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Statement of originality

This thesis presents results from the papers [1–3] of the author in collaboration

with James Sparks [1–3] as well as Dario Martelli and Jakob Lorenzen [2]. Not

all the content of those papers have been included in this document due to space

constraints. On the other hand, for clarity and self-consistence, some of the details

have been expanded upon. The second chapter of this thesis is based on [1] whereas

the third and fourth chapters are based on [2] and [3] respectively.



Abstract

In the first part of this thesis, we study the duality of Wilson loops and M2-

branes in AdS4/CFT3. We focus on supersymmetric M-theory solutions on AdS4×Y7

that have a superconformal dual description on S3 = ∂AdS4. We will find that the

Hamiltonian function hM for the M-theory circle plays an important role in the

duality. We show that an M2-brane wrapping the M-theory circle is supersymmetric

precisely at the critical points of hM , and moreover the value of this function at

those points determines the M2-brane actions. Such a configuration determines the

holographic dual of a Wilson loop for a Hopf circle in S3. We find agreement in large

classes of examples between the Wilson loop and its dual M2-brane and also that the

image hM(Y7) determines the range of support of the eigenvalues in the dual large N

matrix model, with the critical points of hM mapping to points where the derivative of

the eigenvalue density is discontinuous. We will then move away from the three-sphere

and construct gravity duals to a broad class of N = 2 supersymmetric gauge theories

defined on a general class of three-manifold geometries. The gravity backgrounds

are based on Euclidean self-dual solutions to four-dimensional gauged supergravity.

As well as constructing new examples, we prove in general that for solutions defined

on the four-ball the gravitational free energy depends only on the supersymmetric

Killing vector. Our result agrees with the large N limit of the free energy of the

dual gauge theory, computed using localisation. This constitutes an exact check of

the gauge/gravity correspondence for a very broad class of gauge theories defined on

a general class of background three-manifold geometries. To further verify that our

gravitational backgrounds are indeed dual to field theories on their boundaries, we

compute Wilson loops and their M2-brane duals in this general setting. We find that

the Wilson loop is given by a simple closed formula which depends on the background

geometry only through the supersymmetric Killing vector field. The supergravity

dual M2-brane precisely reproduces this large N field theory result. This constitutes

a further check of AdS4/CFT3 for a very broad class of examples.
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Chapter 1

Introduction

The AdS/CFT correspondence, also sometimes referred to as gauge/gravity duality,

is a duality in string theory that relates gravitational theories to conformal gauge

theories. It is an instance of the holographic principle which states that in a quantum

theory of gravity there are the same number of gravitational degrees of freedom that

live in a region of space as non-gravitational degrees of freedom on the boundary of

that space. The famous Bekenstein-Hawking formula [4] showing that the entropy of

a black-hole is proportional to its area is an early example of holography.

String theory was originally studied in order to describe strong interactions but

was quickly replaced by QCD. It is not until the discovery of a massless spin-two

particle in the spectrum of string theories that physicists became interested in string

theory again and realised that it can be seen as a quantum theory of gravity. All

string theories have a massless spin-two particle that can be interpreted as a graviton

and gauge theories are naturally present. String theory is thus the first successful

attempt at combining general relativity and gauge theories.

The AdS/CFT correspondence relates a gravitational theory coming from string

theory to a conformal field theory on the boundary of the background geometry. In

principle, any observable on one side of the correspondence can be matched to an

observable on the other side of the correspondence and their value must agree. The

1
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beauty of AdS/CFT lies in the fact that when the gravitational theory is weakly cou-

pled, the dual field theory is strongly coupled and vice-versa. This allows us to study

strongly coupled systems and check field theory results against classical gravitational

calculations. One might even hope that one day we will be able to use AdS/CFT

to gain insight into M-theory at strong coupling. Studying the gauge/gravity dual-

ity is thus of importance for the advancement of string theory and quantum gravity

but also for other fields, like strongly-coupled condensed matter systems, where the

correspondence can be applied.

Testing the conjecture is not easy in general, precisely because of its strong/weak

nature. One of the useful practical applications of AdS/CFT is to gain insight into

condensed matter systems by assuming that the duality holds and use classical grav-

ity to compute field theory results. However, the technique of localisation, that we

will review in chapter 2, allows to do gauge theory calculations exactly and inde-

pendently of the coupling regime. Using this method, it is possible to check exact

field theory results against classical gravity calculations and see that they indeed

agree as predicted by AdS/CFT. This is currently the best we can do to probe the

correspondence as strongly coupled quantum gravity is not understood at all.

The first example of AdS/CFT was given by Maldacena [5]. The duality re-

lates type IIB string theory on AdS5 × S5 to N = 4 super-Yang-Mills in flat four-

dimensional Minkowski space-time. The AdS5 × S5 geometry is obtained as the

near-horizon limit of a stack of N D3-branes in supergravity while the geometry re-

mains flat far away from the branes. On the other hand, the world volume theory of

those N coincident D3-branes created by strings stretching between the D-branes is

N = 4 super-Yang-Mills. Hence, those two theories were conjectured to be equiva-

lent to each other. It is then surprising, but nonetheless true, that the gravitational

degrees of freedom in ten dimensions are encrypted into a field theory on the bound-

ary of AdS5; the gravitational theory can be seen as a holographic projection of the

boundary field theory. A crucial point for the duality to work is that the global

symmetries of the two dual theories are the same. In the case at hand, the isometry
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group of AdS5 × S5 corresponds to the conformal group multiplied by the internal

R-symmetry group of supersymmetry in N = 4 super-Yang-Mills.

Known AdS/CFT pairs are not limited to AdS5 and four-dimensional conformal

field theories. In this thesis we will focus on AdS4/CFT3. The first example of such

a pair appeared in the seminal paper [6] by Aharony, Bergman, Jafferis, and Mal-

dacena (ABJM). Starting from ABJM we now have large classes of supersymmetric

AdS4×Y7 gravity backgrounds of M-theory that are associated with particular three-

dimensional supersymmetric gauge theories, typically Chern-Simons theories coupled

to matter. The construction of the gauge theory usually relies on a dual description

in terms of type IIA string theory, which in turn involves a choice of M-theory cir-

cle U(1)M acting on Y7. In [6] the highly supersymmetric case where Y7 = S7/Zk,

equipped with its round Einstein metric and with N units of flux through this in-

ternal space, was related to a large N dual description as an N = 6 superconformal

U(N)×U(N) Chern-Simons-matter theory (the ABJM theory), with k ∈ Z being the

Chern-Simons coupling. Here Zk ⊂ U(1)M , with the M-theory circle action U(1)M

being the Hopf action on S7, so that S7/U(1)M = CP3. Hence, one can equivalently

chose to work with M-theory on AdS4 × S7/Zk, which is the near-horizon geometry

of a stack of N M2-branes, or type IIA string theory on AdS4 × CP3. There are

now many families of examples of a similar type [7–23], generally with N ≥ 2 super-

symmetry, in which Y7 is a Sasaki-Einstein seven-manifold and the dual description

typically involves supersymmetric Chern-Simons-matter theories whose gauge groups

are products of unitary groups, and with matter in various representations.

In chapter 2 of this thesis, we will be interested in looking at Wilson loops in

conformal field theories that have a dual M-theory description on AdS4×Y7. Wilson

loops are natural observables in gauge theories and are defined for a closed loop and

a representation of the gauge group. Roughly speaking, a Wilson loop is (classically)

the holonomy of the gauge field. A supersymmetric version of the loop is also available

for supersymmetric gauge theories. In QCD, Wilson loops measure the free energy of

a pair of quark-antiquark propagating along the loop. More abstractly, Wilson loops
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are interesting to study because they are non-local gauge invariant observables and

provide additional non-trivial information about the gauge theory. In the AdS/CFT

context, one expects a Wilson loop to be dual to a fundamental string when viewed

from a type IIA perspective [24], with the string worldsheet having boundary on the

loop. Equivalently, this fundamental string can be viewed as an M2-brane in M-theory

and this is the point of view that will be taken in this thesis. As we will explore in

detail in chapter 2, the computations for the Wilson loops and the M2-branes agree

in large classes of examples as predicted by the AdS/CFT correspondence.

As noted before, there has been many new pairs of dual theories discovered since

ABJM. One can try to look for new pairs by changing the internal space S7/Zk
of ABJM by another manifold Y7. Because the Calabi-Yau cone over the internal

manifold Y7 is the moduli space of the CFT for N = 1, the brane constructions of

those theories can be significantly different from ABJM and give various field theories,

from Chern-Simons matter theory to super-Yang-Mills theories. In all those cases,

the field theory lives on a three-sphere S3 at the boundary of AdS4. One can then

wonder if it is possible to deform the three-sphere with AdS/CFT still applying. The

answer to that question must be positive because it is the symmetries and asymptotic

form of AdS that matter for the correspondence to hold. Some examples have be

constructed for some particular deformations of the sphere in [25–28] and it was shown

that the free energy of the CFT indeed matches the action of the supergravity dual

[26,29–31]. More recently, the partition function of a large class of three-dimensional

Chern-Simons theories defined on a general manifold with three-sphere topology was

computed explicitly in [32]. This has provided a unified understanding of all previous

computations on deformed three-spheres. On the gravity side this yields a universal

prediction for the action of the corresponding supergravity solutions. In chapter 3, we

will study the gravity duals on a four-manifold M4 of those supersymmetric theories

defined on a general class of three-manifold M3 = ∂M4. It will be shown that the

gravity action precisely matches the field theories partition function in the large N

limit. This constitutes an exact check of the gauge/gravity correspondence for a
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broad class of gauge theories defined on a general class of background three-manifold

geometries. We are now a long way from the original ABJM whose duality related

AdS4 × S7/Zk to a conformal field theory on S3 as we now have large classes of

supergravities on M4 × Y7 dual to field theories on M3.

At this point, it is natural to ask if it is possible to construct Wilson loops on M3

and find their M2-brane gravity duals in M4× Y7. Relying on the results of chapters

2 and 3 we will construct those objects and compute them in chapter 4. As one

can anticipate, those observables match, thus verifying the duality of supergravity

on M4× Y7 and field theories on M3 beyond the matching of the supergravity action

and the free energy.



Chapter 2

Wilson loops, matrix models and

Hamiltonian geometry

2.1 Introduction

Our understanding of the AdS4/CFT3 correspondence has improved considerably

over the last few years. Broadly speaking, this has involved developments on two

fronts. Firstly, as mentioned in the introduction, we now have large classes of very

explicit examples of dual pairs; that is, gravity backgrounds for which we have some

precise description of the dual superconformal field theories. Secondly, there are new

quantitative tests of these conjectured dualities, based on supersymmetric localisation

in the field theories. The aim of this chapter is to extend this quantitative analysis

further, by examining the computation of certain BPS Wilson loops on both sides of

the correspondence. In the process we will also understand how other structures are

related via the duality.

Quantitative tests of these conjectured dualities arise by putting the Euclidean

field theories on a compact three-manifold. The simplest case, in which this three-

manifold is taken to be S3 equipped with its round metric, was studied in [33–35].

This can be done for a completely general N = 2 supersymmetric gauge theory, in

6
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such a way to preserve supersymmetry. Moreover, using a standard argument [36]

one can show that the path integral, with any BPS operator inserted, reduces exactly

to a finite-dimensional matrix integral. This implies that the VEVs of BPS operators

may be computed exactly using a matrix model description, with the large N limit of

this then expected to reproduce certain supergravity results. In practice this has been

used to compute the free energy F (minus the logarithm of the partition function)

on both sides of the correspondence [37–44], where on the supergravity side this is

proportional to N3/2 with a coefficient depending only on the volume of Y7.1

It is natural to try to extend these results further, by inserting non-trivial BPS

operators into the path integral, computing the corresponding large N behaviour in

the matrix model, and comparing to an appropriate dual semi-classical supergravity

computation. In the original papers on the ABJM theory [33,37,45–48] the supersym-

metric Wilson loop for the gauge field around a Hopf circle S1 ⊂ S3 was studied. This

is 1/2 BPS, and is readily computed in the large N matrix model [33,37]. Generally

speaking, one expects such a Wilson loop to be dual to a fundamental string when

viewed from a type IIA perspective [24], with the Euclidean string worldsheet having

boundary on the Hopf S1 at conformal infinity. More precisely, this will be semi-

classically a supersymmetric minimal surface Σ2 in Euclidean AdS4, with the VEV

calculated via the regularised area of the string worldsheet. Such a string must then

be pointlike in the internal space, and for the ABJM theory this is CP3 = S7/U(1)M .

Equivalently, this IIA string lifts to an M2-brane wrapping the M-theory circle. Notice

that since CP3 is a homogeneous space all positions for the IIA string are equivalent.

The two computations (large N matrix model and area) of course agree.2

This Wilson loop is 1/2 BPS in a general N = 2 supersymmetric gauge theory on

S3, as we review in section 2.3, and can be computed using the large N matrix model
1For a general AdS4 × Y7 solution this is the contact volume of Y7, rather than the Riemannian

volume, as we shall review in section 2.3.
2Similar Wilson loops have been considered in five-dimensional superconformal field theories on

S5 [49], which may also be computed using localisation techniques. The gravity duals are described
by warped AdS6×S4/Zn solutions of massive IIA supergravity, and thus the geometry of the internal
spaces here is fixed and in fact unique [50].
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description. The supergravity dual computation will naturally involve an M2-brane

wrapping the M-theory circle, leading to the same fundamental string configuration

in Euclidean AdS4 (see Figure 2.1). The only issue is which copy of the M-theory

circle is relevant? When the internal space is Y7 = S7/Zk all choices are equivalent

by symmetry, but on a general Sasaki-Einstein manifold Y7, this is clearly not the

case. Equivalently we may ask which IIA fundamental strings in AdS4 ×M6, that

are pointlike in M6 = Y7/U(1)M , preserve any supersymmetry.

2.2 Summary of results

Given the technical nature of the computation of the the action of the M2-brane in

supergravity and in particular the use of various differential geometric tools to achieve

it, we will start by summarising the results of this chapter in order for the reader to get

a better view of what will be done. The mathematical details will be explained and

expanded upon in the subsequent sections. The starting point is to consider BPS M2-

branes in general N = 2 supersymmetric AdS4 × Y7 solutions of eleven-dimensional

supergravity. These backgrounds were studied in detail in [51,52], where it was shown

that provided the quantised M2-brane charge N of the background (measured by a

certain flux integral) is non-zero, then there is always a canonical contact one-form η

defined on Y7. Concretely, η is constructed as a bilinear in the Killing spinors on Y7,

and it was shown in the latter reference that this contact structure entirely captures

both the gravitational free energy of the background, and also the scaling dimensions

of BPS operators arising from supersymmetric M5-branes wrapped on five-manifolds

Σ5 ⊂ Y7.

In this chapter we will show that the same contact form η captures the Wilson loop

VEV 〈W 〉 of interest, computed semi-classically from the action of a BPS M2-brane.
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U

in 6M

minimal surface

conformal boundary S3

Euclidean AdS4

Hopf S3S1

type IIA internal space

6M 7Y= /U(1)M

calibrated M-theory circles

Σ2

supersymmetric points

= fixed points of ξ

S1
M

Figure 2.1: A depiction of the total spacetime AdS4×Y7, with a choice of M-theory cir-
cle U(1)M , together with the supersymmetric M2-branes of interest which are shown
in red. These M2-branes are pointlike in the type IIA internal spaceM6 = Y7/U(1)M ,
wrapping copies of the M-theory circle over these points, and are calibrated by the
contact form η. The supersymmetric points in M6 are precisely the points where
the projection of the R-symmetry/Reeb vector field ξ is zero (giving fixed points on
M6), and in general the calibrated circles over such points have different lengths. The
remaining worldvolume of the M2-brane wraps a minimal supersymmetric surface Σ2

in Euclidean AdS4. The latter may be viewed as a hyperbolic 4-ball, with confor-
mal boundary S3, and Σ2 then has the topology of a 2-ball, with boundary a Hopf
S1 ⊂ S3.

Concretely, we derive the general formula

log 〈W 〉gravity =
(2π)2

∫
S1
M
η√

96 Volη(Y7)
N1/2 , (2.2.1)
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where we have defined the contact volume of Y7 as

Volη(Y7) ≡ 1

48

∫
Y7

η ∧ (dη)3 . (2.2.2)

In particular, a supersymmetric M2-brane is calibrated with respect to η, which is

why the integral of η along the M-theory circle S1
M appears in the formula (2.2.1).

A contact form η always has an associated unique Reeb vector field ξ, defined via

the equations ξyη = 1, ξydη = 0, and in [51, 52] it was shown that ξ is also the

R-symmetry Killing vector field, that is expected since an N = 2 superconformal

theory in three dimensions has a u(1)R symmetry in the superconformal algebra. We

will show that an M2-brane wrapping a copy of the M-theory circle S1
M is super-

symmetric precisely when the generating vector field ζM of U(1)M is proportional to

ξ. Geometrically, this means that the corresponding fundamental string at a point

p ∈ M6 is supersymmetric precisely when p is a fixed point of ξ, considered as a

vector field on M6 (on Y7, on the other hand, ξ is always nowhere zero).

There is another way to describe which wrapped M2-branes are supersymmetric

which involves the Hamiltonian function for the M-theory circle, defined as

hM ≡ η(ζM) . (2.2.3)

This is a real function hM : Y7 → R, invariant under ζM , and we show that the

supersymmetric M-theory circles S1
M ⊂ Y7 lie precisely on the critical set dhM = 0.

The action of a supersymmetric M2-brane corresponding to a point p ∈M6 may then

also be written as

−SM2 =
(2π)3hM(p̂)√

96 Volη(Y7)
N1/2 , (2.2.4)

where p̂ ∈ Y7 is any point that projects to p ∈ M6 = Y7/U(1)M . Since (2.2.4)

depends only on η we may compute this expression in examples using the same

methods employed in [51, 52], [53–57]. For example, for toric solutions (2.2.4) may

be computed entirely using toric geometry methods. In general there are multiple
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supersymmetric S1
M circles, which can have different lengths with respect to η and

thus leading to different actions (2.2.4). In the semi-classical computation one should

sum over all such configurations, which in the large N limit then implies that in

(2.2.1) it is the longest S1
M that gives the leading contribution to the Wilson loop.

In the families of examples that we shall study, the dual field theory computation

of the Wilson loop VEV reduces to a computation in a large N matrix model. As we

shall review in section 2.3, in this matrix model the eigenvalues at large N take the

general form λI = xN1/2+iyI(x), where the index I runs over the number of factors of

U(N) in the gauge group G =
∏

I U(N), and are described by an eigenvalue density

function ρ(x) which is supported on some interval [xmin, xmax] ⊂ R. To leading order

at large N it is straightforward to compute

log 〈W 〉QFT = xmax N
1/2 , (2.2.5)

which should be compared to the dual supergravity result (2.2.1).

Remarkably, in all examples that we study we find that the interval [xmin, xmax]

in the matrix model coincides, in a precise way, with the image of the Hamiltonian

function hM(Y7). Since Y7 is compact and connected, the latter image is also neces-

sarily a closed interval, and more precisely we find hM(Y7) = [cmin, cmax], where the

field theory quantity x is proportional to the geometrical quantity c:

x =
(2π)3√

96 Volη(Y7)
c . (2.2.6)

The Hamiltonian hM is a Morse-Bott function on the symplectic cone over Y7, and

on general grounds we know that the image interval [cmin, cmax] is divided into P

subintervals cmin = c1 < c2 < · · · < cP+1 = cmax, where the critical set maps as

hM ({dhM = 0}) = {ci | i = 1, . . . , P + 1}. For all c ∈ (ci, ci+1) the level surfaces

h−1
M (c) ⊂ Y7 are diffeomorphic to a fixed six-manifold, with the topology changing

precisely as one passes a critical point ci. Even more remarkable is that we find
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that the corresponding points xi, related to ci via (2.2.6), are precisely the points

where ρ′(x) has a jump discontinuity in the matrix model. These points are then also

related to the fixed points of the Reeb vector ξ on M6. Hence, every point ci where

ρ′(x) is discontinuous corresponds to a BPS M2-brane whose action −SM2 = xiN
1/2

can be computed from ci using (2.2.6), or equivalently computed via (2.2.4), and the

largest action of those M2-branes equals de Wilson loop VEV.

The outline of the rest of this chapter is as follows. In section 2.3 we review the

definition of the BPSWilson loop inN = 2 Chern-Simons-matter theories, and how it

may be computed in the large N matrix model. Section 2.4 analyses supersymmetric

M2-branes in a general class of AdS4 × Y7 backgrounds in M-theory, and we derive

the general formula for the action (2.2.4), leading to the holographic Wilson loop

result (2.2.1). Finally, in section 2.5 we compute the Wilson loop on both sides of

the correspondence in a variety of examples.

2.3 Wilson loops in N = 2 gauge theories on S3

The dual superconformal field theories of interest are N = 2 Chern-Simons gauge

theories with matter on S3. We begin in this section by defining the BPS Wilson loop

in such a theory, summarise how it localises in the matrix model, and explain how it

can be efficiently calculated. This section is mainly a review of material already in

the literature.

2.3.1 The Wilson loop

In N = 2 supersymmetric gauge theories the gauge field Ai is part of a vector

multiplet that also contains two real scalars σ and D, that are auxiliary fields, and a

two-component spinor λ, all of which are in the adjoint representation of the gauge
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group G. The BPS Wilson loop in a representation R of G is given by

W =
1

dimR
TrR

[
P exp

(∮
υ

ds(iAiẋi + σ|ẋ|)
)]

, (2.3.1)

where xi(s) parametrises the worldline υ ⊂ S3 of the Wilson line and the path

ordering operator has been denoted by P . For a Chern-Simons theory the gauge

multiplet has a kinetic term described by the supersymmetric Chern-Simons action

SChern−Simons =
ik

4π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A+ (2Dσ − λ†λ)vol3

)
, (2.3.2)

where vol3 is the volume form of the round metric on S3, and k denotes the Chern-

Simons coupling. When G is a product of unitary groups, G =
∏

I U(NI), one

can in general take different kI ∈ Z for each factor. In this case we will denote

k = gcd{kI} [8].

There are four Killing spinors on S3, two satisfying each choice of sign in the

equation ∇iε = ± i
2
τiε, where the gamma matrices τi in an orthonormal frame gener-

ate the Clifford algebra Cliff(3, 0), and may thus be taken to be the Pauli matrices.

A natural orthonormal frame {emS3}m=1,2,3 on S3 is provided by the left (or right)

invariant one-forms under the isometry group SU(2)left × SU(2)right.

The full supersymmetry transformations for a vector multiplet and matter multi-

plet may be found in [33–35]. For our purposes we need note only that localisation of

the path integral, discussed in the next section, requires one to choose a Killing spinor

ε, which without loss of generality we assume solves ∇iε = i
2
τiε. Supersymmetry

generators must be Killing in order to be able to construct invariant supersymmetric

actions. This choice of Killing spinor then has the two associated supersymmetry

transformations

δAi = − i

2
λ†τiε ,

δσ = −1

2
λ†ε . (2.3.3)
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If one varies the Wilson loop (2.3.1) under the latter supersymmetry transformation

one obtains

δW ∝ 1

2
λ†(τiẋ

i − |ẋ|)ε . (2.3.4)

The Wilson loop is then invariant under supersymmetry provided

(τiẋ
i − |ẋ|)ε = 0 . (2.3.5)

Choosing s to parametrise arclength, so that |ẋ| = 1 along the loop, we see that τiẋi

must be constant. In the left-invariant orthonormal frame emS3 one may then align ẋi

along one direction, say e3
S3 . The integral curve of this vector field is a Hopf S1 ⊂ S3

(or equivalently a great circle). The supersymmetry condition then becomes

(τ3 − 1)ε = 0 . (2.3.6)

The two possible choices of ε satisfying ∇iε = i
2
τiε have opposite chirality and only

one of them survives the projection condition above. This implies that the Wilson

loop (2.3.1) is indeed a 1/2 BPS operator provided one takes υ to be a Hopf circle.

We will see later on that the condition (2.3.6), plus the fact that the supersymmetry

generators are Killing spinors, also arises as the condition for supersymmetry of a

probe M2-brane.

2.3.2 Localisation in the matrix model

The VEV of the BPS Wilson loop (2.3.1) is, by definition, obtained by inserting

W into the path integral for the theory on S3. The computation of this is greatly

simplified by the fact that this path integral localises onto supersymmetric configu-

rations of fields. We summarise the main steps and results in this section, following

in particular [33, 34, 37, 38], and refer the reader to the original papers for further

details.

The central idea is that the path integral, with W inserted, is invariant under the
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supersymmetry variation δ corresponding to the Killing spinor ε satisfying (2.3.6).

We have written two of the supersymmetry variations in (2.3.3), and the variations

of other fields (including fields in the chiral matter multiplets) may be found in the

above references. Crucially, δ2 = 0 is nilpotent. There is then a form of fixed point

theorem that implies that the only net contributions to this path integral come from

field configurations that are invariant under δ [58].

Alternatively, and more practically for computation, one may add a conveniently

chosen δ-exact positive definite term to the action, which a standard argument shows

does not affect the expectation value of any supersymmetric (δ-invariant) operator.

For the vector multiplet one can add the term tTr[(δλ)†δλ] to the action (a similar

term exists for a matter multiplet), without affecting the path integral. Sending

t → ∞ one notes that, due to the form of this term added to the Lagrangian,

only configurations with δλ = 0 contribute to the path integral in a saddle point

approximation. This saddle point then gives the same value as if the path integral

had been calculated with t = 0, which is the quantity we are interested in. The

saddle point approximation requires one to compute a one-loop determinant around

the δ-invariant field configurations, which in the terminology of fixed point theorems

is the contribution from the normal bundle to the fixed point set in field space.

For the N = 2 supersymmetric Chern-Simons-matter theories of interest, one

finds that the δ-invariant configurations on S3 are particularly simple:

Ai = 0 , and D = −σ = constant , (2.3.7)

with all fields in the matter multiplet set identically to zero. Here we may diagonalise

σ by a gauge transformation. For a U(N) gauge group we may thus write σ =

diag(λ1
2π
, . . . λN

2π
), thus parametrising 2πσ by its eigenvalues λi. The theories of interest

will have a product gauge group of the form G =
∏g

I=1 U(N), and for t = ∞ the
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partition function then takes the saddle point form

Z =
1

(N !)g

∫ ( g∏
I=1

N∏
i=1

dλIi
2π

)
exp

[
i

g∑
I=1

kI
4π

N∑
i=1

(λIi )
2

]
e−Fone−loop , (2.3.8)

where the one-loop determinant is given by

e−Fone−loop =

g∏
I=1

∏
i 6=j

2 sinh
λIi − λIj

2
·
∏

matterα

detRα exp [`(1−∆α + iσ)] . (2.3.9)

Here the first exponential term in (2.3.8) is simply the classical Chern-Simons action

in (2.3.2), evaluated on the localised constant field configuration (2.3.7). The one-loop

determinant factorises, and the first term in (2.3.9) is the one-loop determinant for

the vector multiplet. The second term in (2.3.9) involves a product over chiral matter

multiplets, labelled by α. We have taken the αth multiplet to be in representation Rα,

and with R-charge ∆α. The determinant in the representation Rα is understood to

be a product over weights % in the weight-space decomposition of this representation,

and σ is then understood to mean %(σ) in (2.3.9). Finally,

`(z) = −z log
(
1− e2πiz

)
+

i

2

[
πz2 +

1

π
Li2
(
e2πiz

)]
− iπ

12
. (2.3.10)

In this set-up, the VEV of the BPS Wilson loop (2.3.1) reduces to

〈W 〉 =
1

Z(N !)g dimR

∫ ( g∏
I=1

N∏
i=1

dλIi
2π

)
ei

∑g
I=1

kI
4π

∑N
i=1(λIi )2 TrR

(
e2πσ

)
e−Fone−loop .

(2.3.11)

Notice the integrand is the same as that for the partition function (2.3.8), with an

additional insertion of TrR(e2πσ) arising from the Wilson loop operator. Note also

that we have normalised the VEV relative to the partition function Z, so that 〈1〉 = 1,

as is usual in quantum field theory.

Localisation has reduced the partition function Z and the Wilson loop VEV to

finite-dimensional integrals (2.3.8), (2.3.11) over the eigenvalues λIi of σ, but in prac-
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tice these are difficult to evaluate explicitly due to the complicated one-loop effective

potential (2.3.9). For comparison to the dual supergravity results we must take the

N →∞ limit, where the number of eigenvalues, and hence integrals, tends to infinity.

One can then attempt to compute this limit using a saddle point approximation of

the integral (this is then our second application of the saddle point method). With

the exception of the N = 6 supersymmetric ABJM theory, where this matrix model

is well-understood [59], for general N = 2 theories the large N limit of the matrix

integrals is not understood rigorously. However, in [37] a simple ansatz for the large

N limit of the saddle point eigenvalue distribution was introduced. This ansatz is

based on a partial analytic analysis of the matrix model, and also on a numerical

approach to computing the saddle point. One seeks saddle points with eigenvalues

of the form

λIi = xiN
β + iyIi , (2.3.12)

with xi and yIi real and assumed to be O(1) in a large N expansion, and β > 0. In

the large N limit the real part is assumed to become dense. Ordering the eigenvalues

so that the xi are strictly increasing, the real part becomes a continuous variable x,

with density ρ(x), while yIi becomes a continuous function of x, yI(x).

