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Abstract
Solutions to general relativity with negative cosmological constant are ubiquitous in
contemporary physics. They have received a surge of attention due to the Anti-de
Sitter/conformal field theory correspondence — a conjecture which asserts that quantum
gravity on asymptotically Anti-de Sitter spacetimes is equivalent to a quantum field
theory with conformal invariance in one dimension lower. In this thesis, we discuss the
causal structure and energy of solutions to Einstein gravity with negative cosmological
constant in three and four spacetime dimensions. We show that projection diagrams
can be used to visualize the causal structure of BTZ black holes and so-called warped
flat spacetimes. The latter correspond to solutions to topologically massive gravity
with positive cosmological constant in (2 + 1) dimensions. It is shown that warped flat
spacetimes do not describe black hole solutions. Next, we discuss the energy of solutions
to Einstein gravity with negative cosmological constant. To this day, the question of
boundedness of energy from below for general relativity with negative cosmological
constant remains wide open. For time-symmetric initial data sets, this is the question of
whether the energy of asymptotically locally hyperbolic spaces is bounded from below.
We show that three-dimensional asymptotically locally hyperbolic spaces with constant
negative scalar curvature, arbitrary high genus, and negative total mass exist and explain
how this result relates to positive energy theorems in general relativity.
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Kurzfassung
Lösungen der Allgemeinen Relativitätstheorie mit negativer kosmologischer Konstante
sind in der zeitgenössischen Physik allgegenwärtig. Sie haben aufgrund der vermuteten
Anti-de-Sitter/konformen Feldtheorie Korrespondenz viel Aufmerksamkeit erhalten. Diese
Hypothese besagt, dass Quantengravitation auf asymptotisch Anti-de-Sitter-Raumzeiten
äquivalent zu einer Quantenfeldtheorie mit konformer Invarianz in einer Dimension
niedriger ist. In dieser Arbeit untersuchen wir die kausale Struktur und Energie von
Lösungen der Allgemeinen Relativitätstheorie mit negativer kosmologischer Konstante in
drei und vier Raumzeitdimensionen. Wir zeigen, wie Projektionsdiagramme verwendet
werden können, um die kausale Struktur von BTZ-Schwarzen Löchern und sogenannten
verzerrt flachen Raumzeiten zu visualisieren. Letztere entsprechen Lösungen topologisch
massiver Gravitation mit positiver kosmologischer Konstante in (2 + 1) Dimensionen. Es
wird gezeigt, dass verzerrt flache Raumzeiten keine Schwarzen Löcher sind. Als nächs-
tes untersuchen wir die Energie von Lösungen der Einstein-Gravitation mit negativer
kosmologischer Konstante. Bis heute ist die Frage, ob die Energie in der Allgemeinen
Relativitätstheorie mit negativer kosmologischer Konstante von unten beschränkt ist,
unbeantwortet. Für zeit-symmetrischen Anfangsdaten ist dies die Frage, ob die Energie
von asymptotisch lokal hyperbolischen Räumen von unten begrenzt ist. Wir zeigen, dass
dreidimensionale asymptotisch lokal hyperbolische Räume mit konstanter negativer ska-
larer Krümmung, beliebig hohem Genus und negativer Masse existieren und erklären den
Zusammenhang mit Positiven Energietheoremen in der Allgemeinen Relativitätstheorie.
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0. Conventions
In this thesis we use the metric signature (−1, ..., 1, 1). The Riemann tensor tensor is
defined as

∇µ∇νωρ − ∇ν∇µωρ = R σ
µνρ ωσ (0.1)

and the Ricci tensor is defined as

Rµν = R ρ
µρν , (0.2)

which is in accordance with the sign conventions used by Wald [6] and Misner, Thorne,
Wheeler [7]. Greek letters (µ, ν, σ, ...) are used as spacetime indices and run from 1 to
d = n + 1, small Latin letters (a, b, c, ..., i, j, k, ...) are used for spatial indices and run
from 1, ...n. An exception occurs when we discuss the embedding of AdS3 into R2,2 in
section 3.2. Big Latin letters from the beginning of the alphabet (A, B, C, ...) are used
as spatial indices for the boundary metric, denoted by either h, hk or h̊, and run from
1, ...n − 1. Big latin letters from the middle of the alphabet (I, J, ...) run from 1, ...n − 2.

Symmetrization and anti-symmetrization of tensors is defined such that already sym-
metric and antisymmetric tensors stay unchanged:

t(µν) = 1
2(tµν + tνµ) , (0.3)

t[µν] = 1
2(tµν − tνµ) . (0.4)

We choose units in which Newton’s constant G, the AdS radius ℓ, the speed of light c,
Planck’s constant ℏ and Boltzmann’s constant kB are all set to 1. We restore Newton’s
constant G and the AdS radius ℓ only in subsection 3.6.
d = n + 1 spacetime dimension

n spatial dimension
n − 1 dimension of the boundary manifold

∇ spacetime covariant derivative
D covariant derivative of the spatial metric
D covariant derivative of the boundary metric
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1. Introduction

On May 12th, 2022 the Event Horizon Telescope announced the first image of the
supermassive black hole at the center of our galaxy. In the Saggitarius A* constellation,
a bright ring of gas surrounds the black hole, bent by extremely strong gravitational
forces. A black shadow sits in the center of the glowing ring. This shadow contains the
so-called event horizon, where gravitational forces are so intense that not even light can
escape the gravitational pull anymore.

Figure 1.1.: First Image of Saggitarius A* – Credit: Event Horizon Telescope Collaboration

For decades scientists have observed stars orbiting an invisible, gigantic object of 4 million
solar masses in the very center of the Milky Way. Observations started in 1918 when
Harlow Shapley noticed stars congregating towards the middle of our galaxy and later
powerful radio emissions were detected coming from the Saggitarius A* constellation.
Following tremendous experimental efforts and results, the 2020 Nobel Prize in Physics
was granted for the discovery of black holes. One half was awarded to Roger Penrose
“for the discovery that black hole formation is a robust prediction of the general theory of
relativity”, while the other half was awarded to Reinhard Genzel and Andrea Ghez “for
the discovery of a supermassive compact object at the centre of our galaxy” [8]. Over 100
years after the theoretical discovery of the first black hole solution in general relativity
by Karl Schwarzschild, we may say with utmost conviction that black holes do exist in
nature.
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1. Introduction

These experimental results come mere years after the LIGO and VIRGO collaboration
recorded gravitational waves sent out by the merger of two black holes in September
2015. This observation not only provided the first direct detection of gravitational waves,
but also showed that binary stellar black hole systems — pairs of black holes formed
by the gravitational collapse of massive stars — exist. Subsequently, the 2017 Nobel
Prize in Physics was awarded for the discovery of gravitational waves — over a century
after their theoretical prediction. General relativity has surpassed all our expectations,
it has passed every experimental check, the images of black holes and the detection of
gravitational waves being only the latest results in a very long list.

While the classical theory of general relativity has celebrated many successes in recent
years, the problem of combining general relativity with quantum mechanics into a theory
of quantum gravity is unsolved, as experimental guidance towards a solution is currently
out of reach. Not knowing which features the theory of quantum gravity, which describes
our universe, exhibits, one is forced to appeal to purely theoretical guidelines such as
consistency with the semiclassical approximation and internal mathematical consistency.
A guiding principle, in the search for such theories, is the existence of properties that are
preserved in the quantum theory. Amongst these properties are (often) conservation laws
and associated conserved quantities. A quantity, which will be of particular importance
in the fourth chapter of this thesis, is the energy of the gravitational field. In general
relativity, unlike in other field theories, there does not exist a meaningful local energy
expression of the gravitational field as the effects of gravity can always be suppressed
locally due to the equivalence principle. The energy-momentum tensor Tµν appearing on
the right side of the Einstein equations1

Rµν − 1
2gµνR + Λgµν = 8πTµν , (1.1)

describes the energy densities arising from non-gravitational fields (“matter”) only. The
condition that the energy-momentum tensor Tµν be conserved does not suffice to define
an associated conserved quantity as a vector is needed to do so. Technically speaking,
such a vector is given by jµ = T µ

νξν , where ξµ is a timelike Killing vector of spacetime.
The total energy can then be defined as an integral over a spacelike Cauchy surface Σ

E =
�

Σ
jµnµ , (1.2)

where nµ is the unit normal to Σ. However, a generic spacetime does not admit any
Killing vectors and thus the energy has to be defined in a different way. From a physics
perspective, this might be unsurprising, as Tµν only represents the energy content of
matter and one would expect the gravitational energy to make a contribution as well.
The resolution to this problem lies in the study of isolated systems — systems far away
from the influence of gravitational sources. In the case of vanishing cosmological constant,

1The Einstein equations intimately tie the curvature of spacetime, encoded in the Ricci tensor Rµν and
the Ricci scalar R, to the energy-momentum tensor Tµν . The geometry of spacetime is encoded in
the metric gµν , the fundamental field of general relativity, and Λ is a fundamental constant of nature,
called the cosmological constant.
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this is the study of asymptotically flat spacetimes — spacetimes which approach the
Minkowski metric at large distances. When the cosmological constant is negative one
considers asymptotically Anti-de Sitter (AdS) spacetimes — spacetimes which approach
AdS spacetime, the maximally symmetric geometry for negative cosmological constant,
at large distances.

While the cosmological constant of our universe is very small and positive, asymptoti-
cally AdS spacetimes are ubiquitous in nowadays theoretical high-energy physics. They
have received a surge of attention due to the so-called Anti-de Sitter/conformal field
theory (AdS/CFT) correspondence, which asserts that quantum gravity on d–dimensional
asymptotically AdS spacetimes is equivalent to a (d − 1)–dimensional quantum field
theory with conformal invariance. The AdS/CFT correspondence was formulated by
Juan Maldacena in 1997 [9] who conjectured a duality between a type IIB superstring
theory on AdS5 × S5 and an N = 4 supersymmetric Yang-Mills theory. The idea that
quantum gravity has an effective description in terms of a lower-dimensional quantum
field theory without gravity is actually due to ’t Hooft [10]. This idea was subsequently
named the holographic principle by Leonard Susskind who also suggested a realization
might be possible in string theory [11].

In the last two decades, the ideas by ’t Hooft, Susskind and Maldacena have been
applied to various different setups, e.g. for different values of the cosmological constant,
different spacetime dimensions and even different theories of gravity. One reason why
scientists are so excited about the AdS/CFT correspondence is that it is a strong-
weak duality, meaning that it maps a strongly coupled theory of general relativity to a
weakly coupled non-gravitational quantum field theory (and vice versa). Therefore, the
correspondence can be used to infer information about regimes otherwise inaccessible.

In the field of AdS/CFT, a particular focus has been the theoretical study of black
holes, as for these objects both classical as well as quantum effects play a role. In the early
seventies, Bardeen, Bekenstein, Carter and Hawking showed that black holes are thermal
objects and obey laws which share close similarities to the laws of thermodynamics. Using
quantum field theory on curved backgrounds, Hawking showed in 1975 that quantum
mechanical black holes emit elementary particles with the spectrum of a black body at
temperature

T = κ

2π
, (1.3)

where κ is the surface gravity. Black holes are objects of non-zero Bekenstein–Hawking
entropy

SBH = A

4 , (1.4)

which is proportional to the event horizon area A of the black hole. The unusual fact
that entropy is proportional to the area of the horizon and not to its volume, inspired
the formulation of the holographic principle.

It is puzzling from a thermodynamic perspective, that quantum black holes have a large
entropy, as their classical description involves only a few parameters. This is encompassed
in the no hair theorem which states that classical black holes are fully characterized
by three parameters: mass, electric charge and angular momentum. Therefore, if one
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1. Introduction

interprets the expression (1.4) as a thermodynamic entropy, the question arises what
the huge number of microstates associated with the black hole entropy are and whether
the entropy of a black hole can be obtained by calculating the number of microstates.
Strominger and Vafa [12] made progress in this direction by supplying a microscopic
derivation for certain black holes in string theory. Shortly after, this computation was
generalized by Strominger [13] to black holes in three-dimensional Einstein gravity with
negative cosmological constant and subsequently many papers along these lines followed,
amongst them being [14–19]. Almost all these papers rest on the assumption that energy
in the gravitational theory is bounded from below, as this assumption is needed in the
putative dual field theory to explicitly calculate the number of microstates.

In the semiclassical regime and for negative cosmological constant, this becomes the
question of whether energy in general relativity for negatively curved spacetimes is
bounded from below. As we will see in this thesis, this question remains wide open to
this day. Indeed, in many situations of interest, it is not clear whether a lower bound
exists and if there exists a unique geometry that saturates this bound.

Positivity of energy of the gravitational field is of course of enormous interest in its own
right — independently from any holographic correspondence. It has played a key role in
many investigations in mathematical general relativity, amongst them being the stability
of solutions of the Einstein equations and the classification of black hole solutions in
general relativity. To the long list of potential applications of positive energy theorems
in general relativity, we would thus like to add that they can be used to provide proofs
or falsifications of assumptions commonly made in the AdS/CFT literature regarding
the spectrum of asymptotically Anti-de Sitter spacetimes. One famous example of this
is the Horowitz–Myers conjecture [20], which asserts that the energy of asymptotically
locally Anti-de Sitter spacetimes with toroidal conformal infinity, is bounded from below,
with the unique lower bound provided by the Horowitz–Myers metric. This conjecture
was formed by considering a potential non-supersymmetric AdS/CFT correspondence
and showing that the ground state energy in the conformal field theory matched the
energy of the Horowitz–Myers metric. The conjecture can thus be regarded as “a highly
nontrivial prediction of the AdS/CFT correspondence” [20]. Over the years, it has now
become a topic of active research in the mathematical general relativity community. If
proven to be true, the conjecture would provide strong evidence in favor of the AdS/CFT
correspondence.

1.1. Outline

This thesis discusses the causal structure and energy of solutions to Einstein gravity
with negative cosmological constant. Implications on the AdS/CFT correspondence are
examined when applicable.

In chapter 2, we review methods to analyze the causal and asymptotic structure
of spacetime which are then applied in chapters 3 and 4. The method of conformal
completion is discussed in section 2.1, where we also discuss the behavior of selected
geometric quantities under conformal transformations. In section 2.2, we introduce a class
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1.1. Outline

of two-dimensional causal diagrams, so-called projection diagrams and compare them
to Carter-Penrose diagrams. A short review of the initial data formulation of general
relativity is given in section 2.3 which serves as background material for chapter 4.

In chapter 3, the peculiarities of general relativity in (2 + 1) spacetime dimensions with
a negative cosmological constant are discussed. After a brief review of general features,
we introduce asymptotically AdS3 spacetimes in section 3.3. The seminal paper by Brown
and Henneaux [21], who studied the asymptotic symmetry group of such spacetimes, is
reviewed and vacuum solutions of the Einstein equations which asymptote to the AdS3
metric at large distances are discussed. The standard interpretation of these results with
regard to the AdS3/CFT2 correspondence is given. An important vacuum solution to
three-dimensional Einstein gravity, the so-called BTZ black hole, is discussed in detail
in section 3.4. Particular attention is given to the maximal causal extension of the
BTZ black hole and its visualization using projection diagrams. Next, a modification of
three-dimensional Einstein gravity, topologically massive gravity (TMG), is reviewed in
section 3.5. Selected vacuum solutions to TMG are discussed with a focus on so-called
warped flat spacetimes and quotients thereof, which are the subject of my publication [1]
(co-authored with Stéphane Detournay, Wout Merbis and Gim Seng Ng). Contrary to
claims in [22], we show that these spacetimes do not possess a black hole region and
visualize their causal properties with projection diagrams. The chapter ends with section
3.6, where it is reviewed how asymptotic symmetries are used in Strominger’s work [13]
to perform a microstate counting of three-dimensional BTZ black holes. We focus on the
underlying assumptions of this derivation and the necessary conditions on the spectrum
of asymptotically AdS3 spacetimes.

In chapter 4, the contents of my work [2] (co-authored with Piotr Chruściel and
Erwann Delay) and their connection to positive energy theorems in general relativity
with negative cosmological constant are discussed. We start by introducing two classes
of metrics in section 4.1 that are of importance in this context: the Birmingham–Kottler
and the Horowitz–Myers spacetimes. Positive mass theorems in general relativity with
negative cosmological constant are reviewed in section 4.2. Particular attention is given
to the Horowitz–Myers conjecture and its relation to the AdS/CFT correspondence.
Sections 4.3 to 4.8 are taken from [2] with only minimal modifications. After giving
an introduction and summary of the main results in section 4.3, we review the gluing
construction of [23] in section 4.4 by which two asymptotically locally hyperbolic (ALH)
manifolds (or time-symmetric general relativistic initial data sets), may be glued together
to obtain a new ALH manifold. The definition of energy used in this context is introduced
in section 4.6. There, it is also shown how the energy changes upon gluing two ALH
manifolds. In section 4.7, we show that there exist three-dimensional conformally compact
ALH manifolds without interior boundary, with connected conformal infinity of genus
two, with constant negative scalar curvature and with negative mass. We comment on
how this construction generalizes to arbitrarily high genus.
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2. Preliminaries
In this chapter, we discuss different methods to analyze the causal and asymptotic
structure of spacetime that will be used throughout this thesis. Section 2.1 deals with
conformal transformations and how they may be used to perform a conformal completion
of spacetime. The consequences of the Einstein equations on the nature of the conformal
boundary are discussed. Section 2.2 introduces a class of two-dimensional causal diagrams,
so-called projection diagrams [24], which can be used to visualize the causal structure
of spacetime. After motivating their introduction, projection diagrams are contrasted
with the famous Carter-Penrose diagrams. We end by discussing projection diagrams of
Minkowski spacetime. In section 2.3 we briefly introduce the initial data formulation of
general relativity and the concept of Killing Initial Data.

2.1. Conformal Completion
In this section we follow closely [6] and [25] in the presentation of conformal transforma-
tions and conformal completion.

2.1.1. Conformal Transformations
Let M be a d-dimensional Lorentzian manifold with metric gµν . If Ω is a smooth, strictly
positive function, then the metric

ḡµν = Ω2gµν (2.1)

is said to result from a conformal transformation.
Now, if some vector vµ is timelike, null or spacelike with respect to the metric gµν ,

then it must satisfy the same property with respect to ḡµν . Conversely, if the light cones
of two metrics gµν , ḡµν coincide at a point p in M , then at p the metric ḡµν must be
related to gµν as ḡµν = Ω2gµν . Therefore, if two spacetimes (M, gµν), (M, ḡµν) have
the same causal structure, then there exists a conformal transformation relating gµν

to ḡµν [6, appendix D]. In general, a conformal transformation is not associated with
a diffeomorphism, but changes the geometry of spacetime in a way that preserves the
causal structure. A diffeomorphism ψ : M → M for which (ψ∗g)µν = Ω2gµν is called a
conformal isometry. To exemplify how conformal transformations change the geometry,
consider geodesics. While under conformal transformations timelike (spacelike) paths
are mapped into timelike (spacelike) paths, timelike (spacelike) geodesics are typically
mapped into paths that are not geodesics.

In this thesis, the transformation behavior of distinguished geometric quantities un-
der conformal transformations will be of importance – which is discussed next. The
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2. Preliminaries

transformation behavior of the Riemann tensor, Ricci tensor and the Ricci scalar under
conformal transformations reads [6]

R̄ σ
µνρ = R σ

µνρ + 2δσ
[µ∇ν]∇ρ log Ω − 2gσηgρ[µ∇ν]∇η log Ω + 2

�
∇[µ log Ω


δσ

ν]∇ρ log Ω

− 2
�
∇[µ log Ω


gν]ρgση∇η log Ω − 2gρ[µδσ

ν]g
ηω(∇η log Ω)(∇ω log Ω) , (2.2)

R̄µν = Rµν − (d − 2)∇µ∇ν log Ω − gµνgρσ∇ρ∇σlog Ω + (d − 2)(∇µ log Ω)(∇ν log Ω)
− (d − 2)gµνgρσ(∇ρ log Ω)(∇σ log Ω) (2.3)

and

R̄ = Ω−2(R − 2(d − 1)gµν∇µ∇ν log Ω − (d − 2)(d − 1)gµν(∇µlog Ω)(∇ν log Ω)) . (2.4)

Next, we consider the Weyl tensor Cµνρσ, defined for manifolds with spacetime dimension
d ≥ 3 through the decomposition

Rµνρσ = Cµνρσ + 2
d − 2

�
gµ[ρRσ]ν − gν[ρRσ]µ


− 2

(d − 1)(d − 2)R gµ[ρgσ]ν . (2.5)

The Weyl tensor is invariant under conformal transformations

C̄ σ
µνρ = C σ

µνρ . (2.6)

For spacetime dimension d ≥ 4 the vanishing of the Weyl tensor is a necessary and
sufficient condition for the manifold to be conformally flat, meaning that locally there
exists a conformal factor such that (2.1) with ḡ = η. In spacetime dimension three
the Weyl tensor identically vanishes but there exists an obstruction to local conformal
flatness: the Cotton tensor. This tensor was discovered by Émile Cotton in 1899 and is
defined as

Cµνρ = ∇ρRµν − ∇νRµρ + 1
2(d − 1)(∇νR gµρ − ∇ρR gµν) . (2.7)

Similar to the Weyl tensor in higher dimensions, in spacetime dimension d = 3 the Cotton
tensor is conformally invariant and vanishes iff the manifold is conformally flat. In d = 3,
applying the Hodge star operator to (2.7) yields

Cµν = ∇ρ


Rµσ − 1

4Rgµσ


ϵρσ

ν = Cνµ , (2.8)

which is sometimes referred to as Cotton-York tensor or also Cotton tensor. In the
following we refer to (2.8) as Cotton tensor.

