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Abstract

Massive Black Holes (MBHs) are a key ingredient of the Universe, inhabiting the centers
of most galaxies. Despite their abundance there is still much that is unknown about
MBHs, but Gravitational Waves (GWs) offer the opportunity for new insight. MBH
binary formation and coalescence follows the galactic mergers of their hosts, and these
MBH mergers are responsible for the loudest GWs in the Universe. Observation of these
events is possible through Pulsar Timing Array observatories, and their detection will offer
a new insight into the histories of MBHs, providing information on the origin and growth
of MBHs in the Universe.

Interpretations of the detected Gravitational Wave Background (GWB) signal will be
aided by predictions of MBH merger statistics. In modelling individual mergers, numerical
challenges arise as a high resolution is required for avoiding stochastic effects, but is
difficult to achieve at the galaxy scales being modelled. First, I explore the utility of a
multi-resolution scheme to preferentially increase the resolution at the centers of galaxies
where MBH binaries reside. This is applied to isolated and merging models, for which I
show the scheme is effective at increasing central resolution, reducing spurious relaxation
and stochastic effect without adverse effects on the model stability. I continue by following
each of the embedded MBH binaries to coalescence and obtaining merger timescales. I
show the evolution of the orbital elements is sensitive to the resolution, improved by the
use of the multi-resolution scheme at lower resolutions but still requiring high particle
numbers to begin reaching convergence. Finally, I continue the analysis of the multi-
resolution models with subsequent galaxy mergers, examining both new binary formation
and triple interactions with an intruder MBH.

The tools developed and investigated in this thesis can be utilised in interpretation
of GW detections, aiding in accurate assessments of MBH binary evolution and merger
timescales.
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Introduction

1.1 Massive Black Holes

Massive black holes (MBHs) play an important role in the formation and evolution of mas-
sive galaxies and their dynamics (Kormendy & Ho, 2013), and in the era of gravitational
wave astronomy, a new window has opened into the properties of astrophysical bodies
and structures in the Universe. With the data collected from the currently functioning
gravitational wave (GW) detector LIGO and the anticipation of future detections across
the GW frequency spectrum opportunities to study astrophysical sources of GWs have
arisen, from MBH binary mergers at the lower frequency end below LIGO sensitivity, to
supernovae at higher frequencies (Martynov et al., 2016; Abbott et al., 2016a; Colpi et al.,
2019; The LIGO Scientific Collaboration et al., 2021). Measurements of MBH coalescence
will provide the means to obtain information on key physical parameters up to redshifts
of z = 2 for detections with the Pulsar Timing Array (PTA) observatories, and beyond
z = 20 for some MBH masses with the Laser Space Interferometer (LISA), opening the
possibility to further our understanding of the formation models and following the growth
of isolated MBHs and their binaries (Sesana et al., 2008b; Abbott et al., 2016b; Amaro-
Seoane et al., 2017). Proposed third-generation GW detectors, such as the ground-based
Einstein Telescope, will also have the ability to observe light seed MBHs out to z = 20
(Valiante et al., 2021). The recent low-frequency signal detection thought to be composed
of GWs released by a population of merging MBHs adds to this impetus, with the antici-
pation that it will soon be a confirmed detection (Agazie et al., 2023b; Antoniadis et al.,
2023c; Afzal et al., 2023).

Supermassive black hole binaries are the strongest source of GWs in the Universe
(Peters, 1964), emitted at the final stage of inspiral. Such MBH binaries are brought
together when their host galaxies merge, a scenario made common by the hierarchical
formation of the Universe. Predicted to reside at the centres of most galaxies (Ferrarese &
Ford, 2005), the constituent MBHs formation and growth is linked to their host galaxies.
Observational relations between the galaxy and central MBH arise from their growth
together, with MBH mass being associated with the stellar content of their hosts, including
the velocity dispersion and bulge masses (Kormendy & Ho, 2013; Reines & Volonteri,
2015).

1.1.1 From Theory to Observations

Black holes were predicted by the equations of general relativity by Einstein (1916), the
first solutions of which were derived by Schwarzschild (1916) and described a region of
spacetime around a highly dense mass where the gravitational field becomes so strong that
nothing can escape the surrounding event horizon boundary. Since this first prediction,
many further developments have been made in understanding the properties and effects
of black holes on their environment. Observed black hole masses span from ∼ 10 M⊙
up to ∼ 1010 M⊙, with the lowest masses observed at ∼ 4 M⊙ (El-Badry et al., 2023),
requiring different GW detectors to cover the potential detection range (Amaro-Seoane
et al., 2017). Supermassive black holes reside at the top end of the black hole mass
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Figure 1.1: Composite images of the accretion disk emissions surrounding the black holes
M87* (left) and Sagittarius A* (right), taken with the Event Horizon Telescope. Figure
from Chandran (2022).

spectrum, at Mbh > 105 M⊙, and have been found at the centres of most galaxies in the
Universe (Inayoshi et al., 2020; Amaro-Seoane et al., 2022).

Quasars, a highly luminous subset of Active Galactic Nuclei (AGNs), were first ob-
served from radio measurements of a galaxy cluster that identified as originating from a
new type of ‘quasi-stellar’ object through unfamiliar broad emission lines in the optical
spectrum (Minkowski, 1960; Hazard et al., 1963; Matthews & Sandage, 1963). Further
analysis developed this initial understanding through observation of their properties in-
cluding high observed redshifts, implying distant objects were responsible for these lumi-
nous observations, although there was not then an explanation for the physical mechanism
that could produce such a signal (Schmidt, 1963). This mechanism was then commonly
established as central MBHs that powered the luminosity (as detailed further in Sec. 1.3.1)
with the onset of evidence for black holes after the first accepted black hole Cygnus X-1
(Pringle & Rees, 1972; Thorne & Price, 1975). Dynamical measurements taken of the
rotation and velocity dispersion of galactic nuclei via their integrated stellar spectra from
analysis of the galaxies M31 and M32 revealed that there was strong evidence for a mas-
sive central object in each (Dressler & Richstone, 1988). Measurements of central MBH
masses have been performed by both direct measurements of stellar orbits surrounding
an MBH which allow the MBH mass to be inferred, such as by the star S2 around Sgr
A* (e.g. Gillessen et al., 2009), and measurements of the broadening of AGN emission
lines that can be related to the MBH mass through the reverberation mapping technique
(e.g. Peterson, 1993); and via indirect methods including through the radius-luminosity
relation constructed between the broad emission line region of the AGN and the optical
luminosity (e.g. Bentz et al., 2006, 2009). Both observations and models show a dearth
of MBHs hosted within dwarf galaxies, indicating it may not be possible for low mass
galaxies form MBHs (Ferrarese et al., 2006a; Volonteri et al., 2008).

Observational confirmation of black holes finally came in the form of GW measurements
from the LIGO observations of stellar mass black holes (Abbott et al., 2016a; The LIGO
Scientific Collaboration et al., 2021). Central MBHs have since been established through
observational evidence to be at the centres of most galaxies across the Universe, with the
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MBH Sagittarius A* located at the Milky Way Galactic centre (Kormendy & Ho, 2013;
GRAVITY Collaboration et al., 2018). Sagittarius A* was imaged following the first MBH
imaging of M87* at the centre of Messier 87 by the Event Horizon telescope, as seen in
Figure 1.1 (Goddi et al., 2019; Event Horizon Telescope Collaboration et al., 2022). Not
all galaxies host central black holes however, with some notable exceptions including the
galaxy M33. This potentially arises from ejections of the MBH, either in the wake of a host
galaxy merger or from an earlier ejection of the MBH seed during evolution (Gebhardt
et al., 2001; Askar et al., 2021).

Observations of MBHs have shown a correlation with the properties of their host
galaxies, including with the bulge mass (e.g. Marconi & Hunt, 2003), and more weakly
with the stellar mass (e.g. Reines & Volonteri, 2015) and the dark matter halo mass
(Ferrarese, 2002) (see Section 1.4.1). MBH masses also appear to correlate with the
presence of nuclear star clusters (NSCs), highly dense star clusters that are found in the
central regions of galaxies. Between stellar masses of ∼ 108−1010 M⊙ NSCs occupy galaxy
centres, above which the presence of MBHs is expected, but it is not clear if this is a causal
relation with several extant examples of both NSCs and MBHs co-existing in a host galaxy,
including the Milky Way. Below M∗ ∼ 108 M⊙, lower mass galaxies may not contain an
NSC, with the nucleation fraction decreasing with decreasing host galaxy mass (Carlsten
et al., 2022). NSCs may also provide a formation environment for MBHs owing to their
high density (Genzel et al., 2010; Kormendy & Ho, 2013; Neumayer et al., 2020).

The place of MBHs in galaxy evolution and what we can discern via observations is
an open area of study, from their origins to mergers with other high mass black holes.
With constraints placed upon their final masses via measurement at early redshifts, the
investigation into potential formation channels for the large observed masses is ongoing
(e.g. Colpi et al., 2019; Perera et al., 2019; Amaro-Seoane et al., 2022).

1.2 Origins of Massive Black Holes

The question of MBH formation relates directly to their expected numbers and observed
properties in the present day. The exact origin of how such large BHs form is uncertain;
with observations of quasars at high redshifts the seeds are generally accepted to have
been created at early times, with an origin at z ∼ 10 − 30 depending on the formation
method (Johnson et al., 2013). With the significance of MBHs and their exact origins
remaining an open topic of investigation, future GW observations will hopefully shed light
on both how these objects are seeded and their future evolution including mergers with
other MBHs (e.g. Colpi et al., 2019; Perera et al., 2019; Amaro-Seoane et al., 2022).

1.2.1 MBH seeds

Currently, there are three major seed models in contention for how MBH formation occurs:
seeds from Population III stars (e.g. Heger et al., 2003), from dense stellar clusters that
experience core collapse with the constituent stars then forming seeds (e.g. Devecchi &
Volonteri, 2009), and seeds from collapsing supermassive stars (e.g. Begelman et al., 2006).
Also a possibility for seed formation are the primordial MBHs formed in the early stages
of the Universe (e.g. Novikov et al., 1979). Within these scenarios, there is a distinction
between the higher and lower mass seeds, with lower mass seeds requiring more effort to
explain the mass growth needed to achieve the observed MBH populations (Amaro-Seoane
et al., 2022). The redshifts and the resultant MBH masses of the potential seed pathways
are shown in Figure 1.2.
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Figure 1.2: Illustration of the different formation channels theorised for MBH seeds; the
collapse of Population III stars, from the collapse or coalescence of stars in dense stellar
clusters, from supermassive remnant stars, and from primordial black holes. Potential
LISA detections are shown within the shaded orange region, in contrast to the current
detector ranges shown beneath the solid black line. Figure from Amaro-Seoane et al.
(2022).

Examining each of these formation scenarios is important to determining the potential
impact they will have on the resultant MBH population and their subsequent mergers,
and hence the expected detection rate by GW detectors (Dayal et al., 2019; Barausse
et al., 2020). Constraining seed models will reduce uncertainties in these predictions as we
cannot observe the seeds at the high redshifts they would exist at (Johnson et al., 2013).
The predicted populations also need to match observational constraints on numbers and
masses. Subsequent MBH mass growth is discussed in Sec. 1.4.2.

Population III stars

In the Population III (Pop III) formation scenario, MBH seeds are formed when these stars
collapse into a black hole in the early Universe. Pop III stars are theorised to originate from
primordial gas clouds within dark matter halos that had not been enriched with heavier
elements (Bond, 1981). These first-generation stars are large and generally metal-free,
having formed from such early gas clouds. Direct collapse into a black hole occurs for the
largest Pop III stars (at M⋆ ≳ 260 M⊙) rather than an explosion, with the MBH seed left
behind suffering minimal mass loss (Madau & Rees, 2001; Heger et al., 2003; Inayoshi et al.,
2020) owing to such metal-free stars being largely unable to drive stellar winds (Krtička
& Kubát, 2006). The resultant MBHs formed are of the order of 10 M⊙ ≲ Mbh ≲ 103 M⊙,
with enough Pop III stars being predicted to form at the required high masses to drive a
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large present-day population of MBHs (Hirano et al., 2014; Amaro-Seoane et al., 2022).
The existence of Pop III stars is currently unproven, and they are also uncertain

candidates for MBH seeds based on current observations. In order for the resulting popu-
lation of Pop III seeds to match the largest MBH observations at high redshift, the seeds
would need undergo rapid accretion to accrue the necessary mass. This super-Eddington
accretion exceeds the Eddington rate (at which the MBH accretes mass to match the
maximum luminosity at hydrostatic equilibrium), a condition it is theoretically possible
for black holes to achieve with a high gas inflow present (Volonteri & Rees, 2005; Pezzulli
et al., 2017; Tsai et al., 2018; Windhorst et al., 2018; Inayoshi et al., 2020).

Dense star clusters

Dense stellar clusters are formed when the gas contained in dark matter halos breaks up
into smaller clumps, resulting in an environment producing closely packed star formation
in the early stages of the cluster evolution (Omukai et al., 2005; Clark et al., 2008). This
creates a compact collisional environment, with masses ∼ 105 M⊙ and half-mass radii
∼ 1 pc. Within these star clusters, the creation of supermassive stars is made possible from
runaway star-star collisions incited by their close proximity (Devecchi & Volonteri, 2009).
The resultant supermassive stars have masses in the range of 102 − 104 M⊙ (Portegies
Zwart & McMillan, 2002; Amaro-Seoane et al., 2022). These supermassive stars collapse
into remnant MBHs at low cluster metallicities common in the early Universe, as mass
loss from stellar winds increases with the metallicity (Devecchi & Volonteri, 2009; Mapelli,
2016).

Alternatively, MBH seeds can also be formed in this environment via a series of stellar-
mass black hole mergers. These BHs, formed via supernova, may undergo rapid mergers
with one another in the center of the cluster when enough are retained within dense
clusters after their formation, or the cluster contracts after experiencing a significant gas
infall (Davies et al., 2011; Giacobbo & Mapelli, 2018). A barrier to this scenario is the recoil
kicks that result from these mergers have the potential to eject the MBH from the central
cluster, with a retention factor of ∼ 0.3 following a GW kick (Morawski et al., 2018). The
MBH seeds formed from this scenario have masses of the order 102 M⊙ ≲ Mbh ≲ 104 M⊙
(Davies et al., 2011; Lupi et al., 2014; Antonini et al., 2019).

Supermassive remnant stars

Seeds can also theoretically form from supermassive remnant stars (SMS), stars with
masses > 104 M⊙ that have one route of origin from a fast, high level of gas accretion onto
a protostar during the formation period. For this to occur, star formation is prevented by
high halo temperatures until it reaches a great enough mass at 107−108 M⊙ for the gas to
collapse. The SMS is formed and evolves as a cool, red star at the center of the resulting
accretion flows (Begelman et al., 2006; Smidt et al., 2018; Haemmerlé et al., 2018; Woods
et al., 2021). These are most likely to form within atomic cooling halos, halos of hot gas
(at virial temperatures of Tvir ≳ 104K) in the early Universe that provide an ideal source
of the gas necessary for this type of growth. The gas cooling within a halo that has a
higher mass in comparison to the gas clouds of the Pop III scenario, and the subsequent
lack of fragmentation in metal-poor early halos allows for formation of an SMS (Tanaka
& Haiman, 2009; Volonteri, 2010; Becerra et al., 2015).

The SMS collapses directly into a BH once the accumulated mass in the center has
reached general relativistic instability (Haemmerlé et al., 2021). In this formation channel
larger MBH seeds are formed at early times, providing seed masses of ≳ 104 M⊙, with some
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models predicting potential masses of 105−106 M⊙ (Volonteri & Begelman, 2010; Becerra
et al., 2015). These masses are consistent with the large initial MBH masses predicted
from observational constraints of high redshift quasars. A resulting issue in comparison to
Pop III seeds is these seeds form later, and as such there less time for SMS-origin MBHs
to grow, although this is at least partly mitigated by their larger initial masses (Volonteri,
2010; Johnson et al., 2013).

Primordial black holes

Finally, primordial black holes offer another pathway to MBH evolution, with their origin
in the early Universe allowing them ample time to evolve to the observed MBH masses
(Novikov et al., 1979; Düchting, 2004). Their formation may involve a range of different
processes, each with the assumption that in an area of space with significant density
fluctuations the gravitational force may outweigh the pressure, but differing as to how
these formation scenarios may arise (Carr, 2003; Carr et al., 2021, and references therein
for an accounting of the potential formation channels). The resultant masses occupy a
range dependant on redshift they originate at, approximately at the particle horizon mass
at that time. As such, those formed in e.g. the Planck epoch would have masses ∼ 10−5g,
whilst those at later epochs may reach up to 105 M⊙ at 1s (Hawking, 1971; Volonteri,
2010). Although there is no current definitive observational evidence of their existence,
the stochastic GWs released by small-scale perturbations at early epochs could provide a
signal of primordial black holes (Carr et al., 2021). Future PTA detectors such as SKA-
PTA (Square Kilometer Array), in exploring the perturbations that instigate collapse into
a black hole, could provide clear evidence of primordial black holes (Orlofsky et al., 2017;
Kalaja et al., 2019; Amaro-Seoane et al., 2022).

Whilst MBH seed models are still an unresolved topic of research, each model must
also contend with the subsequent growth of a seed into MBHs in their host environment.
Subsequent analysis into seed growth models make the distinction between heavier and
lighter seeds, with masses at M ≤ 103 M⊙ being considered a light seed formed from
early star remnants. The heavier seed masses are typically induced from direct formation
collapse channels (Volonteri, 2010).

1.3 The Host Galaxies of Massive Black Holes

1.3.1 Galaxies in the Cosmological Context

In the Lambda Cold Dark Matter (ΛCDM) framework, structure within the Universe
was formed in a hierarchical progression, with dark matter clustering under the effect
of gravity to construct larger structures (White & Rees, 1978; Kauffmann et al., 1999).
ΛCDM predictions are in good agreement with observations at the large-scale structure
of the Universe (e.g. Dawson et al., 2013; Planck Collaboration et al., 2016, 2020).

As the dark matter halos created from clustering together accumulate gas and grow
larger, the gas cools and collapses to form the stellar content of galaxies (White & Frenk,
1991). Galaxy mergers occur often over the Universe’s lifetime in the hierarchical forma-
tion scenario, leading to many opportunities for MBHs hosted in these galaxies to form
binaries (Begelman et al., 1980).
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Dark Matter Halos

The distribution of dark matter in galaxies was historically detected through classical
means, with Zwicky (1933) notably observing that the velocities of galaxies within the
Coma cluster were too great to be explained by visible matter. These results were later
generalised as a standard to encompass all galaxies, with the rotation curves of a range of
spiral galaxies showing evidence of dark matter (Rubin & Ford, 1970; Rubin et al., 1985).
Further observations then branched out to include evidence from gravitational lensing (e.g.
Massey et al., 2010), anisotropies in the cosmic microwave background (CMB) (e.g. Hu
& Dodelson, 2002), and other original approaches to account for the unseen mass. When
measured by these techniques, DM halos have since been shown to extend beyond the area
covered by the baryonic component, forming a halo encompassing the stars (Wechsler &
Tinker, 2018). Dwarf galaxies typically contain a greater percentage of DM in comparison
to their more massive counterparts, with observations showing high mass-to-light ratios
of 10 ≲ M/L ≲ 1000 for dwarf spheroidal galaxies (Walker et al., 2009; Wolf et al., 2010;
Collins et al., 2013). For bright ellipticals the ratio is lower, at 5 ≲ M/L ≲ 10 (Faber &
Jackson, 1976; Mamon &  Lokas, 2005; Cappellari et al., 2006). The Navarro-Frenk-White
(NFW) profile put forward in Navarro et al. (1996) describes the DM halo density profile
as

ρ(r) =
ρ0

(r/rs)(1 + r/rs)2
(1.1)

where ρ0 is the critical density of the halo, and rs is the scale radius. It has been shown to
be an effective fit to DM halos of galaxies, with a density profile that follows ρ ∝ r−1 at
the centres and ρ ∝ r−3 at the outer regions ( Lokas & Mamon, 2001; Shajib et al., 2021).

The Galactic Environment

The stellar component of galaxies has an important impact on the galaxy evolution. The
velocities of the stars residing in the central regions of galaxies have a measured correlation
to the galaxy luminosity; depending on their hosts morphology, observational relations
can link the central velocity dispersion of stars, σ, and the luminosity, L. The Tully-
Fisher and Faber-Jackson relations describe this correlation for spiral and elliptical galaxies
respectively (Faber & Jackson, 1976; McGaugh et al., 2000). The distribution of stars at
the centre of galactic halos is dependent on several factors, including galaxy morphology.
Observations of stellar density profiles have shown a distinction between cores and cusps,
where the surface brightness profile remains constant for a ‘cuspy’ galaxy, and exhibits a
discontinuity via a flat central profile in a ‘cored’ galaxy. Bright elliptical galaxies have
been observed to possess large stellar cores (Faber et al., 1997), the causes of which are
discussed further in Section 1.5.1.

All galaxies are collisionless systems, which defines a system wherein the time it takes
for gravitational encounters between the individual elements of the stellar population to
significantly perturb a single star is longer than a Hubble time, allowing two-body interac-
tions to be disregarded. Relaxation is a diffusive process in which the interactions between
a given star and the field stars gradually deflect its velocity over successive encounters,
causing a cumulative effect over time. The process induces an equipartition of energy in
the galaxy in which heavier stars sink to the galaxy centre, known as mass segregation.
The relaxation time can be defined for a given star by considering the time taken for
two-body interactions to change a stars velocity by of order itself, given by (Binney &
Tremaine, 2008)

trelax ≃ N

8lnΛ
tdyn (1.2)
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where N is the number of stars, lnΛ is the Coulomb logarithm, a factor equal to the loga-
rithm of the ratio between the maximum and minimum impact parameters ln(bmax/bmin),
and tdyn is the dynamical time - a measure of how long it takes for the star to cover a
notable part of its orbit. Galaxies may contain collisional regions, such as stars within
the phase-space that can interact with a central binary MBH, but these are comparatively
small areas of the galaxy that are not always present, and the majority of interactions
remain collisionless.

Galaxies are classified into different morphologies, with the smooth brightness profiles
of elliptical galaxies standing in contrast to disk galaxies containing spiral arm structure
(with or without a central bar). Giant elliptical galaxies are of note, constituting of older
stars in a low-gas and dust environment (Mo et al., 2010). Their surface brightness profiles
can be described well by the Sérsic profile across morphologies (Sérsic, 1963; Sersic, 1968)

I(r) = I0 exp[−bn(r/rs)
1/n] (1.3)

where I0 is the surface intensity, rs is the scale radius, n is the Sérsic index, and bn
is a function of n, where bn ≈ 2n − 1

3 + 4
405n (Ciotti & Bertin, 1999). Increasing the

chosen value of n yields fits suited to larger more luminous galaxies, with n = 1 giving
an exponential profile applied to dwarfs, and n = 4 corresponding to elliptical galaxies as
in the de Vaucouleurs profile (de Vaucouleurs, 1948; Merritt, 2013). The agreement with
the observed profiles of galaxies is generally good for appropriate choices of n (Graham &
Driver, 2005; Kelvin et al., 2014).

