limit of the saddle point eigenvalue distribution is assumed
to take the form

N =2 NY2 iy, | (4.2.15)

with x; and y; real and assumed to be O(1) in a large N expansion. In the large N
limit the real part is assumed to become dense. Ordering the eigenvalues so that the
x; are strictly increasing, the real part becomes a continuous variable z, with density
p(x), while y; becomes a continuous function of z, y(z).

Writing Z = e one then obtains a functional F[p(z), y(z)], with 2 supported on
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some interval [Zpin, Tmax], and to apply the saddle point method one then extremises

F with respect to p(z), y(z), subject to the constraint that p(z) is a density

/$max plx)de =1. (4.2.16)

Tmin

One then finally also extremises over the choice of interval, by varying with respect
t0 Tmin, Tmax, t0 obtain the saddle point eigenvalue distribution p(x), y(x).

As it turns out, if one caries out the large N limit with the ansatz (4.2.15), one
finds a very simple relation between the round sphere results Froung and log { Wiound )
and their squashed counterparts (with arbitrary b; and by) F and log (W ). To obtain
this result for F, one may first relabel o as |bs|o in (4.2.11). The partition function
then takes the same form as that in [26], where the large N limit was computed in
detail. In particular in the latter reference it was shown that in the large N limit
Flp(z),y(z)] is simply a rescaling of the round sphere result by a factor (5Q)3/2332,
provided one also rescales the Chern-Simons coupling k as k — (2/8Q)* - k. This
then leads to the large N result (4.1.1).

The same logic may be applied to the calculation of the Wilson loop. For the class
of N' = 2 supersymmetric Chern-Simons theories coupled to matter on the round
three-sphere studied in chapter 2, x,,, is always proportional to 1/ Vk. According
to the above prescription, the result for x,,.x on a general background Mj is given by
rescaling the round sphere result by |by| - (8Q/2) = (|b1] + |b2])/2. Here the factor of
|ba| comes from the relabelling o — |bs|o, while the factor of SQ/2 comes from the
rescaling of the Chern-Simons coupling. Thus

b b
o | 1|+_| 2| lgound

max — 2 max )

(4.2.17)

round
max

where x determines the supremum of the support of p(x) for the field theory on
the round three-sphere. For the field theories of interest, the eigenvalue density is

always a continuous piecewise linear function supported on [Zmin, Tmax]. Using this
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fact, the large N limit of the Wilson loop (4.2.13) in the fundamental representation
may be easily computed with a saddle point approximation, as explained in section
2.3, and we find

log (W)gpr = £ Zmax N2+ o(NV?) (4.2.18)

Here recall that the length 561; ds is in general 27w¢. The round three-sphere Wilson
loop in particular is obtained by setting by = by = 1 and ¢ = 1 and is, equation

(2.3.15),

10g ( Wiouna Yqrr = 2704 N2 4 o(N1V/?) (4.2.19)
We thus obtain
1 %74 b b
im0 Wiarr i+ [bof - (4.2.20)
N—roo lOg <Wround >QFT 2

This is the field theory result for the VEV of a supersymmetric Wilson loop on a
general supersymmetric manifold M5 = S3. In the next section we will look at the
M2-brane dual to this Wilson loop, and show quite generally that the holographic

dual computation of the VEV agrees with (4.2.20).

4.3 Dual M2-branes

In this section we analyse the supersymmetric M2-brane probes that are relevant for
computing the holographic dual of the Wilson loop VEV (4.2.20). The dual solution
is constructed in four-dimensional gauged supergravity of the last chapter, and we

begin by summarising the geometry of these solutions.

4.3.1 Supergravity dual

In chapter 3 it was shown that supersymmetric three-manifolds M3 of the form de-
scribed in section 4.2.1 arise as the conformal boundaries of Euclidean self-dual so-
lutions to four-dimensional gauged supergravity. For Mz =2 S the four-dimensional

supergravity solution is defined on a four-ball M, = B*, and is asymptotically locally
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Euclidean AdS with conformal boundary Mj. The Killing vector K defined by (4.2.1)
extends as a Killing vector bilinear over My, and the four-metric is then Einstein, has
anti-self-dual Weyl tensor, and is conformal to a Kéhler metric. Supersymmetry also
requires one to turn on a specific graviphoton field A.