Substituting this ansatz into the partition function expression (2.3.8), the sums

over eigenvalues become Riemann integrals over x, and one finds that the double

sums appearing in the one-loop expression (2.3.9) effectively have a delta function

contribution which reduces them to single integrals over x. Writing Z = e−F one then

obtains a functional F [ρ(x), yI(x)], with x supported on some interval [xmin, xmax],

and to apply the saddle point method one then extremises F with respect to ρ(x),

yI(x), subject to the constraint that ρ(x) is a density

∫ xmax

xmin

ρ(x)dx = 1 . (2.3.13)

The existence of such a saddle point fixes the exponent β = 1
2
in (2.3.12). One then
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finally also extremises over the choice of interval, by varying with respect to xmin,

xmax, to obtain the saddle point eigenvalue distribution ρ(x), yI(x).

We shall be interested in evaluating the Wilson loop VEV (2.3.11) in the funda-

mental representation because it is the one dual to a fundamental string. In this case,

the Wilson loop is proportional to
∑g

I=1

∑N
i=1 eλ

I
i . In the large N limit, described by

the saddle point density ρ(x) and imaginary parts yI(x) of the eigenvalues, the VEV

reduces simply to

〈W 〉QFT = TrR
(
e2πσ

) ∣∣
at the saddle point

=

g∑
I=1

∫ xmax

xmin

eλ
I(x)ρ(x)dx (2.3.14)

=

g∑
I=1

∫ xmax

xmin

exN
1/2+iyI(x)ρ(x)dx .

Because of the form of F [ρ(x), yI(x)] for N = 2 Chern-Simons-matter theories, the

saddle point eigenvalue density ρ(x) is always a continuous, piecewise linear function

on (xmin, xmax), see for example section 2.5. A simple computation then shows that,

to leading order in the large N limit, the matrix model VEV (2.3.14) reduces to

log 〈W 〉QFT = xmaxN
1/2 . (2.3.15)

This is our final formula for the large N limit of the Wilson loop VEV. We see that

it computes the maximum value of the real part of the saddle point eigenvalues.

In our summary above we have suppressed the dependence on the R-charges

∆α of the matter multiplets, labelled by α, appearing in (2.3.9). If these are left

arbitrary, one obtains a free energy F that is a function of ∆α, and according to [34]

the superconformal R-symmetry of an N = 2 superconformal field theory further

extremises F as a function of ∆α (in fact maximising F [60]). For theories with
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M-theory duals of the form AdS4 × Y7 one finds the expected supergravity result

F =

√
2π6

27 Volη(Y7)
N3/2 , (2.3.16)

but as a function of R-charges ∆α [38], where on the right hand side it is in general

the contact volume (2.2.2) of Y7 that appears. This has by now been demonstrated

in many classes of examples in the literature [37–44,52].

2.4 BPS M2-branes

This section will analyse the dual objects to theWilson loops that have been just built.

From a type IIA perspective, the dual object is a fundamental string and it can be

equivalently viewed as an M2-brane from a M-theory viewpoint. The supersymmetric,

or BPS, probe M2-branes must therefor reproduce the holographic dual of the Wilson

loop VEV (2.3.15). First, we review the form of the supergravity backgrounds. We

then define the M2-brane of interest and recast its condition of supersymmetry into

a geometric condition. After that, we derive the formula (2.2.4) for the action of the

M2-brane, and finally describe how this may be computed in practice using different

geometric methods.

2.4.1 Supergravity backgrounds

We will study the general class of N = 2 supersymmetric AdS4 × Y7 backgrounds

of M-theory described in [51, 52]. We begin by recalling some relevant results and

formulae.

The bosonic field content of D = 11 supergravity consists of [61] a metric g11 and

a three form C with four form field strength G = dC. The signature of the metric is
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taken to be (−,+, . . . ,+) and the action is

S11 =
1

(2π)8`9
p

∫
R ∗11 1−

1

2
dC ∧ ∗11dC − 1

6
C ∧ dC ∧ dC . (2.4.1)

The metric g11 has Ricci scalar R, C is the three-form potential and `p denotes the

eleven-dimensional Planck length. The equations of motion for the metric and C-field

follow immediately:

RAB −
1

12
(GAC1C2C3GB

C1C2C3 − 1

12
gABG

2) = 0 ,

d ∗11 G+
1

2
G ∧G = 0 , (2.4.2)

where we have defined G ≡ dC, RAB is the Ricci tensor and A,B,C = 1, . . . , 11. We

consider AdS4 solutions of the warp product form:

g11 = e2∆

(
1

4
gAdS4 + gY7

)
,

G =
m

16
vol4 + F4 , (2.4.3)

where the metric on AdS4 has unit AdS radius, with volume form vol4. The warp

factor ∆ is taken to be a function on Y7, m is a constant, and F4 is a four-form on Y7.

The Bianchi identity dG = 0 requires that the four-form F4 be closed. This is the

most general ansatz compatible with the symmetries of AdS4. The eleven-dimensional

Majorana spinor takes the form

ε11 = e∆/2ψ+ ⊗ χ+ + e∆/2ψ− ⊗ χ− + charge conjugate , (2.4.4)

where χ± are complex spinors on Y7, ψ± are the usual Killing spinors on AdS4 (the

± signs are related to the charge under the R-symmetry, discussed below), and the

factors of e∆/2 have been introduced for convenience.

In general, the vanishing of the variation of the gravitino, giving the general
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Killing spinor equation in eleven dimensions, implies that the spinors χ± solve quite

a complicated system of coupled first order equations on Y7, that may be found

in [51, 52]. These equations are then necessary and sufficient for supersymmetry of

the AdS4 × Y7 background. For our purposes we need note only a few key formulae.

We first define the real one-forms

ξ ≡ iχ̄c+γ(1)χ− , η ≡ − 6

m
e3∆χ̄+γ(1)χ+ , (2.4.5)

where in general we denote γ(n) ≡ 1
n!
γm1···mndym1 ∧ · · · ∧ dymn , with y1, . . . , y7 local

coordinates on Y7, and the superscript c on the spinors denotes charge conjugation.

By an abuse of notation, we will more generally regard ξ as the dual vector field

defined by the metric gY7 . We then note that the differential equations for χ± imply

the equations

χ̄+χ+ = χ̄−χ− = 1 ,
m

6
e−3∆ = −Im

[
χ̄c+χ−

]
, Re

[
χ̄c+χ−

]
= 0 ,

Re
[
χ̄c+γ(1)χ−

]
= 0 , χ̄+γ(1)χ+ = −χ̄−γ(1)χ− ,

dη = −12

m
e3∆Re

[
χ̄c+γ(2)χ−

]
. (2.4.6)

These equations may all be found in reference [52].

The one-form η is a contact form on Y7, meaning that the top form η ∧ (dη)3

is nowhere zero, see section 2.4.4 for more detail on contact geometry. Indeed, one

finds [52] that

η ∧ (dη)3 =
2734

m3
e9∆vol7 , (2.4.7)

where vol7 is the Riemannian volume form defined by gY7 . It is a general fact that a

contact form η has associated to it a unique Reeb vector field, defined by the relations

ξyη = 1 , ξydη = 0 , (2.4.8)

and remarkably one finds that ξ and η defined by (2.4.5) indeed satisfy these equa-
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tions. Moreover, ξ is a Killing vector field under which χ± carry charges ±2, i.e.

Lξχ± = ±2iχ±, and as such is the expected R-symmetry vector field.

Dirac quantisation in this background implies that

N = − 1

(2π`p)6

∫
Y7

∗11G+
1

2
C ∧G (2.4.9)

should be an integer. This may be identified with the M2-brane charge of the back-

ground, and a computation [51,52] gives

N =
1

(2π`p)6

m2

2532

∫
Y7

η ∧ (dη)3 , (2.4.10)

relating the quantised M2-brane charge to the contact volume (2.2.2) of Y7 and m.

Since this is proportional to m2, in fact the contact form in (2.4.5) may be defined

only when this charge is non-zero, so that m 6= 0. We assume this henceforth.

The above supergravity solution of M-theory is valid only in the large N limit,

even for solutions with non-trivial warp factor ∆ and internal four-form flux F4. To

see this [52], note that the scaling symmetry of eleven-dimensional supergravity in

which the metric g11 and four-form G have weights two and three, respectively, leads

to a symmetry in which one shifts ∆→ ∆ + κ and simultaneously scales m→ e3κm,

F4 → e3κF4, where κ is any real constant. We may then take the metric gY7 on Y7 to

be of order O(1) in N , and conclude from the quantisation condition (2.4.10), which

has weight 6 on the right hand side, and the expression for me−3∆ in (2.4.6) that

e∆ = O(N1/6). It follows that the AdS4 radius, while dependent on Y7 in general, is

RAdS4 = e∆ = O(N1/6), and that the supergravity approximation we have been using

is valid only in the N →∞ limit.

2.4.2 Choice of M-theory circle

In addition to the supergravity background we must also pick a choice of M-theory

circle. Geometrically, this means we also choose a U(1) = U(1)M action on Y7. In
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terms of the supergravity solution described in the previous section, a choice of U(1)M

implies the choice of a (non-U(1)R) Killing vector field ζM on (Y7, gY7), whose flow

generates the M-theory circle action. In particular ζM should preserve the Killing

spinors χ± on Y7, and hence also the contact one-form η. The type IIA spacetime is

then a warped product AdS4 ×M6, where M6 ≡ Y7/U(1)M is the quotient space.

Of course globally we must be careful when writing M6 = Y7/U(1)M . Although

in principle one might choose any U(1)M action on Y7, in practice the gauge theories

we study arise from ‘nice’ actions of U(1)M . In particular, if the action is free,

i.e. only the identity fixes any point on Y7, then M6 inherits the structure of a

smooth manifold from Y7, the simplest example being that of the ABJM theory with

M6 = CP3 = S7/U(1)Hopf . If one embeds S7 ⊂ C4 as a unit sphere in the obvious

way, then recall that U(1)Hopf may be taken to have weights (1, 1,−1,−1) on the

four complex coordinates (z1, z2, z3, z4) on C4. In this case the dual field theory

is the N = 6 ABJM theory, which in N = 2 language is a U(N) × U(N) Chern-

Simons gauge theory with two chiral matter fields A1, A2 in the bifundamental (N,N)

representation of this gauge group, two chiral matter fields B1, B2 in the conjugate

(N,N) representation, and a quartic superpotential.

2.4.3 BPS M2-brane probes

The supersymmetric M2-brane which is conjectured to be holographically dual to

the Wilson loop on S3 must necessarily have as boundary a Hopf circle in S3. A

convenient explicit form for the Euclidean AdS4 metric can be taken to be

gAdS4 =
dq2

1 + q2
+ q2dΩ3 , (2.4.11)

with dΩ3 the round metric on the unit sphere S3, and q ∈ [0,∞) a radial coordinate.

The M2-branes of interest then wrap Σ2 × S1
M , where the surface Σ2 ⊂ AdS4 has

boundary ∂Σ2 = S1
Hopf ⊂ S3, and S1

M ⊂ Y7 is the M-theory circle. The submanifold

Σ2 is then parametrised by the radial direction q in AdS4, and a geodesic Hopf circle
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S1
Hopf in S3, whilst S1

M ⊂ Y7 is a priori arbitrary (imposing supersymmetry will later

give restrictions on S1
M). The area of the surface Σ2 in AdS4 is divergent, but can

be regularised by subtracting the length of its boundary, i.e. the length of the S1
Hopf

geodesic in S3 at q →∞. Notice this is then a local boundary counterterm. Including

also the warp factor one finds the regularised area to be

Vol(Σ2) = −π
2

e2∆ . (2.4.12)

The action of the M2-brane then reads

SM2 =
1

(2π)2`3
p

[
Vol(Σ2 × S1

M) +

∫
Σ2×S1

M

C

]
= − 1

(2π)2`3
p

π

2

∫
S1
M

e3∆volS1
M
, (2.4.13)

where volS1
M

is the volume form on S1
M induced from the metric gY7 and it is easily

seen from the form of G = dC in (2.4.3) that the C field does not contribute to the

action.

As mentioned above, imposing that the M2-brane Σ2 × S1
M is supersymmetric

gives restrictions on the possible circles S1
M . To see this, we need to split the Clifford

algebra Cliff(11, 0) generated by gamma matrices Γ̃A satisfying {Γ̃A, Γ̃B} = 2δAB into

Cliff(4, 0)⊗ Cliff(7, 0) via

Γ̃µ = Γµ ⊗ 1 , Γ̃a+3 = Γ5 ⊗ γa , (2.4.14)

where µ, ν = 0, 1, 2, 3 and a, b = 1, . . . , 7 are orthonormal frame indices for Euclidean

AdS4 and Y7 respectively, {Γµ,Γν} = 2δµν , {γa, γb} = 2δab and we have defined

Γ5 ≡ Γ0Γ1Γ2Γ3. If we denote by XM the embedding coordinates of the worldvolume

of the M2-brane into the target geometry, the amount of preserved supersymmetry is
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equal to the number of spinors ε11, as in (2.4.4), satisfying the projection condition [62]

Pε11 = 0 , where P ≡ 1

2

(
1− i

3!
εαβγ∂αX

M∂βX
N∂γX

P Γ̃MNP

)
, (2.4.15)

with α, β, γ indices on the worldvolume. We now choose an orthonormal frame in

eleven-dimensions as (c.f. (2.4.3))

E0 =
1

2
e∆ dq√

1 + q2
, Em =

1

2
e∆qemS3 , E3+a = e∆eaY7 , (2.4.16)

where {emS3}m=1,2,3 is an orthonormal frame on S3 and {eaY7}a=1,...7 is an orthonormal

frame on (Y7, g7), with e1
Y7

(or rather its dual vector field) aligned along the M-theory

circle vector field ζM . Taking e3
S3 to be aligned along the Hopf circle, as in section

2.3.1, the projector P then takes the simple form

P =
1

2
(1− iΓ5Γ03 ⊗ γ1) , (2.4.17)

and the constraints that follow on the spinors ψ±, χ± on Euclidean AdS4 and Y7,

respectively, are

(1− iΓ5Γ03)ψ± = 0 , and (1− γ1)χ± = 0 . (2.4.18)

In order to determine how much supersymmetry is preserved by the brane in

AdS4, we must count the number of Killing spinors ψ± that satisfy the last projection

equation. We may decompose the four-dimensional gamma matrices into Γ0 = 1⊗ τ3

and Γi = τi⊗τ1, with the Pauli matrices τi, i = 1, 2, 3. These matrices act on spinors of

the form ψ = (ψ1, ψ2)T , with ψ1,2 2-component spinors. The Killing spinors on AdS4

may then be constructed from Killing spinors on the S3 at fixed radial coordinate q.

Explicitly, if ε solves the Killing spinor equation

∇iε =
i

2
τiε , (2.4.19)
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on S3, then

ψ =

 (q +
√

1 + q2)1/2ε

(q +
√

1 + q2)−1/2ε

 , (2.4.20)

is a Killing spinor on Euclidean AdS4. Equation (2.4.19) has two solutions, one

being chiral and one anti-chiral, i.e. τ3ε = ±ε. One then easily shows that the first

projection equation in (2.4.18) is satisfied if we restrict to chiral ε in the last solution,

which singles out one of these two spinors on AdS4
3. Hence the M2-brane preserves

half of the supersymmetry in AdS4. Note that the same positive chirality condition

also appeared in the supersymmetry condition derived in the field theory context,

c.f. (2.3.6).

The second projection equation in (2.4.18) tells us which circles S1
M give rise to

supersymmetry-preserving M2-branes. Following a standard argument one notices

that

χ̄+

(
1− γ1

2

)
χ+ = χ̄+

(
1− γ1

2

)†(
1− γ1

2

)
χ+ =

∣∣∣∣(1− γ1

2

)
χ+

∣∣∣∣2 ≥ 0 ,

(2.4.21)

using γ1 = γ†1 and γ2
1 = 1. This immediately gives volS1

M
≥ χ̄+γ(1)χ+ (with a pull-

back understood), with equality if and only if some supersymmetry is preserved by

S1
M . The action (2.4.13) for a supersymmetric brane is then

SM2 =
Vol(Σ2 × S1

M)

(2π)2`3
p

= − 1

(2π)2`3
p

π

2

∫
S1
M

e3∆χ̄+γ(1)χ+ . (2.4.22)

With the help of equations (2.4.5) and (2.4.10) the action of a supersymmetric M2-

brane can be rewritten in terms of the contact form η as (taking a convention in

which m < 0)

SM2 = −
(2π)2

∫
S1
M
η√

2
∫
Y7
η ∧ (dη)3

N1/2 . (2.4.23)

3The other two Killing spinors on AdS4 are constructed from spinors on S3 satisfying ∇iε =
− i

2τiε. We set the corresponding spinors to zero in section 2.3, as they are not used in the super-
symmetric localisation. Again, one chirality is broken by the M2-brane.
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2.4.4 Contact geometry, Hamiltonian functions and Sasaki-

Einstein manifolds

Because the next two sections are more mathematical and require the use of some

results coming from differential geometry, this section will present some definitions

and results that will be of importance.

As we mentioned in section 2.4.1, the supergravity solution naturally yields a

contact form η on Y7. More generally, a manifold Y of dimension 2n − 1 is called

contact if there exists a one-form η, called the contact form, such that the top form

η ∧ (dη)n−1 is nowhere zero. It is a general fact that a contact form η has associated

to it a unique Reeb vector field, defined by the relations

ξyη = 1 , ξydη = 0 . (2.4.24)

Moreover, dη is a symplectic form on ker η, the rank (2n−2) subbundle of the tangent

bundle TY of Y defined as vectors having zero contraction with η. We recall that

a symplectic form is a closed non-degenerate differential two-form. Hence, since this

means that dη is non-degenerate on this rank (2n − 2) bundle, the tangent bundle

can be decomposed as TY = ker η ⊕ 〈ξ〉, where 〈ξ〉 is the real line bundle spanned

by vectors proportional to ξ.

Every contact manifold is equivalent to a symplectic cone (X = C(Y ) = R+ ×

Y, ω = 1
2
d(r2η)) with metric

ds2
X = dr2 + r2ds2

Y (2.4.25)

and symplectic form ω. On a symplectic manifold, if there exists a vector field V

generating a U(1) action on X such that

V yω = −dH (2.4.26)

then H : X → R is called a moment map or Hamiltonian function for V . It is a gen-
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eral fact that any component of the moment map for a compact group action on a sym-

plectic manifold is a Morse-Bott function. A Morse-Bott function on a compact and

connected symplectic manifold X is such that the image interval H(X) = [hmin, hmax]

is divided into P subintervals hmin = h1 < h2 < · · · < hP+1 = hmax, where the critical

set maps as H ({dH = 0}) = {hi | i = 1, . . . , P + 1}. For all h ∈ (hi, hi+1) the

level surfaces H−1(h) ⊂ X are diffeomorphic to a fixed (2n − 2)-manifold, with the

topology changing precisely as one passes a critical point hi.

If a 2n-dimensional manifold X is equipped with a complex structure J , i.e.

a smooth vector bundle isomorphism J : TX → TX which squares to J2 = −1

and whose Nijenhuis tensor vanishes, then X is said to be a complex manifold and

holomorphic coordinates can be defined on X. When (X,ω, J, g) is symplectic and

complex with Riemannian metric g and if the triplet (ω, J, g) is compatible, i.e.

ω(u, v) = g(Ju, v) for all u, v ∈ TX then (X, J, g) is called a Kähler manifold with

Kähler form ω. Kähler manifolds have very interesting properties. For example, their

holonomy group is contained in U(n) and there always exists a canonical spinc spinor

on such manifolds. This fact will turn out to be very useful in the next chapter.

If the symplectic coneX = C(Y ) defined above is also Kähler then the manifold Y

is by definition called Sasakian. In this case, the contact volume defined in equation

(2.2.2) coincides with the Riemannian volume. Furthermore, ifX is Kähler and Ricci-

flat, which is our definition of Calabi-Yau, then the base manifold Y is necessarily

an Einstein manifold, i.e. its Ricci tensor is proportional to its metric, and we will

call it a Sasaki-Einstein manifold. Interestingly, if the manifold Y is Einstein but not

necessarily Sasakian, its contact volume is also equal to its Riemannian volume. In

all examples of Wilson loops and M2-branes calculations that we will look at, Y7 is

a Sasaki-Einstein manifold with an extra toric structure. Those complex differential

geometric structures will allow us to develop a rather general and simple method to

compute the M2-brane actions, see section 2.4.6.
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2.4.5 M-theory Hamiltonian function

In this section we further elucidate the geometry associated to the supersymmetric

M2-branes. This geometric structure will both be of practical use, when we come

to compute the M2-brane actions (2.4.23) in examples, and also, as we will see, is

realised rather directly in the large N dual matrix model.

We begin by introducing the M-theory Hamiltonian function

hM ≡ η(ζM) = ζMyη , (2.4.27)

where ζM generates the M-theory circle action. This is a real function on Y7, and

since ζM is assumed to preserve the Killing spinors and metric on Y7, it follows that

ζM preserves hM and commutes with the Reeb vector field ξ. We then have that the

contact length of an M-theory circle S1
M over a point p ∈ M6 = Y7/U(1)M is given

by
∫
S1
M
η = 2πhM(p̂), where p̂ ∈ Y7 is any lift of the point p. This directly leads to

the form of the M2-brane action (2.2.4).

One way to characterise the supersymmetric M-theory circles S1
M is to note that

on TY7 |S1
M

the vector ζM is necessarily proportional to the Reeb vector. Indeed,

using (2.4.6) one can show that at these supersymmetric points

ζMydη = 0 . (2.4.28)

To see this one takes the projection condition (2.4.18) with χ−, applies χ̄c+γa on

the left, and then takes the real part of the resulting equation. Using Re [χ̄c+χ−] =

Re [χ̄c+γaχ−] = 0 and the relation between dη and Re [χ̄c+γ(2)χ−] in (2.4.6) then leads

to (2.4.28). That this then implies ζM ∝ ξ follows from the fact that TY7 = ker η⊕〈ξ〉

and that dη is non-degenerate on ker η because Y7 is a contact manifold. Equation

(2.4.28) implies that the projection of ζM onto ker η is zero, i.e. that ζM ∝ ξ.

The condition (2.4.28) is then also the condition that we are at a critical point

of the Hamiltonian hM . To see this, ζM preserving η is written LζMη = 0 and, using
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the Cartan formula, (2.4.28) is equivalent to

d(ζMyη) = 0 ⇔ dhM = 0 . (2.4.29)

Thus the supersymmetric M2-branes lie precisely on the critical set {dhM = 0}, and

their action (2.2.4) is determined by hM evaluated at the critical point. Recall that

the cone C(Y7) is symplectic, with symplectic form ω = 1
2
d (r2η). The M-theory circle

action then gives a U(1)M action on this cone, with moment map µ = 1
2
r2hM because

ζMyω = −dµ. Thus µ is Morse-Bott, and the restriction of µ to Y7 at r = 1 is our

Hamiltonian function hM/2. We thus know that the image hM(Y7) = [cmin, cmax] is a

closed interval, and this is further subdivided into P intervals via cmin = c1 < c2 <

· · · < cP+1 = cmax, where the ci are images under hM of the critical set {dhM = 0}.

On each open interval c ∈ (ci, ci+1) the level surfaces h−1
M (c) are all diffeomorphic

to the same fixed six-manifold, with the topology changing as one crosses a critical

point ci.

Finally, since at a supersymmetric S1
M we have ζM ∝ ξ, it follows that the corre-

sponding point p ∈ M6 = Y7/U(1)M is a fixed point under the induced Reeb vector

action on M6 = Y7/U(1)M . That is, over every fixed point p ∈ M6 of ξ, there

exists a calibrated and supersymmetric M-theory circle S1
M,p whose corresponding

supersymmetric M2-brane action is given by (2.2.4).

In the holographic computation of the Wilson loop VEV via the M2-brane action,

one should sum e−SM2,p over all contributions. In some cases we shall find that the

supersymmetric points p ∈M6 form submanifolds which are fixed by ξ, and this sum

in fact becomes an integral over the different connected submanifolds. Notice that

hM is constant on each connected component of the fixed point set. In any case, in

the large N limit only the longest circle S1
M survives, the others being exponentially

suppressed relative to it in the sum/integral, hence proving formula (2.2.1).

The calculation of the action of a supersymmetric M2-brane can be completely

carried out once the Reeb vector field ξ and the M-theory circle generator ζM are
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known. Indeed, the contact volume Volη(Y7) is a function only of the Reeb vector [53],

and the length of a calibrated circle
∫
S1
M,p

η = 2πhM(p̂) depends only on ξ, ζM and

the point p. Even though this could appear to be involved, the computation of

these two quantities is relatively straightforward for appropriate classes of Y7. In

particular, if we focus on toric Sasaki-Einstein manifolds, some geometrical techniques

can be exploited to straightforwardly find all calibrated circles, i.e. the connected

components of the critical set {dhM = 0} ⊂ Y7, as well as the contact volume [57].

This is the subject of the next section.

2.4.6 Toric Sasaki-Einstein manifolds and BPS M2-brane ac-

tions

For appropriate classes of examples, namely toric Sasaki-Einstein manifolds Y7, vari-

ous quantities we have been discussing can be efficiently computed. When Y7 is toric

there exists a U(1)4 action that acts on Y7 and preserves the contact form η. In this

case there are some pretty geometric methods, first developed in [56, 57], that may

be utilised to calculate the length of the calibrated M-theory circles, as well as the

volumes of the internal spaces. We will thus focus on this class of solutions.

Let us begin with the symplectic cone C(Y ) of section 2.4.4 in general dimension

2n. Equivalently, (Y, η) is contact with dimY = 2n − 1. The toric condition means

that U(1)n acts on the symplectic cone C(Y ) preserving the symplectic form ω,

and we may parametrise the generating vector fields as ∂φi , with φi ∈ [0, 2π) and

i = 1, . . . , n. This allows one to introduce symplectic coordinates (yi, φi) in which

the symplectic form on C(Y ) has the simple expression

ω =
n∑
i=1

dyi ∧ dφi . (2.4.30)
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The coordinates yi are moment maps for the U(1)n generated by the ∂φi as

∂φiyω = −dyi . (2.4.31)

Moreover, when the toric cone is such that ξ lies in the Lie algebra of U(1)n, which

will be assumed here, the coordinates yi take values in a convex polyhedral cone

C∗ ⊂ Rn [63]. If this cone has d facets, we have corresponding outward primitive

normal vectors to these facets, va ∈ Zn, a = 1, . . . , d, with the facets corresponding

to the fixed point sets of U(1) ⊂ U(1)n with weights va. In particular this set-up

applies to toric Sasakian Y [56], in which the symplectic cone C(Y ) is also Kähler.

In this case, if one adds the condition that C(Y ) is Calabi-Yau, it is equivalent to the

existence of an SL(n,Z) transformation such that the normal vectors take the form

va = (1, wa), for all a, with wa ∈ Zn−1. In this basis, the first component of the Reeb

vector is necessarily ξ1 = n [56].

In general the components of ξ =
∑n

i=1 ξi∂φi form a vector ~ξ = (ξ1, . . . , ξn) that

defines the characteristic hyperplane in Rn: {~y ∈ Rn | ~ξ · ~y = 1
2
}. This hyperplane

interesects C∗ to form a finite polytope ∆ξ, and the contact volume of the base Y is

related to the volume of this polytope by4

Volη(Y ) = 2n(2π)nVol(∆ξ) . (2.4.32)

Moreover, each of the d facets Fa, intersected with the characteristic hyperplane,

are images under the moment map of (2n− 3)-dimensional subspaces Σa of Y . The

volumes of these submanifolds may be calculated once the volumes of the facets are

known, for

Volη(Σa) = (2n− 2)(2π)n−1 1

|va|
Vol(Fa) . (2.4.33)

4Remember that in the Sasakian case the Riemannian volume and contact volumes coincide.
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In addition, the volume of the base manifold Y is simply given by

Volη(Y ) =
(2π)n

ξ1

d∑
a=1

1

|va|
Vol(Fa) . (2.4.34)

In [57] the idea is to study the space of Kähler cone metrics on C(Y ), and thus

Sasakian structures on Y . One then considers the Einstein-Hilbert action (with a

fixed positive cosmological constant) restricted to this space of Sasakian metrics on Y ,

so that a Sasaki-Einstein metric on Y is a critical point. In fact the action is minimised

and proportional to the volume of the base Vol(Y ) when the metric on Y is Sasaki-

Einstein. In this case there is unique Reeb vector of the form ~ξ = (n, ξ2, . . . , ξn) such

that the Einstein-Hilbert action, or equivalently Vol(Y ), is minimised as a function

of ξ. Thus, for any given toric diagram one calculates Vol(Y ) with formula (2.4.34)

as a function of the Reeb vector, and determines ~ξ for the Sasaki-Einstein metric on

Y by minimising this function5.

