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Abstract

In this thesis inflation by a massive scalar field is investigated. Because scalar
fields play an important role in high energy physics it is chosen to investigate in-
flation by a scalar field. As an introduction the Big Bang model is introduced, the
problems of this model are discussed and the solution of these problems is worked
out. The solution of the problems is to introduce a short period in which inflation-
ary expansion occurs. Inflationary expansion occurs by introducing a cosmological
constant but the problem is that in this case inflationary expansion does not come
to an end. Therefore massive scalar field inflation is introduced. The dynamics of
massive scalar field inflation is obtained both by solving the equations analytically
in the so called slow roll approximation as by solving the equations numerically.
By numerically solving the equations it is found that the slow roll approximation is
a good approximation. By looking at density perturbations the mass of the scalar
field is calculated as m ≈ 10−6. Furthermore the tilt of the spectrum of density
perturbations is calculated as n(60) ≈ 0.97. The calculated value of the tilt agrees
with the value of the tilt derived from observations. It is found that the duration of
inflation by a massive scalar field is typically 10−36s ≤ tinfl ≤ 10−31s and that
the total number of e-foldings is typically 60 ≤ Nt ≤ 1013. Because this inflation
model is not ruled out by observations and because the total amount of e-foldings
that can be reached is much larger than the minimum amount of e-foldings nec-
essary to solve the problems of the Big Bang model it is concluded that inflation
by a massive scalar field is very plausible. The significance of the findings is that
in order to describe nature in the very early stages of the universe one must take
into account that it is plausible that a massive scalar field was present at this early
epoch.
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1 Introduction
The Big Bang model is the general accepted model to describe the evolution of our uni-
verse. However there are problems associated with the Big Bang model [1, Liddle][2,
Perkins][3, Watson]. Among these problems are the horizon problem and the flat-
ness problem. To solve these problems before the ‘Big Bang’ the universe had to go
throughout a stage of accelerated expansion called inflation. In high energy physics
scalar fields play an important role. Therefore a lot of inflation models are based on
scalar fields [2, Perkins][3, Watson][4, Linde][5, Kinney][6, Riotto][7, Langlois]. In
the last two decades different models have been suggested. In this thesis inflation in
general and inflation by a massive scalar field in particular is investigated. Inflation
by a scalar field not only is able to solve the problems associated with the Big Bang
model but also generates density perturbations which can explain the large scale struc-
ture of the universe. It is even proposed that inflation by a scalar field can produce
gravitational waves. Before discussing massive scalar field inflation first the standard
Big Bang model, its problems and inflation in general is investigated in the first part
of this thesis. Then in the second part of this thesis massive scalar field inflation is
investigated. Massive scalar field inflation belongs to a more general inflation model
called Chaotic Inflation invented by Linde around 1983 [4, Linde].

2 The standard Big Bang Model and Inflation

2.1 Introduction
In cosmology the universe is assumed isotropic and homogeneous on large scales. This
is confirmed by observations. An important example of an observation is the fact
that the Cosmic Microwave Background Radiation has the same temperature of about
2.73K in all directions. Temperature fluctuations are observed to be ∆T

T ≈ 10−5.
Furthermore it is assumed that the universe is homogeneous expanding. This follows
from Hubble’s observation that the speed v at which an object in the universe is flowing
away is given by v = H0d, in which H0 is the current Hubble parameter and d is the
distance to the object [1, Liddle][2, Perkins][3, Watson].
In the case of a flat universe it is possible to define the following coordinate system,

d(x, t) = a(t)r(x) (1)

where d(x, t) is the physical distance, a(t) is the scale parameter and r(x) is the co-
moving distance [1, Liddle][2, Perkins][3, Watson]. The scale parameter which is only
a function of time describes how large the universe is at a certain time. The meaning
of a flat universe is explained in the next subsection. If the scale factor doubles in a
certain amount of time by a factor of two this means that the radius of the universe has
become twice as large as it was before. The comoving distance is not a function of time
and only describes the spatial distance in a frame which moves with the expansion.

2.2 Equations describing the universe
In order to quantify the evolution of the universe it is necessary to consider some equa-
tions. The first equation is the well known Friedmann equation [1, Liddle]

H2 =
(

ȧ

a

)2

=
8πGρ

3
− k

a2
(2)
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In this equation H is the Hubble parameter, a the scale parameter, ρ the density of
the universe and k describes the curvature of space. A positive value of k means a
spherical geometry, k = 0 means a flat geometry and a negative value of k means a
hyperbolic geometry. In general a spherical geometry means the universe is closed and
will collapse in the future. In general a hyperbolic geometry means the universe is open
and will expand forever. In general a flat geometry means the universe is flat and will
expand forever but now the expansion rate goes to zero when time approaches infinity.
The curvature term in this equation is often rewritten in the following way

k

a2
⇒ ±1

a′2
a′ =

a√
|k|

(3)

To make use of the Friedmann equation it is necessary to have an equation for the
evolution of the density. This is the second equation called the fluid equation [1, Liddle]

ρ̇ + 3
ȧ

a
(ρ + p) = 0 (4)

To use the equations it is only necessary to specify the equation of state which gives
the pressure in terms of the density. The equation of state is simply written as

p = wρ (5)

Let’s now try to obtain an equation for the acceleration of the scale factor. It will appear
that such an equation will be useful when discussing inflation. In getting an expression
for ä it might be useful to differentiate the Friendmann equation with respect to time
because ȧ appears in that equation

d

dt

ȧ2

a2
=

1
a2

2ȧä + ȧ2−2
a3

ȧ =
8πG

3
ρ̇ +

2ȧ

a

k

a2
(6)

Using equation (4) this is rewritten as

2
ȧ

a

[
ä

a
− ȧ2

a2

]
= (−4πG)2

ȧ

a
(ρ + p) +

2ȧ

a

k

a2
(7)

Cancelling the common factor and putting equation (2) into this equation it follows that

ä = −4πGa
(ρ

3
+ p
)

(8)

Substituting the equation of state (5) into this equation it follows that

ä = −4πGa

(
w +

1
3

)
ρ (9)

This equation is called the acceleration equation, in the literature this equation is often
written in a somewhat different way. It is important to note the following
If w > − 1

3 then ä < 0 ⇒ NO INFLATION
If w < − 1

3 then ä > 0 ⇒ INFLATION

2.3 Cosmological models with flat geometry
Because observations imply that our universe is flat [1, Liddle][2, Perkins][3, Watson]
and the equations are easily solved if k = 0 let’s consider such models of the universe.
Putting the equation of state (5) into the fluid equation it follows that

ρ̇ + 3(w + 1)
ȧ

a
ρ = 0 (10)
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This can be rewritten as
d

dt

(
ρa3(w+1)

)
= 0 (11)

An expression for the density follows immediately

ρ =
C

a3(w+1)
(12)

in which the constant C is time independent. The Friedmann equation (2) becomes

ȧ2 =
8πGC

3a3w+1
(13)

Trying a(t) = Dtm in which D is time independent this can be written as

m2D2t2m−2 =
8πGC

3D3w+1
t−m(3w+1) (14)

If w 6=−1 then a(t)=Dtm is indeed a solution with m= 2
3(w+1) and

D = (6πGC(w + 1)2)
1

3(w+1) . The full solutions for a(t) and ρ(t) are then

a(t) = (6πGC(w + 1)2)
1

3(w+1) t
2

3(w+1) (15)

ρ(t) =
1

6πG(w + 1)2 t2
(16)

Now let’s look at the evolution of the scale factor and the evolution of the density for a
matter dominated universe and a radiation dominated universe.

Matter dominated universe

Because matter exerts no pressure [2, Perkins] it follows that w = 0. The evolution of
the scale factor and the evolution of the density are the following

a ∝ t
2
3 (17)

ρm ∝ 1
a3
∝ 1

t2
(18)

Furthermore ä < 0 as follows from the acceleration equation (9).

Radiation dominated universe

Radiation exerts pressure given by p = ρ
3 [2, Perkins]. It follows that w = 1

3 . The
evolution of the scale factor and the evolution of the density are the following

a ∝ t
1
2 (19)

ρr ∝
1
a4
∝ 1

t2
(20)

Furthermore also for a radiation dominated universe ä < 0.
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Our universe

In the standard Big Bang model the universe is assumed radiation dominated between
t = tP and t = tdec where tP ≈ 5 ·10−44s is the Planck time and tdec is the time of the
decoupling of matter and radiation. Before decoupling radiation is assumed to be the
dominant form of energy and after decoupling matter is assumed to be the dominant
form of energy. Matter is the dominant form of energy between t = tdec and t = tpr

where tpr is the present age of the universe [1, Liddle][2, Perkins][3, Watson]. Before
t = tP a classical description of the universe is not possible [4, Linde].
The age of the universe is determined to be [8, Komatsu et al.]

tpr ≈ 13.7 · 109yr ≈ 4 · 1017s (21)

Given the age of the universe it is possible to determine the time of decoupling. Ac-
cording to equation (17) a ∝ t

2
3 and the fact that aT = constant in a matter dominated

universe, because the number of relativistic degrees of freedom is conserved in a matter
dominated universe [6, Riotto], it follows that

tdec = tpr

(
a(tdec)
a(tpr)

) 3
2

= tpr

(
Tpr

Tdec

) 3
2

(22)

The temperature at the time of decoupling has been calculated to be about 0.3eV [5,
Kinney]. The temperature at the present time is the temperature of the Cosmic Mi-
crowave Background Radiation and is about 2 · 10−4eV . The time of decoupling is
then given by

tdec ≈ 1013s (23)

2.4 Problems of the Big Bang model
The Big Bang model has a number of problems which must be solved. As remarked
before among the important problems are the horizon problem and the flatness problem.
[1, Liddle][2, Perkins][3, Watson]