The standard Sérsic profile may no longer describe a cored galaxy profile well at the
innermost densities. To compensate for this, a cored Sérsic model was conceived to describe
the flattened stellar centres of bright elliptical galaxies. The original profile to introduce
a move from the original cusp fitting Sérsic model was the Nuker model (Lauer et al.,
1995), which describes a clean switch between the two. Later studies have since shown
that this is not applicable for all galaxies (e.g. Seigar & James, 2002; Graham et al., 2003),
without a connection between the outer profile and the cored region. An updated profile
that compensates for this is defined by Graham & Driver (2005) as

I(r) = I ′
[
1 +

(rb
r

)α]γ/α
exp

{
−b[(rα + rαb )/rαs ]1/(αn)

}
(1.4)

with
I ′ = Ib2

−(γ/α)exp
{
b(21/αrb/rs)

1/n
}

(1.5)

where rb describes the radius at which the density appears to ‘break’ and become flattened,
α is a dimensionless constant for which 0 ≤ α ≤ 1 that serves to regulate the steepness
of the transition from the original power law to the new central profile, and γ describes
the logarithmic slope of the original Sérsic model. Ib here describes the intensity at the
transition point between the models at rb. This model differs from the Nuker model in its
application to the entire galaxy rather than focusing on the central density, and has been
shown to more accurately represent the observed profiles of cored galaxies (Trujillo et al.,
2004; Ferrarese et al., 2006b).

Giant ellipticals harbour the most massive black holes at their centres (Ferrarese, 2002).
They are thought to have a rich merger history through their formation via the successive
major mergers of disk galaxies (De Lucia et al., 2006; Naab & Ostriker, 2017), making
them of interest as sources of GWs from coalescing MBHs.
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1.3.2 Large Elliptical Galaxies

Large ellipticals are spheroidal galaxies with smooth bright profiles, distinct from spi-
rals (Larson, 1975; Mo et al., 2010). They are the largest galaxies, generally thought
to form from the mergers of smaller progenitor galaxies in hierarchical models, and have
been identified in observations by photometry of surface brightness profiles judged from
their ellipticity (Kormendy & Djorgovski, 1989), with sizes spanning from dwarf ellipti-
cals to supergiant galaxies (Ferguson & Binggeli, 1994; Harris et al., 1995). Ellipticals
are preferentially found in galaxy clusters, a suitable environment for this mode of for-
mation (Postman & Geller, 1984; Kormendy et al., 2009; Graham, 2013). First identified
as a separate morphological classification by Hubble (1926), elliptical galaxies are further
grouped as eight types denoted by En, where n increases with observed ellipticity. They
are termed ‘early-type’ galaxies; this is a historical term referring to the morphology of
galaxies, which includes ellipticals at the early end of the sequence and spirals grouped
from ‘early-type’ to ‘late-type’ spirals (Binney & Tremaine, 2008).

Stellar Bulges

The stellar populations of bright ellipticals are composed of red stars; here, the ’redness’
of a stellar population refers to older, more metal-rich stars being observed. These char-
acteristics originate from the stellar formation in the early stages of the galaxy lifetime,
which then experiences a subsequent dearth of star formation as the galaxies lack gas and
cold dust, resulting in an ageing population (e.g. Bernardi et al., 2003). The brightness of
an elliptical galaxy is correlated with the redness of the population, with the largest and
most luminous galaxies possessing an older stellar composition, as illustrated in Figure 1.3
(De Lucia et al., 2006). Brighter ellipticals (at an absolute magnitude of MB ≥ −20.5)
have been observed with cored surface brightness profiles, as discussed in Sec. 1.3.1, with
the flattened interior brightness indicating a central deficit of stars. The population is
bifurcated between these brighter galaxies and the fainter ellipticals, which have cuspy
profiles (Kormendy et al., 2009; Graham, 2019). With photometric observations, high
mass ellipticals have been observed to be frequently triaxial from evidence of ‘isophote
twists’, wherein the major-axis position angles turn at increasing radii (Leach, 1981; Kor-
mendy, 1982), and later observations of kinematically decoupled components, wherein the
stellar core and outer radii are counter-rotating (Franx & Illingworth, 1988; Ene et al.,
2018); all consistent with some degree of triaxiality for the stellar components (Neureiter
et al., 2023).

The gas content of massive ellipticals is typically low, meaning they contain a dearth of
star-forming environments; another contributor to the old stellar population observed (De
Lucia et al., 2006; Mo et al., 2010). With a lack of gaseous material, a substantial propor-
tion of the growth of elliptical galaxies occurs through mergers (Haehnelt & Kauffmann,
2002).

Scaling relations

Considering the shared evolution of galaxy components, it seems natural observable rela-
tions would have arisen across the galaxy lifetime. For ellipticals, one such example is the
well-established Faber-Jackson relation (Sec. 1.3.1) which links the luminosity with the
stellar velocity dispersion initially as L ∝ σ4 with scatter observed for lower luminosity
ellipticals (Faber & Jackson, 1976; Davies et al., 1983). A later adjustment to account for
the scatter in data is L ∝ σγ , where γ is dependent on the size of the galaxy (Desroches
et al., 2007).
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Figure 1. Average star formation histories of model elliptical
galaxies split into bins of different stellar mass, normalised to the
total mass of stars formed. The two panels are for galaxies resid-
ing in haloes of different mass, as indicated by the labels. In both
panels, the solid line shows the average star formation history for
all the elliptical galaxies in the sample under investigation. The
long dashed, dash-dotted, dashed, and dotted lines refer to galax-
ies with stellar mass ! 1012, 1011, 1010, and 109 M" respectively.
The vertical line in both panels is included to guide the eye.

tionary theory (Vazdekis 2001; Bruzual & Charlot 2003;
Thomas, Maraston & Bender 2003).

The use of these more sophisticated models, together
with the acquisition of better and larger amounts of
data have recently established firm evidence for a mass–
dependent evolutionary history of the elliptical galaxy
population (De Lucia et al. 2004c; Kodama et al. 2004;
Thomas et al. 2005; van der Wel et al. 2005; Treu et al.
2005). The data suggest that less massive ellipticals have
more extended star formation histories than their more mas-
sive counterparts, giving them a lower characteristic forma-
tion redshift, in marked contrast to naive expectations based
on the growth of dark matter halos in hierarchical CDM cos-
mologies. This observational finding is compatible with the
“down–sizing” scenario for star formation proposed earlier
(Faber et al. 1995; Cowie et al. 1996).

In this section, we study in detail the star formation
histories of model elliptical galaxies and their dependence
on stellar mass and environment. In Fig. 1, we show the av-
erage star formation history, normalised to the total mass of
stars formed, for model elliptical galaxies split into different
bins of stellar mass. The two panels are for galaxies resid-
ing in haloes of different mass. In the following we will refer
to galaxies in haloes with mass ! 8 × 1014 M" as ‘cluster’
ellipticals and as ‘field’ ellipticals to all model ellipticals re-
siding in less massive haloes. In both panels, the solid line

shows the average star formation history for all the elliptical
galaxies in the sample under investigation. The long dashed,
dash-dotted, dashed, and dotted lines refer to galaxies with
stellar mass # 1 × 1012, 1 × 1011, 1 × 1010, and 1 × 109 M",
respectively2. The vertical lines are included to guide the
eye and mark the peak of the 1012 M!-ellipticals in the top
panel.

Fig. 1 shows the most important result of this paper:
more massive elliptical galaxies have star formation histories
that peak at higher redshifts (# 5) than lower mass systems,
and can reach star formation rates up to several thousands
of solar masses per year for galaxies ending up in overdense
regions. Less massive elliptical galaxies have star formation
histories that peak at progressively lower redshifts and are
extended over a longer time interval.

A comparison of the top and bottom panels of Fig. 1
shows that the qualitative behaviour for ‘field’ and ‘cluster’
ellipticals is the same, but that for fixed mass, the star for-
mation histories of field ellipticals are predicted to be more
extended than those of ellipticals in clusters. This is a nat-
ural outcome of the hierarchical scenario, where haloes in
regions of the Universe that are destined to form a cluster
collapse earlier and merge more rapidly. The star forma-
tion histories shown in Fig. 1 represent averages computed
over all the elliptical galaxies in the simulation box, but the
trends remain true also when a much smaller volume of the
simulation, and hence a much smaller sample size, is anal-
ysed. Fig. 2 shows the star formation histories of randomly
selected elliptical galaxies in different mass bins and in dif-
ferent environments. The figure shows that individual star
formation histories display a much more ‘bursty’ behaviour
than those shown in Fig. 1. This reflects our assumption that
bulge formation takes place during merger-induced bursts,
which naturally gives the star formation histories of individ-
ual systems a bursty nature quite different from the smooth
history seen for the population average. We will comment
more on the implications of this for the scatter of the ages
for the model elliptical galaxies in the following section.

In Fig. 3, we show the star formation histories again,
but this time split into bins of different parent halo mass.
The long dashed, dash-dotted, dashed, and dotted lines are
for elliptical galaxies in haloes of mass # 1 × 1015, 1 × 1014,
1 × 1013, and 1 × 1012 M" respectively3. Only galaxies with
stellar mass larger than 4× 109 M! are used here. The solid
line shows the average mass–weighted star formation history
for all the galaxies in the sample. The faster evolution of
proto–cluster regions produces star formation histories that
peak at higher redshifts for galaxies in more massive haloes.
Given that galaxies of a fixed stellar mass occur in haloes
covering a wide range of masses, it is not surprising that
the dependence of the star formation history on halo mass
is much weaker than that on galaxy stellar mass.

c© 2005 RAS, MNRAS 000, 1–12

Figure 1.3: The average star formation rates of a set of elliptical galaxies from the
Millennium simulation, divided by their stellar masses. The solid black line gives the
average star formation, and the other lines refer to individual galaxies. The vertical line
at z = 5 provides a comparison point. The ellipticals with greater stellar masses peak at
higher redshifts with less extended time distributions. Figure from De Lucia et al. (2006).

A more recent relation to be proposed is the halo-stellar mass scaling relation, wherein
the dark matter halo has been linked to the bulge for massive ellipticals (More et al., 2011;
Chae et al., 2014). The relation has been presented by Behroozi et al. (2013); Moster
et al. (2010), with a more recent version being given in Chae et al. (2014), identified from
a sample of ∼2000 galaxies and constructed using a set of observations and abundance
matching in comparison to N -body simulations. The relation is shown in Figure 1.4.

Scaling relations between the central MBH and the surrounding galaxy are indicative
of their co-evolution, and are discussed further in the next section.

1.4 Observed Properties of Massive Black Holes
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Figure 1.4: Top: Relation between the galaxy stellar mass and dark matter bulge mass,
given by the solid black line for ∼ 2000 modelled galaxies (black dots). The other curves
represent relations from sample methods, and the orange and yellow regions show the 68%
and 95% confidence ranges. Bottom: The associated intrinsic scatter of the relation, as in
the top figure. Figure from Chae et al. (2014).

1.4.1 MBH-Galaxy Co-Evolution

With MBHs having been detected at the center of most local galaxies, they are considered
an essential feature to modelling galaxy evolution, likely to be found in massive galaxies
across the Universe (Kormendy & Ho, 2013). MBHs form part of the basic structure of
a typical galaxy, alongside constituent dark matter, stars, and gas (Binney & Tremaine,
2008). The study of central MBHs is of particular importance to the current exploration
of observed GWs, and as such questions about their formation and subsequent evolution
need to be addressed.

Observational relations between the central MBHs and their host galaxies have been
recognised, showing their influence on the development of the galaxy structure. These
relations suggest the MBHs co-evolve with their host galaxies, with MBHs seeded at high
redshifts (see Sec. 1.2.1) impacting the galaxy components at the central radii (Gebhardt
et al., 2000; Kormendy & Ho, 2013; Reines & Volonteri, 2015). One such relation links
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Figure 1.5: Left: The relationship between the central MBH mass and the total stellar
mass of the host galaxy. The points are divided by galaxy morphology and observations,
with dynamical BH mass measurements for a sample of elliptical galaxies (blue), and S/S0
galaxies with classical bulges (turquoise). The gray lines show various Mbh−Mb relations
for the galaxy morphologies. Right: As in the left panel, isolating the elliptical and S/S0
galaxies and showing the corresponding Mbh −Mb relation with the solid dark blue line.
Figure adapted from Reines & Volonteri (2015).

the central MBH masses and the stellar luminosity of their hosts, the Mbh − L relation.
This luminosity can be translated to the stellar mass with the mass-to-light ratio M/L
(Merritt, 2013), where the mass represents the bulge mass component of the galaxy (e.g.
Beifiori et al., 2012; Kormendy & Ho, 2013).

The MBH-bulge mass relation Mbh −Mb correlates the mass of the stars within the
central bulge of a galaxy to their central MBH, the discovery of which through dynamical
observations has since spawned investigation into how the relations manifest for different
galaxy morphologies (and hence different evolution pathways) (e.g. Marconi & Hunt, 2003;
McConnell & Ma, 2013; Reines & Volonteri, 2015). The utility of these relations is that
they enable estimations of central MBHs in relation to their host galaxy as an alternative to
the typical indirect measurements. For ellipticals, the bulge and the total stellar masses can
be considered equivalent (Kormendy & Ho, 2013). The MBH-bulge relation for ellipticals
can then be expressed as (Reines & Volonteri, 2015)

log

(
Mbh

Mb

)
= α + β log

(
Mb

1011 M⊙

)
(1.6)

where Mb denotes the bulge mass. The coefficients may be set to α = 8.95 ± 0.09 and
β = 1.40 ± 0.21 for elliptical galaxies, taken from fits to local observations at z ∼ 0 The
elliptical Mbh − Mb relation is shown in Figure 1.5, alongside the trends for a range of
galaxy morphologies (Reines & Volonteri, 2015). The most tightly correlated fits in this
relation are from early-type galaxies where star formation is dormant, including ellipticals
(Beifiori et al., 2012; Savorgnan et al., 2016).

The velocity dispersion of central stars can also be linked to the MBH mass via the
Mbh − σ relation (Gebhardt et al., 2000). This relation initially showcased a tighter
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Figure 1.6: The relationship between the central MBH mass and the host galaxy stellar
velocity dispersion. The points are divided by observation and galaxy type; the most
luminous galaxies in a cluster (green), other elliptical and S0 galaxies (red), and late-type
spiral galaxies (blue). The MBH masses are measured using the dynamics of stars (stars),
gas (circles), and masers (triangles). Figure adapted from McConnell et al. (2011).

correlation than the Mbh−Mb relation, and indicates the joint evolution between the host
galaxies and MBHs. Similarly to the Mbh −Mb relation, elliptical galaxies again show a
reduced scatter in the observed data (King, 2003; Hu, 2008; Kormendy & Ho, 2013). The
relation can be expressed as (McConnell et al., 2011)

log

(
Mbh

M⊙

)
= α + β log

( σ

200 km s−1

)
(1.7)

where α = 8.29 ± 0.06 and β = 5.12 ± 0.36 for a fit to all galaxies, and α = 8.38 ± 0.06
and β = 4.53 ± 0.40 specifically considering early-type galaxies. Figure 1.6 shows the
relationship between Mbh and σ for measurements of 65 galaxies.

One of the fundamental scales in a galaxy system with a central MBH is Rinfl, the radius
of the sphere of influence of the MBH. Within this radius, the gravitational potential is
dominated by the effect of the central MBH and the stars orbit on bound orbits, defined
as (Peebles, 1972)

Rinfl =
GMbh

σ2
(1.8)
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where G refers to the gravitational constant. Another form of the equation takes the
radius of influence to be the radius at which the enclosed stellar mass is equal to twice the
mass of the central MBH (Merritt, 2013)

Rinfl,m = R(2Mbh). (1.9)

Using the first definition, the velocity dispersion at the galaxy core includes stars on
wider orbits and as such compares the MBH influence with the galaxy, whilst the second
compares the nearby forces with the MBH.

These relations arise from the co-evolution of central MBHs with their host galaxies,
influencing their surrounding environment from early periods in the galaxy lifetime as
they grow. Both experience major mergers together, and the effects of radiative feedback
from AGN. As described in Sec. 1.4.3, the AGN feedback shapes the stellar population
of the host galaxy through accretion flows during the early active phase. Galaxy star
formation has exhibited an association with the central MBH activity, with recent studies
relating the MBH mass to the star formation rate in nearby galaxies (Fabian et al., 2000;
Mart́ın-Navarro et al., 2018; Mart́ın-Navarro & Mezcua, 2018). These relations are most
significant for early-type galaxies, with a smaller scatter observed in the Mbh − Mb and
the Mbh − σ relations of elliptical galaxies (Gültekin et al., 2009; Kormendy & Ho, 2013;
Heckman & Best, 2014).

1.4.2 Massive Black Hole Seed Growth and Feedback

MBHs grow over time through two main mechanisms: mass accretion onto the MBH, and
mergers with other MBHs following galactic mergers as discussed in Section 1.5 (Begelman
et al., 1980; Amaro-Seoane et al., 2022). As with the initial seed possibilities, models of
the evolution of MBH populations from a chosen formation scenario must also match the
MBH population observations made across cosmic time. Models of mass growth must
correspond with the observations of quasars powered by MBHs of masses ∼ 109 M⊙ at the
high redshift of z ∼ 7.5 (Yang et al., 2020; Wang et al., 2021a,b).

A large contribution to MBH mass growth comes from high efficiency accretion during
the quasar epoch, as determined from observations relating the accreted black hole mass to
the quasar luminosity during the bright quasar phase (Soltan, 1982; Yu & Tremaine, 2002).
Growth through accretion is the dominant contribution across much of the MBH lifetime,
particularly for the larger MBHs where M > 106 M⊙ beyond the earlier redshifts at z ∼ 8.
Whilst MBH mergers following galactic mergers can only contribute to the mass growth
by at most a factor of 2, they can still dominate the mass growth, playing a significant
role at M < 105 M⊙ while z > 5.5 and at M > 108 M⊙ while z < 2 (Pacucci & Loeb, 2020;
Piana et al., 2021). The two mechanisms are not separate throughout the MBH lifetime,
with accretion episodes following major mergers as the merger of two galaxies brings in in
cold gas to the remnant galaxy (Kauffmann & Haehnelt, 2000; Li, 2012). Accretion and
mergers also contribute to another observable MBH parameter alongside the mass, the
spin. Observations and cosmological simulations have both suggested that the effects of
mergers are less impactful to the spin evolution than gas accretion, which depend on the
spins of the progenitor black holes and the alignment of the binary black hole spins with
the external gas orbital angular momentum respectively (Kesden et al., 2010; Pacucci &
Loeb, 2020; Dong-Páez et al., 2023).

Light seeds require a large growth to match such observations of MBHs seen at the earli-
est redshifts. Beginning from masses of M ≤ 103 M⊙, they must maintain near-Eddington
accretion rates for an extended period of time to reach the bright quasar numbers of
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observations, but only a fraction of such seeds would need to reach high rates to match
the later populations of MBHs (Haiman & Loeb, 2001; Greif et al., 2008). This would
require overcoming the difficulties of reaching such high accretion rates, and even with
some achieving near-Eddington accretion rates it is unlikely a seed population with such
initial masses could replicate later MBH populations (Pacucci et al., 2017; Smith et al.,
2018). Another possibility for such growth is the MBH reaching super-Eddington accre-
tion rates at which the mass inflow would be very rapid, under the circumstances where
the MBH has continuous access to a high gas reservoir, making it possible to reach the
necessary masses at early times (Volonteri et al., 2015; Pezzulli et al., 2016; Smith et al.,
2018; Regan et al., 2019). Pop III seeds, at their smaller masses, also do not initially sink
to the centers of host galaxies; instead they are considered wandering black holes within
a galaxy until their growth has reached a critical mass of at least ∼ 105 M⊙ (Bellovary
et al., 2019; Greene et al., 2020). By contrast the heavier MBH seeds do not face such a
growth barrier, and hence avoid the issues associated with such growth requirements.

Feedback plays a role in many different galaxy processes, and similarly within MBH
mergers affects the accretion rate and hence the resultant mass. The feedback generated by
supernovae impacts the supply of cold gas in galaxies, particularly in lower mass galaxies
with M⋆ ≲ 1010 M⊙, removing gas with strong winds driven by the supernova. With
less gas in the surrounding environment, it reduces the accretion onto seeds and hence
regulates the potential mass growth (Dubois et al., 2014, 2015; Habouzit et al., 2017).
The feedback generated by the MBH also affects the seed growth, with the jets produced
by AGN (as described in Sec. 1.3.1) removing surrounding gas from within 1 pc around
the black hole. This limits the accretion rate that can be attained by the seed, with the
internal MBH feedback regulating the growth by 0.1 − 0.5 times the Eddington accretion
rate (Johnson & Bromm, 2007; Volonteri, 2010; Regan et al., 2019; Toyouchi et al., 2023).

1.4.3 Central MBHs and Feedback

Stars in close proximity to the central MBH of a galaxy will have a mutual effect on one
another, beginning from the early era of galaxies hosting Active Galactic Nuclei (AGNs).
AGN are highly dense, luminous central regions of a galaxy that can be observed in
galaxies at high redshift owing to their brightness. Quasars are the most luminous subset
of AGN, with observations at high redshift providing a means to examine the formation
of the MBHs that drives them (Begelman et al., 1984; Wang et al., 2021b). Within AGN,
the central MBH is surrounded by an accretion disk that functions as a powerful source of
radiation. This disk is fed efficiently by the surrounding material including dust and gas,
and emits radiation across the electromagnetic spectrum with a higher luminosity than
the rest of the galaxy, and can release relativistic jets of outflowing material (Rees, 1984;
Padovani et al., 2017; Hickox & Alexander, 2018; Chan et al., 2019).

Feedback from sources within the galaxy also helps to shape the stellar population,
impacting the star formation rates within giant gaseous clouds. The mechanisms by which
feedback occurs include supernovae, active galactic nuclei, and stellar winds, all of which
expel energy and mass into the local environment (Mo et al., 2010). Feedback from
AGN and supernovae in particular are important to star formation in galaxy formation,
with positive and negative feedback supporting and preventing star formation respectively
(Morganti, 2017). AGNs expel energy as a result of the accretion of gas and dust onto the
disk orbiting the MBH, through which a massive amount of radiation is generated; with
some AGN producing large scale outflows up to order ∼ Mpc in the form of high energy
jets when the central MBH has spin or the disk has a magnetic flux (Blandford et al., 2019).
Feedback is generally separated into two modes, the ‘Radiative’ and ‘Kinetic’ mode. The
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Radiative mode occurs for cold gas where the MBH accretion is approaching the Eddington
limit in which energy emission takes place via the release of photons, versus the Kinetic
mode with a lower accretion rate and luminosity for galaxies with hot gas surrounding the
centre, where relativistic particles are expelled (Fabian, 2012; Harrison et al., 2018).

Through this early regulation of star formation, AGN have a large scale impact on
the evolution of galaxies, ending once the ‘active’ phase is over after accretion is done in
quiescent galaxies, with observations placing the peak of quasar luminosity at z ∼ 2 Gyr
(Hopkins et al., 2007). Stellar feedback also serves to hinder star formation in molecular
clouds (Krumholz & Tan, 2007; Maiolino et al., 2017; Olivier et al., 2021).

1.5 Formation and Coalescence of Massive Black Hole Bi-
naries

The host galaxies of central MBHs undergo mergers in the hierarchical formation model,
creating a remnant galaxy containing the central MBHs of the previous two hosts (Merritt,
2013). Within cosmological simulations, major galactic mergers (often set by a mass ratio
of > 1/4) have been shown to take place across the galaxy lifetime and can experience
merger rates of ∼ 0.4 Gyr−1 over 12 Gyr for large dark matter halo masses (> 1014 M⊙),
increasing as z increases (Fakhouri et al., 2010).