2.1.2. Conformal Completion
After having discussed conformal transformations in the previous section, we now discuss
conformal completion of a physical spacetime (M, gµν). In this method, the manifold
M with metric gµν is embedded into a bigger manifold M̄ which has a boundary. The
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2.1. Conformal Completion

manifold M̄ is referred to as the unphysical spacetime. The boundary of M̄ is typically
referred to as I , which is also the nomenclature that we use throughout this thesis. The
boundary I is often also referred to as conformal infinity. The unphysical spacetime
M̄ is required to admit a smooth metric ḡµν . It is possible to relax smoothness of the
unphysical metric at I but this is not necessary for the purpose of this thesis. In the
interior of spacetime the physical metric gµν is related to the unphysical metric ḡµν by
a conformal transformation, i.e. (2.1), where Ω vanishes at I and is strictly positive
everywhere else. While the unphysical metric ḡµν is regular on the entire manifold M̄ ,
the physical metric gµν diverges as I is approached. This is simply the mathematical
description of the fact that I is infinitely far away. Additionally, it is demanded that
the normal vector

n̄µ = ḡµν∇νΩ (2.9)
vanishes nowhere on I , which fixes the rate at which the function Ω goes to zero at I .
The transformation behavior of the Ricci scalar under conformal transformations (2.4)
can be expressed using the normal vector (2.9) yielding

R̄ = Ω−2R − 2(d − 1) Ω−1∇̄µn̄µ + d(d − 1) Ω−2n̄µn̄µ . (2.10)

Since the conformal factor Ω vanishes at I it holds that

R =̂ −d(d − 1)n̄µn̄µ , (2.11)

where “=̂” denotes equality in the limit as I is approached. It follows from (2.11) that
R has a smooth limit to I , if a conformal completion exists as defined above. We now
consider spacetimes for which Einstein equations hold

Rµν − 1
2Rgµν + Λgµν = κTµν . (2.12)

Now, if the trace of the energy-momentum tensor vanishes at I , i.e. Tµνgµν =̂ 0 , then

n̄µn̄µ =̂ − 2
(d − 1)(d − 2)Λ . (2.13)

Hence, the existence of a conformal completion restricts the nature of the conformal
boundary at infinity: In particular, if the Ricci scalar vanishes in the limit as I is
approached, then the boundary must be null. Similarly, if the Ricci scalar approaches a
positive (negative) constant, then the boundary must be spacelike (timelike).

Having introduced all the concepts necessary, let us fix the terminology for the rest of
this thesis. We say that a metric g on a manifold without boundary M has a conformal
completion (M̄, ḡ) if M̄ is a manifold with boundary such that M̄ = M ∪ ∂M̄ , and if
there exists a function Ω ≥ 0 on M̄ which vanishes precisely on ∂M̄ , with dΩ nowhere
vanishing on ∂M̄ , and with g = Ω−2ḡ on M . This definition generalizes to manifolds M
with boundary, in which case ∂M̄ will be the union of the original boundaries of ∂M ,
where Ω is strictly positive, and the new ones where Ω vanishes; the new ones are referred
to as boundaries at conformal infinity. We say that (M, g) is conformally compactifiable
when M̄ is compact.
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2.2. Projection Diagrams
In this section, we introduce a class of two-dimensional diagrams which were defined in [24]
and contrast them with the well-known Carter-Penrose diagrams. We follow closely [24]
and [26]. Conformal Carter-Penrose diagrams are a useful tool to visualize the geometry
of two-dimensional Lorentzian spacetimes. They have been successfully used to visualize
the geometry of slices of many higher-dimensional spacetimes such as Schwarzschild. To
obtain a Carter-Penrose diagram, the first step is to conformally complete the physical
spacetime, as described in subsection 2.1.2. In the case of two-dimensional Lorentzian
spacetimes this suffices to draw a Carter-Penrose diagram, which is a spacetime diagram
where the horizontal axis is space and the vertical axis is time. Light rays move at an
angle of 45 degrees.

In the case of higher-dimensional spacetimes, one must find a two-dimensional slice,
which provides useful information about the higher-dimensional spacetime. For the
Schwarzschild black hole

ds2 = −


1 − 2mc

r


dt2 + dr2

1 − 2mc
r

+ r2
�
dθ2 + sin2 θdφ2


(2.14)

the diagram found in literature is obtained by holding θ and φ fixed. All causal curves
(timelike or null) in the original spacetime are depicted as causal curves in the diagram.
Many spacelike curves are displayed as causal curves. Importantly, all spacelike curves
that appear spacelike in the diagram, are spacelike in spacetime. These properties ensure
that causal relations in the diagram properly represent causal relations in spacetime.
This is achieved by effectively omitting a strictly positive term in the metric (by taking a
slice). The case of the Kerr black hole is more complicated. Consider the Kerr metric in
Boyer-Lindquist coordinates

ds2 = − ∆r − a2 sin2(θ)
Σ dt2 − 2a sin2(θ)

�
r2 + a2 − ∆r

�
Σ dtdφ

+
sin2(θ)

��
r2 + a2�2 − a2 sin2(θ)∆r


Σ dφ2 + Σ

∆r
dr2 + Σdθ2 , (2.15)

where

Σ = r2 + a2 cos2 θ , ∆r = r2 + a2 − 2mcr (2.16)

for some real parameters a and mc, which satisfy 0 < |a| ≤ mc. Now, the Kerr metric is
not diagonal due to the presence of the dtdφ term. This term vanishes at θ = 0 and θ = π.
Since the metric (2.15) posesses a coordinate singularity at these values of θ we change
coordinates before making any further statements. Under the change of coordinates
x = sin θ cos φ, y = sin θ sin φ the metric (2.15) takes the form

ds2 = − ∆r − a2(x2 + y2)
ρ2 dt2 + 2a

∆r − (a2 + r2)
ρ2 (xdy − ydx)dt + ρ2

∆r
dr2

+ a2 6mcr + 3ρ2

3ρ2 (xdy − ydx)2 + ρ2
�

dx2 + dy2 + (xdx + ydy)2

1 − x2 − y2

�
(2.17)
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with ρ2 = r2 + a2(1 − x2 − y2). This new coordinate system is singular at x2 + y2 = 1 (a
locus which does not correspond to θ = 0, θ = π). As we already know that the metric
is smooth there, this is of no concern to the current considerations. At x = y = 0 the
cross-terms vanish and the metric (2.15) again takes the diagonal form

ds2 = − ∆r

ρ2 dt2 + ρ2dr2

∆r
(2.18)

such that its causal structure can be depicted with a Carter-Penrose diagram. Generic
constant θ, constant φ slices do not provide a meaningful representation of the causal
structure. The reason for this is that for a generic constant θ, constant φ slice, the
property that all spacelike curves in the original spacetime are mapped to spacelike
curves in the causal diagram will not hold. This is the case due to the presence of the
off-diagonal dtdφ term. Hence, the causal diagram that one obtains for the maximally
extended Kerr spacetime is highly slice-dependent, a fact which is discussed in detail
in [24, subsection 3.3.1].

Apart from the possible slice-dependence that comes with Carter-Penrose diagrams,
there are further issues when considering different spacetimes.

1. Conformal Carter-Penrose diagrams rely on the existence of a conformal compact-
ification of spacetime. Generically, for spacetime dimensions d > 2 it may not
exist.

2. As already discussed above, for many geometries, generic slices do not provide
a meaningful representation of the causal structure. In the extreme case, it is
impossible to find a slice that meaningfully represents the causal structure of the
higher-dimensional spacetime – a statement that should become more clear from
what is written below.

We now provide an example for the second point in spacetime dimension three. For this,
we consider the metric

ds2 = −F (r)dt2 + dr2

F (r) + r2(Nφ(r)dt + dφ)2 , (2.19)

with a discrete identification along ∂φ and where Nφ(r) is nonzero. This metric is
considered in detail in section 3.4. We assume that the functions F (r) and Nφ(r) decay
sufficiently fast and in such a way that a conformal completion exists. In taking a constant
φ slice, the term r2(2Nφ(r)dtdφ + dφ2) is discarded. This has the undesirable property
that some causal curves in the original spacetime are mapped to spacelike curves in the
diagram. Therefore, a constant φ slice does not properly represent the causal structure of
(2.19). Instead of taking a slice we discard the r2(Nφ(r)dt+dφ)2 term, thereby obtaining
the metric

γµνdxµdxν = −F (r)dt2 + dr2

F (r) , (2.20)

which shares causal properties with the original spacetime. This procedure of “discarding
a slice” can be formalized, as we will see below. We do not discuss the details of the
causal structure of (2.19) here but instead postpone the discussion to section 3.4.
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The reader is now hopefully convinced that in many situations of interest it is useful,
sometimes even necessary, to introduce novel causal diagrams to visualize the causal
structure of spacetime. Such diagrams, named projection diagrams, were defined in [24].
Constructions similar to projection diagrams appeared already earlier in literature, but a
formal definition and a detailed justification of the construction was – as far as I know of
– only given in [24].

Definition 2.1. Projection diagram
Let (M, g) be a smooth spacetime. A projection diagram is a pair (π, U), where

π : M → W , W ⊂ R1,1

is a continuous map, differentiable on an open dense set. U ⊂ M is an open set, assumed
to be nonempty, on which π is a smooth submersion, such that

1. every smooth timelike curve σ ⊂ π(U) is the projection of a smooth timelike curve
ω in (U, g): σ = π ◦ ω;

2. the image π ◦ ω of every smooth timelike curve ω ⊂ U is a timelike curve in R1,1.

The two requirements on timelike curves ensure that causal relations on π(U) reflect –
as accurately as possible – causal relations on U . By continuity, it follows that images of
causal curves in U are causal in π(U). Many spacelike curves in the original spacetime
are mapped to either null or timelike curves in the diagram.

The map π in the definition of the projection diagram is used to systematically construct
an auxiliary two-dimensional metric out of spacetime. One then performs a conformal
completion, which is always possible in two dimensions, and draws a diagram of the
two-dimensional auxiliary metric. This auxiliary metric shares important causal features
with the original metric due to the requirements on π.

We discuss a simple example below, but before that let us give some comments on the
definition. While it is assumed for simplicity that (M, g), π|U and the causal curves in
the definition are smooth, this is unnecessary for most purposes.

It is demanded in the definition 2.1 that π is a submersion which means that π∗ is
surjective at every point. This guarantees that open sets are mapped to open sets. This
ensures that projection diagrams with the same set U are locally unique up to a local
conformal isometry of R1,1. In the definition, it is assumed that the map π maps U to a
subset of R1,1 but this can be modified. In some applications it might be more natural
to consider different two-dimensional manifolds as the target space; an example of such a
spacetime is already given in [24] and requires only minimal modification of the definition.
For additional explanations with regards to the definition consult [24, section 3.1].

Importantly, the axioms of the definition ensure that if there exists a black hole region
in the diagram, there exists a black hole region in the original spacetime. Indeed, if
the diagram has a black hole region B, then B = W − J−(I +(W )) is nonempty. Here,
J−(I +) denotes the causal past of I +, future null infinity. This implies, that all curves
leaving the black hole region B and hitting I +(W ) at late times are spacelike. We now
define a new set B̃ for which it holds that B = π(B̃). Assume that there exist causal
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curves, moving forward in time, that leave B̃ and that go to future null infinity; then
this must also be the case in B = π(B̃) via the axioms of the projection diagram. This
immediately leads to a contradiction. Therefore, if a black hole region exists in the
diagram, a black hole region must exist in the original spacetime.

Note that the standard definition of a black hole region, as given above, needs a
well-defined notion of I +, which is standardly defined through conformal completion.
It would be interesting to define a notion of I + through the uplift of the conformal
boundary in the projection diagram. We hope to return to this in the future.

As announced above, we end this section with a simple example: four-dimensional
Minkowski space R1,3.

We first consider Minkowski spacetime in spherical coordinates

ds2 = −dt2 + dr2 + r2
�
dθ2 + sin2 θdφ2


. (2.21)

Consider π : (t, r, θ, φ) → (t, r) which maps spacetime to the right half of R1,1 with
auxiliary metric γ

γµνdxµdxν = −dt2 + dr2 . (2.22)
The map is not differentiable at r = 0 and thus r = 0 is not a part of

U := {(t, x) ∈ R1,3, |x| ≠ 0} ∈ R1,3 . (2.23)

Hence, the diagram fails to represent the nature of spacetime at r = 0 – the locus r = 0
looks like a boundary even though it is not. The usual conformal compactification of
(2.22) subsequently leads to diagram (a) in Figure 2.1, which coincides with the standard
Carter-Penrose diagram of Minkowski spacetime.

A different projection diagram of Minkoswi space is obtained by writing R1,3 = R1,1×R2

and omitting the R2 part. We have

ds2 = −dt2 + dx2 + dy2 + dz2 . (2.24)

The map π : (t, x, y, z) → (t, x) maps the spacetime to R1,1 with metric

γµνdxµdxν = −dt2 + dx2 . (2.25)

We thus obtain the diagram (b) in Figure 2.1. This diagram has the problem that it fails
to represent the connectedness of I + and the connectedness of I −.

These examples show that there is no uniqueness in projection diagrams. It is possible
to project in different ways to obtain different projection diagrams. These projection
diagrams in turn might carry different information about the causal structure. While
the example of Minkowski spacetime exemplifies the definition, it does not yet show the
advantage of projection diagrams as the causal diagrams (a) and (b) in Figure 2.1 may
also be obtained from conformal compactification of R1,3 and subsequently taking slices.
The usefulness of projection diagrams becomes clear in subsection 3.4.4, where we discuss
the causal structure of particular metrics of the form (2.19). Their causal structure
cannot be meaningfully depicted by taking a slice. Many more projection diagrams are
discussed in the paper [24], to which the interested reader is referred to at this point.
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I +

I −

r
=

0

(a)

I +

I −

(b)

Figure 2.1.: Projection diagrams of Minkowski spacetime. Figure (a) fails to properly depict the nature
of spacetime near the set x = 0. Figure (b) fails to properly represent the connectedness of
I + and the connectedness of I −.

2.3. Initial Value Formulation of General Relativity
General relativity asserts that the effects of the gravitational field may be described by a
spacetime (M, g), where M is an (n+1)-dimensional manifold and g is a Lorentzian metric
fulfilling Einstein’s equations. To obtain an initial value formulation of general relativity,
the theory must be viewed as describing the time evolution of some quantity. In classical
theories, other than general relativity, we are usually given a fixed spacetime background
and consider the time evolution of physical quantities on this fixed background. In general
relativity, on the contrary, we want to solve for spacetime itself, making the nature of
the initial value formulation less apparent.

We start by reviewing the following theorem [6, theorem 8.3.14]

Theorem 2.2. Let (M, g) be a globally hyperbolic spacetime. Then, a global time
function1, f , can be chosen such that each surface of constant t is a Cauchy surface.
Thus M can be foliated by Cauchy surfaces and the topology of M is R × Σ, where Σ
denotes any Cauchy surface.

In the following, we refer to the Cauchy surface at constant t as Σt. Let nµ be the
unit normal vector to the hypersurfaces Σt. A spatial metric

hµν = gµν + nµnν (2.26)

is induced on surfaces of constant time. Now, let tµ be a vector field on M satisfying
tµ∇µt = 1. The vector field may be interpreted as representing the flow of time throughout
spacetime. The effect of moving forward in time, parametrized by the time function

1Recall that a time function t is a differentiable function on M such that ∇µt is a past directed timelike
vector field.

30



2.3. Initial Value Formulation of General Relativity

t, then corresponds to going from the surface Σ0 to the surface Σt. Identifying the
surfaces Σ0 and Σt by the diffeomorphism that results from the integral curves of tµ,
moving forward in time then corresponds to changing the metric on the n-dimensional
manifold Σ from hµν(0) to hµν(t). Hence, one expects to regard the spatial metric h on
a hypersurface Σ and its “time derivative” as appropriate initial data set. A well-defined
notion of the “time derivative” of the spatial metric h is then given by the extrinsic
curvature

Kµν = h σ
µ ∇σnν =

1
2Lnhµν

∥
= Kνµ , (2.27)

where Lnhµν is the Lie derivative of the metric hµν along the normal vector nµ and the
superscript “∥” means that the respective tensor is projected to the hypersurface.

It has been shown that appropriate initial data for general relativity consists of the
triple (Σ, h, K), where Σ is an n−dimensional manifold, h is a Riemannian metric on Σ
and K is a symmetric tensor field on Σ. The Einstein equations dictate that this initial
data cannot be arbitrary but must satisfy the initial value constraints

Gµνnν = 8πTµνnν . (2.28)

Contracting (2.28) with nµ or hν
µ, respectively, gives

Dµ(Kµν − Kσ
σhµν) = Jν , (2.29a)

(n)R + (Kσ
σ)2 − KµνKµν = 2Λ + 2ρ , (2.29b)

where Jν = 8πhσ
ν Tσµ is the matter momentum vector, ρ = 8πTµνnµnν is the matter

energy density on Σ, (n)R is the Ricci scalar of Σ and Dµ is the covariant derivative with
respect to the spatial metric h defined as DµT ν1...νk

σ1...σl
= hν1

ω1 ...hζl
σl

hκ
µ∇κT ω1...ωk

ζ1...ζl
. The

equations (2.29) are referred to as the constraint equations and only depend on quantities
intrinsically defined on the surface Σ. While we have considered the extrinsic curvature
and the spatial metric on the surface Σ in terms of its embedding into spacetime up until
this point, we now introduce their pullback to Σ, referred to as Kij and hij such that we
may write the constraint equations (2.29) as

Di
�
Kij − K l

lhij


= Jj , (2.30a)

(n)R +
�
K l

l

2 − KijKij = 2Λ + 2ρ , (2.30b)

where indices are raised and lowered with the Riemannian metric hij . The existence
of a well-posed initial value formulation for general relativity in the presence of matter
depends upon the dynamical equations satisfied by matter and on the formula for the
stress-energy tensor in terms of matter and metric [6].

In principle, the equations of motion of general relativity allow for arbitrary forms of
matter, even if the resulting solutions to the equations of motion are typically considered
unphysical. It is possible to restrict to physically viable situations by imposing energy
conditions on the energy-momentum tensor of the matter. While many such energy
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conditions are available in the literature, we consider here only the consequences of the
dominant energy condition

ρ ≥
�

JiJjhij (2.31)

on the initial value costraints. Equation (2.31) amounts to the requirement that to any
observer the local energy–density appears positive and the local energy-flow vector is not
spacelike.

An important case, which will be of interest in the following sections is that of time-
symmetric initial data, Kij = 0 (the “time-symmetric” terminology refers to the fact that
a suitable reflection across Σ in the associated spacetime is an isometry). In this case,
we have that Ji = 0 and the constraint equations (2.30) reduce to

(n)R = 2Λ + 2ρ , (2.32)

where ρ vanishes in vacuum. In that case the dominant energy conditions simply translates
into the requirement that

(n)R − 2Λ ≥ 0 . (2.33)

Another concept that will be of importance in chapter 4 is that of Killing Initial Data
(KIDs). As the terminology already suggests, KIDs are in one-to-one correspondence
with Killing vectors in spacetime obtained from the time evolution of the initial data
set [27]. We can decompose a Killing vector ξ of spacetime at Σ as

ξ = V nµ∂µ + Y i∂i , V = −ξµnµ . (2.34)

We will now consider such Killing Initial Data for vacuum spacetimes. From the Killing
equations it follows that [28]

D(iYj) + V Kij = 0 , (2.35a)

DiDjV + LY Kij =


(n)Rij + KKij − 2KKilK
l

j − 2
n − 1Λhij


V , (2.35b)

where K = K l
l. KIDs are defined as V , Yi that are solutions to the differential eqations

(2.35a)-(2.35b). In the time-symmetric case with Kij = 0 and Yi = 0, the equations
(2.35) reduce to the static KIDs equation

DiDjV =


(n)Rij − 2
n − 1Λ hij


V . (2.36)

In chapter 4, we consider time-symmetric initial data sets and use KIDs to define the
mass associated with these initial data sets.

So far, our discussion has been restricted to globally hyperbolic spacetimes. However,
metrics that locally approach Anti-de Sitter spacetime at large distances, are not globally
hyperbolic due to the fact that the conformal boundary at infinity is timelike. By
definition, (asymptotically locally) Anti-de Sitter spacetimes do therefore not contain
a Cauchy hypersurface. In this case, the specification of initial data (K, h, Σ) on a
spacelike hypersurface Σ only determines the time evolution completely on the domain
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of dependence. Similarly, the KIDs equations only guarantee the existence of Killing
vectors on the domain of dependence. The solution, obtained by evolving the initial data
set with the Einstein equations, can be uniquely determined by supplementing the initial
data set with boundary condition at the conformal boundary. As this is a subtle issue
and we will not consider the time evolution of initial data sets in this thesis, we refer the
interested reader to [29] for a discussion of the issues occurring in this context.
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3. Gravity in 2+1 Dimensions
Studying conceptual problems in general relativity is often hindered by the technical
complexity of calculations in higher dimensions. Therefore, it is useful to consider
toy models, that capture the relevant features while reducing technical difficulties to a
minimum. One such toy model is (2 + 1)-dimensional Einstein gravity.

As we will see in section 3.1, the dynamics of general relativity in three spacetime
dimensions is substantially simpler than its higher-dimensional counterparts. In fact,
in the absence of local matter sources, we have no dynamical gravitational degrees of
freedom and thus there are no gravitational waves in three dimensions. This suggests
that Einstein gravity in three dimensions might not be a worthwhile topic to study.
However, as we will see in the following this is not the case. In section 3.2 we discuss the
simplest solution to three-dimensional Einstein gravity at negative cosmological constant,
AdS3 spacetime. In section 3.3 we discuss the asymptotic behavior of three-dimensional
Einstein gravity and its asymptotic symmetry group. Black hole solutions are discussed
in section 3.4. In section 3.5 we discuss a modification of Einstein gravity: topologically
massive gravity, which propagates one massive graviton. In that section, we discuss
particular solutions of this theory which were investigated in [1]. The chapter ends with
section 3.6, where we discuss how asymptotic symmetries can be used to perform a
microstate counting of three-dimensional black holes.

3.1. Generalities
As already discussed in section 2.1.1, equation (2.5), for d ≥ 3 the Riemann tensor can
be decomposed into Ricci tensor, Ricci scalar and Weyl tensor. This decomposition
simplifies in three spacetime dimensions where the Weyl tensor vanishes.

For vanishing Weyl tensor (2.5) reduces to

Rµνρσ = gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ

d − 2 − R
gµρgνσ − gµσgνρ

(d − 1)(d − 2) . (3.1)

Upon using vacuum Einstein equations

Rµν = 2Λ
d − 2 gµν (3.2)

this becomes
Rµνρσ = 2Λ

(d − 1)(d − 2)(gµρgνσ − gµσgνρ) . (3.3)

In three dimensions this reduces to

Rµνρσ = Λ(gµρgνσ − gµσgνρ) . (3.4)
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It is remarkable that the Riemann tensor of any three-dimensional spacetime satisfying
vacuum Einstein equations takes the form (3.4). Equation (3.4) also implies that all
sectional curvatures are constant as can be easily checked from the definition of sectional
curvature.
Definition 3.1. Sectional Curvature
Let M be a Riemannian manifold with metric g. Suppose x ∈ M and let E be a
nondegenerate plane section (2-dimensional linear subspace) of TpM . Let {X, Y } be a
basis of E. Then the sectional curvature of M at x associated with the plane E is given
by

κ(x, E) :=
Rµ

ναβXαY βXµY ν

XµXµY νYν − (XµYµ)2 . (3.5)

One may easily show that the definition of sectional curvature only depends on the
plane, but not on the vectors X and Y which span the plane [30, Theorem 2.2.3]. The
definition may be extended to pseudo-Riemannian manifolds provided that the plane
spanned by X and Y is not null.