2.4.1 The flatness problem

First rewrite the Friedmann equation (2) in the form

ρ =
3H2

8πG
+

3k

8πGa2
(24)

Now consider the density needed to make the universe flat which is called the critical
density. By setting k = 0 in the Friedmann equation the critical density is obtained

ρc =
3H2

8πG
(25)

Consider the difference between the actual density and the critical density divided by
the critical density

∆ρ

ρc
=

ρ− ρc

ρc
=

3k
8πGa2

3H2

8πG

=
k

H2a2
=

k

ȧ2
(26)
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Using equation (17) it follows that for a matter dominated universe

∆ρ

ρc
∝ t

2
3 (27)

and using equation (19) it follows that for a radiation dominated universe

∆ρ

ρc
∝ t (28)

Using these two relations it follows that

∆ρ

ρc
(tP ) =

(
tP
tdec

)(
tdec

tpr

) 2
3 ∆ρ

ρc
(tpr) (29)

As remarked before observations imply that our universe is almost flat at the present
time

∆ρ

ρc
(tpr) = O(1) (30)

From this it follows that

∆ρ

ρc
(tP ) ≈

(
5 · 10−44

1013

)(
1013

4 · 1017

) 2
3

O(1) = O(10−60) (31)

This means that at the Big Bang the universe had to be extremely close to flat. The
standard Big Bang scenario provides no explanation for the fact why the universe was
very flat from the beginning. This problem is called the flatness problem. However one
must note that this calculation is based on the solutions for the scale factor in the case
that k = 0. If this is not the case then the result can be different.

2.4.2 The horizon problem

Consider a light ray which leaves a certain point at t = t1 and reaches another point
at t = t2. Between t and t + dt where t1 < t < t2 the light ray travels a distance dt.
At time t = t3 where t3 ≥ t2 this distance has increased due to the expansion of the
universe. The distance the light has traveled between t and t + dt at time t3 is given by

dt,t+dt(t3) = dt
a(t3)
a(t)

(32)

The distance dt1,t2(t3) the light has traveled between t = t1 and t = t2 at time t3 is
then given by

dt1,t2(t3) =
∫ t2

t1

a(t3)
a(t)

dt = a(t3)
∫ t2

t1

dt

a(t)
(33)

Consider the distance light could have traveled between the Big Bang and the time of
decoupling at the present time. By using equation (33), equation (19) and equation (17)

dtP ,tdec
(tpr) = a(tpr)

∫ tdec

0

dt

a(tdec)
[

t
tdec

] 1
2

=
a(tpr)
a(tdec)

2tdec = 2[tdec]
1
3 [tpr]

2
3 (34)

For simplicity the lower limit of the integral is set equal to zero which increases the
integral a little bit, but this is negligible which can be seen when comparing the time of
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decoupling (23) with the Plank time.
The calculated distance is half the distance between two points in the universe which
could be in thermal equilibrium in the standard Big Bang scenario.
Also consider the distance light could have traveled between the time of decoupling
and the present time at the present time

dtdec,tpr
(tpr) = a(tpr)

∫ tpr

tdec

dt

a(tpr)
[

t
tpr

] 2
3

= 3[tpr]
2
3

(
[tpr]

1
3 − [tdec]

1
3

)
(35)

In the small angle approximation an expression for the angle θ(tpr) that spans that part
of the sky which could have reached thermal equilibrium is given by

1
θ
(tpr) =

dtdec,tpr
(tpr)

2 · dtP ,tdec
(tpr)

=
3tpr − 3[tdec]

1
3 [tpr]

2
3

2 · 2[tdec]
1
3 [tpr]

2
3

=
3
4

[(
tpr

tdec

) 1
3

− 1

]
(36)

θ(tpr) =
4

3
[(

tpr

tdec

) 1
3 − 1

] (37)

Putting the age of the universe (21) and the time of decoupling (23) in equation (37) it
follows that

θ(tpr) ≈ 0.04 rad ≈ 2◦ (38)

Thus it was allowed to use the small angle approximation.
If the standard Big Bang scenario is correct it is expected that the Cosmic Microwave
Background Radiation is anisotropic when looking at angular scales larger than
≈ 2◦. But as remarked before when looking at the measured Cosmic Microwave Back-
ground Radiation one concludes that the Cosmic Microwave Background Radiation is
isotropic. This problem is called the horizon problem.

2.5 Inflation by a cosmological constant
Let’s consider a more exotic forms of energy in the universe by adding a constant
vacuum energy density ρΛ to the total energy density [1, Liddle][2, Perkins][3, Wat-
son]. One can think of this energy representing the so called zero-point energy of the
universe. It has been tried to relate this energy to the zero-point energy predicted by
quantum field theory [5, Kinney]. However quantum field theory predicts this energy
120 orders of magnitude larger than the critical energy density. This is an important
problem in quantum field theory. Not worrying anymore were this vacuum energy
comes from let’s assume that this vacuum energy density is present. Often this vac-
uum energy density is represented by a cosmological constant Λ which is related to the
vacuum energy density in the following way

ρΛ ≡
Λ

8πG
(39)

Using this definition the Friendmann equation (2) is now given by

H2 =
(

ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ
3

(40)
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Because the cosmological constant is constant as its name implies it follows from the
fluid equation (4) that p = −ρ or in term of the equation of state (5) that w = −1.
According to the acceleration equation (9) it follows that ä > 0. This means that
a vacuum energy density causes inflationary expansion if it is the dominant form of
energy. According to equations (18) and (20) the matter and radiation density terms
are soon redshifted away as also the curvature term does. After that has take place the
Friedmann equation can be simplified to

H2 =
Λ
3

(41)

Because ȧ =
√

Λ
3 a the time evolution of the scale factor is given by

a(t) = a(t0) exp

[√
Λ
3
· (t− t0)

]
= a(t0)eH·(t−t0) (42)

This means that the universe expands exponential if a cosmological constant is the
dominant form of energy.
One can define the number of e-foldings N(t) during inflationary expansion [3, Wat-
son]

a(t) ≡ a(t0)eN(t) (43)

In the literature one finds different start points as also is the case in [3, Watson]. One e-
folding means that the scale factor has grown by a factor of e. By definition the number
of e-foldings is only defined during inflationary expansion. The number of e-foldings
N(t) as a function of the scale factor is then written as

N(t) = ln
a(t)
a(t0)

(44)

Putting equation (42) into this equation gives

N(t) = H · (t− t0) (45)

Assuming that all the vacuum energy decays away at t = tend the total number of
e-foldings reached during inflationary expansion is given by

Nt = H · (tend − t0) (46)

It is common to choose t0 = tP where tP is the Plank time because before t = tP a
classical description of the universe is not possible as remarked before.

2.6 Solving the problems
2.6.1 The horizon problem

Because during inflationary expansion the scale factor increases exponentially, it can
be guessed that inflationary expansion may be able to solve the horizon problem when
looking at equation (33). Because at time t2 = tend the scale factor is much larger then
at time t1 = t0 the contribution to the distance is very large at times just after t0. Now
a quantitative analysis to solve the horizon problem is given.

9



In order to solve the horizon problem light must have been traveled between two points
on opposite parts of the sky at the present time. This means that

dtP ,tdec
(tpr) ≥ 2dtdec,tpr (tpr) = 6[tpr]

2
3

(
[tpr]

1
3 − [tdec]

1
3

)
(47)

Instead of assuming that the universe is radiation dominated between t = tP and t =
tdec it is now assumed that the universe is dominated by vacuum energy between t =
tP and t = tend and that the universe is radiation dominated between t = tend and
t = tdec. At t = tend the Big Bang occurs and the universe reheats to a temperature
T = TR . In this case dtP ,tdec

(tpr) is given by

tP , tdec(tpr) = a(tpr)

∫ tend

tP

dt

a(tend)
[

eHt

eHtend

] +
∫ tdec

tend

dt

a(tdec)
[

t
tdec

] 1
2


= a(tpr)

[
eHtend

a(tend)
−1
H

(
e−Htend − e−HtP

)
+

2[tdec]
1
2

a(tdec)

(
[tdec]

1
2 − [tend]

1
2

)]
(48)

Before proceeding with this calculation let’s first determine a realistic value for tend.
According to equation (19) a(t) ∝ t

1
2 and assuming that aT = constant when t >

tend by assuming the number of relativistic degrees of freedom is conserved (which in
practice is not the case in a radiation dominated universe, however even in the case of
phase transitions it is a good approximation [6, Riotto]) it follows that

tend = trec

(
Tdec

TR

)2

(49)

in which TR ≡ Tend is the reheating temperature after inflation. The reheating tem-
perature is taken here as TR ≈ 1015GeV . In [4, Linde] this temperature is taken as an
upper limit. Using Tdec ≈ 0.3 eV a realistic approximation for tend is given by

tend ≈ 10−36s (50)

A smaller reheating temperature TR will give a larger value of tend. Neglecting [tend]
1
2

with respect to [tdec]
1
2 in the second term and rearranging terms equation (48) is rewrit-

ten as

dtP ,tdec
(tpr) =

a(tpr)
a(tdec)

[
a(tdec)
a(tend)

eH[tend−tP ] − 1
H

+ 2tdec

]
(51)

Using equation (47) it follows that

eH[tend−tP ] − 1
H

≥ a(tend)
a(tdec)

[
6
a(tdec)
a(tpr)

(
tpr − [tpr]

2
3 [tdec]

1
3

)
− 2tdec

]
=
(

tend

tdec

) 1
2
[
6
(

tdec

tpr

) 2
3 (

tpr − [tpr]
2
3 [tdec]

1
3

)
− 2tdec

]
=
√

tend

[
6[tdec]

1
6 [tpr]