In this thesis we need only apply this method for n = 4. A way to compute

Vol(Fa) as a function of the Reeb vector for n = 4 has been described in [13]. If the

facet Fa is a tetrahedron, its vertex is at the origin in C∗ and its base is a triangle lying

in the characteristic hyperplane. This is generated by three edges passing from the

characteristic hyperplane to the origin, and bounded by four hyperplanes creating the

polyhedron. In addition to va, three other facets are then involved in the construction

of the tetrahedron, and we denote their normal vectors as va,1, va,2, va,3. The volume

of the tetrahedron may be expressed as

1

|va|
Vol(Fa) =

1

48

(va, va,1, va,2, va,3)2

|(ξ, va, va,1, va,2)(ξ, va, va,1, va,3)(ξ, va, va,2, va,3)|
, (2.4.35)

with (·, ·, ·, ·) the determinant of a 4× 4 matrix. If the facet Fa is not a tetrahedron,

i.e. there are more than 3 edges that meet at a vertex in the toric diagram (c.f.

below), the volume can be computed with the same formula by breaking up the facet
5That the Sasaki-Einstein metric indeed always exists was proven in [64].
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into tetrahedrons.

The toric diagram for the toric Calabi-Yau cone is by definition the convex hull

of the lattice vectors wa in n − 1 = 3 dimensions. To each vertex in this diagram

corresponds a facet Fa. If the vertex is located at the intersection of three planes, or

equivalently three edges of the toric diagram meet at the vertex, then it corresponds

to a tetrahedron. If instead four edges meet at the vertex, the facet is a pyramid that

can be split into two tetrahedrons, and so on. A given facet Fa then corresponds to

a vector va = (1, wa), with wa a vertex in the toric diagram; the other three vectors

va,1, va,2, va,3 are the outward-pointing primitive vectors corresponding in the toric

diagram to the three edges that meet at the vertex va. Let us also note that the base

Y7 of the cone is a smooth manifold only if each face of the toric diagram is a triangle,

and there are no lattice points internal to any edge or face.

It should now be clear that once a toric diagram is given for a toric Calabi-Yau

cone C(Y ), one can calculate the volume of the base Volη(Y ) as a function of the toric

data and the Reeb vector that is parametrised by ~ξ = (4, ξ2, ξ3, ξ4). After minimising

the volume with respect to ξ2, ξ3, ξ4, one obtains the Reeb vector and Volη(Y ) as a

function of the toric data only.

Next we turn to the M-theory Hamiltonian function hM , and the computation of

the calibrated circles in Y7 and their lengths. This involves, by definition, the choice

of an M-theory circle ζM , as described in section 2.4.2. As we proved in this section,

supersymmetric calibrated S1
M exist where ζM is parallel to ξ. This is equivalent to

ζM = η(ζM)ξ = hMξ , (2.4.36)

as follows by taking the contraction of each side with η. We can conclude that if we

know the proportionality constant between ζM and ξ, the length of the corresponding

calibrated M-theory circle, located over a fixed point p under ξ in M6, is then simply

2πhM(p̂) with p̂ ∈ Y7 any point projecting to p. In terms of the toric geometry above,
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notice that with ζM =
∑n

i=1 ζ
i
M∂φi we have

ζMyω = −d

(
n∑
i=1

yiζ
i
M

)
= −d

(
1

2
r2hM

)
, (2.4.37)

and it follows that on Y7, i.e. at r = 1,

hM = 2
n∑
i=1

yiζ
i
M , (2.4.38)

This may be regarded as a function on the polytope ∆ξ, that is the image of Y7 under

the moment map.

The only remaining question is how to find where the two vectors ζM , ξ are

proportional to each other, or equivalently what the critical points of hM are, and

also what the value of hM at those points is. With the formalism at hand, this is

straightforward to answer. Once a toric diagram and ζM are given, the Reeb vector

and the volume can be found with the method described above. We may then find

the solutions to the equation

ζM = βξ +
∑
a∈I

αava , (2.4.39)

with β, αa real numbers, and I ⊂ {1, . . . , d} a subset of three facets which intersect.

Geometrically, the intersection of three facets defines an edge of C∗, which corresponds

to a circle S1 ⊂ Y7. This circle is a fixed point set of U(1)3 ⊂ U(1)4 defined by the

three vectors va, a ∈ I, meaning that the generating U(1) vector fields corresponding

to va are zero over this circle, and hence ζM is parallel to ξ. Thus this S1 is precisely

a calibrated circle. The proportionality constant is then hM = η(ζM) = β, and its

length is 2πhM . Thus our problem boils down to linear algebra on the polyhedral

cone.

We make a few further geometrical observations. First, if (2.4.39) holds with

β = 0 then ζM actually fixes the S1. The M-theory circle then has zero length on
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such loci, formally leading to M2-branes with zero action; if ζM acts freely on Y7 this

cannot happen. Next we note that (2.4.39) cannot hold with αa = 0 for all a ∈ I,

since then ζM would be everywhere parallel to ξ, and this cannot happen since ζM is

a non-R symmetry. However, it may happen that (2.4.39) holds with one or two (but

not all three) of the coefficients αa = 0. Geometrically, this means that in this case

ζM is parallel to ξ over the intersection of the corresponding two or one facets with

non-zero αa coefficients, leading to three-dimensional or five-dimensional subspaces of

Y7 which are fibred by calibrated S1
M circles. These then descend to two-dimensional

or four-dimensional fixed point sets of ξ on M6 = Y7/U(1)M , respectively. We shall

see examples of this in section 2.5. Finally, if the toric diagram contains faces which

have more than three sides, then (2.4.39) may hold for I being the corresponding set

of 4 or more vectors va. In this case the manifold has a locus of singularities along

the corresponding S1 in Y7, and our theory above does not directly apply to these

singular circles.

Even though the above theoretical background may appear cumbersome, it is ef-

fectively not difficult to find the volume of Y7, its Reeb vector ξ and all the calibrated

circles and their lengths. Thanks to equation (2.2.4), the action for each correspond-

ing M2-brane follows straightforwardly, and can be compared to the data extracted

from the matrix model of the dual field theory. We examine these computations in a

variety of examples in section 2.5.

2.4.7 Hamiltonian function and density

In [65,66] a relation was also found between ρ(x), and other matrix model variables,

and certain geometric invariants. In particular, ρ(x) is related to the derivative of a

function that counts operators in the chiral ring of the gauge theory according to their

R-charge and monopole charges. In the language of the current paper, the monopole

charge is the charge under U(1)M . With our notations and conventions, using [66]
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one can rewrite their conjecture for ρ(x) in the following form:

ρ(x) =
4

π2

(2π)3√
96 Volη(Y7)

∂rvol(Prc)

|ξ ∧ ζM |

∣∣∣∣∣
r=1

,

where Prc ≡
{
y ∈ C∗

∣∣∣ ~y · ~ξ =
r

2
, ~y · ~ζM =

c

2

}
, (2.4.40)

where the variable c is related to x by (2.2.6). Using equation (2.4.38), we know that

for the toric case ~y · ~ζM = 1
2
hM . If we introduce

Pc ≡ {y ∈ C∗| hM = c} , (2.4.41)

we see that Prc is nothing but the intersection of Pc with the characteristic hyperplane.

But since the pre-image under the moment map of Pc in Y7 is the same as h−1
M (c),

which changes topology every time we pass through a critical point of hM , we know

that the topology of the pre-image of Prc in Y7 also changes every time a critical

point is crossed. Thus we expect a change of behaviour of vol(Prc) and hence ρ(x)

at the critical points xi that are related to the ci by (2.2.6). In other words, the

eigenvalue density has a different behaviour in each subset (ci, ci+1), as we will see

in the examples in the next section, because there are supersymmetric M2 branes

located at the ci, which are critical points of a Hamiltonian function. That explains

why the function ρ(x) has a jump in its derivative precisely at the critical points.

2.5 Examples

In this section we illustrate the duality between geometries and matrix models in a

wide variety of examples. In particular we will compute the image of the M-theory

Hamiltonian hM(Y7) = [cmin, cmax], and show that it coincides with the support of

the matrix model eigenvalues [xmin, xmax] via (2.2.6). The critical points of hM will

be shown to map to the points x = xi where ρ′(x) has a jump discontinuity, with the

matching of Wilson loops being a corollary of this result for x = xmax.
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2.5.1 Duals to the round S7

We begin by studying two superconformal duals to AdS4× S7, where S7 is equipped

with its standard round Einstein metric. These differ in the choice of M-theory circle

U(1)M acting on S7. In this case the geometry is particularly simple, allowing us to

illustrate the geometric structures we have described very explicitly.

ABJM theory

The ABJM theory [6] is an N = 6 superconformal U(N)k × U(N)−k Chern-Simons-

matter theory. In N = 2 language, there are two chiral matter fields A1, A2 in the

bifundamental (N,N) representation of this gauge group, two chiral matter fields B1,

B2 in the conjugate (N,N) representation, and a quartic superpotential. Here the

subscript k ∈ Z in U(N)k denotes the Chern-Simons level for the particular copy

of U(N), as in (2.3.2). This theory is dual to AdS4 × S7/Zk with N units of flux

(2.4.10), where Zk ⊂ U(1)Hopf = U(1)M .

We may realise S7 as the unit sphere S7 ⊂ R8 ∼= C4 and take U(1)Hopf to have

weights (1, 1,−1,−1) on the four complex coordinates (z1, z2, z3, z4) on C4. In this

description the U(1)R symmetry of the N = 2 subalgebra of the N = 6 manifest

superconformal symmetry of the theory has weights (1, 1, 1, 1) on C4, which gives a

different Hopf action on C4.

In these coordinates S7 = {(z1, z2, z3, z4) ∈ C4 | |z1|2 + |z2|2 + |z3|2 + |z4|2 = 1},

while the M-theory Hamiltonian function on S7/Zk is

hM =
1

k

(
|z1|2 + |z2|2 − |z3|2 − |z4|2

)
. (2.5.1)

In the toric geometry language of section 2.4.6, we have the symplectic coordinates

yi = 1
2
|zi|2. The level sets h−1

M (c) are diffeomorphic to S3 × S3/Zk for c ∈ (− 1
k
, 1
k
).

Indeed, notice that these level sets are also described by

|z1|2 + |z2|2 =
1

2
(1 + ck) , |z3|2 + |z4|2 =

1

2
(1− ck) . (2.5.2)
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When c → ± 1
k
the S3 × S3/Zk level sets thus collapse to two copies of S3/Zk at

{z3 = z4 = 0} and {z1 = z2 = 0}, respectively. Thus the image hM(S7) =
[
− 1
k
, 1
k

]
,

with the endpoints cmax = −cmin = 1
k
being the only two critical points of the Morse-

Bott function hM .

The contact form in these coordinates is

η =
i

2r2

4∑
i=1

(zidz̄i − z̄idzi) , r2 ≡
4∑
i=1

|zi|2 . (2.5.3)

Being Einstein, the contact volume of S7/Zk is equal to the Riemannian volume, with

Vol(S7/Zk) =
π4

3k
. (2.5.4)

Our general formula (2.2.6) thus implies that the matrix model variable x should be

related to the geometric quantity c above via

x =
(2π)3√

96 Vol(S7/Zk)
c = π

√
2k c . (2.5.5)

The large N saddle point eigenvalue distribution for the ABJM theory was given

in [37]. The eigenvalues for the two gauge groups are related by

λ1(x) = λ̄2(x) = xN1/2 + iy(x) , (2.5.6)

where

ρ(x) =

√
k

2π
√

2
, y(x) =

√
k

2
√

2
x , (2.5.7)

and the eigenvalues are supported on [xmin, xmax], where xmax = −xmin = π
√

2/k.

This of course agrees with the geometric formula (2.5.5), and since the density ρ(x)

is constant on (xmin, xmax) (see Figure 2.2) its derivative is in particular continuous

on this region. It is then automatic that the gravity formula (2.2.1) agrees with the
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ρ(x)

xmin xmax

Figure 2.2: Eigenvalue density ρ(x) for the ABJM theory.

field theory formula (2.2.5) for the Wilson loop, giving in both cases

log 〈W 〉 = π

√
2

k
N1/2 . (2.5.8)

Mirror theory

The mirror to the ABJM theory (with k = 1) arises by choosing a different M-theory

circle action on S7. We will not go into the details of why this theory is called

mirror to ABJM but rather see it as another example of an AdS/CFT pair where

Wilson loops can be studied. The field theory [18] is N = 8 U(N) super-Yang-Mills

theory coupled to two additional fields q, q̃ in the fundamental and anti-fundamental

representation of U(N), respectively. The superpotential is

W = Tr (qX1q̃ +X3[X1, X2]) , (2.5.9)

where X1, X2, X3 are the adjoint chiral fields of the N = 8 theory, in N = 2 language.

In this case the M-theory circle U(1)M has weights (1,−1, 0, 0) on S7 ⊂ C4, which

has a codimension four fixed point set F = S3 = {z1 = z2 = 0} ⊂ S7. It follows that

the type IIA internal space is M6 = S6.

Although the background geometry is the same as in the previous subsection, i.e.
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AdS4 × S7, the M-theory Hamiltonian is now6

hM = |z1|2 − |z2|2 . (2.5.10)

The level surfaces h−1
M (c) are described by

2|z1|2 + |z3|2 + |z4|2 = 1 + c , 2|z2|2 + |z3|2 + |z4|2 = 1− c , (2.5.11)

so that c ∈ [−1, 1]. However, the critical point set of hM is quite different to that for

the ABJM model. The endpoints c = +1, c = −1 are now the copies of S1 ⊂ S7 at

{z2 = z3 = z4 = 0} and {z1 = z3 = z4 = 0}, respectively. (Compare to the ABJM

model, where for k = 1 also c ∈ [−1, 1], but with the endpoints being images of

copies of S3, rather than S1.) Moreover, there is an additional critical point at c = 0.

Indeed, on S7 we have

dhM = (z1dz̄1 + z̄1dz1)− (z2dz̄2 + z̄2dz2) ,

0 =
4∑
i=1

(zidz̄i + z̄idzi) ⇔ 0 = dr . (2.5.12)

Thus in addition to the endpoints {z2 = z3 = z4 = 0} and {z1 = z3 = z4 = 0}, we

also have dhM = 0 at {z1 = z2 = 0} = S3, which is the fixed point set of U(1)M

where hM = 0. Thus we have the three critical points c1 = cmin = −1, c2 = 0,

c3 = cmax = 1.

The topology of the level sets h−1
M (c) is the same for c ∈ (−1, 0) and c ∈ (0, 1), but

with different circles collapsing on each side. For c ∈ (0, 1) we may ‘solve’ hM = c as

|z1|2 = |z2|2 +c > 0, and note that consequently z1 6= 0 on this locus. From (2.5.11) it

follows that h−1
M (c) ∼= S1

1 ×S5, where S1
1 is parametrised by the phase of z1 = |z1|eiφ1 .

On the other hand, for c ∈ (−1, 0) instead we solve hM = c as |z2|2 = |z1|2 − c > 0,
6We could similarly choose to quotient by Zk ⊂ U(1)M . However, here we restricted to k = 1 in

order to compare to the k = 1 ABJM theory, which is also dual to AdS4 × S7 (the point being that
the Zk quotients in each case are different). In fact the general k case is a = k, b = 0 of section
2.5.3.
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so that h−1
M (c) ∼= S1

2 × S5, where S1
2 is parametrised by the phase of z2 = |z2|eiφ2 .

The general formula (2.2.6) implies that the matrix model variable x should be

related to the geometric quantity c again via

x =
(2π)3√

96 Vol(S7)
c = π

√
2 c , (2.5.13)

which is the same formula as for the ABJM model with k = 1. The large N saddle

point eigenvalue distribution is in fact a special case of the models in section 2.5.3,

with a = 1, b = 0 in the notation of that section, and appears in [40]. In this case

there is only a single gauge group, and one finds the eigenvalue density

ρ(x) =


1

2π2 (x− xmin) , xmin < x < 0

1
2π2 (xmax − x) , 0 < x < xmax

, (2.5.14)

where xmax = −xmin = π
√

2, thus agreeing with (2.5.13). Moreover, the derivative of

ρ(x)

xmin xmax0

Figure 2.3: Eigenvalue density as a function of x. There are three points where ρ′(x)
is discontinuous, corresponding to critical points of hM .

ρ is discontinuous at the endpoints and at the point x = 0. The Wilson loop is again

given by (2.5.8), with k = 1.

2.5.2 Dual to Q1,1,1/Zk

Our next example is that of the homogeneous and toric Sasaki-Einstein manifold

Q1,1,1/Zk. The manifold Q1,1,1 is the total space of an S1 fibration over the product
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of three copies of S2, i.e. S1 ↪→ Q1,1,1 → S2 × S2 × S2, which describes its structure

as a regular Sasaki-Einstein manifold. Even though this manifold is toric, and the

geometrical techniques described in section 2.4.6 can be applied, we will instead take

advantage of the fact that the metric is known explicitly on this space.

The Sasaki-Einstein metric on Q1,1,1 can be written as

gY7 =
1

16

(
dψ +

3∑
i=1

cos θidϕi

)2

+
1

8

3∑
i=1

(dθ2
i + sin2 θidϕ

2
i ) , (2.5.15)

where the coordinates θi ∈ [0, π] and ϕi ∈ [0, 2π) are the usual S2 coordinates, and

the coordinate ψ ∈ [0, 4π) parametrises the S1 fibre. The contact form is simply

η =
1

4

(
dψ +

3∑
i=1

cos θidϕi

)
, (2.5.16)

and for the field theory model below the M-theory circle is generated by ζM = 1
k
(∂ϕ1 +

∂ϕ2). The M-theory Hamiltonian follows straightforwardly and reads

hM = η(ζM) =
1

4k
(cos θ1 + cos θ2) . (2.5.17)

The length of a supersymmetric M-theory circle is always given by 2πhM(p̂),

where p̂ ∈ Y7 covers a fixed point p of ξ, with p ∈ M6 = Y7/U(1)M . However,

when the Sasaki-Einstein manifold is regular, as in the case at hand, we may also

describe the supersymmetric M-theory circles in terms of the base Kähler-Einstein

manifold B6 = Y7/U(1)R, where U(1)R is generated by the Reeb vector ξ. In this

point of view, the supersymmetric M-theory circles cover fixed points of ζM on B6,

which in the case at hand is B6 = S2 × S2 × S2 because ξ = 4∂ψ. These points are

located at {(θ1, θ2) | θ1 ∈ {0, π}, θ2 ∈ {0, π}}. Thus one obtains three critical values

c1 = cmin = − 1
2k
, c2 = 0, c3 = cmax = 1

2k
. Notice these are S2 loci of critical points,

parametrised by (θ3, ϕ3).

Being Einstein, the contact volume of Q1,1,1/Zk is equal to the Riemannian vol-
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ume, with

Vol(Q1,1,1/Zk) =
π4

8k
, (2.5.18)

and as usual the Zk quotient is along U(1)M generated by ζM . The general formula

(2.2.6) tells us that the matrix model variable xmax = −xmin predicted from the

gravity calculation is

xmax =
(2π)3√

96 Vol(Q1,1,1/Zk)
cmax =

2π√
3k

. (2.5.19)

A dual field theory to Q1,1,1/Zk has been proposed in [16, 18]. This theory is

closely related to the ABJM theory. In addition to the bifundamental fields Ai, Bi, a

pair of field in the (anti-) fundamental representation is added to each gauge group

node, and one adds a cubic term to the superpotential

Wcubic = Tr (q1A1q̃1 + q2A2q̃2) . (2.5.20)

The corresponding matrix model has been worked out in [39], where it was found

that the density of the real part of the eigenvalues is

ρ(x) =
k

4π2
(2xmax − |x|) for xmin < x < xmax , (2.5.21)

with xmax = 2π√
3k
, thus agreeing with (2.5.19). Moreover, the derivative of ρ is dis-

ρ(x)

xmin xmax0

Figure 2.4: Eigenvalue density ρ(x). There are three points where ρ′(x) is discontin-
uous, associated with supersymmetric M-theory circles.
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continuous at the endpoints and at the point x = 0, as predicted by c1, c2 and c3

above. The Wilson loop calculated from the field theory then agrees with the gravity

computation, and reads

log 〈W 〉 =
2π√
3k
N1/2 . (2.5.22)

2.5.3 N = 8 super-Yang-Mills with flavour

In this section we consider a family of theories that generalise the mirror to the

ABJM theory discussed in section 2.5.1. These were discussed in [40], having been

first introduced in [18].

One begins with N = 8 super-Yang-Mills with gauge group U(N), which is the

theory on N D2-branes in flat space. In N = 2 language we have three adjoint chiral

matter fields X1, X2, X3, together with the cubic superpotential TrX3[X1, X2]. To

this we add matter fields in the fundamental and anti-fundamental representations,

which breaks the supersymmetry generically to N = 2. More precisely, we add n1

fields (q
(1)
j , q̃

(1)
j ), n2 fields (q

(2)
j , q̃

(2)
j ) and n3 fields (q

(3)
j , q̃

(3)
j ), together with the cubic

superpotential

W = Tr

[
n1∑
j=1

q
(1)
j X1q̃

(1)
j +

n2∑
j=1

q
(2)
j X2q̃

(2)
j +

n3∑
j=1

q
(3)
j X3q̃

(3)
j +X3[X1, X2]

]
, (2.5.23)

so that the mirror theory of section 2.5.1 is simply n1 = 1, n2 = n3 = 0.

In [18] it was shown that the quantum corrected moduli space of vacua of these

theories, for N = 1, may be parametrised by the three coordinates X1, X2, X3, to-

gether with the monopole operators T , T̃ , which satisfy the constraint

T T̃ = Xn1
1 Xn2

2 Xn3
3 . (2.5.24)

This defines a Calabi-Yau cone C(Y7) as a hypersurface singularity in C5. The

M-theory circle is straightforward to identify in this case, since by definition the

monopole operators T , T̃ have charges ±1, respectively, under U(1)M , while the Xi
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are uncharged.

The matrix model for this gauge theory can be analysed as described in section

2.3.2 and carried out in [40]. The eigenvalue density is given by

ρ(x) =


(
∑3
i=1 ni∆i−2∆m)

8π2∆1∆2∆3
(x− xmin) , xmin < x < 0

(
∑3
i=1 ni∆i+2∆m)

8π2∆1∆2∆3
(xmax − x) , 0 < x < xmax

, (2.5.25)

and the endpoints are

xmax/min = ±

√
8π2∆1∆2∆3(

∑3
i=1 ni∆i ∓ 2∆m)

(
∑3

i=1 ni∆i)(
∑3

i=1 ni∆i ± 2∆m)
. (2.5.26)

Here ∆i = ∆(Xi), i = 1, 2, 3, are the R-charges of the fields Xi, while ∆m = ∆(T ) =

∆(T̃ ) is the R-charge of the monopole operators. As described in section 2.3.2,

these may be left a priori arbitrary at this point, the only restriction being that the

superpotentialW has R-charge ∆(W) = 2. This leads to the constraint
∑3

i=1 ∆i = 2.

The shape of ρ as a function of x is shown in Figure 2.5.

ρ(x)

xmin xmax0

Figure 2.5: Eigenvalue density as a function of x. There are three points where ρ′(x)
is discontinuous, and we correspondingly expect to find three critical points of hM ,
with associated supersymmetric circles.

The superconformal R-charges are determined by maximising the free energy F

as a function of the R-charges. This immediately leads to ∆m = 0, and then

F =
2
√

2π
√

∆1∆2∆3

(∑3
i=1 ni∆i

)
3

N3/2 , (2.5.27)



47

which must be further maximised subject to the constraint
∑3

i=1 ∆i = 2. In practice

the formulae are rather too unwieldy for general ni, so following [40] we restrict to

the case n1 = a, n2 = b, n3 = 0. In this case the free energy is maximised by

∆1 =
a− 2b+

√
a2 + b2 − ab

2(a− b)
, ∆2 =

b− 2a+
√
a2 + b2 − ab

2(b− a)
, ∆3 =

1

2
,

(2.5.28)

and thus

xmax/min = ±2π

√
∆1∆2

a∆1 + b∆2

. (2.5.29)

The moduli space equation (2.5.24) correspondingly reduces to T T̃ = Xa
1X

b
2. The

field X3 is then unconstrained, and the Calabi-Yau cone takes the product form

C(Y7) = C × C(Y5), where X3 is a coordinate on C and C(Y5) is precisely the

Y5 = La,b,a toric singularity. The toric diagram has lattice vectors

w1 = (0, 0, 0) , w2 = (0, 1, 0) , w3 = (1, 0, 0) ,

w4 = (0, 0, a) , w5 = (0, 1, b) , (2.5.30)

and is shown in Figure 2.6. Recall that we parametrise the Reeb vector by ξ =

(4, ξ2, ξ3, ξ4), and that the four-dimensional outward-pointing vectors to the facets

are va = (1, wa). With the method described earlier in section 2.4.6, the volume of

the base Y7 and the Reeb vector can be found and expressed in terms of ∆1 and ∆2,

and one finds

Vol(Y7) =
π4

6

1

∆1∆2(a∆1 + b∆2)
, (2.5.31)

and
~ξ = (4, 1, 2∆2, a∆1 + b∆2) . (2.5.32)

The M-theory circle in this basis is given by ζM = (0, 0, 0,−1); one can derive

this by writing the functions T, T̃ ,Xi in terms of the toric geometry formalism above

(see, for example, section 4.3 of [53]). Recall also that in this formalism the M-

theory Hamiltonian function is given by (2.4.38). Thus in this case we have simply
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w4 = (0,0,a)

w5 = (0,1,b)

w2 = (0,1,0)

w3 = (1,0,0)

w1 = (0,0,0)

Figure 2.6: Toric diagram corresponding to C(Y7) = {T T̃ = Xa
1X

b
2} × C. The apex

is not an isolated singularity, as one sees from the non-triangular face with vertices
(1, 2, 4, 5).

hM = −2y4. The critical points of hM must always lie on the boundary of the

polyhedral cone, which are coordinate singularities, and thus it is easiest to determine

this critical set using the method described at the end of section 2.4.6. We denote the

face of the toric diagram which has vertices {va, vb, vc, . . .} by (a, b, c, . . .). Equation

(2.4.39) then has two types of solution:

hM = 0 on (2, 3, 5), (1, 3, 4), (1, 2, 4, 5) ,

|hM | =
1

a∆1 + b∆2

on (1, 2, 3), (3, 4, 5) , (2.5.33)

and correspondingly one has the critical values hM = ci given by

c3 = −c1 =
1

a∆1 + b∆2

, and c2 = 0 . (2.5.34)

Notice here that the face (1, 2, 4, 5) (being non-triangular) corresponds to the S1 locus

of La,b,a conical singularities in Y7. Using the general formula (2.2.6) we then find
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that these values of ci precisely match the corresponding positions x1, x2, x3 at which

the derivative of the eigenvalue density ρ′(x) is discontinuous. Finally, using (2.2.4)

the Wilson loop is

log 〈W 〉gravity = 2π

√
∆1∆2

a∆1 + b∆2

N1/2 = xmaxN
1/2 = log 〈W 〉QFT , (2.5.35)

where we used (2.5.29).

2.5.4 La,2a,a Chern-Simons-quivers

In this section and the next we study two families of examples whose matrix models

were first analysed in [44].

The N = 2 field theories begin life as low-energy theories on N D2-branes at

an La,b,a Calabi-Yau three-fold singularity. This may be simply described as the

hypersurface {wz = uavb} ⊂ C4, where (w, z, u, v) are the coordinates on C4. This

geometry also appeared in the previous subsection of course, but there the M-theory

Calabi-Yau four-fold was a product C×C(La,b,a), whereas here instead C(La,b,a) arises

as the type IIA spacetime. The low-energy theory on the N D2-branes is known

from [67–69], and is described by a U(N)a+b gauge theory, with a superpotential W

consisting of both cubic and quartic terms in the bifundamental and adjoint chiral

matter fields. Without loss of generality we may take b ≥ a, in which case there are

b − a adjoint chiral superfields associated to b − a of the a + b U(N) gauge group

factors, and a total of 2(a+ b) bifundamental fields. We refer the reader to the above

references for further details of these gauge theories.

Following [17] and in particular the construction in [11], the D2-brane theories

become M2-brane theories at a Calabi-Yau four-fold. Geometrically the M-theory

circle is fibred over the base C(La,b,a), and Chern-Simons couplings for the gauge

group are introduced in the field theory, described by a vector of Chern-Simons levels
~k = (k1, . . . , ka+b) = (k1, . . . , kb−a‖kb−a+1, . . . , ka+b), where the double bar separates

the copies of U(N) with adjoint fields from those without. This construction is
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described in more detail in [44].

Our first class of examples arise from La,2a,a quiver theories, where the vector of

Chern-Simons levels is ~k = (0, . . . , 0,−2k‖k, k,−k, k,−k, . . . , k,−k, k), with k ∈ Z.

These theories generalise the model first studied in [38]. The matrix model may be

solved using the general large N saddle point method described in section 2.3.2, and

one finds [44] the eigenvalue density

ρ(x) =


4akπx(1−∆)+µ
16aπ3(1−∆)∆2 , − µ

4akπ(1−∆)
< x < − µ

2akπ(2−∆)

µ
16aπ3∆(2−∆)(1−∆)

, − µ
2akπ(2−∆)

< x < µ
2akπ(2−∆)

−4akπx(1−∆)−µ
16aπ3(1−∆)∆2 ,

µ
2akπ(2−∆)

< x < µ
4akπ(1−∆)

, (2.5.36)

where we have defined7

µ = 8aπ2

√
k∆(2− 3∆ + ∆2)2

4− 3∆
. (2.5.37)

Here the single R-charge variable ∆ parametrises the R-charges of all the chiral matter

fields, as in [44]. The eigenvalue density ρ(x) is shown in Figure 2.7.