The four-dimensional metric on the manifold M, takes the form (3.3.2)
1

Y2 [V (dy + ¢)° + V (dy? + de¥dz2dz)] (4.3.1)

2 _
dsgpgp =

The metric (4.3.1) is equipped with the Killing vector K = 0y, which extends the
vector (4.2.1) from the conformal boundary, which is at ¥ = 0. On the boundary M,
the graviphoton gauge field Ay takes the global form, equation (3.4.26),

1 1 i

where « is given in (4.2.5). We shall use the following orthonormal frame for the
metric (4.3.1)

2

1 1
e = §V1/2dy, el = ;V‘lﬂ(dzﬁ—i—qﬁ), e’ +ie® = y(Vew)l/zdz. (4.3.3)

The four-dimensional geometry that we have just described, together with the
gauge field A, form a supersymmetric solution to Euclidean gauged supergravity.
There is correspondingly a Dirac spinor e satisfying the Killing spinor equation of

this theory. In the orthonormal frame (4.3.3) and using the gamma matrices

0 Ti 0 11[2
r— Ty = , (13.4)

Ti 0 —1]12 0
with 7; the Pauli matrices, the Killing spinor € is given by

(1+V7Y21g) ¢, (4.3.5)

€ =

s
<
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with

X ; Xo
(= where y = 7% . (4.3.6)

0 Xo
We recall that we assume that the four-manifold M, is My = B* = R? ® R? and that
the torus U(1) x U (1) acts in the standard way on R?@®R?. The Killing vector K = 9,
is then parametrised like in (4.2.6) on the conformal boundary. Remember that while
the metric (4.3.1) is smooth by assumption, the instanton F' = dA and Killing spinor
¢ are singular where the conformal Kéhler metric is singular. Regularity is in fact
equivalent to having either by /by > 0 or by /by = —1. Moreover, the origin y = ynur

of M, is then at
1

- 4.3.7
b1 + ba| ( )

YNUT =

which is yyur = 0o when by /by = —1.

In order to study the M2-branes dual to Wilson loops, we need to work with
the full eleven-dimensional supergravity solution of section 3.2. We recall that the
solution takes the form

dsi, = R?

Y

1., 1\,

1
G = —iRg <§VOI4 — Z_l *y F A dn) . (438)

The radius R is

6 (27r€p)6N
R = o) (4.3.9)

where N is the number of units of flux defined in equation (3.2.5).

4.3.2 BPS M2-branes

We are interested in calculating the action of M2-branes that are dual to Wilson loops
of gauge theories on M. These M2-branes wrap Y, x Si,, where the surface 3y C M,
has boundary given by the Wilson line 93, = S € M3 = OMy, and Si, C Y7 is a
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copy of the M-theory circle. In particular we will show that submanifolds s C M,
parametrised by the radial direction y in M, and an orbit of the Killing vector K
are complex with respect to the complex structure J of the conformal Kéhler metric
to ds3pp. The wrapped M2-brane is then supersymmetric provided S}, is calibrated
by the contact one-form 7. Over the poles S C Mz = S the topology of ¥ is a
disc, where y € (0, ynuT| serves as a radial coordinate with the origin of the disc at
y = ynur > 0.

The action of the M2-brane in Euclidean signature reads

(4.3.10)

Vol(¥y x S3,) + 1/ C

22 ><SJIW

Y2 2m)2es

A supersymmetric M2-brane satisfies an appropriate projection condition, which may

be written as
1 i .
Peyy = 0, where P = 3 (1—éeaﬂvaaXMaﬁxNaVXPPMNp) . (4.3.11)

with «, 8,7 indices on the worldvolume. Here €;; is the eleven-dimensional Killing
spinor for the background (4.3.8), which is constructed as a tensor product of the
four-dimensional spinor € and the Killing spinor on the internal space Y7. The [y are
eleven-dimensional gamma matrices, with X describing the M2-brane embedding.
One can analyse (4.3.11) precisely as we did in chapter 2. The upshot is that S}, C Y7
must be a calibrated circle in Y7, while taking ¥5 C M, to be a surface at constant z,

parametrised by y and 1, one finds (4.3.11) is equivalent to the projection condition

Here we have used the orthonormal frame (4.3.3), and I's = I'(I'1I'sI's with I, defined
by (4.3.4) (in the orthonormal frame). Using the explicit form for € in (4.3.5) it is
trivial to see that (4.3.12) indeed holds. Moreover, ¥, is calibrated with respect
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to the Kéhler form for the conformal Ké&hler metric, making it a complex curve.
Equivalently, denoting the complex structure J we have J(V~19,) = 9, making 3,
a complex curve.