1
3 − 8[tdec]

1
2

]
≈ 6 · 108

√
tend (52)

if tend � tdec or in terms of reheating temperature TR � Tdec which in practice is
satisfied.
Using equation (46), equation (49) and equation (50), equation (52) is rewritten as

eNt − 1
Nt

≥ 6 · 108

√
tend

= 6 · 1026 TR

1015GeV
(53)
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Because the right hand side of this equation is very large the number of e-foldings Nt

to solve the horizon problem is given by

Nt − lnNt ≥ ln
[
6 · 1026 TR

1015GeV

]
(54)

Taking TR = 1015GeV corresponding to tend ≈ 10−36s

Nt(TR = 1015GeV ) ≥ 66 (55)

This expression is not very sensitive to the reheating temperature TR. If one for exam-
ple takes TR = 1012GeV corresponding to tend ≈ 10−30s one finds

Nt(TR = 1012GeV ) ≥ 59 (56)

One must remember that these calculations are based on the assumption that the num-
ber of relativistic degrees of freedom is conserved throughout the radiation dominated
era.
Let’s now consider the relation between the vacuum energy density and the reheating
temperature. According to equation (39) and equation (41)

ρv =
3H2

8πG
(57)

and according to equation (46) and equation (49)

H2 ≈ N2
t

t2end

=
N2

t

t2dec

(
TR

Tdec

)4

(58)

When also using equation (54) the following constraint on the vacuum energy density
is found

ρv ≥
3

8πGt2dec

[Nt(TR)]2
(

TR

Tdec

)4

(59)

The horizon problem is solved if the vacuum energy density ρv is large enough. For
example if TR = 1015GeV the vacuum energy density must satisfy

ρv(TR = 1015GeV ) ≥ 3
8π · 6.67 · 10−11 m3

kg s2 (1013s)2
662

(
1015GeV

0.3eV

)4

≈ 1085 kg

m3

(60)
This is a very large density, about 70 orders of magnitude larger than nuclear energy
densities. However the minimum value of the vacuum energy density ρv depends
strongly on the reheating temperature TR, approximately (ρv)min ∝ T 4

R.

2.6.2 The flatness problem

Using equation (42) and equation (45) in a vacuum energy dominated universe

˙a(t) = a(tP )HeH·(t−tP ) ∝ eN(t) (61)

Using equation (26) it follows that for a vacuum energy dominated universe

∆ρ

ρc
∝ e−2N(t) (62)
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If a stage of inflationary expansion precedes the Big Bang equation (29) reads

∆ρ

ρc
(tP ) =

e+2N(tend)

e+2N(tP )

(
tend

tdec

)(
tdec

tpr

) 2
3 ∆ρ

ρc
(tpr)

= e+2Nt

(
tend

tdec

)(
tdec

tpr

) 2
3 ∆ρ

ρc
(tpr) (63)

This can be rewritten as

Nt =
1
2

ln

[
tdec

tend

(
tpr

tdec

) 2
3
(

∆ρ
ρc

(tP )
∆ρ
ρc

(tpr)

)]
(64)

Using equation (49) and setting ∆ρ
ρc

(tP ) ≥ O(1)

Nt ≥
1
2

ln

[(
tpr

tdec

) 2
3
(

TR

Tdec

)2
]

=
1
3

ln
[

tpr

tdec

]
+ ln

[
TR

Tdec

]
(65)

If for example TR = 1015GeV then the flatness problem is solved if

Nt ≥
1
3

ln
[
4 · 1017

1013

]
+ ln

[
1015GeV

0.3eV

]
= 60 (66)

2.6.3 Problem of inflation by a cosmological constant

In the last subsections it appeared that a constant vacuum energy density i.e. a cos-
mological constant can solve important problems of the standard Big Bang scenario.
However in the section on inflation it was assumed that all the vacuum energy decays
away at t = tend. Because there is no reason to expect why this happens this is a
problem. It would be nice to have a model in which the decay of the vacuum energy
can be explained. It will appear in the following part of this thesis that inflation by a
(massive) scalar field gives the solution of this problem.

3 Inflation by a massive scalar field

3.1 Introduction
As mentioned before a lot of inflation models are based on scalar fields because scalar
fields play an important role in high energy physics. Here emphasis is put on inflation
by a massive scalar field which belong to a more general model of inflation called
Chaotic Inflation due to Andrei Linde [4, Linde]. In the Chaotic Inflation model it is
assumed that the universe is initially filled with a scalar field φ(~x, t) with mass m and
potential energy density V (φ). The potential energy density has a minimum at φ = 0.
This model is called Chaotic Inflation because the scalar field is assumed not to be
homogeneous in space. After the Planck time t = tP after the birth of the universe a
classical description of the universe becomes possible. Before this time physical laws
are not known. To describe nature before this time general relativity has to be combined
with quantum mechanics. Until now it is not known how to do this. At the Planck time
in some parts of the universe the scalar field is large and in other parts of the universe
the scalar field is low. It will appear that in those parts of the universe where the scalar
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field is large at the Planck time inflationary expansion can take place. In other places
where the scalar field is low at the Planck time inflationary expansion will not occur.
In the following a sufficiently small piece of the universe is considered in which the
scalar field is homogeneous in space. One can always divide an inhomogeneous part
of the early universe into approximately homogeneous parts.

3.2 The equation of motion
In classical mechanics we can define for each system of particles a Lagrangian L. In the
case of scalar fields it is not possible to use the Lagrangian to do calculations. Instead
of using the Lagrangian the Langrangian density L can be used which is related to the
Lagrangian L by [3, Watson]

L =
∫
L d3x (67)

In the case of a scalar field the Lagrangian density L is defined by

L =
1
2

∂µφ∂µφ− V (φ) (68)

It is useful to consider the stress-energy tensor for scalar fields. This tensor is given by
[3, Watson]

Tµν = ∂µφ∂νφ− gµνL (69)

When considering a sufficient small piece of the universe where the scalar field is
homogeneous we have ∂1 = ∂2 = ∂3 = 0 . The Lagrangian density is then given by

L = T (φ)− V (φ) =
1
2
φ̇2 − V (φ) (70)

The universe is considered to be a perfect fluid. The stress-energy tensor for a perfect
fluid is given by [3, Watson]

Tµν = diag(ρ, p, p, p) (71)

In a sufficient small part of the universe the stress-energy tensor is given by

Tµν = ∂µφ∂νφ− gµν

[
1
2
φ̇2 − V (φ)

]
(72)

The density of the scalar field is given by

ρ = T 00 = ∂0φ∂0φ− g00

[
1
2
φ̇2 − V (φ)

]
=

1
2
φ̇2 + V (φ) (73)

The pressure of the scalar field is given by

p = T 11 = T 22 = T 33 = ∂1φ∂1φ− g11

[
1
2
φ̇2 − V (φ)

]
=

1
2
φ̇2 − V (φ) (74)

Because the universe is a perfect fluid the fluid equations holds (4) which is given here
again

ρ̇ + 3H(ρ + p) = 0 (75)
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Putting the results for the pressure and the density into the fluid equation gives

φ̇φ̈ + φ̇
d

dt
V (φ) + 3Hφ̇2 = 0 (76)

When dividing by φ̇ the equation of motion follows

φ̈ + 3Hφ̇ + V ′(φ) = 0 (77)

It is important to note that the equation of motion remains the same when adding a
constant term to the potential energy density.

3.2.1 Massive scalar field

If V (φ) ∝ φ2 then the equation of motion describes a damped harmonic oscillator with
friction term 3Hφ̇ . A massive scalar field satisfies this condition because a massive
scalar field has the following potential energy density [4, Linde]

V (φ) =
1
2
m2φ2 (78)

The equation of motion for a massive scalar field is given by

φ̈ + 3Hφ̇ + m2φ = 0 (79)

In the following sections the scalar field is considered to be a massive scalar field.

3.3 Equations describing scalar field inflation
To describe the dynamics of scalar field inflation the Friedmann equation and the equa-
tion of motion must be solved simultaneously. Putting equation (73) into equation (2)
and defining G = Mp

−2 = 1 the following two equations must be solved simultane-
ously

H2 =
8π

3

[
1
2
φ̇2 +

1
2
m2φ2

]
− k

a2
(80)

φ̈ + 3Hφ̇ + m2φ = 0 (81)

3.3.1 Constraints on the scalar field for inflationary expansion to occur

According to equation (9) inflationary expansion occurs as long as p < − 1
3ρ . Equa-

tion (5) reads using equations (74) and (73)

w =
p

ρ
=

1
2 φ̇2 − 1

2m2φ2

1
2 φ̇2 + 1

2m2φ2
=

T − V

T + V
< −1

3
(82)

This condition is satisfied if and only if

V > 2T (83)

or in terms of the scalar field

φ >

√
2

m
φ̇ (84)

This means that inflation does only occur if the scalar field is large enough or in terms
of kinetic and potential energy densities that the potential energy density is more than
two times larger than the kinetic energy density in the Friedmann equation.
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3.4 The slow roll approximation
These equations cannot be solved algebraically for a massive scalar field. It is neces-
sary to make some approximations. From equation (83) it appeared that inflation only
occurs if the potential energy density is more than two times larger than the kinetic
energy density. Let’s now assume that the potential energy density is much larger than
the kinetic energy density. This can be done because in the Chaotic Inflation scenario
there had to be some domains in the early universe where the kinetic energy density
was much smaller than the potential energy density.