Calculating the sectional curvature for any plane E, which is not null, for spacetimes
whose Riemann tensor takes the form (3.3), we find that

κ(x, E) = 2Λ
(d − 1)(d − 2) . (3.6)

We say a manifold M has constant curvature if the sectional curvature is a constant
function of x and E. In this thesis, we will also refer to such manifolds as constant
curvature manifolds. It holds true that all pseudo-Riemannian manifolds of fixed constant
curvature are locally isometric [30, Theorem 2.4.11]. In particular, this implies that
three-dimensional Lorentzian vacuum solutions to Einstein gravity are, depending on the
cosmological constant, either, locally isometric to AdS3, R1,2 or dS3. Note that a similar
statement can be made in higher dimensions, provided that the Weyl tensor vanishes.

In the following sections we will see that global effects allow for interesting spacetimes
in three-dimensional Einstein gravity.

3.2. Global AdS spacetime
The simplest solution to three-dimensional Einstein gravity at negative cosmological
constant is AdS3 spacetime. Global Anti-de Sitter space can be defined in terms of a
hyperboloid embedded into R2,2 given by

ds2 = −du2 − dv2 + dx2 + dy2 (3.7a)

through the equation
−u2 − v2 + x2 + y2 = −1 . (3.7b)

Changing coordinates as

u = cosh ρ sin t , v = cosh ρ cos t , (3.8a)
x = sinh ρ cos φ , y = sinh ρ sin φ (3.8b)
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we obtain
ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2 . (3.9)

We have the identifications of points (t, ρ, φ) ∼ (t + 2πj, ρ, φ + 2πk), where k, j ∈ Z.
Because of the identification in t, there exist closed timelike curves through each point in
spacetime. A visualization of AdS spacetime, albeit in one dimension lower, is given in
Figure 3.1.

A spacetime without closed timelike curves is obtained by unwrapping the t coordinate,
i.e. one does not identify t with t + 2πj. In this manner, one goes from global AdS3
spacetime to the universal covering space of AdS3. This space is commonly also referred
to as AdS3 spacetime and we use this ambiguous nomenclature in the following as well.
Changing the radial coordinate as

ρ = arcsinh(r) (3.10)

the metric (3.9) becomes

ds2 = −
�
r2 + 1


dt2 + dr2

r2 + 1 + r2dφ2 . (3.11)

We have the identification of points (t, r, φ) ∼ (t, r, φ + 2πk). In the vincinity of r = 0
the metric takes the form

ds2 ≈ −dt2 + dr2 + r2dφ2 + ... . (3.12)

The locus r = 0 is a line and corresponds to the center of the coordinate system. Changing
coordinates as cosh ρ = 1/ cos q we obtain

ds2 = 1
cos2 q

�
−dt2 + dq2 + sin2 qdφ2


, (3.13)

where q ∈ [0, π/2). The conformal factor Ω2 = cos2 q vanishes at π/2 and is positive and
non-vanishing elsewhere. The spacetime with metric g̃µν = Ω2gµν and coordinate ranges
q ∈ [0, π/2], t ∈ (−∞, ∞) and identification (t, r, φ) ∼ (t, r, φ + 2πk) is the conformal
completion of AdS3 spacetime. AdS3 is not conformally compact as t ∈ (−∞, ∞). It can
be visualized as an infinitely long filled cylinder, see Figure 3.2.

3.2.1. Isometries
The isometry group of AdS3 is given by SO(2, 2). The isometry algebra so(2, 2) is spanned
by the Killing vectors, which, written in the coordinate system (3.7), read

Jab = xb
∂

∂xa
− xa

∂

∂xb
, (3.14)

where xa = {v, u, x, y}. By definition, Jab is antisymmetric in a and b. Written in detail
the Killing vectors read

J01 = v ∂u − u ∂v , J02 = x ∂v + v ∂x , (3.15a)
J03 = y ∂v + v ∂y , J12 = x ∂u + u ∂x , (3.15b)
J13 = y ∂u + u ∂y , J23 = y ∂x − x ∂y . (3.15c)
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Figure 3.1.: AdS2 spacetime embedded into (1 + 2)-dimensional flat space R2,1. AdS2 spacetime
is described as the hyperboloid −u2 − v2 + x2 = −1 in R2,1 with line element ds2 =
−du2 − dv2 + dx2. AdS2 spacetime has closed timelike curves going through each point.
The closed timelike curves wind around the x-axis.

φ

t

Figure 3.2.: Visualization of AdS3 as an infinitely long cylinder, which extends from t = −∞ to t = ∞.
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The vector J01 = ∂t generates time translations, while J23 = −∂φ generates rotations.
The algebra spanned by the Killing vectors is so(2, 2), defined by the algebraic relations

[Jab, Jcd] = (gacJbd + gbdJac − gadJbc − gbcJad) (3.16)

with gab = diag{−1, −1, 1, 1}.

3.3. Asymptotic Behavior
In this section, we discuss the asymptotic behavior of general relativity with a negative
cosmological constant. We consider spacetimes that approach AdS3 – the maximally
symmetric vacuum solution to the Einstein equations at negative cosmological constant –
at large distances. To compute conserved quantities such as the energy of the gravitational
field, it is not only of importance to specify that AdS3 is approached at large distances,
but also at which rate this happens. Brown and Henneaux [21] proposed boundary
conditions which achieve this

gtt = −r̄2 + O(1) , (3.17a)

gtr̄ = O

 1
r̄3


, (3.17b)

gtφ = O(1) , (3.17c)

gr̄r̄ = 1
r̄2 + O

 1
r̄4


, (3.17d)

gr̄φ = O

 1
r̄3


, (3.17e)

gφφ = r̄2 + O(1) . (3.17f)

They arrived at these boundary conditions by requiring that the isometry group of
global AdS3 spacetime should also be a subgroup of the asymptotic symmetry group
of asymptotically AdS3 spacetimes. This led them to weaken an alternative choice of
boundary conditions which was also presented in their paper [21]. The asymptotic Killing
vectors that preserve the boundary conditions are defined as solutions of the asymptotic
Killing equation which preserve (3.17) up to the terms specified by O(. . . ) in (3.17). In
the coordinates

x± = t ± φ (3.18)

the asymptotic Killing vectors ξ = ξ+ + ξ− preserving (3.17) read

ξ+(v+) = −
1

2 r̄v′
+ + O

�
r̄−1


∂r̄ +

�
v+ + O

�
r̄−4


∂+ +

�
v′′

+
2r̄2 + O

�
r̄−4

�
∂− , (3.19)

ξ−(v−) = −
1

2 r̄v′
− + O(r̄−1)


∂r̄ +

�
v′′−
2r̄2 + O

�
r̄−4

�
∂+ +

�
v− + O

�
r̄−4


∂− , (3.20)
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where v+ = v+(x+), v− = v−(x−) and prime denotes derivative with respect to the
argument. The functions v±(x±) must respect the identifications

(r̄, x+, x−) ∼ (r̄, x+ + 2π, x− − 2π) (3.21)

and thus they must be periodic functions of x+ and x− respectively. Expanding v±∂±
into Fourier modes as

v±(x±)∂± =
%
n∈Z

cn
±l±n , l±n = einx±

∂± , (3.22)

we find the asymptotic symmetry algebra

i[l±n , l±m] = (n − m)l±n , i[l±n , l∓m] = 0 , (3.23)

where [ , ] denotes the Lie bracket. Note that the definition of basis vectors used in the
Fourier decomposition is different than the one used in [21]. The global isometries of
AdS3 spacetime so(2, 2) ∼= sl(2, R) ⊕ sl(2, R) are thus recovered asymptotically and are
spanned by the generators {l±−1, l±0 , l±1 } where the plus and the minus sector each span
one copy of sl(2, R).

To each of these asymptotic Killing vector fields, it is possible to associate a conserved
charge. The variation of these charges was computed in [21] using Hamiltonian methods
[31]

δQ+[v+] = 1
8πG

�
dφ v+(x+)δg0

++ , (3.24a)

δQ−[v−] = 1
8πG

�
dφ v−(x−)δg0

−− , (3.24b)

where g0
++ = 1

4

�
g0

tt + 2g0
tφ + g0

φφ


, g0−− = 1

4

�
g0

tt − 2g0
tφ + g0

φφ


. The index zero refers to

the term of order r0 in the asymptotic expansion (3.17). Note that there are infinitely
many charges as v+(x+) and v−(x−) are arbitrary, smooth functions of the coordinates
x+ and x− that are well-defined on the entire manifold. Expanding these charges in
Fourier modes gives

L+
n = Q+[einx+ ] = 1

8πG

�
dφ einx+

g0
++ , (3.25a)

L−
n = Q−[einx− ] = 1

8πG

�
dφ einx−

g0
−− , (3.25b)

where n ∈ Z. The mass and the angular momentum can then be defined as the
charge associated with the generator of time translations ∂t = ∂+ + ∂− and rotations
−∂φ = −∂+ + ∂−, respectively

m ≡ L+
0 + L−

0 , j ≡ −
�
L+

0 − L−
0


. (3.26)

In computing the charges (3.24) we have chosen a background metric b, for which all
charges vanish

b = −r̄2dt2 + dr̄2

r̄2 + r̄2dφ2 . (3.27)
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This is not global AdS3 spacetime, but a so-called BTZ black hole with – per definition
– vanishing mass and angular momentum. We discuss the causal structure of (3.27) in
subsection 3.4.7 . Computing the energy of global AdS3, which has g0

tt = −1, g0
φφ = 0

and g0
tφ = 0, we find that it is negative

mAdS3 = − 1
8G

. (3.28)

The negativity is due to the choice of background metric (3.27). It will become clear
in the next subsection why this choice of background metric is sensible. The Poisson
algebra of the charges (3.25) is isomorphic to the maximal non-trivial central extension
of (3.23) and reads

i{L±
n , L±

m} = (n − m)L±
n+m + c±

12 (n3 − n)δn+m,0 , (3.29a)

i{L±
n , L∓

m} = 0 , (3.29b)

where { , } denote the Poisson brackets. The values of the central extensions in the
algebra of the charges can be determined explicitly

c+ = c− = 3
2G

(3.30)

by computing the Poisson brackets of (3.25). Thus, we have shown that the symmetry
transformations that preserve the asymptotic structure of asymptotically AdS3 spacetimes
are given by a direct sum of two copies of the Virasoro algebra. This algebra is well known
from a — a priori — completely different context in physics, namely from two-dimensional
conformal field theories. The Virasoro algebra (3.29) is the algebra of local conformal
transformations in two dimensions and the defining feature of a two-dimensional conformal
field theory.

Today, this result is considered to be a precursor of the AdS3/CFT2 correspondence
which asserts that quantum gravity on AdS3 spacetimes is dual to a two-dimensional
conformal field theory. While many results in favor of the correspondence exist, the result
has not been proven, see [32] for a discussion of the issues occurring in this context. In one
of his famous papers [13], Strominger states that the fact that the asymptotic symmetries
of asymptotically AdS3 spacetimes comprise two copies of the Virasoro algebra implies
that “any consistent quantum theory of gravity on AdS3 is a conformal field theory”. At
the minimum, this statement rests on the assumption that the theory of quantum gravity
exists (as already pointed out in [13]), but to this day this has not been proven. We
present the results of the paper [13] in subsection 3.6 where we also discuss this issue
further.

3.3.1. Phase Space
In this subsection we discuss solutions to the vacuum Einstein equations with asymptoti-
cally AdS3 boundary conditions, which we specified above (3.17). For this it is useful to
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3. Gravity in 2+1 Dimensions

write the boundary conditions in the Fefferman-Graham coordinate system [33]

ds2 = dr̄2

r̄2 + gAB(r̄, xC)dxAdxB (3.31)

with
g(r̄, xC) = r̄2η + O(1) , (3.32)

where η is the flat metric on the cylinder, η = −dt2 + dφ2. It can be shown by solving
the Einstein equations order by order that generic, analytic solutions to the vacuum
Einstein equations with negative cosmological constant subject to the fall-off behavior
(3.31), (3.32) take the form [34]

ds2 = dr̄2

r̄2 −
�

r̄dx+ − L−(x−)
r̄

dx−
��

r̄dx− − L+(x+)
r̄

dx+
�

, (3.33)

where L−(x−), L+(x+) are analytic functions of x+ and x− respectively. The asymptotic
Killing vectors preserving the form of the metric (3.33) to any order read

ξ = − 1
2 r̄(v′

−(x−) + v′
+(x+))∂r̄ +

�
v+(x+) + r̄2v′′−(x−) + L−(x−)v′′

+(x+)
2r̄4 − 2L−(x−)L+(x+)

�
∂+

+
�

v−(x−) + r̄2v′′
+(x+) + L+(x+)v′′−(x−)

2r̄4 − 2L+(x+)L−(x−)

�
∂− . (3.34)

Expanding (3.34) in large r yields (3.20). The action of (3.34) on the solution space
(3.33) reads

δξL(x+) = 2L+(x+)v′
+(x+) + L′

+(x+)v+(x+) − v′′′
+(x+) , (3.35a)

δξL−(x−) = 2L−(x−)v′
−(x−) + L′

−(x−)v−(x−) − v′′′
−(x−). (3.35b)

The symmetries in their finite form are

x+ → ṽ+(x+) + O

 1
r̄2


, (3.36a)

x− → ṽ−(x−) + O

 1
r̄2


, (3.36b)

r̄ → r̄
�

ṽ′
+(x+)ṽ′−(x−) + O

1
r̄


, (3.36c)

where ṽ± are the finite symmetry transformations. Here, ṽ± must be diffeomorphisms of
S1. Under these symmetries the metric takes the same form as (3.33), but with

L(x+) → L(ṽ+(x+))ṽ′2
+(x+) − c

12{ṽ+(x+), x+} , (3.37a)

L̄(x−) → L̄(ṽ−(x−))ṽ′2
−(x−) − c̄

12{ṽ−(x−), x−} , (3.37b)
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where the brackets { , } denote the Schwarzian derivative

{ṽ+, x+} = ṽ+(x+)′′′

ṽ+(x+)′ − 3
2

�
ṽ+(x+)′′

ṽ+(x+)′

�2

. (3.38)

The causal structure of the metrics with constant L−(x−) = L− and constant L+(x+) =
L+ has been investigated in [35–37], see also [38, section V] for a nice summary.

To examine the causal structure of (3.33) it is useful to switch back to t, r, φ coordinates
and parametrize the class of metrics by mass and angular momentum

L+ = 2G(m − j) ≡ 1
4(M − J) , L− = 2G(m + j) ≡ 1

4(M + J) , (3.39)

where we have introduced new parameters M and J which are proportional to the mass
and angular momentum in such a way that the numerical prefactors in the metric simplify.
We furthermore change the radial coordinate

r̄ =

#$$"−M
2 + r2 +

�
J2
4 − Mr2 + r4

2 (3.40)

to obtain
ds2 = (M − r2)dt2 + 4r2dr2

J2 − 4Mr2 + 4r4 − Jdtdφ + r2dφ2 (3.41)

which may also be written as

ds2 = −F (r)dt2 + dr2

F (r) + r2(Nφ(r)dt + dφ)2 , (3.42)

where

F (r) = −M + r2 + J2

4r2 , Nφ(r) = − J

2r2 . (3.43)

In the case where M > 0 and |J | ≤ M this metric describes a black hole solution. The
horizons are located at the zeros of F (r). The geometry and causal structure of this case
will be discussed in detail in the next section 3.4.

To discuss the other cases we change coordinates as r2 = ρ to obtain

(M − ρ)dt2 + dρ2

J2 − 4Mρ + 4ρ2 − Jdtdφ + ρdφ2 . (3.44)

In the case |J | > |M | > 0 the metric is regular everywhere and can be extended to
ρ < 0. In this case, the geometry has closed timelike curves, that are not being shielded
by a horizon. We thereby obtain a nakedly singular spacetime.

In the case |J | < |M |, M < 0 the spacetime aquires a conical singularity.
In the special case that M = −1 and J = 0 the geometry is smooth and r = 0 is a

timelike line
ds2 = −(1 + r2)dt2 + dr2

1 + r2 + r2dφ2 . (3.45)
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3. Gravity in 2+1 Dimensions

This is just global AdS3 spacetime with mass given by

mAdS3 = M

8G
= − 1

8G
. (3.46)

The geometric structure of the phase space with constant L+, L− is summarized in
Figure 3.3 – the figure has been drawn for the first time in [37].

M

J

BTZ black
holes

Conical

Sing.

− 1
8G

AdS3

Naked Sing.Naked Sing.

CTCs

Figure 3.3.: Vacuum solutions (3.33) with constant L± subject to asymptotically AdS3 boundary
conditions. Figure adapted with permission from [38,39]

3.4. BTZ Black Hole
In this section, we discuss the so-called BTZ black hole. In subsection 3.4.1 the BTZ
black hole is introduced. In subsection 3.4.2 it is discussed how the BTZ black hole can
be obtained by identifying points in AdS3 spacetime. In subsection 3.4.3 the maximal
causal extension of the BTZ black hole is discussed. Section 3.4.4 is devoted to the causal
structure of the BTZ black hole.

3.4.1. A Surprise in 2+1 Dimensions
As discussed in section 3.1, in three spacetime dimensions all vacuum solutions of the
Einstein equations at fixed negative cosmological constant are locally isometric to AdS3.
Hence, if a vacuum black hole solution exists, its local properties must coincide with the
local properties of Anti-de Sitter space, implying that it must have constant curvature
everywhere. In particular, it must not have a curvature singularity; a property that we
typically associate with four-dimensional black holes. For this reason, one might, wrongly,
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3.4. BTZ Black Hole

be tempted to conclude that black holes do not exist in three-dimensional Einstein gravity.
In fact, for positive or vanishing cosmological constant this statement is correct: It was
shown by Daisuke Ida [40] that black holes in (2+1)-dimensional Einstein gravity do not
exist for positive or vanishing cosmological constant.

Given the peculiar features of (2 + 1)-dimensional Einstein gravity it came as a great
surprise when Máximo Bañados, Claudio Teitelboim and Jorge Zanelli found a black hole
solution in three dimensions [41], which was subsequently named after them. The metric
of the BTZ black hole, written in local coordinates t, r and φ, takes the form

ds2 = −N2F (r)dt2 + dr2

F (r) + r2(Nφ(r)dt + dφ)2 , (3.47)

where

F (r) = −M + r2 + J2

4r2 = (r2 − r2
+)(r2 − r2−)

r2 , (3.48a)

Nφ(r) = − J

2r2 N + Nφ
∞ = −sgn(J)r+r−

r2 N + Nφ
∞ , (3.48b)

where M, J, r+, r−, N and Nφ∞ are constants and t ∈ R and r ̸= {0, r−, r+}. The function
F (r) vanishes at the location of the Killing horizons

r2
± = 1

2
�
M ±

 
M2 − J2


. (3.49)

Therefore, for Killing horizons to exist we must have that

M > 0 , |J | ≤ M . (3.50)

It holds that r− ≤ r+. Additionally, we have the following identification of points

(t, r, φ) ∼ (t, r, φ + 2π) . (3.51)

It is this identification that makes the black hole. If one does not impose the identification
(3.51), the metric (3.47) is simply a portion of Anti-de Sitter space and the horizon at
r = r+ is just the horizon of an accelerated observer [35] and not an event horizon. On
the contrary, if one does impose the identification (3.51) the horizon at r = r+ becomes
an event horizon – a fact that is discussed in detail in subsection 3.4.3, where we discuss
the causal structure of the BTZ black hole. The constants N and Nφ∞ can be absorbed
by first shifting the angle as

φ → φ − Nφ
∞t (3.52a)

and then rescaling the time as

t → t

N
. (3.52b)
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For this reason we set N = 1 and Nφ∞ = 0 in the following unless specified otherwise. The
two horizons are Killing horizons of the Killing vectors ξ+ and ξ−, respectively, which
read

ξ± = ∂t + Ω±∂φ , (3.53)
where Ω± are the angular velocities at the inner and the outer horizon

Ω+ = − gtφ

gφφ

'''''
r=r+

= J

M +
√

M2 − J2 , (3.54a)

Ω− = − gtφ

gφφ

'''''
r=r−

= J

M − √
M2 − J2 . (3.54b)

Similarly to higher-dimensional black holes, the BTZ black hole possesses a singularity;
albeit this singularity is not a curvature singularity, but rather a singularity in the causal
structure as we will see below. In coordinates t, r, φ, used in (3.47), this singularity is
located at r = 0. At first sight, the singularity at r = 0 appears to be the standard
coordinate singularity that arises at the center of the polar coordinate system. This is
however not the case. Changing coordinates as r2 = ρ

ds2 =
�
r2

+ + r2
− − ρ


dt2 + dρ2

4(ρ − r2−)(ρ − r2
+) − 2 sgn(J) r−r+dtdφ + ρdφ2

= (M − ρ)dt2 + dρ2

J2 − 4Mρ + 4ρ2 − Jdtdφ + ρdφ2 , (3.55)

we find that the metric is regular in the vicinity of r = 0 as long as J ̸= 0. The locus
ρ = 0 is not a point but rather a surface through which spacetime can be extended.
However, if one chooses to allow for ρ < 0 closed timelike curves appear, which is why
one typically cuts off the spacetime at r = 0. The spacetime has constant curvature
everywhere, in particular also at r = 0. Note that in the case J = 0 the black hole aquires
a more severe singularity, which is shortly discussed in subsection 3.4.2.