Let us now calculate the action (4.3.10) for our M2-brane. Using the supergravity
solution that we briefly summarised in section 4.3.1, the C-field, where remember

that G = dC, is computed to be

1 1
C =—iR? (—gr +1FA n) : (4.3.13)
where
1
= 2—112(d¢ +¢) Adg + E(dw +¢) A2iVePdz AdZ (4.3.14)
and dY = —3voly. The area of the surface ¥, in M, is divergent, but can be regu-

larised by subtracting the length of its boundary, i.e. the length of the S in M2 at
y = § — 0. Notice this is then a local boundary counterterm. If we denote by M
the manifold M, with boundary MZ = {y = §} (with 0 < § < ynur), and similarly
for 33 ete, the action of the M2-brane is

1 R3
R Y = — — volg1 -1li Iy, — Lzt F
- (2m)203 /S}u 4 Y05 [/zg o /azg et /Eg

Here we have written volg: for the volume form on S1, induced from the metric gy,

(4.3.15)

and similarly for voly, and the metric gy;,. Applying Stokes’ theorem for the gauge

field term F' = dA we then compute?

g T (1 Y
Mz (2m)203 S%/IV ST 50 5 y? 0V (8, 2,2) 21l Josg

1 Tl R3 1 1 1
= lgi - — — - — Al . 4.3.1
(2m)263 /S}u T [ <yNUT " 4w(1)) 2ml /822 ] (43.16)

2The sign in front of the gauge field term arises because y is decreasing towards the boundary of
My, and hence dy points inwards from Mjs. Thus the natural orientation of the boundary we take
is opposite to that in Stokes’ theorem.
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Recall here that 27¢ denotes the length of the orbit of K, as in (4.2.14). The contri-
bution of the M-theory circle S}, is exactly the same as for the AdS, x Y7 backgrounds
studied in chapter 2, and is expressed in terms of the contact form n on Y7 and the

Dirac quantised number N. The gauge field integral is easily computed, thanks to

(4.3.2)
1
/ A = / A(O) = 21/ (——w(1)+7) . (4.3.17)
0o 0o 4

Putting everything together, and using the formula (4.3.7) for ynuyr, we have

(27T)2 fs}l n

\ /2fy777 A (dn)?

Using the round sphere result of equation (2.4.23)

log (W) = —Sua = £(|by +bo| +7) - N2 (4.3.18)

gravity

(2m)% [s1 m
log < Weound > N fSM N1/2 :
T2 L A (dn)?

and the formula (4.2.5) for ~, in both cases by /by > 0 and b; /by = —1 we obtain

(4.3.19)

b b
_ el e )

gravity 9

log (W) (4.3.20)

gravity °

In chapter 2 it was shown in numerous families of examples that the large N limit
of the Wilson loop on the round three-sphere and the M2-brane in AdS,; have the
same VEV, i.e. log<Wmund>QFT = log ( Wround )
N. Assuming this to be the case, equations (4.2.20) and (4.3.20) mean that we have

holds to leading order at large

gravity
shown very generally that in the large N limit

log < W >QFT = IOg < W >gravity (4321)

where now the field theory is defined on a general class of background three-manifolds

Ms, with fillings M, in four-dimensional gauged supergravity.
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We conclude this section with two further comments. Firstly, it is interesting
to note that when the orbit of K is one of the poles of S?, where correspondingly
¢ = 1/|by| or £ = 1/|bs| respectively, the Wilson loops are then functions only of
|b1/bs], just as for the free energy (4.1.1). Secondly, in the case that by /by = m/n is
rational and the Wilson line wraps a generic orbit v C T? C S3 (i.e. not at either
pole), then the curve ¥y C My = C? wrapped by the dual M2-brane is the Brieskorn-
Pham curve {2} = 2"} C C?. This follows since supersymmetry pairs the orbit of K
with its complexification in M, = C2, meaning that ¥, is swept out as a generic C*
orbit of (z1, z2) — (A\"21, A\"22), with A € C*. The curve {z] = 25"} adds the origin in
C? at y = ynuT, which is a singular point when m,n > 1, although notice this does
not affect our computation of the M2-brane action, which is finite. It is well-known
that (m,n) torus knots in S® may be realised as links of the above Brieskorn-Pham
curves, and it is interesting to see that this construction is realised as the holographic

dual of the knot.