1
2
φ̇2 � 1

2
m2φ2 (85)

In this case equation (82) reads using equations (74) and (73)

w =
p

ρ
=

1
2 φ̇2 − 1

2m2φ2

1
2 φ̇2 + 1

2m2φ2
≈ −1 (86)

According to equation (9) this means that inflationary expansion occurs. Furthermore
in a section on inflationary expansion it was shown that if w = −1 the scale factor
expands exponentially. The conclusion is that if there is a domain in which the kinetic
energy density is small compared to the potential energy density almost exponential
expansion will occur. Because in this case it is expected that the curvature density
is redshifted away in a short time a further approximation is to neglect the curvature
term. A final approximation is to neglect the ’acceleration’ of the field. Using these
approximations the full equations are simplified to

H2 =
4π

3
m2φ2 (87)

3Hφ̇ + m2φ = 0 (88)

These two equations are called the slow roll equations and approximating the full equa-
tions by the slow roll equations is called the slow roll approximation [4, Linde]. The
slow roll equations will be solved exactly and the full equations will be solved numer-
ically using Mathematica. The numerical results will be compared with the analytical
results.

3.5 Solving the slow roll equations
The slow roll equations can be solved exactly. First an expression for the time evolution
for the scalar field is derived. After having also derived the value of the scalar field at
which inflation ends the duration of inflation follows. Thereafter an expression for the
time evolution of the scale factor is derived. From this expression an expression for the
number of e-folding follows.

3.5.1 Time evolution of the scalar field

Putting equation (88) into equation (87) gives

H2

(
1− 12πφ̇2

m2

)
= 0 (89)

15



The ’velocity’ of the scalar field follows immediately

φ̇ = − m√
12π

(90)

The minus sign appears when looking at equation (88). It follows that φ̇ < 0 . The
time evolution of the field is given by

φ(t) = φ(t0)−
m√
12π

(t− t0) (91)

In the slow roll approximation the scalar field decreases linear as a function of time.
This linear relationship is expected to become exact if both the field is large and the
curvature density can be neglected. Thus when the curvature density has already been
redshifted away.

3.5.2 The end of inflation

In the last section it appeared that inflationary expansion occurs only if the scalar field
is large enough. Referring to equation (91) at a certain moment the scalar field reaches
a value at which inflationary expansion terminates. In the following the final value φf

for the scalar field is calculated at which inflation terminates in the slow roll approxi-
mation.
In the case of inflation ä > 0 . In relating the definition of inflation to the Hubble
parameter let’s differentiate the Hubble parameter with respect to time

dH

dt
=

d

dt

ȧ

a
=

ä

a
− ȧ

a

2

(92)

Making use of the definition of inflation it follows that

ä

a
= Ḣ + H2 > 0 (93)

The Hubble parameter is given by equation (87). Because also the time derivate of the
Hubble parameter appears in the above equation let’s differentiate equation (87) with
respect to time

Ḣ =
1

2H

8π

3
m2φφ̇ =

4πm2φ2

3

(
φ̇

φ

)
1
H

(94)

Using equations (87) and (88) this can be rewritten as

Ḣ = H2

(
−m2

3H

)
1
H

=
−m2

3
(95)

Equation (93) describing the condition for inflation can now be written as

4π

3
m2φ2 >

m2

3
(96)

Inflation in the slow roll approximation proceeds until the scalar field has reached the
final value

φf =
1√
4π

(97)
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Now let’s look at the kinetic and potential energy densities of the scalar field when it
has reached the final value. Looking at equation (90) it appears that the kinetic energy
density is constant and given by

T =
1
2
φ̇2 =

m2

24π
(98)

Using equation (97) it follows that the potential energy density at φ = φf is given by

V (φf ) =
1
2
m2φ2

f =
m2

8π
(99)

It follows that V (φf ) = 3T . Comparing this result with result (83) which states that
inflationary expansion continues as long as V (φ) ≥ 2T one concludes that the end of
inflationary expansion is well approximated if the slow roll equations are used. The
equation of state (82) reads at φ = φf

w(φf ) =
T − V (φf )
T + V (φf )

= −1
2

(100)

Thus in the slow roll approximation inflation terminates in time.

3.5.3 The duration of inflation

It is straightforward to calculate the duration of inflation in the slow roll approximation.
Putting the final value of the scalar field (97) into the equation for the time evolution of
the scalar field (91) it follows that

1√
4π

= φf = φ(tf ) = φ(t0)−
m√
12π

(tf − t0) (101)

The duration of inflation in the slow roll approximation is then given by

tinfl = tf − t0 =
√

12π

m

(
φ(t0)−

1√
4π

)
(102)

3.5.4 Time evolution of the scale factor

To solve for a(t) equation (88) is rewritten as

ȧ

a
=
−m2φ

3φ̇
(103)

Putting equation (91) into this equation gives

ȧ(t)
a(t)

=
−m2

[
φ(t0)− m√

12π
(t− t0)

]
−3 m√

12π

=

√
4π

3
mφ(t0)−

m2

3
(t−t0) = B+C(t−t0)

(104)

B =

√
4π

3
mφ(t0) C =

−m2

3
(105)

Using t′ = t− t0 the equation to be solved becomes

da(t′)
dt′

= a(t′)[B + Ct′] (106)
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Trying a(t′) = D exp g(t′) gives

da(t′)
dt′

= a(t′)
dg(t′)
dt′

= a(t′) [B + Ct′] (107)

The function g(t′) is then given by

g(t′) = A + Bt′ +
C

2
(t′)2 (108)

This gives the solution

a(t) = eA ln D exp

[√
4π

3
mφ(t0)(t− t0)−

m2

6
(t− t0)2

]
(109)

Setting t = t0 gives eA ln D = a(t0) . The solution becomes

a(t) = a(t0) exp

[√
4π

3
mφ(t0)(t− t0)−

m2

6
(t− t0)2

]
(110)

Of one writes the scale factor as

a(t) = a(t0) exp

[√
4π

3
mφ(t0)(t− t0)

[
1−

√
1

48π

m

φ(t0)
(t− t0)

]]
(111)

one can easy see that the scale factor in the initial stage of inflation is approximately
given by

lim
t→t0

a(t) = a(t0) exp

[√
4π

3
mφ(t0)(t− t0)

]
(112)

This confirms that inflation is approximately exponential in the initial stage of inflation.
One can see from equation (111) that the larger the value of the initial scalar field φ(t0)
the longer it takes for the approximation (112) to become invalid.

Time evolution of the Hubble parameter

Let’s express the Hubble parameter is expressed as a function of time instead of a
function of the scalar field. Looking at equation (104) one can see that the result has
already been obtained

H(t) =

√
4π

3
mφ(t0)−

1
3
m2(t− t0) (113)

From this one can see that the Hubble parameter linearly decreases as a function of
time

Ḣ = −1
3
m2 (114)

In the initial stage of inflation the Hubble parameter is given by

lim
t→t0

H(t) =

√
4π

3
mφ(t0) (115)

Comparing this result with equation (112) it appears that

lim
t→t0

a(t) = a(t0) exp [H(t0) · (t− t0)] (116)

This is equal to the time evolution of the scale parameter if a vacuum energy with
energy density ρv as described in the section on inflationary expansion in the first part
of this thesis is the dominant form of energy.
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3.5.5 The number of e-foldings

Using equation (44) for the number of e-foldings N(t)

N(t) = ln
a(t)
a(t0)

(117)

The number of e-foldings can be calculated by putting equation (110) into this equation.
It gives

N(t) =

√
4π

3
m(t− t0)

[
φ(t0)−

m√
48π

(t− t0)
]

(118)

Using equation (102) the term between the brackets can be rewritten as

[...] = φ(t0)−
m√
48π

√
12π

m
[φ(t0)− φ(t)] =

1
2

[φ(t0) + φ(t)] (119)

Using equation (102) again the equation for the number of e-folding can be simplified
to

N(t) =

√
4π

3
m

√
12π

m
[φ(t0)− φ(t)]

1
2

[φ(t0) + φ(t)] = 2π
[
φ2(t0)− φ2(t)

]
(120)

As a consistency check for previous calculations the number of e-foldings N is also
calculated in another way. Let’s differentiate equation (44) with respect to the field φ .

dN

dφ
=
(

dN

dt

)
dt

dφ
=

H

φ̇
(121)

Using equation (87) and equation (88) the number of e-foldings N can be written as

N(t) =
∫ φ(t)

φ(t0)

H

φ̇
dφ =

∫ φ(t0)

φ(t)

3H2

V ′(φ)
dφ = 8π

∫ φ(t0)

φ(t)

V (φ)
V ′(φ)

dφ (122)

In the case of a massive scalar field the number of e-foldings is given by

N(t) = 8π

∫ φ(t0)

φ(t)

m2φ2

2m2φ
dφ = 4π

∫ φ(t0)

φ(t)

φdφ = 2π
[
φ2(t0)− φ2(t)

]
(123)

This is exactly the same result as equation (120). It is important to note that the number
of e-foldings in independent of the mass of the scalar field. Using equation (97) the
total number of e-foldings Nt = N(tf ) reached during slow roll inflation is given by

Nt = 2πφ2(t0)−
1
2

(124)

One can write Nt = N ′(t) + N(t) such that N ′(t) = Nt − N(t) is the number of
e-foldings which will be reached after when the field has value φ(t). It is given by

N ′(t) =
(

2πφ2(t0)−
1
2

)
−
(
2πφ2(t0)− 2πφ2(t)

)
= 2πφ2(t)− 1

2
(125)

it will appear useful in the next subsection if this is rewritten as

φ2(t) =
2N ′(t) + 1

4π
(126)
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3.6 Quantum fluctuations, density perturbations and the large scale
structure of the universe

As remarked before scalar field inflation is not only useful in solving problems like the
horizon problem and the flatness problem but also gives an explanation for the observed
large scale structure of the universe.