ρ(x)

x1 = xmin x2 x3 x4 =  xmax

Figure 2.7: Eigenvalue density as a function of x. There are 4 points x1, x2, x3, x4

where ρ′(x) is discontinuous, corresponding to critical points of hM .

The free energy, as a function of ∆, is given by

F =
8aπ

3

√
k∆(1−∆)2(2−∆)2

(4− 3∆)
N3/2 . (2.5.38)

7The variable µ arises as a Lagrange multiplier, enforcing that ρ(x) is a density satisfying (2.3.13).
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One may then maximise F to determine the superconformal ∆, finding the cubic

irrational

∆ =
1

18

[
19− 37(

431− 18
√

417
)1/3
−
(

431− 18
√

417
)1/3

]
' 0.319 . (2.5.39)

This agrees with the value computed in [38], which was for the particular case a = 1.

Turning to the dual geometry, the Calabi-Yau four-fold that arises as the Abelian

N = 1 moduli space of these theories has toric data (for k = 1)

w1 = (0, 2a, 0) , w2 = (−1, a, 0) , w3 = (−1, 0, 0) ,

w4 = (0, a, a) , w5 = (0, a,−a) , w6 = (0, 0, 0) , (2.5.40)

and with toric diagram shown in Figure 2.8. The volume of Y7 may be computed as

w1 = (0,2a,0)  

w2 = (-1,a,0)  
w3 = (-1,0,0)  

w4 = (0,a,a)

w5 = (0,a,-a)  

w6 = (0,0,0)  

Figure 2.8: Toric diagram of the La,2a,a Chern-Simons-quiver theories with k = 1.

described in section 2.4.6, and one obtains

Vol(Y7) =
π4(4− 3∆)

96a2k∆(∆− 1)2(∆− 2)2
, (2.5.41)
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with corresponding Reeb vector field

~ξ = (4,−4∆, 2a(2−∆), 0) . (2.5.42)

The M-theory circle for this field theory is given in this basis by ζM = (0, 0, 0, 1),

so that Y7 is given by a Zk quotient of the geometry appearing in Figure 2.8, with

Zk ⊂ U(1)M . We may again compute the critical points of the M-theory Hamiltonian

hM = 2y4 using the method at the end of section 2.4.6. Equation (2.4.39) has solutions

associated to the following faces of the toric diagram:

(
hM = 0 on (1, 4, 5, 6)

)
,

|hM | =
1

4a(1−∆)
on (2, 3, 4) , (2, 3, 5) , (2.5.43)

|hM | =
1

2a(2−∆)
on (1, 2, 4) , (1, 2, 5) , (3, 4, 6) , (3, 5, 6) ,

and correspondingly one has the critical values hM = ci given by

c4 = −c1 =
1

4ak(1−∆)
, and c3 = −c2 =

1

2ka(2−∆)
. (2.5.44)

Note here that the face (1, 4, 5, 6) describes a singular S1 locus in Y7, and thus

although hM = 0 here, formally leading to zero-action M2-branes, the tangent space

is singular. Using the general formula (2.2.6) we then find that these values of ci

precisely match the corresponding positions x1, x2, x3, x4 at which the derivative of

the eigenvalue density ρ′(x) is discontinuous. Explicitly, the actions of M2-branes

wrapped on the corresponding calibrated S1 ⊂ Y7 are then

−SM2(c2) = 4π(1−∆)
√

∆
k(4−3∆)

N1/2 ,

log 〈W 〉 = −SM2(c4) = 2π(2−∆)
√

∆
k(4−3∆)

N1/2 , (2.5.45)

with the latter determining the Wilson loop VEV, and showing that the field theory
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and gravity computations of it agree.

2.5.5 La,b,a Chern-Simons-quivers

Our second family within this class are the La,b,a Chern-Simons theories, with the

vector of Chern-Simons levels now given by ~k = (0, . . . , k,−2k‖k, 0, . . . , 0). One finds

the eigenvalue density [44]

ρ(x) =


4kπx(1−∆)+µ

16π3(1−∆)∆((b−2)(1−∆)+a∆)
, − µ

4kπ(1−∆)
< x < − µ

2kπ(b(1−∆)+a∆)

µ
16π3(1−∆)∆(b(1−∆)+a∆)

, − µ
2kπ(b(1−∆)+a∆)

< x < µ
2kπ(b(1−∆)+a∆)

− 4kπx(1−∆)−µ
16π3(1−∆)∆((b−2)(1−∆)+a∆)

, µ
2kπ(b(1−∆)+a∆)

< x < µ
4kπ(1−∆)

(2.5.46)

where we have defined

µ = 8π2

√
k∆(1−∆)2(b(1−∆) + a∆)2

(b− 2)(1−∆) + a∆
. (2.5.47)

Again, the R-charge variable ∆ parametrises the R-charges of all the chiral matter

fields, as detailed in [44]. The eigenvalue density ρ(x) is shown in Figure 2.9.

ρ(x)

x1 = xmin x2 x3 x4 =  xmax

Figure 2.9: Eigenvalue density as a function of x. There are again 4 points
x1, x2, x3, x4 where ρ′(x) is discontinuous, corresponding to critical points of hM .

The free energy, as a function of ∆, is given by

F =
8π

3

√
k(1−∆)2∆(b(1−∆) + a∆)2

(b+ 2)(1−∆) + a∆
N3/2 . (2.5.48)
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One may then maximise F to find an expression (not presented) for the superconfor-

mal ∆ that depends on a and b.

The corresponding Calabi-Yau four-fold that arises as the Abelian N = 1 moduli

space of these theories has toric data (for k = 1)

w1 = (0, 0, 0) , w2 = (1,−1, 0) , w3 = (1, 1, 0) , w4 = (b− 1,−1, 0) ,

w5 = (b− 1, 1, 0) , w6 = (b, 0, 0) , w7 = (0, 0, 1) , w8 = (a, 0, 1) ,

(2.5.49)

and with toric diagram shown in Figure 2.10. The volume of Y7 may be computed

w7 = (0,0,1)

w1 = (0,0,0)

w3 = (1,1,0)

w2 = (1,-1,0)

w8 = (a,0,1)

w5 = (b-1,1,0)

w6 = (b,0,0)

w4 = (b-1,-1,0)

Figure 2.10: Toric diagram of the La,b,a Chern-Simons-quiver theories with k = 1.

as described in section 2.4.6, and one obtains

Vol(Y7) =
π4((b+ 2)(1−∆) + a∆)

96k∆(1−∆)2(b(1−∆) + a∆)2
, (2.5.50)

with corresponding Reeb vector

~ξ = (4, 2(b(1−∆) + a∆), 0, 4∆) . (2.5.51)
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The M-theory circle for this field theory is given in this basis by ζM = (0, 0, 1, 0),

so that again Y7 is given by a Zk quotient of the geometry appearing in Figure 2.10,

with Zk ⊂ U(1)M . The M-theory Hamiltonian is hM = 2y3, and its critical points

may be computed from equation (2.4.39), which has solutions on the following faces

of the toric diagram:

(
hM = 0 on (1, 2, 3, 4, 5, 6) ,

)
|hM | =

1

4(1−∆)
on (2, 4, 7, 8) , (3, 5, 7, 8) , (2.5.52)

|hM | =
1

2(b(1−∆) + a∆)
on (1, 2, 7) , (1, 3, 7) , (4, 6, 8) , (5, 6, 8) ,

and correspondingly one has critical values hM = ci given by

c4 = −c1 =
1

4k(1−∆)
, and c3 = −c2 =

1

2k(b(1−∆) + a∆)
. (2.5.53)

Using the general formula (2.2.6) we then find that these values of ci precisely match

the corresponding positions x1, x2, x3, x4 at which the derivative of the eigenvalue

density ρ′(x) is discontinuous. Explicitly, the actions of M2-branes wrapped on the

corresponding calibrated S1 ⊂ Y7 are

−SM2(c2) = 4π(1−∆)
√

∆
k((2+b)(1−∆)+a∆)

N1/2 ,

log 〈W 〉 = −SM2(c4) = 2π(b(1−∆ + a∆))
√

∆
k((2+b)(1−∆)+a∆)

N1/2 , (2.5.54)

with the latter determining the Wilson loop VEV, and showing that the field theory

and gravity computations of it agree.



Chapter 3

Gravity duals of field theories on

three-manifolds

3.1 Introduction

Non-perturbative computations can be performed in certain supersymmetric field

theories defined on curved Euclidean manifolds, using the technique of localisation

described in the last chapter. This has motivated the systematic study of rigid

supersymmetry in curved space [70], and it has also prompted the exploration of the

gauge/gravity duality in situations when the boundary supersymmetric field theories

are defined on non-trivial curved manifolds. This programme has been initiated in

[26], where a simple Euclidean supersymmetric solution of four-dimensional minimal

gauged supergravity was proposed as the dual to three-dimensional supersymmetric

Chern-Simons theories defined on a squashed three-sphere (ellipsoid), for which the

exact partition function had been computed previously in [25]. Generalisations have

been discussed in [29–31].

Using localisation, the partition function Z of a large class of N = 2 three-

dimensional Chern-Simons theories defined on a general manifold with three-sphere

topology was computed explicitly in [32]. This has provided a unified understand-

56
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ing of all previous localisation computations on deformed three-spheres [25–28], and

has shown that the partition function on these manifolds depends only on a single

parameter b1/b2, related to a choice of almost contact structure. Specifically, for a

general toric metric on the three-sphere, the real numbers b1, b2 specify a choice of

Killing vector K in the torus of isometries. For a broad class of Chern-Simons-quiver

theories, the large N limit of the free energy F = − log |Z| can be computed using

saddle points methods [26], giving the general result

lim
N→∞

F b1
b2

=
(|b1|+ |b2|)2

4|b1b2|
· Fround , (3.1.1)

where Fround is the large N limit of the free energy on the round three-sphere scaling

with N3/2, see equation (2.3.16). All computations in chapter 2 were done for a round

three-sphere boundary and we did not emphasise it by adding the index ‘round’ to

the free energy and the Wilson loops. However, we will now denote the free energy

and Wilson loops by F and W for the more generic backgrounds developed in this

chapter and use the notation Fround and Wround for the free energy and Wilson loops

of chapter 2 on the round sphere.

On the gravity side, (3.1.1) yields a universal prediction for the holographically

renormalised on-shell action of the corresponding supergravity solutions. Indeed, the

on-shell action of the solutions of [26], [29], [30], and [31] reproduced this formula,

for certain choices of metrics and background gauge fields. More precisely, these

are all supersymmetric solutions of minimal four-dimensional gauged supergravity in

Euclidean signature, and comprise a negatively curved Einstein anti-self-dual metric

on the four-ball1, with a specific choice of gauge field with anti-self-dual curvature,

that we refer to as an instanton. The result of [32] raises two questions:

• Given an arbitrary toric metric on the three-sphere, with a background gauge

field satisfying the rigid Killing spinor equations [71, 72], can one construct a
1References [29] and [30] also discuss several solutions with topology different from the four-ball;

however, at present the precise field theory constructions dual to these remain unknown. In this
thesis we will not discuss topologies different from the four-ball.
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dual supergravity solution?

• Assuming such a supergravity solution exists, can one compute the correspond-

ing holographic free energy and show that it matches (3.1.1)?

The purpose of this chapter is to address these two questions. Working in the

context of four-dimensional2 minimal gauged supergravity, and assuming an ansatz

that the solutions are anti-self-dual and have the topology of the ball, we will be able

to provide rather general answers to both these questions.

Regarding the first question, we will show that given an anti-self-dual metric on

the ball with U(1)2 isometry, and a choice of an arbitrary Killing vector therein,

we can construct an instanton configuration, such that together these give a smooth

supersymmetric solution of minimal gauged supergravity. Moreover, assuming this

metric is asymptotically locally AdS, we will show that on the conformal boundary the

four-dimensional solution reduces to a three-dimensional geometry solving the rigid

Killing spinor equations of [71, 72], in the form presented in [32]. We will illustrate

this construction through several examples, including previously known as well as

new solutions.

We will be able to answer the second question, regarding the computation of the

holographic free energy, independently of the details of a specific solution. Namely,

assuming only that a smooth solution with given boundary conditions exists, we will

show that the holographically renormalised on-shell action takes the form

I =
(|b1|+ |b2|)2

4|b1b2|
· Iround , (3.1.2)

precisely matching the large N field theory prediction from localisation (3.1.1). Here,

we made use of the fact that Fround = Iround has been checked in many classes of

examples, see end of section 2.3.2 for a reminder. We emphasise that (3.1.2) will
2We will show in section 3.2 how the eleven-dimensional supergravity can be reduced to four-

dimensional supergravity for the the purpose of finding a gravity dual to field theories on generic
three-manifolds.



59

be derived without reference to a specific solution, and that it receives non-zero

contributions from the boundary, as well as from the bulk, specifically from the

‘centre’ of the ball.

The rest of this chapter is organised as follows. In section 3.2 we explain how find-

ing a supergravity dual to a superconformal field theory on a generic three-manifold

can be reduced to minimal four-dimensional gauged supergravity computations. In

section 3.3 we discuss the local geometry of Euclidean supersymmetric solutions of

minimal four-dimensional gauged supergravity. In section 3.4 we turn to global and

smooth asymptotically locally Euclidean AdS solutions, with the topology of the

four-ball. Section 3.5 contains the derivation of the general formula (3.1.2) for the

holographic free energy. Finally, in section 3.6 we present specific examples. Some

details about the geometry can be found in appendices A and B.

3.2 Reduction to four-dimensional supergravity

Our starting point on the gravity side is eleven-dimensional supergravity in Euclidean

signature. An Euclidean signature will be used for the rest of this thesis. We are

interested in a class of N = 2 supersymmetric M4 × Y7 backgrounds of M-theory. In

Euclidean signature there are certain factors of i that appear relative to the eleven-

dimensional supergravity solution in Lorentzian signature of [73]. Those factors will

be very important for correctly computing M2-brane actions in chapter 4.

The action of D = 11 supergravity in Euclidean signature is

S11 = − 1

(2π)8`9
p

(∫
d11x
√
g11 R−

∫
1

2
dC ∧ ∗11dC +

i

6
C ∧ dC ∧ dC

)
. (3.2.1)

Here we have denoted by g11 the eleven-dimensional metric, with associated Ricci

scalar R, C is the three-form potential and `p denotes the eleven-dimensional Planck



60

length. The equations of motion for the metric and C-field follow immediately:

RAB −
1

12
(GAC1C2C3GB

C1C2C3 − 1

12
gABG

2) = 0 ,

d ∗11 G+
i

2
G ∧G = 0 , (3.2.2)

where we have defined G ≡ dC, RAB is the Ricci tensor and A,B,C = 1, . . . , 11. It

is also useful to define G7 = i(∗11G + i
2
C ∧G) so that the equation of motion for G

is simply dG7 = 0.

An ansatz to the last system of equations in Lorentz signature was given in [73].

There is an internal space Y7 taken to be any Sasaki-Einstein seven-manifold Y7

with contact one-form η, transverse Kähler-Einstein six-metric ds2
T with Kähler form

ωT = dη/2, and with the seven-dimensional metric normalised so that Ric = 6gY7 .

The ansatz in Euclidean signature is then

ds2
11 = R2

[
1

4
ds2

M4
+

(
η +

1

2
A

)2

+ ds2
T

]
,

G = −iR3

(
3

8
vol4 −

1

4
∗4 F ∧ dη

)
, (3.2.3)

and is compatible with (2.4.3). The warp factor ∆ of the last chapter is now constant

and encoded into R and the metric on Y7 is more explicit. It is the more specific3

form of solutions (3.2.3) that will be used for the rest of this thesis. Here, ds2
M4

is a

four-dimensional metric on a manifold M4 with abelian gauge field A, field-strength

F = dA and volume form vol4. The radius R is

R6 =
(2π`p)

6N

6Vol(Y7)
, (3.2.4)

3This solution is more specific on the internal part as the metric on Y7 couples to A and the G
form has a precise dependence on η but it allows us to generalise the AdS4 part to a more generic
four-manifold M4.
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where N is the number of units of flux

N =
1

(2π`p)6

∫
Y7

G7 . (3.2.5)

Substituting the ansatz (3.2.3) into the equations of motion (3.2.2), we find the latter

are equivalent to the metric gµν corresponding to ds2
M4

and F satisfying

Rµν + 3gµν = 2

(
Fµ

ρFνρ −
1

4
F 2gµν

)
,

d ∗4 F = 0 . (3.2.6)

The ansatz (3.2.3) then solves the eleven-dimensional Euclidean equations of motion if

and only if the four-dimensional metric gµν and gauge field A are a solution of minimal

four-dimensional Euclidean gauged supergravity. One can show that if the ansatz

(3.2.3) is plugged into the action (3.2.1), we get the four-dimensional supergravity

action [74]

ISUGRA = − 1

16πG4

∫ (
R + 6− F 2

)√
det g d4x , (3.2.7)

where R denotes the Ricci scalar of the four-dimensional metric gµν , we have defined

F 2 ≡ FµνF
µν , and we have a cosmological constant Λ = −3. The four-dimensional

Newton constant G4 is defined by

1

16πG4

= N3/2

√
π2

2533Volη(Y7)
. (3.2.8)

Interestingly, if we vary the action (3.2.7) for the four-dimensional metric gµν and

gauge field A we recover the equations of motion (3.2.6) showing that the ansatz

(3.2.3) is consistent.

A truncation to a lower dimensional theory is said to be consistent if the solution to

the lower dimensional theory necessarily solves the original equations of motion. More

generally, one has to carry out a Kaluza-Klein reduction on the internal manifold (Y7

here) which leads to a lower dimensional theory with an infinite tower of fields. The
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reduction is consistent if it is in fact consistent to set all the non-lowest energy fields

in the Kaluza-Klein tower to zero and obtain the equations of motion for the lower

dimensional theory. As shown in [73], the supergravity solution (3.2.3) consistently

reduces to minimal four-dimensional gauged supergravity and we can safely focus on

the four-dimensional geometry in what follows.

At this point, it is interesting to note that whenM4 =AdS4, the regularised super-

gravity action together with the appropriate counterterms, see examples in section

3.6, becomes

Iround =
π

2G4

=

√
2π6

27 Volη(Y7)
N3/2 = Fround . (3.2.9)

where we have used (3.2.8) and the expression for Fround in (2.3.16).

In what follows, we assume that the eleven-dimensional supergravity solution

has the form given in equation (3.2.3) and we will work with four-dimensional su-

pergravity to construct gravity duals to supersymmetric field theories on generic

three-manifolds.

3.3 Local geometry of self-dual solutions

The action for the bosonic sector of four-dimensional N = 2 gauged supergravity

is given in equation (3.2.7). In our context, this action is seen as a truncation to

four dimensions of the full eleven-dimensional supergravity as explained above. The

graviphoton is an Abelian gauge field A with field strength F = dA. The equations

of motion are (3.2.6). They are simply Einstein-Maxwell theory with a cosmological

constant Λ = −3. Notice that when F is anti-self-dual, i.e. ∗4F = −F , the right hand

side of the Einstein equation in (3.2.6) is zero, so that the metric gµν is necessarily

Einstein as Rµν = −3gµν , and that d ∗4 F = 0.

A solution is supersymmetric provided it admits a Dirac spinor ε satisfying the
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Killing spinor equation

(
∇µ − iAµ +

1

2
Γµ +

i

4
FνρΓ

νρΓµ

)
ε = 0 . (3.3.1)

This takes the same form as in Lorentzian signature, except that here the gamma ma-

trices generate the Clifford algebra Cliff(4, 0) in an orthonormal frame, so {Γµ,Γν} =

2gµν . Notice that we may define the charge conjugate of the spinor ε as εc ≡ Bε∗,

where B is the charge conjugation matrix satisfying B−1ΓµB = Γ∗µ, BB∗ = −1 and

may be chosen to be antisymmetric BT = −B [26]. Then provided the gauge field A

is real (as it will be here) εc satisfies (3.3.1) with A→ −A.

In [75, 76] the authors studied the local geometry of Euclidean supersymmetric

solutions to the above theory for which F is anti-self-dual, ∗4F = −F . It follows that

the metric gµν then has anti-self-dual Weyl tensor, and adopting a standard abuse of

terminology we shall refer to such solutions as ‘self-dual’. Supersymmetry also equips

this background geometry with a Killing vector field K. Self-dual Einstein metrics

with a Killing vector have a rich geometric structure that has been well-studied (see

for example [77]), and are well-known to be related by a conformal rescaling to a local

Kähler metric with zero Ricci scalar. Such metrics are described by a solution to a

single PDE, known as the Toda equation, and this solution also specifies uniquely

the background gauge field A. In fact we will show that F = dA is 1
2
the Ricci-form

of the conformally related Kähler metric. Moreover, we will reverse the direction of

implication in [75, 76] and show that any self-dual Einstein metric with a choice of

Killing vector field admits locally a solution to the Killing spinor equation (3.3.1).

This may be constructed from the canonically defined spinc spinor that exists on any

Kähler manifold.

3.3.1 Local form of the solution

In this section we briefly review the local geometry determined in [75, 76]. The

existence of a non-trivial solution to the Killing spinor equation (3.3.1), together with
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the ansatz that F is anti-self-dual and real, implies that the metric gµν is Einstein

with anti-self-dual Weyl tensor. Because F is real for this solution we assume that

A is real throughout this thesis. There is then a canonically defined local coordinate

system in which the metric takes the form4

ds2
SDE =

1

y2

[
V −1(dψ + φ)2 + V

(
dy2 + 4ewdzdz̄

)]
, (3.3.2)

where

V = 1− 1

2
y∂yw , (3.3.3)

dφ = i∂zV dy ∧ dz − i∂z̄V dy ∧ dz̄ + 2i∂y(V ew)dz ∧ dz̄ , (3.3.4)

and w = w(y, z, z̄) satisfies the Toda equation

∂z∂z̄w + ∂2
ye
w = 0 . (3.3.5)

Notice that the function w determines entirely the metric. The two-form dφ is easily

verified to be closed provided the Toda equation (3.3.5) is satisfied, implying the

existence of a local one-form φ.

The vector K = ∂ψ is a Killing vector field, and arises canonically from supersym-

metry as a bilinear Kµ ≡ iε†ΓµΓ5ε, where ε is the Killing spinor solving (3.3.1) and

Γ5 ≡ Γ0123. Using the Killing spinor equation one can verify that Kµ is indeed Killing

as ∇(µKµ) = 0. Notice that the corresponding bilinear in the charge conjugate spinor

εc is i(εc)†ΓµΓ5ε
c = −Kµ. Thus as in the discussion after equation (3.3.1) we may

change variables to ε̃ = εc, Ã = −A. In the tilded variables the equations of motion

(3.2.6) and Killing spinor equation (3.3.1) are identical to the untilded equations,

but now Ã = −A and K̃ = −K. Thus the sign of the instanton is correlated with a

choice of sign for the supersymmetric Killing vector, with charge conjugation of the
4SDE stands for self-dual Einstein. As explained before, we call the metric self-dual for conve-

nience even though it has anti-self-dual Weyl tensor.
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spinor changing the signs of both A and K.

As we shall see in the next section, the coordinate y determines the conformal

factor for the conformally related Kähler metric, and is also the Hamiltonian function

for the vector field K = ∂ψ with respect to the associated symplectic form. The

graviphoton field is given by

A = −1

4
V −1∂yw(dψ + φ) +

i

4
∂zwdz − i

4
∂z̄wdz̄ . (3.3.6)

We are of course free to make gauge transformations of A, and we stress that (3.3.6)

is in general valid only locally.

Having summarised the results of [75, 76], in the next two sections we study this

local geometry further. In particular we show that any self-dual Einstein metric with

Killing vector K ≡ ∂ψ, which then takes the form (3.3.2), admits a Killing spinor ε

solving (3.3.1), where A is given by (3.3.6).

3.3.2 Conformal Kähler metric

As already mentioned, every self-dual Einstein four-metric with a Killing vector is

conformally related to a scalar-flat Kähler metric. This is given by

ds2
Kahler ≡ dŝ2 = y2ds2

SDE

= V −1(dψ + φ)2 + V
(
dy2 + 4ewdzdz̄

)
. (3.3.7)

Introducing an associated local orthonormal frame of one-forms

ê0 = V 1/2dy , ê1 = V −1/2(dψ + φ) , ê2 + iê3 = 2(V ew)1/2dz , (3.3.8)

the Kähler form is

ω = ê01 + ê23 , (3.3.9)
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where we have denoted ê0 ∧ ê1 = ê01, etc. That (3.3.9) is indeed closed follows

immediately from the expression for dφ in (3.3.4). The Kähler form is self-dual with

respect to the natural orientation on a Kähler manifold, namely ê0123 above, and it

is with respect to this orientation that the curvature F and Weyl tensor are anti-

self-dual. We denote the corresponding orthonormal frame for the self-dual Einstein

metric (3.3.2) as ea = y−1êa, a = 0, 1, 2, 3.

Next we introduce the Hodge type (2, 0)-form

Ω ≡ (ê0 + iê1) ∧ (ê2 + iê3) , (3.3.10)

and recall that the metric (3.3.7) is Kähler if and only if

dΩ = iQ∧ Ω , (3.3.11)

where Q is then the Ricci one-form, with Ricci two-form R = dQ. It is straightfor-

ward to compute dΩ for the metric (3.3.7), and one finds that

Q = 2A , (3.3.12)

where A is given by (3.3.6). The curvature is correspondingly F = dA = 1
2
R, where

recall that Rµν = 1
2
R̂µνρσω

ρσ where R̂µνρσ denotes the Riemann tensor for the Kähler

metric. A computation gives

−2R∧ ω =
1

V ew
[
∂z∂z̄w + ∂2

ye
w
]
ê0123 , (3.3.13)

so that the Kähler metric is indeed scalar flat if the Toda equation holds. An explicit

computation shows that with respect to the frame (3.3.8) F = dA is

F = −1

4
∂y
[
V −1∂yw

] (
ê01 − ê23

)
+

1

8ew/2

[
i(∂z − ∂z̄)[V −1∂yw]

(
ê02 + ê13

)
−(∂z + ∂z̄)[V

−1∂yw]
(
ê03 − ê12

) ]
, (3.3.14)
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which is then manifestly anti-self-dual. One can also derive the formula

F = −
(

1
2
ydK[ + y2K[ ∧ JK[

)−
, (3.3.15)

where K[ denotes the one-form dual to the Killing vector K (in the self-dual Einstein

metric), and J is the complex structure tensor for the Kähler metric (3.3.7), and a

further short computation leads to

F =

(
1

y
i∂∂̄y

)−
=

1

y
i∂∂̄y +

1

4y

(
∆̂y
)
ω , (3.3.16)

where ∂̄ denotes the standard operator on a Kähler manifold, the superscript “−”

in (3.3.16) denotes anti-self-dual part, and ∆̂ denotes the scalar Laplacian for the

Kähler metric.

Let us note that the Kähler form is explicitly

ω = dy ∧ (dψ + φ) + 2iV ewdz ∧ dz̄ . (3.3.17)

Thus dy = −∂ψyω, which identifies the coordinate y as the Hamiltonian function for

the Killing vector K = ∂ψ. Of course, y2 is also the conformal factor relating the

self-dual Einstein metric to the Kähler metric in (3.3.7).

3.3.3 Killing spinor: sufficiency

In this section we show that a self-dual Einstein metric with Killing vector K =

∂ψ, which necessarily takes the form (3.3.2), admits a solution to the Killing spinor

equation (3.3.1) with gauge field given by (3.3.6). The key to this construction is to

begin with the canonically defined spinc spinor that exists on any Kähler manifold.

On any Kähler manifold there is always a complex spinor ζ satisfying the spinc
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Killing spinor equation5 (
∇̂µ − i

2
Qµ
)
ζ = 0 . (3.3.18)

Here the hat denotes that we will apply this to the conformal Kähler metric (3.3.7)

in the case at hand, and Q is the Ricci one-form potential we encountered above.

Using the result earlier that Q = 2A the equation (3.3.18) may be rewritten as

(
∇̂µ − iAµ

)
ζ = 0 , (3.3.19)

which may already be compared with the Killing spinor equation (3.3.1).

More concretely, the solution to (3.3.18), or equivalently (3.3.19), is simply given

by a constant spinor ζ, so that ∂µζ = 0. This equation makes sense globally as ζ

may be identified with a complex-valued function. To see this it is useful to take the

following projection conditions

Γ̂1ζ = iΓ̂0ζ , Γ̂3ζ = iΓ̂2ζ , (3.3.20)

following e.g. reference [78]. Here Γ̂a, a = 0, 1, 2, 3, denote the gamma matrices in

the orthonormal frame (3.3.8)6. The covariant derivative of ζ is then computed to be

∇̂µζ =

(
∂µ +

1

4
ω̂ νρ
µ Γ̂νρ

)
ζ = ∂µζ + i

2

(
ω̂ 01
µ + ω̂ 23

µ

)
ζ = ∂µζ + iAµζ , (3.3.21)

where ω̂ νρ
µ is the spin connection of the conformal Kähler metric, and we have used

the explicit form of this in appendix A together with the formula (3.3.6) for A. It

follows that simply taking ζ to be constant, ∂µζ = 0, solves (3.3.18). This is a general

phenomenon on any Kähler manifold.

Using the canonical spinor ζ we may construct a spinor ε that is a solution to the
5We sometimes refer to this spinor as the canonical Killing spinor of the Kähler manifold, or the

canonical spinor for simplicity.
6Strictly speaking the hats are redundant, but we keep them as a reminder that in this section

the orthonormal frame is for the Kähler metric.