4.4 Examples

Our derivation of the formula (4.3.20) was necessarily somewhat indirect, as we have
shown that it holds for a very general class of solutions. In particular we did not need
to use the explicit form of the solution to the Toda equation (3.3.5). In this section
we illustrate our general results by discussing two explicit families of solutions, where
all quantities in the previous section may be written down in closed form. We will
focus on the four-dimensional part of the M2-brane calculation, in particular showing
how the factor £(|by| + |b2|)/2 in (4.3.20) arises explicitly in these cases. In order to

do so we will use the results of the previous section that allow us to write

IOg < W >gravity = Sbl,bg . log <Wr0und >gravity R (441)
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1
8b1,b2 = - (_/ VOlZg +/ VOI@EQ +/ A) . (442)
27T P 032 0%

Here we cut off ¥5 at y = 4, and (4.4.2) is then understood to be the limit § — 0.

where

We compute (4.4.2) directly in the examples, confirming that (4.3.20) indeed holds

in these cases.

AdS,

We begin with the metric on Euclidean AdS,, which can be written

d 2
52 pas, = Tq? + ¢ (d9? + cos® ddip? + sin? 9d3) (4.4.3)
q

Here ¢ is a radial variable with ¢ € [0, 00), so that the origin of M; =2 R*is at ¢ = 0

while the conformal boundary is at ¢ = co. The coordinate ¥ € [0, Z], with the

3 )
endpoints being the two axes of R? @ R? =~ R%,

Of course the metric (4.4.3) is conformally flat, which leads to a trivial graviphoton
A = 0. However, we may instead pick a general supersymmetric Killing vector
K = 010,, + b20,,. This leads to a family of conformal Kéhler structures on C?,
where the explicit formulae for the conformal factor y, the metric function w(y, z, 2)

and the gauge field A were derived in section 3.6.1. Writing A as a global one-form

and restricting to the conformal boundary at ¢ = co we obtain

badpy + bidyps 1 '
) g (sign(b2)dey + sign(by)dez) - 144
21/ cos? ) + by sin® 5 (sign(ba)dir +sign(b)dgs) (4.4.4)

Ao

In particular notice this is well-defined at both poles ¥ = 0 and ¥ = 7/2. The
submanifold Y, is parametrised by the radial direction ¢ in AdS, and the S! wrapping
1 or o when ¥ = 0 or ¥ = /2, respectively.

We now turn to the computation of (4.4.2). Notice that the dependence on b; and
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b, arises only via the gauge field A, and not from the metric. Indeed, we compute

[—/ voly, +/ V01322:| =2, (4.4.5)
ZQ 622

and

/ gy = 7T<|Z—i| — sign(by)) - sign(by) if =0, (4.4.6)
0 — X
%2 m(& — sign(by)) - sign(by) it =mn/2.

b2

The overall factors of sign(b;), sign(by) for ¢ = 0, 7/2 arise because the orientation

of 0% is determined by K. Equation (4.4.2) immediately gives for all regular cases

that
2[b1 | ’
Sb1,b2 |bl‘ + ‘b2’ o 7T/2 (447)
2|0, | '

In particular using the variable ¢ introduced previously, which is given by ¢ = 1/|b,]
and 1/|by| for the ¥ = 0 pole and ¥ = 7/2 pole respectively, we obtain for both poles

and all regular cases that
bl + [bel

Sbl,b2 9

v, (4.4.8)

as expected.

Taub-NUT-AdS,

The Taub-NUT-AdS,; metric may be written

r2_ g2

Q(r)

452%()
ds? = dr? + (r* — %) (uf +u3) + S—(r)zé : (4.4.9)

r2 — g2

where

Qr)=(rFs)?’[1+ (rFs)(r+3s)], (4.4.10)
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and w1, ug, uz are left-invariant one-forms on SU(2) ~ S3. The latter may be written

in terms of Euler angle variables as
up + iug = e7*(df + isin Ody) , uz = dg+ cosfdy . (4.4.11)

Here ¢ has period 47, while 6 € [0, 7] with ¢ having period 27. The radial coordinate
r lies in the range r € [s,00), with the origin of the ball B* =~ R* being at r = s.
The parameter s > 0 is referred to as the squashing parameter, with s = % being the
Euclidean AdS, metric studied in the previous section.