3.4.2. BTZ black hole as a quotient
Given that the black hole can only differ from AdS3 by global properties, it is natural
to expect that it can be obtained from AdS3 by identifying points in spacetime. It was
shown in [35] that the BTZ black hole is a quotient of AdS3 by a discrete subgroup H of
its isometry group. For the quotient space M/H to be a Hausdorff manifold the action
of the group H on AdS3 has to be properly discontinuous (for details see [42]). The
quotient is a Hausdorff manifold for the case of the rotating BTZ black hole (J ̸= 0)
but fails to be a Hausdorff manifold when J = 0 [35, appendix B]. In the latter case
the Hausdorff manifold structure is destroyed at r = 0 – leading to a singularity in the
manifold structure at this locus. We now shortly discuss the case of the non-extremal
rotating BTZ black hole (r2

+ − r2− > 0). In this case the Killing vector along which AdS3
is identified is given by

ξ = r+ J12 − r− J03 = r+(x ∂u + u ∂x) − r−(y ∂v + v ∂y) (3.56)
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in the coordinates (3.7), which describe AdS3 as a hyperboloid embedded into four-
dimensional flat space. The norm of ξ reads

ξµξµ = r2
+(u2 − x2) + r2

−(v2 − y2) , (3.57)

which using the identity (3.7b) can also be written as

ξµξµ = (r2
+ − r2

−)(u2 − x2) + r2
− . (3.58)

The norm of the Killing vector (3.58) becomes negative for u2 − x2 < −r2−/(r2
+ − r2−),

implying that in this region closed timelike curves appear. Conversely, the norm of the
Killing vector (3.58) is positive in the region

−r2
−/(r2

+ − r2
−) < u2 − x2 < ∞ (3.59)

The region ξµξµ > 0 can be divided in regions bounded by the null surfaces u2 − x2 = 0
and v2 − y2 = 1 − (u2 − x2) = 0 where the identity (3.7b) has been used to establish the
second equality. In the region u2 − x2 > 1 and u, y > 0 we introduce new coordinates
as [35]

u =
�

A(r) cosh φ̃(t, φ) , x =
�

A(r) sinh φ̃(t, φ) , (3.60a)

y =
�

B(r) cosh t̃(t, φ) , v =
�

B(r) sinh t̃(t, φ) , (3.60b)

where
A(r) = r2 − r2−

r2
+ − r2−

, B(r) = r2 − r2
+

r2
+ − r2−

(3.60c)

and
t̃(t, φ) = r+t − r−φ , φ̃(t, φ) = −r−t + r+φ . (3.60d)

In these coordinates AdS3 space takes the form

ds2 = −F (r)dt2 + dr2

F (r) + r2(Nφ(r)dt + dφ)2 (3.61)

with F (r) and Nφ(r) given by (3.48). The coordinate system t, r, φ introduced above is
distinct from the coordinate system t, r, φ in (3.11). Local coordinate systems in which
the metric takes the form (3.61) can also be introduced in the other regions of AdS3
space, see [35] for the details. Without an additional identification of points, the metric
(3.61) is just AdS3 space in a coordinate system which covers the portion of AdS3 space
where u, y > 0 and u2 − x2 > 1. In the coordinate system (3.60), the Killing vector (3.56)
takes the form

ξ = ∂φ . (3.62)
By performing discrete identification along the direction of this Killing vector, we obtain
the identification of points  t

r
φ

 ∼
 t

r
φ + 2πk

 , (3.63)
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where k ∈ Z. It is the identification (3.63) that gives the black hole spacetime and that
differentiates it from AdS3. In the coordinate system u, v, x, y this identification reads

u
x
y
v

 ∼


cosh(2πkr+)u + sinh(2πkr+)x
cosh(2πkr+)x + sinh(2πkr+)u
cosh(2πkr−)y − sinh(2πkr−)v
cosh(2πkr−)v − sinh(2πkr−)y

 . (3.64)

Indeed, the metric
ds2 = −du2 − dv2 + dx2 + dy2 (3.65)

together with the constraint

−u2 − v2 + x2 + y2 = −1 (3.66)

and the identification (3.64) is just the non-extremal BTZ black hole in a different
coordinate system.

3.4.3. Kruskal Extension
In the previous subsections, we have discussed some generalities of the BTZ black hole,
in this and in the following subsections we focus on its causal structure which was first
described in [35]. Consider the BTZ black hole (3.47)–(3.48). The geometry depends
upon the sign of F (r), the zeros of F (r) and the order of the zeros of F (r). The zeros
are located at r = r+ and r = r−

F (r+) = 0 , F (r−) = 0 . (3.67)

In the case of the non-extremal rotating BTZ black hole we have that r+ ̸= r− and

F ′(r+) ̸= 0 , F ′(r−) ̸= 0 . (3.68)

We start by introducing ingoing and outgoing Eddington-Finkelstein coordinates

u = t − f(r) , v = t + f(r) , (3.69)

where
f ′(r) = 1

F (r) . (3.70)

This can be integrated to give

f(r) = 1
r2

+ − r2−


r−
2


log

''''1 + r

r−

'''' − log
''''1 − r

r−

'''' 
− (r− ↔ r+)


, (3.71)

where the integration constant has been chosen such that f(r) vanishes at r = 0. The
function f(r) diverges at r = r+ and r = r− where F (r) vanishes and tends to 0 in the
limit r → ∞. In Figure 3.4 the function f(r) is plotted for specific values of r+ and r−.
In coordinates u, r, or v, r, the metric (3.47) reads
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Figure 3.4.: Plot of the function f(r) with r− = 1 and r+ = 2.

ds2 = −F (r)du2 − 2dudr + r2


Nφ(r)


du + dr

F (r)


+ dφ

2

= −F (r)dv2 + 2dvdr + r2


Nφ(r)


dv − dr

F (r)


+ dφ

2
, (3.72)

which is singular at the zeros of F (r) due to the term dr/F (r) in the brackets. To
compensate we use the shift freedom in φ. An extension across the horizon r = r+ can
be achieved by choosing the constant Nφ∞ = J

2r2
+

. Then

Nφ(r)dt =
�

J(r − r+)
r3

+
+ O(r − r+)2

��
du + r2

(r2 − r2
+)(r2 − r2−)dr

�
. (3.73)

For coordinates v, r the same line of argument holds trivially. By fixing Nφ∞ = −J/(2r2−)
an extension across r− can be performed. We thus obtain two Eddington-Finkelstein
patches – one around r = r− and one around r = r+. Each patch comes with a different
angular coordinate φ± = φ + Nφ

∞ ± t, where Nφ
∞ ± = −J/(2r2±). The coordinates u, r

and v, r, respectively, can be taken to cover two of the quadrants that will be introduced
in the following. By taking two Eddington-Finkelstein patches together it is possible
to cover almost the entire quadrant except for the bifurcation surface. It is for this
reason that we need another coordinate system. Such a coordinate system is provided
by Kruskal-Szekeres coordinates. Two Kruskal-Szekeres coordinate systems K+ and
K− are introduced below, which, taken together, give a maximal causal extension of
the spacetime. The Kruskal-Szekeres coordinate system K+, introduced below, covers
the region r− < r < ∞, the Kruskal-Szekeres coordinate system K− covers the region
0 < r < r+. These two patches can be glued together on their overlap r− < r < r+,
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Figure 3.5.: Plot of the four quadrants: The different regions, separated by the horizon at r = r+ are
labelled by roman numbers I, II, III, IV . The Eddington-Finkelstein coordinates u, r can
be taken to cover either I, IV or II, III. The Eddington-Finkelstein coordinates v, r can
be taken to cover either I, II or III, IV . The Kruskal-Szekeres coordinates can be taken
to cover all four patches I, II, III, IV at the same time.

yielding a maximal causal extension.

Kruskal-Szekeres patch K+

To have a well-defined coordinate system that covers the patch r− < r < ∞ we
introduce Kruskal-Szekeres coordinates in each of the blocks, which are specified in
Figure 3.5 and labeled by a roman number. The Kruskal-Szekeres coordinates read

I : û = −e−c+u , v̂ = ec+v , (3.74a)
II : û = e−c+u , v̂ = ec+v , (3.74b)

III : û = e−c+u , v̂ = −ec+v , (3.74c)
IV : û = −e−c+u , v̂ = −ec+v . (3.74d)

with
c+ = F ′(r+)

2 = r2
+ − r2−

r+
. (3.75)

The value of the constant c+ is of utmost importance. Indeed, for any other value of c+
the coordinates û, v̂ defined above do not extend smoothly across the horizon, Changing
coordinates, to ease the comparison with [35], as

τ = û + v̂

2 , ρ = v̂ − û

2 . (3.76)

we obtain that the metric (3.47) takes the form [35]
ds2 = ψ̃2

+(r)(dρ2 − dτ2) + r2(Nφ(r)dt + dφ)2 , (3.77)

50



3.4. BTZ Black Hole

where r = r(ρ, τ) = r(û, v̂) and t = t(ρ, τ) = t(û, v̂) are implicit functions of the
coordinates ρ and τ , or û and v̂ respectively. We have that ψ̃+ defined through

ψ̃2
+(r) = (r2 − r2−)(r + r+)2

c2
+r2


r − r−
r + r−

 r−
r+ (3.78)

is strictly positive for r− < r < ∞. The explicit expressions for τ and ρ

I : τ =


r − r+
r + r+

 1
2


r + r−
r − r−

 r−
2r+ sinh(c+t) , ρ =


r − r+
r + r+

 1
2


r + r−
r − r−

 r−
2r+ cosh(c+t) ,

(3.79a)

II : τ =


r+ − r

r + r+

 1
2


r + r−
r − r−

 r−
2r+ cosh(c+t) , ρ =


r+ − r

r + r+

 1
2


r + r−
r − r−

 r−
2r+ sinh(c+t) ,

(3.79b)

III : τ = −


r − r+
r + r+

 1
2


r + r−
r − r−

 r−
2r+ sinh(c+t) , ρ = −


r − r+
r + r+

 1
2


r + r−
r − r−

 r−
2r+ cosh(c+t) ,

(3.79c)

IV : τ = −


r+ − r

r + r+

 1
2


r + r−
r − r−

 r−
2r+ cosh(c+t) , ρ = −


r+ − r

r + r+

 1
2


r + r−
r − r−

 r−
2r+ sinh(c+t) .

(3.79d)

are the ones given in [35]. Next, it needs to be checked that r = r(û, v̂) is a smooth
function. For this we consider the function G(r)

G(r) = ûv̂ = τ2 − ρ2 =


r + r−
r − r−

 r−
r+ (r+ − r)

(r + r+) (3.80)

which is a real analytic function for r− < r < ∞. This implies that also its inverse
r = G−1(ûv̂) is a real analytic function due to the implicit analytic function theorem. In
the previous section we have shown that, in Eddington-Finkelstein coordinates, under
an appropriate choice of φ the term Nφ(r)dt is regular at r = r+. We now check that
with this choice of φ the term Nφ(r)dt is also regular at û = v̂ = 0 – a locus which is not
covered in Eddington-Finkelstein coordinates. Using (3.80) we find that

Nφ(r)dt =
�

J(r − r+)
2c+r3

+
+ O(r − r+)2

�
dv̂

v̂
− dû

û



=
�

− J

c+r2
+


r+ + r−
r+ − r−

− r−
r+

ûv̂ + O(r − r+)2
�

dv̂

v̂
− dû

û


(3.81)

is regular at û = v̂ = 0. For this reason the coordinates û and v̂ can be extended to run
from −∞ to ∞

û, v̂ ∈ (−∞, ∞) , or τ, ρ ∈ (−∞, ∞) (3.82)
with the restriction

ûv̂ = τ2 − ρ2 > −1 , (3.83)
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where −1 being the limiting value of ûv̂ for r → ∞.
Therefore, we have shown that the spacetime can indeed be extended through r = r+.

The coordinate system τ, ρ, φ with τ and ρ being defined above is well-defined in the
region r− < r < ∞. In this coordinate system the metric takes the form (3.77) with
(3.78) being smooth and strictly positive for r− < r < ∞. Lastly we introduce compact
coordinates X, T as

ρ + τ = tan


T + X

2


, τ − ρ = tan


T − X

2


, (3.84)

such that

ds2 = 1
Ω2

+(r, t)(dX2 − dT 2) + r2(Nφ(r)dt + dφ)2 , (3.85)

where T, X ∈ (−π, π) and with the restriction

tan


T + X

2


tan


T − X

2


> −1 . (3.86)

The conformal factor

Ω2
+(r, t) = 4 cos2


T + X

2


cos2


T − X

2


c2

+r2

(r2 − r2−)(r + r+)2


r − r−
r + r−

− r−
r+

, (3.87)

is strictly positive between r− < r < ∞ (X, T are implicit functions of t, r). It vanishes
only in the limit r → ∞ or as t → ±∞ and diverges at r = r−.

Kruskal-Szekeres patch K−

The same arguments can be repeated to obtain a Kruskal-Szekeres patch around
r = r−. We start from the Eddington-Finkelstein coordinates (3.69) and (3.71). Defining
coordinates τ and ρ in an analog way to above, the metric is brought into the form

ds2 = ψ̃−(r)2(dρ2 − dτ2) + r2(Nφ(r)dt + dφ)2 , (3.88)
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with τ and ρ given by

I : τ =


r− − r

r + r−

 1
2


r + r+
r+ − r

 r+
2r− sinh(c−t) , ρ =


r− − r

r + r−

 1
2


r + r+
r+ − r

 r+
2r− cosh(c−t) ,

(3.89a)

II : τ =


r − r−
r + r−

 1
2


r + r+
r+ − r

 r+
2r− cosh(c−t) , ρ =


r − r−
r + r−

 1
2


r + r+
r+ − r

 r+
2r− sinh(c−t) ,

(3.89b)

III : τ = −


r− − r

r + r−

 1
2


r + r+
r+ − r

 r+
2r− sinh(c−t) , ρ = −


r− − r

r + r−

 1
2


r + r+
r+ − r

 r+
2r− cosh(c−t) ,

(3.89c)

IV : τ = −


r − r−
r + r−

 1
2


r + r+
r+ − r

 r+
2r− cosh(c−t) , ρ = −


r − r−
r + r−

 1
2


r + r+
r+ − r

 r+
2r− sinh(c−t) ,

(3.89d)

where
c− = F ′(r−)

2 = r2− − r2
+

r−
. (3.90)

The null coordinates û and v̂ defined by the relations

τ = û + v̂

2 , ρ = v̂ − û

2 . (3.91)

are plotted in Figure 3.6. The function

ψ̃2
−(r) = (r2

+ − r2−)(r + r−)2

c2−r2


r+ − r

r+ + r

 r+
r− (3.92)

is strictly positive in the domain 0 < r < r+. In the same manner as for the patch K+
it can be shown that r is a real analytic function for 0 < r < r+ due to the implicit
function theorem. Furthermore, the shift freedom in φ can be exploited to obtain a
regular Nφ(r)dt term at τ = ρ = 0. Therefore, the coordinates τ, ρ can be extended such
that

τ, ρ ∈ (−∞, ∞) (3.93)

with the additional restriction that

τ2 − ρ2 > −1 (3.94)

where −1 corresponds to the locus r = 0, which is the location of the singularity. As
already discussed in subsection 3.4.1, an extension to r ≤ 0 would be, in principle,
possible. However, due to the fact that the spacetime exhibits closed timelike curves
beyond r < 0 it is customary to cut off the spacetime there. The spacetime is then – per
construction – geodesically incomplete, as there exist geodesics that go from r > 0 to
r ≤ 0. The locus r = 0 is regarded as a singularity, as spacetime cannot be continued
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Figure 3.6.: Plot of the four quadrants in the patch K−. The dashed lines denote the location of the
horizon r = r−. Quadrants I and III describe the region inside the horizon r = r−, while
quadrants II and IV describe the region r− < r < r+.

without producing closed timelike curves. If this point of view is taken, as is here and was
taken in [35], then the only incomplete geodesics are those that hit the singularity, which
is similar to higher-dimensional black holes. Lastly we introduce compact coordinates
X, T as

ρ + τ = tan


T + X

2


, τ − ρ = tan


T − X

2


(3.95)

such that
ds2 = 1

Ω2−(r, t)(dX2 − dT 2) + r2(Nφ(r)dt + dφ)2 . (3.96)

Here, T, X ∈ (−π, π) with the restriction that

tan


T + X

2


tan


T − X

2


> −1 . (3.97)

The conformal factor

Ω2
−(r, t) = 4 cos2


T + X

2


cos2


T − X

2


c2−r2

(r2
+ − r2−)(r + r−)2


r+ − r

r+ + r

− r+
r−

, (3.98)

is strictly positive between 0 < r < r+ (X, T are implicit functions of t, r).

3.4.4. Causal Diagram of the Non-Extremal BTZ Black Hole
In the last subsection we have seen that the non-extremal BTZ black hole can be extended
through r = r− and r = r+. In this subsection the causal structure of the non-extremal
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black hole is visualized with causal diagrams. As we have seen in the previous subsection,
the metric can be brought into the form

ds2 = 1
Ω2 (dT 2 − dX2) + r2(Nφ(r)dt + dφ)2 (3.99)

in each patch. The patch K+ covers the region r− < r < ∞, the patch K− covers the
region 0 < r < r+. In the region r− < r < r+ the patches overlap K = K+ ∩ K−.

The causal structure of the BTZ black hole can now be visualized using so-called
projection diagrams reviewed in section 2.2. Indeed, the causal diagrams presented in
the 1992 paper by Bañados, Henneaux, Teitelboim and Zanelli [35] are precisely such
projection diagrams.

Constant φ slices do not correctly depict the causal structure of spacetime in the case
of the rotating BTZ black hole. Indeed, the property that all spacelike curves in the
two-dimensional diagram result from spacelike curves in the original spacetime is not
preserved in this case. It is impossible to change coordinates such that the second term
in (3.99) takes the form r2dφ̃2 as

d(Nφ(r)dt + dφ) ̸= 0 . (3.100)

Instead of taking a slice, we project to a subset of R1,1 in a way that preserves causal
properties and construct a projection diagram.

In each patch K+, K− the projection π is defined as the map (T, X, φ) → (T, X). The
auxiliary metric in each patch K+, K− reads

γABdxAdxB = Ω2(dX2 − dT 2) (3.101)

with
T, X ∈ (−π, π) , tan


T + X

2


tan


T − X

2


> −1 . (3.102)

The two patches K+ and K− of the non-extremal rotating BTZ black hole are depicted in
Figure 3.7. The patches overlap on the intersection K = K+ ∩ K−. A complete diagram
is then obtained by joining an infinite sequence of patches K+, K− as is done in Figure
3.7.

3.4.5. J = 0, M > 0
In the previous subsection, we have considered the non-extremal, rotating BTZ black
hole and have discussed its causal structure. Now we discuss the causal structure of the
non-rotating BTZ black hole, which corresponds to J = 0 or equivalently r− = 0. In this
case the metric takes a diagonal form as Nφ(r) vanishes

ds2 = −F 2(r)dt2 + dr2

F 2(r) + r2dφ2 . (3.103)

For r− = 0 there exists only one Kruskal patch, the outer patch, covering the region
0 < r < ∞. We may use the results from the previous subsections, in which Kruskal-
Szekeres coordinates were introduced for the non-extremal rotating black hole. The
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Figure 3.7.: The figure depicts the patches K+ (left), K− (middle) and the complete causal diagram of
the rotating, non-extremal BTZ black hole. The light grey region denotes the intersection
of K = K+ ∩ K− where the patches are glued together. The dark gray region in the figure
to the very right denotes the black hole region where no forward-moving causal curves
reach r = ∞ anymore. Figure adapted with permission from [39].

Kruskal-Szekeres coordinates in the patch K+ are regular for r− = 0 and read

I : τ =


r − r+
r + r+

 1
2

sinh(c+t) , ρ =


r − r+
r + r+

 1
2

cosh(c+t) , (3.104a)

II : τ =


r+ − r

r + r+

 1
2

cosh(c+t) , ρ =


r+ − r

r + r+

 1
2

sinh(c+t) , (3.104b)

III : τ = −


r − r+
r + r+

 1
2

sinh(c+t) , ρ = −


r − r+
r + r+

 1
2

cosh(c+t) , (3.104c)

IV : τ = −


r+ − r

r + r+

 1
2

cosh(c+t) , ρ = −


r+ − r

r + r+

 1
2

sinh(c+t) (3.104d)

with c+ = r+. Similarly to before the limit r → ∞ corresponds to ρ2 − τ2 → 1, however,
the limit r → 0 corresponds now to τ2 − ρ2 → 1. In compact coordinates we obtain

ρ + τ = tan


T + X

2


, τ − ρ = tan


T − X

2


, (3.105a)
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Figure 3.8.: Diagram of the non-rotating BTZ black hole. The wiggled line denotes the location of the
singularity.

γABdxAdxB = Ω2(r, t)(dX2 − dT 2) (3.105b)

with

1
Ω2(r, t) = 1

4 cos2
�

T +X
2


cos2

�
T −X

2

 (r + r+)2

r2
+

(3.106)

and T, X ∈ �−π
2 , π

2
�

. The singularity r = 0 is mapped to the lines T = ±π/2, r = ∞ is
mapped to X = ±π/2 yielding the diagram in figure 3.8.

3.4.6. Extremal Case M = |J |
Up until this point, we have assumed that M ̸= |J |, i.e. we have considered the non-
extremal black hole. In the extremal case M = |J | the function F (r) in (3.47) takes the
form

F (r) = (r2 − r2
+)2

r2 . (3.107)

As discussed before, the order of the zeros of F (r) is important for the geometry of
spacetime and its extendability. In the extremal case F (r) has a zero of second order

F (r+) = 0 , F ′(r+) = 0 , (3.108)

implying that it cannot be Kruskal extended through r = r+. We introduce the null
coordinates (in the same way as [35])

u = t + f(r) (3.109)

with f ′(r) = 1
F (r) . This can be solved explicitly to give

f(r) = − r

2(r2 − r2
+) + 1

4r+
log

''''r − r+
r + r+

'''' , (3.110)
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Figure 3.9.: Plot of the function f(r) in case of the extremal BTZ black hole with r− = r+ = 2

where the integration constant has been chosen such that f(r = 0) = 0. The function
f(r) is plotted in Figure 3.9. In Eddington-Finkelstein coordinates the metric (3.47)
takes the form

ds2 = −F (r)du2 + 2dudr + r2(Nφ(r)dt + dφ)2 , (3.111)

where t is an implicit function of u and r . Next we introduce the compact coordinates
T, X

u = tan


T + X

2


, v = −t + f(r) = tan


X − T

2


(3.112)

to obtain

ds2 = F (r)dudv + r2(Nφ(r)dt + dφ)2

= F (r) (dX2 − dT 2)
(cos(T ) + cos(X))2 + r2(Nφ(r)dt + dφ)2 . (3.113)

Expressed in coordinates X, T equation (3.110) becomes

f(r) = − r

2(r2 − r2
+) + 1

4r+
log

''''r − r+
r + r+

'''' = sin(X)
cos(T ) + cos(X) . (3.114)

The horizon r = r+ is at 45 degrees angle. From equation (3.114) we see that at r = ∞
and r = 0 the function f(r) vanishes. However, while r = 0 corresponds to X = (kπ)+,
r = ∞ corresponds to X = (kπ)−. Here, the plus denotes that as r → 0 the function
f(r) tends to zero from above f(r) → 0+ and the coordinate X tends to π from above
X → kπ+. The minus denotes that as r → ∞ the function f(r) tends to 0 from below
f(r) → 0− and the coordinate X tends to π from below X → kπ−. In fact, the region
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Figure 3.10.: Plot of the extremal BTZ black hole with M = |J | and the special case M = |J | = 0. The
wiggled lines denote the location of the singularity.

r > r+ and the region r < r+ correspond to different determinations of the arctangent.
This is apparent from Figure 3.9 where the function f(r) is plotted. The triangles r > r+
and the triangle 0 < r < r+ are glued along r = r+. To achieve a maximal extension one
must glue an infinite sequence of these triangles as is shown in diagram 3.10a.