3.6.1 Quantum fluctuations of a scalar field

In the case of scalar field inflation it is believed that a homogeneous scalar field φ(~x)
is not constant in time but also has quantum fluctuations [3, Watson][4, Linde][5,
Kinney][6, Riotto][7, Langlois]. A quantum fluctuation has amplitude δφ(~x, t) and
wavelength λ(t). Using equation (110) in an universe expanding due to a massive
scalar field the time evolution of the wavelength λ(t) is given by

λ(t) = λ(t0) exp

[√
4π

3
mφ(t0)(t− t0)−

m2

6
(t− t0)2

]
(127)

The amplitude δφ(~x, t) of a quantum fluctuation is ‘frozen in’ if the end parts of its
wavelength are not longer in causal contact [6, Riotto], thus if the end points are reced-
ing away from each other faster than the speed of light. Thus if

dλ(t)
dt

=

[√
4π

3
mφ(t0)−

1
3
m2(t− t0)

]
λ(t) = H(t)λ(t) ≥ 1 (128)

where equation (113) has been substituted. Thus the amplitude is ‘frozen in’ if

λ(t) ≥ 1
H(t)

(129)

The wavelength a quantum fluctuation had when its amplitude became ‘frozen in’ is
called λF . A relation between λF and the value the Hubble parameter H had when a
quantum fluctuation became ‘frozen in’ is then given by

λF =
1
H

(130)

By substituting equation (87) into this equation gives a relation between λF and the
value the scalar field φ had when a quantum fluctuation became ‘frozen in’

λF =
1
H

=

√
3
4π

mφ
(131)

3.6.2 Density inhomogeneities

In order to relate λF to the amplitude of density inhomogeneities a relation is needed
between φ and the amplitude of density inhomogeneities. This is a very difficult to do.
Different people have derived the wanted equation. In [4, Linde] a general result is
given as

δH =
δρ

ρ
= C

H2

2πφ̇
(132)
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in which C ≈ 1. Let’s substitute equation (87) and equation (90) into this equation. It
gives

δH = C
4π
3 m2φ2

−2π m√
12π

= −4C

√
π

3
mφ2

= −4C

√
π

3
m

3
4π

m2λ2
F

= −C

√
3
π

1
mλ2

F

(133)

Because quantum fluctuations are produced continuously during scalar field inflation,
at each time or at each value of the scalar field there are perturbations whose wave-
length becomes equal to λF . Amplitudes of quantum perturbations are ’frozen in’
continuously during scalar field inflation. This causes that a spectrum of density per-
turbations is created.
Using equation (126) equation (133) is rewritten as

δH =
C√
3π

m [2N ′ + 1] (134)

The minus sign is neglected because the sign is not important. By rewriting this equa-
tion an equation for the mass of the scalar field is obtained

m =
√

3π

C

δH(N ′)
2N ′ + 1

(135)

3.6.3 Assigning a numerical value to the mass

When defining Nmin as the minimum number of e-foldings to solve the horizon prob-
lem this means that δH(Nmin) denotes the amplitude of density perturbations at the
time of the decoupling of matter and radiation. Observations of the Cosmic Microwave
Background Radiation are used to assign δH(Nmin) a value. The following value for
δH(Nmin) is derived from WMAP data combined with distance measurements from
Type Ia supernovae (SN) and Baryon Acoustic Oscillations (BAO) in the distribution
of galaxies [8, Komatsu et al.]:

δH(Nmin) =
√

2.445 · 10−9 ≈ 5 · 10−5 (136)

In has been shown before that the minimum number of e-foldings to solve the horizon
(and the flatness problem) is Nmin ≈ 60. By using this approximation and the ob-
served value of δH(Nmin) the mass of the scalar field can be approximated by using
equation (135)

m =
√

3π
5 · 10−5

2 · 60 + 1
≈ 10−6 (137)

The mass is not very sensitive to the exact value of Nmin as can be seen by looking at
equation (135).

3.6.4 The tilt of the spectrum of density perturbations

An important observational parameter is the tilt n − 1 of the spectrum of density per-
turbations defined by [7, Langlois]

n− 1 ≡ d ln (δ2
H)

d ln (aH)
=

2
δH

dδH

d ln (aH)
(138)
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Substituting of equation (133) into this equation gives

n− 1 =
2

δH

d
(
−4C

√
π
3 mφ2

)
d ln (aH)

=
2

δH

2δH

φ

dφ

d ln (aH)
=

4φ̇

φ

[
dt

d ln (aH)

]
= − 2√

3π

m

φ

[
d ln (aH)

dt

]−1

(139)

Equation (90) is used to substitute for the velocity of the scalar field. Let’s rewrite the
part between brackets

d ln (aH)
dt

=
1
H

dH

dt
+

d ln a

dt
(140)

Using equation (110), equation (113) and equation (114) this is rewritten as

d ln (aH)
dt

= −m2

3H
+

d ln a(t0) exp
[√

4π
3 mφ(t0)(t− t0)− m2

6 (t− t0)2
]

dt

= −m2

3H
+ H = H

(
1− m2

3H

)
=

√
4π

3
mφ

(
1− 1

4πφ2

)
(141)

where equation (87) is used to substitute for the Hubble parameter.
The tilt n− 1 is then given by

n− 1 = − 2√
3π

m

φ

[√
3
4π

1
mφ

1
1− 1

4πφ2

]
=

−4
4πφ2 − 1

(142)

By substituting equation (126) into this equation the tilt is obtained as a function of N ′

[n− 1](N ′) = − 2
N ′ (143)

Let’s compute the tilt n−1 and the associated value of n in the case N ′ = Nmin = 60.

[n− 1](60) = − 2
60
≈ −0.033

n(60) = 1− 2
60
≈ 0.97 (144)

3.6.5 Observations of the tilt compared with theory

The following values for n(Nmin) and σn(Nmin) are derived from WMAP data com-
bined with distance measurements from Type Ia supernovae (SN) and Baryon Acoustic
Oscillations (BAO) in the distribution of galaxies [8, Komatsu et al.]:

n(Nmin) = 0.960± 0.013 (145)

When comparing theory with observations it can be concluded that the theoretical result
is confirmed by observations if Nmin = 60. More general, it is found, using

2
Nmin(min)

= 1− 0.947 = 0.053

2
Nmin(max)

= 1− 0.973 = 0.027
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that
38 ≤ Nmin ≤ 74 (146)

for the theoretical result to be in the interval 0.947 ≤ n(Nmin) ≤ 0.973. It is very
important to note that this value says nothing about the total number of e-foldings Nt

reached during inflation. The total number of e-foldings is allowed to be many orders
of magnitude larger than the values mentioned above. What this values are meaning is
that to compare theory with observations one must have a good idea of what the value
for Nmin must be because this value is put into equation (135) and equation (143)
which are giving theoretical results for the mass and the tilt.
Referring to the first part of this thesis the reheating temperature as a function of the
minimum number of e-foldings Nmin needed to solve the horizon problem, using equa-
tion (53), is written as

TR =
1015GeV

6 · 1026

eNmin

Nmin
(147)

in order for 38 ≤ Nmin ≤ 74 the reheating temperature must be in the interval

103GeV ≤ Nmin ≤ 1018GeV (148)

Again it must be noted that this result is based on the fact that the number of relativistic
degrees of freedom is assumed constant during the radiation era.

3.7 Numerically solving the equations
Now let’s look how good to slow roll approximation is. For this purpose the full equa-
tions describing scalar field inflation are solved numerically with Mathematica. The
source text listings of the Mathematica program written are given in appendix A.
The full equations describing massive scalar field inflation are given here again

H2 =
8π

3

[
1
2
φ̇2 +

1
2
m2φ2

]
− k

a2
(149)

φ̈ + 3Hφ̇ + m2φ = 0 (150)

Within the slow roll approximation the curvature energy density, the kinetic energy
density and the acceleration of the scalar field were neglected. Curvature energy den-
sity can be important at the initial stages of inflation. During inflation it is redshifted
away. The kinetic energy density term and the acceleration of the scalar field term be-
come important at the end of the inflationary stage.
In order to get numerical results it is necessary to assign a value to the mass of the
scalar field. Referring to the result (137) the mass is taken to be

m = 10−6

3.7.1 Initial conditions

The initial value of the scalar field must be set. Because it has shown before that the
minimum number of e-foldings Nmin ≈ 60 let’s take for the initial value of the scalar
field the value of the field which in the slow roll approximation gives that amount of
e-foldings. Thus

Nt(SR) = 60
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Also if initially there is a nonzero curvature energy density present the ratio of initial
curvature density divided by the initial potential energy density must be set. This ratio
is given by

K(tP )
V (tP )

=
3|k|

8πa2(tP )

1
2m2φ2(tP )

=
3

4πm2φ2(tP )
|k|

a2(tP )
(151)

By the rescaling k ⇒ ±1 for k 6= 0 the initial value a(tP ) determines this ratio.

3.7.2 The different approaches

In solving the equations describing massive scalar field inflation four different cases
are considered:

1. Numerically solving the slow roll equations (for comparison)

2. Solving the full equations for negative initial curvature (k < 0)
with K(tP ) ≈ 250 · V (tP )

3. Solving the full equations for zero initial curvature (k = 0)

4. Solving the full equations for positive initial curvature (k > 0)
with K(tP ) ≈ 0.97 · V (tP )

In the case of positive initial curvature the initial curvature density is of the same order
of magnitude as the initial potential energy density. If the initial curvature density is
chosen to be larger than the initial potential energy density the scale factor becomes an
imaginary number which is physically not allowed. Thus the amount of initial curva-
ture density chosen is almost equal to the upper limit.
In the case of negative initial curvature the initial curvature density is much larger than
the initial potential energy density. Here one can take the amount of initial curvature
density as large as possible.
In each case the following results are presented:

1. The duration of inflation tinfl. Equation (84) is used to calculate the end of
inflation.

2. The total number of e-foldings Nt.

3. A graph in which N = Nt −N ′ is plotted as a function of time.

4. Two graphs in which the scalar field φ is plotted as a function of time.

Also the duration of inflation in the slow roll approximation is calculated for compari-
son.