Remember that the Taub-NUT-AdS metric (4.4.9) has SU(2) x U(1) isometry,
but a generic choice of the Killing vector K = (b1 + b2)0, + (b1 — b2)O; breaks the
symmetry of the full solution to U(1) x U(1). In particular, this symmetry is broken
by the corresponding instanton A. If the SU(2) x U(1) symmetry of the metric is also
imposed on the gauge field, it results in two subfamilies of the above solutions, which
are 1/4 BPS and 1/2 BPS, respectively. In each case this effectively fixes the Killing

vector K (or rather the parameter by /by) as a function of the squashing parameter s.

1/4 BPS solution: The supersymmetric Killing vector for this solution is K =
—2—18@ and we have
1

The boundary gauge field A is, equation (3.6.20),
L9

which is a global one-form on M; = S3. We may now take the surface ¥y wrapped
by the M2-brane to be any S! orbit of the Hopf Killing vector 0, (at any point on the
base S? = S3/U(1).), together with the radial direction r. This is supersymmetric,
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and the regularised volume of ¥, is

[—/ voly, +/ V01322:| = 87s” (4.4.14)
22 822

while the gauge field integral is

Ay = —2m(4s> = 1) . (4.4.15)
039
This leads to
by| + |b
Sppy =1 = %f, (4.4.16)

where ¢ = 4s is the length of K divided by 2.

1/2 BPS solution: The Taub-NUT-AdS metric (4.4.9) also admits a 1/2 BPS
solution. There are thus two linearly independent Killing spinors, and an appropriate

linear combination preserves U(1) x U(1) symmetry, leading to the Killing vector
K= (254 VA7 =1) 0, + (% — 25— Vi 1) &, (4.4.17)

so that

1
b1 = — bg = —4— + 25 —+ vV 482 —1. (4418)
S

The boundary gauge field is, equation (3.6.24),
Ay = sV4s? — lug . (4.4.19)

This time we take the Wilson loop to wrap one of the two poles € = 0, § = w. These
are both copies of S*, and Y, is again formed by adding the radial direction r. The
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boundary gauge field is

25v/4s? — 1 d¢y ifd=0,
—25v/4s% — 1 dyo it =m.

A0) [pole

The regularised volume is again 8ms?, which then gives

s 25(2s + v/4s? — 1) if0=0,
b1,b2

25(2s — V/4s? — 1) if0=m.

In both cases we indeed have

_ [baf £ [

Sty b 7

¢,

where ¢ = 1/|by|, £ = 1/|by] for the two poles.

(4.4.20)

(4.4.21)

(4.4.22)



Chapter 5

Conclusions

The AdS/CFT duality provides a way of better understanding field theories and their
string theory counterparts. As we have seen in this thesis, the localisation technique
has been very helpful to further explore the duality. Thanks to this method, we can
make exact field theory computations at strong coupling and compare them to their
supergravity duals. In this thesis, we have focused on the supergravity side of the
duality, while summarising and further extending some field theory results, to check
the duality for the Wilson loop and the free energy in a variety of examples.

In chapter 2, we have shown that the large N field theory and gravity computa-
tions of the BPS Wilson loop agree in a large class of three-dimensional ' = 2 super-
conformal field theories with AdS, x Y7 gravity duals. In fact really this matching is a
corollary of the fact that the image of the M-theory Hamiltonian Ay, (Y7) = [¢min, Cmax]
is equal to the support [Zmin, Tmax] Of the real part of the saddle point eigenvalue dis-
tribution in the large N matrix model, with the proportionality factor between the
variables x and ¢ given by \

2m
r = %(T)ln(mc. (5.1)
Moreover, the critical points of h,;, which give the loci of supersymmetric M2-branes

wrapping the M-theory circle, always map under hj; to the points at which p'(z)

is discontinuous in the matrix model. The fact that the eigenvalue density changes
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behaviour every time a critical point z; is crossed is explained by (2.4.40) which
relates p(r) to the volume of a subspace of h,;(c) whose topology changes at the
critical points ¢;. All those relations show that field theory quantities, like p(z) and
x, seem to be captured by geometrical quantities on the gravity side. This is not so
surprising after all, because supergravity computations are purely geometrical and
are predicted to be dual to field theory computations.