3.4.7. Special Case M = J = 0
In the special case M = J = 0 the metric is

ds2 = −r2dt2 + 1
r2 dr2 + r2dφ2 . (3.115)

Changing coordinates as
u = t − 1

r
, v = −t − 1

r
(3.116)
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we obtain
ds2 = 4

(u + v)2

�
dudv + dφ2


. (3.117)

Changing to coordinates T, X as

u = tan T + X

2 , v = tan X − T

2 (3.118)

we obtain

ds2 = 1
sin2(X)

�
−dT 2 + dX2 + (cos(T ) + cos(X))2dφ2


= 1

Ω2

�
−dT 2 + dX2 + (cos(T ) + cos(X))2dφ2


(3.119)

The conformal factor Ω2(X) = sin2(X) is smooth and strictly positive and vanishes only at
X = kπ with k ∈ Z. In coordinates T, X the origin r = 0 is located at cos(T )+cos(X) = 0
and r = ∞ corresponds to sin(X) = 0. A constant φ slice thus corresponds to a triangle
bounded by the lines

T = π + X , T = −π − X , X = 0 . (3.120)

Such a constant φ slice is depicted in Figure 3.10b.

3.5. Introducing Degrees of Freedom: An Example
As we have seen at the beginning of this chapter, general relativity in three dimensions is
a topological theory; it has no local degrees of freedom. There are many theories beyond
Einstein gravity – for a review see [43]. We discuss one possibility to introduce degrees of
freedom: topologically massive gravity. The theory was introduced by Deser, Jackiw and
Templeton in 1981 [44]. In subsection 3.5.1 we introduce the theory and discuss general
features. In subsection 3.5.2 we discuss particular solutions to the theory. Subsection
3.5.3 includes parts of my paper [1] and discusses the causal structure of so-called warped
flat spacetimes, the nomenclature of which is explained in subsection 3.5.2.

3.5.1. Topologically Massive Gravity
A simple model of gravity in three dimensions which is not pure Einstein gravity but
propagates one degree of freedom is topologically massive gravity.1 This theory is obtained
by adding a Chern-Simons term to the Einstein-Hilbert action built out of the Christoffel
symbols

S[g] = 1
16πG

�
d3x

√−g(R − 2Λ) + 1
32πGµ

�
d3x

√−gϵλµνΓρ
λσ


∂µΓσ

ρν + 2
3Γσ

µτ Γτ
νρ


.

(3.121)
1It might seem confusing that a theory that possesses local degrees of freedom is called topological; the

“topological” in the name stems from the fact that the modification of the action is a Chern-Simons
term.
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The Chern-Simons term is not invariant under diffeomorphisms, but changes into a total
derivative of a local expression of the metric [43]. Topologically massive gravity has one
propagating massive degree of freedom with mass proportional to µ. Varying the action
with respect to the metric gives the equations of motion

Gµν + Λgµν + 1
µ

Cµν = 0 , (3.122)

where
Cµν = ϵ ρσ

µ ∇ρ(Rσν − 1
4gσνR) (3.123)

is the Cotton tensor with ϵµνρ being the epsilon tensor. The Cotton tensor is symmetric,
traceless and covariantly conserved. Similarly to the Weyl tensor in higher dimensions,
the Cotton tensor vanishes iff the metric is conformally flat.

Any vacuum solution of the Einstein equations of motion

Gµν + Λgµν = 0 (3.124)

also solves (3.122) as can be easily checked: If (3.124) is fulfilled, then (3.123) simplifies
to

Cµν = Λ
2 ϵ ρσ

µ ∇ρgσν = 0 . (3.125)

While any solution to Einstein gravity is a solution of topologically massive gravity, the
gravitational Chern-Simons term allows for new classes of solutions, some of which are
described in the next section.

3.5.2. Warped Spacetimes
In this subsection, we briefly discuss three spacetimes, which are solutions of topologically
massive gravity (but not of Einstein gravity): warped AdS3, warped dS3 and warped flat
space. The latter and quotients thereof were the subject of my publication [1] and will be
discussed in the following subsections. One reason why these spacetimes are interesting
is because of their relation to extremal four-dimensional black holes. A quotient of
warped AdS3 appears in the near-horizon limit of extremal Kerr black holes at fixed
polar angle [15]. A quotient of warped flat space appears as near-horizon geometry at
fixed polar angle of “ultra-cold” extremal Kerr-dS black holes where the inner, outer and
cosmological horizons coincide [45]. The name of warped AdS3, warped dS3 and warped
flat space stems from the fact that these spacetimes can be seen as fibrations over AdS2,
dS2 and R1,1, similarly to the Hopf fibration which describes the fact that S3 may be
understood as a fibration over S2. The suitable mathematical terminology in this context
is (pseudo-)Riemannian submersion. In appendix A it is described in detail how warped
AdS3, warped dS3 and warped flat space may be understood as pseudo-Riemannian
submersions with base manifold AdS2, dS2 and R1,1.

Warped AdS3 is given by the metric

ds2 = 1
ν2 + 3ϵ

�
−dτ2(1 + r2) + dr2

1 + r2 + 4ν2

ν2 + 3ϵ
(du + rdτ)2

�
, (3.126)
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where ϵ = {−1, 0, 1}, µ = 3ν and Λ = −ϵ. Unlike the name seems to suggest, depending
on the value of ϵ it can be supported by a positive, vanishing or negative cosmological
constant. The sign of µ depends on the choice of orientation, which we have chosen
here as ϵτru = −√− det g. The first two terms in the bracket (3.126) describe AdS2. For
Λ = −ϵ = −1 and ν2 = 1 the metric (3.126) reduces to AdS3

ds2 = 1
4

�
dr2

1 + r2 + du2 + 2rdudτ − dτ2
�

, (3.127)

albeit in an unusual coordinate system. Changing coordinates as r = sinh σ, equation
(3.127) becomes

ds2 = 1
4

�
−dτ2 + du2 + dσ2 + 2 sinh σdudτ


= 1

4
�
− cosh2 udτ2 + du2 + (dσ + sinh udτ)


. (3.128)

When considering AdS3 as a hyperboloid embedded into R2,2

ds2 = −du2 − dv2 + dx2 + dy2 , −u2 − v2 + x2 + y2 = −1 (3.129)

the coordinate transformation that relates (3.129) to (3.128) is given by [46]

v = cosh


σ

2


sin


τ

2


cosh


u

2


− sinh


σ

2


cos


τ

2


sinh


u

2


, (3.130a)

u = sinh


σ

2


sin


τ

2


sinh


u

2


+ cosh


σ

2


cos


τ

2


cosh


u

2


, (3.130b)

x = cosh


σ

2


cos


τ

2


sinh


u

2


− sinh


σ

2


sin


τ

2


cosh


u

2


, (3.130c)

y = sinh


σ

2


cos


τ

2


cosh


u

2


+ cosh


σ

2


sin


τ

2


sinh


u

2


. (3.130d)

Warped dS3 on the contrary can only be supported by a positive cosmological constant
and is given by the metric [47]

ds2 = 1
3 − ν2

�
−

�
1 − r2


dτ2 + dr2

1 − r2 + 4ν2

3 − ν2 (du + rdτ)2
�

. (3.131)

Another difference with warped AdS3 is that there is no value of ν for which the metric
(3.131) reduces to de Sitter space. The first two terms in (3.131) describe two-dimensional
de Sitter space. The metric (3.131) solves the equations of motion of topologically massive
gravity for µ = 3ν and Λ = 1. Here, the orientation has been chosen as ϵτru = −√− det g.

3.5.3. Warped Flat Space
The following subsections are taken
from [1] with minor modifications
(co-authored with Stéphane Detour-
nay, Wout Merbis and Gim Seng
Ng)
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We consider the following three-dimensional spacetime [22,47]

ds2 = dx2 − dτ2 + 12(dy + xdτ)2 , (3.132)

which solves the equations of motion of topologically massive gravity at Λ = 1 and
µ = 3

√
3. Here, the orientation has been chosen as ϵτxy = −√− det g. As already

discussed above, the name warped flat space stems from the fact that this spacetime is a
fibration over two-dimensional flat space R1,1, but the cosmological constant is positive
for this spacetime.

One can now obtain warped flat space as a limit of global warped AdS3 or warped dS3
(both with positive cosmological constant) by taking the limit ν2 → 3 in an adequate way.
Taking the warped AdS3 metric (3.126) with positive cosmological constant, sending
r → √

ν2 − 3x, τ → √
ν2 − 3τ, u → (ν2 − 3)y and then taking the ν2 → 3 we obtain

warped flat space. Alternatively, for ν2 < 3 we start with warped dS3 (3.131) and repeat
the same limit but replace (ν2 − 3) with (3 − ν2) in the transformations to obtain (3.132).

The metric (3.132) has constant curvature scalars R = 6, RµνRµν = 108. The Cotton
tensor

Cµνdxµdxν = 12
√

3
��

24x2 + 1

dτ2 + 48xdτdy − dx2 + 24dy2



. (3.133)

yields CµνCµν = 2592. In computing the Cotton tensor we have chosen the following
orientation of the epsilon tensor ϵτxy = 1/(

√−detg) and this is the convention that we
stick with in the following.

The inverse metric in coordinates (τ, x, y) reads

gµν =

 −1 0 x
0 1 0
x 0 1

12
�
1 − 12x2�

. (3.134)

From (3.134) it can be seen that the normal vector to constant τ surfaces is always
timelike while the one to constant x surfaces is spacelike. However, for constant y surfaces,
12nµnµ = 1 − 12x2; so it is a spacelike surface for |x| > 1/

√
12, while for |x| < 1/

√
12 it

is a timelike surface. The x = ±1/
√

12 surfaces are null surfaces.
The isometries are generated by the four Killing vectors

I0 = −2∂y , (3.135a)
a± = ∂τ ∓ ∂x ± τ∂y , (3.135b)

H = −τ∂x − x∂τ + 1
2

�
x2 + τ2


∂y , (3.135c)

satisfying the following algebra:

[a+, a−] = I0, [H, a±] = ∓a± , (3.136)
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where I0 commutes with all other generators. The algebra is precisely the one of the
Hamiltonian, annihilation and creation operator of a harmonic oscillator in quantum
mechanics, where I0 is a c-number. The algebra (3.136) is known under the name P c

2 , as it
is the 2-dimensional centrally extended Poincaré algebra. We may bring the commutation
relations into a well-known form through the following change of basis

√
2a+ = P1 + P0,√

2a− = P1 − P0 leading to

[P0, P1] = I0, [H, P1] = −P0, [H, P0] = −P1 . (3.137)

Here, H denotes the boost, P0 and P1 are the 2-dimensional translations and I0 denotes
the central extension.

We see that some of these isometries have a natural geometric interpretation. For I0
and a+ + a− = 2∂τ , the finite coordinate transformations are translations in y and τ .
For −1

2(a+ − a−) = −τ∂y + ∂x, we have the simultaneous transformation

x′ = x + C , y′ = y − Cτ , τ ′ = τ . (3.138)

Here, C is an arbitrary constant. Finally the finite transformation generated by H is the
most complicated one:

τ ′ = τ cosh C − x sinh C ,

x′ = −τ sinh C + x cosh C , (3.139)

y′ = y + 1
2 sinh(C)

�
cosh(C)

�
τ2 + x2


− 2τx sinh(C)



.

We see that the τ ′ and x′ transformations are simply a boost transformation, while the
y′ transformation is non-trivial.

3.5.4. Quotienting Warped Flat Space
Following [22], we start with the warped flat spacetime (3.132) and consider the region
x2 − τ2 > 0, x > 0. We perform the coordinate transformation

x =
!

ρ

6ξ
cosh (12ξφ) ,

τ =
!

ρ

6ξ
sinh (12ξφ) , (3.140)

y = u + (ξ + ω)φ − ρ

24ξ
sinh (24ξφ) ,
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where ξ and ω are two real constants and ρ/ξ > 0. We obtain

ds2 = dρ2

24ξρ
+ 12du2 + 24(ρ + ω + ξ)dφdu + 12

�
(ρ + ω)2 + ξ(ξ + 2ω)



dφ2

= dρ2

24ξρ
− 24ξρdφ2 + 12[du + (ρ + ξ + ω)dφ]2 , (3.141)

which upon identification of (u, ρ, φ) ∼ (u, ρ, φ + 2π) gives the warped flat quotient. This
amounts to perform discrete identifications in the global warped flat geometry (3.132)
along orbits of the Killing vector

∂φ = −12ξH − ξ + ω

2 I0. (3.142)

In equation (3.141) the coordinate u runs from −∞ to ∞. Depending on the sign of
ξ, ρ runs from −∞ to 0 or from 0 to ∞. If we send ρ → −ρ, ξ → −ξ, ω → −ω and
φ → −φ the metric, the identifications, and the orientation stay the same. Thus, (ξ, ω)
and (−ξ, −ω) describe spacetimes which are isometric with the same orientation. Hence,
in the following, we restrict to ξ > 0 without loss of generality.

The inverse metric (in (u, ρ, φ) coordinates) reads

gµν =

 − (ρ+ω)2+ξ(ξ+2ω)
24ξρ 0 ρ+ξ+ω

24ξρ

24ξρ 0
− 1

24ξρ

. (3.143)

The global Killing vectors H and I0, as well as the local Killing vectors a± are given by

H = 1
12ξ

((ξ + ω)∂u − ∂φ), I0 = −2∂u, (3.144a)

a± = e±12ξφ

2
√

6ξρ
[∂φ + (ρ − ξ − ω)∂u ∓ 24ξρ∂ρ] (3.144b)

and satisfy (3.136).
The inverse transformation of (3.140) reads

ρ(x, τ) = 6ξ(x2 − τ2) ,

u(τ, x, y) = y + 1
4

�
x2 − τ2


sinh


2arctanh


τ

x


− (ξ + ω)arctanh

�
τ
x

�
12ξ

, (3.145)

φ(τ, x) =
arctanh

�
τ
x

�
12ξ

.

For the parameter range ω ≤ −ξ/2 the metric component gφφ becomes negative and
closed timelike curves occur in the region ρ > 0 between ρ1 = −ω −  −ξ(ξ + 2ω) and
ρ2 = −ω +

 −ξ(ξ + 2ω). In the following we differentiate between two cases of interest:
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1. For ω > −ξ/2: no closed timelike curves appear

2. For ω ≤ −ξ/2: closed timelike curves appear in the region −ω −  −ξ(ξ + 2ω) <
ρ < −ω +

 −ξ(ξ + 2ω)

In the case ξ + ω = 0, closed timelike curves start to occur at ρ = 0, which is why we
often restrict to ξ + ω > 0 in the following. The surface ρ = 0 is a Killing horizon of the
following Killing vector

Kµ∂µ = ∂u − 1
ξ + ω

∂φ (3.146)

if ξ + ω ̸= 0. For ξ + ω = 0 the Killing horizon is generated by the Killing vector ∂φ.

3.5.5. Causal Structures
In this section, we discuss the causal structure of warped flat space (3.132) and the warped
flat quotient (3.141), using methods developed in [24]. These methods are discussed in
detail in section 2.2 and have also been applied in section 3.4 where we discussed the
causal structure of the BTZ black hole.

Warped Flat Space

First, we consider warped flat space (3.132). The map π from the definition of the
projection diagram is given by the projection (τ, x, y) �→ (τ, x). This is the same map
used in appendix A to explain the name warped flat space. The auxiliary metric

γµνdxµdxν := dx2 − dτ2 , (3.147)

is two-dimensional Minkowski space R1,1, whose conformal compactification and confor-
mal boundaries are well-known.

We want to answer the question of whether the geometry (3.132) possesses a non-zero
black hole region. Our notion of future asymptotic infinity I + of (3.147) is defined with
respect to the conformal boundary of the two-dimensional metric. The two-dimensional
spacetime (3.147) obviously does not have a black hole region.

We now show that also the three-dimensional spacetime does not have a black hole
region. This can be seen explicitly by considering the family of null curves (τ(s), x(s)) =
(τ0 + s, x0 + s) going from each point in spacetime all the way to I +. These curves can
be lifted to null curves in the three-dimensional spacetime going through every point:
(τ(s), x(s), y(s)) = (τ0 + s, x0 + s, y0 − x0s + s2

2 ). Therefore, there is no black hole region
in the three-dimensional spacetime.a

Warped Flat Quotient

Next, we consider the warped flat quotient. Here we distinguish between two cases, the
case where closed timelike curves are present and the case without closed timelike curves.

aI thank Piotr Chruściel for pointing this out to me.
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I +

I −

II

III

IIV

T

X

Figure 3.11.: Here, we depict the split of the spacetime into the four sectors in the compact coordinates
T and X, which are introduced below. Each coordinate patch u, ρ, φ covers one such
sector. The dashed lines denote the location of the Killing horizon. They intersect at the
point T = X = 0.

As the coordinate system (u, ρ, φ) used in the previous section cannot be extended beyond
ρ = 0, we work with the coordinates (τ, x, y) which are everywhere well-defined. We split
our spacetime into four sectors:

I x2 − τ2 > 0, τ − x < 0

II x2 − τ2 < 0, τ − x > 0

III x2 − τ2 < 0, τ − x < 0

IV x2 − τ2 > 0, τ − x > 0

This split is depicted in Figure 3.11. The coordinate transformation in sector I has
already been discussed in the previous section (see equation (3.140)). In the sectors II,
III, IV we introduce new coordinates u, ρ and φ as follows

II : x =
!

− ρ

6ξ
sinh(12ξφ), (3.148a)

τ =
!

− ρ

6ξ
cosh(12ξφ), (3.148b)

y = ρ sinh(24ξφ)
24ξ

+ φ(ξ + ω) + u , (3.148c)
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III : x = −
!

− ρ

6ξ
sinh(12ξφ), (3.148d)

τ = −
!

− ρ

6ξ
cosh(12ξφ), (3.148e)

y = ρ sinh(24ξφ)
24ξ

+ φ(ξ + ω) + u , (3.148f)

IV : x = −
!

ρ

6ξ
cosh(12ξφ), (3.148g)

τ = −
!

ρ

6ξ
sinh(12ξφ), (3.148h)

y = −ρ sinh(24ξφ)
24ξ

+ φ(ξ + ω) + u . (3.148i)

This leads to the metric (3.141) in each sector, which upon identification of (u, ρ, φ) ∼
(u, ρ, φ + 2π) gives the warped flat quotient. Here, u runs from −∞ to ∞. Depending on
the sector ρ runs from −∞ to 0 or from 0 to ∞. The inverse transformation of (3.148)
reads

ρ = 6ξ(x2 − τ2) , (3.149a)

x2 − τ2 < 0 : u = y − 1
4

�
x2 − τ2


sinh


2arctanh


x

τ


− (ξ + ω)arctanh

�
x
τ

�
12ξ

, (3.149b)

φ =
arctanh

�
x
τ

�
12ξ

, (3.149c)

x2 − τ2 > 0 : u = y + 1
4

�
x2 − τ2


sinh


2arctanh


τ

x


− (ξ + ω)arctanh

�
τ
x

�
12ξ

, (3.149d)

φ =
arctanh

�
τ
x

�
12ξ

. (3.149e)

The starting point of the construction is to write the metric (3.141) in the following
form:

gµνdxµdxν = − 24ξρ

ξ2 + 2ξω + (ρ + ω)2 du2 + dρ2

24ξρ

+ 12
�
(ρ + ω)2 + 2ξω + ξ2


dφ + ρ + ξ + ω

ξ2 + 2ξω + (ρ + ω)2 du

2
. (3.150)

We see that the last term is positive everywhere, except for in the region where closed
timelike curves are present (compare with (3.141)). We discuss the case without closed
timelike curves first for which the last term is manifestly positive. We project in such a
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way that the auxiliary metric γµν reads

γµνdxµdxν := − 24ξρ

ξ2 + 2ξω + (ρ + ω)2 du2 + dρ2

24ξρ
. (3.151)

Then we perform the following coordinate transformation in each of the four sectors

I : V = ecf(ρ)−cu, U = −ecf(ρ)+cu , (3.152a)
II : V = ecf(ρ)−cu, U = ecf(ρ)+cu , (3.152b)
III : V = −ecf(ρ)−cu, U = −ecf(ρ)+cu , (3.152c)
IV : V = −ecf(ρ)−cu, U = ecf(ρ)+cu , (3.152d)

where c = 12ξ
ξ+ω and f(ρ) is the solution to the differential equation

f ′(ρ) =
 

ξ2 + 2ξω + (ρ + ω)2

24ξρ
. (3.153)

The solution satisfies that f(ρ = ±∞) = ∞ and f(ρ = 0) = −∞. The coordinates V, U
both run from (−∞, ∞). We introduce two more coordinates

V = tan


X + T

2


, U = tan


T − X

2


, (3.154)

so that (T − X)/2 ∈ (−π/2, π/2) and (T + X)/2 ∈ (−π/2, π/2). Now we can rewrite
γµν as

γµνdxµdxν = − sgn(ρ) e−2cf(ρ)ρ(ξ + ω)2

6ξ(ξ2 + 2ξω + (ρ + ω)2) dU dV

= 1
Ω2 (− dT 2 + dX2) . (3.155)

The projection π is then defined as the map (τ, x, y) → (X(τ, x, y), T (τ, x, y)). The map
is differentiable everywhere. The conformal factor reads

Ω2 = 4 sgn(ρ)6ξe2cf(ρ)(ξ2 + 2ξω + (ρ + ω)2)
ρ(ξ + ω)2

1
(1 + U2(ρ, u))(1 + V 2(ρ, u)) . (3.156)

The conformal factor goes to 0 as ρ, u go to ± infinity, is regular at ρ = 0 and is positive
everywhere. The projection diagram of the warped flat quotient in the case where no
closed timelike curves occur looks like the one of two-dimensional Minkowski space
and is depicted in Figure 3.12. The above derivation is valid for the case where no
closed timelike curves appear. In the case where closed timelike curves appear, the
construction is valid everywhere except for in the region −ω −  −ξ(ξ + 2ω) < ρ <
−ω +

 −ξ(ξ + 2ω) which must be excised from the diagram. We thus cut off our
spacetime at ρ = −ω −  −ξ(ξ + 2ω).
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I +

I −

ρ < 0

ρ > 0

Figure 3.12.: Projection diagram of the warped flat quotient in the case where no closed timelike curves
are present (ω > −ξ/2). The upper and lower sectors correspond to ρ < 0, while the left
and right sectors correspond to ρ > 0. The dashed lines that divide these sectors are the
ρ = 0 lines. The four vertices correspond to ρ → ±∞, u = const.

The resulting diagram is depicted in Figure 3.13. This projection diagram looks like the
Penrose diagram of flat space cosmologies [48].