3.7.3 Results and discussion

The results are presented in figure 1. In each case one can compare the calculated total
number of e-foldings Nt with the total number of e-foldings Nt(SR) = 60 reached
in the slow roll approximation. Also one can compare the duration of inflation tinfl

with the duration of inflation calculated in the slow roll approximation. The duration
of inflation in the slow roll approximation is calculated as tinfl(SR) ≈ 9 ·10−37s. The
results can be summarized as follows:
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(a) Solutions of the Slow Roll equations.
tinfl ≈ 9 · 10−37s and Nt ≈ 60
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(b) Solutions for negative initial curvature with
K(tP ) ≈ 250 ·V (tP ). tinfl ≈ 9 · 10−37s and
Nt ≈ 64
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(c) Solutions for zero initial curvature.
tinfl ≈ 9 · 10−37s and Nt ≈ 61
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(d) Solutions for positive initial curvature with
K(tP ) ≈ 0.97 · V (tP ). tinfl ≈ 9 · 10−37s
and Nt ≈ 60

Figure 1: Numerical solutions of the equations with m = 10−6 and Nt(SR) = 60
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1. In each case the duration of inflation is≈ 9·10−37s which is equal to the duration
of inflation calculated analytically in the slow roll approximation.

2. In the case when the full equations are solved for zero initial curvature the total
number of e-foldings Nt reached during inflation is ≈ 1 e-folding more than in
the case when the slow roll equations are solved. The total amount of e-foldings
Nt reached when solving the slow roll equations is approximately equal to the
analytical calculated amount of Nt(SR) = 60.

3. In the case of positive initial curvature the total number of e-foldings Nt is ≈ 1
e-folding less than in the case of zero initial curvature and in the case of negative
initial curvature the total number of e-foldings Nt is ≈ 3 e-foldings more than
in the case of zero initial curvature. It must be noted that the ratio of initial
curvature density divided by the initial potential energy was different for the two
cases considered.

4. During inflation the plotted results for N(t) and φ(t) based on solving the slow
roll equations are approximately equal to the plotted results of N(t) and φ(t)
based on solving the full equations for zero initial curvature. As expected after
the end of inflation the plotted results for N(t) and φ(t) based on solving the
Slow Roll equations become meaningless.

5. The slope related to the time evolution of N(t) is approximately equal to 1 in
the case of zero initial curvature which means that inflation is approximately ex-
ponential as expected from the slow roll solutions. After t = tinfl the slope of
N(t) becomes approximately zero which confirms that inflation does not take
place anymore. In the case of non negligible curvature energy density the devia-
tion from exponential behaviour becomes larger but still is approximately expo-
nential.

6. Independent of the initial curvature density during inflation the scalar field den-
sity φ(t) linear decreases as a function of time as expected from the Slow Roll
solutions. After t ≈ tinfl the field begins to oscillate rapidly.

The conclusion is that approximating the full equations by the slow roll equations for
Nt(SR) = 60 is a very good approximation even if the initial curvature density is two
orders of magnitude larger then the initial potential energy density. As will be discussed
in next section the total number of e-foldings Nt reached during inflation is expected
to be (much) larger than Nt = 60. Because the slow roll approximation becomes even
a better approximation if the total amount of e-foldings Nt reached during inflation
becomes larger, the final conclusion is that it is always allowed to use the slow roll
approximation.

3.8 Typical values for the total amount of e-foldings and the dura-
tion of massive scalar field inflation

Having confirmed that the slow roll approximation is a very good approximation let’s
look a possible values for the total amount of e-foldings Nt and the duration of inflation
tinfl.
First let’s give again the equation for the total number of e-foldings (124)

Nt = 2πφ2(tP )− 1
2

(152)
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Also let’s give again the equation for the duration of inflation (102)

tinfl(Nt) ≈
√

3 · 106
[√

2Nt + 1− 1
]

(153)

in which the equation above is used to substitute for φ(t0) and equation (137) is used
to substitute a typical value for the mass of the scalar field.
It has been shown before that the minimum value of the total number e-foldings to
solve the horizon and flatness problem is Nmin ≈ 60. In this case the duration of
inflation in seconds is

tinfl(Nt = 60) ≈
√

3 · 106
[√

120 + 1− 1
]
· 5 · 10−44s ≈ 10−36s (154)

This result was also mentioned in the section before.
Now let’s look at the maximum number of e-foldings that can be reached classically.
In order for a classical description to be valid the potential energy density must satisfy
[4, Linde]

V (φ) =
1
2
m2φ2 ≤ 1 (155)

This means that the maximum value of the massive scalar field φmax is given by

φmax =
√

2
m

≈
√

2 · 106 (156)

The maximum value for the total number of e-foldings Nt,max is then given by using
equation (152)

Nt,max = 2π · 2 · 1012 − 1
2
≈ 1013 (157)

In this case the duration of inflation is

tinfl(Nt = 1013) ≈
√

3 · 106
[√

1013 − 1
]
· 5 · 10−44s ≈ 10−31s (158)

Because any initial value of the field at the Planck time tP occurs with the same prob-
ability the total number of e-foldings Nt can assume any value between the minimum
and maximum value. Let’s summarize the results

60 ≤ Nt ≤ 1013

10−36s ≤ tinfl ≤ 10−31s (159)

Because some approximations are made one must not take these limits too strictly.
In the first part of this thesis it was shown that in order to solve the horizon problem
Nt ≥ 66 if tend = 10−36s and Nt ≥ 59 if tend = 10−30s where tend ≈ tinfl.
One can conclude that scalar field inflation gives enough e-foldings within a time
10−31s to solve the horizon problem and the flatness problem. However is it some-
what uncertain what the lower limit on Nt actually is. Note, assuming massive scalar
field inflation is the correct inflationary scenario, that the probability that we live in a
universe in which the total number of e-foldings reached during inflationary expansion
was Nt ≈ 60 is negligible because each value of the scalar field at the Planck time
occurred with the same probability. So the probability is very high that we live in a
universe in which the total number of e-foldings reached during inflationary expansion
was Nt � 60 and in this case the horizon problem and the flatness problem are easily
solved.
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4 Conclusions
It was found that a period of inflationary expansion called inflation can solve the prob-
lems of the Big Bang model. Because in the case of inflation by a cosmological con-
stant inflation does not end inflation by a massive scalar field was introduced. In this
model the duration of inflation is finite and is typically 10−36s ≤ tinfl ≤ 10−31s.
Also this model typically produces a very large amount of e-foldings which easily
solves the flatness and horizon problem. The total number of e-foldings is typically
60 ≤ Nt ≤ 1013. This model also gives an explanation for the observed large scale
structure of the universe. The mass of the scalar field is calculated as m ≈ 10−6.
The tilt of the spectrum of density perturbations is calculated as n(60) ≈ 0.97 which
agrees with the value of the tilt derived from observations. Because this inflation model
is not ruled out by observations and because the total amount of e-foldings that can be
reached is much larger than the minimum amount of e-foldings necessary to solve the
problems of the Big Bang model the conclusion is that inflation by a massive scalar
field is very plausible. In describing nature in the very early stages of the universe on
must take into account that it is plausible that a massive scalar field was present at this
early epoch.