These MBHs travel to the center of the remnant galaxy and form a binary before
coalescing into a single central MBH. As they merge, they release potentially detectable
GWs, observations of which will provide information on the MBH population of the Uni-
verse (as discussed in Sec. 1.6.2). The processes by which this inspiral occurs are divided
into three major phases of evolution - dynamical friction (e.g. Antonini & Merritt, 2012),
stellar scattering (e.g. Sesana et al., 2008a), and the final inspiral releasing GWs bringing
the MBHs to coalescence.

1.5.1 Dynamical Friction

The evolution of MBH binaries proceeds over three major phases, beginning with the dy-
namical friction phase during which the MBHs sink to the centre of the merger remnant.
During a galaxy merger, the MBHs previously hosted at the centres interact with the
surrounding stellar background of the new galaxy, decelerating and hence spiralling in
closer to the centre as the orbit decays and the MBH separation decreases (Kelley et al.,
2017). Considering a particle in a field of background stars, Chandrasekhar (1943) for-
mulated that the particle would experience a reduced acceleration as it travelled owing to
the combined effect of the background stars. Later works on dynamical friction consider
other cases, such as where the object being acted upon is significantly heavier than the
individual particles that compose the background distribution (i.e. in the case of a black
hole Mbh ≫ m⋆) (e.g. Begelman et al., 1980). As the MBH under consideration travels
through the field of background particles, the wake created in its path is composed of an
overdensity of particles which exert a drag force on the MBH. Gas may also contribute to
the gravitational wake, although in the case of massive ellipticals the lack of a gaseous com-
ponent renders this effect negligible (Ostriker, 1999; Li et al., 2020). Dynamical friction
circularises the orbits of massive bodies for values of γ > 1.5, and increases the eccentricity
for γ < 1.5 (Antonini & Merritt, 2012).

The dynamical friction timescale for a black hole travelling to the centre of a galaxy,
considering the secondary MBH, may be calculated from the change in angular momentum
of the MBH as a result of the frictional force. One such derivation is given by Merritt
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(2013), in which the stellar density profile of the galaxy is taken as ρ(r) = ρ0(r/rs)
−γ and

the two galaxies are approximated as isothermal spheres, with γ = 2 for a single isothermal
sphere. The derivation also makes the assumptions that the secondary MBH inspirals on
a circular orbit, ρ0 = r1/2, the half-mass radius, and that the initial orbit radius of the
infalling MBH is much greater than the distance from the centre of the larger galaxy at
which the smaller galaxy has lost most of its constituent stars. This gives a dynamical
friction timescale of

Tdf ≃ 1.3 × 108
( σ

200 km s−1

)2 ( σ2
100 km s−1

)−3
(

2

lnΛ

)(
ri

1 kpc

)
yr (1.10)

where σ2 is the constant velocity dispersion of the secondary galaxy stars, and ri is the
initial orbital radius of the MBH.

For an isotropic system, the drag on the MBH is given by (Binney & Tremaine, 2008)

V̇ = −16π2G2MbhmlnΛ

[∫ V

0
dv v2f(v)

]
V

V 3
(1.11)

where V is the relative velocity of the MBH to the galaxy centre, and m and v are the
field star mass and velocity respectively. The velocity of the surrounding stars plays a role
in their contribution to the dynamical friction force on the MBH - considering a local star
travelling at a velocity higher than the MBH, with v > V for Eqn. 1.11 this implies the
star does not contribute to the drag on the MBH (Chandrasekhar, 1943; Dosopoulou &
Antonini, 2017). This is not completely accurate, with N -body simulations showing that
fast stars contribute less and so frictional force decays but does not fall to 0, matched by
an additional term to the dynamical friction force (Antonini & Merritt, 2012).

Dynamical friction continues to sink the MBHs to a distance of the order ∼ Rinfl

(Eqn. 1.8) of the primary MBH. As a result of the effect of dynamical friction on the black
holes moving against the stellar background causing the MBHs to sink to the centre of
the remnant galaxy, they pair as a bound binary at a distance of af from one another, at
which point dynamical friction loses efficacy. At af , the enclosed stellar mass is equal to
twice the mass of the secondary MBH, as

M∗(af ) ≃ 2Mbh,2 . (1.12)

Here three-body interactions take over, and the influence of dynamical friction wanes as
the binary moves into reaching thermal equilibrium with the surrounding stars (Antonini
& Merritt, 2012; Gualandris & Merritt, 2012a; Kelley et al., 2017).

1.5.2 Stellar scattering

Once the MBHs have formed a bound binary at scales of order af , stellar scattering takes
over as the dominant hardening process. This phase of binary evolution proceeds faster
than the dynamical friction phase as the MBHs experience three-body interactions with
local stars and lose energy, hardening the binary (Sesana et al., 2008a).

As the MBHs orbit one another, they incur strong three-body interactions with indi-
vidual stars within the losscone, driving a rapid gravitational slingshot phase (Quinlan,
1996; Sesana et al., 2008a). The losscone is the region in phase space that hosts the stars
on orbits that may interact with the MBHs, typically within a few ∼ a, the semi-major axis
of the binary (Milosavljević & Merritt, 2001). The specific mechanical energy, eccentricity
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and semi-major axis of the binary orbit are given by

E = 0.5v2 − GMbh

r
(1.13)

a = −0.5
Mbh

E
(1.14)

e =

(
1 +

2Ej2

G2M2
bh

)0.5

(1.15)

where v and r is the relative velocity and separation between the MBHs respectively, j is
the specific angular momentum defined as j = |r × v|, and Mbh is the total MBH mass.
As the binary continues to shrink via interactions with stars in the surrounding losscone,
the gravitational slingshot mechanism in which stars in the losscone of the binary are
accelerated by the MBHs removes energy and angular momentum from the binary with
the ejection of these stars. This causes the two MBHs to spiral closer together (Begelman
et al., 1980; Merritt, 2013). The hardening rate of the binary shrinks over time as the
binary ejects stars within the losscone and the orbit becomes smaller, and evolves as
(Gualandris et al., 2022)

da

dt

∣∣∣∣
∗

= −s(t)a2 (1.16)

where the time-dependant hardening rate s(t) is defined as

s(t) =
d

dt

(
1

a

)
. (1.17)

The dimensionless eccentricity growth rate K is defined as (Quinlan, 1996)

K =
de

d ln(1/a)
, (1.18)

and the contribution to the eccentricity evolution from three-body stellar interactions is

de

dt

∣∣∣∣
∗

= s(t)Ka . (1.19)

Following these strong encounters, stars are ejected with velocities comparable to the
binary’s orbital velocity and a core is carved in the stellar distribution (e.g. Merritt &
Milosavljević, 2005; Gualandris & Merritt, 2012a). As described in Sec. 1.3.1, stellar cores
have been observed in elliptical galaxies of magnitudes MB ≲ −21 with significant central
flattened density profiles (Bertola & Capaccioli, 1975; Faber et al., 1997; Graham, 2019).
Large bright ellipticals exhibit such cores, with core scouring by MBH binaries the leading
explanation for the depleted central stellar density (Quinlan, 1996; Thomas et al., 2014;
Nasim et al., 2021).

Once all stars initially on losscone orbits have been ejected and the binary is for-
mally bound and hard at roughly ∼ parsec scale separations for a typical MBH of mass
108 M⊙, further hardening relies on overcoming the lack of stars available for three-body
interactions. This is known as the final parsec problem (Vasiliev et al., 2014, 2015).
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Final parsec problem

At ∼ pc MBH separations, once all stars within the losscone have been ejected the contin-
ued hardening of the binary relies on the scattering of stars into the losscone from larger
distances, a process known as losscone refilling. Steady state losscone theory makes the
distinction between the ‘empty-losscone regime’ and the ‘full-losscone regime’. In the for-
mer, the stars in the losscone have a change in angular momentum over one orbit less than
the angular momentum of the losscone boundary, and in the latter the losscone never fully
depletes through efficient refilling, with the rate of stars moving into the losscone propor-
tional to the hardening rate s(t) (Merritt, 2013).

Stalling of the binary occurs in simulations where the only mechanism for losscone
repopulation is 2-body gravitational encounters within spherical galaxies. The collisional
relaxation timescales of stars extends beyond a Hubble time for the majority of galaxies,
and without another method of repopulating the losscone the binary cannot harden further
(Milosavljević & Merritt, 2003a,b; Vasiliev et al., 2014). Investigation into the repopulation
rate requires a sufficiently high particle number, as a stellar mass resolution below N ≃ 106

can artificially induce relaxation, refilling the losscone spuriously (Merritt et al., 2007;
Bortolas et al., 2016).

Different models have been explored to find a solution. Idealised spherical galaxy model
do not accurately reflect the actual potential of galaxies post-merger, when MBH binaries
form. In non-spherical galaxies with axisymmetric and triaxial potentials, stars may travel
along close to centrophilic and centrophilic orbits respectively as the angular momentum
is not conserved. The process by which orbits are affected by torques in non-spherical
potentials and become irregular is called angular momentum diffusion (Yu, 2002; Vasiliev
& Merritt, 2013; Gualandris et al., 2017). Further investigations with triaxial models
have shown that collisionless losscone refilling can overcome the final parsec problem with
efficient repopulation of the stellar orbits through angular momentum diffusion. This
mechanism which has been proven efficient in non-spherical models. Merger remnants
have some degree of triaxiality, and so collisionless diffusion can continue binary hardening
past parsec scales (Vasiliev et al., 2015; Gualandris et al., 2017; Frigo et al., 2021).

Hard binary formation

At a separation of ah, the MBHs form a hard binary (which typically occurs at roughly pc
scale distances for Mbh ∼ 108 M⊙) (Quinlan, 1996; Milosavljević & Merritt, 2001). ah has
several possible definitions, with one such description being where the relative velocity of
the binary surpasses the velocity dispersion of local stars (Merritt, 2013)

ah =
Gµ

4σ2
(1.20)

where µ = M1M2/(M1 + M2) is the reduced mass of the two MBHs. For an equal mass
binary, ah = Rinfl

8 . Beyond ah, the orbit continues to shrink through efficient ejection of
local stars (Gualandris et al., 2017), and the binary evolves according to the hardening
rate Eqn. 1.17 (Merritt, 2013). Figure 1.7 shows the binary separations af and ah for
two MBH binaries from the end of the dynamical friction phase into the GW phase in
Gualandris & Merritt (2012a). Collisionless losscone refilling is then able to drive the
MBH binary to separations of the order of milliparsecs or less, where emission of GWs
commences (Gualandris et al., 2017).
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8 Gualandris and Merritt

Fig. 5.— Trajectories of the MBHs in Model A (left) and B
(right) during the galaxy merger phase. Dashed line: trajectory
of the smaller hole. Solid line: trajectory of the larger hole. The
initial orbit of the galaxy pair lies in the z = 0 plane.

Fig. 6.— Separation between the MBH particles as a function of
time. The horizontal lines indicate af , the approximate separation
at which dynamical friction ceases to be efficient (equation 8), and
ah, the hard-binary separation (equation 9).

ter H which is related to the hardening rate via

H(a) =
σ

Gρ

d

dt

(
1

a

)
, (12)

where ρ is the stellar mass density and σ is the one-
dimensional velocity dispersion, both assumed constant
in space and time and unaffected by the presence of the
binary. The H parameter obtained from these scattering
experiments is a function of binary mass ratio and hard-
ness; the latter is defined in terms of Vbin/σ, the ratio of
binary circular speed to field-star velocity dispersion.

We wish to compare the N -body results for s with
the predictions from the scattering experiments. Good
agreement would imply a “full loss cone,” i.e. that the
rate of interaction of the binary with stars is unaffected
by slingshot ejections. In spherical galaxy models, binary
hardening rates fall much below the predictions from
the scattering experiments, since orbital repopulation is
driven by two-body scattering, which is a slow process
for large N (Makino & Funato 2004; Berczik et al. 2005;

Fig. 7.— Evolution of the Lagrange radii of the main sequence
stars (left) and stellar BHs (right) during the galaxy merger phase,
for models A (top) and B (bottom). For clarity, only stars initially
belonging to the larger galaxy are shown. Formation of the binary
MBH is reflected in the sudden expansion of the central regions,
at t ≈ 500 (Model A) and t ≈ 200 (Model B).

Fig. 8.— Evolution of the semi-major axis and eccentricity of the
MBH binary in Model A and B, starting from the time when the
MBHs are formally bound.

Merritt et al. 2007b).
We defined the theoretically-expected hardening rate

to be

sD(a) ≡ H(a)
( ρ
σ

)
D

(13)

where H is taken from the published scattering experi-
ments, and ρ and σ are measured in our N -body models,
at a distance D from the MBH. (G = 1 in N -body units.)
For H(a) we adopted the fitting formula of Sesana et al.
(2006):

H = A(1 + a/a0)
γ , a0 = 1.05

GM2

σ2
(14)

with parameters for a 3 : 1 mass ratio: A = 15.82, γ =

Figure 1.7: Separation of two MBH binaries over time. af and ah are marked with
horizontal black dotted lines. Figure from Gualandris & Merritt (2012a).

1.5.3 GWs (Final inspiral)

At the final stage of inspiral, GWs are released by the binary as the MBHs orbit hardens
past a separation of ∼ 10−3 pc. The GWs carry energy away from the binary, bringing
them to a rapid coalescence (Begelman et al., 1980).

At this stage the post-Newtonian (PN) formalism may be employed to obtain approxi-
mate solutions to the Einstein field equations in the weak field regime. GWs are modelled
with the correction of order 2.5PN (Blanchet, 2014). Peters (1964) provides approximate
analytic solutions to the field equations for the evolution of an MBH binary orbit, with
the semi-major axis a and ellipticity e decaying as

〈
da

dt

〉

GW

= −64

5

G3M1M2M

c5a3(1 − e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

(1.21)

〈
de

dt

〉

GW

= −304

15
e

G3M1M2M

c5a4(1 − e2)5/2

(
1 +

121

304
e2
)

(1.22)

for an average over one orbital period of the binary, where M = M1 + M2 is the total
MBH mass. The onset of the GW-dominated phase of evolution depends strongly on the
eccentricity, which hence has a significant influence on the coalescence timescale of MBH
binaries (Khan et al., 2018).

The GWs released by the inspiral of the most massive MBH binaries are potentially
detectable as the low-frequency GWB, as described in Section 1.6, and within the frequency
range for these GWs given in Figure 1.8. Considering detectable individual sources, the
chirp is a signal where the frequency changes with time. The chirp mass of the source
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system can be determined from measurements of the chirp time of GW signals, allowing
the distance to the source to be determined in combination with the signal strain h (Sesana
et al., 2009; Merritt, 2013). The chirp mass of the binary is defined as

M =
(M1M2)

3/5

M1/5
. (1.23)

Ringdown is the denouement of the binary, taking place once the MBHs have coalesced
(Scheel et al., 2009). The remnant mass and spin can be determined from measurements
of the GWs emitted in the ringdown phase (Berti et al., 2018; Amaro-Seoane et al., 2022).

1.6 Gravitational Wave Astronomy

The detection of Gravitational Waves (GWs) from two merging black holes by the LIGO
scientific collaboration (Abbott et al., 2016a) has opened a new window on the Universe,
providing new insights into the astrophysical sources of measurable GWs. With both direct
proof of the existence of black holes and the confirmation of the prediction that binaries
of black holes coalesce, this first detection commenced the GW era with 90 events to date
having since been observed, including both black hole and neutron star mergers (The LIGO
Scientific Collaboration et al., 2021). These detections provide direct measurements of the
mass alongside information on their spins, and have given new impulse to the ongoing
efforts in detecting GWs from binaries of supermassive black holes.

GWs are disruptions in the space-time fabric of the Universe, which cause the tidal
compression of space-time as they propagate (Dirkes, 2018). Unlike electromagnetic ra-
diation, GWs travel essentially unobstructed across space and enable investigation into
the early evolution of MBHs and their host galaxies at high redshifts (Colpi et al., 2019).
The prediction of gravitational radiation arose as a consequence of Einstein’s theory of
general relativity, as published in Einstein (1915), with solutions to his equations of gen-
eral relativity predicting tidal disturbances in the fabric of space-time as a result of the
acceleration of massive bodies (Einstein, 1916, 1918). Black hole binaries emit GWs at
their final stage of coalescence, and binaries of MBHs represent the loudest sources of
GWs in the Universe (Peters, 1964).

The range of possible astrophysical sources of GWs and their associated detection
methods is shown in Figure 1.8. Mergers of the most massive MBHs (M > 107 M⊙) are
detectable by the Pulsar Timing Array (PTA) at the lowest frequencies in the spectrum
of 10−9 − 10−6 Hz (Desvignes et al., 2016a; Reardon et al., 2016a; Perera et al., 2019),
while MBHs in the mass range 104 − 107 M⊙ will be the main target of the Laser Space
Interferometer (LISA) in the frequency range (10−4 − 1) Hz (Amaro-Seoane et al., 2017;
Barack et al., 2019). A greater detector arm length is required to observe GWs emitted
by larger sources such as MBH binaries, as the amplitude of a GW is proportional to the
mass and velocity of the source (see Sec. 1.6.1). Detection of GWs from black hole binaries
will provide accurate estimates of masses, spins and orbital parameters up to redshifts of
z = 2 with PTA, and beyond redshifts of 20 for some BH masses with LISA (Colpi et al.,
2019).

1.6.1 Gravitational Wave Emission

The generation of GWs were predicted as a consequence of Einstein’s theory of general
relativity, emitted by the acceleration of objects as they radiate oscillations in space-time.
GWs are radiated under the condition that the system is not spherically or rotationally
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Figure 1.8: The gravitational wave spectrum shown across the age of the Universe, with
corresponding GW sources and detection instruments. Figure adapted from (Romano &
Cornish, 2017).

symmetric, and the source bodies need to be sufficiently massive in order to emit de-
tectable GWs. The oscillations distort material they pass through, tidally compressing
and stretching matter as the wave travels (Eardley et al., 1973). This spatial deformation
is described by the dimensionless strain, a measure of the change in the particle position
with reference to a chosen length. They propagate through space-time at c (the speed of
light) (Creighton & Anderson, 2011), with wavelengths λ of orders that are typically of
the size or larger than their sources (for example the radius of the system, in the case of
a GW emitting binary) (Amaro-Seoane, 2013; eLISA Consortium, 2013; Dirkes, 2018).

The Einstein field equations describe how space-time is affected by matter, dependent
on the momentum, energy, and stress of local mass. The quadrupole formula solution
gives the metric perturbation for a GW, concerning a weak gravitational field far from the
source

hij(ct,x) = −2G

c4r

[
d2Iij(ct′)

dt′2

]

r

(1.24)

for a reduced time tr = t − r/c, with the quadrupole-moment tensor Iij of the source
energy density

Iij(ct) =

∫
T 00(ct,y)yiyjdy (1.25)

where T 00 is the relativistic mass density. The emitted GWs carry energy away from
their source with a wavelength that is dependent on the size of the system (Ryder, 2009).
Using Eqn. 1.24, the GW luminosity can be first derived in terms of Iij , from which the
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approximation ∂3Iij/∂t3 ∼ MR3/T 3, with T the period for an object to travel across the
source, leads to an approximation for the GW luminosity of

LGW ∼ G4

c5

(
M

R

)5

∼ c5

G

(rSch
R

)2 (v
c

)6
(1.26)

where rSch is the Schwarzschild radius, defined as the radius of the event horizon of a
Schwarzschild black hole at rSch = 2GM/c2. Eqn. 1.26 shows the highest LGW is achieved
with a very dense, relativistic source. The amplitude of GW oscillations can similarly be
estimated as

h ∼ G

c4
ϵEk

r
(1.27)

for the dimensionless strain h, where ϵEk is the kinetic energy of the source that contributes
to the GWs (with 0 ≤ ϵ ≤ 1), at a distance r (Camp & Cornish, 2004; Moore et al., 2015;
Abbott et al., 2017). For a binary system, such as in the case of an MBH binary, the
emitted GWs shrink the binary separation as they carry away energy (Begelman et al.,
1980).

1.6.2 Gravitational Wave Detections - LISA and PTA

Sufficiently high frequency GWs from large sources cause measurable changes in the length
of objects as they compress and lengthen space-time - in this way, their passage can be de-
tected. At the low frequency end of the GW spectrum shown in Figure 1.8, GW emissions
from MBH binaries are detectable as a superimposed stochastic gravitational wave back-
ground, while higher frequency detectors can observe emissions from stellar mass black
hole binaries (e.g. Perera et al., 2019). The physical detection of GWs can be achieved
as travelling GWs deform the objects as they travel through space as a time dependent
quadrupolar strain h given by Eqn. 1.27, with GW oscillations acting perpendicular to the
direction of travel (Bailes et al., 2021).

The first GW detectors, called resonant mass detectors, utilised this variation to at-
tempt measure the vibrations of an isolated metal bar induced by passing GWs, but only
have the sensitivity required to observe the strongest GWs, and no detections have been
achieved to date (Creighton & Anderson, 2011; Aggarwal et al., 2021). Further efforts have
since employed the more sensitive laser interferometers which measure the GW-induced
deformation via changes in light interference patterns, and pulsar timing arrays (PTA)
which measure the difference in arrival times of radio pulses rather than light. The fre-
quency spectrum the GW detectors work across spans a wide range of orders of magnitude,
as shown in Figure 1.8, and as such the detectors are designed to be sensitive to specific
ranges. Both utilising interferometry, the ground-based LIGO has detected GWs at the
high-frequency end of the spectrum (Abbott et al., 2016a; The LIGO Scientific Collabo-
ration et al., 2021), and the upcoming space-based LISA will probe the lower frequency
range (10−4 − 1) Hz, enabled by avoiding ground-based seismic interference (eLISA Con-
sortium, 2013; Bailes et al., 2021). PTA detectors are sensitive at lower frequency ranges
of (10−9 − 10−6) Hz, where MBH binaries emit GWs.

LISA

LISA (Laser Interferometer Space Antenna) is a space-based GW observatory, currently
aimed to launch in 2037. Working in the frequency range of (10−4−1) Hz, it will have the
ability to detect black hole masses in the range of (104 − 107) M⊙, precise measurements
of stellar mass black hole binaries that can be followed with electromagnetic observations,
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and extreme mass ratio inspirals (Enoki et al., 2004; Sesana, 2016; Amaro-Seoane et al.,
2017; Barack et al., 2019; Amaro-Seoane et al., 2022).

The detector is planned to operate using an adapted Michelson interferometer to mea-
sure the disturbance that will result from a passing GW deformation. LISA will consist of
three spacecrafts in a triangular configuration with a 2.5 million km arm length (Cornish
& Robson, 2017). These separations remain constant unless affected by the passage of
GWs. The Michelson-like interferometer method has been adapted for the LISA space-
craft, which uses signal frequency changes from the spacecraft to create the time-delay
interferometry technique, measuring the amplitude of the passing GWs from the phase
shifts of the lasers caused by the GW (Creighton & Anderson, 2011; Bailes et al., 2021).
The LISA Pathfinder mission launched in 2015 successfully tested the LISA configuration
with a short arm, returning the first results in 2016. The Pathfinder mission could not
detect GWs owing to the shorter arm length, but the performance demonstrated the pre-
cision of the proposed methodology (Armano et al., 2016, 2018; Wanner, 2019). LISA will
travel on a heliocentric orbit, for a proposed mission length of 4 years. Following on from
the LIGO observations of signals from black holes, the LISA GW observations will bring
new sensitivity to the GW spectrum (Bailes et al., 2021; Barack et al., 2019).