69

Killing spinor equation (3.3.1). Specifically, we find

ε =
1√
2y

(
1 + V −1/2Γ̂0

)
ζ . (3.3.22)

To verify this one first notes that the spin connections of the Kähler metric and the

self-dual Einstein metric are related by

∇̂µζ = ∇µζ +
1

2
Γ̂ ν
µ (∂ν log y)ζ , (3.3.23)

where Γ̂µ = yΓµ in a coordinate basis. The Killing spinor equation (3.3.1) then takes

the form

[
∂µ +

1

4
ω̂ νρ
µ Γ̂νρ −

1

2
Γ̂ ν
µ (∂ν log y) − iAµ +

1

2y
Γ̂µ +

i

4
yFνρΓ̂

νρΓ̂µ

]
ε = 0 . (3.3.24)

To verify this is solved by (3.3.22) one simply substitutes (3.3.22) directly into the

left-hand-side of (3.3.24). Using the explicit expressions for the spin connection, the

gauge field, the field strength, as well as the projection conditions on the canonical

spinor ζ and (3.3.19), one sees that (3.3.24) indeed holds.

From this analysis we can conclude that the self-dual Einstein metric (3.3.2)

and the gauge field (3.3.6), which are solutions to Einstein-Maxwell theory in four

dimensions, yield a Dirac spinor ε that is solution to the Killing spinor equation

(3.3.1). This implies that these self-dual Einstein backgrounds are always locally

supersymmetric solutions of Euclidean N = 2 gauged supergravity. Using those

backgrounds, one can lift them to supersymmetric solutions of eleven-dimensional

supergravity with the help of (3.2.3). We turn to global issues in the next section.

3.4 Asymptotically locally AdS solutions

In this section and the next we will assume that we are given a complete self-dual

Einstein metric with a Killing vector, which then necessarily takes the local form
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(3.3.2). Moreover, we shall assume this metric is asymptotically locally Euclidean

AdS7, and in later subsections also that the four-manifold M4 on which the metric is

defined is topologically a ball. A two-parameter family of such self-dual solutions on

the four-ball, generalising all previously known solutions of this type, was constructed

in [31]. In section 3.6 we shall review these solutions, and also introduce a number

of further generalisations. In particular, the results of the current section allow

us to deform the choice of Killing vector (which was essentially fixed in previous

results), and we will also explain how to generalise to an infinite-dimensional family

of solutions satisfying the above properties, starting with the local metrics in [79].

With the above assumptions in place, we begin in this section by showing that

if the Killing vector K = ∂ψ is nowhere zero in a neighbourhood of the conformal

boundary three-manifold M3 then it is a Reeb vector field for an almost contact

structure onM3. We then reproduce the same geometric structure onM3 studied from

a purely three-dimensional viewpoint in [72]. In particular the asymptotic expansion

of the Killing spinor ε leads to the same Killing spinor equation as [72]. This is

important, as it shows that the dual field theory is defined on a supersymmetric

background of the form studied in [72], for which the exact partition function of a

general N = 2 supersymmetric gauge theory was computed in [32] using localisation.

Having studied the conformal boundary geometry, we then turn to the bulk in 3.4.4.

In particular we show that, with an appropriate restriction on the Killing vector

K, the conformal Kähler structure of section 3.3.2 is everywhere non-singular. This

allows us to prove in turn that the instanton and Killing spinor defined by the Kähler

structure are everywhere non-singular.

In particular this means that each of the self-dual Einstein metrics in section 3.6

leads to a one-parameter family (depending on the choice of Killing vector K) of

smooth supersymmetric solutions. In other words, if the self-dual Einstein metric

depends on n parameters, the complete solution will depend on n + 1 parameters.
7Since the metric has Euclidean signature one might more accurately describe this boundary

condition as asymptotically locally hyperbolic, which is often used in the mathematics literature.
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We emphasise that in the previously known solutions the only example of this phe-

nomenon is the solution of [26]. There the Einstein metric was simply AdS4, which

does not have any parameters.

3.4.1 Conformal boundary at y = 0

We are interested in self-dual Einstein metrics of the form (3.3.2) which are asymp-

totically locally Euclidean AdS (hyperbolic), in order to apply to the gauge/gravity

correspondence. From the assumptions described above there is a single asymptotic

region where the metric approaches dr2

r2
+ r2ds2

M3
as r → ∞, where M3 is a smooth

compact three-manifold. In fact the metrics (3.3.2) naturally have such a confor-

mal boundary at y = 0. More precisely, we impose boundary conditions such that

w(y, z, z̄) is analytic around y = 0, so

w(y, z, z̄) = w(0)(z, z̄) + yw(1)(z, z̄) + 1
2
y2w(2)(z, z̄) +O(y3) . (3.4.1)

It follows that

V (y, z, z̄) = 1− 1
2
yw(1)(z, z̄)− 1

2
y2w(2)(z, z̄) +O(y3) , (3.4.2)

and that the metric (3.3.2) is

ds2
SDE = [1 +O(y)]

dy2

y2
+

1

y2

[
(dψ + φ(0))

2 + 4ew(0)dzdz̄ +O(y)
]
. (3.4.3)

Setting r = 1/y this is to leading order

ds2
SDE '

dr2

r2
+ r2

[
(dψ + φ(0))

2 + 4ew(0)dzdz̄
]
, (3.4.4)
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as r →∞, so that the metric is indeed asymptotically locally Euclidean AdS around

y = 0. Here we have also expanded the one-form tangent to M3

φ(y, z, z̄) |M3= φ(0)(z, z̄) + yφ(1)(z, z̄) +O(y2). (3.4.5)

In fact by expanding (3.3.4) one can show that φ(1) = 0. Of course, as usual one is

free to redefine r → rΩ(ψ, z, z̄), where Ω is any smooth, nowhere zero function on

M3, resulting in a conformal transformation of the boundary metric ds2
M3
→ Ω2ds2

M3
.

However, in the present context notice that r = 1/y is a natural choice of radial

coordinate.

With the analytic boundary condition (3.4.1) for w it follows automatically that

K = ∂ψ is nowhere zero in a neighbourhood of the conformal boundary y = 0 because

||K||2 = 1/(y2V ) 6= 0 near the conformal boundary. The ansatz (3.4.1) is certainly a

restriction on the class of possible globally regular solutions, although all examples

in section 3.6 have choices of Killing vector for which this expansion holds.

Returning to the case at hand, the conformal boundary is a compact three-

manifold M3 (by assumption), and from the above discussion a natural choice of

representative for the metric is

ds2
M3

= (dψ + φ(0))
2 + 4ew(0)dzdz̄ . (3.4.6)

Notice that the form of the metric (3.4.6) is precisely of the form studied in [32]

where localisation of N = 2 supersymmetric field theories on generic three-manifolds

is carried out. In that reference an important role is played by the one-form

σ ≡ dψ + φ(0) , (3.4.7)

which has exterior derivative

dσ = dφ(0) = 2i∂y(V ew) |y=0 dz ∧ dz̄ = iw(1)e
w(0)dz ∧ dz̄ . (3.4.8)
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The form σ is a global almost contact one-form on M3. The most straightforward

way to derive this is to note the form of the boundary Killing spinor equation in

section 3.4.2 and appeal to the results of [72].

The Killing vector K = ∂ψ is the Reeb vector for the almost contact form σ, as

follows from the equations

Kyσ = 1 , Kydσ = 0 . (3.4.9)

The orbits of K thus foliate M3, and moreover this foliation is transversely holomor-

phic with local complex coordinate z. When the orbits of K all close it generates a

U(1) symmetry of the boundary structure, and the orbit space M3/U(1) is in general

a complex surface, on which z may be regarded as a local complex coordinate. On the

other hand, if K has at least one non-closed orbit then since the isometry group of a

compact manifold is compact, we deduce thatM3 admits at least a U(1)×U(1) sym-

metry, and the structure defined by σ is a toric almost contact structure. In this case

we may introduce standard 2π-period coordinates ϕ1, ϕ2 on the torus U(1) × U(1)

and write

K = ∂ψ = b1∂ϕ1 + b2∂ϕ2 . (3.4.10)

From (3.4.8) we deduce that the Taylor coefficient w(1) is a globally defined basic

function on M3 – that is, it is invariant under K = ∂ψ. Moreover, the almost contact

form σ is a contact form precisely when the function w(1) is everywhere positive. We

shall see later that there are examples for which σ is contact and not contact. On the

other hand, the coefficient w(0) is in general only a locally defined function of z, z̄, as

one sees by noting that the transverse metric gT = ew(0)dzdz̄ is a global two-tensor8.

It will be useful in what follows to define a corresponding transverse volume form

volT ≡ 2iew(0)dz ∧ dz̄ . (3.4.11)
8If it was not singular, the transverse metric would be defined everywhere making the space M3

non-compact, which we assume is not true.
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This tensor is related to the contact form σ by

dσ = dφ(0) =
w(1)

2
volT . (3.4.12)

3.4.2 Boundary Killing spinor

In this section we show that the Killing spinor ε induces a Killing spinor χ on the

conformal boundary M3 that solves the Killing spinor equation in [72].

We begin by recalling the orthonormal frame of one-forms

e0 =
1

y
V 1/2dy , e1 =

1

y
V −1/2(dψ + φ) , e2 + ie3 =

2

y
(V ew)1/2dz , (3.4.13)

for the self-dual Einstein metric (3.3.2). We introduce a corresponding frame for the

three-metric ds2
M3

on the conformal boundary:

e1
(3) = dψ + φ(0) , e2

(3) + ie3
(3) = 2ew(0)/2dz , (3.4.14)

and will use indices i, j, k = 1, 2, 3 for this orthonormal frame.

We next expand the four-dimensional Killing spinor equation (3.3.1) as a Taylor

series in y. One starts by noting that Γµ = eµaΓ
a = O(y). But as Γµ = eaµΓa =

O(1/y) and the field strength expands as F = F(0) + yF(1) +O(y2) we see that

i

4
FνρΓ

νρΓµ = O(y) . (3.4.15)

After a computation we then obtain[
∇(3)
µ − iA(0)µ +

1

2y

(
1 +

1

4
yw(1)

)
ei(3)µ(Γi − Γi0) +O(y)

]
ε = 0 , (3.4.16)

where µ = ψ, z, z̄, and where

A(0) = −1

4
w(1)e

1
(3) +

i

8
e−w(0)/2(∂z−∂z̄)w(0)e

2
(3)−

1

8
e−w(0)/2(∂z +∂z̄)w(0)e

3
(3) , (3.4.17)
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is the lowest order term in the expansion of A given by (3.3.6). The Killing spinor ε

then expands as

ε =
1√
2y

[
1 + Γ0 +

1

4
yw(1)Γ0 +O(y2)

]
ζ0 , (3.4.18)

where ζ0 is the lowest order (y-independent) part of the Kähler spinor ζ. Substituting

this into (3.4.16) gives a leading order term that is identically zero. The subleading

term then reads

[(
∇(3)
i − iA(0)i

)
(1 + Γ0) +

1

8
w(1)(Γi0 − Γi)

]
ζ0 = 0 . (3.4.19)

The projections (3.3.20), in the current context, read

Γ1ζ0 = iΓ0ζ0 , Γ3ζ0 = iΓ2ζ0 . (3.4.20)

We may choose the following representation of the gamma matrices:

Γi =

 0 τi

τi 0

 , Γ0 =

 0 iI2

−iI2 0

 , (3.4.21)

with τi the Pauli matrices9. The projection conditions then force ζ0 to take the form10

ζ0 =

χ
0

 where χ =

χ0

χ0

 . (3.4.22)

Here χ is a two-component spinor and χ0 is simply a constant. The three-dimensional

9In this basis the charge conjugation matrix B, appearing in εc ≡ Bε∗, is B =

(
ε 0

0 −ε

)
where

ε =

(
0 −1
1 0

)
.

10Notice that although our frame coincides with that of [72], our three-dimensional gamma ma-
trices are a permutation of those in the latter reference, which is why the spinor solution takes a
slightly different form.
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Killing spinor equation then becomes

(
∇(3)
i − iA(0)i −

i

8
w(1)τi

)
χ = 0 . (3.4.23)

This three-dimensional Killing spinor equation is precisely of the form found in [72],

and studied in [32]. More precisely, this is the form of the Killing spinor equation

in the case where the background geometry has real-valued fields, with the metric

given by (3.4.6), and the Killing spinor χ and its charge conjugate χc give rise to

an N = 2 supersymmetric background. In the notation of these references we have

that the three-dimensional gauge field V = 0 (or rather there exists a gauge in

which this is true – see appendix B), while A = A(0) and the function H = − i
4
w(1).

This result shows that there indeed exists a spinor χ with the required properties

to construct supersymmetric field theories on M3. Thus our four-dimensional self-

dual Einstein manifolds with background gauge field A are the supergravity duals to

supersymmetric field theories on M3 with metric (3.4.6) and Killing spinors χ and

χc.

We close this subsection by remarking that supersymmetry singled out a natural

representative (3.4.6) of the conformal class of the boundary metric. However, one is

free to make the change in radial coordinate r → rΩ, with Ω any smooth, nowhere zero

function onM3, resulting in a conformal transformation of (3.4.6) by ds2
M3
→ Ω2ds2

M3
.

In particular, in the metric (3.4.6) the Killing vector K = ∂ψ has length 1, while the

latter conformal rescaling gives ‖K‖M3 = Ω. In this case one instead finds that

the vector V in [32, 72] is non-zero, with gauge-invariant and generically non-zero

components V2 = ∂3 log Ω and V3 = −∂2 log Ω. This is then in agreement with the

three-dimensional results of [32]. For further details of this conformal rescaling we

refer the reader to appendix B.
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3.4.3 Non-singular gauge

In a neighbourhood of the conformal boundary the Kähler metric is defined on [0, ε)×

M3, for some ε > 0. This follows since via the conformal rescaling (3.3.7) the Kähler

metric asymptotes to

ds2
Kahler ' dy2 + ds2

M3
, (3.4.24)

near the conformal boundary y = 0. In particular the Kähler structure is smooth

and globally defined in a neighbourhood of this boundary. In this section we analyse

the case where M3
∼= S3. The gauge field A restricts to a one-form A(0) on the

conformal boundary, but as we shall see the explicit representative (3.4.17) is in a

singular gauge. Correspondingly, since the boundary Killing spinor χ is constructed

with the help of A, equation (3.3.19), the solution (3.4.22) to (3.4.23) is similarly in

a singular gauge. In this section we correct this by writing A(0) as a global one-form

on M3
∼= S3.

The expression (3.4.17) for the restriction of A to the conformal boundary is of

course only well-defined up to gauge transformations. We may rewrite the expression

in (3.4.17) as

Alocal
(0) = −1

4
w(1)(dψ + φ(0)) +

i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ , (3.4.25)

adding the superscript label ‘local’ to emphasise that in general this is only a local

one-form. The first term is −1
4
w(1)σ, which is always a global one-form on M3,

independently of the topology of M3. However, the last two terms are not globally

defined in general. We may remedy this in the case where M3
∼= S3 by making a

gauge transformation, adding an appropriate multiple of dψ:

A(0) = −1

4
w(1)σ + γ

[
dψ +

i

4γ
∂zw(0)dz −

i

4γ
∂z̄w(0)dz̄

]
. (3.4.26)

This is then a global one-form onM3
∼= S3 if and only if the curvature two-form of the

connection in square brackets lies in the same basic cohomology class as dσ = dφ(0).
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Concretely, we write

γdψ +
i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ ≡ γdψ +B ≡ γσ + α , (3.4.27)

and compute

dB = − i

2
∂z∂z̄w(0)dz ∧ dz̄ =

(
w2

(1) + w(2)

)
ew(0)

i

2
dz ∧ dz̄

=
1

4

(
w2

(1) + w(2)

)
volT , (3.4.28)

where we used the Toda equation (3.3.5) and Taylor expanded. Since σ is a global

one-form on M3
∼= S3, it follows that (3.4.26) is a global one-form precisely if α

defined via (3.4.27) is a global basic one-form, i.e. α is invariant under L∂ψ and

satisfies ∂ψyα = 0. In this case we have

∫
M3

σ ∧ 1

γ
dB =

∫
M3

σ ∧ dσ , (3.4.29)

which may be interpreted as saying that [ 1
γ
dB] = [dσ] ∈ H2

basic(M3) ∼= R lie in the

same basic cohomology class. Indeed, this is the case if and only if 1
γ
dB and dσ differ

by the exterior derivative of a global basic one-form.

The integral on the right hand side of (3.4.29) is the almost contact volume of

M3:

Volσ ≡
∫
M3

σ ∧ dσ =

∫
M3

w(1)

2
σ ∧ volT =

∫
M3

w(1)

2

√
det gM3 d3x . (3.4.30)

This played an important role in computing the classical localised Chern-Simons

action in [32], which contributes to the field theory partition function on M3. Using

(3.4.28), (3.4.29) and (3.4.30) we see that A(0) in (3.4.26) is a global one-form if we

choose the constant γ via

1

4γ

∫
M3

(
w2

(1) + w(2)

) √
det gM3 d3x = Volσ . (3.4.31)
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We shall return to this formula in section 3.4.5

3.4.4 Global conformal Kähler structure

Recall that at the beginning of this section we assumed we were given a complete

self-dual Einstein metric with Killing vector K = ∂ψ, of the local form (3.3.2). We

would like to understand when the conformal Kähler structure, studied locally in

section 3.3.2, is globally non-singular. As we shall see, this is not automatically the

case. Focusing on the case of toric metrics on a four-ball (all examples in section 3.6

are of this type), with an appropriate restriction on K we will see that the conformal

Kähler structure is indeed everywhere regular. It follows in this case that the Kähler

spinor and instanton F = 1
2
R are globally non-singular, and thus that the Killing

spinor ε given by (3.3.22) is also globally defined and non-singular. Before embarking

on this section, we warn the reader that the discussion is a little involved, and this

section is probably better read in conjunction with the explicit examples in section

3.6. In fact the Euclidean AdS4 metric in section 3.6.1 displays almost all of the

generic features we shall encounter.

The self-dual Einstein metrics of section 3.6 are all toric, and we may thus pa-

rameterise a choice of toric Killing vector K as

K = b1∂ϕ1 + b2∂ϕ2 , (3.4.32)

where we have introduced standard 2π-period coordinates ϕ1, ϕ2 on the torus U(1)×

U(1). It will be important to fix carefully the orientations here. Since the metrics

are defined on a ball, diffeomorphic to R4 ∼= R2 ⊕R2 with U(1)× U(1) acting in the

obvious way, we choose ∂ϕi so that the orientations on R2 induce the given orientation

on R4 (with respect to which the metric has anti-self-dual Weyl tensor). This fixes

the relative sign of b1 and b2. Given that we have also assumed that K has no fixed

points near the conformal boundary, we must also have b1 and b2 non-zero. Thus

b1/b2 ∈ R \ {0}, and its sign will be important in what follows.
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Since the self-dual Einstein metric is assumed regular, the one-form K[ and its

exterior derivative dK[ are both globally defined and regular. We introduce the

self-dual two-form

Ψ ≡
(
dK[

)+ ≡ 1

2
(dK[ + ∗dK[) , (3.4.33)

and the invariant definition of the function/coordinate y in section 3.3 is given in

terms of its norm by
2

y2
= ‖Ψ‖2 ≡ 1

2!
ΨµνΨ

µν . (3.4.34)

The complex structure tensor for the conformal Kähler structure is correspondingly

Jµν = −yΨµ
ν , (3.4.35)

where indices are raised and lowered using the self-dual Einstein metric. It is then an

algebraic fact that J2 = −1. The conformal Kähler structure will thus be everywhere

regular, provided the functions y and 1/y are not zero. Of course y = 0 is the

conformal boundary (which is at infinity, and is not part of the self-dual Einstein

space). We are free to choose the sign when taking a square root of (3.4.34), and

without loss of generality we take y > 0 in a neighbourhood of the conformal boundary

at y = 0. Everything is regular, and in particular the norm of Ψ cannot diverge

anywhere (except at infinity), and thus y 6= 0 in the interior of the bulk M4. It

follows that y is everywhere positive on M4.

The Killing vector K is zero only at the ‘NUT’, namely the fixed origin of

R4 ∼= R2 ⊕ R2. At this point the two-form dK[, in an orthonormal frame, is a

skew-symmetric 4 × 4 matrix whose weights are precisely the coefficients b1, b2 in

(3.4.32).11 It follows from the definitions (3.4.33) and (3.4.34), together with a little
11This is perhaps easiest to see by noting that to leading order the metric is flat at the NUT,

so one can compute dK[ in an orthonormal frame at the NUT using the flat Euclidean metric on
R2 ⊕ R2.
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linear algebra in such an orthonormal frame, that

yNUT =
1

|b1 + b2|
. (3.4.36)

The conformal Kähler structure will thus be regular everywhere, except poten-

tially where 1/y = 0. Suppose that 1/y = 0 at a point p ∈ M4 \ {NUT}. Then

K = ∂ψ |p 6= 0, and thus from the metric (3.3.2) we see that ||K||2 = 1/(V y2) |p 6= 0.

It follows that the function V must tend to zero as 1/y2 as one approaches p. We may

thus write V = c
y2

+O(1/y2), where c = c(z, z̄) is non-zero at p. Using the definition

of V in terms of w in (3.3.3) we thus see that ∂yw = 2
y
− 2c

y3
+ o(1/y3). There are then

various ways to see that the corresponding supersymmetric supergravity solution is

singular. Perhaps the easiest is to note from the Killing spinor formula (3.3.22),

together with the fact that we may normalise ζ†ζ = 1, we have

ε†ε =
1

2y

(
1 + V −1

)
, (3.4.37)

which from the above behaviour of V then diverges as we approach the point p. It

follows that the Killing spinor ε is divergent at p, and the solution is singular.

The solutions are thus singular onM4\{NUT} if and only if {1/y = 0}\{NUT} is

non-empty. Since yNUT = 1/|b1 +b2|, the analysis will be a little different for the cases

b1/b2 = −1 and b1/b2 6= −1. We thus assume the latter (generic) case for the time

being. As in the last paragraph, let us suppose 1/y |p= 0. Due to the behaviour of V

and w near p, it follows from the form of the metric (3.3.2) that p must lie on one of

the axes, i.e. at ρ1 = 0 or at ρ2 = 0, where (ρi, ϕi) are standard polar coordinates on

each copy of R2 ⊕ R2 ∼= R4 ∼= M4, i = 1, 2.12 This must be so because ds2
M4
|p ∼ dψ2

but dψ ∼ dϕ1 + dϕ2 is two-dimensional unless ρ1 = 0 or ρ2 = 0. In either case there

is then an S1 3 p locus of points where 1/y = 0, as follows by following the orbits of

the Killing vector ∂ϕ2 or ∂ϕ1 , respectively.
12Notice that when b1/b2 = −1 in fact 1/y = 0 at the NUT itself, ρ1 = ρ2 = 0.
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To see when this happens, our analysis will be based on the fact that, since

the Killing vector has finite norm in the interior of M4, one can straightforwardly

show that y diverges if and only if ||dy|| = 0. This is because ||dy||2 = V/y2 and

V = c
y2

+ O(1/y2) when y diverges, as explained above. It is then convenient to

consider the function y restricted to the relevant axis, i.e. y |{ρ1=0}≡ y2(ρ2) or

y |{ρ2=0}≡ y1(ρ1). We have y1(0) = y2(0) = yNUT > 0. Suppose that yi(ρ) (for either

i = 1, 2) starts out decreasing along the axis as we move away from the NUT. Then

in fact it must remain monotonically decreasing along the whole axis, until it reaches

y = 0 at conformal infinity where ρ =∞. The reason for this is simply that if yi(ρ)

has a turning point then dy = 0, which we have already seen can happen only where

y diverges: but this contradicts the fact that yi(ρ) is decreasing from a positive value

at ρ = 0 (and is bounded below by 0). On the other hand, suppose that yi(ρ) starts

out increasing at the NUT. Then since at conformal infinity yi(∞) = 0, it follows

that yi(ρ) must have a turning point at some finite ρ > 0. At such a point y will

diverge, and from our above discussion the solution is singular.

This shows that the key is to examine dy at the NUT itself. Recall that the

coordinate y is a Hamiltonian function for the Killing vector K, i.e. dy = −Kyω.

From (3.4.35), we also know that ω is related to the two-form Ψ =
(
dK[

)+ by

ω = −y3Ψ, yielding dy = y3Ky
(
dK[

)+. At the NUT we may again use the polar

coordinates (ρi, ϕi) for the two copies of R2, where the metric is to leading order the

metric on flat space. In the usual orthonormal frame for these polar coordinates,

using the above formulae we then compute to leading order

(dy)|NUT '



− b1
(b1+b2)2

sign(b1 + b2)ρ1

0

− b2
(b1+b2)2

sign(b1 + b2)ρ2

0


. (3.4.38)

Thus when b1/b2 > 0 we see that yi(ρ) starts out decreasing at the NUT, for both
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i = 1, 2, and from the previous paragraph it follows that the solution is then globally

non-singular. On the other hand, the case b1/b2 < 0 splits further into two subcases.

For simplicity let us describe the case where b2 > 0 (with the case b2 < 0 being

similar). Then when b1/b2 < −1 we have y2(ρ) starts out increasing at the NUT,

which then leads to a singularity along the axis ρ1 = 0 at some finite value of ρ2; on

the other hand, when −1 < b1/b2 < 0 we have that y1(ρ) starts out increasing at the

NUT, which then leads to a singularity along the axis ρ2 = 0 at some finite value of

ρ1. Notice these two subcases meet where b1/b2 = −1, when we know that 1/y = 0

at the NUT itself, ρ1 = ρ2 = 0.

This leads to the simple picture that all solutions with b1/b2 > 0 are globally

regular, while all solutions with b1/b2 < 0 are singular, except when b1/b2 = −1. In

this latter case y is infinity at the NUT. As one moves out along either axis y is then

necessarily monotonically decreasing to zero, by similar arguments to those above.

Thus the b1/b2 = −1 solution is in fact also non-singular, although qualitatively

different from the solutions with b1/b2 > 0. One can show that, regardless of the

values of b1 and b2, the complex structure (3.4.35) is always the standard complex

structure on flat space at the NUT, meaning that when b1/b2 > 0 the induced complex

structure at the NUT is C2, while when b1/b2 = −1 the NUT becomes a point at

infinity in the conformal Kähler metric, with the Kähler metric being asymptotically

Euclidean. In particular the instanton is zero at the NUT in this case, and so is

regular there.

Notice that, for the regular solutions, since K is nowhere zero away from the NUT

we may deduce that also dy = −Kyω is nowhere zero (as ω is a global symplectic

form on M4 \ {NUT}). In particular y is a global Hamiltonian function for K, and

in particular it is a Morse-Bott function on M4. This implies that y has no critical

points on M4 \ {NUT}, and thus that yNUT is the maximum value of y on M4.

Moreover, the Morse-Bott theory tells us that constant y surfaces on M4 \ {NUT}

are all diffeomorphic to M3
∼= S3.

We shall see all of the above behaviour very explicitly in section 3.6 for the case
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when the self-dual Einstein metric is simply Euclidean AdS4. The more complicated

Einstein metrics in that section of course also display these features, although the

corresponding formulae become more difficult to make completely explicit as the

examples become more complicated.

3.4.5 Toric formulae

In this subsection we shall obtain some further formulae, valid for any toric self-dual

Einstein metric on the four-ball. These will be useful for computing the holographic

free energy in the next section.

We first note that for M3
∼= S3 with Reeb vector (3.4.10) the almost contact

volume in (3.4.30) may be computed using equivariant localisation to give

Volσ =

∫
M3

σ ∧ dσ = −(2π)2

b1b2

. (3.4.39)

This formula also appeared in [32], although in the present paper we have been more

careful with sign conventions. One proves (3.4.39) by using equivariant localisation,

explained below, but we first need to rewrite the integral in (3.4.39) as an integral

on the manifold M4. We define a two-form

ω̃ ≡ 1
2
d(%2σ) , (3.4.40)

on M4, where % is a choice of radial coordinate with the NUT at % = 0 and the con-

formal boundary at % =∞. Note how this form is similar to the symplectic structure

on a symplectic cone defined in section 2.4.4 of the last chapter. A straightforward

computation shows that the almost contact volume can be written

Volσ = −
∫
M4

e−%
2/2 1

2
ω̃ ∧ ω̃ . (3.4.41)

The minus sign arises here because the natural orientation on M3 defined in our set-
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up is opposite to that on the right hand side of (3.4.41). Specifically, y is decreasing

towards the boundary of M4, so that dy points inwards from M3 = ∂M4, while % is

increasing towards the boundary, with d% pointing outwards13. One then evaluates

the right hand side of (3.4.41) using equivariant localisation.