A Source text listings of the Mathematica program
(* CHAOTIC INFLATION WITH MASSIVE SCALAR FIELD *)(* CHAOTIC INFLATION WITH MASSIVE SCALAR FIELD *)(* CHAOTIC INFLATION WITH MASSIVE SCALAR FIELD *)
(* Written by : DENNIS VISSER *)(* Written by : DENNIS VISSER *)(* Written by : DENNIS VISSER *)
Clear[m, a0, ffinal, efoldingssr, f0, derf, durationsr, solutions,Clear[m, a0, ffinal, efoldingssr, f0, derf, durationsr, solutions,Clear[m, a0, ffinal, efoldingssr, f0, derf, durationsr, solutions,
scalefactor, field, duration, efoldings, k,scalefactor, field, duration, efoldings, k,scalefactor, field, duration, efoldings, k,
b, c, d];b, c, d];b, c, d];
m = 10∧(−6);m = 10∧(−6);m = 10∧(−6);
a0[1] = 3 ∗ 10∧5; (*arbitrary*)a0[1] = 3 ∗ 10∧5; (*arbitrary*)a0[1] = 3 ∗ 10∧5; (*arbitrary*)
a0[2] = 10∧4; (*determines curvature density for k = −1*)a0[2] = 10∧4; (*determines curvature density for k = −1*)a0[2] = 10∧4; (*determines curvature density for k = −1*)
a0[3] = 3 ∗ 10∧5; (*arbitrary*)a0[3] = 3 ∗ 10∧5; (*arbitrary*)a0[3] = 3 ∗ 10∧5; (*arbitrary*)
a0[4] = 1.6 ∗ 10∧5; (*determines curvature density for k = +1,a0[4] = 1.6 ∗ 10∧5; (*determines curvature density for k = +1,a0[4] = 1.6 ∗ 10∧5; (*determines curvature density for k = +1,
must be larger than 1.57 ∗ 10∧5( if N = 60) in order to obtainmust be larger than 1.57 ∗ 10∧5( if N = 60) in order to obtainmust be larger than 1.57 ∗ 10∧5( if N = 60) in order to obtain
real solutions for the scale factor *)real solutions for the scale factor *)real solutions for the scale factor *)
ffinal = Sqrt[1/(4 ∗ Pi)];ffinal = Sqrt[1/(4 ∗ Pi)];ffinal = Sqrt[1/(4 ∗ Pi)];
efoldingssr = 60;efoldingssr = 60;efoldingssr = 60;
f0 = Sqrt[(2 ∗ efoldingssr + 1)/(4 ∗ Pi)]; derf = (−1) ∗ Sqrt[1/(12 ∗ Pi)] ∗m;f0 = Sqrt[(2 ∗ efoldingssr + 1)/(4 ∗ Pi)]; derf = (−1) ∗ Sqrt[1/(12 ∗ Pi)] ∗m;f0 = Sqrt[(2 ∗ efoldingssr + 1)/(4 ∗ Pi)]; derf = (−1) ∗ Sqrt[1/(12 ∗ Pi)] ∗m;
V [f ] = 0.5 ∗m∧2 ∗ f [t]∧2;V [f ] = 0.5 ∗m∧2 ∗ f [t]∧2;V [f ] = 0.5 ∗m∧2 ∗ f [t]∧2;
F [t ] = f0− (m/Sqrt[12 ∗ Pi]) ∗ t;F [t ] = f0− (m/Sqrt[12 ∗ Pi]) ∗ t;F [t ] = f0− (m/Sqrt[12 ∗ Pi]) ∗ t;
durationsr = t/.N [Solve[ffinal == F [t/(5 ∗ 10∧(−44))], t]][[1]];durationsr = t/.N [Solve[ffinal == F [t/(5 ∗ 10∧(−44))], t]][[1]];durationsr = t/.N [Solve[ffinal == F [t/(5 ∗ 10∧(−44))], t]][[1]];
solutions[1] =solutions[1] =solutions[1] =
NDSolve[NDSolve[NDSolve[
{(a′[t]/a[t])∧2 == (8 ∗ Pi/3) ∗ V [f ],{(a′[t]/a[t])∧2 == (8 ∗ Pi/3) ∗ V [f ],{(a′[t]/a[t])∧2 == (8 ∗ Pi/3) ∗ V [f ],
3 ∗ (a′[t]/a[t]) ∗ f ′[t] + (D[V [f ], f [t]]) == 0,3 ∗ (a′[t]/a[t]) ∗ f ′[t] + (D[V [f ], f [t]]) == 0,3 ∗ (a′[t]/a[t]) ∗ f ′[t] + (D[V [f ], f [t]]) == 0,
a[1] == a0[1], f [1] == f0},a[1] == a0[1], f [1] == f0},a[1] == a0[1], f [1] == f0},
{a, f},{a, f},{a, f},
{t, 1, 10∧11}, MaxSteps → 1000000];{t, 1, 10∧11}, MaxSteps → 1000000];{t, 1, 10∧11}, MaxSteps → 1000000];
scalefactor[1] = a/.solutions[1][[1]];scalefactor[1] = a/.solutions[1][[1]];scalefactor[1] = a/.solutions[1][[1]];
field[1] = f /.solutions[1][[1]];field[1] = f /.solutions[1][[1]];field[1] = f /.solutions[1][[1]];
duration[1] = 5 ∗ 10∧(−44) ∗ t/.FindRoot[Abs[field[1][t]]− (Sqrt[2]/m)∗duration[1] = 5 ∗ 10∧(−44) ∗ t/.FindRoot[Abs[field[1][t]]− (Sqrt[2]/m)∗duration[1] = 5 ∗ 10∧(−44) ∗ t/.FindRoot[Abs[field[1][t]]− (Sqrt[2]/m)∗
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Abs[field[1]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}];Abs[field[1]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}];Abs[field[1]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}];
efoldings[1] = Log[(a[t/.FindRoot[Abs[field[1][t]]− (Sqrt[2]/m)∗efoldings[1] = Log[(a[t/.FindRoot[Abs[field[1][t]]− (Sqrt[2]/m)∗efoldings[1] = Log[(a[t/.FindRoot[Abs[field[1][t]]− (Sqrt[2]/m)∗
Abs[field[1]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}]]/.solutions[1][[1]])/a0[1]];Abs[field[1]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}]]/.solutions[1][[1]])/a0[1]];Abs[field[1]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}]]/.solutions[1][[1]])/a0[1]];
b[1] = LogPlot[Log[(scalefactor[1][10∧(t)/(5 ∗ 10∧(−44))])/a0[1]], {t,−42,−33},b[1] = LogPlot[Log[(scalefactor[1][10∧(t)/(5 ∗ 10∧(−44))])/a0[1]], {t,−42,−33},b[1] = LogPlot[Log[(scalefactor[1][10∧(t)/(5 ∗ 10∧(−44))])/a0[1]], {t,−42,−33},
Ticks → {{−40,−38,−36,−34}, {0.001, 0.01, 0.1, 1, 10}},Ticks → {{−40,−38,−36,−34}, {0.001, 0.01, 0.1, 1, 10}},Ticks → {{−40,−38,−36,−34}, {0.001, 0.01, 0.1, 1, 10}},
AxesLabel → {"log(t)","N"}, AxesStyle → Thick, PlotStyle → Thick,AxesLabel → {"log(t)","N"}, AxesStyle → Thick, PlotStyle → Thick,AxesLabel → {"log(t)","N"}, AxesStyle → Thick, PlotStyle → Thick,
LabelStyle → Bold];LabelStyle → Bold];LabelStyle → Bold];
c[1] = Plot[field[1][t/(5 ∗ 10∧(−44))], {t, 10∧(−44), 10∧(−36)},c[1] = Plot[field[1][t/(5 ∗ 10∧(−44))], {t, 10∧(−44), 10∧(−36)},c[1] = Plot[field[1][t/(5 ∗ 10∧(−44))], {t, 10∧(−44), 10∧(−36)},
PlotRange → {0, 4}, AxesLabel → {"t","field"}, AxesStyle → Thick,PlotRange → {0, 4}, AxesLabel → {"t","field"}, AxesStyle → Thick,PlotRange → {0, 4}, AxesLabel → {"t","field"}, AxesStyle → Thick,
PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];
d[1] = Plot[field[1][t/(5 ∗ 10∧(−44))], {t, 8 ∗ 10∧(−37), 2 ∗ 10∧(−36)},d[1] = Plot[field[1][t/(5 ∗ 10∧(−44))], {t, 8 ∗ 10∧(−37), 2 ∗ 10∧(−36)},d[1] = Plot[field[1][t/(5 ∗ 10∧(−44))], {t, 8 ∗ 10∧(−37), 2 ∗ 10∧(−36)},
PlotRange → {−0.4, 0.4}, AxesLabel → {"t","field"}, AxesStyle → Thick,PlotRange → {−0.4, 0.4}, AxesLabel → {"t","field"}, AxesStyle → Thick,PlotRange → {−0.4, 0.4}, AxesLabel → {"t","field"}, AxesStyle → Thick,
PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];
Print["Neglect the error messages, the solutions are not unique,Print["Neglect the error messages, the solutions are not unique,Print["Neglect the error messages, the solutions are not unique,
the solutions from which the error messages appear are not usedthe solutions from which the error messages appear are not usedthe solutions from which the error messages appear are not used
because they have no physical meaning"];because they have no physical meaning"];because they have no physical meaning"];
k = −1;k = −1;k = −1;
For[i = 2, i ≤ 4, i++,For[i = 2, i ≤ 4, i++,For[i = 2, i ≤ 4, i++,
solutions[i] =solutions[i] =solutions[i] =
NDSolve[NDSolve[NDSolve[
{(a′[t]/a[t])∧2 + k/a[t]∧2 == (8 ∗ Pi/3) ∗ (V [f ] + 0.5 ∗ f ′[t]∧2),{(a′[t]/a[t])∧2 + k/a[t]∧2 == (8 ∗ Pi/3) ∗ (V [f ] + 0.5 ∗ f ′[t]∧2),{(a′[t]/a[t])∧2 + k/a[t]∧2 == (8 ∗ Pi/3) ∗ (V [f ] + 0.5 ∗ f ′[t]∧2),
f”[t] + 3 ∗ (a′[t]/a[t]) ∗ f ′[t] + (D[V [f ], f [t]]) == 0,f”[t] + 3 ∗ (a′[t]/a[t]) ∗ f ′[t] + (D[V [f ], f [t]]) == 0,f”[t] + 3 ∗ (a′[t]/a[t]) ∗ f ′[t] + (D[V [f ], f [t]]) == 0,
a[1] == a0[i], f [1] == f0, f ′[1] == derf},a[1] == a0[i], f [1] == f0, f ′[1] == derf},a[1] == a0[i], f [1] == f0, f ′[1] == derf},
{a, f, f ′},{a, f, f ′},{a, f, f ′},
{t, 1, 10∧11}, MaxSteps → 1000000];{t, 1, 10∧11}, MaxSteps → 1000000];{t, 1, 10∧11}, MaxSteps → 1000000];
scalefactor[i] = a/.solutions[i][[1]];scalefactor[i] = a/.solutions[i][[1]];scalefactor[i] = a/.solutions[i][[1]];
field[i] = f /.solutions[i][[1]];field[i] = f /.solutions[i][[1]];field[i] = f /.solutions[i][[1]];
duration[i] = 5 ∗ 10∧(−44) ∗ t/.FindRoot[Abs[field[i][t]]− (Sqrt[2]/m)∗duration[i] = 5 ∗ 10∧(−44) ∗ t/.FindRoot[Abs[field[i][t]]− (Sqrt[2]/m)∗duration[i] = 5 ∗ 10∧(−44) ∗ t/.FindRoot[Abs[field[i][t]]− (Sqrt[2]/m)∗
Abs[field[i]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}];Abs[field[i]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}];Abs[field[i]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}];
efoldings[i] = Log[(a[t/.FindRoot[Abs[field[i][t]]− (Sqrt[2]/m)∗efoldings[i] = Log[(a[t/.FindRoot[Abs[field[i][t]]− (Sqrt[2]/m)∗efoldings[i] = Log[(a[t/.FindRoot[Abs[field[i][t]]− (Sqrt[2]/m)∗
Abs[field[i]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}]]/.solutions[i][[1]])/a0[i]];Abs[field[i]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}]]/.solutions[i][[1]])/a0[i]];Abs[field[i]′[t]], {t, durationsr/(5 ∗ 10∧(−44))}]]/.solutions[i][[1]])/a0[i]];
b[i] = LogPlot[Log[(scalefactor[i][10∧(t)/(5 ∗ 10∧(−44))])/a0[i]], {t,−42,−33},b[i] = LogPlot[Log[(scalefactor[i][10∧(t)/(5 ∗ 10∧(−44))])/a0[i]], {t,−42,−33},b[i] = LogPlot[Log[(scalefactor[i][10∧(t)/(5 ∗ 10∧(−44))])/a0[i]], {t,−42,−33},
Ticks → {{−40,−38,−36,−34}, {0.001, 0.01, 0.1, 1, 10}},Ticks → {{−40,−38,−36,−34}, {0.001, 0.01, 0.1, 1, 10}},Ticks → {{−40,−38,−36,−34}, {0.001, 0.01, 0.1, 1, 10}},
AxesLabel → {"log(t)","N"}, AxesStyle → Thick, PlotStyle → Thick,AxesLabel → {"log(t)","N"}, AxesStyle → Thick, PlotStyle → Thick,AxesLabel → {"log(t)","N"}, AxesStyle → Thick, PlotStyle → Thick,
LabelStyle → Bold];LabelStyle → Bold];LabelStyle → Bold];
c[i] = Plot[field[i][t/(5 ∗ 10∧(−44))], {t, 10∧(−44), 10∧(−36)},c[i] = Plot[field[i][t/(5 ∗ 10∧(−44))], {t, 10∧(−44), 10∧(−36)},c[i] = Plot[field[i][t/(5 ∗ 10∧(−44))], {t, 10∧(−44), 10∧(−36)},
PlotRange → {0, 4}, AxesLabel → {t,"field"}, AxesStyle → Thick,PlotRange → {0, 4}, AxesLabel → {t,"field"}, AxesStyle → Thick,PlotRange → {0, 4}, AxesLabel → {t,"field"}, AxesStyle → Thick,
PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];
d[i] = Plot[field[i][t/(5 ∗ 10∧(−44))], {t, 8 ∗ 10∧(−37), 2 ∗ 10∧(−36)},d[i] = Plot[field[i][t/(5 ∗ 10∧(−44))], {t, 8 ∗ 10∧(−37), 2 ∗ 10∧(−36)},d[i] = Plot[field[i][t/(5 ∗ 10∧(−44))], {t, 8 ∗ 10∧(−37), 2 ∗ 10∧(−36)},
PlotRange → {−0.4, 0.4},PlotRange → {−0.4, 0.4},PlotRange → {−0.4, 0.4},
AxesLabel → {t,"field"}, AxesStyle → Thick,AxesLabel → {t,"field"}, AxesStyle → Thick,AxesLabel → {t,"field"}, AxesStyle → Thick,
PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];PlotStyle → Thick, LabelStyle → Bold];
k++;k++;k++;
];];];
Print["**************************************************************Print["**************************************************************Print["**************************************************************
************************************************************************************************************************************************************************************************************
**********"];**********"];**********"];
Print[""]; Print["CHAOTIC INFLATION WITH APrint[""]; Print["CHAOTIC INFLATION WITH APrint[""]; Print["CHAOTIC INFLATION WITH A
MASSIVE SCALAR FIELD"];MASSIVE SCALAR FIELD"];MASSIVE SCALAR FIELD"];