Pulsar Timing Arrays

Sensitive to the lower frequency end of the GW spectrum, Pulsar Timing Arrays (PTAs)
can detect GWs from the change they induce in the electromagnetic radiation emitted by
pulsars. PTAs utilise a set of millisecond pulsars, which can serve as stable clocks owing
to the regularity of their pulses. The time of arrivals (TOAs) of the signals can then be
compared across the pulsars to search for correlated differences, which could indicate a
disturbance in the emissions caused by passing GWs. As shown in Figure 1.9, the emitted
radio pulses are detected by telescopes on Earth, and the timing residuals are corrected
for systematic delays. These delays are composed of temporally uncorrelated white noise,
which includes induced by radiometer noise and the pulse profile shape variations generated
by the signal emission; and the correlated red noise, which includes the intrinsic spin
noise from the pulsar (Shannon et al., 2014; Goncharov et al., 2021). The mean pulse
profiles across the observation timescale are obtained from the dataset, and the TOAs
are compared to look for spatially correlated red noise that marks the passage of GWs
(Arzoumanian et al., 2020; Bailes et al., 2021).

With the regularity of the millisecond pulsar signal TOAs, PTAs are able to detect
GWs in the frequency range of (10−9 − 10−6) Hz, lower than other such detectors, and
so enabling measurement of the GW remnants of mergers of the most massive MBHs
(M > 107 M⊙) (Desvignes et al., 2016b; Reardon et al., 2016b; Perera et al., 2019). They
are expected to measure the amplitude of the stochastic gravitational wave background
(GWB) produced by an unresolved population of close binary MBHs (Kelley et al., 2017;
Arzoumanian et al., 2018; Christensen, 2019), and potentially bright individual sources
in the future (Lee et al., 2011; Rosado et al., 2015; Kelley et al., 2018). Following PTA
detection of the GWB, the amplitude in the nano-Hz regime of the detection can then be
determined from subsequent analysis of isolated noise from the results, providing infor-
mation on the large-scale structure of the Universe, the occupation fraction of MBHs in
galaxies, the merger rate of galaxies, scaling relations between MBHs and host galaxies
and the efficiency of pairing and merging of MBH binaries (Sesana, 2013; Burke-Spolaor
et al., 2019; Amaro-Seoane et al., 2022).

Currently active PTAs include the International Pulsar Timing Array (IPTA) group,
with two data releases so far (Verbiest et al., 2016; Perera et al., 2019), with members
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Figure 1.9: The radio signals emitted by a set of pulsars are received on Earth, and
corrected for systematic delays (de-dispersion), before the TOAs are compared to look for
spatially correlated differences between the set. Figure from Bailes et al. (2021).

NANOGrav, EPTA, PPTA, and InPTA. Constraining the GWB can be achieved before the
detection itself takes place; limits have already been placed on the signal, significantly from
PPTA placing an amplitude ceiling of < 1.0 × 10−15 (Shannon et al., 2015; Taylor et al.,
2016). A potential GWB signal with a median amplitude of 1.9× 10−15 was subsequently
detected within the second 12.5−year data release from NANOGrav (the North American
Nanohertz Observatory for Gravitational Waves), although there was not strong enough
evidence to confirm the origin of the noise from GWs, which would require quadrupolar
spatial correlations (Arzoumanian et al., 2020; Chen et al., 2021). Subsequent examination
of this signal by Middleton et al. (2021) gave results in accordance with GWs produced
by coalescing MBH binaries. The signal conflicts with the prior upper limits placed on
the GWB of AGWB < 1.45 × 10−15 from earlier data releases (Arzoumanian et al., 2018),
explained by Arzoumanian et al. (2020) as these constraints were calculated using an
analysis that may have underestimated the maximum amplitude.

The detection of a low-frequency signal by PTA with strong evidence for interpreta-
tion as a stochastic GWB was recently reported and independently corroborated across
the EPTA/InPTA, NANOGrav, PPTA, and CPTA collaborations (Agazie et al., 2023b,a;
Afzal et al., 2023; Antoniadis et al., 2023c,b; Reardon et al., 2023; Xu et al., 2023). This
signal is powerful evidence for a detection of GWB origin, showing strong evidence for
quadrupolar spatial correlations following the Hellings–Downs (HD) curve (Hellings &
Downs, 1983; Agazie et al., 2023b). The NANOGrav results showing evidence for HD
correlations are shown in Figure 1.10 (Agazie et al., 2023b). It is not yet considered a con-
firmed GW signal however, as the significance does not quite reach firm detection status.
For this, a 5σ significance is required, but the results reported only reach ∼ 2 − 4σ. The
signal is consistent with a population of merging MBH binaries, with implications for the
population including the coalescence timescales and the MBH-bulge relation if confirmed
(Antoniadis et al., 2023a). There is also the possibility the signal could originate from
another source such as primordial GWs produced by cosmic inflation. As more informa-
tion is gathered over time the signal will grow more distinctive, and with confirmation
of its origin in merging MBHs it will be possible to place more constraints on the MBH
population (Agazie et al., 2023b; Afzal et al., 2023; Antoniadis et al., 2023b,a; Xu et al.,
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Figure 1.10: Inter-pulsar correlations determined from timing residuals as a function of
the angular separation between pulsars (blue points), with the expected Hellings-Downs
curve (black dashed line) showing the expected function for a GWB detection. Figure
from Agazie et al. (2023b).

2023). PTAs may also be able to detect individual massive MBH binaries distinguished
from the GWB as continuous monochromatic (single frequency) sources in the future, but
this will require a longer detection timespan potentially with a joint analysis between all
the datasets (Kelley et al., 2018; Arzoumanian et al., 2020; Agazie et al., 2023b). The
signal portends the dawn of an exciting new frontier in gravitational wave astronomy.

With the recently confirmed evidence of a low-frequency excess signal by PTAs (e.g.
Taylor, 2019; Agazie et al., 2023b) and LISA in the final preparations phase before launch,
it has become crucial to estimate detection rates for both instruments. Current estimates
come from either semi-analytical models or cosmological simulations, and are affected by
considerable uncertainties.

1.7 Modelling

In MBH binary modelling, it is necessary to be able to reconcile the large scales required
for galaxy mergers with the high resolution needed at the small scales for accurate MBH
merger dynamics. This leads to challenges for any simulation attempting to investigate
MBH mergers and their associated timescales and expected observations. Current esti-
mates of MBH merger statistics and hence the predicted GW event rates come mainly
from semi-analytical models and cosmological simulations, and are affected by significant
uncertainties (Rantala et al., 2017; Gualandris et al., 2017; Nasim et al., 2020).

Semi-analytic models can produce merger statistics by tracing the evolution of galaxies
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and their central MBHs, producing predictions that match observational constraints of the
galaxy properties, and following the MBH binary separation with simplified prescriptions
on the pairing and evolution (e.g. Somerville et al., 2008; Barausse et al., 2020). Semi-
analytic prescriptions can also follow the MBH binary from three-body interactions and
GWs phase through to coalescence, extending N -body simulation evolution (Sesana et al.,
2009). Cosmological hydrodynamical and N -body simulations study large-scale evolution
of baryonic and dark matter, and model galaxies across cosmic time (e.g. Vogelsberger
et al., 2020). The MBH binary is followed to the resolution limit of the simulation, for
example of the order 1 kpc for Illustris and 300 pc for IllustrisTNG50-1 (Nelson et al.,
2019). Predictions of GW signals for detectors have been obtained using the data released
thus far, using the properties of merging black hole binaries in cosmological simulations
implemented via sub-grid physics, or by using the simulation results as input to semi-
analytical modelling. Semi-analytical modelling can also utilise Press-Schechter formalism
to determine the initial input (Press & Schechter, 1974; Amaro-Seoane et al., 2022).

1.7.1 Semi-Analytic Models

Semi-analytical models have been used to follow the evolution of MBHs and their host
galaxies, including dark matter (DM) halos, within the context of the ΛCDM framework.
(Somerville et al., 2008; Volonteri & Natarajan, 2009; Sesana et al., 2014; Lacey et al.,
2016). Using a DM merger tree as a basis to link galaxy histories, the component structures
are evolved using semi-analytic prescriptions. Recent models have included prescriptions
for MBH growth via mergers and accretion, and supernovae feedback, a process that
has been shown to regulate the galaxy star formation and MBH growth as described in
Sec. 1.3.1 and 1.4.1. These prescriptions have been shown to reproduce observed properties
such as morphology, colour, star formation rates and subsequent mass growth, and lumi-
nosity functions at low redshift (Driver et al., 2018; Ricarte & Natarajan, 2018; Barausse
et al., 2020).

Semi-analytic models are computationally inexpensive to run in comparison to N -body
simulations, and with the resulting reduced runtime, they can be used to explore a wide
parameter space (Driver et al., 2018; Lagos et al., 2018; Izquierdo-Villalba et al., 2022b).
However, they rely on simplified assumptions and prescriptions regarding the pairing and
evolution of MBH binaries, with key regimes such as binary hardening due to three-body
encounters with stars modelled based on the results of isolated three-body scattering
experiments (Izquierdo-Villalba et al., 2022a). Both low and high-mass black hole seeds
must be considered for a complete picture of the MBH population at high redshifts, as
MBH seed masses are currently largely unconstrained (see Sec. 1.2.1) (Volonteri, 2010;
Amaro-Seoane et al., 2022).

Recent semi-analytic models estimating GWB signal predictions from MBH binaries
include L-Galaxies (Izquierdo-Villalba et al., 2022a), and the SHARK model (Lagos
et al., 2018; Cury lo & Bulik, 2022). The event rate predictions give GWB amplitudes in
the PTA frequency range of ∼ 1.2 × 10−15 (Izquierdo-Villalba et al., 2022a), and 1.4 ×
10−16 − 1.1×10−15 from the SHARK model (Cury lo & Bulik, 2022). These predictions lie
below the red signal determined from the Arzoumanian et al. (2020) results (see Sec. 1.6.2);
Izquierdo-Villalba et al. (2022a) also attempt to match these constraints by employing a
boosted gas accretion rate onto the MBHs and obtain a GWB prediction of 1.37×10−15−
2.67 × 10−15.

27 Kate Attard



Thesis CHAPTER 1. INTRODUCTION

1.7.2 Cosmological Models

In contrast to semi-analytic models, cosmological N -body and hydrodynamic simulations
model baryonic matter and dark matter within the Universe on large scales from early
times. Cosmological models include consistent modelling of galactic merger mass ratios
and encounter geometries in subsequent events, with realistic dynamical friction times.
Massive halos can be seeded with black holes, which then grow over time due to gas
accretion and mergers. Feedback effects can be included which result in gas expulsion and
the quenching of both star formation and MBH growth (Di Matteo et al., 2005; Pontzen
et al., 2017; Ricarte et al., 2019; Nelson et al., 2019).

Cosmological models trade large volumes for the resolution constraints that accompany
a more computationally expensive method (Springel & Hernquist, 2003; Amaro-Seoane
et al., 2022). MBHs have been implemented as a key part of galactic evolution, with
MBH feedback affecting the star formation rates and the local environment, but are not
typically followed with great accuracy owing to resolution constraints (Kormendy & Ho,
2013; Volonteri et al., 2016; Nelson et al., 2019; Ricarte et al., 2019).

The formation of MBH binaries during mergers is followed to the resolution limit,
generally set by the choice of the softening length, which is of order ∼ 1 kpc in the Illustris
simulation suite (Genel et al., 2014), and of order 100 pc in the recent IllustrisTNG-50
(Nelson et al., 2019; Pillepich et al., 2019). In the context of binary evolution, MBHs have
only just begun pairing at these distances, and are still unbound to each other. MBH
binaries are then assumed to merge promptly, without any modelling of the hardening
phase. A trade-off between volume size and resolution is also present, limiting the statistics
of MBH binaries that can be obtained from higher resolution simulations.

The resolution limits in cosmological models hamper their ability to follow MBH binary
statistics. The volumes of cosmological simulations also affect the statistics - smaller
volumes offer better resolution, but provide less opportunity for MBH mergers to occur,
whilst the larger volumes that provide a more complete picture of binary statistics do so
with poorer resolution. Examples include the Illustris-TNG cosmological simulation suite
of 3 volumes from 50 Mpc3 with a softening of order 100 pc to 300 Mpc3 with a softening
of order ∼ 5 kpc (Nelson et al., 2019; Pillepich et al., 2019; Springel et al., 2018). The
population of galaxies hosting MBHs and merging within cosmological simulations can
inform the input to semi-analytical models (Amaro-Seoane et al., 2022), and have also
been used to explore GW detection rates by post-processing the initial MBH results to
account for the delays caused by unresolved binary evolution (e.g. Katz et al., 2020).

The recent KETJU code, first presented in Rantala et al. (2017), provides a new
method to address the particle resolution issue that affects black hole binary dynamics
within cosmological simulations. By implementing a region of high accuracy around a
single or binary MBH modelled with algorithmic regularisation, and with the option for
inclusion of Post-Newtonian corrections for the GW radiation phase within the regularised
region, KETJU extends the GADGET-3 simulation and achieves a better treatment of
the MBH binary evolution and coalescence. In its most recent version (Mannerkoski
et al., 2023), gravitational wave recoil can also be included. However, due to the large
computational cost of algorithmic regularisation, this approach cannot be taken over a
full cosmological simulation - rather it can be used to model individual galaxy mergers or
short sequences (Mannerkoski et al., 2019, 2022).

The code griffin brings new development to the challenge of achieving a high nu-
merical resolution whilst maintaining reasonable computational costs. By employing a
modified version of the Fast Multipole Method (FMM) for the force computation (see
Sec. 2.1.2) that includes a consideration for the ensuing force errors, the resulting oper-
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ational scaling of the code can achieve a marked improvement (up to O(N0.87) over the
O(N) of FMM codes) for a reasonable set of input parameters. The code shows an im-
provement in the force errors over standard tree codes as the long force error tails are
significantly curbed (Dehnen, 2014). griffin also includes a high accuracy treatment of
MBH-MBH and MBH-star interactions by direct summation with reduced force softening,
making it ideal to simulate the black hole binaries formed in galactic mergers. A novel
implementation featuring a chain regularised region is under development (Gualandris et
al. in prep.), featuring Post-Newtonian corrections and GW recoil at MBH coalescence.
A more detailed discussion of griffin is given in Sec. 2.2, including its usage.

1.8 Thesis Overview

With PTA detectors already operational and expected to make the first 5σ detection of
the GWB within the decade (e.g. Taylor, 2019), and the planned LISA mission in its final
preparations, it has become crucial to model GW sources at low frequencies and estimate
the detection rates for both instruments. These predictions help constrain expected GW
event numbers and aid in the interpretation of the data and their astrophysical implica-
tions (Amaro-Seoane et al., 2022). Modelling the mergers of MBHs requires a treatment
of both the galaxy-scales of their hosts and the smaller scales at central radii to accu-
rately represent the MBH dynamics; this presents a numerical challenge as the limitations
enforced by the resulting computational cost restrict the high resolutions necessary.

In this thesis, I present a numerical scheme to aid in accurately predicting MBH merger
dynamics and timescales in isolated galaxy merger N -body simulations. To overcome the
issue of increasing model resolution whilst still maintaining a bound on the force errors, I
investigate the utility of multi-resolution schemes in the context of merging galaxy models
and subsequently their MBH dynamics. I utilise the collisionless FMM code griffin to
simulate the evolution of the binary MBH mergers and their host galaxies, and employ a
semi-analytic prescription to follow the mergers to coalescence. griffin achieves reduced
force errors combined with a lower computational cost, enabling an accurate examina-
tion of the dynamics surrounding MBH binaries in combination with the multi-resolution
scheme.

This thesis is organised as follows: In Chapter 2, I describe the numerical methods
involved, including the code griffin. In Chapter 3 I present a series of models with a
multi-resolution scheme applied to both isolated and merging galaxies in comparison with
reference resolutions, including a discussion of the differences between the models, and in
Chapter 4 I use these multi-resolution models to investigate the MBH mergers following
on from their host galaxy mergers. In Chapter 5, I examine subsequent mergers with
properties extracted from a cosmological merger tree, considering both binary and triple
MBH evolution. I present my conclusions to this work in Chapter 6, including a discussion
of the potential for future work.
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2.1 Simulations

Galaxies are gravitational systems, with the dynamics of their components evolving over
time as they interact with one another. For the accurate modelling of a galaxy, com-
putational simulations are required to evaluate the large number of particle interactions
involved in such a system. N -body simulations can perform the force calculations for
this evolution for a set of N particles at set time intervals across the evolution time for
the galaxy. N -body simulations were first performed computationally to investigate the
motion of stars in a stellar cluster by von Hoerner (1960) at a maximum total particle
number of N = 16, and have since developed into a complex and wide-ranging field. Later
simulations were able to consider higher particle numbers, and as such the accuracy of the
results has improved with the advancement of computational hardware. The scope possi-
ble with these simulations has increased as N = N02

(y−y0)/2 since their initial employment,
as shown with the sample of simulations displayed in Figure 2.1. Other developments in-
cluded new algorithms that helped to ameliorate the computational cost of larger particle
numbers with approximations to the calculations.

In this chapter, I provide an overview of the different N -body simulation techniques
used to model galaxies, including the types of force computation, time-steps, and other
set-up considerations, and describe the N -body code griffin that is utilised for the sim-
ulations presented in this thesis.

2.1.1 N-body Simulations

Gravity is the dominant force over the long distances examined in astrophysical simula-
tions, with the point masses considered in an N -body model acting on one another within
a given system. Modelling an assembly of N particles, N -body simulations follow the
evolution of each particles dynamics that occurs as a result of the calculated gravita-
tional interactions over a set time period. These simulations can model galactic systems,
wherein the point masses may represent stars, dark matter, or other components (Binney
& Tremaine, 2008). The equations for the gravitational potential and force on a particle
in a system from Newton’s law are formulated as

Φ(ri) = −G

i=N∑

i ̸=j

mimj

|ri − rj |
(2.1)

Fi = −G

i=N∑

i ̸=j

mimj(ri − rj)

|ri − rj |3
(2.2)

for a particle i, where ri is the position of the particle at a given time relative to an
inertial frame. Numerical integration is required to solve Eq. 2.2 for N > 3, with particle
numbers higher than the solved two-body problem and the approximate solutions for the
three-body problem.
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2 Walter Dehnen, Justin I. Read: N -body simulations of gravitational dynamics

have reached over 106 particles [6], while collisionless calculations can now reach more than 109 particles [7–10]. This
disparity reflects the difference in complexity of these rather dissimilar N -body problems. The significant increase in
N in the last decade was driven by the usage of parallel computers.

Fig. 1. The increase in particle number over the past
50 years for selected collisional (red, [4–6, 11–16] taken
from [17]) and collisionless (blue, [3, 7–9, 18–24]) N-body
simulations. The line shows the scaling N = N02

(year−y0)/2

expected from Moore’s law if the costs scale ∝ N .

In this review, we discuss the state-of-the art software algo-
rithms and hardware improvements that have driven this dra-
matic increase in N . We consider the very different challenges
posed by collisional (§2) versus collisionless (§3) systems, and
we attempt to give a fair critique of the methods employed,
pointing out where there is room for improvement, and dis-
cussing some interesting future research directions. Our focus
is primarily on gravity; we do not consider the important role
that the other fundamental forces play4. Since our goal is to
elucidate the numerics, we will only touch upon the many in-
teresting and important results that have come out of N -body
modelling over the past 50 years. We must therefore apologise
in advance for all that is missed out in this brief review. We do
not have space to discuss modelling gas physics and its many
complications. Nor will we discuss the art of setting up initial
conditions for N -body simulations.

There are already several N -body reviews and books in the
literature. Aarseth [25] and Heggie & Hut [26] give excellent
reviews of the N -body problem, focusing mainly on collisional
N -body simulations. Hockney & Eastwood [27] cover many
aspects of particle-based simulations, focusing on collisionless
applications. Trenti & Hut [28] give a general overview of the
N -body problem, covering both the collisional and collision-
less regimes. Our review takes a somewhat different approach
to these previous works. We attempt to review numerical tech-
niques for both collisional and collisionless N -body simula-
tions, focusing on the very latest techniques, and with a view to assessing interesting future research directions. As
much as possible, we present the key equations and describe the methodology at a level where we hope the reader will
be able to obtain a relatively deep understanding of the algorithms and their hidden gremlins.

This paper is organised as follows. In §2, we review numerical methods for collisional N -body simulations: the
astrophysical (§2.1) and numerical foundations (§2.2) with special treatment of the time integration (§2.3), recent
hardware-driven developments (§2.4); and give a critique of the current state of the art (§2.5), summarise alternatives
to N -body methods (§2.6), as well as present a (brief and biased) overview over past and recent astrophysical results
with an outlook for the future (§2.7). In §3, we review numerical methods for collisionless simulations: the astrophysical
(§3.1) and numerical foundations (§3.2), the basis of cosmological N -body simulations (§3.3), force softening (§3.4) and
the various force solvers (§3.5), recent developments and challenges (§3.6), and a very brief overview of astrophysical
results (§3.7). §4 describes methods for validation of N -body simulations, and in §5 we present our conclusions and
outlook for the future of the field.

2 N-body methods for collisional systems

Collisional systems are dynamically old such that tdyn is short compared to their age. This applies mainly to massive
star clusters, and for this reason we will mostly refer to the N -body particles in this section as stars within a star
cluster. Such clusters typically orbit deep within the potential of a host galaxy – like our own Milky Way – such that
their dynamics is affected by the tidal field of their host.

Over many dynamical times, the accumulated effect of many small encounters between stars significantly affects
the evolution of collisional systems. Relaxation-driven equipartition of energy causes heavier stars to sink towards the
centre, while low-mass stars are pushed to the outskirts, where they are susceptible to being skimmed off by Galactic

4 Many stellar systems contain significant amounts of gas, which in addition to gravity also interact electromagnetically. This
gives rise to a large number of complicated effects from radiative cooling and the formation of stars (inside of which the strong
and weak interactions become important, too), to active galactic nuclei and outflows driven by radiative heating. While for
most gravitational systems these non-gravitational effects play an important role only for brief periods of their lifetime, their
understanding and appropriate modelling is at the forefront of many contemporary challenges in astrophysics. This is, however,
beyond the scope of this paper.

Figure 2.1: The increase in particle numbers for a sample of collisional (red) and colli-
sionless (blue) simulations, shown from the first N -body simulations to 2011. Figure from
Dehnen & Read (2011)

Collisionless and Collisional Models

In gravitational simulations, the choice between whether the model should be treated as
a collisional or collisionless system lies in the relaxation time, as given by Eq. 1.2. If
the system particles are affected by their mutual gravitational interactions within trelax,
collisional effects need to be considered by the simulation. Within collisional systems the
cumulative effect of small-scale particle interactions induces an equipartition of energy
through particle relaxation, with the heavier stars sinking to the centre of the galaxy and
the lighter stars moving towards the edges on a timescale of < trelax. This is distinct
from collisionless systems, in which the time required to for these effects to occur goes
beyond the timescale of the system. Galaxies are collisionless systems, as described in
Sec. 1.3.2, and are hence treated by collisionless simulations without the need to consider
computationally heavy particle encounters. In the context of N -body simulations trelax
will decrease with a lower N , and so for collisionless models where the systems typically
contain higher particle numbers it is important to maintain a relaxation time longer than
the set length of the simulation.