Although shedding light on the relation between Wilson loops and M2 branes, the
work presented in this thesis opens to way for future research. Even though we know
that the image of the Hamiltonian function h; is related to the range of the real part
of the eigenvalues, it would be interesting to understand if this relation has a deeper
meaning. In order to do so, one could consider representation of Wilson loops that
differ from the fundamental representation and see how it would change the gravity
dual object. It would also be interesting to study how a deformation of the Hopf
St c 8% affects the supersymmetry of the brane and its relation to the M2-brane.
Finally, we could also look at different field theory operators and try to seek their
gravity duals. In [88,89], it was shown how to compute the VEV of various vortex
loops, a kind of defect operator, in supersymmetric field theories. Calculating the
VEV of those operators in some specific field theories could help us find their dual
objects and potentially uncover new geometrical relations.

We followed the Wilson loop/M2-brane computations by the construction of su-
pergravity duals to generic supersymmetric field theories on three-manifolds in chap-

ter 3. The main result of this chapter is the proof of the formula

(|b1] + |b2)?

I =
4|b1bs|

: Iround 3 (52)

for the holographically renormalised on-shell action in minimal four-dimensional su-
pergravity. Moreover, we have provided a general construction, that extends to
eleven-dimensional supergravity, of regular supersymmetric solutions of this theory

based on self-dual Einstein metrics on the four-ball equipped with a one-parameter
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family of instanton fields for the graviphoton. Specifically, if the self-dual Einstein
metric admits n parameters, our construction produces an (n+1)-parameter family of
solutions. We have shown that the renormalised on-shell action does not depend on
the n metric parameters, but only on this last ‘instanton parameter’. This matches
beautifully the field theory results of [32].

We have also shown how all the previous examples in the literature, as well as
some new examples that we have presented, can be understood in our general set-
ting. In section 3.6.4 we have suggested that using a family of local metrics, it should
be possible to construct global asymptotically locally Euclidean AdS self-dual Ein-
stein metrics on the four-ball, thus obtaining an infinite family of completely explicit
metrics. It would be interesting to analyse these m-pole solutions in more detail.

In this third chapter we have achieved a rather general understanding of the
gauge/gravity duality for supersymmetric asymptotically locally Euclidean AdS, so-
lutions. Nevertheless, there are a number of possible extensions of our work. One
might further generalise our results by relaxing one or more of the assumptions we
have made. For example, remaining in the context of minimal gauged supergravity,
it would be very interesting to investigate the more general class of supersymmetric,
but non-(anti-)self-dual solutions [75]. Several examples of such solutions were con-
structed in [29,30], and these all turn out to have a bulk topology different from the
four-ball. This suggests that self-duality and the topology of supersymmetric asymp-
totically AdS, solutions are two related issues, and it would be desirable to clarify
this. On the other hand, at present it is unclear what the precise dual field theory
implication of non-trivial two-cycles in the geometry is, and therefore this direction
is both challenging and interesting. Perhaps related to this, one of our main results
is that a smooth toric self-dual Einstein metric on the four-ball with supersymmetric
Killing vector K = b0, 4 b20,,, gives rise to a smooth supersymmetric solution only
if by /by > 0 or by /by = —1. Specifically, for other choices of by /by the conformal fac-
tor/Killing spinor are singular in the interior of the bulk. Nevertheless, the conformal

boundary is smooth for all choices of by, by, and the question arises as to how to fill
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those boundaries smoothly within gauged supergravity. A natural conjecture is that
these are filled with the non-self-dual solutions mentioned above.

Another assumption that should be straightforward to relax is in taking the gauge
field A to be real. In general, if A is complex the existence of one Killing spinor does
not imply that the metric possesses any isometry [75]. However, we expect that if
one requires the existence of two spinors of opposite R-charge, then there will be
canonically defined Killing vectors, and therefore it should be possible to analyse the
solutions with the techniques of this thesis.

All the above extensions would be important conceptually, in order to address
the issue of uniqueness of the filling of a given conformal boundary geometry. In
fact, this could also motivate the study of this problem directly in eleven-dimensional
supergravity.

Of course, in any of these more general set-ups a central issue will be to prove a
generalised version of the formula (5.2) for the renormalised on-shell action. In this
respect, some of the methods that were employed in [2] to derive this -not presented
here- may be more amenable to generalisation than others. For example, an expres-
sion for I in terms of boundary conformal invariants and bulk topological invariants
might extend to the class of non-self-dual metrics and/or non-ball topology.