Equivariant localisation

Before getting into the detail of the computation of (3.4.41), let us explain how

equivariant localisation works on a general even-dimensional manifold M . Let M be

a manifold of dimension 2n that admits a Riemannian metric g with a Killing vector

V for the Levi-Civita connection. The space of k-form over M is denoted ΛkM and

we define ΛM ≡ ⊕nk=0Λ2kM . The equivariant derivative is defined by

dV ≡ d + V y (3.4.42)

and is an operator that acts on ΛM . We say that α ∈ ΛM is dV -closed if and only if

dV α = 0. (3.4.43)

Note that any dV -closed form automatically satisfies LV α = d2
V α = 0, where we

used the Cartan formula. The integral of any form α ∈ ΛM is defined by the

integral of its top form component. In other words, any α ∈ ΛM is given by α =

α(2n) + α(2n−2) + . . .+ α(2) + α(0) with α(k) ∈ ΛkM and its integral over M is defined

by ∫
M

α ≡
∫
M

α(2n) . (3.4.44)

13Notice that we could have avoided this by choosing y to be strictly negative on the interior of
M4, rather than strictly positive.
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We can now state the Berline-Vergne theorem. If the Killing vector V has a discrete

zero set, then for any dV -closed form α we have the following localisation formula

∫
M

α = (2π)n
∑

p∈{zero(V )}

α(0)

λ(p)
(3.4.45)

where λ(p) is the product of the weights of V at p.

Let us now apply the localisation formula to the integral in (3.4.41). We define

the form α by

α ≡ − exp

[
−%

2

2
+ ω̃

]
= −e−ρ2/2

(
1 + ω̃ +

1

2
ω̃ ∧ ω̃

)
, (3.4.46)

Using (3.4.9) and the definition of ω̃, we have Kyω̃ = −d(%
2

2
) and it is easy to show

that α is equivariantly closed under dK . The NUT is the only point where K has

a vanishing action and the corresponding weights are b1 and b2. The Berline-Vergne

theorem then gives

∫
M4

α = −
∫
M4

e−%
2/2 1

2
ω̃ ∧ ω̃ = Volσ

= −(2π)2 e
−ρ2/2

b1b2

∣∣∣∣∣
NUT

= −(2π)2

b1b2

, (3.4.47)

where we have used (3.4.41) in the first line and the fact that the NUT is located at

ρ = 0 in the second line. This then proves (3.4.39) for the almost contact volume14.

Finally, let us return to the equation (3.4.31). In fact there is another interpreta-

tion of the constant γ, in terms of the charge of the Killing spinor under K. To see

this, recall that the solution (3.4.22) to the three-dimensional Killing spinor equation

(3.4.23) is simply constant in our frame, but that was for the case where the gauge

field A(0) is given by (3.4.25), which as we saw in section 3.4.3 is always in a singular

gauge on M3
∼= S3. The gauge transformation A(0) → A(0) + γdψ that we made in

14This formula is known as the Duistermaat-Heckman formula when ω̃ is a symplectic form, i.e.
when σ is a contact form.
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(3.4.26) to obtain a non-singular gauge implies that the correct global spinor χ has

a phase dependence

χglobal = eiγψ

χ0

χ0

 , (3.4.48)

where χ0 is a constant complex number. Since the frame is invariant under K = ∂ψ,

we thus deduce that γ is precisely the charge of the Killing spinor ε under K. On

the other hand, the total four-dimensional spinor is constructed from the canonical

spinor ζ on the conformal Kähler manifold, via (3.3.22). Thus γ is also the charge of

ζ under K.

Let us now explicitly show how γ is related to b1 and b2 when the metric is

regular, i.e. b1/b2 > 0 or b1/b2 = −1. When b1/b2 > 0 the associated complex

structure identifies M4
∼= R2⊕R2 ∼= C2. The orientation in which the Weyl tensor is

anti-self-dual is the same as the canonical orientation on C2. One can then introduce

standard complex coordinates zi = ρie
iψi , i = 1, 2, on C2. The spinor ζ being the

canonical spinor that exists on any Kähler manifold we have

L∂ψi ε =
i

2
ε , i = 1, 2 . (3.4.49)

Denoting the complex structure tensor by J we also have that J(V −1∂y) = ∂ψ = K.

Since y is decreasing as we move away from the origin of C2, where recall that the

origin is at y = yNUT > 0, this means that for b1 > 0 and b2 > 0 we must then

identify ϕi = −ψi, where ϕi are the coordinates on U(1) × U(1) in (3.4.32). This

is because for r any radial coordinate on C2 we have J(r∂r) = a1∂ψ1 + a2∂ψ2 where

necessarily a1, a2 > 0 (that is, the Reeb cone is the positive quadrant in R2 – see, for

example, [80]). On the other hand for b1 < 0 and b2 < 0 we instead have ϕi = +ψi,

i = 1, 2.

The other non-singular case is b1/b2 = −1. This is qualitatively different from

the case b1/b2 > 0 in the last paragraph, as here yNUT = ∞ (3.4.36). Moreover,

the origin y = yNUT of M4
∼= R2 ⊕ R2 is now identified with the point at infinity
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in C2, rather than the origin, and the origin is at y = 0. One can see this from

the conformal Kähler metric ds2
Kahler = y2ds2

SDE, which is asymptotically Euclidean

around y = yNUT. Thus now y increases as we move away from the origin and V −1∂y

has the correct orientation for a radial vector on C2. We deduce that for b1 < 0 and

b2 > 0 we have ϕ1 = −ψ1, ϕ2 = +ψ2, while for b1 > 0 and b2 < 0 we instead have

ϕ1 = +ψ1, ϕ2 = −ψ2.

Putting all of the above together, we may compute the charge of the Killing spinor

ε under the supersymmetric Killing vector K = ∂ψ:

LKε = iγε , (3.4.50)

where

γ ≡ −sign

(
b1

b2

)
· |b1|+ |b2|

2
. (3.4.51)

This immediately allows us to write down that

|γ| = |b1|+ |b2|
2

. (3.4.52)

Now that we have an expression for A in a global gauge and that the value of γ is

known, we can turn to the computation of the free energy.

3.5 Holographic free energy

In this section we compute the regularised holographic free energy for a supersymmet-

ric self-dual asymptotically locally Euclidean AdS solution defined on the four-ball,

deriving the remarkably simple formula (3.1.2) quoted in the introduction.

The computation of the holographic free energy follows by now standard holo-

graphic renormalisation methods [81,82]. The total on-shell action is

I = Igrav
bulk + IF + Igrav

bdry + Igrav
ct . (3.5.1)
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Here the first two terms are the bulk Euclidean supergravity action (3.2.7)

ISUGRA = Igrav
bulk + IF ≡ − 1

16πG4

∫
M4

(
R + 6− F 2

)√
det g d4x , (3.5.2)

evaluated on a particular solution with topology M4. The boundary term Igrav
bdry in

(3.5.1) is the Gibbons-Hawking-York term, required so that the equations of motion

(3.2.6) follow from the bulk action (3.5.2) for a manifold M4 with boundary. This

action is divergent, but we may regularise it using holographic renormalisation. In-

troducing a cut-off at a sufficiently small value of y = δ > 0, with corresponding

hypersurface Sδ = {y = δ} ∼= M3, we have the following total boundary terms

Igrav
bdry + Igrav

ct =
1

8πG4

∫
Sδ

(
−K + 2 + 1

2
R(h)

)√
deth d3x . (3.5.3)

Here R(h) is the Ricci scalar of the induced metric hij on Sδ, and K is the trace

of the second fundamental form of Sδ, the latter being the Gibbons-Hawking-York

boundary term. It is convenient to rewrite it using

∫
Sδ
K
√

deth d3x = Ln
∫
Sδ

√
deth d3x , (3.5.4)

where n is the outward pointing normal vector to the boundary Sδ. In the rest of

this section we evaluate the total free energy (3.5.1) in the case of a supersymmetric

self-dual solution on the four-ball M4
∼= B4 ∼= R4.

We deal with each term in (3.5.1) in turn, beginning with the gauge field contri-

bution

IF =
1

16πG4

∫
M4

F 2
√

det g d4x = − 1

8πG4

∫
M4

F ∧ F =

∫
M3

A(0) ∧ F(0) . (3.5.5)

Here in the second equality we have used the fact that ∗4F = −F is anti-self-dual,

while in the last equality we used the fact that on the four-ball M4 = B4 ∼= R4

the curvature F = dA is globally exact. Thus we may apply Stokes’ theorem with
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M3 = ∂M4, recalling that the natural orientation on M3 is induced from an inward-

pointing normal vector15. Notice also that here the gauge field action is already finite,

so there is no need to realise the conformal boundaryM3 as the limit limδ→0 Sδ. Next

we compute the integrand in (3.5.5) using the global form of A(0) (3.4.26). Recall

that this reads

A(0) = −1

4
w(1)σ + γdψ +B = −1

4
w(1)σ + γσ + α , (3.5.6)

where in particular α is a global basic one-form. We then compute

A(0) ∧ F(0) =
w3

(1)

32
σ ∧ volT −

1

4
w(1)σ ∧ dB − γ

8
w2

(1)σ ∧ volT

+γσ ∧ dB − 1

4
α ∧ dw(1) ∧ σ . (3.5.7)

When we integrate this over M3, the last term may be integrated by parts, giving an

integral that is equal to the integral of −1
4
w(1)σ ∧ dα, which then combines with the

first line of (3.5.7). On the other hand, the first term on the second line of (3.5.7)

may be evaluated in the U(1) × U(1) toric case using (3.4.28), the integral (3.4.31)

and the formula (3.4.52) for |γ|. This leads to

IF = − π

2G4

· (|b1|+ |b2|)2

4b1b2

+
1

8πG4

∫
M3

w3
(1)

32

√
det gM3 d3x

− 1

8πG4

∫
M3

1

8
(w3

(1) + w(1)w(2))
√

det gM3 d3x . (3.5.8)

Notice that the first term closely resembles the free energy appearing in (3.1.2) – we

shall see momentarily that this combines with a term coming from the gravitational

contribution.

We turn next to the bulk gravity part of the action, which when evaluated on-shell

15Concretely, the integral over y is
∫ 0

yNUT
dy, where we chose the convention that yNUT > 0.
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is

Igrav
bulk =

1

16πG4

∫
Mδ

4

6vol4 . (3.5.9)

Here M δ
4 is cut off along the boundary Sδ = {y = δ} ∼= M3, which is necessary as the

volume is of course divergent. The volume form of interest is

vol4 =
1

y4
dy ∧ (dψ + φ) ∧ V ew2idz ∧ dz̄ . (3.5.10)

A computation reveals that this may be written as the exact form

−3vol4 = dΥ , (3.5.11)

where we have defined the three-form

Υ ≡ 1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ V ew2idz ∧ dz̄ . (3.5.12)

We may then integrate over M δ
4 using Stokes’ theorem. To do this let us define %

to be the geodesic distance from the NUT. We then more precisely cut off the space

also at small % > 0 and let %→ 0, so that we are integrating over M δ,%
4 . The form Υ

may be written

Υ =
1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ ω , (3.5.13)

where ω is the conformal Kähler form. As argued in section 3.4.4, when yNUT is finite

ω is everywhere a smooth two-form, and thus in particular in polar coordinates near

the NUT at % = 0 it takes the form ω ' %d% ∧ β1 + %2β2 to leading order, where β1

and β2 are pull-backs of smooth forms on the S3 = S3
NUT at constant % > 0. Because

of this, the second term in (3.5.13) does not contribute to the integral around the

NUT (if yNUT = ∞ this term also clearly does not contribute) but does contribute
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around y = δ → 0. Notice that Stokes’ theorem allows to write

0 =

∫
M4

d [(dψ + φ) ∧ dφ]︸ ︷︷ ︸
=0

=

∫
My=0

3

(dψ + φ) ∧ dφ−
∫
S3

NUT

(dψ + φ) ∧ dφ , (3.5.14)

which then gives

∫
S3
NUT

(dψ + φ) ∧ dφ =

∫
My=0

3

(dψ + φ) ∧ dφ = Volσ = −(2π)2

b1b2

, (3.5.15)

where we have used the almost contact volume (3.4.39). Using the fact that yNUT =

1/|b1 + b2| one thus obtains

∫
Mδ

4

vol4 =
(2π)2|b1 + b2|2

6b1b2

+

∫
My=0

3

[ 1

3δ3
+
w(1)

4δ2

]√
det gM3 d3x , (3.5.16)

so that

Igrav
bulk =

π

2G4

· |b1 + b2|2

2b1b2

+
1

8πG4

· 1

δ3

∫
My=0

3

√
det gM3 d3x

+
3

32πG4

· 1

δ2

∫
My=0

3

w(1)

√
det gM3 d3x . (3.5.17)

In particular notice that the O(0) term at the conformal boundary is zero. This

follows from the identity

∫
M3

(
w3

(1) + 3w(1)w(2) + w(3)

)√
det gM3 d3x = 0 , (3.5.18)

which arises from Taylor expanding the Toda equation (3.3.5) as

0 = ∂z∂z̄w(0) + ew(0)
(
w2

(1) + w(2)

)
+y
[
∂z∂z̄w(1) + ew(0)

(
w3

(1) + 3w(1)w(2) + w(3)

)]
+O(y2) . (3.5.19)

In particular, because w(1) is a smooth global function on M3, the second line implies

(3.5.18).
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It remains to evaluate the boundary terms Igrav
bdry +Igrav

ct . After a computation, and

again using (3.5.18), one obtains

Igrav
bdry + Igrav

ct = − 1

8πG4δ3

∫
My=0

3

√
det gM3 d3x− 3

32πG4δ2

∫
My=0

3

w(1)

√
det gM3 d3x

+
1

256πG4

∫
M3

(
3w3

(1) + 4w(1)w(2)

)√
det gM3 d3x . (3.5.20)

Adding (3.5.20) to the bulk gravity term (3.5.17) we see that the divergent terms

do indeed precisely cancel, and further combining with (3.5.8) we see that the terms

involving the integrals of w(i) also all cancel.

The computations we have done are valid only for globally regular solutions, and

recall these divide into the two cases b1/b2 > 0, and b1/b2 = −1. In the first case the

first term in (3.5.8) combines with the first term in (3.5.17) to give

I =
π

2G4

· (|b1|+ |b2|)2

4|b1b2|
, (3.5.21)

where notice |b1+b2| = |b1|+|b2|. On the other hand the isolated case with b1/b2 = −1

has b1 + b2 = 0, so that the free energy comes entirely from the first term in (3.5.8),

which remarkably is then also given by the formula (3.5.21). Thus for all regular

supersymmetric solutions we have shown that (3.1.2) holds and is indeed equal to

the free energy (3.1.1) computed using localisation of a supersymmetric field theory

on M3.

3.6 Examples

In this section we illustrate our general results by discussing three explicit families

of solutions. These consist of three sets of self-dual Einstein metrics on the four-ball,

studied previously in [26, 29–31]. We begin with AdS4 in section 3.6.1. Although

the metric is trivial, the one-parameter family of instantons given by our general

results is non-trivial, and it turns out that this family is identical to that in [26].
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The solutions in sections 3.6.2 and 3.6.3 each add a deformation parameter, meaning

that the metrics in each subsequent section generalise that in the previous section.

Particular supersymmetric instantons on these backgrounds were found in [29–31],

but our general results allow us to study the most general choice of instanton, leading

to new solutions. Furthermore, in section 3.6.4 we indicate how to generalise these

metrics further by adding an arbitrary number of parameters.

3.6.1 AdS4

The metric on Euclidean AdS4 can be written as

ds2
EAdS4

=
dq2

1 + q2
+ q2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (3.6.1)

Here q is a radial variable with q ∈ [0,∞), so that the NUT is at q = 0 while the

conformal boundary is at q = ∞. The coordinate ϑ ∈ [0, π
2
], with the endpoints

being the two axes of R2⊕R2 ∼= R4. The AdS4 metric is of course both self-dual and

anti-self-dual.

Writing a general choice of Reeb vector field as K = b1∂ϕ1 + b2∂ϕ2 , as in our

general discussion (3.4.32), the function y is then defined in terms of K via (3.4.33)

and (3.4.34). Using these formulae one easily computes

y(q, ϑ) =
1√

(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

. (3.6.2)

Notice that indeed yNUT = 1/|b1 + b2|, in agreement with (3.4.36). Using (3.6.2) one

can also verify the general behaviour of section 3.4.4 very explicitly. In particular we

see the very different global behaviour, depending on the sign of b1/b2. If b1/b2 > 0

then 1/y is nowhere zero, while if b1/b2 < 0 instead 1/y has a zero on M4. More

precisely, if −1 < b1/b2 < 0 then 1/y = 0 at {ϑ = 0, q =
√
b2

2 − b2
1/|b1|}, while if

b1/b2 < −1 then 1/y = 0 at {ϑ = π
2
, q =

√
b2

1 − b2
2/|b2|}. These are each a copy of S1

at one of the ‘axes’ of R2⊕R2, at the corresponding radius given by q. In the special
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case that b1 = −b2 we have 1/y = 0 at the NUT itself, where the axes meet. These

comments of course all agree with the general analysis in section 3.4.4, except here

all formulae can be made completely explicit.

We thus indeed obtain smooth solutions for all b1/b2 > 0, as well as the isolated

non-singular solution with b1/b2 = −1. In fact it is not difficult to check that the

former are precisely the solutions first found in [26], where the parameter b2 = b2/b1.

To see this we may compute the instanton using the formulae in section 3.3, finding

A =

(
b1 + b2

√
q2 + 1

)
dϕ1 +

(
b2 + b1

√
q2 + 1

)
dϕ2

2
√

(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

, (3.6.3)

which agrees with the corresponding formula in [26]. In particular one can check

that this gives a regular instanton when b1/b2 > 0, with the particular cases that

b1/b2 = ±1 giving a trivial instanton, and correspondingly the conformal Kähler

structure is flat. We shall comment further on this below. Moreover, one can also

check that the singular instantons with b1/b2 < 0 are singular at precisely the locus

that 1/y = 0, again in agreement with our general discussion.

In this case we may also compute all other functions appearing in sections 3.3,

3.4 and 3.5 very explicitly. For example, we find

V (q, ϑ) =
(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

q2(b2
1 cos2 ϑ+ b2

2 sin2 ϑ)
, (3.6.4)

while the functions w(1) and w(2) on ∂M4 = M3
∼= S3 appearing in the free energy

computations are given by

w(1) =
−4b1b2√

b2
1 cos2 ϑ+ b2

2 sin2 ϑ
, w(2) =

−2
(
3b2

1b
2
2 + b4

1 cos2 ϑ+ b4
2 sin2 ϑ

)
b2

1 cos2 ϑ+ b2
2 sin2 ϑ

. (3.6.5)

Using these expressions one can verify all of the key formulae in our general analysis

very explicitly. For example, the integrals in (3.4.39), (3.5.8), (3.5.17) and (3.5.20)

are all easily computed in closed form.
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Finally, let us return to discuss the special cases b1/b2 = ±1, where recall that

the instanton is trivial and the conformal Kähler structure is flat. The latter is thus

locally the flat Kähler metric on C2, but in fact in the two cases b1/b2 = ±1 the

Euclidean AdS4 metric is conformally embedded into different regions of C2. Notice

this has to be the case, because the conformal factor y of the b1/b2 = +1 solution has

yNUT = 1/(2|b1|), while for the b1/b2 = −1 solution instead yNUT = ∞. We may see

this very concretely by writing the flat Kähler metric on C2 as

ds2
flat = dR2 +R2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (3.6.6)

In both cases the change of radial coordinate to (3.6.1) is

q(R) =
2R

|R2 − 1|
. (3.6.7)

However, for the b1/b2 = +1 case the range of R is 0 ≤ R < 1, with the NUT being

at R = 0 and the conformal boundary being at R = 1; while for the b1/b2 = −1

case the range of R is instead 1 < R ≤ ∞, with the NUT being at R =∞ (and the

conformal boundary again being at R = 1). In particular the two conformal factors

are

y(R) = 1
2|b1| |R

2 − 1| . (3.6.8)

The two solutions b1/b2 = ±1 thus effectively fill opposite sides of the unit sphere

in C2, and because of this they induce opposite orientations on S3. Again, this may

be seen rather explicitly in various formulae. For example, w(1) = ∓4|b1| in the

two cases, so that the boundary Killing spinor equation (3.4.23) on the round S3

becomes16 respectively ∇(3)
i χ = ∓ i

2
|b1|γiχ, where one can take the gamma matrices

to be the Pauli matrices γi = τi in an orthonormal frame.
16The gauge field A(0) =

1
2 (dϕ1 + dϕ2) can be gauged away and that is why it does not appear

in the Killing spinor equation.
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3.6.2 Taub-NUT-AdS4

The Taub-NUT-AdS4 metrics are a one-parameter family of self-dual Einstein metrics

on the four-ball, and have been studied in detail in [29,30]. The metric may be written

as

ds2
4 =

r2 − s2

Ω(r)
dr2 + (r2 − s2)(u2

1 + u2
2) +

4s2Ω(r)

r2 − s2
u2

3 , (3.6.9)

where

Ω(r) = (r ∓ s)2[1 + (r ∓ s)(r ± 3s)] , (3.6.10)

and u1, u2, u3 are left-invariant one-forms on SU(2) ' S3. The latter may be written

in terms of Euler angular variables as

u1 + iu2 = e−iς(dθ + i sin θdϕ) , u3 = dς + cos θdϕ . (3.6.11)

Here ς has period 4π, while θ ∈ [0, π] with ϕ having period 2π. The radial coordinate

r lies in the range r ∈ [s,∞), with the NUT (origin of the ball ∼= R4) being at r = s.

The parameter s > 0 is referred to as the squashing parameter, with s = 1
2
being

the Euclidean AdS4 metric studied in the previous section. Indeed, the metric is

asymptotically locally Euclidean AdS as r →∞, with

ds2
4 ≈

dr2

r2
+ r2(u2

1 + u2
2 + 4s2u2

3) , (3.6.12)

so that the conformal boundary at r =∞ is a biaxially squashed S3.

Using the results of this chapter we may write a general choice of Reeb vector

field as K = (b1 + b2)∂ϕ + (b1 − b2)∂ς , as in our general discussion (3.4.32), and the

function y is then defined in terms of K via (3.4.33) and (3.4.34). Using these one

computes

1

y(r, θ)2
= [2(b1 − b2)(r − s)s+ (b1 + b2)(1 + 2(r − s)s) cos θ]2

+(b1 + b2)2 [1 + (r − s)(r + 3s)] sin2 θ . (3.6.13)
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Notice that indeed yNUT = limr→s y(r, θ) = 1/|b1 + b2|. We see that if b1/b2 > 0 or

b1/b2 = −1 then 1/y is indeed never zero (except at the NUT in the latter case),

as expected. In this way we obtain a two-parameter family of regular supersymmet-

ric solutions, parametrised by the squashing parameter s and b1/b2. One can also

compute explicitly the corresponding instanton F for a general choice of s and b1/b2.

This was done in [2] and the expression for F is not reported here. In the remainder

of this subsection we shall instead discuss further some special cases, making contact

with the previous results [29, 30].

While the Taub-NUT-AdS metric (3.6.9) has SU(2) × U(1) isometry, a generic

choice of the Killing vector K = (b1 + b2)∂ϕ + (b1 − b2)∂ς breaks the symmetry of

the full solution to U(1) × U(1). In particular, this symmetry is also broken by the

corresponding instanton A. On the other hand, in [29,30] the SU(2)×U(1) symmetry

of the metric was also imposed on the gauge field, which results in two one-parameter

subfamilies of the above two-parameter family of solutions, which are 1/4 BPS and

1/2 BPS, respectively. In each case this effectively fixes the Killing vector K (or

rather the parameter b1/b2) as a function of the squashing parameter s.

1/4 BPS solution: This solution is simple enough that it can be presented in

complete detail. The coordinate transformation to the (3.3.2) form for the 1/4 BPS

solution reads

r − s = 1/y , − 2su3 = dψ + φ , (3.6.14)

and

y2(r2 − s2) = ewV (1 + |z|2)2 ,
r2 − s2

Ω(r)
= y2V . (3.6.15)

Notice immediately that at the NUT r = s we have 1/y = 0, so that this solution

must have b1 = −b2 – we shall find this explicitly below. The metric (u2
1 + u2

2) is

diffeomorphic to the Fubini-Study metric on CP1 ∼= S2:

u2
1 + u2

2 =
4dzdz̄

(1 + |z|2)2
. (3.6.16)
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The metric functions then simplify to

V (y) =
1 + 2sy

1 + 4sy + y2
, w(y, z, z̄) = log

1 + 4sy + y2

(1 + |z|2)2
, (3.6.17)

and it is straightforward to check these satisfy the defining equation (3.3.3) and Toda

equation (3.3.5). The conformally related scalar-flat Kähler metric is

ds2
Kahler =

1 + 2sy

1 + 4sy + y2
dy2 + (1 + 2sy)(u2

1 + u2
2) +

4s2(1 + 4sy + y2)

1 + 2sy
u2

3 , (3.6.18)

with Kähler form

ω = −dy ∧ 2su3 + (1 + 2sy)u1 ∧ u2 = −d [(1 + 2sy)u3] . (3.6.19)

Using the formula (3.3.6) for the gauge field A, we compute

A =
1

2
(4s2 − 1)

r − s
r + s

u3 + pure gauge , (3.6.20)

which we see reproduces the 1/4 BPS choice of instanton of [30]17. The supersym-

metric Killing vector is K = ∂ψ = − 1
2s
∂ς and so generates the Hopf fibration of S3.

Since ς = ϕ1 − ϕ2, ϕ = ϕ1 + ϕ2 we hence find

b1 = −b2 = − 1

4s
, (3.6.21)

which using (3.1.2) yields

I1/4 BPS =
π

2G4

. (3.6.22)

This formula matches the result of [30].
17Notice that in [30] the opposite orientation convention was chosen, so that the instanton in [30]

is self-dual, rather than anti-self-dual. Recall also from the discussion above equation (3.3.6) that
the overall sign of the instanton is correlated with the sign of the supersymmetric Killing vector K.
Here K = − 1

2s∂ς , which is minus the expression in [30], hence leading to the opposite sign for the
instanton gauge field A.
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1/2 BPS solution: The Taub-NUT-AdS metric (3.6.9) also admits a 1/2 BPS

solution [29,30]. We hence have two linearly independent Killing spinors, which may

be parametrised by an arbitrary choice of constant two-component spinor χ(0) = p

q

 ∈ C2 \ {0}. The corresponding Killing vector is given by the unlikely expres-

sion

K = (2s+
√

4s2 − 1)
[
2Im [eiϕpq̄]∂θ +

(
|p|2 − |q|2 + 2Re [eiϕpq̄] cot θ

)
∂ϕ

]
(3.6.23)

+
[
(|p|2 + |q|2)

(
1
2s
− 2s−

√
4s2 − 1)

)
− 2Re [eiϕpq̄](2s+

√
4s2 − 1) csc θ

]
∂ς .

Since multiplying χ(0) by a non-zero complex number λ ∈ C∗ simply rescales K by

|λ|2, this leads to a CP1 family of choices of Killing vector K in this case. Of course,

the vector (3.6.23) is not toric for generic choice of χ(0). Nevertheless, one can still

compute the various geometric quantities in section 3.3. In particular one can check

that the formula (3.3.15) for the instanton gives

A = s
√

4s2 − 1
r − s
r + s

u3 + pure gauge , (3.6.24)

for any choice of K in (3.6.23), which agrees with the expression in [29, 30]. Notice

that the instanton is invariant under the SU(2)×U(1) symmetry of the metric, even

though a choice of Killing vector K breaks this symmetry. Indeed, in this case the

conformal factor y = y(r, θ) for toric solutions given by (3.6.13) depends non-trivially

on both r and θ, thus also breaking the SU(2) symmetry of the underlying Taub-

NUT-AdS metric. This is to be contrasted with the 1/4 BPS solution, where instead

(3.6.13) reduces simply to y = y(r) = 1/(r − s) (see (3.6.14)).

The toric choices of K for these 1/2 BPS solutions correspond to the poles of the

CP1 parameter space. For example, choosing p = 1, q = 0 above gives

K =
(

2s+
√

4s2 − 1
)
∂ϕ +

(
1
2s
− 2s−

√
4s2 − 1

)
∂ς , (3.6.25)
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so that

b1 =
1

4s
, b2 = − 1

4s
+ 2s+

√
4s2 − 1 . (3.6.26)

The free energy (3.1.2) is thus

I =
2πs2

G4

, (3.6.27)

which of course matches the result obtained in [30].

3.6.3 Plebanski-Demianski

The Taub-NUT-AdS metric has been extended to a two-parameter family of smooth

self-dual Einstein metrics on the four-ball in [31], which lie in the Plebanski-Demianski

class of local solutions [83] to Einstein-Maxwell theory. We will henceforth refer to

the solution of [31] as ‘Plebanski-Demianski’. The metric may be written as

ds2
PD =

P(q)

q2 − p2
(dτ + p2dν)2 − P(p)

q2 − p2
(dτ + q2dν)2 +

q2 − p2

P(q)
dq2 − q2 − p2

P(p)
dp2,

(3.6.28)

where

P(x) = (x− p1)(x− p2)(x− p3)(x− p4) . (3.6.29)

The roots of the quartic P(x) can be expressed in terms of the two parameters of the

solution, a and v, as

p1 = −1

2
−
√

1 + a2 − v2 , p3 =
1

2
− a ,

p2 = −1

2
+
√

1 + a2 − v2 , p4 =
1

2
+ a . (3.6.30)

The coordinate p ∈ [p3, p4] is essentially a polar angle variable, while q ∈ [p4,∞) plays

the role of a radial coordinate, with the conformal boundary being at q = ∞. The

NUT/origin of R4 is located at p = p3, q = p4. The Killing vectors ∂τ , ∂ν generate the

U(1)2 torus symmetry of the solution, with the coordinates related to our standard
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2π-period coordinates ϕ1, ϕ2 on U(1)2 via

τ =
2p2

3

P ′(p3)
ϕ1 −

2p2
4

P ′(p4)
ϕ2 ,

ν = − 2

P ′(p3)
ϕ1 +

2

P ′(p4)
ϕ2 . (3.6.31)

In order that the metric is smooth on the four-ball the parameters must obey v2 >

2|a|, with the a = 0 limit being the Taub-NUT-AdS metric of the previous section,

and further setting v = 1 one recovers Euclidean AdS4 (we refer the reader to [31]

for further details).