Collisional simulations match their total particle numbers to the typical abundance
of the real systems they are modelling, with the particles of the model representing an
individual star or DM particle. By contrast for collisionless models, which do not need to
model individual interactions between particles, they instead draw a sample of particles
from the smooth distribution representing the mass distribution of the system. The col-
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lisionless Boltzmann equation describes the distribution function f(x, ẋ, t) of collisionless
systems (Dehnen & Read, 2011)

0 =
df

dt
=

∂f

∂t
+ ẋ · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂ẋ

(2.3)

for a mass density of stars in six-dimensional phase space defined by the positions and
velocities (x, ẋ) at a time t.

For a system in equilibrium, ∂f/∂t = 0, also giving ∂Φ/∂t = 0; this allows the equation
to satisfy the Jeans theorem, in which the f can be given by isolating integrals (integrals
that constrain the phase-space) which restricts the system by one degree (Merritt, 2013).
This simplification only applies in symmetrical cases, which does not apply to galaxies
where some degree of triaxiality is present, such as after galaxy mergers (Gualandris
et al., 2017).

Owing to the increased complexity at smaller scales required of collisional simulations,
the number of particles that can be modelled is more limited than that of collisionless sim-
ulations considering the restrictions imposed by the costs of computational time. Larger
particle numbers bring an increased accuracy but trade off with higher computational
costs - if N is set too low, the particles will experience stochastic effects that lead to
Brownian motion in simulations including particle numbers of up to N = 106. At the
centres of galaxies, the MBH binary may be affected by relaxation during the stellar scat-
tering phase as the star particles experience increased Brownian motion (Bortolas et al.,
2016) and artificially increase the binary eccentricity (Nasim et al., 2020; Gualandris et al.,
2022). Recent N -body simulations can reach up to 106 and approximately 109 particles
for collisional and collisionless models respectively (Springel, 2005; Trenti & Hut, 2008;
Dehnen & Read, 2011).

Determining the galactic particle dynamics at each evolutionary stage requires solving
Eqn. 2.3. Given the large number of particles involved, this necessitates approximations
to the model else the simulations become computationally unworkable. This is resolved
for N -body models, where the particles are not representative of individual stars but
instead a sample of the smooth distribution function, and the evolution of the simulation
is determined by integrating the trajectories for each particle.

Integrator Choice

To update the particle dynamics in N -body simulations, there is a choice of time inte-
grators of varying complexity. The Euler method is the simplest of these, consisting of
a first-order Taylor expansion of the time-step to generate updates to the position and
velocity of the particles. As such, it engenders a high error, proportional to ∆t2, unless
the time-step is kept very low. It is also not reversible in time (it is not ‘time-symmetric’).
Another method for the integration is the leapfrog integrator, a ‘symplectic’ integrator
(an integrator that is designed to give solutions to an approximate Hamiltonian) that
conserves energy well. This alternates between ‘kick’ steps, in which only the momentum
changes in the calculation, and ‘drift’ steps, in which only the position changes. The
equations are also second-order Taylor expansions, scaling the error proportional to ∆t3.
The Hermite integrator then increases the order reached by the Taylor expansion to the
fourth-order, a non-symplectic integrator that creates time-symmetric circular equations
which require predictor-corrector steps to solve, in which the new positions and velocities
are first predicted, then corrected with the new accelerations and the derivatives of the
acceleration (Binney & Tremaine, 2008; Dehnen & Read, 2011).
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Collisional simulations usually employ the fourth-order Hermite scheme, owing to the
need for accuracy and its utility with short timescales, and use individual time-steps (e.g.
Makino, 1991). Collisionless simulations on the other hand widely prefer the leapfrog
integrator as it is time-symmetric and hence conserves energy well, and is a simple scheme
to implement (e.g. Klypin & Prada, 2018).

Time-steps

Galaxies cover both the short timescales of MBH merger events as the black holes re-
lease GWs and coalesce, and the longer scales of galactic mergers. When examined by
collisionless simulations, the obvious solution in which every particle shares a time-step
and advance together gives rise to high computational costs with the large particle num-
bers of collisionless models, and so the popular alternative are solutions utilising variable
time-steps.

The first of the two main alternatives is setting an individual time-step for each parti-
cle, wherein ∆ti is derived from the particle dynamics (Aarseth, 2003; Binney & Tremaine,
2008; Dehnen & Read, 2011). This can be useful at small scales within collisional simu-
lations, but rapidly becomes unwieldy at the higher particle numbers required to model
collisionless systems. By utilising block time-steps, this problem can be circumvented.
Block (or hierarchical) time-steps sort the particles into discrete groups that evolve all the
particles contained in a group together, typically ordered according to their dynamical
properties. The applied time-step for a block is defined by

∆tn = 2−n∆t0 (2.4)

where n refers to the hierarchical group the particles have been placed in, and ∆t0 is the
base time-step. These allow for individual time-step groupings without the prohibitive
computational costs of assigning a unique time-step for each particle, with the downside
that block steps are not time-symmetric (although there have been codes that attempt to
bring time-symmetry to these simulations, e.g. by Makino et al. (2006), they require an im-
practical degree of computational time to run) (Dehnen, 2017; Hernandez & Bertschinger,
2018).

Regularisation

In collisional codes, the close encounters between particles cause the force to diverge and
dominate the computation. Regularisation techniques can aid in the calculations of these
close encounters in direct summation, by introducing a transformation to the coordinates
of the interacting bodies that serves to remove the singularity in Eqn. 2.2 caused as ri → rj .

The Kustaanheimo-Stiefel (KS) regularisation method presented in Stiefel & Kustaan-
heimo (1965) first changes the interaction to relative coordinates, solves the new set of
equations with a new time coordinate, and obtains a new equation of motion that can be
solved without the singularity before a final transformation back to the original, physical
coordinates. Chain regularisation (also known as Aarseth-Mikkola regularisation) applies
the KS regularisation technique to only the particles with the closest encounters with one
another linked in a chain (Mikkola & Aarseth, 1993). KS regularisation is most useful
for binaries and three-body interactions, whilst the reduced computations of chain regu-
larisation makes it suitable for a larger number of particles. Chain regularisation can be
applied to small N systems such as a simulation examining the stars surrounding an MBH
binary (Aarseth, 2003; Dehnen, 2014). Regularisation may also introduce PN corrections
for relativistic systems (e.g. Mikkola & Merritt, 2008).
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2.1.2 Force Computation

The force calculations for the constituent particles in N -body simulations can be solved
either exactly, or with varying degrees of approximation. The approximate calculations of
the force are convenient to apply to large collisionless systems by grouping distant stars
and approximating the forces as a group rather than making individual calculations, with
a choice of different methods for efficiently estimating the total forces in the system in
collisionless codes. Collisional simulations instead generally rely on direct summation of
the forces to determine the evolution of the system.

Direct Summation

Direct summation is the simplest method for calculating the forces, in which Eqn. 2.2
is calculated directly for each particle against every other body in the system. With
(N−1) separate calculations to perform for each particle, this gives a minimum of N (N−1)

2
calculations per time-step, and scales as O(N2). Direct summation simulations are limited
to particle numbers of order 106 (Gualandris et al., 2017; Khan et al., 2020) owing to their
computational complexity, at which resolution stochastic effects are problematic and lead
to spurious Brownian motion (Bortolas et al., 2016) as well as a significant scatter in the
eccentricity of the binary (Nasim et al., 2020; Gualandris et al., 2022). Close encounters
between particles are treated with regularisation techniques. The lack of approximations
and usability at low particle numbers has made direct summation a common feature in the
majority of collisional codes where dealing with small-scale interactions between particles
with accuracy is paramount, such as the codes ϕ-GRAPE and N -body6 (Harfst et al.,
2007; Aarseth, 2003; Wang et al., 2015).

Tree Codes

While direct summation may perform well for collisional codes, for collisionless applications
approximation becomes necessary as the particle numbers climb higher and two-body
interactions are disregarded. One such type of integrator is tree codes, wherein clusters of
particles are defined and grouped by their local densities. These groups undergo further
splitting into sub-groups in particularly dense regions where the number of particles in
a group exceeds nmax. The base cluster here is defined as the ‘root’ of the ‘tree’, and
the further subdivisions form the rest of the tree. The method then utilises a multipole
expansion for these groups to compute the forces. A common method of grouping is the
’oct-tree’, in which a cube will split into eight sub-cubes until each group contains only
one particle. The gravitational force from these clusters is then assessed in relation to
particles distant from a group; if the opening angle that defines the cluster exceeds a set
value when considered from the distant particle, as θ > θ0, then the multipole expansion
of the group does not proceed and the angles associated with the next set of subgroups
is considered hierarchically. A smaller θ0 makes the force computation more accurate,
approaching the accuracy of direct summation as θ0 → 0 (Barnes & Hut, 1986; Dehnen,
2000). The potentials in this hierarchical structure are computed using Eqn. 2.1, expanded
using the multipole series to compute the forces for each group.

The potential for the system is defined by (Dehnen, 2014)

Φ(xb) = −
i=N∑

i ̸=j

Gµaϕ(xb − xa) (2.5)
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where ϕ is the Greens function for the system, µa is the particle mass at the source position,
and xb the sink position for a particle in the separate cell B. The Taylor expansion of the
Greens function about the distance to zA is then

ϕ(xb − xa) ≈
∑

|n|≤p

1

n!
(xa − zA)n∇nϕ(xb − zA) (2.6)

where the distance between the particle a and the host cell centre is defined as zA, p
is the expansion order, and G is taken into ϕ. The multi-index notation used here gives
n ≡ (nx, ny, nz) for ni ≥ 0, |n| ≡ nx+ny +nz,n! ≡ nx!ny!nz!, and rn ≡ rnx

x r
ny
y rnz

z (Dehnen
& Read, 2011). Taken with Eqn. 2.5, this becomes

ΦA ≈ −
∑

|n|≤p

Mn(zA)∇n(xb − zA) (2.7a)

Mn(zA) =
∑

a∈A
µa

(−1)n

n!
(xa − zA)n (2.7b)

with the multipole variable Mn(zA) for cell A with respect to the cell centre. Tree codes
scale as O(N log(N)), an improvement over direct summation for large particle numbers
(Binney & Tremaine, 2008; Dehnen & Read, 2011). This method comes with larger force
errors than direct summation codes, and although the treatment of mergers is worse
than is desirable for a collisional simulation, it marks an improvement on a particle mesh
method with the use of particles over a grid. It also allows for parallelisation of the codes,
improving on the computational time (Dubinski, 1996).

Fast Multipole Method

The Fast Multipole Method (FMM) can then extend the utility of tree codes by performing
the expansion twice, both in the source position as tree codes do, and additionally at the
sink position. This local expansion improves the speed of calculations for the total particle
number - the expansion in both xa and xb allows the local interactions between cells to
dominate the force calculations, rather than the distant interactions dominating as they
do in tree codes, as such reducing the computational cost of the algorithm. Judging the
distances between the particles and their cell centres as distances zA and zB, the vectors
can be set as r = zB − zA, ra = xa − zA, and rb = xb − zB. These vectors are illustrated
in Fig. 2.2. The Taylor expansion of ϕ then becomes

ϕ(xb − xa) ≈
∑

|n|≤p

∑

|m|≤p−n

(−1)n

n!m!
(rb)

n(ra)m∇n+mϕ(zB − zA) (2.8)

with G again taken into ϕ. Taking the potential in Eqn. 2.5, the potential of the particles
in cell A acting on a point xb in cell B is

ΦA→B(xb) ≈
∑

|n|≤p

(rb)
n

n!
Fn(zB) (2.9a)

Fn(zB) =
∑

|m|≤p−n

Mm(zA)∇n+mϕ(r) (2.9b)
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Figure 2.2: An illustration of the vectors between cell interactions in FMM, from a
particle at xa in cell A to particle at xb in cell B. Figure from Dehnen & Read (2011).

with Fn denoting the field tensor, a new variable. The computational speed is improved
over the O(N log(N)) of tree codes, with the typical scaling for the computational cost at
O(N) (Dehnen, 2000; Dehnen & Read, 2011).

Particle Mesh

Distinct from the particle based procedures described prior, the particle mesh method uses
a grid-based system to compute the forces. These solve the Poisson equation for densities
at the nodes of a grid applied across the simulation, where the grid is made up of regularly
spaced cells. The differential form of the Poisson equation for the gravitational potential
is given by (Binney & Tremaine, 2008)

∇2Φ(r) = 4πGρ(r) (2.10)

where ρ is the density. Accelerations for the cells are obtained by differentiation from the
Poisson potential; the densities are computed at the nodes of the grid, the fast Fourier
transform (FFT) method is then typically used to solve Eqn. 2.10, and the accelerations are
then interpolated for each of the particles. The resolution of the model is hence constrained
by the number of cells assigned in the mesh (Klypin & Holtzman, 1997; Melott et al., 1997).
The cells are sized equally in a fixed grid method, with the alternative adaptive mesh
refinement methods improving the resolution by concentrating higher numbers of cells in
areas with more particles (Passy & Bryan, 2014). Particle mesh models are typically useful
for cosmological models, which do not require a high degree of accuracy at small scales.

2.1.3 Softening

Within collisionless simulations, at small scales as particles approach one another the re-
sulting calculations cause an ultraviolet divergence in the potential. Considering Eqn. 2.2,
this issue manifests within simulations as Fi → ∞ when |ri − rj | → 0. Whilst collisional
simulations include close two-body interactions, collisionless simulations apply a limiting
‘softening’ length at small scales to avoid infinite forces as particles approach one another
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(Dehnen, 2001). A softening parameter, ϵ, is applied to limit this problem by quelling the
gravitational force below that distance, substituting individual particles in the galaxy with
distributions of the same mass out to the softening length (as touched on in Sec. 2.1.1)
(Aarseth, 1963; Dehnen, 2001; Aarseth, 2003). By modifying the gravitational potential,
the softening prevents the force from diverging at small scales. This is implemented via
a softening kernel. For the gravitational potential and force, as given by Eqn. 2.1 and
Eqn. 2.2, with a softening kernel the equations become (Dehnen & Read, 2011)

Φ(ri) = −G
i=N∑

i ̸=j

S(rij , ϵ)mimj (2.11a)

F (ri) = −G
i=N∑

i ̸=j

SF (rij , ϵ)mimj
ri − rj
rij

(2.11b)

where S(rij , ϵ) is the softening kernel with SF (rij , ϵ) the first derivative thereof, for a
distance rij = |ri − rj | between two particles.

Within collisionless N -body simulations, the softening is implemented with the set
distance acting as a barrier to the diverging forces that would give rise to impractically
high computational costs. This introduces a systematic error to the simulation results, a
trade-off against the unphysical behaviour that would otherwise occur. Different forms of
the softening kernel can be used, with a bearing on the resultant error. The commonly
used Plummer softening represents the particles as Plummer spheres, where ϵ is set to the
scale radius of the sphere (Dyer & Ip, 1993; Barnes, 2012). This results in a softening
kernel of

S(rij , ϵ) = − 1

(r2ij + ϵ2)1/2
(2.12)

and so the softened gravitational force Eqn. 2.11b becomes

Fi = −G
i=N∑

i ̸=j

mimj(ri − rj)

(|ri − rj |2 + ϵ2)
3
2

. (2.13)

There are different ways to determine the appropriate softening length - the minimum
recommended value is to overcome the two-body scattering between particles. For a
collisionless system this is given by (Dehnen & Read, 2011)

ϵmin ∼ Gµ

σ2
(2.14)

where µ is the individual particle mass in the simulation, and σ is the stellar velocity
dispersion. However, setting the softening at the minimum value is not always the best
choice for the simulation, despite the increased accuracy at lower softening values. Another
definition can be derived by substituting M = Nµ2 into Eqn. 2.14, for the situation of
modelling N star particles. With Gµ/ϵ2 ≲ GM/R2, a constraint on the softening obtained
by limiting the maximum force between particles to the mean field strength, then

ϵ ∼ R

N1/2
(2.15)

where the radius of the system is given by R with total mass M (Power et al., 2003;
Dehnen & Read, 2011).
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The softening length presents an issue for following MBH mergers, as below the set
distance the results obtained cannot be trusted. But although smaller softenings allow the
merger evolution to be tracked for longer they are also more computationally heavy, and
utilising Eqn. 2.14 may not be a feasible choice for simulations with large particle numbers
or those running over long time periods.

2.2 GRIFFIN

With semi-analytic models and cosmological models both demonstrating flaws in their
analysis of MBH mergers (see Sec. 1.7), there is still a need for new developments in the
field for modelling these events. To be able to obtain accurate MBH merger statistics for
upcoming GW detections, detailed modelling requires high accuracy numerical techniques
able to reduce force errors, and ensure a reliable treatment of the energy and angular
momentum transfers with stars (Vasiliev et al., 2014). This includes treatment of the
binary phases beyond dynamical friction; both stellar scattering and the final emission of
GWs at the MBHs coalesce.

Raising the total number of particles within a simulation whilst simultaneously main-
taining a bound on force errors is challenging, with the force calculations requiring an
increasingly smaller softening as N grows, becoming progressively more computationally
expensive (Dehnen, 2000). The operational scaling for FMM codes can improve to a com-
plexity of O(N) (Fong & Darve, 2009; Dehnen, 2014), but a better simulation resolution
has been achieved in the fast multipole method code griffin.

2.2.1 An Adaptive Fast Multipole Method

griffin is a Fast Multiple Method code, with a more detailed discussion of the FMM
algorithm provided in Sec. 2.1.2. With a sophisticated monitoring of errors and adaptive
choice of parameters, the code improves on the the computational cost of prior FMM
models (Dehnen, 2002, 2014). This error monitoring is performed through initial estima-
tions of the force error as a result of the interactions between the particle groups; these
estimations then set the ensuing force expansion centre placements. The force expansion
centres, here labelled z and s for the source and sink cell centres respectively, are taken
as the geometric centre of the cell cube in conventional FMM - this choice contributes
significantly to the resulting large tail in the resultant force error distribution. In the
implementation of the algorithm in griffin, after the force error estimation is made the
positions are instead chosen by finding the centre of the smallest sphere encompassing
the group particles, hence reducing the error along with the area considered. Appropriate
values for the remaining parameters p and ϵ are then adopted with consideration to min-
imising the error once again, with p being set by the code after the appropriate softening
choice is determined (e.g. by Equation 2.14) for the simulation in question. These param-
eters then provide the optimum scaling for the given N particles, and with this method
griffin is consequently able to utilise a high particle number whilst keeping force errors
in check.

This adaptive parameter selection improves upon the computational cost from O(N),
with a best performance of scaling O(N0.87) for relative force errors of ∼ 10−7 (Dehnen,
2014). The resulting distribution of force errors is similar to that of a direct summation
code, whilst retaining the O(N) scaling of the FMM technique. With these improvements,
griffin has been shown to perform similarly to a direct summation code in modelling
the evolution of MBH binaries formed in galactic mergers (Nasim et al., 2020, 2021).

38 Kate Attard



Thesis CHAPTER 2. NUMERICAL MODELS

Figure 2.3: The probability distribution function of acceleration errors for N = 107

particles drawn from a Plummer sphere, with an adaptive FMM run (red lines) and for
a direct summation run (black lines) with two variations on softening, with ϵ = 2 × 10−7

(left) and ϵ = 10−7 (right). The panels show the normalised by the mean acceleration
(top), relative (middle), and scaled by the force (bottom) acceleration errors. Figure from
Dehnen (2014).

This makes griffin useful with a sufficient set of assigned parameters in examining the
timescales of the different phases of evolution an MBH binary undergoes. Figure 2.3 shows
the distribution of acceleration errors for the algorithm including the adaptive parameter
selection. The distribution lacks the extended force error tail in the distribution typically
seen in FMM, owing to the bound placed on the maximum force error. The adaptive
FMM behaviour shown in comparison is similar to the direct summation errors for the
same particle number (N = 107).

By contrast, Gualandris et al. (2017) demonstrated that the standard collisionless tree-
code Gadget2 did not provide adequate accuracy in examining the dynamics surrounding
the MBHs in the loss-cone, as shown in contrast to the well-performing griffin and the
collisional code ϕ-GRAPE in Figure 2.4.

2.2.2 Usage

The softening length in griffin has the option of being set with different kernel choices.
P0 denotes the standard Plummer softening, as in Eqn 2.12. The near-Plummer variation
given by P1 is the default setting for the code, with S(rij , ϵ) = −1/(r2 + ϵ2)5/2. The
additional settings P2−P3 are also near-Plummer possibilities, where the variation is in
the Taylor expansion. As all available kernels are either Plummer or variants on the
Plummer softening, there is a significant error induced as a result of giving the kernel an
infinite extent, with the modifications in the near-Plummer models serving to bring this
error closer to Newtonian gravity (Dehnen, 2001).

The simulation particles are divided into ‘standard’, ‘gas’, and ‘sink’ particles. Dark
matter, and stellar particles are all input to griffin as standard particles, and gas particles
labelled as ’gas’. Black holes are labelled as sink particles, for which the particle-to-particle
interactions are computed with direct summation rather than the adaptive FMM of the
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Figure 2.4: The loss-cone repopulation factor RJ against simulation particle number
for the codes griffin, ϕ-GRAPE and Gadget2, with spherical (left) and triaxial (right)
models. Figure adapted from Gualandris et al. (2017).

standard particles. This applies to both interactions between BHs with one another, and
with standard and gas particles. Different softening lengths may be used for each type of
particle, allowing the BHs to be treated with a greater precision than standard particles
without compromising the lower computational cost of the simulation.
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The Multi-Resolution Scheme

3.1 Introduction

As discussed in Chapter 1, future explorations of GW signals detected at PTA frequencies
will require information on MBH binary coalescence timescales for astrophysical interpre-
tation. Modelling of MBHs embedded in merging galaxies is provided by high accuracy
simulations of individual mergers by means of direct summation simulations (e.g. Gua-
landris et al., 2022), hybrid collisionless and collisional simulations (e.g. Nasim et al.,
2021), and hybrid collisionless/regularised simulations (e.g. Rantala et al., 2017). Direct
summation simulations achieve low force errors by brute force calculations of all pairwise
gravitational forces, but are limited to particle numbers of order a million by their O(N2)
computational scaling (Gualandris & Merritt, 2012b; Gualandris et al., 2022; Khan et al.,
2020). At these low resolutions, stochastic effects lead to spurious Brownian motion of
the binary (Bortolas et al., 2016) as well as a significant scatter in the eccentricity of the
binary (Nasim et al., 2020). Accurate MBH merger timescale estimations hence require a
statistically representative sample of the binaries and their hosts, and modelling galaxies
and galactic mergers at high resolutions of N ≳ 107 is required to mitigate spurious relax-
ation and the stochastic effects present in the evolution of an MBH binary (Nasim et al.,
2020). This higher resolution can present a numerical challenge owing to the large range of
spatial and temporal scales involved in galaxy and MBH binary mergers, as to reach suffi-
cient particle numbers even with a more efficient code such as griffin the computational
time can become prohibitive.

In this chapter, I present a numerical scheme to increase resolution in the central re-
gions of galaxies based on mass refinement. A high resolution at the centres of galaxy
simulations is necessary for the proper treatment of the central MBHs, and an accurate
calculation of their dynamics to model the phases of MBH binary inspiral. I present results
from both isolated and merging galaxies with central MBHs evolved using the adaptive
FMM code griffin (as described in detail in Sec. 2.2), utilising a method that preferen-
tially distributes the stellar and DM particles closer to the central region of interest to
generate the initial conditions and comparing with reference models. This multi-resolution
method allows for an increase in the effective resolution in the galactic center, the area
pertaining to MBH binary dynamics, without any adverse effects on stability or dynam-
ical evolution. In particular, I show that a mass refined N = 106 galaxy model behaves
similarly to a N = 107 reference galaxy model.