In chapter 4, we looked at how the Wilson loop/M2-brane computations carried
out in chapter 2 could be done in the more general geometry developed in chapter 3.
We derived the formula

lim log (W) :M

N—oo 2

¢-1og { Wiound) (5.3)

for the expectation values of large N BPS Wilson loops, in both gauge theory and in
supergravity. A key feature of the gravity calculation is that we are able to evaluate
the regularised M2-brane action, that is identified with the Wilson loop VEV, without
using the explicit form of the metric and graviphoton field. This seems to be a general

feature of such computations of BPS quantities in AdS/CFT, and allows us to verify
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the correspondence for these observables in a very broad class of solutions.

The results described in chapter 4 lead to a number of questions, and possible
future directions to pursue. First, in supergravity we have restricted to self-dual
solutions, while more generally there are also non-self-dual solutions to gauged su-
pergravity as mentioned above. Presumably the methods we have used extend to this
general class of solutions. In particular, the Wilson loop was computed for a charged
topological black hole background in [90], and successfully compared to a field theory
calculation. The non-self-dual solutions in [30] all have the feature that the bulk M,
has non-trivial topology. It would be interesting to try to calculate Wilson loops
in such examples, and compare to a dual field theory computation. Finally, it is
now clear that similar results should also hold in higher dimensions. A very similar
formula to (5.3) was found to hold for certain supersymmetric squashed five-sphere
conformal boundaries and their gravity duals in [91,92], and was conjectured to hold

for general backgrounds in those references.



Appendix A

Spin connection of the Kahler metric

For the Kéhler metric (3.3.7) in the frame (3.3.8) the spin connection reads

_ (ayw + y@Sw) a1, 10y (0: —0)w _ Y9y (0: + =) w

~01
w - 4V/3/2 € ]V/3/2ew/2 € ]1/3/2cw/2 ’
o2 — _yay(az + aZ)Wéo iydy (9; — 05) W (8yw + y@jw) —2Vo,w 22
]1/3/2ew/2 ]1/3/2ew/2 4V/3/2 ’
;03 _iyay(az - aé)wéo o yﬁy (az + aé) wél (ayw + ?Jazw) - 2V8yw o3
Sv3/26w/2 8v3/2ew/2 4V3/2 )
(2)12 — _@03
(;)13 _ (.2202 ,
om (Oyw — y(Oyw)* — y@jw) o 1[2V(0, — 05)w — y0, (0, — 0z)w] 22
- 4V/3/2 ]Y/3/2ew/2
2V (0, 4+ 05)w — y9, (0, + 0:)w
— 8V3/2ew/?é e . (A.1)

Here we have used both (3.3.3) and (3.3.4).
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Appendix B

Weyl transformations of the

boundary

In section 3.4 of the main text we studied the boundary geometry and Killing spinor
equation using the radial coordinate r = 1/y defined naturally by supersymmetry.
This gives a preferred representative for the conformal class of the boundary metric on
Ms. In this appendix we study the more general choice r = 1/(Qy), where Q = Q(z, 2)
is an arbitrary smooth, basic, nowhere zero function on Mjs. This results in a Weyl
transformation of the boundary geometry and corresponding Killing spinor equation.
We will see that we precisely recover the boundary structure, derived from a purely
three-dimensional perspective, in [32,72].

For comparison with [32], we begin by rescaling the constant-norm Kéhler spinor

¢ as
¢ = Q2z,2) C, (B.1)

so that the norm of é is Q2 if we normalise ¢ to have unit norm. We then also have

a rescaling of the four-dimensional Killing spinor ¢,

1 ~ ~
¢ = 0V% = o (1 +V—1/2r0)g . (B.2)
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Recall € solves the Killing spinor equation (3.3.1), with the gauge field A, given by

(3.3.6). Using instead € this Killing spinor equation reads

i

1 1
(VM — IAM — 58“ 10gQ + EFM —+ 4

F,,pl“’"FM) e=0,

where the third term appears due to the rescaling?