Print["Mass of the scalar field: "Print["Mass of the scalar field: "Print["Mass of the scalar field: "
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" m= ", N [m]];" m= ", N [m]];" m= ", N [m]];
Print["The total number of e-foldings in the Slow Roll approximation:"Print["The total number of e-foldings in the Slow Roll approximation:"Print["The total number of e-foldings in the Slow Roll approximation:"
" N= ", efoldingssr];" N= ", efoldingssr];" N= ", efoldingssr];
Print["-> The initial field in the SRA is then calculated as: "Print["-> The initial field in the SRA is then calculated as: "Print["-> The initial field in the SRA is then calculated as: "
" f0= ", N [f0]];" f0= ", N [f0]];" f0= ", N [f0]];
Print["-> The duration of inflation in the SRA is then calculated as: "Print["-> The duration of inflation in the SRA is then calculated as: "Print["-> The duration of inflation in the SRA is then calculated as: "
" T= ", durationsr," s"];" T= ", durationsr," s"];" T= ", durationsr," s"];
Print[""]; Print["Numerical solutions of the Slow Roll equations :"];Print[""]; Print["Numerical solutions of the Slow Roll equations :"];Print[""]; Print["Numerical solutions of the Slow Roll equations :"];
Print["The duration of inflation : T= ", duration[1]," s"];Print["The duration of inflation : T= ", duration[1]," s"];Print["The duration of inflation : T= ", duration[1]," s"];
Print["The total number of e-foldings : N= ", efoldings[1]];Print["The total number of e-foldings : N= ", efoldings[1]];Print["The total number of e-foldings : N= ", efoldings[1]];
Print[GraphicsArray[{b[1], c[1], d[1]}]];Print[GraphicsArray[{b[1], c[1], d[1]}]];Print[GraphicsArray[{b[1], c[1], d[1]}]];
Print["Numerical solutions of the exact equations :"]; Print[""];Print["Numerical solutions of the exact equations :"]; Print[""];Print["Numerical solutions of the exact equations :"]; Print[""];
k = −1;k = −1;k = −1;
For[i = 2, i ≤ 4, i++,For[i = 2, i ≤ 4, i++,For[i = 2, i ≤ 4, i++,
Print["k= ", k];Print["k= ", k];Print["k= ", k];
Print["Curvature energy density / potential energy density: K / V = ",Print["Curvature energy density / potential energy density: K / V = ",Print["Curvature energy density / potential energy density: K / V = ",
N [(3 ∗ Abs[k])/(4 ∗ Pi ∗ (a0[i])∧2 ∗m∧2 ∗ (f0)∧2)]];N [(3 ∗ Abs[k])/(4 ∗ Pi ∗ (a0[i])∧2 ∗m∧2 ∗ (f0)∧2)]];N [(3 ∗ Abs[k])/(4 ∗ Pi ∗ (a0[i])∧2 ∗m∧2 ∗ (f0)∧2)]];
Print["The duration of inflation : T= ", duration[i]," s"];Print["The duration of inflation : T= ", duration[i]," s"];Print["The duration of inflation : T= ", duration[i]," s"];
Print["The total number of e-foldings : N= ", efoldings[i]];Print["The total number of e-foldings : N= ", efoldings[i]];Print["The total number of e-foldings : N= ", efoldings[i]];
Print[GraphicsArray[{b[i], c[i], d[i]}]];Print[GraphicsArray[{b[i], c[i], d[i]}]];Print[GraphicsArray[{b[i], c[i], d[i]}]];
k++;k++;k++;
];];];
(* Exporting the plots to .pdf files *)(* Exporting the plots to .pdf files *)(* Exporting the plots to .pdf files *)
Export["sr.pdf", GraphicsGrid[{{b[1]}, {c[1]}, {d[1]}}]];Export["sr.pdf", GraphicsGrid[{{b[1]}, {c[1]}, {d[1]}}]];Export["sr.pdf", GraphicsGrid[{{b[1]}, {c[1]}, {d[1]}}]];
Export["k neg.pdf", GraphicsGrid[{{b[2]}, {c[2]}, {d[2]}}]];Export["k neg.pdf", GraphicsGrid[{{b[2]}, {c[2]}, {d[2]}}]];Export["k neg.pdf", GraphicsGrid[{{b[2]}, {c[2]}, {d[2]}}]];
Export["k 0.pdf", GraphicsGrid[{{b[3]}, {c[3]}, {d[3]}}]];Export["k 0.pdf", GraphicsGrid[{{b[3]}, {c[3]}, {d[3]}}]];Export["k 0.pdf", GraphicsGrid[{{b[3]}, {c[3]}, {d[3]}}]];
Export["k pos.pdf", GraphicsGrid[{{b[4]}, {c[4]}, {d[4]}}]];Export["k pos.pdf", GraphicsGrid[{{b[4]}, {c[4]}, {d[4]}}]];Export["k pos.pdf", GraphicsGrid[{{b[4]}, {c[4]}, {d[4]}}]];

References
[1] Andrew Liddle, An Introduction to Modern Cosmology, John Wiley & Sons Ltd,

2nd edition, 2003.

[2] Donald Perkins, Particle Astrophysics, Oxford University Press, 1st edition, 2005.

[3] Gary Scott Watson, An Exposition on Inflationary Cosmology, astro-ph/0005003,
2000.

[4] Andrei Linde, Particle Physics and Inflationary Cosmology, (Electronic version of
the book from 1990), hep-th/0503203, 2005.

[5] William H. Kinney, Cosmology, inflation, and the physics of nothing, astro-
ph/0301448, 2004

[6] A. Riotto, Inflation and the Theory of Cosmological Perturbations, hep-
ph/0210162, 2002

[7] David Langlois, Inflation, quantum fluctuations and cosmological perturbations,
hep-th/0405053 2004

[8] E. Komatsu et al., Five-year Wilkonson Microwave Anisotropy Probe (WMAP1)
Observations: Cosmological Interpretation, astro-ph/0803.0547, 2008

30