The content of this chapter was adapted from a submission to Monthly Notices of the
Royal Astronomical Society (MNRAS), as A multi-resolution method for modelling galaxy
and massive black hole mergers, Attard, Gualandris, Read, and Dehnen.

3.2 Multi-Resolution Scheme

Multi-resolution models of the type presented in this work have been adopted in the
literature to enhance the resolution of a galaxy model within the areas of interest, such
as presented in Cole et al. (2012) in which the sampling probability is set by the inverse
of a function relating the particle mass ratio and the orbital radius and compensating the
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oversampling with a corresponding mass increase. The technique allows a reduction in the
total particle number by half at the same central resolution without any adverse effects.

Here, I implement a multi-resolution refinement scheme designed to increase the res-
olution in the central regions of galaxy models, with the aim of accurately modelling the
evolution of MBH mergers formed in galactic mergers at a reduced computational cost.
These models have previously been used for isolated galaxies; in this work I test the via-
bility of a multi-resolution scheme for both isolated and merger models. Galactic mergers
are violent events that affect the distribution of stars at both large and small scales, and as
such it is not guaranteed that the refinement will work over time in a merger simulation.
However, the ‘mixing theorem’ shows that N -body simulations should preserve central
phase space density, even through mergers (Dehnen, 2005). Following this, the high res-
olution regions at the centre of each merging galaxy should overlap once the merger is
complete.

3.2.1 Refinement Scheme Implementation

I present the implementation of a multi-resolution scheme that works to increase the
resolution in the central regions of galaxy models, with the aim of accurately modelling
the evolution of MBH binaries formed in galactic mergers at a reduced computational
cost. In the case of multi-component models featuring a central MBH, a stellar bulge, and
a DM halo, the scheme is applied independently to the bulge and the halo, ensuring the
central regions (dominated by bulge particles) will be adequately over-seeded.

Starting from a desired final total particle number for each component, which I denote
Nb and Nh, particles were first oversampled by a factor k, termed the multiplication factor,
and then coarse-grained based on their radial position. A number of radial zones can be
defined such that particles in the innermost zone are left unchanged, while only a given
fraction of particles are retained in the outer zones. This retainment fraction decreases in
zones moving away from the galaxy centre. The mass of each particle in the outer zones
were then increased by the same oversampling factor k to ensure that the total mass in
the galaxy and the mass density profile are unaffected. By adopting a larger number of
zones for higher multiplication factors, the increase in particle masses at the outermost
radii is reduced. With this increase of zones, it is possible to increase the resolution in the
central region of the galaxy whilst avoiding large jumps in particle masses between the
radial zones, which would otherwise induce spurious mass segregation.

The two different implementations of the scheme utilised, labelled ‘a’ and ‘b’, have their
parameters listed in Table 3.1. Scheme ‘a’ is the standard implementation, characterised
by n = 3 zones, while scheme ‘b’ is a more aggressively refined scheme with an increased
n = 4 zones. Scheme ‘b’ can be considered to be a physically motivated implementation,
as the innermost radial bin is equal to twice the radius of the Rinfl of the central MBH, as
given by Eqn. 1.8.

The zone radial boundaries and mass multiplication factors are given in Table 3.1. For
scheme ‘a’, the resolution of the central radial zone is set at 5 times the total particle
number, and the extent of the model is initially overseeded by this factor. The number
of particles in the central zone remains unchanged from the initial overseeding. The
percentage of particles of Nb and Nh contained within the central zone are set at 50%,
and the radial boundary of the zone is then set by this. The particle number is then
reduced by a factor of 5 for each successive radial zone, and the multiplication factor
for the remaining particle masses increases correspondingly. Scheme ‘b’ is similar, with
an additional zone being added to prevent an excessively large increase in mass in the
outermost radial zone. This additional zone divides the 50% share of the particles, with
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Table 3.1: The parameters of the refinement scheme: scheme identifier, the oversampling
factor k, zone number for bulge zb, zone number for halo zh, mass multiplication factor
m, and start and end radius (r0-r1, kpc) of each zone.

Scheme k zb zh m rb0 rb1 rh0 rh1
a 5 1 1 1 0.0 1.06 0.0 18.70

2 2 5 1.06 7.15 18.70 62.80
3 3 25 7.15 − 62.50 −

b 10 1 1 1 0.0 0.18 0.0 4.98
2 2 2.53 0.18 1.31 4.98 21.50
3 3 10 1.31 7.15 21.50 62.80
4 4 40 7.15 − 62.80 −

1% of particles in the innermost zone and 49% in the subsequent zone. The multiplication
factor for the additional zone is then set based on these restrictions.

3.3 Initial Conditions

The schemes were applied to a set of multi-component models representative of massive
elliptical galaxies consisting of a stellar bulge, a dark matter (DM) halo, and a central
MBH. The central MBH is modelled as a Plummer sphere (Plummer, 1911) of zero scale
length, and placed at the centre of each model. The stellar bulge follows a Sérsic profile
in projection (Eqn. 1.3, Sérsic, 1963; Sersic, 1968) with n = 4, appropriate for elliptical
galaxies, as in the de Vaucouleurs profile (de Vaucouleurs, 1948). The DM halo follows an
NFW profile (Eqn. 1.1, Navarro et al., 1996).

The first step of the initial conditions, the MBH mass, was set by merger trees extracted
from the IllustrisTNG-300-1 cosmological simulation, chosen from the IllustrisTNG suite
for the highest resolution of the largest volume runs (Pillepich et al., 2019; Springel et al.,
2018; Marinacci et al., 2018; Nelson et al., 2019; Naiman et al., 2018). I selected a major
merger at low redshift whose central MBH is an expected PTA source, in which the MBH
has a mass Mbh = 7.14 × 108 M⊙. The parameters for the bulge and halo components
were then set using observational scaling relations. The stellar bulge mass Mb is derived
from the MBH-stellar mass relation (Eqn. 1.6, Kormendy & Ho, 2013; Reines & Volonteri,
2015) with the elliptical parameters α = 8.95 ± 0.09 and β = 1.40 ± 0.21. This gives a
bulge mass of Mb = 8.54 × 1010 M⊙.

The halo mass Mh was then determined from the halo-stellar mass scaling relation of
Chae et al. (2014) for massive elliptical galaxies, with a typical value Mh = 5.04×1012 M⊙
(see Sec. 1.3.2). The virial radius R200 is derived from the relation with the halo mass

Mh = 200ρc
4

3
πR3

200 , (3.1)

with ρc = 136.05 M⊙ kpc−3 (Binney & Tremaine, 2008), which gives R200 = 353.69 kpc.
The scale radius of the NFW profile is given by a = R200/c, where the concentration
parameter c is derived from the c −Mh relation in Dutton & Macciò (2014). Lastly, we
set the half-mass radius of the stellar component using the relation R1/2 = 0.015R200

(Kravtsov, 2013), giving R1/2 = 5.30 kpc.
The action-based galaxy modelling software library Agama (Vasiliev, 2019) was utilised

to sample the total gravitational potential of the multi-component galaxy system, and con-
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Table 3.2: Properties of the adopted galaxy models: model identifier, type of model
(isolated or merger), total particle number, number of halo particles, number of bulge
particles, number of particles within the 5Rinfl in the initial models, minimum halo star
to MBH mass ratio, minimum bulge star to MBH mass ratio, and central resolution
multiplication factor for the models with mass refinement.

Run Type N Nh Nb N(5Rinfl) mh/Mbh mb/Mbh Scheme

I6 Isolated 106 9 × 105 1.05 × 105 1.3 × 104 7.84 × 10−3 1.14 × 10−3 -
I7 Isolated 107 9 × 106 1.05 × 106 1.3 × 105 7.84 × 10−4 1.14 × 10−4 -
I6a Isolated 106 9 × 105 1.05 × 105 5.7 × 104 1.57 × 10−3 2.38 × 10−4 k = 5
I6b Isolated 106 9 × 105 1.05 × 105 6.0 × 104 7.84 × 10−4 1.14 × 10−4 k = 10
I7a Isolated 107 9 × 106 1.05 × 106 5.7 × 105 1.57 × 10−4 2.27 × 10−5 k = 5
I7b Isolated 107 9 × 106 1.05 × 106 5.9 × 105 7.84 × 10−5 1.14 × 10−5 k = 10
M6 Merger 106 9 × 105 1.05 × 105 2.5 × 104 7.84 × 10−3 1.14 × 10−3 -
M7 Merger 107 9 × 106 1.05 × 106 2.5 × 105 7.84 × 10−4 1.14 × 10−4 -
M6a Merger 106 9 × 105 1.05 × 105 1.1 × 105 1.57 × 10−3 2.38 × 10−4 k = 5
M6b Merger 106 9 × 105 1.05 × 105 1.2 × 105 7.84 × 10−4 1.14 × 10−4 k = 10
M7a Merger 107 9 × 106 1.05 × 106 1.1 × 106 1.57 × 10−4 2.27 × 10−5 k = 5
M7b Merger 107 9 × 106 1.05 × 106 1.2 × 106 7.84 × 10−5 1.14 × 10−5 k = 10

struct initial conditions in equilibrium for the simulations. The units were set such that
G = 1, R = 1 kpc and M = Mb. I generated isolated models, denoted with identifier
‘I’, at two reference resolutions, N = 106 and N = 107, and applied the ‘a’ and ‘b’ mass
refinement schemes described in Section 3.2.1 for each resolution. I then set up equal mass
mergers of two independent realisations of the same multi-component model, denoted with
identifier ‘M’, at the same resolutions. Galaxies were placed on bound Keplerian orbits of
eccentricity e = 0.7 and at an initial distance of D = 378.6 kpc. The initial eccentricity
is relatively high, in agreement with typical orbits in large scale cosmological simulations
(Khochfar & Burkert, 2006), but not so high to result in a head-on galaxy collision. The
initial distance was set to R ≃ 9Rs, where Rs represents the scale radius of the NFW
model describing the halo of the galaxies, defined as the radius where the particle number
drops to half of the total.

The parameters of all models are listed in Table 3.2, including the total particle number
N , the number of halo and bulge particles, and the ratio of halo/bulge particle mass to the
MBH mass. The final column gives the numerical multiplier k adopted in the mass refined
schemes, which marks the factor by which the schemes are first overseeded in comparison
to the reference model. A commonly adopted mass factor to avoid mass segregation is of
order 10 (Alexander & Hopman, 2009), as utilised in both schemes.

While the ratio between a halo particle mass and a bulge particle mass is equal for
all models (mh/mb ∼ 6.7), the MBH to bulge particle mass ratio at the innermost radial
shell decreases as the refinement scheme becomes more aggressive. In particular, I6b has
the same mb/Mbh as I7, and the smallest ratio is obtained for I7b.

3.3.1 Numerical Simulations

Each of the models were evolved with the code griffin (Dehnen, 2014), described in detail
in Section 2.2. The simulations each use a multipole expansion order p = 5. The softening
parameter was initially set to ϵ = 30 pc for star-star interactions, and to ϵbh = 10 pc for
MBH-MBH and MBH-star interactions for all models. The softening length ϵbh in the
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merger simulations is then reduced to 5 pc after a time ∼ 2 Gyr, corresponding to just
prior to the end of the dynamical friction phase. This setup allows computational time
to be reduced in the early stages of the merger, driven by dynamical friction, and yet to
accurately model the evolution of the MBH binary through the rapid hardening phase
dominated by encounters with background stars. The softening length choice for the sink
particles is always smaller than the radius of influence of the MBH, in order to resolve the
dynamical friction phase (Colpi et al., 2019; Tremmel et al., 2015; Pfister et al., 2019).
The softening kernel employed is a near-Plummer variation for smooth source particles
with a density ρ ∝ (r2 + ϵ2)−3.5.

All simulations were evolved until the binary reached a separation of the order of
softening length ϵbh, below which the dynamical evolution is no longer reliable. This
separation is always ensured to be smaller than the hard-binary separation ah.

3.4 Evolution of the Multi-Resolution Models

Here I examine the evolution of the isolated and merging multi-resolution galaxy models
and compare to the reference resolutions. Of particular interest are the merger models, to
see if they can retain the higher central resolutions of the multi-resolution model particle
distributions at the initial time throughout the violent merger event.

The distribution of bulge particles in the isolated models, with and without the mass
refinement, is shown in Figure 3.1 at the initial time and a late time in the evolution. This
illustrates the efficacy of the refinement schemes, with increased population in the central
regions of models ‘a’ and ‘b’. The multi-resolution models retain their higher central
resolution to later times, in agreement with earlier studies (Cole et al., 2012). Crucially,
this holds true in the merger models as well, as shown in Figure 3.2, despite the violent
mixing that occurs during the merger process. Models M6a and M6b achieve a population
within the central ∼ 100 pc similar to model I7.

The radial density profiles shown in Figures 3.3 and 3.4 support these conclusions from
the particle distributions. The schemes are effective at populating the central regions of
the models, and the distributions are stable over time for both the isolated and merger
models. The flattening observed in the inner density profiles of the merger models can
be attributed to core scouring during the hardening phase of the black hole binary, as
described in Section 1.5.2. The ‘b’ models consistently increase the central resolution
more effectively than the ‘a’ models, as expected from the more aggressive application of
the scheme, but maintain stability in the models as well as the ‘a’ scheme.

The shape of the modelled galaxies can be characterised through calculation of the
axis ratios of an ellipsoid fit to the stellar distribution, defined as

1 =
(x
a

)2
+
(y
b

)2
+
(z
c

)2
(3.2)

where a > b > c > 0 are the axes of symmetry of an ellipsoid. The ratios b/a and c/a are
then at perfect sphericity at unity, and depart from this with b and c axis length decreases
(de Zeeuw, 1985; Bortolas et al., 2018). Here these ratios are calculated using Pynbody,
a Python package for analysis of astrophysical simulations (Pontzen et al., 2013). The
triaxiality parameter provides a measure of the departure from sphericity, computed as

T =
1 − b2/a2

1 − c2/a2
(3.3)
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Figure 3.1: Radial distribution of the bulge particles for all isolated models with N = 106

particles (top panels) and N = 107 (bottom panels) at two characteristic times: t = 0 Gyr
(left) and t = 2.8 Gyr (right), corresponding to a late time in the evolution. The grey
dotted line represents the 5Rinfl radius. A significant increase in the particle number
< 10 kpc is observed for the models with the multi-resolution scheme applied, and no
significant expansion occurs over time for these models.

which varies as T > 0.5 for prolate spheroids, T < 0.5 for oblate spheroids, and T = 0.5
for perfect triaxiality. The spatial evolution of the axis ratios for the stellar bulge of
each simulation, including T for the merger models, are shown for the isolated models in
Figure 3.5 and for the merger models in Figure 3.6. In all isolated models, the sphericity
is maintained over the time evolution, save for a noticeable departure at the central radii
in model I6. This is likely to be the effect of a lower number of particles at the innermost
radial bins making the axis ratios harder to evaluate, which is improved in the models
with the multi-resolution scheme applied. This evaluation holds for the merger models,
with the shape of the stellar distribution remaining unaffected by the usage of the multi-
resolution scheme. The merger models display triaxiality, as expected in a galaxy merger
remnant, here as prolate (T > 0.5) (Gualandris et al., 2017; Bortolas et al., 2018).

The 3D velocity dispersion profiles shown in Figures 3.7 and 3.8 show results in line
with the expansion displayed at inner radii by I6 and M6 in the particle distributions,
with I6 and M6 here showing an evolution ≳ 0.2 kpc of increased σ, which is not present
in the higher resolution models.

The velocity anisotropy β profiles are shown in Figures 3.9 and 3.10, calculated using

46 Kate Attard



Thesis CHAPTER 3. MULTI-RESOLUTION SCHEME

Figure 3.2: Radial distribution of the bulge particles for all merger models with N = 106

particles (left) and N = 107 (right), both at the later time t = 2.8 Gyr past the end of
the merger process. The grey dotted line represents the 5Rinfl radius. A higher central
resolution is maintained for the models with the multi-resolution scheme applied post-
merger, most significantly in the M6 models.

Pynbody which utilises the definition (Binney & Tremaine, 2008)

β(r) = 1 − σ2
θ(r)

σ2
r (r)

(3.4)

where σθ(r) is the tangential velocity dispersion and σr(r) is the radial velocity dispersion.
β measures the radial anisotropy of the system: for isotropic orbits β(r) = 0, and and
deviates as β(r) > 0 for radially biased orbits and β → ∞ for circular orbits (Binney &
Tremaine, 2008; Read et al., 2021). Here, the isolated models show β(r) ≃ 0 across the
run with the exception of the I6 evolution, which displays an increase towards radial bias
over time. The merger models display an expected anisotropy with an inner tangential
bias, imparted from core scouring as the stellar scattering phase of binary evolution pref-
erentially ejects stars on radial orbits (Quinlan & Hernquist, 1997; Thomas et al., 2014),
and an outer radial bias beyond ∼ 300 pc.

Combined with the particle distributions and the density profiles, it can be shown that
the scheme does not affect the properties of the isolated models or the remnant galaxy
at the central radii, and as such has potential utility in simulations with the purpose of
examining galactic dynamics in addition to the MBH studies I focus on here.

The Lagrangian radii shown in Figures 3.11 and Fig. 3.12 for isolated and merger
models, respectively, reveal that a small expansion takes place in the bulge particles, and
predominantly those at lower radii. This effect is owed to relaxation effects at small radii
and at lower resolutions, as indicated by the dependence of the effect on particle number
and radius. The expansion lessens with increasing radius, due to an increase in relaxation
time with radius, and is almost negligible in both the refined N = 106 models and all the
N = 107 models. Furthermore, it does not affect the halo particles. The strong variations
seen at t = 2.0 − 2.5 Gyr in the merger models are a signature of the merger process, and
can be taken as a measure of the merger time.
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Figure 3.3: Spatial density profiles of the isolated models with N = 106 particles (top
panels) and N = 107 particles (bottom panels) at time t = 0.0 Gyr (left) and at the later
time t = 2.8 Gyr (right). The dashed vertical line represents the star-star softening length.
The profiles show the same trends as the bulge particle distributions, with all the multi-
resolution models showing stability at the innermost radii.

Figure 3.4: Spatial density profiles of the merger models with N = 106 particles (left)
and N = 107 (right) at the later time t = 2.8 Gyr. The dashed vertical line represents the
star-star softening length.

48 Kate Attard



Thesis CHAPTER 3. MULTI-RESOLUTION SCHEME

Figure 3.5: Axis ratios of the isolated models calculated as a function of radius with N =
106 particles (top panels) and N = 107 particles (bottom panels) at time t = 0.0 Gyr (left)
and at the later time t = 2.8 Gyr (right). The solid lines show the evolution with radius
of b/a, and the dashed lines the evolution of c/a, with each of the models maintaining
sphericity across their evolution.

The results presented in Figures 3.3 and 3.4 are also in agreement with expectations
based on a simple calculation of the dynamical friction timescale for point mass particles.
A particle of mass M in a system of lighter particles will sink from a radius ri on a timescale
given by Chandrasekhar’s dynamical friction formula (Binney & Tremaine, 2008)

Tdf =
19 Gyr

5.8

σ

200 km s−1

(
ri

5 kpc

)2 108 M⊙
M

(3.5)

where σ is the local stellar velocity dispersion.
The timescale Tdf of the halo particles is plotted in Fig. 3.13 for both the isolated and

merger models as a function of radial distance. The chosen radial positions correspond to
the centres of the scheme zones. The horizontal line indicates the total simulation time of
8 Gyr for the isolated models, and 4 Gyr for the merger models. Halo particles in the I6
models are affected by dynamical friction against the sea of bulge particles at distances of
r ≲ 2 kpc, while the multi-resolution models I6a and I6b are only affected within r ≲ 1 kpc.
At higher resolution, sinking is expected in model I7 only for particles within the central
≲ 500 pc, which is reduced to the central ≲ 200 pc in the multi-resolution models I7a
and I7b. It should be noted that the multi-resolution models experience a downturn in
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Figure 3.6: Axis ratios of the merger models calculated as a function of radius with
N = 106 particles (left) and N = 107 particles (right) at the later time t = 2.8 Gyr. The
solid lines show the evolution with radius of b/a, and the dashed lines the evolution of
c/a.

Figure 3.7: 3D stellar velocity dispersion profiles of the isolated models with N = 106

particles (top panels) and N = 107 particles (bottom panels) at time t = 0.0 Gyr (left)
and at the later time t = 2.8 Gyr (right).
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Figure 3.8: 3D stellar velocity dispersion profiles of the isolated models with N = 106

particles (left) and N = 107 particles (right) at the later time t = 2.8 Gyr.

Figure 3.9: The velocity anisotropy profile of the isolated models with N = 106 particles
(top panels) and N = 107 particles (bottom panels) at time t = 0.0 Gyr (left) and at later
time t = 2.8 Gyr (right). Each of the models maintains β(r) ≃ 0 across the time evolution,
bar I6.
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Figure 3.10: The velocity anisotropy profile of the merger models with N = 106 particles
(left) and N = 107 particles (right) at later time t = 2.8 Gyr.

the calculated Tdf at large radii r ≳ 10 kpc, owing to the increase in particle masses
introduced by the schemes to compensate for the reduced particle number. Even so, the
schemes appear beneficial out to ∼ 40 kpc. The merger models exhibit a very similar
behaviour to the isolated models. The lack of mass segregation predicted by Fig. 3.13 is
consistent with the results of (Alexander & Hopman, 2009) for the mass factors of order
10 utilised in both schemes.

3.5 Conclusions

In this chapter, I have presented a multi-resolution refinement scheme to improve resolu-
tion at the centres of multi-component galaxy models, without impacting their stability
and dynamical evolution. The initial model is over-seeded by a set amount, with both halo
and bulge particles divided into radial zones. The defined central zone remains unchanged
at the higher resolution produced by the over-seeding, whilst in the other radial zones
we remove particles and correspondingly increase the masses of the remaining particles
to compensate. In this way, the resulting galaxy model has a higher central resolution,
necessary to accurately model MBH dynamics, at the same particle number, total stellar
mass, and mass density profile.

I introduced two schemes with varying degrees of over-seeding, the standard model ‘a’
and the more aggressive model ‘b’, with ‘b’ models increasing the number of radial zones by
1 to compensate for the increased particle masses at outer radii. These implementations are
applied to a set of isolated and merging multi-component galaxy models, each comprised
of a dark matter halo, a stellar bulge, and a central MBH. I evolved a set of isolated and
equal-mass merger models using the FMM code griffin, at the reference resolutions of
N = 106 and N = 107.