We now want to answer the question of whether the geometry (3.141) possesses a
non-zero black hole region. As before, our notion of future null infinity I + is defined
with respect to the conformal boundary of the two-dimensional auxiliary metric. The
two-dimensional spacetime (3.151) does not have a black hole region. To show that the
three-dimensional geometry does not possess a black hole region either we proceed as
follows. In each sector we consider null curves in the two-dimensional geometry (3.151).
These curves (u(ρ), ρ) are solutions to the differential equation

∂u(ρ)
∂ρ

2
=

�
ξ2 + 2ξω + (ρ + ω)2

(24ξρ)2

�
, (3.157)

and may be lifted to null curves (u(ρ), ρ, φ(ρ)) in the three-dimensional geometry provided

∂φ(ρ)
∂ρ

= − ρ + ξ + ω

ξ2 + 2ξω + (ρ + ω)2
∂u(ρ)

∂ρ
. (3.158)

The differential equations can be solved to give two curves emanating from every point in
spacetime, except at ρ = 0, where the coordinate system breaks down. Considering the
curves in the global coordinate system (τ, x, y) (see (3.140) and (3.148)), we find that the
coordinates (τ(ρ), x(ρ), y(ρ)) are finite and continuous for any ρ if one patches the curves
in the sectors I, II, III, IV together appropriately. As there exist such null curves going
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I +

I −

I +

I −

Figure 3.13.: Projection diagram of the warped flat quotient in the case where closed timelike curves
are present ω ≤ −ξ/2. The closed timelike curves appear in the shaded region in the
left picture: −ω −

 
−ξ(ξ + 2ω) < ρ < −ω +

 
−ξ(ξ + 2ω). In the right picture we have

cut off the spacetime at the place where the closed timelike curves appear. The vertical,
wiggly line is the singularity. The right figure looks the same as the causal diagram of flat
space cosmologies [48].

through every point this shows there is no black hole region in our three-dimensional
spacetime.

Warped Flat Quotient: ξ + ω = 0

The causal analysis in the previous section holds true for all ξ, ω except for the case
ξ + ω = 0. Reconsidering (3.152) for ξ + ω = 0 we see that c = 12ξ

ξ+ω diverges if ξ + ω = 0.
The case ξ + ω = 0 is special because – as already briefly mentioned at the end of section
2.2 – for this case closed timelike curves appear between the horizon ρ = 0 and ρ = 2ξ.
As causality is not represented in any useful way in this region, we must excise it from
the diagram. We thus cut off our spacetime at ρ = 0. The metric (3.141) for ξ + ω = 0
reads

ds2 = dρ2

24ξρ
+ 24ξ

2ξ − ρ
du2 − 12ρ(du + (ρ − 2ξ)dφ)2

2ξ − ρ
(3.159)

Performing the coordinate transformation ρ = −6r2ξ we obtain

ds2 = −dr2 + 12du2

1 + 3r2 + 36r2

1 + 3r2

�
du −

�
2ξ + 6r2ξ


dφ

2
. (3.160)

Here, the last term is positive. We project in such a way that the auxiliary metric γµν

reads
γµνdxµdxν = −dr2 + 12du2

1 + 3r2 . (3.161)
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ρ = r = 0

Figure 3.14.: Projection diagram of the warped flat quotient in the case where ξ + ω = 0. Due to the
occurence of closed timelike curves the spacetime is cut off at ρ = r = 0, resulting in a
singularity (wiggled line).

Here, r runs from (0, ∞) and u ∈ (−∞, ∞). Performing the subsequent coordinate
transformations

V = arctan(x + u) , U = arctan(u − x) , (3.162)

with
x =

� √
1 + 3r2
√

12
dr (3.163)

and V = T + X, U = T − X we obtain

γµνdxµdxν = 1
Ω2

�
−dX2 + dT 2


(3.164)

with
Ω2 = (1 + 3r2)

12(1 + (u − x(r))2)(1 + (u + x(r))2)
. (3.165)

As x ∈ (0, ∞) it follows that V ≥ U which in turn implies X ≥ 0. This leads to the
projection diagram 3.14 for the ξ + ω = 0 warped flat quotient. The conformal factor Ω2

goes to 0 for r → ∞ or u → ±∞ and is regular at r = 0. In analogy to the other cases it
can be shown that the three-dimensional ξ + ω = 0 warped flat quotient is not a black
hole.

3.6. Black Hole Entropy and Microstate Counting

In subsection 3.4 we have discussed the geometry of BTZ black holes and found that they
share several features with (3 + 1)-dimensional Kerr black holes: The non-extremal BTZ
black hole has two Killing horizons, the outer Killing horizon is an event horizon. While
it does not have a curvature singularity, it can be shown that upon the introduction
of matter the causal singularity becomes a curvature singularity [35]. Importantly, not
only the classical features of the BTZ black hole are similar to the classical features of
the Kerr black hole, but the similarities also continue on the quantum level. Indeed,
the BTZ black hole exhibits non-trivial thermodynamics. It Hawking evaporates at the
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temperature

TH = r2
+ − r2−
2πr+

(3.166)

and it has a Bekenstein-Hawking entropy

S = A

4G
= 2πr+

4G
, (3.167)

where A denotes the horizon area. Understanding the quantum origin of the Bekenstein-
Hawking entropy is one of the main quests in theoretical high-energy physics nowadays.
The hope is that this quest will not only give information about the microscopic structure
of black holes but also provide novel information about quantum gravity.

Vafa and Strominger [12] were the first ones to derive the entropy of certain black
holes in string theory through a microscopic derivation. Shortly after, Strominger [13]
provided a microscopic derivation of black hole entropy for the BTZ black hole, which
was in the same spirit as his earlier work with Vafa. The idea was to give a microscopic
counting of black hole microstates in a similar manner as we know it from statistical
mechanics.

Strominger’s work is based on the observation made by Brown and Henneaux that
the asymptotic symmetry algebra of asymptotically AdS3 spacetimes is given by two
copies of the Virasoro algebra. He asserted that if a theory of quantum gravity exists on
asymptotically AdS3 spacetimes, it must be a conformal field theory and then the physical
states of quantum gravity must fall into representations of the Virasoro algebra.

More specifically, he used the idea of holography, which – in this context – conjectures
that quantum gravity on asymptotically AdS3 spacetimes is dual to a two-dimensional
conformal field theory (AdS3/CFT2 correspondence) with symmetry algebra

[L̂±
n , L̂±

m] = (n − m)L̂±
n+m + c±

12 (n3 − n)δn+m,0 , (3.168a)

[L̂±
n , L̂∓

m] = 0 , (3.168b)

and central charge given by

c+ = c− = 3ℓ

2G
≡ c , (3.169)

where ℓ is the AdS3 radius which we only restore for the purpose of this subsection,
but which is otherwise set to 1. The essence of Strominger’s paper was to apply
Cardy’s formula for the asymptotic growth of states in a two-dimensional conformal field
theory [49] to derive the entropy of the three-dimensional BTZ black hole. The derivation
of the Cardy formula is performed in the Euclidean and the underlying manifold on
which the conformal field theory is defined is a torus. Now, provided that the conformal
field theory is modular invariant and the energy spectrum is bounded from below and
possesses a gapped ground state, it is possible to derive an entropy expression from the
partition function in the conformal field theory in the large temperature limit. The
entropy expression, intrinsic to two-dimensional conformal field theories on the torus, is
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given by

SCF T = 2π

�
c+ ⟨L̂+

0 ⟩
6 + 2π

�
c− ⟨L̂−

0 ⟩
6 , (3.170)

where c+, c− are the central charges in the two-dimensional conformal field theory and
⟨L̂±

0 ⟩ are the expectation values of the operators L̂±
0 in the two-dimensional conformal

field theory, which fulfill the commutation relations (3.168). The entropy expression
(3.170) is obtained by counting states in a two-dimensional conformal field theory.

Now, employing the AdS3/CFT2 correspondence, the entropy (3.170) should be related
to an entropy expression in three-dimensional quantum gravity. To make use of the results
for energy derived in subsection 3.3, equation (3.26), and the entropy result (3.167), we
must work in the semi-classical regime where the cosmological constant is small in Planck
units, or equivalently

ℓ ≫ G . (3.171)

From (3.169) we obtain
c ≫ 1 . (3.172)

Expressing the entropy of the black hole in terms of the classical charges L+
0 and L−

0
which are related to the mass m and the angular momentum j as (3.26) the black hole
entropy reads

SBH = 2π

�
c+L+

0
6 + 2π

�
c−L−

0
6 , (3.173)

where c± are given by (3.169). Identifying the classical charges with the expectation
values of the operators L̂±

0 , the expression (3.173) precisely coincides with (3.170):

SBH = SCF T . (3.174)

Therefore, the entropy of the three-dimensional BTZ black hole can be reproduced from a
counting in a two-dimensional conformal field theory. The fact that not just the functional
form of the entropy, but also the prefactors precisely match is evidence in favor of the
AdS/CFT correspondence.

Some further comments are in order: Due to the fact that the energy in the conformal
field theory E = ⟨L̂+

0 ⟩ + ⟨L̂−
0 ⟩ has to be bounded from below for the Cardy formula to

apply, the same has to hold true for asymptotically AdS3 spacetimes. Boundedness of the
energy for asymptotically AdS3 spacetimes and a gap in the energy spectrum is needed
for the derivation of the Cardy formula. It is clear from the discussion in subsections
3.3.1 that there does not exist a “literal gap” in the energy of solutions to the Einstein
equations. By this, we mean that for any value of the energy there exist vacuum solutions
to the Einstein equations for negative cosmological constant. However, at least when
considering only vacuum solutions to the Einstein equations with constant L+ and L−
one can argue for the existence of such a gap. When restricting to this particular subset
of vacuum solutions which are asymptotically AdS3, one observes that the BTZ black
holes are separated from AdS3 by solutions with conical singularities. These are excluded
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from the phase space in Strominger’s derivation. The value of the gap is given by the
energy of AdS3

∆gap = mAdS3 = − 1
8G

. (3.175)

The energy is bounded from below, if one restricts the phase space to smooth vacuum
solutions with constant L+ and L− without closed timelike curves and conical singularities.
This fact is visualized in Figure 3.3. At the time of this writing, it is unclear to me
whether one can still argue for this gap and boundedness of the energy by considering
asymptotically AdS3 spacetimes in the presence of matter satisfying some energy condition
such as the dominant energy condition. Progress regarding the positivity of energy in
asymptotically AdS3 spacetimes has been made in the paper [50] by studying coadjoint
orbits of the Virasoro group. While positive energy theorems for negatively curved
spacetimes exist in higher dimensions and are a subject of active research in mathematical
general relativity, we do not know of results pertaining to (2 + 1) dimensions (aside
from [50]). This is a question that I would like to return to in the near future.

Lastly, we discuss microstate countings that go beyond the derivation by Strominger [13].
This derivation has been the basis of many microstate countings and it is believed by
many in the community that such a microstate counting should be possible for generic
black holes. Again, the underlying assumption of most of these constructions is that the
theory of quantum gravity exists and is of holographic nature - i.e. that quantum gravity
in d dimensions is dual to a quantum field theory in (d − 1) dimensions.

Many of the microstate countings available in literature can not be seen as completely
independent derivations of (black hole) entropy, as they are often based on extremal
or near-extremal black holes, whose near horizon region includes an AdS3 or AdS2
factor. Notable exceptions include e.g. [17,18] where the entropy of three-dimensional flat
space cosmologies was calculated by performing a microstate counting in another two-
dimensional quantum field theory with infinitely many symmetries – a BMS3 field theory.
Another notable exception discusses asymptotically Lifshitz black holes whose entropy
can be derived from a field theory with anisotropic scaling in two dimensions [19, 51].

In the paper [1], our goal was to reproduce the entropy of the warped flat quotients
(3.141) which we discussed in section 3.5. The spacetimes (3.141) have a Killing horizon
at ρ = 0 which was claimed to be a black hole horizon in [22]. The reason we originally
got interested in this two-parameter family of solutions to topologically massive gravity
was that we thought that they describe black hole spacetimes with curious isometries.
As discussed in subsection 3.5.5, there does not exist a value of ξ and ω for which the
spacetime has an event horizon. However, the causal diagram of warped flat quotients
in the regime where ω ≤ −ξ/2 shares similarities to the one of flat space cosmologies,
which suggests that the horizon is of cosmological nature, see Figure 3.13.

In [1] we derived the entropy of these warped flat quotients using a microstate counting
in yet another two-dimensional field theory that possesses infinitely many symmetries –
a so-called warped conformal field theory.

The structure of warped conformal field theories (WCFTs) was first investigated by
Hofman and Strominger [52]. Generalizing the arguments by Zamolodchikov [53] and
Polchinski [54], Hofman and Strominger considered a two-dimensional unitary quantum
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field theory without Lorentz symmetry, which is invariant under chiral global scaling
symmetry and translations

x− → x− + a , x+ → x+ + b , x− → λ−x− . (3.176)

They found that these quantum field theories must have an extended local algebra. The
two minimal options for this algebra are either two copies of the Virasoro algebra or a
semi-direct sum of a Virasoro algebra and a u(1) Kac-Moody algebra. We call the latter
case a warped conformal field theory. The symmetry algebra of a warped conformal field
theory is given by

[Lm, Ln] = (m − n)Lm+n + c

12(m3 − m)δn+m,0

[Lm, Pn] = −nPm+n + κ(m2 + m)δm+n,0 (3.177)
[Pm, Pn] = Knδn+m,0 ,

where n, m run over all integers and c, κ and K denote central terms of the algebra. First
examples for putative holographic warped conformal field theories were given in [16,55].
In a similar manner as in the case of two-dimensional conformal field theories, it is
possible to derive an intrinsic entropy expression for warped conformal field theories [16].

By studying the asymptotic symmetries of warped flat spacetimes we found that their
algebra is given by a semi-direct sum of a Virasoro algebra and a u(1) Kac-Moody algebra
– the symmetry algebra of a warped conformal field theory. This gives the link between
the gravitational setup and the warped conformal field theory. Provided that certain
assumptions regarding boundedness of the spectrum and the vacuum state are fulfilled, for
details see [1,16], it is possible to argue that the calculation within the warped conformal
field theory can be applied to the gravitational setup. In our paper, we give arguments
in favor of these assumptions. The gravitational entropy then precisely coincides with
the entropy expression in warped conformal field theories, thereby providing evidence
in favor of a holographic description of spacetime – independently of the value of the
cosmological constant and the theory of gravity one is considering.
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Cosmological Constant

The question of the positivity of energy of the gravitational field has played a key role
in many investigations in mathematical general relativity [56]. So far these questions
have predominantly been considered (and answered) in the context of asymptotically
locally flat spacetimes where the metric (locally) approaches the Minkowski metric at
large distances. When the cosmological constant is negative, which corresponds to
asymptotically locally AdS spacetimes, much fewer results are known and only a few
bounds exist. For time-symmetric initial data sets, this becomes the question of whether
the energy of asymptotically locally hyperbolic spaces is bounded from below. In this
chapter, the contents of my work (co-authored with Piotr Chruściel and Erwann Delay) [2]
and its relation to positive energy theorems for asymptotically locally hyperbolic spaces is
discussed. In section 4.1, we introduce two classes of spacetimes that will be of importance
in this chapter: the Birmingham–Kottler spacetimes and the Horowitz–Myers spacetimes.
In section 4.2, we give a short overview of positive mass theorems for general relativity
with negative cosmological constant and discuss the Horowitz–Myers conjecture. Sections
4.3-4.8 are concerned with the paper and are taken with only minimal modifications
from [2].

4.1. Solutions of Interest

In this section, we introduce two static vacuum solutions of Einstein gravity with negative
cosmological constant in (n + 1) spacetime dimensions, which will be of relevance in the
following. The space dimension n is always assumed to be greater or equal to two. In
this chapter, we will use g̃ for the line element of Lorentzian spacetime metrics and g for
the line element of Riemannian metrics. We also recall our conventions summarized at
the beginning of this thesis, in chapter 0: Greek letters (µ, ν, σ, ...) are used as spacetime
indices and run from 1 to n + 1, small Latin letters (a, b, c, ..., i, j, k, ...) are used for
spatial indices and run from 1, ...n. Big Latin letters from the beginning of the alphabet
(A, B, C, ...) run from 1, ...n−1. Big Latin letters from the middle of the alphabet (I, J, ...)
run from 1, ...n − 2.

4.1.1. Birmingham–Kottler metrics

The Birmingham–Kottler metrics [57, 58] are solutions to the vacuum Einstein equations
with negative cosmological constant in (n + 1) spacetime dimensions. Their line element
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is given by
g̃ = −fdt2 + f−1dr2 + r2hk , f = r2 + k − 2mc

rn−2 , (4.1)

where mc is a constant which we refer to as the coordinate mass parameter, and where
hk is an Einstein metric1 on an (n − 1)-dimensional compact manifold Nn−1 with scalar
curvature equal to

R(hk) = k(n − 1)(n − 2) , k ∈ {0, ±1} . (4.2)

The collection of (Nn−1, hk)’s is quite rich — there exist many Einstein metrics on
higher-dimensional spheres, including exotic ones [59]. The spacetime (4.1) is also often
referred to as Schwarzschild–AdS or Schwarzschild–Tangherlini–AdS when the boundary
manifold (Nn−1, hk) is the round sphere.

In space dimension n = 2, the constant k can be absorbed via a redefinition of mc.
The resulting spacetime reads

g̃ = −
�
r2 − 2mc


dt2 + dr2

r2 − 2mc
+ r2dφ2 . (4.3)

For mc > 0 the metric (4.3) describes a non-rotating BTZ black hole. The geometry of
(4.3) has been discussed in detail in section 3.4 and subsection 3.3.1.

In 3+1 spacetime dimensions, which will be the main case of interest in the following, the
boundary manifold (Nn−1, hk) is two–dimensional and thus the Poincaré uniformization
theorem applies. The Poincaré uniformization theorem, compare e.g. [60, Proposition 8.1],
asserts that any compact, orientable Riemannian 2-manifold is conformal to either: the
Riemann sphere, a flat torus or a compact higher-genus surface with constant curvature.
Note that there exist an infinite number of distinct tori with conformal structure, each
parametrized by a distinct complex number (the modular parameter). A similar statement
holds true with regards to higher-genus surfaces with constant curvature metric.

In the following, we focus on space dimension n ≥ 3. The Riemann tensor of the metric
(4.1) reads [57]

R̃trtr = f ′′

2 , R̃tAtB = r

2ff ′hAB , R̃rArB = −r

2
f ′

f
hAB , (4.4)

R̃ABCD = r2RABCD(h) − r2f(hAChBD − hADhBC) . (4.5)

For mc = 0 this reduces to

R̃µνρσ = −(gµρgνσ − gµσgνρ) (4.6)

provided that the metric hk fulfills that

RABCD(h) = k(hAChBD − hADhBC) . (4.7)
1The Ricci tensor is proportional to the metric, with the proportionality factor being a constant.
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The condition (4.7), that (Nn−1, hk) be a constant curvature manifold, is automatically
fulfilled for n − 1 ≤ 3. In generic dimensions n − 1 > 3 Einstein spaces of non-constant
curvature exist. The Kretschmann scalar of g̃

RµνρσRµνρσ = (f ′′)2 + 2(f ′)2(n − 1)
r2 + 2f2

r4 (n − 1)(n − 2) − 4fR(h)
r4

+ RABCD(h)RABCD(h)
r4

= 2n(n + 1) − 2k2(n − 1)(n − 2)
r4 + 4m2

c(n − 2)(n − 1)2n

r2n

+ RABCD(h)RABCD(h)
r4 . (4.8)

generically blows up at r = 0 for space dimension n ≥ 3. If mc = 0 and the boundary
manifold is of constant curvature, then the Kretschmann scalar does not diverge at r = 0.

In the following, we restrict ourselves to n = 3, where the boundary manifold is
two-dimensional and the spacetimes (M, g̃) with mc = 0 are manifolds of constant
curvature.

To discuss the causal structure of g̃, we use projection diagrams, which were introduced
in this thesis in section 2.2. The map π from the definition of the projection diagram is
given by (t, r, φ) �→ (t, r) and maps (M, g̃) to a subset of R1,1 with metric

γ = −fdt2 + f−1dr2 . (4.9)

The causal structure of the spacetime depends upon the zeros of the function f(r) and
the order of the zeros. A systematic study of conformal diagrams for two-dimensional
metrics has been carried out by Walker [61], which was reviewed in [24]. In [61], one
considers separately maximal intervals (“blocks”) on which f is finite and does not change
sign. These intervals define the ranges of r and lead to connected Lorentzian manifolds
on which γ is defined everywhere. The conditions under which such manifolds can be
patched together were discussed in [61]. Following [24, 61], we first bring the metric (4.9)
into a manifestly conformally flat form by choosing a value r∗ such that f(r∗) ̸= 0 and
introduce a new coordinate

x(r) =
� r

r∗

ds

f(s) , (4.10)

which yields
γ = f(−dt2 + dx2) . (4.11)

When x(r) ranges over R on the block, we obtain that γ is conformal to a diamond.
When x(r) is only diverging at one end, we obtain that the metric within the block is
conformal to a triangle. When x(r) is finite at both ends, we obtain a strip. It was shown
that [61] four blocks can be glued together across a boundary where

f(r0) = 0 , f ′(r0) ̸= 0 (4.12)
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r
=

0

r
=

∞

(a) no singularity

r
=

0

r
=

∞

(b) nakedly sing.

r
=

0

r =
0

r
=

0

r
=

∞

r
=

∞

(c) no singularity

Figure 4.1.: Projection diagrams of Birmingham–Kottler metrics when f(r) has no zeros for r > 0.
In all three cases the projection diagram is an infinitely long strip. In Figure 4.1a r = 0
corresponds to an axis of rotation, in Figure 4.1b r = 0 corresponds to a singularity. Figure
4.1c is an infinitely long strip with both sides of the strip corresponding to r = ∞ except
for at the tip of the triangles.

such that the Kruskal extension so obtained is real analytic. As shown in [24], r is a real
analytic function in terms of the Kruskal coordinates and therefore also the spacetime
metric g̃ extends smoothly across r = r0.

If the function f(r) has a higher-order zero at r = r0

f(r0) = 0 , f ′(r0) = 0 , (4.13)

one may only glue together two-blocks, as was shown in [61] by performing an Eddington-
Finkelstein extension. Again, r is a real analytic function in terms of the Eddington-
Finkelstein coordinates and therefore also the spacetime metric g̃ extends smoothly across
r = r0.

k ∈ {0, 1}
For k ∈ {0, 1}, we must differentiate between the cases mc > 0, mc < 0 and mc = 0.

1. mc > 0: The function f(r) aquires a zero of first order at r0 > 0. The function x(r)
diverges at r = r0 and is finite at r = ∞ and r = 0. The blocks 0 < r < r0 and
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r0 < r < ∞ therefore both correspond to triangles. Gluing four blocks together
across r = r0 as described above, we obtain a causal diagram that looks the same
as the causal diagram of the non-rotating BTZ black hole, Figure 3.8. The locus
r = 0 corresponds to a singularity as the Kretschmann scalar of g̃ diverges there.
Thus, in this regime, the metric g̃ describes a black hole.