It is straightforward, but tedious, to express the metric (3.6.28) in the form (3.3.2),

with an arbitrary choice of toric Killing vector K = b1∂ϕ1 + b2∂ϕ2 . For the special

case of the Killing vector/instanton in the solution of [31] the change of coordinates

was worked out in [2].

In the (τ, ν) coordinates an arbitrary Killing vector may be written as

K = bτ∂τ + bν∂ν , (3.6.32)

where

bτ =
2p2

3

P ′(p3)
b1 −

2p2
4

P ′(p4)
b2 , bν = − 2

P ′(p3)
b1 +

2

P ′(p4)
b2 . (3.6.33)

Using (3.4.33) and (3.4.34) one can calculate

1

y(p, q)2
=

1

4

1

(q2 − p2)2

{[(
2P(q)

q − p
− P ′(q)

)
(bτ + bνp

2) (3.6.34)

−
(

2P(p)

q − p
+ P ′(p)

)
(bτ + bνq

2)

]2

− 4b2
νP(q)P(p)(q + p)2

}
.

Notice that this is a sum of two non-negative terms. Furthermore, these terms may

vanish only when evaluated at the roots p = p3, p = p4 or q = p4, which correspond
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to the axes of R4 = R2 ⊕ R2. Let us calculate these limits:

lim
p→p3

1

y2
=

(
(b1 + b2)v2 + 2ab1 + b2(2q − 1)

v2 + 2a

)2

,

lim
p→p4

1

y2
=

(
(b1 + b2)v2 − 2ab2 + b1(2q − 1)

v2 − 2a

)2

, (3.6.35)

lim
q→p4

1

y2
=

(
(b1 + b2)v2 − 2ab2 + b1(2p− 1)

v2 − 2a

)2

.

A careful analysis of the above limits shows that 1/y does not vanish, and hence

the metric is regular, whenever b1/b2 > 0, while 1/y = 0 only at the NUT when

b1/b2 = −1. On the other hand, the solution is indeed singular if b1/b2 < 0 and

b1/b2 6= −1. Notice that we also easily recover the formula (3.4.36) for the conformal

factor at the NUT: limp→p3, q→p4 y = 1/|b1 + b2|.

In [31] particular supersymmetric instantons (particular choices of b1/b2 for fixed a

and v) were studied for this two-parameter family of metrics, which by construction lie

within the Plebanski-Demianski ansatz. The results of this subsection extend these

results to a general choice of instanton on the same background, parametrised by

b1/b2, leading to a three-parameter family of regular supersymmetric solutions. The

general expression for this instanton is lengthy, but computable, and the interested

reader may find the details in [2].

3.6.4 Infinite parameter generalisation

In each subsection we have generalised the metrics of the previous subsection by

adding a parameter, and one might wonder whether one can find more general self-

dual Einstein metrics on the four-ball. In fact from the gauge-gravity point of view

it is more natural to ask the question of which conformal structures on S3 may

be filled by a self-dual Einstein metric. Of course one expects this problem to be

overdetermined, and some general results in this direction appear in [84]. Roughly

speaking, as long as the conformal class of the boundary metric [gS3 ] is sufficiently
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close to the round metric [g0
S3 ], then one can write [gS3 ] = [g0

S3 ] + [g+
S3 ] + [g−S3 ], where

[g0
S3 ] + [g±S3 ] bound self-dual/anti-self-dual Einstein metrics on the four-ball B4, re-

spectively. Equivalently, viewed as self-dual fillings these induce opposite orientations

on S3. Another important general result is that these fillings are unique: that is, two

self-dual Einstein four-manifolds (M
(1)
4 , g(1)), (M

(2)
4 , g(2)) inducing the same conformal

structure on M3 = ∂M4 are isometric [85].

However, starting with a particular conformal three-metric and trying to construct

a global filling explicitly is likely to be very difficult. In order to construct further

explicit examples one might instead attempt to directly generalise the Plebanski-

Demianski metrics of the previous subsection. In [79] the authors studied the general

local geometry of toric self-dual Einstein metrics, which thus includes all the solutions

(locally) above. In appropriate coordinates the metric takes the form

ds2
toric =

4ρ2(F2
ρ + F2

υ)−F2

4F2
ds2
H2 +

4

F2(4ρ2(F2
ρ + F2

υ)−F2)

[(
ycan
ρ dν

+(υycan
ρ − ρycan

υ )dϕ
)2

+
(
ycan
υ dν + (ρycan

ρ + υycan
υ − ycan)dϕ

)2
]
.

(3.6.36)

where we have defined

ycan(ρ, υ) ≡ √ρF(ρ, υ) , (3.6.37)

and

ds2
H2 =

dρ2 + dυ2

ρ2
(3.6.38)

is the metric on hyperbolic two-space H2, regarded as the upper half plane with

boundary at ρ = 0. The metric (3.6.36) is entirely determined by the choice of

function F = F(ρ, υ), and the metric is self-dual Einstein if and only if this solves

the eigenfunction equation

∆H2F =
3

4
F ⇐⇒ Fρρ + Fυυ =

3

4ρ2
F , (3.6.39)
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where Fρ ≡ ∂ρF , etc. Unlike the Toda equation (3.3.5) this is linear, and one may

add solutions. In particular there is a basic solution

F(ρ, υ;λ) =

√
ρ2 + (υ − λ)2

√
ρ

, (3.6.40)

where λ is any constant. Via linearity

F(ρ, υ) =
m∑
i=1

αiF(ρ, υ;λi) , (3.6.41)

also solves (3.6.39), for arbitrary constants αi, λi, i = 1, . . . ,m. We refer to (3.6.41)

as an m-pole solution. Of course, one could also replace the sum in (3.6.41) by an

integral, smearing the monopoles in some chosen charge distribution.

Thus the local construction of toric self-dual Einstein metrics is very straightfor-

ward – the above gives an infinite-dimensional space. However, understanding when

the above metrics extend to complete asymptotically locally hyperbolic metrics on

a ball (or indeed any other topology for M4) is more involved. In [2] some steps

were taken in this direction by showing that the general 2-pole solution is simply Eu-

clidean AdS4, while the general 3-pole solution is precisely the Plebanski-Demianski

solutions of section 3.6.3. This requires taking into account the symmetries of (3.6.36)

(in particular the PSL(2,R) symmetry of H2), and then making a number of rather

non-trivial coordinate transformations. Some work has also been done on global

properties of the metrics (3.6.36) in [86], although the focus in that paper is on con-

structing complete asymptotically locally Euclidean scalar-flat Kähler metrics, which

are conformal to (3.6.36). It remains an interesting open problem to understand when

the general m-pole metrics extend to complete metrics on the ball.



Chapter 4

M2-brane duals of Wilson loops on

three manifolds

4.1 Introduction and summary

In the second chapter of this thesis, we showed how to compute Wilson loops on

S3 and find their M2-brane gravity duals in AdS4 × Y7 and compute their actions

when Y7 is any toric Sasaki-Einstein manifold. In the last chapter, we showed how

the sphere S3 can be replaced by any three-manifold M3 with S3 topology that

allows for supersymmetric theories and how this yields a supergravity dual of the

form M4 × Y7 where M4 is a self-dual Einstein four-manifold with metric (3.3.2)

and background gauge field (3.3.6). At this point, a question naturally arises: is

it possible to reproduce the Wilson loop/M2-brane computation of chapter 2 in the

more general background of chapter 3 and match their respective actions, hence

verifying the gauge/gravity duality beyond the matching of the free-energy for non-

trivial M3 = ∂M4
∼= S3 manifolds? The answer to that question is positive and it is

what we will look at in this chapter.

The partition function Z of three-dimensional N = 2 supersymmetric gauge the-

ories on M3 depends on the background geometry only through the supersymmetric

106
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Killing vector field K. As explained in the last chapter, when M3 is diffeomorphic to

S3 with the standard action of U(1)× U(1) on S3 ⊂ R2 ⊕ R2, one finds the large N

free energy F = − logZ satisfies

lim
N→∞

F =
(|b1|+ |b2|)2

4|b1b2|
· Fround , (4.1.1)

where Fround is the large N limit of the free energy on the round three-sphere, which

scales as N3/2. In the last chapter the field theory result (4.1.1) was reproduced

in a dual computation in four-dimensional gauged supergravity. Here M3
∼= S3

arises as the conformal boundary of a self-dual Einstein four-manifold M4, where the

supersymmetric Killing vector K also extends over M4. The asymptotically locally

Euclidean AdS metric on M4 is conformally Kähler, and supersymmetry requires one

to turn on a graviphoton field A proportional to the Ricci one-form of this Kähler

metric. A remarkable feature of the computation of the holographic free energy in

section 3.5 is that one does not need to know the form of the Einstein metric on M4

explicitly – rather (4.1.1) is proven for an arbitrary such metric.

In chapter 2 the vacuum expectation values of BPS Wilson loops on the round

sphere were computed for a variety of gauge theories, and matched to regularised

M2-brane actions in AdS4 × Y7. Here the choice of internal space Y7 determines

the gauge theory on M3. In this chapter however, we extend these computations to

general supersymmetric backgrounds M3 = ∂M4. A Wilson loop is BPS if it wraps

an orbit of K, and we will find that the large N Wilson loop VEV satisfies

lim
N→∞

log 〈W 〉 = Sb1,b2 · log 〈Wround〉 , (4.1.2)

where

Sb1,b2 ≡
|b1|+ |b2|

2
` . (4.1.3)

Here 〈Wround 〉 denotes the large N limit of the Wilson loop on the round sphere,

given by (2.2.1) or equivalently (2.2.5), and 2π` denotes the length of the orbit of K.
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Such orbits always close over the poles of S3, i.e. at the origins of each copy of R2

in S3 ⊂ R2 ⊕ R2, where the lengths are then ` = 1/|b1| and ` = 1/|b2|, respectively.

For these Wilson loops (4.1.2) becomes a function of b1/b2, exactly as in (4.1.1). The

supergravity dual configurations are given by M2-branes wrapping a supersymmetric

copy of the M-theory circle in Y7 and a complex curve Σ2 ⊂ M4, with boundary

∂Σ2 ⊂ M3 being the Wilson line. Identifying the logarithm of the VEV with minus

the holographically renormalised M2-brane action, we prove that (4.1.2) holds in

general, thus verifying the matching of this observable in AdS/CFT in a very broad

class of backgrounds.

The outline of the rest of this chapter is as follows. In section 4.2 we review the

geometry of M3, the definition of the BPS Wilson loop and how it may be computed

using localisation techniques in the large N limit to find (4.1.2). Section 4.3 analyses

supersymmetric M2-branes in M4 × Y7 backgrounds in M-theory and we also derive

the formula (4.1.2) in supergravity. Since our arguments are for general backgrounds

they are somewhat implicit; in section 4.4 we therefore look explicitly at AdS4 and

Taub-NUT-AdS4, to exemplify our general formulae.

4.2 Wilson loops in N = 2 gauge theories on M3

In this section, we will review the geometry of M3 and the computation of the BPS

Wilson loops using localisation. Our discussion will be, of course, very similar to

the one of section 2.3 as it is a generalisation of it. We will nonetheless expose all

the steps of the computation in order to have the whole picture but we will be more

concise than in section 2.3.

The field theories of interest have UV descriptions as N = 2 Chern-Simons gauge

theories coupled to matter on M3, where M3 is a supersymmetric three-manifold.

After first reviewing the geometry of M3, we explain how the Wilson loop VEVs

localise in the matrix model and take the large N limit to derive (4.1.2).
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4.2.1 Three-dimensional background geometry

The manifold M3 belongs to a general class of ‘real’ supersymmetric backgrounds,

with two supercharges related to one another by charge conjugation [72]. If χ denotes

the Killing spinor on M3 then there is an associated Killing vector field

K ≡ χ†γµχ∂µ = ∂ψ . (4.2.1)

This Killing vector is nowhere zero and therefore defines a foliation of the three-

manifold. This foliation is transversely holomorphic with local complex coordinate

z. In terms of these coordinates the background metric may be written as1

ds2
M3

= (dψ + φ(0))
2 + 4ew(0)dzdz̄ , (4.2.2)

where φ(0) = φ(0)(z, z̄)dz+φ(0)(z, z̄)dz̄ is a local one-form and w(0)(z, z̄) is a function.

We use the orthonormal frame (3.4.14) for the three-metric ds2
M3

:

e1
(3) = dψ + φ(0) , e2

(3) + ie3
(3) = 2ew(0)/2dz , (4.2.3)

with indices i, j, k = 1, 2, 3 for this frame.

It is important to stress here that arbitrary choices for φ(0) and w(0) (subject to

M3 being smooth) lead to supersymmetric backgrounds. The corresponding Killing

spinor equation for χ may be found in (3.4.23). Choosing the three-dimensional

gamma matrices, in the frame (4.2.3), to be the Pauli matrices, one finds that the

Killing spinor solution is

χ = eiα(ψ,z,z̄)

 χ0

χ0

 , (4.2.4)

where χ0 is a constant and α(ψ, z, z̄) is a phase. From this three-dimensional point
1More generally there is a conformal factor for this metric [72]. However, as in the last chapter

we are interested in conformal field theories with gravity duals, and we may hence set this conformal
factor to 1.
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of view, the phase α(ψ, z, z̄) is a priori an arbitrary function and does not play a

significant role. As we already know, when viewed as a boundary supersymmetric

field theory dual to supergravity this phase is chosen to be

α(ψ, z, z̄) = γψ, with γ = −sign

(
b1

b2

)
· |b1|+ |b2|

2
, (4.2.5)

in order to have a global expression for the gauge field A. Here, we have assumed

that M3
∼= S3 with a toric structure, so that we have a U(1)×U(1) symmetry. If we

realise M3
∼= S3 ⊂ R2 ⊕ R2 then we may write

K = b1∂ϕ1 + b2∂ϕ2 , (4.2.6)

where ϕ1, ϕ2 are standard 2π-period coordinates on U(1)× U(1).

4.2.2 The Wilson loop

In N = 2 supersymmetric gauge theories the gauge field Ai is part of a vector

multiplet that also contains two real scalars σ and D and a two-component spinor λ,

all of which are in the adjoint representation of the gauge group G. The BPS Wilson

loop in a representation R of G is given by

W =
1

dimR
TrR

[
P exp

(∮
υ

ds(iAiẋi + σ|ẋ|)
)]

, (4.2.7)

where xi(s) parametrises the worldline υ ⊂ M3 of the Wilson loop and the path

ordering operator has been denoted by P . The supersymmetry transformations of

the gauge field Ai and the scalar σ were given in equation (2.3.3) and we recall them

here:

δAi = − i

2
λ†τiχ , δσ = −1

2
λ†χ ,
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where τi are the Pauli matrices. If one varies the Wilson loop (4.2.7) under the latter

supersymmetry transformation one obtains

δW ∝ 1

2
λ†(τiẋ

i − |ẋ|)χ . (4.2.8)

The Wilson loop is then invariant under supersymmetry provided

(τiẋ
i − |ẋ|)χ = 0 . (4.2.9)

Choosing s to parametrise arclength, so that |ẋ| = 1 along the loop, it is straightfor-

ward to show that (4.2.9) is satisfied if and only if the Wilson loop lies along the e1
(3)

direction. From (4.2.3) we see that e1
(3) is the one-form dual to the supersymmetric

Killing vector K = ∂ψ. Thus the Wilson loop (4.2.7) is indeed a BPS operator pro-

vided one takes υ to be an orbit of K. Notice that the topology of M3 has not been

used in this subsection, and thus any Wilson loop wrapped along an orbit of K is

BPS, regardless of the topology of M3.

4.2.3 Localisation in the matrix model

The VEV of the BPS Wilson loop (4.2.7) is, by definition, obtained by inserting W

into the path integral for the theory onM3. The computation of this is greatly simpli-

fied by the fact that this path integral localises onto supersymmetric configurations of

fields. The localisation of the Wilson loop was explained in detail in section 2.3 for the

round S3 case. This section generalises that discussion to a generic supersymmetric

manifold M3
∼= S3.

The central idea is that the path integral, with W inserted, is invariant under the

supersymmetry variation δ corresponding to the Killing spinor χ. Crucially, δ2 = 0

is nilpotent and the only net contributions to this path integral come from field

configurations that are invariant under δ.

For the N = 2 supersymmetric Chern-Simons-matter theories of interest, one
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finds that the δ-invariant configurations on M3
∼= S3 are particularly simple:

Ai = 0 , σ = constant , D = −σh , (4.2.10)

where the function h = 1
2
∗ (e1

(3) ∧ de1
(3)), and with all fields in the matter multiplet

set identically to zero [32]. Here we may diagonalise σ by a gauge transformation.

The exact localised partition function then takes the saddle point form [32]

Z =

∫
dσ e

− iπk
|b1b2|

Trσ2 ∏
α∈∆+

4 sinh
πσα

|b1|
sinh

πσα

|b2|
∏
%

sβ

[
iQ

2
(1− r)− %(σ)√

|b1b2|

]
.

(4.2.11)

Note that b1 and b2 now appear in Z. Here k denotes the Chern-Simons level and

the first product is over positive roots α ∈ ∆+ of the gauge group, while the second

product is over weights % in the weight space decomposition for a chiral matter field

in an arbitrary representation Rmatter of the gauge group. We have also defined

β ≡

√∣∣∣∣b1

b2

∣∣∣∣ , Q ≡ β +
1

β
, (4.2.12)

the R-charge of the matter field is denoted r, and sβ(z) denotes the double sine

function.

In this set-up, the VEV of the BPS Wilson loop (4.2.7) reduces to

〈W 〉 =
1

Z dimR

∫
dσ e

− iπk
|b1b2|

Trσ2 ∏
α∈∆+

4 sinh
πσα

|b1|
sinh

πσα

|b2|
(4.2.13)

×
∏
%

sβ

[
iQ

2
(1− r)− %(σ)√

|b1b2|

]
TrR

(
e2π`σ

)
.

Notice the integrand is the same as that for the partition function (4.2.11), with an

additional insertion of TrR(e2π`σ) arising from the Wilson loop operator. Note also

that, as in chapter 2, we have normalised the VEV relative to the partition function
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Z, so that 〈 1 〉 = 1, as is usual in quantum field theory. We have also defined

∮
υ

ds = 2π` (4.2.14)

so that ` parametrises the length of the Wilson line. More precisely, the integral

(4.2.14) is well-defined only for a closed orbit of the Killing vector K. A generic orbit

is closed only when b1/b2 ∈ Q is rational, so that K generates a circle subgroup of

U(1) × U(1). Writing b1/b2 = m/n with m,n ∈ Z relatively prime integers, these

define torus knots via υ ⊂ T 2 ⊂ S3, where the homology class [υ] = (m,n) ∈

H1(T 2,Z) ∼= Z⊕Z. These have been studied in the present context in [87]. If on the

other hand b1/b2 is irrational, then the only closed orbits are at the two ‘poles’ of

M3
∼= S3, where ∂ϕ1 = 0 and ∂ϕ2 = 0, respectively. Over these poles

∮
υ

ds = 2π/|b2|,

2π/|b1|, respectively. Wherever the loop is located, we denote its length
∮
υ

ds by 2π`

as above.

For a U(N) gauge group we may write σ = diag(λ1
2π
, . . . λN

2π
), thus parametrising

2πσ by its eigenvalues λi. Localisation has then reduced the partition function Z

and the Wilson loop VEV to finite-dimensional integrals (4.2.11), (4.2.13) over these

eigenvalues, but in practice the formulae are difficult to evaluate explicitly. For

comparison to the dual supergravity results we must take the N → ∞ limit, where

the number of eigenvalues, and hence integrals, tends to infinity. One can then

attempt to compute this limit using a saddle point approximation of the integral. As

in chapter 2, the large N limit of the saddle point eigenvalue distribution is assumed

to take the form

λi = xiN
1/2 + iyi , (4.2.15)

with xi and yi real and assumed to be O(1) in a large N expansion. In the large N

limit the real part is assumed to become dense. Ordering the eigenvalues so that the

xi are strictly increasing, the real part becomes a continuous variable x, with density

ρ(x), while yi becomes a continuous function of x, y(x).

Writing Z = e−F one then obtains a functional F [ρ(x), y(x)], with x supported on
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some interval [xmin, xmax], and to apply the saddle point method one then extremises

F with respect to ρ(x), y(x), subject to the constraint that ρ(x) is a density

∫ xmax

xmin

ρ(x)dx = 1 . (4.2.16)

One then finally also extremises over the choice of interval, by varying with respect

to xmin, xmax, to obtain the saddle point eigenvalue distribution ρ(x), y(x).

As it turns out, if one caries out the large N limit with the ansatz (4.2.15), one

finds a very simple relation between the round sphere results Fround and log 〈Wround 〉

and their squashed counterparts (with arbitrary b1 and b2) F and log 〈W 〉. To obtain

this result for F , one may first relabel σ as |b2|σ in (4.2.11). The partition function

then takes the same form as that in [26], where the large N limit was computed in

detail. In particular in the latter reference it was shown that in the large N limit

F [ρ(x), y(x)] is simply a rescaling of the round sphere result by a factor (βQ)3/23β2,

provided one also rescales the Chern-Simons coupling k as k → (2/βQ)2 · k. This

then leads to the large N result (4.1.1).

The same logic may be applied to the calculation of the Wilson loop. For the class

of N = 2 supersymmetric Chern-Simons theories coupled to matter on the round

three-sphere studied in chapter 2, xmax is always proportional to 1/
√
k. According

to the above prescription, the result for xmax on a general background M3 is given by

rescaling the round sphere result by |b2| · (βQ/2) = (|b1|+ |b2|)/2. Here the factor of

|b2| comes from the relabelling σ → |b2|σ, while the factor of βQ/2 comes from the

rescaling of the Chern-Simons coupling. Thus

xmax =
|b1|+ |b2|

2
xround

max , (4.2.17)

where xround
max determines the supremum of the support of ρ(x) for the field theory on

the round three-sphere. For the field theories of interest, the eigenvalue density is

always a continuous piecewise linear function supported on [xmin, xmax]. Using this
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fact, the large N limit of the Wilson loop (4.2.13) in the fundamental representation

may be easily computed with a saddle point approximation, as explained in section

2.3, and we find

log 〈W 〉QFT = ` · xmax N
1/2 + o(N1/2) . (4.2.18)

Here recall that the length
∮
υ

ds is in general 2π`. The round three-sphere Wilson

loop in particular is obtained by setting b1 = b2 = 1 and ` = 1 and is, equation

(2.3.15),

log 〈Wround 〉QFT = xround
max N1/2 + o(N1/2) . (4.2.19)

We thus obtain

lim
N→∞

log 〈W 〉QFT

log 〈Wround 〉QFT
=
|b1|+ |b2|

2
` . (4.2.20)

This is the field theory result for the VEV of a supersymmetric Wilson loop on a

general supersymmetric manifold M3
∼= S3. In the next section we will look at the

M2-brane dual to this Wilson loop, and show quite generally that the holographic

dual computation of the VEV agrees with (4.2.20).

4.3 Dual M2-branes

In this section we analyse the supersymmetric M2-brane probes that are relevant for

computing the holographic dual of the Wilson loop VEV (4.2.20). The dual solution

is constructed in four-dimensional gauged supergravity of the last chapter, and we

begin by summarising the geometry of these solutions.

4.3.1 Supergravity dual

In chapter 3 it was shown that supersymmetric three-manifolds M3 of the form de-

scribed in section 4.2.1 arise as the conformal boundaries of Euclidean self-dual so-

lutions to four-dimensional gauged supergravity. For M3
∼= S3 the four-dimensional

supergravity solution is defined on a four-ballM4
∼= B4, and is asymptotically locally
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Euclidean AdS with conformal boundaryM3. The Killing vector K defined by (4.2.1)

extends as a Killing vector bilinear overM4, and the four-metric is then Einstein, has

anti-self-dual Weyl tensor, and is conformal to a Kähler metric. Supersymmetry also

requires one to turn on a specific graviphoton field A.

The four-dimensional metric on the manifold M4 takes the form (3.3.2)

ds2
SDE =

1

y2

[
V −1(dψ + φ)2 + V

(
dy2 + 4ewdzdz̄

)]
, (4.3.1)

The metric (4.3.1) is equipped with the Killing vector K = ∂ψ, which extends the

vector (4.2.1) from the conformal boundary, which is at y = 0. On the boundary M3,

the graviphoton gauge field A(0) takes the global form, equation (3.4.26),

A(0) = γdψ − 1

4
w(1)σ +

i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ . (4.3.2)

where γ is given in (4.2.5). We shall use the following orthonormal frame for the

metric (4.3.1)

e0 =
1

y
V 1/2dy , e1 =

1

y
V −1/2(dψ + φ) , e2 + ie3 =

2

y
(V ew)1/2dz . (4.3.3)

The four-dimensional geometry that we have just described, together with the

gauge field A, form a supersymmetric solution to Euclidean gauged supergravity.

There is correspondingly a Dirac spinor ε satisfying the Killing spinor equation of

this theory. In the orthonormal frame (4.3.3) and using the gamma matrices

Γi =

 0 τi

τi 0

 , Γ0 =

 0 iI2

−iI2 0

 , (4.3.4)

with τi the Pauli matrices, the Killing spinor ε is given by

ε =
1√
2y

(
1 + V −1/2Γ0

)
ζ , (4.3.5)
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with

ζ =

χ
0

 where χ = eiγψ

χ0

χ0

 . (4.3.6)

We recall that we assume that the four-manifold M4 is M4
∼= B4 ∼= R2⊕R2 and that

the torus U(1)×U(1) acts in the standard way on R2⊕R2. The Killing vectorK = ∂ψ

is then parametrised like in (4.2.6) on the conformal boundary. Remember that while

the metric (4.3.1) is smooth by assumption, the instanton F = dA and Killing spinor

ε are singular where the conformal Kähler metric is singular. Regularity is in fact

equivalent to having either b1/b2 > 0 or b1/b2 = −1. Moreover, the origin y = yNUT

of M4 is then at

yNUT =
1

|b1 + b2|
, (4.3.7)

which is yNUT =∞ when b1/b2 = −1.

In order to study the M2-branes dual to Wilson loops, we need to work with

the full eleven-dimensional supergravity solution of section 3.2. We recall that the

solution takes the form

ds2
11 = R2

[
1

4
ds2

SDE +

(
η +

1

2
A

)2

+ ds2
T

]
,

G = −iR3

(
3

8
vol4 −

1

4
∗4 F ∧ dη

)
. (4.3.8)

The radius R is

R6 =
(2π`p)

6N

6Vol(Y7)
, (4.3.9)

where N is the number of units of flux defined in equation (3.2.5).

4.3.2 BPS M2-branes

We are interested in calculating the action of M2-branes that are dual to Wilson loops

of gauge theories onM3. These M2-branes wrap Σ2×S1
M , where the surface Σ2 ⊂M4

has boundary given by the Wilson line ∂Σ2 = S1 ⊂ M3 = ∂M4, and S1
M ⊂ Y7 is a
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copy of the M-theory circle. In particular we will show that submanifolds Σ2 ⊂ M4

parametrised by the radial direction y in M4 and an orbit of the Killing vector K

are complex with respect to the complex structure J of the conformal Kähler metric

to ds2
SDE. The wrapped M2-brane is then supersymmetric provided S1

M is calibrated

by the contact one-form η. Over the poles S1 ⊂ M3
∼= S3 the topology of Σ2 is a

disc, where y ∈ (0, yNUT] serves as a radial coordinate with the origin of the disc at

y = yNUT > 0.

The action of the M2-brane in Euclidean signature reads

SM2 =
1

(2π)2`3
p

[
Vol(Σ2 × S1

M) + i

∫
Σ2×S1

M

C

]
. (4.3.10)

A supersymmetric M2-brane satisfies an appropriate projection condition, which may

be written as

Pε11 = 0 , where P ≡ 1

2

(
1− i

3!
εαβγ∂αX

M∂βX
N∂γX

P Γ̃MNP

)
, (4.3.11)

with α, β, γ indices on the worldvolume. Here ε11 is the eleven-dimensional Killing

spinor for the background (4.3.8), which is constructed as a tensor product of the

four-dimensional spinor ε and the Killing spinor on the internal space Y7. The Γ̃M are

eleven-dimensional gamma matrices, with XM describing the M2-brane embedding.

One can analyse (4.3.11) precisely as we did in chapter 2. The upshot is that S1
M ⊂ Y7

must be a calibrated circle in Y7, while taking Σ2 ⊂M4 to be a surface at constant z,

parametrised by y and ψ, one finds (4.3.11) is equivalent to the projection condition

(1− iΓ5Γ01)ε = 0 . (4.3.12)

Here we have used the orthonormal frame (4.3.3), and Γ5 ≡ Γ0Γ1Γ2Γ3 with Γµ defined

by (4.3.4) (in the orthonormal frame). Using the explicit form for ε in (4.3.5) it is

trivial to see that (4.3.12) indeed holds. Moreover, Σ2 is calibrated with respect
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to the Kähler form for the conformal Kähler metric, making it a complex curve.