With the new choice of radial coordinate the boundary metric is
dsi, = Q%(z,2) [(dv + ¢o)* + 4e”©dzdz] .
As always, we introduce an orthonormal frame for this metric:
6%3) = Q(dy + ¢o) , 6%3) +ief’3) = 20e¥©/2dz |
The four-dimensional geometry is the same as before, namely
dsig = é [V dy + ¢)* 4+ V(dy® + 4e”dzdz)] |

and we will use the frame

1 1 2
e’ = ;Vl/Qdy . el = ;V‘lm(dw +¢), e +ie® = ;(Vew)l/de )

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

Calculating the spin connection of (B.7), expanding in y and comparing to the spin

L As this term is a total derivative it can formally be absorbed into a complex gauge transformation

of A, although as we shall see all gauge fields will in the end be real.
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connection of (B.5), we find

w? = wi —dylogQefy +O(y) ,

wh = w(lg) — 03 long%g) +O(y) ,
wB = w(zg’) — 03 long%3) + 0y log 2 6?3) +O(y) ,

WY = ;Q_l(l + iyw(l)) €3 + O(y) , (B.8)

with i = 1,2, 3.
We next expand the Killing spinor equation with the rescaled spinor, ¢. As in

section 3.4 the term iF,,pF”’TM = O(y) does not contribute. One gets

. 1 1 .- i
Vi — iAoy — 30u10g 2+ 5 07 (Lt fyw) efgu(Ti —Tw) - (BI)

1 , 1 , R
— 582 log Qe(3), L2 — 583 log Qe(3),l'is + Oy)| € = 0,

where =1, 2, Z, and A(g), is the lowest order expansion of the gauge field (3.3.6),
which in the frame (B.5) reads

4 A(g) = —Q_lw(l) 6%3) + 83w(0) 6%3) — 82w(0) 6?3) . (BlO)
The Killing spinor ¢ expands as

1 1 .
c— —[14Ty + Zgwy Ty + O 2] B.11
€ N +To+ Jywplo + (¥7) <o, ( )

and when substituted into (B.9) gives a vanishing leading order term. The subleading

term reads

: 1 1

1 1 .
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The projection conditions (3.3.20) imply the following form for (y,

Co = where y = . (B.13)
0 Xo

The three-dimensional Killing spinor equation then becomes

1 1
VEB) +i(V; — APY) + §H0i + §€ijkvj‘7k x =0, (B.14)
with
i 1. (3) 3
H = —Zwu)Q +iVi, Al = A(0)1+§V1 )
3 3 3
AgB) = A(0)2 — 51‘/3 — 5182 log Q —+ 583 IOgQ )

3
A;(e,g) = Aps+ 5‘/5 ,

Vo+iV3 = —i021logQ + 05log Q) . (B.15)

The Killing spinor equation (B.14) is precisely of the form found in [72|, which
allows for the construction of supersymmetric field theories on Mj3. The identifica-
tions of A®, V and H are not unique because equation (B.14) has some symmetry
properties, c.f. (4.2) of [72]. In particular this symmetry allows one to freely choose
Vi, as shown in (2.10) of [32]. Recall that Ay is real. If we demand also the boundary
gauge field A® to be real, one finds from the equations in (B.15) that V is also real
with

Vo = 0O5log, Vs = —0ylog(). (B.16)

This is exactly the result obtained for V' in [32]| using the purely three-dimensional
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analysis of [72|. The remaining equations in (B.15) then further simplify to

i

H = _Zw(l)Q*Hrm, (B.17)
3
AP = A(o>i+§‘/;. (B.18)

Again this is consistent with [32], where it was found (in our notation) that

i
Af’) = —§He(13)u + Vit (B.19)
where
, i o 1
i = 1 (50,5 — 50,5) + éwj(%,) ; (B.20)

and |s| = Q is the square norm of the three-dimensional spinor,

1
X =Vs,z2) V2 (B.21)
1
-
Hence we have s = Qe?v(¥#2) Equation (B.20) then reads
: L a3
Ju = O+ SWi(3) (B.22)
1 1 1
= 0v— gQ_lw(l)eé) + 1 (agw(o) + 2053 log Q) 6%3) ~ 1 ((9211)(0) + 205 log Q) 6:()’3) ,

where we also used equation (3.3.4). Substituting equation (B.16), (B.17), and (B.22)
into the right hand side of (B.19), this gives

1 1 1 3
AP = =0 g ey, + 505w €y — 702100 €y 5 Vit O
3
A(O)“ + §V# + 8#1) , (B23)

where in the second line we used equation (B.10). As the last term in equation (B.23)

is a total derivative, it can be absorbed into a gauge transformation of A(y. Thus
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we see that equation (B.19) reproduces (B.18) up to a gauge transformation. Indeed,
such a gauge transformation with v = 1) was shown in section 3.4.3 to be necessary

in order for the gauge field to be globally well-defined on Ms = S3.
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