2. mc = 0: The metric g̃ is locally maximally symmetric and corresponds to global
Anti-de Sitter spacetime (k = 1) or locally Anti-de Sitter spacetime with toroidal
conformal infinity (k = 0). The geometry of constant time slices corresponds to
global hyperbolic space (k = 1) or locally hyperbolic space (k = 0). For k = 1,
the locus r = 0 corresponds to an axis of rotation and the causal diagram of γ is
that of a strip, see Figure 4.1a. For k = 0, the function f(r) has a zero of second
order at r = 0. The function x(r) diverges at r = 0 but stays finite as r tends
to infinity such that the block 0 < r < ∞ corresponds to a triangle. By gluing
triangles together we obtain the diagram of an infinitely long strip with both sides
of the strip being given by r = ∞ except for at the tips of the triangles, see Figure
4.1c.

3. mc < 0: For mc < 0, the function f(r) has no zeros at positive values of r and the
metric g̃ is nakedly singular, as the singularity at r = 0 is not shielded by a horizon.
The function x(r) is finite at both ends such that we obtain an infinitely long strip
as the projection diagram, see Figure 4.1b.

k = −1

For k = −1 we must discriminate between five cases, which are seperated in the parameter
space by the loci mc = ±mcrit

c = ±1/(3
√

3).

1. mc < −mcrit
c : The function f(r) does not possess zeros for positive values of r. The

spacetime is nakedly singular, as the curvature singularity at r = 0 is unshielded.
Since the function x(r) is finite at r = 0 and r = ∞, the projection diagram is
given by an infinitely long strip, see Figure 4.1b.

2. mc = −mcrit
c : The function f(r) aquires a zero of second order at r = r0. The

function f(r) is finite at r = 0 and r = ∞. The block r0 < r < ∞ and the block
0 < r < r0 are therefore both conformal to triangles. The maximal causal extension
is obtained by gluing an infinite sequence of these triangles across their boundaries
r = r0, thereby obtaining a causal diagram which coincides with the one of the
extremal BTZ black hole, Figure 3.10a. The spacetime g̃ describes a non-rotating
black hole.

3. −mcrit
c < mc < 0: The function f(r) has two distinct zeros of first order for r > 0,

r = r+ and r = r−. The function x(r) stays finite at r = 0 and r = ∞. The metric
γ is therefore conformal to a triangle in the region 0 < r < r− and in the region
r+ < r < ∞. In the region r− < r < r+ the metric is conformal to a diamond.
Gluing the patches together through a four block gluing, we obtain a causal diagram
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which looks the same as the one of the rotating, non-extremal BTZ black hole, see
Figure 3.7. The spacetime g̃ describes a non-rotating black hole.

4. mc = 0: The metric is locally AdS spacetime and the geometry of constant time
slices is locally hyperbolic space. The function f(r) has a first order zero at r0 = 1.
The locus r = 0 is regular and corresponds to an axis of rotation. The function
x(r) is finite at r = 0 and r = ∞. The blocks 0 < r < r0 and r0 < r < ∞ therefore
both corresponds to triangles. We obtain a diagram which looks similar to the
non-extremal, non-rotating BTZ black hole (compare with Figure 3.8), only that in
this case r = 0 corresponds to a center of (local) rotational symmetry.

5. mc > 0: The function f(r) has a first order zero at r = r0 > 0, x(∞) and x(0) are
both finite. The case is analogous to the previous case mc = 0 with the difference
that r = 0 now corresponds to a curvature singularity. The metric describes a black
hole spacetime with causal diagram given by Figure 3.8.

4.1.2. Horowitz–Myers metrics
The Horowitz–Myers metrics [20] are vacuum solutions to general relativity with negative
cosmological constant. The spacetime manifolds underlying the Horowitz–Myers metrics
have topology R × R2 × Tn−2, where Tn−2 denotes a (n − 2)-dimensional torus. The
conformal boundary at infinity is diffeomorphic to R × S1 × Tn−2 = R × Tn−1.

In n + 1 dimensions the Horowitz–Myers metrics read

g̃ = −r2dt2 + dr2

f(r) + f(r)dψ2 + r2hIJdθIdθJ (4.14)

with
f(r) = r2 − 2mc

rn−2 (4.15)

and where hIJdθIθJ , I, J ∈ {1, . . . n − 2} is a flat metric on Tn−2. In the following, we
will be interested in the case mc > 0, for which the function F (r) has zeros located at

rn
0 = 2mc , (4.16)

which corresponds to an axis of rotation. To guarantee smoothness at r = r0 the period
of the coordinate ψ has to be chosen appropriately. When mc > 0, the coordinate ψ is
redefined as

ψ = 2
f ′(r0)ϕ = λ−1ϕ , (4.17)

where
λ = nr0

2 (4.18)

and where ϕ has to be 2π periodic. To see why this is the case, we define a new coordinate
ρ as

ρ =
�

dr 
f(r)

=
√

r − r0

�
2 

f ′(r0)
+ O(r − r0)

�
(4.19)
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such that

dr2

f(r) + f(r)dψ2 = dρ2 +
�1
4f ′(r0)2ρ2 + O(ρ4)

�
dψ2

= dρ2 +
�
ρ2 + O(ρ4)

�
dϕ2 . (4.20)

The Horowitz–Myers spacetime thus has the curious property that the conformal structure
of the boundary manifold depends upon the coordinate mass parameter mc, provided
we keep hIJdθIdθJ fixed (recall that ψ is one of the coordinates parametrizing the
boundary manifold which at fixed time is given by Tn−2). A conformal completion of the
Horowitz–Myers metric is obtained by introducing a new coordinate x = 1/r such that
(4.14) becomes

g̃ = x−2
�
−dt2 + dx2(1 + O(xn)) + (1 + O(xn))dψ2 + hIJdxIdxJ


, (4.21)

where x ∈ (0, x0] , where xn
0 = 1/(2mc). A fixed ψ, xI slice corresponds to an infinitely

long strip.
For positive coordinate mass parameter mc, the energy of spacetime is in fact negative

as the mass is proportional to −mc. We will calculate the mass in section 4.6, where we
give a precise definition of the energy used in this context. Horowitz and Myers claimed
that the metric (4.14) minimizes the mass amongst the class of metrics with the same
conformal structure at infinity. This statement was refined in [62] and is a subject of
current research, see e.g. [56]. We discuss the Horowitz–Myers conjecture in more detail
in section 4.2.

Lastly, we comment on mc ≤ 0. When mc = 0, g̃ is locally AdS and smooth at r = 0,
independently of the period of ψ. When mc < 0, g̃ is nakedly singular as the function
f(r) does not possess any zeros at r > 0 and the Kretschmann scalar

RµνρσRµνρσ =
�
f ′′�2 + 2(f ′)2(n − 1)

r2 + 2f2(n − 1)(n − 2)
r4

= 2n(n + 1) + 4mc(n − 2)(n − 1)2n

r2n
(4.22)

diverges at r = 0 unless n = 2 — this special case is discussed below. Note that when
mc > 0, the locus r = 0 is not part of spacetime, as the manifold smoothly caps off at
the axis of rotation.

In the following sections, the Horowitz–Myers metric will feature prominently. When
we say Horowitz–Myers metric or Horowitz–Myers instanton, we always refer to (4.14)
with mc > 0.

n = 2

Consider the Horowitz–Myers metric with n = 2,

g̃ = −r2dt2 + dr2

r2 − 2mc
+ (r2 − 2mc)dψ2 . (4.23)
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4. Positivity of Mass at Negative Cosmological Constant

When mc > 0, regularity at the rotation axis requires that ψ is periodic with period
2π/

√
2mc, while for mc ≤ 0 any period of ψ is allowed. We now consider the case where

mc > 0. Setting
ρ2 = r2 − 2mc (4.24)

one finds
g̃ = −(ρ2 + 2mc)dt2 + dρ2

ρ2 + 2mc
+ ρ2dψ2 , (4.25)

which would be a BK metric with mass −mc if the period of ψ were 2π. To correct for
this it suffices now to set

ψ̄ = λψ , t̄ = λt , ρ̄ = λ−1ρ , (4.26)

with λ =
√

2mc chosen so that (4.23) is regular at r =
√

2mc and that the period of ψ̄ is
2π, leading to

g̃ = −(ρ̄2 + 2m̄c)dt̄2 + dρ̄2

ρ̄2 + 2m̄c
+ ρ̄2dψ̄2 = −(ρ̄2 + 1)dt̄2 + dρ̄2

ρ̄2 + 1 + ρ̄2dψ̄2 , (4.27)

which is AdS3 spacetime.

4.2. Positivity of Mass and the AdS/CFT Correspondence
This section reviews and motivates why the positivity of the mass for general relativity
with negative cosmological constant is an interesting open question. The precise definitions
of the mass and fall-off conditions used in this context will not be given here, but we
postpone these definitions to subsection 4.6.1 where we also calculate the mass of the
Horowitz–Myers and Birmingham–Kottler metrics.

Positive energy theorems are widely regarded as one of the most powerful achievements
in mathematical general relativity [70] and have found many applications to this date.
In particular, they have been used in proofs of uniqueness of asymptotically flat black
holes [71,72] or to resolve the Yamabe problem [73], the latter will also be of relevance
in the following sections of this thesis. The Yamabe problem was first posed in 1960 by
Hidehiko Yamabe who asked whether, given a metric g on a manifold M , there exists
a metric g̃ conformal to g which has constant scalar curvature. Yamabe claimed to
have found a proof when M is compact. However, Yamabe’s proof was later found to
be erroneous and it took two decades until the proof was finally completed by Richard
Schoen after the combined efforts of Yamabe, Trudinger and Aubin. Unexpectedly, a
key point in Schoen’s proof was the application of the positive mass theorem of general
relativity which back in the 1980s had only recently been proven by Schoen and Yau [74].
When M is non-compact, the Yamabe problem is much more subtle and much of current
research focuses on determining which conformal classes contain metrics of constant
scalar curvature. The relevant equation to consider in the context of the Yamabe problem
is the transformation behavior of the Ricci scalar under conformal transformations (2.4).
In the following sections, the Yamabe problem for two-dimensional manifolds will be
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Asymptotically Birmingham–Kottler metrics; mcrit < 0

other conf. infinity

bdry

otherwise

≥ mcrit ??

µ < 0

≥ mcrit [69]

no bdry

m < 0 [2] [68]

≥ mcrit ??

Ricci flat conf. infinity

otherwise

bdry

m < 0 ?

no bdry

≥ mcrit ? [67]

good spin [65,66]

bdry

≥ 0

no bdry

≥ 0

canonical spherical

bdry

≥ 0 [64]

no bdry

≥ 0 [63]

Table 4.1.: Mass inequalities for asymptotically Birmingham–Kottler metrics. The mass is normalized
in such a way, that the Birmingham–Kottler metric with coordinate mass parameter mc = 0
which lies in the appropriate conformal class at infinity has mass zero, m = 0. A double
question mark indicates that no results are available; a single one indicates the existence
of partial results. The shorthand “bdry” refers to a black-hole boundary. “Good spin”
denotes a topology where the manifold is spin and the spin structure admits asymptotic
Killing spinors. The case “other conformal infinity” includes higher genus topologies when
the boundary is two-dimensional, but also e.g. quotients of spheres in higher dimensions.
Reference [2] is the publication I co-authored together with Piotr Chruściel and Erwann
Delay. The case [67] corresponds to the Horowitz–Myers conjecture. Finally, µ is the mass
aspect function which is defined in subsection 4.6.1. The critical value of the mass mcrit,
assuming it exists, is expected to be determined by the conformal structure of the boundary
at infinity.

of importance. In two dimensions and with g̃ = ef g, where f is a smooth real-valued
function, equation (2.4) reads

R̃ = e−f (R − ∆gf) . (4.28)

When R̃ is a constant this is the Yamabe equation. The example of the Yamabe problem
goes to show that positive energy theorems have wide-ranging applicability that go even
beyond the scope of general relativity.

To this date, the question of positivity of mass has been predominantly considered in
the context of asymptotically flat spacetimes where the metric (locally) approaches the
Minkowski metric at large distances. When the cosmological constant is negative, some
progress has been made, but the problem is essentially wide open. In the Lorentzian
setting, we would like to answer whether the energy of spacetimes, which locally approach
AdS, is bounded from below. As these spacetimes are the main object of study within
the AdS/CFT correspondence, it is clear that bounds on the energy for such spaces
could have potential implications for the correspondence. Boundedness of energy for
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negative cosmological constant is often required within the framework of the AdS/CFT
correspondence. In the derivation of the Cardy formula, which was shortly discussed in
section 3.6 and most generalizations thereof, it is assumed that the energy spectrum of the
conformal field theory is bounded from below — which in turn implies that also the energy
in asymptotically AdS spacetimes must be bounded from below. Hence, for the Cardy
formula to apply, a positive energy theorem in general relativity for negative cosmological
constant must hold. On the one hand, positive energy theorems in general relativity for
negative cosmological constant can be used to restrict the energy spectrum in a conformal
field theory and make predictions regarding aspects of the AdS/CFT correspondence. On
the other hand, the duality may be used to form conjectures regarding the boundedness
of energy in general relativity. One example of this is the Horowitz–Myers conjecture [20]
which has received much attention over the last twenty years, both in the AdS/CFT, as
well as in the mathematical general relativity community. Horowitz and Myers studied
the consequences of a potential non-supersymmetric AdS/CFT correspondence in five
spacetime dimensions, under the assumption that such a correspondence exists. They
considered a novel solution to the vacuum Einstein equations with negative cosmological
constant, which they referred to as the AdS soliton and which we refer to as the Horowitz–
Myers metric or Horowitz–Myers instanton.2 The geometric properties of this solution
have been discussed in subsection 4.1.2 and we discuss a precise definition of the mass
of Horowitz–Myers metrics in section 4.6. Horowitz and Myers computed the mass of
their new solution and found that it is negative in comparison to the mass of locally AdS
spacetimes with the same toroidal conformal infinity.

In their paper [20], Horowitz and Myers estimated the ground state Casimir energy of a
conformal field theory and compared it to the energy of the Horowitz–Myers metric. They
found that these values indeed matched up to a factor of 3/4 which was not unexpected
due to the estimation method used for the calculation of the ground state [62]. Due to
the fact that the Casimir energy is the ground state energy in the conformal field theory,
they asserted that a new positive energy conjecture in general relativity must hold. In
the original paper this conjecture reads [20, Conjecture 2]

Conjecture 4.1. Horowitz–Myers Conjecture Consider all solutions to Einstein’s
equations in five spacetime dimensions with cosmological constant Λ = −6 which satisfy

gµν = ḡµν + hµν (4.29)

with
hαγ = O(r−4) , hαr = O(r−4) , hrr = O(r−6) with α, γ ̸= r (4.30)

and where ḡµν denotes the Horowitz–Myers metric in five spacetime dimensions in
coordinates (4.14). Then, the mass m ≥ 0 with equality if and only if gµν = ḡµν .

While the original conjecture was formulated in five spacetime dimensions, the con-
jecture can be posed in any spacetime dimension d = n + 1 ≥ 4 and this was in fact
done in [75]. The conjecture has been formulated in Riemannian terms by Woolgar

2In literature this metric is also often referred to as Horowitz–Myers geon [62].
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in [62, Conjecture 1.1]. It is this version of the conjecture that is mostly used throughout
the mathematical general relativity literature because the methods for proofing positivity
of mass have been predominantly developed in the Riemannian setting. We now give the
conjecture in the form stated in [62] using the terminology of [2]

Conjecture 4.2. Let (M, g) be an n-dimensional complete asymptotically locally hyper-
bolic manifold with flat toroidal infinity, with compact, totally geodesic, possibly empty
boundary, with well defined mass m and with scalar curvature satisfying R ≥ −n(n − 1).
Then the mass m of (M, g) obeys m ≥ m0 where m0 is the mass of the Horowitz–Myers
metric which has the least mass amongst all Horowitz–Myers metrics with the same
conformal boundary at infinity.

Some comments regarding the conjecture are in order: We say that (M, g) is asymp-
totically locally hyperbolic (ALH) if the Ricci scalar of g approaches a negative constant
when the conformal boundary at infinity is approached. The precise falloff conditions
used in this context will be specified in section 4.6, where we will also give a definition of
the mass. There is a countable infinity of non-isometric Horowitz–Myers metrics that
share the same conformal boundary at infinity [62,76,77]. The Horowitz–Myers metric
with the lowest mass m0 is chosen in such a way that the shortest non-trivial cycle on
the boundary at infinity bounds a disk in the bulk [62]. In the original conjecture, there
is no mention of inner boundaries, but in [62] they are included to allow for horizons.
With regards to initial data, it is natural to regard a black hole horizon as a boundary,
as initial data is only prescribed outside of the horizon. We will take this viewpoint in
this work. In the following, we will also often use the terminology black hole boundary
for this locus.

While some evidence in favor of the Horowitz–Myers conjecture exists, the conjecture
remains unproven to this day. The difficulty stems from the fact that many methods
which are typically used in positive mass theorems cannot be applied in this case. In
particular, spinorial methods cannot be applied as the Horowitz–Myers metric does not
admit the right spin structure. Other standard methods fail as well, as they often rely
implicitly on comparisons with the potential minimal energy metric. These comparisons
work well when this metric is of constant curvature, but this is not the case for the
Horowitz–Myers metric [62].

Before closing this section, we shortly review the currently known energy bounds for
general relativity with negative cosmological constant. To compute the mass, one typically
considers spaces that asymptote to the Birmingham–Kottler metrics with mc = 0.

In the case of space dimension n = 3, which we consider in the following sections,
requiring that a metric be asymptotically Birmingham Kottler is equivalent to requiring
that it be asymptotically locally hyperbolic. As discussed in subsection 4.1.1, there is
a variety of asymptotically Birmingham–Kottler metrics, which differ by the existence
of black hole boundaries or the lack thereof and by the topology of the boundary at
infinity (N, hk). The current knowledge of bounds on the energy for such metrics is
summarized in table 4.1. The theorems available in literature, typically distinguish
between the case where there exists an interior boundary and the case where no interior
boundary exists. In the case of a spherical boundary at infinity, it has been shown that
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the energy is bounded from below [63,64] and that the energy only vanishes when (M, g)
is isometrically diffeomorphic to hyperbolic space. Note that while there exists a notion
of mass for general asymptotically locally hyperbolic metrics which admit asymptotic
static potentials [78], nothing is known about the sign of the mass for those which are not
asymptotically Birmingham–Kottler. See also [79] for a discussion of the issues occurring
in this context.

In the following sections, we discuss the explicit construction of three-dimensional
conformally compact asymptotically locally hyperbolic manifolds without boundary, with
connected conformal infinity of higher genus, with constant negative scalar curvature and
with negative mass [2]. Such spaces were previously not known to exist. In four space
dimensions negative-mass asymptotically locally hyperbolic metrics were found in [68,80]
(compare [81, 82]), where conformal infinity is a quotient of a sphere.

4.3. Introduction to the Problem
The following sections are from
[2] with minor modifications (co-
authored with Piotr Chruściel and
Erwann Delay)

In [83] Isenberg, Lee and Stavrov, inspired by [84], have shown how to glue together
two ALH general relativistic initial data sets by performing a boundary connected sum,
which they referred to as a “Maskit gluing”. The resulting initial data set has a conformal
boundary at infinity which is a connected sum of the original ones. A variation of
this construction has been presented in [23]. It is of interest to analyze the properties
of the initial data sets so obtained. This work aims to address this question in the
time-symmetric case, with vanishing extrinsic curvature tensor Kij .

We start with a short presentation of the boundary-gluing construction of [23] in
section 4.4. The construction involves a certain amount of freedom which we make
precise, showing that the gluing results in whole families of new ALH metrics. As a
particular case, in section 4.5 we apply the construction to Birmingham–Kottler metrics.
This provides new families of ALH metrics with apparent-horizon boundaries with more
than one component, and with locally explicit metric when the mass parameter is zero.
One thus obtains time-symmetric vacuum initial data for spacetimes containing several
apparent horizons; such initial data sets evolve to spacetimes with multiple black holes.

Next, an important global invariant of asymptotically hyperbolic general relativistic
initial data sets is the total energy-momentum vector m ≡ (mµ) [65,66,85] (compare [78,
86, 87]) when the conformal metric at infinity is that of the round sphere (we talk of
AH metrics then), and the total mass m for the remaining topologies at infinity; this is
reviewed in subsection 4.6. It turns out that the formulae for the mass after the gluings
of both [83] and [23] are relatively simple. This is analyzed in Section 4.6.4, where we
derive formulae (4.80)-(4.83). This is the first main result of the paper [2].

A quick glance at (4.81) suggests very strongly that the boundary-gluing of two
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Horowitz–Myers metrics, which both have negative mass aspect functions, will lead to a
manifold with higher-genus boundary at infinity and with negative mass. This turns out,
however, to be subtle because of correction terms that are inherent to the constructions.
In fact, negativity of the total mass is far from clear for the Isenberg-Lee-Stavrov gluings,
because these authors use the conformal method, which changes the mass integrand in
a way that appears difficult to control in the neck region. Things are clearer when the
localized boundary-gluing of [23] is used, and in section 4.7 we show that negativity
indeed holds. We thus construct three-dimensional conformally compactifiable ALH
manifolds with constant scalar curvature, without boundaries at finite distance, with
connected boundary at infinity of higher genus topology and with negative mass. This is
the second main result of this paper. As already hinted to, such manifolds correspond to
time-symmetric initial data surfaces in vacuum spacetimes with negative cosmological
constant. Here one should keep in mind that the Horowitz–Myers metrics have toroidal
topology at infinity, and that the higher-genus Birmingham–Kottler metrics with negative
mass are either nakedly singular, or have a totally geodesic boundary with the same
genus as the boundary at infinity, or acquire a conformal boundary at infinity with two
components, and contain an apparent horizon, after a doubling across the boundary.

4.4. Localized boundary-gluing of ALH metrics
Before entering the subject, some comments on our terminology are in order. We say that
an ALH manifold is asymptotically hyperbolic (AH) if the conformal class of ḡ = Ω2g on
the conformal boundary at infinity is that of a round sphere. Asymptotically Birmingham–
Kottler (ABK) metrics are defined as metrics that asymptote to the Birmingham–Kottler
metrics. The Birmingham–Kottler metrics themselves are ALH, which can be seen by
setting Ω = 1/r in (4.34), and noting that they have constant scalar curvature since they
solve the time-symmetric general relativistic scalar constraint equation with negative
cosmological constant.

Differentiability requirements of ḡ at the conformal boundary at infinity often need to
be added in the definitions above and depend upon the problem at hand. Here we will
be interested in a class of manifolds with well-defined mass, as will be made precise in
subsection 4.6.1.