Equivalently, denoting the complex structure J we have J(V −1∂y) = ∂ψ making Σ2

a complex curve.

Let us now calculate the action (4.3.10) for our M2-brane. Using the supergravity

solution that we briefly summarised in section 4.3.1, the C-field, where remember

that G = dC, is computed to be

C = −iR3

(
−1

8
Υ +

1

4
F ∧ η

)
, (4.3.13)

where

Υ =
1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ 2iV ewdz ∧ dz̄ , (4.3.14)

and dΥ = −3vol4. The area of the surface Σ2 in M4 is divergent, but can be regu-

larised by subtracting the length of its boundary, i.e. the length of the S1 in M δ
3 at

y = δ → 0. Notice this is then a local boundary counterterm. If we denote by M δ
4

the manifold M4 with boundary M δ
3 = {y = δ} (with 0 < δ < yNUT), and similarly

for Σδ
2 etc, the action of the M2-brane is

SM2 =
1

(2π)2`3
p

∫
S1
M

R3

4
volS1

M
· lim
δ→0

[∫
Σδ2

volΣ2 −
∫
∂Σδ2

e1
µdxµ +

∫
Σδ2

F

]
. (4.3.15)

Here we have written volS1
M

for the volume form on S1
M induced from the metric gY7 ,

and similarly for volΣ2 and the metric gM4 . Applying Stokes’ theorem for the gauge

field term F = dA we then compute2

SM2 =
1

(2π)2`3
p

∫
S1
M

volS1
M
· π`R

3

2
lim
δ→0

[(∫ yNUT

δ

dy

y2
− 1

δ
√
V (δ, z, z̄)

)
− 1

2π`

∫
∂Σδ2

A

]

=
1

(2π)2`3
p

∫
S1
M

volS1
M
· π`R

3

2

[
−
(

1

yNUT
+

1

4
w(1)

)
− 1

2π`

∫
∂Σ2

A

]
. (4.3.16)

2The sign in front of the gauge field term arises because y is decreasing towards the boundary of
M4, and hence dy points inwards from M3. Thus the natural orientation of the boundary we take
is opposite to that in Stokes’ theorem.
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Recall here that 2π` denotes the length of the orbit of K, as in (4.2.14). The contri-

bution of the M-theory circle S1
M is exactly the same as for the AdS4×Y7 backgrounds

studied in chapter 2, and is expressed in terms of the contact form η on Y7 and the

Dirac quantised number N . The gauge field integral is easily computed, thanks to

(4.3.2) ∫
∂Σ2

A =

∫
∂Σ2

A(0) = 2π`

(
−1

4
w(1) + γ

)
. (4.3.17)

Putting everything together, and using the formula (4.3.7) for yNUT, we have

log 〈W 〉gravity = −SM2 = ` (|b1 + b2|+ γ) ·
(2π)2

∫
S1
M
η√

2
∫
Y7
η ∧ (dη)3

N1/2 . (4.3.18)

Using the round sphere result of equation (2.4.23)

log 〈Wround 〉gravity =
(2π)2

∫
S1
M
η√

2
∫
Y7
η ∧ (dη)3

N1/2 , (4.3.19)

and the formula (4.2.5) for γ, in both cases b1/b2 > 0 and b1/b2 = −1 we obtain

log 〈W 〉gravity =
|b1|+ |b2|

2
` · log 〈Wround 〉gravity . (4.3.20)

In chapter 2 it was shown in numerous families of examples that the large N limit

of the Wilson loop on the round three-sphere and the M2-brane in AdS4 have the

same VEV, i.e. log 〈Wround 〉QFT = log 〈Wround 〉gravity holds to leading order at large

N . Assuming this to be the case, equations (4.2.20) and (4.3.20) mean that we have

shown very generally that in the large N limit

log 〈W 〉QFT = log 〈W 〉gravity (4.3.21)

where now the field theory is defined on a general class of background three-manifolds

M3, with fillings M4 in four-dimensional gauged supergravity.
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We conclude this section with two further comments. Firstly, it is interesting

to note that when the orbit of K is one of the poles of S3, where correspondingly

` = 1/|b1| or ` = 1/|b2| respectively, the Wilson loops are then functions only of

|b1/b2|, just as for the free energy (4.1.1). Secondly, in the case that b1/b2 = m/n is

rational and the Wilson line wraps a generic orbit υ ⊂ T 2 ⊂ S3 (i.e. not at either

pole), then the curve Σ2 ⊂M4
∼= C2 wrapped by the dual M2-brane is the Brieskorn-

Pham curve {zn1 = zm2 } ⊂ C2. This follows since supersymmetry pairs the orbit of K

with its complexification in M4
∼= C2, meaning that Σ2 is swept out as a generic C∗

orbit of (z1, z2)→ (λmz1, λ
nz2), with λ ∈ C∗. The curve {zn1 = zm2 } adds the origin in

C2 at y = yNUT, which is a singular point when m,n > 1, although notice this does

not affect our computation of the M2-brane action, which is finite. It is well-known

that (m,n) torus knots in S3 may be realised as links of the above Brieskorn-Pham

curves, and it is interesting to see that this construction is realised as the holographic

dual of the knot.

4.4 Examples

Our derivation of the formula (4.3.20) was necessarily somewhat indirect, as we have

shown that it holds for a very general class of solutions. In particular we did not need

to use the explicit form of the solution to the Toda equation (3.3.5). In this section

we illustrate our general results by discussing two explicit families of solutions, where

all quantities in the previous section may be written down in closed form. We will

focus on the four-dimensional part of the M2-brane calculation, in particular showing

how the factor `(|b1| + |b2|)/2 in (4.3.20) arises explicitly in these cases. In order to

do so we will use the results of the previous section that allow us to write

log 〈W 〉gravity = Sb1,b2 · log 〈Wround 〉gravity , (4.4.1)
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where

Sb1,b2 ≡
1

2π

(
−
∫

Σ2

volΣ2 +

∫
∂Σ2

vol∂Σ2 +

∫
∂Σ2

A

)
. (4.4.2)

Here we cut off Σ2 at y = δ, and (4.4.2) is then understood to be the limit δ → 0.

We compute (4.4.2) directly in the examples, confirming that (4.3.20) indeed holds

in these cases.

AdS4

We begin with the metric on Euclidean AdS4, which can be written

ds2
EAdS4

=
dq2

1 + q2
+ q2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (4.4.3)

Here q is a radial variable with q ∈ [0,∞), so that the origin of M4
∼= R4 is at q = 0

while the conformal boundary is at q = ∞. The coordinate ϑ ∈ [0, π
2
], with the

endpoints being the two axes of R2 ⊕ R2 ∼= R4.

Of course the metric (4.4.3) is conformally flat, which leads to a trivial graviphoton

A = 0. However, we may instead pick a general supersymmetric Killing vector

K = b1∂ϕ1 + b2∂ϕ2 . This leads to a family of conformal Kähler structures on C2,

where the explicit formulae for the conformal factor y, the metric function w(y, z, z̄)

and the gauge field A were derived in section 3.6.1. Writing A as a global one-form

and restricting to the conformal boundary at q =∞ we obtain

A(0) =
b2dϕ1 + b1dϕ2

2
√
b2

1 cos2 ϑ+ b2
2 sin2 ϑ

− 1

2
(sign(b2)dϕ1 + sign(b1)dϕ2) . (4.4.4)

In particular notice this is well-defined at both poles ϑ = 0 and ϑ = π/2. The

submanifold Σ2 is parametrised by the radial direction q in AdS4 and the S1 wrapping

ϕ1 or ϕ2 when ϑ = 0 or ϑ = π/2, respectively.

We now turn to the computation of (4.4.2). Notice that the dependence on b1 and
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b2 arises only via the gauge field A, and not from the metric. Indeed, we compute

[
−
∫

Σ2

volΣ2 +

∫
∂Σ2

vol∂Σ2

]
= 2π , (4.4.5)

and

∫
∂Σ2

A(0) =

 π( b2
|b1| − sign(b2)) · sign(b1) if ϑ = 0 ,

π( b1
|b2| − sign(b1)) · sign(b2) if ϑ = π/2 .

(4.4.6)

The overall factors of sign(b1), sign(b2) for ϑ = 0, π/2 arise because the orientation

of ∂Σ2 is determined by K. Equation (4.4.2) immediately gives for all regular cases

that

Sb1,b2 =


|b1|+ |b2|

2|b1|
if ϑ = 0 ,

|b1|+ |b2|
2|b2|

if ϑ = π/2 .

(4.4.7)

In particular using the variable ` introduced previously, which is given by ` = 1/|b1|

and 1/|b2| for the ϑ = 0 pole and ϑ = π/2 pole respectively, we obtain for both poles

and all regular cases that

Sb1,b2 =
|b1|+ |b2|

2
` , (4.4.8)

as expected.

Taub-NUT-AdS4

The Taub-NUT-AdS4 metric may be written

ds2
4 =

r2 − s2

Ω(r)
dr2 + (r2 − s2)(u2

1 + u2
2) +

4s2Ω(r)

r2 − s2
u2

3 , (4.4.9)

where

Ω(r) ≡ (r ∓ s)2[1 + (r ∓ s)(r ± 3s)] , (4.4.10)



124

and u1, u2, u3 are left-invariant one-forms on SU(2) ' S3. The latter may be written

in terms of Euler angle variables as

u1 + iu2 = e−iς(dθ + i sin θdϕ) , u3 = dς + cos θdϕ . (4.4.11)

Here ς has period 4π, while θ ∈ [0, π] with ϕ having period 2π. The radial coordinate

r lies in the range r ∈ [s,∞), with the origin of the ball B4 ∼= R4 being at r = s.

The parameter s > 0 is referred to as the squashing parameter, with s = 1
2
being the

Euclidean AdS4 metric studied in the previous section.

Remember that the Taub-NUT-AdS metric (4.4.9) has SU(2) × U(1) isometry,

but a generic choice of the Killing vector K = (b1 + b2)∂ϕ + (b1 − b2)∂ς breaks the

symmetry of the full solution to U(1)×U(1). In particular, this symmetry is broken

by the corresponding instanton A. If the SU(2)×U(1) symmetry of the metric is also

imposed on the gauge field, it results in two subfamilies of the above solutions, which

are 1/4 BPS and 1/2 BPS, respectively. In each case this effectively fixes the Killing

vector K (or rather the parameter b1/b2) as a function of the squashing parameter s.

1/4 BPS solution: The supersymmetric Killing vector for this solution is K =

− 1
2s
∂ς and we have

b1 = −b2 = − 1

4s
. (4.4.12)

The boundary gauge field A(0) is, equation (3.6.20),

A(0) =
1

2
(4s2 − 1)u3 , (4.4.13)

which is a global one-form on M3
∼= S3. We may now take the surface Σ2 wrapped

by the M2-brane to be any S1 orbit of the Hopf Killing vector ∂ς (at any point on the

base S2 = S3/U(1)ς), together with the radial direction r. This is supersymmetric,
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and the regularised volume of Σ2 is

[
−
∫

Σ2

volΣ2 +

∫
∂Σ2

vol∂Σ2

]
= 8πs2 , (4.4.14)

while the gauge field integral is

∫
∂Σ2

A(0) = −2π(4s2 − 1) . (4.4.15)

This leads to

Sb1,b2 = 1 =
|b1|+ |b2|

2
` , (4.4.16)

where ` = 4s is the length of K divided by 2π.

1/2 BPS solution: The Taub-NUT-AdS metric (4.4.9) also admits a 1/2 BPS

solution. There are thus two linearly independent Killing spinors, and an appropriate

linear combination preserves U(1)× U(1) symmetry, leading to the Killing vector

K =
(

2s+
√

4s2 − 1
)
∂ϕ +

(
1
2s
− 2s−

√
4s2 − 1

)
∂ς , (4.4.17)

so that

b1 =
1

4s
, b2 = − 1

4s
+ 2s+

√
4s2 − 1 . (4.4.18)

The boundary gauge field is, equation (3.6.24),

A(0) = s
√

4s2 − 1u3 . (4.4.19)

This time we take the Wilson loop to wrap one of the two poles θ = 0, θ = π. These

are both copies of S1, and Σ2 is again formed by adding the radial direction r. The
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boundary gauge field is

A(0) |pole =

 2s
√

4s2 − 1 dϕ1 if θ = 0 ,

−2s
√

4s2 − 1 dϕ2 if θ = π .

(4.4.20)

The regularised volume is again 8πs2, which then gives

Sb1,b2 =

 2s(2s+
√

4s2 − 1) if θ = 0 ,

2s(2s−
√

4s2 − 1) if θ = π .

(4.4.21)

In both cases we indeed have

Sb1,b2 =
|b1|+ |b2|

2
` , (4.4.22)

where ` = 1/|b1|, ` = 1/|b2| for the two poles.



Chapter 5

Conclusions

The AdS/CFT duality provides a way of better understanding field theories and their

string theory counterparts. As we have seen in this thesis, the localisation technique

has been very helpful to further explore the duality. Thanks to this method, we can

make exact field theory computations at strong coupling and compare them to their

supergravity duals. In this thesis, we have focused on the supergravity side of the

duality, while summarising and further extending some field theory results, to check

the duality for the Wilson loop and the free energy in a variety of examples.

In chapter 2, we have shown that the large N field theory and gravity computa-

tions of the BPS Wilson loop agree in a large class of three-dimensional N = 2 super-

conformal field theories with AdS4×Y7 gravity duals. In fact really this matching is a

corollary of the fact that the image of the M-theory Hamiltonian hM(Y7) = [cmin, cmax]

is equal to the support [xmin, xmax] of the real part of the saddle point eigenvalue dis-

tribution in the large N matrix model, with the proportionality factor between the

variables x and c given by

x =
(2π)3√

96 Volη(Y7)
c . (5.1)

Moreover, the critical points of hM , which give the loci of supersymmetric M2-branes

wrapping the M-theory circle, always map under hM to the points at which ρ′(x)

is discontinuous in the matrix model. The fact that the eigenvalue density changes
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behaviour every time a critical point xi is crossed is explained by (2.4.40) which

relates ρ(x) to the volume of a subspace of h−1
M (c) whose topology changes at the

critical points ci. All those relations show that field theory quantities, like ρ(x) and

x, seem to be captured by geometrical quantities on the gravity side. This is not so

surprising after all, because supergravity computations are purely geometrical and

are predicted to be dual to field theory computations.

Although shedding light on the relation between Wilson loops and M2 branes, the

work presented in this thesis opens to way for future research. Even though we know

that the image of the Hamiltonian function hM is related to the range of the real part

of the eigenvalues, it would be interesting to understand if this relation has a deeper

meaning. In order to do so, one could consider representation of Wilson loops that

differ from the fundamental representation and see how it would change the gravity

dual object. It would also be interesting to study how a deformation of the Hopf

S1 ⊂ S3 affects the supersymmetry of the brane and its relation to the M2-brane.

Finally, we could also look at different field theory operators and try to seek their

gravity duals. In [88, 89], it was shown how to compute the VEV of various vortex

loops, a kind of defect operator, in supersymmetric field theories. Calculating the

VEV of those operators in some specific field theories could help us find their dual

objects and potentially uncover new geometrical relations.

We followed the Wilson loop/M2-brane computations by the construction of su-

pergravity duals to generic supersymmetric field theories on three-manifolds in chap-

ter 3. The main result of this chapter is the proof of the formula

I =
(|b1|+ |b2|)2

4|b1b2|
· Iround , (5.2)

for the holographically renormalised on-shell action in minimal four-dimensional su-

pergravity. Moreover, we have provided a general construction, that extends to

eleven-dimensional supergravity, of regular supersymmetric solutions of this theory

based on self-dual Einstein metrics on the four-ball equipped with a one-parameter
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family of instanton fields for the graviphoton. Specifically, if the self-dual Einstein

metric admits n parameters, our construction produces an (n+1)-parameter family of

solutions. We have shown that the renormalised on-shell action does not depend on

the n metric parameters, but only on this last ‘instanton parameter’. This matches

beautifully the field theory results of [32].

We have also shown how all the previous examples in the literature, as well as

some new examples that we have presented, can be understood in our general set-

ting. In section 3.6.4 we have suggested that using a family of local metrics, it should

be possible to construct global asymptotically locally Euclidean AdS self-dual Ein-

stein metrics on the four-ball, thus obtaining an infinite family of completely explicit

metrics. It would be interesting to analyse these m-pole solutions in more detail.

In this third chapter we have achieved a rather general understanding of the

gauge/gravity duality for supersymmetric asymptotically locally Euclidean AdS4 so-

lutions. Nevertheless, there are a number of possible extensions of our work. One

might further generalise our results by relaxing one or more of the assumptions we

have made. For example, remaining in the context of minimal gauged supergravity,

it would be very interesting to investigate the more general class of supersymmetric,

but non-(anti-)self-dual solutions [75]. Several examples of such solutions were con-

structed in [29,30], and these all turn out to have a bulk topology different from the

four-ball. This suggests that self-duality and the topology of supersymmetric asymp-

totically AdS4 solutions are two related issues, and it would be desirable to clarify

this. On the other hand, at present it is unclear what the precise dual field theory

implication of non-trivial two-cycles in the geometry is, and therefore this direction

is both challenging and interesting. Perhaps related to this, one of our main results

is that a smooth toric self-dual Einstein metric on the four-ball with supersymmetric

Killing vector K = b1∂ϕ1 + b2∂ϕ2 gives rise to a smooth supersymmetric solution only

if b1/b2 > 0 or b1/b2 = −1. Specifically, for other choices of b1/b2 the conformal fac-

tor/Killing spinor are singular in the interior of the bulk. Nevertheless, the conformal

boundary is smooth for all choices of b1, b2, and the question arises as to how to fill
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those boundaries smoothly within gauged supergravity. A natural conjecture is that

these are filled with the non-self-dual solutions mentioned above.

Another assumption that should be straightforward to relax is in taking the gauge

field A to be real. In general, if A is complex the existence of one Killing spinor does

not imply that the metric possesses any isometry [75]. However, we expect that if

one requires the existence of two spinors of opposite R-charge, then there will be

canonically defined Killing vectors, and therefore it should be possible to analyse the

solutions with the techniques of this thesis.

All the above extensions would be important conceptually, in order to address

the issue of uniqueness of the filling of a given conformal boundary geometry. In

fact, this could also motivate the study of this problem directly in eleven-dimensional

supergravity.

Of course, in any of these more general set-ups a central issue will be to prove a

generalised version of the formula (5.2) for the renormalised on-shell action. In this

respect, some of the methods that were employed in [2] to derive this -not presented

here- may be more amenable to generalisation than others. For example, an expres-

sion for I in terms of boundary conformal invariants and bulk topological invariants

might extend to the class of non-self-dual metrics and/or non-ball topology.

In chapter 4, we looked at how the Wilson loop/M2-brane computations carried

out in chapter 2 could be done in the more general geometry developed in chapter 3.

We derived the formula

lim
N→∞

log 〈W 〉 =
|b1|+ |b2|

2
` · log 〈Wround〉 , (5.3)

for the expectation values of large N BPS Wilson loops, in both gauge theory and in

supergravity. A key feature of the gravity calculation is that we are able to evaluate

the regularised M2-brane action, that is identified with the Wilson loop VEV, without

using the explicit form of the metric and graviphoton field. This seems to be a general

feature of such computations of BPS quantities in AdS/CFT, and allows us to verify
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the correspondence for these observables in a very broad class of solutions.

The results described in chapter 4 lead to a number of questions, and possible

future directions to pursue. First, in supergravity we have restricted to self-dual

solutions, while more generally there are also non-self-dual solutions to gauged su-

pergravity as mentioned above. Presumably the methods we have used extend to this

general class of solutions. In particular, the Wilson loop was computed for a charged

topological black hole background in [90], and successfully compared to a field theory

calculation. The non-self-dual solutions in [30] all have the feature that the bulk M4

has non-trivial topology. It would be interesting to try to calculate Wilson loops

in such examples, and compare to a dual field theory computation. Finally, it is

now clear that similar results should also hold in higher dimensions. A very similar

formula to (5.3) was found to hold for certain supersymmetric squashed five-sphere

conformal boundaries and their gravity duals in [91,92], and was conjectured to hold

for general backgrounds in those references.



Appendix A

Spin connection of the Kähler metric

For the Kähler metric (3.3.7) in the frame (3.3.8) the spin connection reads

ω̂01 = −
(
∂yw + y∂2

yw
)

4V 3/2
ê1 +

iy∂y (∂z − ∂z̄)w
8V 3/2ew/2

ê2 − y∂y (∂z + ∂z̄)w

8V 3/2ew/2
ê3 ,

ω̂02 = −y∂y(∂z + ∂z̄)w

8V 3/2ew/2
ê0 +

iy∂y (∂z − ∂z̄)w
8V 3/2ew/2

ê1 +

(
∂yw + y∂2

yw
)
− 2V ∂yw

4V 3/2
ê2 ,

ω̂03 = − iy∂y(∂z − ∂z̄)w
8V 3/2ew/2

ê0 − y∂y (∂z + ∂z̄)w

8V 3/2ew/2
ê1 +

(
∂yw + y∂2

yw
)
− 2V ∂yw

4V 3/2
ê3 ,

ω̂12 = −ω̂03 ,

ω̂13 = ω̂02 ,

ω̂23 = −
(
∂yw − y(∂yw)2 − y∂2

yw
)

4V 3/2
ê1 +

i [2V (∂z − ∂z̄)w − y∂y(∂z − ∂z̄)w]

8V 3/2ew/2
ê2

−2V (∂z + ∂z̄)w − y∂y(∂z + ∂z̄)w

8V 3/2ew/2
ê3 . (A.1)

Here we have used both (3.3.3) and (3.3.4).

132



Appendix B

Weyl transformations of the

boundary

In section 3.4 of the main text we studied the boundary geometry and Killing spinor

equation using the radial coordinate r = 1/y defined naturally by supersymmetry.

This gives a preferred representative for the conformal class of the boundary metric on

M3. In this appendix we study the more general choice r = 1/(Ωy), where Ω = Ω(z, z̄)

is an arbitrary smooth, basic, nowhere zero function on M3. This results in a Weyl

transformation of the boundary geometry and corresponding Killing spinor equation.

We will see that we precisely recover the boundary structure, derived from a purely

three-dimensional perspective, in [32, 72].

For comparison with [32], we begin by rescaling the constant-norm Kähler spinor

ζ as

ζ ≡ Ω−1/2(z, z̄) ζ̂ , (B.1)

so that the norm of ζ̂ is Ω1/2 if we normalise ζ to have unit norm. We then also have

a rescaling of the four-dimensional Killing spinor ε,

ε̂ ≡ Ω1/2ε =
1√
2y

(
1 + V −1/2Γ̂0

)
ζ̂ . (B.2)
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Recall ε solves the Killing spinor equation (3.3.1), with the gauge field Aµ given by

(3.3.6). Using instead ε̂ this Killing spinor equation reads

(
∇µ − iAµ −

1

2
∂µ log Ω +

1

2
Γµ +

i

4
FνρΓ

νρΓµ

)
ε̂ = 0 , (B.3)

where the third term appears due to the rescaling1

With the new choice of radial coordinate the boundary metric is

ds2
M3

= Ω2(z, z̄)
[
(dψ + φ0)2 + 4ew(0)dzdz̄

]
. (B.4)

As always, we introduce an orthonormal frame for this metric:

e1
(3) = Ω(dψ + φ0) , e2

(3) + ie3
(3) = 2Ωew(0)/2dz . (B.5)

The four-dimensional geometry is the same as before, namely

ds2
SDE =

1

y2

[
V −1(dψ + φ)2 + V (dy2 + 4ewdzdz̄)

]
, (B.6)

and we will use the frame

e0 =
1

y
V 1/2dy , e1 =

1

y
V −1/2(dψ + φ) , e2 + ie3 =

2

y
(V ew)1/2dz . (B.7)

Calculating the spin connection of (B.7), expanding in y and comparing to the spin
1As this term is a total derivative it can formally be absorbed into a complex gauge transformation

of Aµ, although as we shall see all gauge fields will in the end be real.
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connection of (B.5), we find

ω12 = ω12
(3) − ∂2 log Ω e1

(3) +O(y) ,

ω13 = ω13
(3) − ∂3 log Ω e1

(3) +O(y) ,

ω23 = ω23
(3) − ∂3 log Ω e2

(3) + ∂2 log Ω e3
(3) +O(y) ,

ω0i =
1

y
Ω−1(1 + 1

4
yw(1)) e

i
(3) +O(y) , (B.8)

with i = 1, 2, 3.

We next expand the Killing spinor equation with the rescaled spinor, ε̂. As in

section 3.4 the term i
4
FνρΓ

νρΓµ = O(y) does not contribute. One gets

[
∇(3)
µ − iA(0)µ −

1

2
∂µ log Ω +

1

2y
Ω−1

(
1 + 1

4
yw(1)

)
ei(3)µ(Γi − Γi0) (B.9)

− 1

2
∂2 log Ωei(3)µΓi2 −

1

2
∂3 log Ωei(3)µΓi3 +O(y)

]
ε̂ = 0 ,

where µ = ψ, z, z̄, and A(0)µ is the lowest order expansion of the gauge field (3.3.6),

which in the frame (B.5) reads

4A(0) = −Ω−1w(1) e
1
(3) + ∂3w(0) e

2
(3) − ∂2w(0) e

3
(3) . (B.10)

The Killing spinor ε̂ expands as

ε̂ =
1√
2y

[
1 + Γ0 +

1

4
yw(1)Γ0 +O(y2)

]
ζ̂0 , (B.11)

and when substituted into (B.9) gives a vanishing leading order term. The subleading

term reads

[(
∇(3)
i − iA(0)i −

1

2
∂i log Ω

)
(1 + Γ0)− 1

8
w(1)Ω

−1(Γi − Γi0)

−1

2
∂2 log ΩΓi2(1 + Γ0)− 1

2
∂3 log ΩΓi3(1 + Γ0)

]
ζ̂0 = 0 . (B.12)
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The projection conditions (3.3.20) imply the following form for ζ̂0,

ζ̂0 =

χ̂
0

 where χ̂ =

χ̂0

χ̂0

 . (B.13)

The three-dimensional Killing spinor equation then becomes

[
∇(3)
i + i(Vi − A(3)

i ) +
1

2
Hσi +

1

2
εijkVjσk

]
χ̂ = 0 , (B.14)

with

H = − i

4
w(1)Ω

−1 + iV1 , A
(3)
1 = A(0)1 +

3

2
V1 ,

A
(3)
2 = A(0)2 −

3

2
iV3 −

3

2
i∂2 log Ω +

3

2
∂3 log Ω ,

A
(3)
3 = A(0)3 +

3

2
V3 ,

V2 + iV3 = −i∂2 log Ω + ∂3 log Ω . (B.15)

The Killing spinor equation (B.14) is precisely of the form found in [72], which

allows for the construction of supersymmetric field theories on M3. The identifica-

tions of A(3), V and H are not unique because equation (B.14) has some symmetry

properties, c.f. (4.2) of [72]. In particular this symmetry allows one to freely choose

V1, as shown in (2.10) of [32]. Recall that A(0) is real. If we demand also the boundary

gauge field A(3) to be real, one finds from the equations in (B.15) that V is also real

with

V2 = ∂3 log Ω , V3 = −∂2 log Ω . (B.16)

This is exactly the result obtained for V in [32] using the purely three-dimensional
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analysis of [72]. The remaining equations in (B.15) then further simplify to

H = − i

4
w(1)Ω

−1 + iV1 , (B.17)

A
(3)
i = A(0)i +

3

2
Vi . (B.18)

Again this is consistent with [32], where it was found (in our notation) that

A(3)
µ = − i

2
He1

(3)µ + Vµ + jµ , (B.19)

where

jµ =
i

4Ω2
(s∂µs̄− s̄∂µs) +

1

2
ω 23
µ(3) , (B.20)

and |s| = Ω is the square norm of the three-dimensional spinor,

χ̂ =
√
s(ψ, z, z̄)

 1√
2

1√
2

 . (B.21)

Hence we have s = Ωe2iυ(ψ,z,z̄). Equation (B.20) then reads

jµ = ∂µυ +
1

2
ω 23
µ(3) (B.22)

= ∂µυ −
1

8
Ω−1w(1)e

1
(3) +

1

4

(
∂3w(0) + 2∂3 log Ω

)
e2

(3) −
1

4

(
∂2w(0) + 2∂2 log Ω

)
e3

(3) ,

where we also used equation (3.3.4). Substituting equation (B.16), (B.17), and (B.22)

into the right hand side of (B.19), this gives

A(3)
µ = −1

4
Ω−1w(1) e

1
(3)µ +

1

4
∂3w(0) e

2
(3)µ −

1

4
∂2w(0) e

3
(3)µ +

3

2
Vµ + ∂µυ

= A(0)µ +
3

2
Vµ + ∂µυ , (B.23)

where in the second line we used equation (B.10). As the last term in equation (B.23)

is a total derivative, it can be absorbed into a gauge transformation of A(0). Thus
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we see that equation (B.19) reproduces (B.18) up to a gauge transformation. Indeed,

such a gauge transformation with υ = γψ was shown in section 3.4.3 to be necessary

in order for the gauge field to be globally well-defined on M3
∼= S3.
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