The isolated models show that the multi-resolution schemes are effective at increasing
resolution in the central regions, and this is maintained over time. Both schemes are also
effective at reducing the relaxation-driven expansion of the bulge particles observed in the
lower resolution models, and expansion is nearly eliminated in the M6b implementation.
I show that the introduction of mass refinement does not affect the stability of the models
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Figure 3.11: Lagrangian radii for bulge (bottom four curves) and halo (top four curves)
particles for all isolated models with N = 106 (left) and N = 107 (right) across the
simulation time. The curves correspond to radii containing mass fractions of 3%, 10%,
13%, and 20% of the total bulge mass. I6 shows a significant expansion at the lowest
bulge radius, which is notably reduced in the multi-resolution models. The halo particles
remain stable in all models.

nor the subsequent evolution.
With the key result that both the ‘a’ and ‘b’ refinement schemes are effective at increas-

ing central resolution, reducing spurious relaxation and stochastic effects, I conclude that
schemes of the type described in this work are extremely effective at increasing resolution
in the central regions. For the next stage of analysis, I examine how this affects the MBH
binary properties and hence the resulting merger timescales in the following chapter.
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Figure 3.12: Lagrangian radii for bulge (bottom four curves) and halo (top four curves)
particles for all merger models with N = 106 (left) and N = 107 (right) across the
simulation time. The curves correspond to radii containing mass fractions of 3%, 10%,
13%, and 20% of the total bulge mass. The strong disturbance at t ∼ 2.5 Gyr marks the
completion of the merger process. The M6 model shows a significant expansion at the
smallest radii, similarly to I6.
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Figure 3.13: Dynamical friction timescale of the halo particles for all models at time
t = 2.8 Gyr, for the isolated models (left) and the post-merger models (right). The dashed
horizontal lines mark the duration of the simulations (black). The points mark the centres
of each radial bin in the multi-resolution schemes. The particles are affected by dynamical
friction at r ≲ 2 kpc in I6, and at r ≲ 1 kpc in the multi-resolution models. In model I7,
dynamical friction only affects particles within the central ≲ 500 pc, which is reduced to
the central ≲ 200 pc in the multi-resolution models. The multi-resolution models show a
downturn in Tdf at the outer radii, where the particle masses are most increased. The
merger models show similar trends to the isolated models.

55 Kate Attard



MBH Binary Timescales with the
Multi-Resolution Scheme

4.1 Introduction

In this chapter I present the results of the MBH binary evolution from both the multi-
resolution models and the reference resolutions. The three major phases of binary evo-
lution begin with dynamical friction as the MBHs sink to centre of the galaxy merger
remnant, and form a bound pair. The binary then hardens due to three-body interactions
with stars during the rapid gravitational slingshot phase (Quinlan, 1996; Sesana et al.,
2008a; Gualandris et al., 2017), until the binary separation is of order milliparsec or less
and the emission of GWs commences. The final inspiral then proceeds quickly in the
ensuing GW phase, and the MBHs coalesce. The dynamical friction and stellar scattering
phases are followed with the FMM code griffin until the separation reaches the softening
limit of the code, and the ensuing evolution is then followed by a semi-analytic prescrip-
tion down to the emission of GWs and binary coalescence. With detection of the GWB
expected shortly by PTA, the astrophysical interpretation of the results will be aided by
accurate estimations of merging MBH timescales and hence the expected GW emissions
from a representative sample of MBH binaries.

The multi-resolution scheme presented in Chapter 3 was shown to be effective at in-
creasing the central resolution for merging galaxies without affecting the stability of the
models. Here I examine the results of the central MBH binary orbital parameter evolution
and the differences between the schemes and reference resolution. The initial conditions
of the galaxy models were laid out in Sec. 3.3, from which I continue the analysis. The
MBH mergers I follow here are equal-mass mergers, where the MBHs are each of a mass
Mbh = 7.14 × 108 M⊙, hence with GW emissions from their coalescence that would lie
within the PTA frequency band (see Sec. 1.6.2). In this chapter I present the results
from following the evolution of the embedded MBHs first with griffin, obtaining the bi-
nary orbital parameters, and then extrapolate the griffin evolution to coalescence with
a semi-analytic prescription that considers three-body interactions and GW emission. I
first describe this semi-analytic extension to the models and the projected merger times
for each binary, and analyse the MBH binary evolution results for the applications of the
scheme for agreement in the results.

The content of this chapter was adapted from a submission to Monthly Notices of the
Royal Astronomical Society (MNRAS), as A multi-resolution method for modelling galaxy
and massive black hole mergers, Attard, Gualandris, Read, and Dehnen.

4.2 Evolution of the Massive Black Hole Binaries

The evolution of the MBHs is followed with griffin through the dynamical friction phase,
the formation of a bound binary and into the collisionless losscone refilling phase. Once the
binary separations passed the black hole softening limit, I then employed a semi-analytical
prescription to extend the evolution down to coalescence including the final GW emission
phase, and compute the merger timescale for each of the different models. I examine the
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Figure 4.1: The evolution of the separation between the MBHs in the N = 106 models
(left) and N = 107 models (right). The three characteristic phases of binary evolution are
visible in all models, marked by the critical separations af and ah. All models consistently
reproduce the evolution of d over time. The dashed line shows the softening length for the
BH-BH and BH-particle interactions (red). The dotted lines mark the critical separations
of the binary, af , approximately where the dynamical friction phase ends, and ah, the
hard binary separation.

effect of resolution and the multi-resolution schemes on the orbital elements of the binary
as well as the coalescence timescale.

The three characteristic phases of binary evolution can clearly be seen in Figure 4.1,
which shows the distance between the MBHs as a function of time. The galaxies first evolve
under the effects of dynamical friction, which brings them together during the merger and,
at the same time, causes the MBHs to sink to the centre of the merger remnant, where
they form a pair and eventually a bound binary. At the end of this phase, the MBHs are
approximately at a separation af , where the enclosed stellar mass is equal to twice the
mass of the secondary MBH, as defined in Eqn. 1.12.

Three-body interactions between the binary and background stars become increasingly
important towards the end of this phase until they dominate the evolution, as the influence
of dynamical friction wanes once the binary begins to reach thermal equilibrium with
surrounding stars (Antonini & Merritt, 2012; Kelley et al., 2017). Such interactions are
known as slingshot interactions as the stars remove energy and angular momentum from
the binary, and are ejected to large distances. As a consequence, the MBHs spiral closer
together (Begelman et al., 1980; Merritt, 2013) until all stars initially belonging to the
losscone are ejected; this occurs roughly at the hard-binary separation ah, which is of order
a parsec for black holes of M ∼ 108 M⊙. There are different definitions of the hard-binary
separation in the literature, here I adopt the formal Eqn. 1.20 given by the separation
where the relative velocity of the binary surpasses the velocity dispersion of local stars.

Beyond ah, binary hardening relies on collisionless repopulation of the losscone, until
GW emission becomes important (at roughly milliparsec scales) and drives the MBHs to
coalescence.

The numerical simulations are terminated once the separation between the MBHs has
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reached the BH softening length at ϵBH = 5 pc, which was set to be smaller than ah to
ensure that the evolution is followed self-consistently well into the losscone refilling phase.

4.2.1 Binary Coalescence Times

Figure 4.1 shows that all models reproduce the same evolution for the separation between
the MBHs all the way down to the BH softening length; the same is not true for the
evolution of the semi-major axis and eccentricity of the binary. Figure 4.2 shows the semi-
major axis and eccentricity evolution for each of the models, calculated at the apocentre
of the orbit. Models M6a and M6b show the same evolution of semi-major axis as model
M7, indicating that the mass schemes are effective and allow to reach convergence in semi-
major axis at the modest resolution of N = 106. Model M6, on the other hand, shows
a significant deviation from both M6a/b and M7 and cannot be relied upon. Reaching
convergence in the binary eccentricity is harder, as may be expected. There is significant
scatter in eccentricity in all M6 models, including the mass refined models, though M6b
achieves a very similar behaviour to M7. At the highest resolution, however, M7 shows
a considerable difference in eccentricity with respect to models M7a/b, implying that
mass refinement at N = 107 is required to reach convergence in eccentricity. Because the
coalescence timescale of MBH binaries due to GW emission is strongly dependent on the
orbital elements, and in particular on the eccentricity, it is expected that these results will
affect the time to coalescence.

Figure 4.3 shows a measure of the convergence in the eccentricity, by taking the highest
resolution simulation run M7b as the ‘true’ value for the eccentricity and calculating the
difference between the different resolutions as (e − etrue)/etrue. I calculate the difference
at t = 2.8 Gyr and take an average of the eccentricity values within ±50 Myr, to reduce
the effect of noise. It can be seen that as the resolution increases the simulations tend
towards convergence, even considering the effect of stochasticity in the eccentricity.

The late evolution of the binaries was followed with a semi-analytical model that solves
the coupled differential equations for the orbital elements under the effects of both stellar
hardening and GW emission (Gualandris et al., 2022)

da
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dt

∣∣∣∣
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+
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GW
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∣∣∣∣
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where the first term represents the contribution from three-body stellar interactions and
the second term models GW emission. The stellar hardening rate is described by (Gua-
landris et al., 2022)
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∗

= −s(t)a2 (4.3)

where the time-dependant hardening rate s(t) is defined as

s(t) =
d

dt

(
1

a

)
. (4.4)

The contribution to the eccentricity evolution from three-body stellar interactions is

de

dt

∣∣∣∣
∗

= s(t)Ka , (4.5)
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and the dimensionless eccentricity growth rate K is defined as (Quinlan, 1996)

K =
de

d ln(1/a)
. (4.6)

The contribution from GW emission can then be calculated according to Equations 1.21
and 1.22 (Peters, 1964). Combining this with the the equations for stellar hardening, it
can be seen that GWs will take over as the dominant hardening mode much faster as the
eccentricity climbs to higher values.

The time-dependent numerical hardening rate in the hardening phase as simulated
with griffin is computed and an exponential decay is fit to the data over time, as shown
in Fig. 4.4. The eccentricity growth rate is approximately constant over the simulated
hardening phase and I then adopt its average for all models, as shown in Fig. 4.5, to be
used in Equations 1.16 and 1.19, together with the fitted hardening rate.

I begin the semi-analytical integration from time 2.75 Gyr for the M6 models and from
time 2.7 Gyr for the M7 models, and continue until coalescence. I take an average of the
semi-major axis and eccentricity values within ±50 Myr of the starting value, to reduce
noise. The resulting evolution of the binary orbital elements is shown in Fig. 4.6 for each
model. The predicted trajectories are shown by the dashed lines for each model, and are
consistent with the prior evolution from the griffin integrations. It should be noted
that stochasticity in the N -body evolution significantly affects the extrapolations to late
times, as both three-body encounters and GW emission depend strongly on the semi-major
axis and, especially, the eccentricity. High resolution and/or the implementation of the
multi-resolution schemes are hence required to reduce the spread in the orbital elements.

Table 4.1 gives the time taken for each model to reach the binary critical separations
from the start of the N -body integration, alongside the merger timescales obtained from
the semi-analytical extrapolations. The merger timescales are determined as the time from
the simulation start for either the eccentricity or the semi-major axis to reach 0. In general,
the high resolution models give shorter timescales, all under 8 Gyr, a desirable result in
terms of detection rates for PTA. The longest timescale is obtained in model M6, at 12 Gyr.
At low resolution, model M6b gives the closest result to the N = 107 models. Because of
the strong dependence of the merger timescale on initial binary eccentricity, convergence
in the total timescale is not achieved even in models M7a/b, where the coalescence times
are within ∼ 1 Gyr of each other, and would require even higher resolution and/or more
random realisations to verify.

4.3 Conclusions

In this chapter, I have presented the MBH binary timescales for equal mass binaries embed-
ded in galaxy models generated using the multi-resolution scheme described in Chapter 3.
Binary formation occurs at ∼ 2.5 Gyr for all models. However, while all models are able
to reproduce the same behaviour for the separation between the MBHs over time, the or-
bital elements are sensitive to the resolution. In particular, model M6 shows incongruous
behaviour in the semi-major axis compared to mass refined or higher resolution models.
Models M6a and M6b are roughly consistent, with M6b behaving similarly to M7. This
implies that convergence in the semi-major axis evolution is reached at particle number
N = 106 if a multi-resolution scheme is applied.

The binary eccentricity, however, shows more variation than the semi-major axis, as
it is more sensitive to perturbations and low-N effects. A significant scatter is present at
the lowest resolution of N = 106 and some variation still exists at the highest resolution
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Figure 4.2: The evolution of the semi-major axis a (top) and the eccentricity e (bottom)
of the MBH binary with time, computed from the griffin simulations, at the lower (left)
and higher (right) resolution. The evolution of the semi-major axis in the multi-resolution
models M6a and M6b is consistent with that in the M7 models, while that in model M6 is
markedly different. This shows that the mass-schemes lead to convergence at 106 particle
resolution, with regard to the semi-major axis. The evolution of the eccentricity, however,
is characterised by a large scatter in models M6 and M6a, while M6b shows a smaller
scatter as well as a behaviour very similar to model M7. Convergence in eccentricity is
challenging to achieve, and barely obtained in models M7a and M7b, implying that a
combination of N = 107 resolution and a mass-refinement scheme is required.
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Figure 4.3: The difference between the binary eccentricities, taking the highest resolution
M7b run as ‘true’, at time t = 2.8 Gyr. The models approach convergence as the resolution
increases, with M6b, M7, and M7b all significantly improved over M6 and M6b. Errorbars
are determined using eccentricity dispersions from Fig. 8 in Nasim et al. (2020).

Figure 4.4: Evolution of the hardening rate, computed numerically as in Eq. 1.17, at the
lower (left) and higher (right) resolution (points/dashed lines). The solid lines indicate
exponential fits over time.
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Figure 4.5: Evolution of the eccentricity growth rate, computed numerically as in
Eq. 1.18, at the lower (left) and higher (right) resolution (points/dashed lines). The
solid lines indicate the calculated mean value.

of N = 107. The aggressive scheme applied in M6b results in the most similar behaviour
to the M7 models.

I have computed the time to coalescence for the MBH binaries in all models by ex-
tending the N -body simulations with a semi-analytical calculation of the evolution of the
orbital elements under the combined effects of stellar hardening and GW emission. The
time-dependent hardening rate is determined directly from the N -body integrations, and
its exponential fit is used within the model. I find that merger timescales can vary by a
few Gyrs in the M6 models, and are generally longer than in the M7 models. Model M6b,
with the most aggressive scheme, gives the most similar evolution and merger timescale
to the higher resolution models. By contrast, the N = 107 models show a much smaller
spread in predictions, with models M7a and M7b coming within 1 Gyr of each other.

Variations in merger timescales have also been reported in Gualandris et al. (2022)
at particle numbers of order N = 106, while Nasim et al. (2021) show that a resolution

Table 4.1: Characteristic timescales for the binaries throughout the evolution. From left
to right: the simulation identifier, the time to af (an estimate of the time spent in the
dynamical friction phase), the time until the binary reaches the hard binary separation ah,
the time from end of the numerical integration to coalescence (including stellar hardening
and the GW emission phase), and the total time from the start of the simulation to BHB
merger.

Scheme Tf ( Gyr) Th ( Gyr) Tmerg ( Gyr) Ttot ( Gyr)

M6 2.44 2.53 9.25 12.00
M6a 2.35 2.47 6.91 9.66
M6b 2.44 2.45 4.58 7.33
M7 2.43 2.47 2.94 5.64
M7a 2.42 2.46 4.62 7.32
M7b 2.43 2.46 4.90 7.60
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Figure 4.6: The evolution of the semi-major axis a (top) and the eccentricity e (bottom)
of the binary with time, from the beginning of the merger to coalescence. The evolution
simulated with griffin is shown with scatter points, whilst the subsequent evolution
modelled by a semi-analytic model including GWs is shown by dashed lines. The N =
106 models show longer merger timescales than the N = 107 models, though the most
aggressive scheme M6b gives the closest result to M7. Convergence in the merger timescales
is hard to achieve. We require multi-resolution models at N = 107 (M7a/b) for the
difference in total timescales to fall below 1 Gyr.
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in excess of N = 107 within the half-light radius is required to reduce the scatter in the
merger timescale to ∼ 10%. I calculate that this corresponds to about N = 4×106 particles
within 5Rinfl, which is a factor 3 larger than what we achieve in models M7a/b. Taking
the results of Nasim et al. (2021) at face value, this implies that the effective resolution
in models M7a/b results in a 20 − 30% error in the predicted merger timescale. In order
to achieve a 10% error, a combination of N(< 5Rinfl) = 4 × 106 and mass refinement
is required. For the multi-component models as presented here, which are designed to
represent the massive galaxies which are hosts to typical PTA sources, this corresponds
to a total particle number of N = 3 × 107.

I conclude that the increased resolution at the galaxy centres provided by the multi-
resolution scheme should be combined with an appropriate particle number to reduce
scatter in key quantities: a particle number of N(< 5Rinfl) = 6 × 104 is sufficient (e.g.
model M6b) to reach convergence in the evolution of the semi-major axis, while a particle
number of N(< 5Rinfl) = 106 is required to approach convergence in the evolution of
the eccentricity and in the time to coalescence. In order to achieve a 10% error on the
merger timescale, a resolution N(< 5Rinfl) = 4×106 is required. This is due to the strong
dependence of both stellar hardening and GW emission on eccentricity.

Finally, it should be noted that the galaxies examined here are all set on initial orbits of
e = 0.7, i.e. moderately eccentric. Gualandris et al. (2022) have shown that binaries with
lower eccentricities exhibit a greater spread in merger timescales. It is therefore expected
that somewhat lower variations would be present for highly eccentric orbits (e.g. Nasim
et al., 2020, 2021; Mannerkoski et al., 2022).
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5.1 Introduction

Successive galaxy mergers are expected to occur in the hierarchical structure formation
scenario of the ΛCDM paradigm, bringing a new MBH into a galaxy directly after a prior
MBH binary has formed, but potentially before the final inspiral has taken place. Mergers
of dark matter halos were more common in the early Universe as they clustered under
the effect of gravity in the denser environment, as such creating a heightened potential
for MBH binaries to form (Begelman et al., 1980; eLISA Consortium, 2013). For an
MBH brought in by such a merger intruding on a galaxy that has recently hosted another
central MBH binary, the core scouring effects inflicted on the galaxy by the previous binary
formation may have effects on the subsequent evolution of the new binary as the depletion
of stellar density means there may be fewer stars within the losscone. As such, the three-
body interaction phase may not proceed as quickly as prior or the binary could potentially
stall (Bonetti et al., 2016). If the lifetime of the previous MBH binary is long enough that
it overlaps with a subsequent galaxy merger, triple interactions can also occur between
the intruder and the original binary MBH. Triplets MBH systems have been observed in
the Universe, indicating this could be a relatively common scenario (e.g. Schawinski et al.,
2011; Deane et al., 2014; Liu et al., 2019).

Triple MBH interactions arising from subsequent galaxy mergers can form a hierar-
chical system, in which the centre of mass of the inner binary orbits with the intruder
MBH in the outer binary (Bonetti et al., 2016). Kozai-Lidov (K-L) oscillations may be
induced in such hierarchical triples, which take place when the orbit of the intruder MBH
is inclined greater than some critical angle compared to the inner binary orbit (Kozai,
1962; Lidov, 1962; Naoz, 2016). This mechanism causes the inner binary eccentricity to
secularly increase as it is excited to higher values in timescales greater than the orbital
period of both the inner and outer binaries. The GW emission phase has a strong depen-
dence on the eccentricity (as given in Eqns. 1.21-1.22), and as such the K-L oscillations
can drive the inner binary to a faster coalescence (Blaes et al., 2002; Bonetti et al., 2016;
Liu & Lai, 2017; Bonetti et al., 2018a).

An incoming MBH can also cause the ejection of one of the MBHs in a triple (e.g.
Hoffman & Loeb, 2006; Lousto & Zlochower, 2008; Mannerkoski et al., 2021). An intruder
MBH of sufficient mass may capture a member of the inner binary after sinking via dy-
namical friction within range of the original binary, and form a hierarchical triple with
the intruder MBH on a wider outer orbit from the inner binary. Exchanges between the
inner and outer binaries then become possible as the outer MBH decays close enough to
enable strong interactions between the three MBHs. These strong three-body interactions
can cause an ejection of one of the MBHs, with the lightest MBH in the triple typically
experiencing the largest kick to a wide orbit. Intruders of larger mass and hence greater
momentum are more likely to disturb the inner binary in this way. Multiple exchanges
can also occur between the MBHs in the inner and outer binary as a result of these strong
interactions, before an ejection or merger may take place (Hoffman & Loeb, 2007; Bonetti
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et al., 2018a; Mannerkoski et al., 2021, 2023).
The dynamics and evolution of MBH binaries under these circumstances hence need

to be studied further in the context of the recent PTA evidence for a low-frequency signal
to obtain the most accurate idea of merging MBH population, and hence provide interpre-
tation of the signal in the GWB scenario (Bonetti et al., 2018b). To that end, following
the formation and evolution of MBH binaries in the cosmological context of successive
mergers is important. The results in previous chapters show mergers taking place over
Gyrs from the galaxy merger, allowing time for another galaxy merger to occur and hence
intrusion by a third MBH, as is expected in the early Universe for the hierarchical galaxy
formation scenario.

In this chapter I follow the evolution of the equal-mass MBH binary examined from
the previous chapters with the addition of a new incoming galaxy hosting an MBH. The
subsequent interactions are followed for a set of models first assuming the prior binary
had coalesced by the time of the next galaxy merger, and then if the merger had not
yet completed. Two merger scenarios are considered, with differing intruder MBH masses
based on the mass ratios between the intruder and the total original binary mass. I
investigate if the core scouring resulting from the previous binary formation have an effect
on the subsequent binary evolution and coalescence, and examine the resultant trajectories
and triple evolutions in the case of three MBH interactions.

5.2 Model Set-Up

5.2.1 Initial Conditions

I continued the evolution of the previous galaxy merger by taking the remnant galaxy and
contained MBH binary of model M6b, as described in Chapters 3-4. I chose M6b for the
marked improvement in reducing particle expansion over the unrefined models, and the
similarity to M7 at the central radii, but taking advantaged of the reduced computational
time. I then set up two sets of models, distinguished by containing a higher and lower
MBH mass ratio to the original galaxy, selected from subsequent mergers in the same
merger tree of the IllustrisTNG-300-1 simulation as the original equal-mass MBH merger.
The chosen incoming black holes also lie within the expected PTA detection range, with
masses of 4.44 × 108 M⊙ and 9.83 × 108 M⊙. Each incoming model was again modelled
as a massive elliptical galaxy consisting of a stellar bulge, a DM halo, following a Sérsic
profile in projection with n = 4 and an NFW profile respectively. The central MBHs are
modelled as Plummer spheres with zero scale length.

For the galaxy models hosting each of the MBHs, I then repeated the methodology
of Section 3.3, using observational scaling relations to find the parameters for the bulge
and halo components of each galaxy: Mb was derived from the MBH-stellar mass relation
(Eqn. 1.6 Kormendy & Ho, 2013; Reines & Volonteri, 2015) with the elliptical parameters
α = 8.95 ± 0.09 and β = 1.40 ± 0.21. Mh was then determined from the halo-stellar mass
scaling relation of Chae et al. (2014). R200 was determined from Eqn. 3.1, and the stellar
bulge half-mass radius using the Kravtsov (2013) relation. The multi-resolution scheme
‘b’ as described in Section 3.2 was applied to each of the galaxies, as the most effective
scheme at improving the central resolution (see Chapter 3).

The galaxy parameters are given in Table 5.1, and the two galaxy models are labelled
‘L’ and ‘H’ for the lower and higher MBH mass ratios respectively, with this group further
labelled as binary ’B’ models. The MBH mass ratio, q, was taken in comparison to the
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Table 5.1: The parameters of the halo and bulge components of the incoming galaxies:
model identifier, mass ratio between the original binary and intruder MBH, intruder MBH
mass ( M⊙), half-mass radius of the stellar component ( kpc), halo mass ( M⊙), and NFW
scale radius ( kpc).

LH q MBH Mass Mb R1/2 Mh R200

L 0.31 4.44 × 108 6.08 × 1010 4.27 2.63 × 1012 284.60
H 0.69 9.83 × 108 6.28 × 1010 6.28 8.38 × 1012 418.95

total mass of the previous binary

q =
Mintr

M1 + M2
(5.1)

where Mintr is the mass of the intruder MBH.
For each of the incoming galaxies, I then examined two different scenarios: one in

which the original MBHs had undergone coalescence at the time of the incoming galaxy
intrusion, and one in which the binary had not yet merged.

The starting snapshot from the original galaxy model is taken at 3.2 Gyr, after the
galaxy merger from the M6b run and once the hard binary formation is complete. One
set-up replaces the central MBH binary with the merger product, of total mass M12 =
1.43×109 M⊙. The other scenario leaves the binary unchanged, as predicted by the higher
resolution models. The incoming galaxy models were then generated using the Agama
package (Vasiliev, 2019) with the parameters in Table 5.1. The particles were sampled
with the ‘b’ scheme applied to match the original galaxy model, and the particle numbers
were adjusted to mimic the original mass ratio in order to prevent segregation between
the models. The resulting particles numbers are hence set to N ≃ 5 × 105, and the
ratio between a halo particle mass and a bulge particle mass in the incoming galaxies is
mb/Mbh = 3.3 × 10−4 for L and mb/Mbh = 2.6 × 10−4 for H.

I then set up the initial orbit between the original and intruder galaxy models. The
distance at t = 0.0 Gyr between the original and the intruder galaxy was set to D = 223 kpc
at ∼ 5Rs for both models, and the initial eccentricity was set to e = 0.9, both reflecting the
high eccentricities (e ≳ 0.7) observed in galaxy mergers within cosmological simulations
(e.g. Khochfar & Burkert, 2006; Ebrová &  Lokas, 2017), and resulting in rapid galaxy
mergers that bring down the computational time.

5.2.2 Model Evolution

Each of the models was evolved with the code griffin (Dehnen, 2014), described in
detail in Section 2.2, again each using a multipole expansion order p = 5. The softening
parameter was initially set to ϵ = 30 pc for the star-star interactions, and to ϵbh = 10 pc
for the MBH-MBH and MBH-star interactions for all models. This set-up allows for
computational time to be reduced in the early stages of the merger, before the softening
length ϵbh was then reduced to 3 pc after a time ∼ 1 Gyr, corresponding to just prior to
the end of the dynamical friction phase for all models. The softening kernel employed is
a near-Plummer variation for smooth source particles with a density ρ ∝ (r2 + ϵ2)−3.5.

All simulations were evolved until the binary reached a separation of the order of
softening length ϵbh, below which the dynamical evolution is no longer reliable.
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Figure 5.1: The trajectories of the B models for the lower (left panels) and higher mass
ratios (right panels). The middle and bottom panels introduce cuts in the time to better
show the evolution of the orbits. The H model binary orbit decays more rapidly than the
L model, as seen in the bottom panel time cut.
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Figure 5.2: The evolution of the separation between the MBHs (top), and the binary
parameters the semi-major axis (middle) and eccentricity (bottom) for the B models. The
interactions are shown for both the L (blue) and H (purple) scenarios. The dashed line
shows the softening length for the BH-BH and BH-particle interactions (red). The lower
intruder mass MBH forms a binary noticeably more slowly than the higher mass ratio
model.

5.3 MBH Binary Evolution

In this section I present the results of the MBH evolution for the binary models as fol-
lowed first with griffin to the softening limit, and beyond this with the semi-analytical
prescription to include the GW emission phase as described in Section 4.2.1. It should be
noted that I do not impart a recoil velocity to the MBH resulting from binary coalescence.
This is motivated by the fact that most recoil kicks are modest (of order ≲ 200 km s−1)
and not sufficient to cause a large displacement or eject the MBH from the host galaxy
(Campanelli et al., 2007; Lousto & Zlochower, 2011; Lousto et al., 2012; Nasim et al.,
2021). However, including recoil kicks would be of interest for future work - as there is no
assumption made here about the spin of MBHs, a kick velocity would need to be sampled
from an appropriate distribution, or multiple values would need to be used. The expected
effect of such a kick is in the additional growth of a galactic core, as shown in Nasim et al.
(2021).

The trajectories of the intruder and original MBHs are shown in Figure 5.1 for the
evolution of the BL and BH simulations. The higher mass intruder MBH has a significant
effect on the evolution of the orbits, with the BH model binary orbit having decayed
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Figure 5.3: The evolution of the hardening rate (left) and the eccentricity growth rate
(right), computed numerically for the L (blue) and H (purple) models. The solid lines
indicate the exponential fits and calculated mean values for the hardening rate and eccen-
tricity growth rate respectively. The BL hardening rate sinks to oscillate around 0 beyond
t ≳ 2.4 Gyr, indicating a stalled evolution.

noticeably more rapidly than the BL model by t = 1.5 Gyr, as expected from Eqn. 3.5
which predicts shorter dynamical friction timescales for heavier mass perturbers.

This faster evolution of the higher mass ratio binary is reflected in the evolution of
the separations and orbital parameters for both BL and BH binary models, as shown in
Figure 5.2. The BL model takes significantly longer to form a binary than the higher mass
ratio model, with a ≃ 0.3 Gyr difference between the respective bound binary separation
af , and a ≃ 0.5 Gyr difference between the respective hard binary separation ah. Further
differences between the models can also be discerned from the orbital parameters, as the
semi-major axis evolution appears to stall in the BL model at ≳ 2.2 Gyr, whilst the BH
semi-major axis evolution continues to decay. The eccentricity increases to e > 0.9 for
both models, with the BL eccentricity continuing to evolve past the point at which the
semi-major axis appears to stall. Some stochasticity is still evident in the eccentricity
evolution, but the models continue to display an improvement over the unrefined M6 and
less aggressively refined M6a models of Figure 4.2.

5.3.1 Binary Coalescence Times

For the semi-analytic model, I reproduce the semi-major axis and eccentricity growth
for each model to follow the late evolution of the binaries. The time-dependent binary
hardening rate s(t) and the eccentricity growth rate K as simulated with griffin are
shown in Figure 5.3 for the BL and BH models, computed numerically using Eqn. 1.17
and Eqn. 1.18 respectively. An exponential decay is fit to s(t) over time, and the eccen-
tricity growth rate remains approximately constant over the evolution and thus I adopt
an average for both models. The higher mass intruder MBH displays a slightly slower but
similar hardening rate evolution to the previous mergers shown in Figure 4.4, whereas the
lower mass intruder sinks to oscillate around 0 beyond t ≳ 2.4 Gyr, indicating the binary
has evolution has stalled. The contribution from GW emission can then calculated be ac-
cording to the Peters equations Eqn. 1.21 and Eqn. 1.22, and coupled with the equations
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Figure 5.4: The evolution of the semi-major axis a (top) and the eccentricity e (bottom)
of the binary with time, from the beginning of the merger. The calculation does not extend
beyond a Hubble time but is truncated here to better show the evolution. The evolution
simulated with griffin is shown with scatter points, whilst the subsequent evolution
modelled by a semi-analytic model including GWs is shown by dashed lines. The BH
model coalesces within ∼ 2 Gyr of binary formation, whilst the BH model does not merge.

for stellar hardening Eqn. 1.16 and Eqn. 1.19.
I begin the semi-analytical integration at time 1.85 Gyr for each model. I take an

average of the semi-major axis and eccentricity values within ±50 Myr of the starting
value, to reduce noise. The resulting evolution of the binary orbital elements is then
shown in Figure 5.4, with the predicted trajectories being shown by the dashed lines. The
trajectories are consistent with the prior evolution of the semi-major axis. The eccentricity
shows a more stochastic evolution, but the predicted trajectories are consistent with the
overall trend of the evolution.

The time taken for each model to reach the binary critical separations from the start of
the N -body integration, alongside the merger timescales obtained from the semi-analytical
extrapolations are given in Table 5.2. The merger timescales are determined as the time
from the simulation start for either the eccentricity or the semi-major axis to reach 0. The
BH model reaches coalescence at t = 2.10 Gyr, but for the BL model GWs do not take
over as the dominant hardening method within a Hubble time and the binary does not
merge. This is likely due to an insufficient supply of stars to the binary during the stellar
scattering phase, after the core scouring of the previous merger has ejected all the stars in
the loss cone to large distances. In the future, I plan to run an equivalent model at higher
resolution to study if this stalling is merely a numerical effect of insufficient resolution
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Table 5.2: Characteristic timescales for the binaries throughout the evolution. From left
to right: the simulation identifier, the time to af (an estimate of the time spent in the
dynamical friction phase), the time until the binary reaches the hard binary separation ah,
the time from end of the numerical integration to coalescence (including stellar hardening
and the GW emission phase), and the total time from the start of the simulation to BHB
merger.

Scheme Tf ( Gyr) Th ( Gyr) Tmerg ( Gyr) Ttot ( Gyr)

BL 1.39 1.75 − −
BH 1.05 1.21 0.25 2.10

even in the presence of the multi-resolution scheme, or if a core has been carved in the
stellar distribution.

5.4 Triples

For the second scenario in which the original MBH binary was left unchanged, I then
examine the resulting triple interactions between the binary and the intruder MBH. The
lower mass ratio scenario involves an intruder MBH with a mass less than the individual
MBHs of the original binary, whereas the intruder MBH of the higher mass ratio scenario
has a mass higher than the original MBH.

The trajectories of the intruder and original MBHs are shown in Figure 5.5, with this
group further labelled as triple ’T’ models, for the evolution of the TL and TH simulations
over a selection of timescales. The higher mass intruder MBH again makes a difference,
with the TH trajectories show evidence of swapping between the intruder and the original
MBHs in the bottom panel between 1.5 Gyr < t < 1.7 Gyr as the intruder MBH (black
lines) moves into a closer orbit with an original MBH (blue dashed lines), whilst the other
original MBH moves to a wider orbit (red lines).

The same trends identified in the trajectories can then be seen in Figure 5.6 for the TL
model and Figure 5.7 for the TH model, which shows the orbital parameters and distances
between the MBHs as a function of time. The MBHs are labelled 1 - 2 for the original
binary, and the intruder is labelled MBH 3. The dashed line shows the softening length
for the BH-BH and BH-particle interactions (red). The intruder MBH in the TL galaxy
remnant never disturbs the original binary enough to swap with one of the MBHs, but
does experience strong interactions with the intruder MBH the result in it being kicked to
a wider orbit without being ejected. The TH model by contrast shows swapping between
the MBHs in the inner binary, with the higher mass intruder MBH first taking the place
of MBH 1 then exchanges occurring between the original MBHs. Both models appear
to briefly form hierarchical triplets: at the later times of ≳ 3.2 the intruder MBH of the
TL galaxy sinks to ∼ pc scale distance and the semi-major axes between MBH 3 and
the original binary becomes positive and more coherent. The TH model shows a clearer
coherent trend in the in the semi-major axes between MBH 3 and the original binary at
times 2.1 Gyr ≥ t ≥ 2.5 Gyr, sinking to a ∼ 10 pc scale distance. The same trends are
visible again in Figure 5.8, which shows the specific energy of the binaries and provides
another clear image of the strong interactions between the MBHs, particularly at times
t ≃ 1.5 Gyr and t ≃ 2.0 Gyr for TL, and t ≃ 2.4 Gyr for TH. The exchanges between the
MBHs in the inner binary for model TH are also evident here.
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Figure 5.5: The trajectories of the B models for the lower (left panels) and higher mass
ratios (right panels). The middle and bottom panels introduce cuts in the time to better
see the evolution of the orbits. The intruder MBH is shown with solid black lines, and the
original binary MBHs are shown with solid red and dashed blue lines. The TH trajectories
show evidence of swapping between the intruder and the original MBHs in the bottom
panel between 1.5 Gyr < t < 1.7 Gyr.
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Figure 5.6: The evolution of the separation between the MBHs (top) and the orbital
parameters semi-major axis (middle) and eccentricity (bottom) for the T models, in the
lower mass ratio scenario. The interactions are shown in three columns between the
original MBH binary (1-2), and the intruder MBH (3). The dashed line shows the softening
length for the BH-BH and BH-particle interactions (red). The MBH distances and binary
parameters show no exchanges take place, but there are several strong interactions with
the intruder MBH that incur an effect on the binary eccentricity, e.g. at t = 1.5 Gyr.

5.5 Conclusions

In this chapter, I have presented the evolution of two sets of galaxy mergers hosting
MBHs, taking place after one galaxy has recently experienced a previous merger. Each
galaxy model is modelled with a stellar bulge and a DM halo component. One set of
models assumes the central MBHs from the prior merger have coalesced, and the other
assumes an unmerged binary that can hence form a triple with the intruder MBH. Each of
the models has an aggressive multi-resolution scheme implemented to increase the central
resolution of the galaxies around the central MBHs. Two different scenarios are presented
for both sets of models, in which the intruder MBH has either a higher or lower mass
ratio with the original MBH binary. The galaxies were set on initial orbits of e = 0.9, in
agreement with the high eccentricities observed in cosmological simulations (e.g. Khochfar
& Burkert, 2006; Ebrová &  Lokas, 2017).

For the models with merged original binaries, I follow the evolution of the resulting
binary formed with the intruder MBH first with griffin and with a semi-analytic model
past the softening limit. The trajectories of the orbits and evolution of the distances
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Figure 5.7: The evolution of the separation between the MBHs (top) and the orbital
parameters semi-major axis (middle) and eccentricity (bottom) for the T models, in the
higher mass ratio scenario. The interactions are shown in three columns between the
original MBH binary (1-2), and the intruder MBH (3). The dashed line shows the softening
length for the BH-BH and BH-particle interactions (red). The MBH distances and binary
parameters show several exchanges, initially between the higher mass intruder MBH and
subsequently between the original binary MBHs within the inner binary.

between the MBHs show the higher mass intruder MBH has a significant effect on the
timescale of the binary evolution, with the higher mass MBH sinking through dynamical
friction faster than its lighter mass counterpart. The lower mass ratio binary orbital
parameters also appear to show potential stalling in the semi-major axis, in comparison
to the higher mass ratio binary which continues to evolve over the simulation lifetime. I
then computed the time to coalescence for the MBH binaries by extending the N -body
simulations with a semi-analytical calculation of the evolution of the orbital elements under
the combined effects of stellar hardening and GW emission. The binary formed with the
lower mass intruder never reaches coalescence as the evolution stalls, but the binary in the
higher mass ratio model merges within a Hubble time. A potential cause lies in the core
scouring from the previous binary resulting in a reduced particle number at the centre of
the remnant galaxy, while the higher mass binary system is better able to overcome this
obstacle.

I then examine the evolution of the system of MBHs in the triple case. Both the lower
mass and higher mass intruder models for the triple MBHs showcase strong interactions
with the intruder MBH and the original MBH binary, with noticeable effects on the orbital
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Figure 5.8: The evolution of the binary specific energy for the T models, in the L (left)
and H (scenarios). The dashed lines mark the point at which the energy is at 0. The L
model shows several strong interactions with the intruder MBH, and the H model shows
exchanges between the MBHs as the binary evolves.

parameters calculated between each MBH. Strong interactions in the TH model result in
exchanges between the MBHs, with the intruder MBH displacing one of the original binary
and subsequently the original MBHs swapping in and out of the inner binary. By contrast,
the lower mass MBH in TL never experiences an exchange in the binary, but the strong
interactions cause significant discontinuities in the evolution of the binary eccentricity. No
ejections are noted amongst the MBHs in either of the models.

More work is needed to explore the results presented here in full. A range of further
simulations with varying intruder MBH masses, and different resolutions to investigate
the effects of core scouring in greater depth on both the binary and the triple models.
The effect of intruder MBHs in the case of an unmerged original binary can then also be
investigated further, to observe if for example ejections occur when followed over a longer
evolution timescale. It would also be interesting to see if a stable inner binary is formed
in a case with MBH exchanges, either through ejection of the outer MBH or extending
the evolution of the inner binary past the softening limit to coalescence.

76 Kate Attard



Conclusions

In this chapter, I summarise the work presented in this thesis, which was undertaken with
the aim of furthering the understanding of evolution of massive black hole binary mergers.
With the coalescence of two MBHs, GWs are released in the low-frequency end of the GW
spectrum, a process of significant relevance in light of the recent detection by PTA of a
common red signal (e.g. Taylor, 2019). The interpretation of a GWB signal requires a
detailed understanding of MBH coalescence timescales. For such an examination of MBH
binary mergers, I have utilised a multi-resolution scheme applied to N -body simulations
of both isolated and merging galaxies, and followed the mergers both to coalescence and
through a subsequent merger, the results of which I conclude here.

6.1 The Multi-Resolution Scheme

The multi-resolution scheme was presented in Chapter 3 with the objective of selectively
increasing the resolution at the centre of galaxy simulations where MBH binaries reside,
without increasing the total particle number. This will help avoid issues of computational
scaling that come with the high resolutions required to adequately resolve these events.
Previous uses have only applied such multi-resolution schemes to isolated galaxies (e.g.
Cole et al., 2012), here I have investigated the utility of higher central resolutions in
merging galaxy models. The scheme first overseeds the galaxy by a set factor, before
preferentially removing particles in outer radial zones and simultaneously increasing the
remaining particle masses within those zones to compensate and maintain the galaxy
density profile.

Here I considered two resolutions that were evolved at N = 106 and N = 107, with
two variants on the multi-resolution scheme implemented alongside a reference resolution
for each. The scheme models were labelled the ‘a’ and ‘b’ models, with ‘b’ the more
aggressive implementation at a higher overseeding factor and an increased number of
radial zones. I considered both isolated and equal-mass merging galactic simulations with
each resolution set, for multi-component galaxies with a stellar bulge and DM halo, all
with an MBH planted at the galaxy centres.

Through an analysis of the galaxy properties of both the isolated and merging models,
I have shown that the refinement scheme does not impact the stability or the kinematic
properties of the models. The central resolution increase is maintained over time, including
over the merger events that involve violent mixing of the two galaxies, in line with the
‘mixing theorem’ which shows N -body simulations should maintain the phase space density
at galaxy centres (Dehnen, 2005). Both the ‘a’ and ‘b’ schemes are effective at scaling
up the resolution, and reduce the spurious particle relaxation and stochastic effects seen
in the lower resolution models, particularly the N = 106 reference resolution. The ‘b’
model also shows are marked improvement over the ‘a’ model at the N = 106 resolution,
with trends more in line with the N = 107 reference resolution within the central region.
This is maintained over both the isolated and the merger models. Thus, multi-resolution
schemes of the kind laid out in this thesis have been shown to be effective at their goal of
raising central resolution without adverse effects on the galaxy properties.

In Chapter 4, I then utilised the increased resolution at the centres of the merging
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galaxy models to probe the equal-mass MBH binary formation ensuing from their host
galaxy mergers and the subsequent binary evolution. The timescales for the mergers of
each binary were determined after following the evolution to the softening limit of griffin,
and then down to coalescence with a semi-analytic prescription accounting for three-body
interactions and GW emission. Each of the models shows the same behaviour in the
MBH separation, but the orbital elements (semi-major axis and eccentricity) prove to
be sensitive to the resolution of the different simulations. The eccentricity in particular
displays a noticeably increased stochasticity with lower resolution, with only the highest
resolution models showing an apparent convergence in the eccentricity for the M7a and
M7b models. This has an impact on the computation of the merger timescales which rely
on predicting the trajectories of orbital elements past the N -body simulation softening
limit, as both the stellar scattering and GW emission depend strongly on eccentricity.
The merger timescales follow on from this, showing large variation at lower resolutions,
with the difference in total timescales only falling below 0.5 Gyr for the M7a and M7b
models.

Previous studies by Nasim et al. (2020); Gualandris et al. (2022) have also reported
merger timescale variations at lower resolutions, with Nasim et al. (2020) showing that a
total resolution N > 107 within the half-light radius is required for a reduction in merger
timescales of ∼ 10%. The models presented in this thesis appear to produce converged
results at the resolution of N(< 5Rinfl) = 6 × 104 for the semi-major axis, but require
N(< 5Rinfl) = 106 to approach agreement in the eccentricity evolution. Here I conclude
that it is clear that extreme resolution is required to produce reliable results in the MBH
binary dynamics. Implementation of the multi-resolution scheme aids in this challenge
when combined with an appropriate particle resolution.

6.2 Subsequent Mergers

I have investigated the impact of subsequent galaxy mergers on the remnant galaxies and
the evolution of their central MBHs in Chapter 5. I follow the models at resolution of
N = 106 with the aggressive mass refinement scheme applied, with two scenarios: one in
which the previous MBH binary is assumed to have merged, and one in which it has not.
Two incoming galaxy models are considered for both scenarios, with a lower and a higher
mass ratio to the original MBHs.

I first followed the binary models past the griffin softening limit with the semi-
analytic prescription for three-body interactions and GW emission, as before. Core scour-
ing induced by the previous MBH binary merger affects the number of stars within the
inner radii, thus reducing the number of stars available to interact with the new MBH
binary. This effect is seen in particular in the lower mass ratio binary model which is not
able to reach coalescence within a Hubble time as the semi-major axis evolution stalls,
likely to be due to the lack of stars within the loss cone. The higher mass ratio model
however is better able to overcome this, and reaches coalescence within ∼ 1.2 Gyr of the
binary formation.

Finally, the triple models both show strong interactions between the original binary
and the intruder MBH, with these interactions resulting in exchanges between the MBHs
in the inner binary for the higher mass intruder MBH model. The lower mass ratio model
does not experience exchanges, but the strong interactions induce significant effects on the
inner binary eccentricity. Each strong interaction kicks the outer MBH to a larger orbit,
but no ejections take place in either model.
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6.3 Future Prospects

Work in the future will build on the multi-resolution scheme I have laid out here. One
such change could be sorting the particles based on their binding energy rather than
their radial positions - this is easy to implement, and will compensate for particles on
radial orbits. An exploration of other varieties of multi-resolution schemes would also
be useful, for example increasing the resolution with on-the-fly splitting and merging of
simulation particles under certain conditions (such as pre-set times or proximity to MBHs)
to raise the resolution, for comparison with simulations using the multi-resolution scheme
for initial conditions. The scheme could also be useful in galactic dynamics as none of the
properties of the merger remnant examined here are affected by its usage, and potentially
implemented in fully cosmological simulations.

For the subsequent mergers, more work in particular is needed to fully investigate the
potential effects of prior mergers on both subsequent binary evolution and triple interac-
tions. A suite of simulations with a range of intruder MBH masses at different resolutions
can give information on predicted merger timescales for binary models, and in the case of
triples look for ejections and potential inner binary mergers over a longer timescales. To
explore the effect prior core scouring has on the binary dynamics, an equivalent model to
the lower mass ratio binary model run at higher resolution will study if the binary stalling
observed here is just a numerical effect of insufficient resolution, or if a genuine galactic
core has been formed in the stellar density profile. This can lead to an investigation of full
merger trees from the IllustrisTNG simulation, giving a clearer picture of the evolution of
an MBH through the mergers in a cosmological environment and hence a better idea of
the expected PTA merger rates.

griffin also supports the inclusion of gas, but the implementation will require adapta-
tions to be suitable to model galaxy mergers. Once griffin is ready to fully accommodate
gas in galaxy evolution, it will mean that future work will not be confined to analysis of the
highest mass MBHs, as it will also be possible to investigate the lower mass galaxies with
a gas component and include analysis of black hole mergers in the LISA range, alongside
mergers in elliptical galaxies that host significant residual gas.
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