An ABK metric can equivalently be defined as an ALH metric such that the conformal
class of its conformal metric at infinity contains an Einstein metric. Note that this
is always the case for three-dimensional manifolds, hence two-dimensional conformal
boundaries, by the uniformization theorem; thus ALH metrics are necessarily ABK in
three dimensions, but this is not the case anymore in higher dimensions. For ABK metrics
we can introduce Fefferman-Graham coordinates based on the Einstein representative of
the conformal metric at infinity. In these coordinates, the asymptotic expansion of g will
coincide with that of a BK metric, say b, written in the same coordinate system, up to
some order. This decay order can be measured using b-orthonormal frames; equivalently,
by measuring the decay of the b-norm of g − b; the g-norm of g − b would give an
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equivalent result too. The mass integrals of section 4.6.1 are well defined and convergent
if the decay of g − b so understood is, roughly speaking, o(r−n/2) , where r is the radial
coordinate in (4.34).

The reader is warned that there is no consistency in the literature concerning termi-
nology. While our definition of ALH coincides with that of several authors, some other
authors use AH for what we call ALH here. However, we find it natural to reserve the
name AH for the special case where the metric is asymptotic to that of hyperbolic space.

Our analysis below is motivated by the localized boundary-gluings of ALH manifolds,
or initial data sets, as in [23, Section 3.5]. In this section, we present a somewhat more
general version of these gluings.

We start with points p1, p2, lying on the conformal boundary of two ALH vacuum initial
data sets (M1, g1, K1) and (M2, g2, K2). (An identical construction applies when p1 and p2
belong to the same manifold; then the construction provides instead a handle connecting
a neighborhood of p1 with a neighborhood of p2. Instead of vacuum initial data one can
also take e.g. data satisfying the dominant energy condition; the construction will preserve
this. Further, if K1 ≡ 0 ≡ K2, then one can have K ≡ 0 throughout the construction.)
We assume that both (M1, g1, K1) and (M2, g2, K2) have extrinsic curvature tensors
asymptoting to zero, and have well-defined total energy-momentum, cf. section 4.6. As
shown in [23] for deformations of data sets preserving the vacuum condition or for scalar
curvature deformations preserving an inequality, or in [63, Appendix A] for deformations
of data sets preserving the dominant energy condition, for all ε > 0 sufficiently small
we can construct new initial data sets (Mi, gi,ε, Ki,ε), i = 1, 2, such that the metrics
coincide with the hyperbolic metric in coordinate half-balls U1,ε of radius ε around p1
and U2,ε around p2, and the Ki,ε’s are zero there. Here the coordinate half-balls refer to
coordinates on the upper half-space model of hyperbolic space Hn, in which we have

Hn = Rn
+ = {x = (ω, z) ∈ Rn−1×]0, ∞[} , (4.31)

with the metric
b = |dω|2 + dz2

z2 . (4.32)

In order to avoid a proliferation of indices we now choose ε so that the deformation
described above has been carried out, with corresponding ALH metrics (Mi, gi,ε, Ki,ε),
i = 1, 2, and coordinate half-balls Ui,ε, which we write from now on as (Mi, gi, Ki), and
Ui. It should be kept in mind that different values of ε lead to different initial data sets
near the gluing region, but the data sets remain the original ones, hence identical, away
from the gluing region, which can be chosen as small as desired.

The above shows in which sense the exterior curvature tensor K is irrelevant to the
problem at hand. Therefore, from now on, we will only consider initial data sets with
K ≡ 0 in the gluing region.

The gluing construction uses hyperbolic hyperplanes h in the hyperbolic-space region
of (Mi, gi). These are defined, in the half-space model, as half-spheres with centers on
the hyperplane {z = 0} in the coordinates of (4.32) which, for our purposes, are entirely
contained in the half-balls Ui. The conditionally compact, in Rn, component of Hn
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Uh

h

z = 0

Figure 4.2.: The “thin component” Uh and its boundary h in the half-space model, where hyperbolic
space is represented as a half-space {z > 0}, and the conformal boundary at infinity is the
hyperplane {z = 0}. After an “exotic gluing” has been performed, the metric becomes
exactly hyperbolic inside Uh.

separated by h will be referred to as the thin component, denoted by Uh, and the
remaining one will be called the fat component; see Figure 4.2.

In what follows we will also invoke the Poincaré ball model, which represents the
n-dimensional hyperbolic space Hn as the open unit ball Bn endowed with the metric

b = 4
(1 − |x⃗|2)2 δ , (4.33)

where δ is the Euclidean metric.
A basic fact is that for every hyperbolic hyperplane h as above there exist two isometries

of the hyperbolic space, which we denote by Λh,±, such that Λh,+ maps h to the equatorial
hyperplane of the Poincaré ball, with the fat region being mapped to the upper hemisphere,
while Λh,− again maps the hyperbolic hyperplane to the equatorial hyperplane but it
maps the fat region into the lower hemisphere. Using physics terminology, an example of
Λh,+ is provided by a boost along the axis passing through the origin of the Poincaré
ball and the barycenter of the hyperbolic hyperplane. Given Λh,+, a map Λh,− can be
obtained by applying to Λh,+ a rotation by π around any axis lying on the equatorial
plane.

It should be clear that there are many such pairs Λh,±: consider, e.g., the isometries
R±Λh,±, where the R±’s are some rotations along the axis joining the north pole and
the south pole.

Let P denote the collection of pairs of isometries (Λ1, Λ2) of hyperbolic space with
the following property: There exist hyperbolic hyperplanes hi ⊂ Ůi, i = 1, 2, such that
Λ1 is a Λh1,+ and Λ2 is a Λh2,−. Here Ůi denotes the interior of Ui.

For each such pair of hyperbolic hyperplanes hi the manifolds Mi \ Uhi are manifolds
with a non-compact boundary component ∂Uhi = hi extending to the conformal boundary
at infinity of Mi, with the hyperbolic metric near the boundary hi.

Given (Λ1, Λ2) ∈ P we construct a boundary-glued manifold MΛ1,Λ2 by gluing the
boundaries hi as follows: We map the thin complement Uh1 of h1 to the lower half of
the Poincaré ball using Λ1. We map the thin complement Uh2 of h2 to the upper half of
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the Poincaré ball using Λ2. We then identify the two manifolds with boundary Mi \ Uhi

along the equatorial plane of the Poincaré ball using the identity map.
The metrics on Mi \ Uhi coincide with the original ones (one can think of the maps

Λhi as changes of coordinates), hence are ALH there by hypothesis. Both metrics are
exactly hyperbolic at both sides of the gluing boundary, namely the equatorial plane of
the Poincaré ball, and extend smoothly there. Hence for every pair (Λ1, Λ2) ∈ P the
manifold MΛ1,Λ2 is a smooth ALH manifold.

4.5. Boundary-gluing of Birmingham–Kottler solutions
An obvious candidate to which our construction can be applied is the space-part of the
Birmingham–Kottler (BK) metrics, introduced in subsection 4.1.1. The line element of
the Birmingham–Kottler metrics induced at constant time slices reads

g = f−1dr2 + r2hk , f = r2 + k − 2mc

rn−2 , (4.34)

where mc is a constant which will be referred to as the coordinate mass parameter, and
where hk is an Einstein metric on an (n − 1)-dimensional manifold Nn−1 with scalar
curvature equal to

R(hk) = k(n − 1)(n − 2) , k ∈ {0, ±1} . (4.35)

We will assume that mc is in a range so that f has positive zeros, with the largest
one, denoted by r0, of first order. The metric is then smooth on the product manifold
[r0, ∞) × Nn−1, with a totally geodesic boundary at r = r0.

The construction of section 4.4 applied to two such manifolds,

(Mi = [ri, ∞) × Nn−1
i , gi) , (4.36)

leads to manifolds with a conformal boundary at infinity with connected-sum topology
Nn−1

1 #Nn−1
2 and a totally geodesic boundary that has two connected components, one

diffeomorphic to Nn−1
1 and the second to Nn−1

2 .
One can double each of the original manifolds across their totally geodesic boundaries,

in which case the doubled manifolds have no boundaries but each has a conformal infinity
with two components.

One can iterate the construction, obtaining ALH manifolds with an arbitrary number
of components of the boundary at infinity, and an arbitrary number of totally geodesic
compact boundary components. The maximal globally hyperbolic development of the
resulting time-symmetric general relativistic vacuum Cauchy data will have a Killing
vector field defined in a neighborhood of each such boundary (but not globally in general),
which becomes the bifurcation surface of a bifurcate Killing horizon for this vector field.
The case mc = 0 is of special interest here, as then the metric is exactly hyperbolic,
locally, everywhere, so that the construction of [88] which glues in a hyperbolic half-ball
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is trivial. All the boundary gluing constructions described here apply without further
due to this case. Some of the metrics constructed above likely evolve to the spacetimes
considered in [89,90], so it might be of some interest to explore this.

4.6. Hyperbolic mass
4.6.1. The definition
We recall the definition of hyperbolic mass from [66]. We consider a family of Riemannian
metrics g which approach a “background metric” b with constant scalar curvature
−n(n − 1) as the conformal boundary at infinity is approached. We assume that b is
equipped with a non-empty set of solutions of the static Killing Initial Data (KID)
equations, introduced in this thesis in section 2.3:

∆̊V − nV = 0 , (4.37)
D̊iD̊jV = V (R̊ij + nbij) , (4.38)

where R̊ij denotes the Ricci tensor of the metric b, D̊ the Levi-Civita connection of
b, the operator ∆̊ := bkℓD̊kD̊ℓ is the Laplacian of b, and we use D for the Levi-Civita
connection of g. Nontrivial triples (M, b, V ), where V solves (4.37)-(4.38), are called
static Killing Initial Data. Killing Initial Data and their connection to Killing vectors in
spacetime were explained in section 2.3. We recall that solutions of (4.37)-(4.38) are in
one-to-one correspondence with timelike Killing vectors in the associated spacetime on
the domain of dependence of the initial data set.

Strictly speaking, for the purpose of defining the mass only the geometry of a neigh-
borhood of the conformal boundary at infinity of M is relevant. A tuple (b, V ) will also
be called a static KID when M or its conformal boundary are implicitly understood.
The functions V will be interchangeably referred to as static potentials or static KIDs.
The (finite-dimensional) vector space of static potentials of (M, b) will be denoted by Kb.
All static potentials for the BK and Horowitz–Myers metrics are derived in Appendix C.
Under conditions on the convergence of g to b spelled-out in (4.42)-(4.46) below, well
defined global geometric invariants can be extracted from the integrals [66]

H(V, b) := lim
R→∞

�
r=R

Ui(V )dSi (4.39)

where V ∈ Kb, with

Ui(V ) := 2
√

det g
�
V gi[kgj]lD̊jgkl + D[iV gj]k(gjk − bjk)


, (4.40)

and where dSi are the hypersurface forms ∂i⌋dx1 ∧ · · · ∧ dxn.
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From now on, until explicitly indicated otherwise the background metric b will be a
BK metric with mc = 0. In the coordinates of (4.34) we set

Mext := [R, ∞) × Nn−1 , (4.41)

for some large R ∈ R+, and we consider the following orthonormal frame {fi}i=1,n on
Mext:

fi = r−1ϵi , i = 1, . . . , n − 1 , fn =
 

r2 + k ∂r , (4.42)

where the ϵi’s form an orthonormal frame for the metric hk. We set

gij := g(fi, fj) , bij := b(fi, fj) =
�

1, i = j;
0, otherwise. (4.43)

Assuming that �
Mext

� %
i,j

|gij − bij |2 +
%
i,j,k

|fk(gij)|2�
r dµg < ∞ , (4.44a)

�
Mext

|Rg − Rb| r dµg < ∞ , (4.44b)

∃ C > 0 such that C−1b(X, X) ≤ g(X, X) ≤ Cb(X, X) , (4.45)

where dµg denotes the measure associated with the metric g, one finds that the limit in
(4.39) exists and is finite. If moreover one requires that

%
i,j

|gij − bij | +
%
i,j,k

|fk(gij)| =
�

o(r−n/2) , if n > 2,
O(r−1−ϵ), if n = 2, for some ϵ > 0 ,

(4.46)

then the “mass integrals” (4.39) are well-defined, in the following sense: Consider any
two background metrics bi, i = 1, 2, of the form (4.34), with the same boundary manifold
(Nn−1, hk) with mc = 0, in particular with the same value of k. Assume that g approaches
both b1 and b2 at the rates presented above. Then there exists an isometry Φ of b1 such
that [66]

H(V, b1) = H(V ◦ Φ, b2) . (4.47)

From now on we assume that the space dimension n is larger than or equal to three.
Consider a background b of the form (4.34). The function

V(0)(r) =
 

r2 + k (4.48)

satisfies the static KID equations (4.37). Assuming (4.44)-(4.46), a somewhat lengthy
calculation shows that the mass integral

H(V(0)) := H(
 

r2 + k, b) (4.49)
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equals [87]

H(V(0)) = lim
R→∞

Rn−1(R2 + k)×�
{r=R}

�
−

n−1%
i=1


∂eii

∂r
+ keii

r(r2 + k)

�
+ (n − 1)enn

r

�
dn−1µhk

. (4.50)

Here
eij := gij − bij (4.51)

denotes the frame components in a b-ON frame, with the n’th component corresponding
to the direction orthogonal to the level sets of r. In space dimension 3, which will be of
main interest below, under the decay conditions spelled above this simplifies to

H(V(0)) = lim
R→∞

R4
�

{r=R}

�
2e33

r
−

2%
i=1

∂eii

∂r

�
d2µhk

. (4.52)

A class of ALH metrics of interest are those for which

eij = r−nµij + o(r−n) , (4.53)

where the µij ’s depend only upon the coordinates xA on ∂M . One can further specialize
the coordinates in which µnn ≡ 0, but this choice might be unnecessarily restrictive
for some calculations. Metrics with these asymptotics are dense in the space of all AH
metrics in suitable circumstances [91, Theorem 5.3]. The tensor µij will be referred to as
the mass aspect tensor.

For metrics for which (4.53) holds, Equation (4.50) reads

H(V(0)) =
�

∂M

�
(n − 1)µnn + n

n−1%
i=1

µii


dn−1µhk

=:
�

∂M
µ dn−1µhk

, (4.54)

where µ is the mass aspect function mentioned in Table 4.1. An elegant formula for mass
can be derived by integration by parts in (4.39)-(4.40), leading to the following: To every
KID (b, V ) and conformal-boundary component ∂M one associates a mass

m = m(V ) = m(V, ∂M) ≡ H(V, b) (4.55)

by the formula [92] (compare [93, Equation (IV.40)])

m(V, ∂M) = − lim
x→0

�
{x}×∂M

DjV (Ri
j − R

n
δi

j) dσi , (4.56)

where Rij is the Ricci tensor of the metric g, R its trace, and we have ignored an overall
dimension-dependent positive multiplicative factor which is typically included in the
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physics literature. Here ∂M is a component of conformal infinity, x is a coordinate near
∂M so that ∂M is given by the equation {x = 0}, and dσi :=

√
det gdSi.

Equation (4.56) will be used predominantly in the following sections. To make contact
with usual spacetime methods, we comment on the derivation of (4.56) in [93]. There,
(4.56) was obtained by calculating the Hamiltonian associated with a timelike Killing
vector field of the background and expressing the result in terms of initial data. In this
work, we will only consider static KIDs or timelike Killing vector fields which do not
depend on the coordinate mass parameter mc.

As a special case, consider a triple (M, g, V̂ ) satisfying (4.37)-(4.38); thus both (M, g, V̂ )
and (M, b, V ) are static KIDs. Assume that g asymptotes to b as above, and that V̂
asymptotes to V . One checks that V can be replaced by V̂ in the integrand of (4.56), so
that

Dj V̂ (Ri
j − R

n
δi

j) = 1
V̂

Dj V̂
�
DiDj V̂ − 1

n
∆V̂ δi

j

�
= 1

V̂
Dj V̂

�
DiDj V̂ − V̂ δi

j

�
= 1

2V̂
Di(|dV̂ |2) − DiV̂ . (4.57)

Letting r = 1/x, (4.56) becomes

m(V̂ ) = lim
R→∞

�
r=R

�
DiV̂ − 1

2V̂
Di(|dV̂ |2)

�
dσi . (4.58)

As an application, and for further use, we apply (4.58) to the space-part of the Horowitz-
Myers metric,

g = dr2

r2 − 2mc
rn−2

+ (r2 − 2mc

rn−2 )dψ2 + r2hIJdθIdθJ , (4.59)

where hIJdθIdθJ , I, J ∈ {1, . . . n − 2} is a flat (n − 2)-dimensional metric, mc > 0 is
a constant and ψ has a suitable period to guarantee smoothness at rn = 2mc. The
background is taken to be g with mc = 0, thus V̂ = r, |dV̂ |2 = (r2 − 2mc

rn−2 ), which gives
an integrand in (4.58) equal to

�
DrV̂ − 1

2V̂
Dr(|dV̂ |2)

�
rn−2√

det h = −(n − 2)mc
�
1 − 2mc

rn

�√
det h , (4.60)

and thus total mass
m = −(n − 2)mc , (4.61)

where we have assumed that the area of the conformal boundary at infinity in the metric
dψ2 + hIJdxIdxJ has been normalized to 1. Applying (4.58) to the space-part of the
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toroidal Birmingham–Kottler metric

g = dr2

r2 − 2mc
rn−2

+ r2hABdθAdθB , (4.62)

which has V̂ =
�

r2 − 2mc
rn−2 , gives

�
DrV̂ − 1

2V̂
Dr(|dV̂ |2)

� rn−1

V̂
= mc(n − 2)(n − 1)


1 + mc(n − 2)

rn


, (4.63)

and
m = (n − 1)(n − 2)mc . (4.64)

4.6.2. The spherical case
The question then arises, what happens with the mass under the boundary gluings of
section 4.4. The case when both manifolds have a conformal boundary with spherical
topology and a metric conformal to the standard round metric is simplest because then
the maps (Λ1, Λ2) ∈ P act globally on collar neighbourhoods of Nn−1

1 and Nn−1
2 in M1

and M2. The initial energy-momenta m1 of Nn−1
1 and m2 of Nn−1

2 are transformed to
Λ1m1 of Λ2m2. Since the mass integrands are zero in the neck region, where the metric
is exactly hyperbolic, one finds that the energy-momentum m of the boundary-glued
manifold is additive:

m = Λ1m1 + Λ2m2 . (4.65)

This is true for all dimensions n ≥ 3.
A more detailed presentation of the spherical case can be found in [63], and note that

most of the work there arose from the necessity to control the direction of the momenta
ma.

4.6.3. Conformal rescaling of hk

The remaining cases, as well as the Isenberg-Lee-Stavrov gluings, require more effort.
After the gluing has been done, the initial “boundary metric” hk of (4.34) will have to
be conformally rescaled in general. Thus, there will be a function ψ > 0, defined on a
subset of the boundary at infinity, such that

hk = ψ2hk̄ , (4.66)

for some constant k̄ ∈ {0, ±1}. The following can be justified by considerations revolving
around the Yamabe problem.

First, if (Nn−1, hk) is a round sphere, there exist globally defined non-trivial such
conformal factors with k = k̄ = 1, and they all arise from conformal isometries of the
sphere.

97



4. Positivity of Mass at Negative Cosmological Constant

glue

Figure 4.3.: Gluing two solid tori along a disc, the boundary of which becomes a closed geodesic on the
boundary of the glued manifold.

Next, when (Nn−1, hk) is a closed manifold with k = 0 and (4.66) holds globally, then k̄
must also be zero and ψ must be constant. Of course, any constant will do, and there
does not seem to be a geometrically preferred value for this constant. When calculating
the mass of the Horowitz–Myers metric we will normalize the volume of (Nn−1, hk) to
one, which removes the ambiguity.

In all other cases, ψ ≡ 1 and k = k̄ is the only possibility for globally defined functions
ψ on closed manifolds.

However, we will also need (4.66) on subsets of Nn−1. Then non-trivial functions ψ
are possible with k ̸= k̄ in dimension n = 3. By way of example, let N2 be the connected
sum of two tori, i.e.

N2 = T2#T2 , (4.67)

with the gluing occurring across a closed geodesic, cf. Figure 4.3. If we cut the connecting
neck along the closed geodesic, each of the factors in (4.67) can be viewed as a torus
T2 \ D2 with an open disc removed, and there we can write

h−1 = eωh0 , (4.68)

where ω is a solution of the two-dimensional Yamabe equation (4.28), which for (4.68)
reads

∆h0ω = 2eω , (4.69)

with vanishing Neumann data at ∂D2.
Now, our definition of mass requires that the glued manifold admits non-trivial static

potentials. This is guaranteed when both the initial manifolds (Nn−1
i , hki

), i = 1, 2, and
the new metric on Nn−1

1 #Nn−1
2 are Einstein manifolds. The gluing construction itself

does not care about this, but the existence of a static potential on a collar neighborhood
of the glued manifold is not clear, except when the boundary is two-dimensional, or
when at least one boundary metric is a round sphere in all dimensions. The existence of
further higher-dimensional such examples is unlikely, see [94].

Here one should keep in mind that there exist large families of smoothly compactifi-
able stationary vacuum solutions (M, g) of (Riemannian) Einstein equations such that
(Nn−1, hk) is not Einstein [95–99]. Each such metric comes equipped with a definition
of mass [78] for metrics with the same conformal infinity. Whether or not our weighted
addition formula (4.80) below applies in these more general circumstances is not clear;
we plan to address this in the future.
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Returning to our main line of thought, suppose thus that (4.66) holds on a subset of
Nn−1. We extend ψ to a neighbourhood of the conformal boundary by requiring ∂rψ = 0.
Let us denote by (r̄, x̄A) coordinates such that the new background metric hk̄ takes the
form

b̄ := dr̄2

r̄2 + k̄
+ r̄2hk̄ . (4.70)

We can write

b = dr2

r2 + k
+ r2hk = dr2

r2 + k
+ r2ψ2hk̄ = dr̄2

r̄2 + k̄
+ r̄2(hk̄ + δh) , (4.71)

with
δh(∂r, ·) = 0 . (4.72)

Let us denote by xA the local coordinates at ∂M . As shown in Appendix D below (cf.
(D.21) and (D.24)) we find for large r

x̄A = xA + DAψ

2ψr2 + O(r−4) , (4.73)

r̄ = ψr

1 +

�
−DADA log ψ + (n − 2)DA log ψDA log ψ


2(n − 1)r2 + O(r−4)

 , (4.74)

where D is the Levi-Civita connection of hk.
It follows from (4.73)-(4.74) (see (D.14), Appendix D) that an asymptotic expansion

of the initial metric of the form

g(fi, fj) − bij = O(r−n) (4.75)

(which is observed in BK metrics) will not be preserved by the above transformations,
except possibly 1) in dimension n = 3 or 2) when k = k̄ and the conformal factor arises
from a conformal isometry of hk. This is addressed in Appendix D. In particular, it is
shown there, in space dimension three and for µri = 0, that the mass aspect tensor µij

of (4.53) transforms as
µAB �→ µ̄AB = ψµAB . (4.76)

4.6.4. Gluing in three space dimensions
We consider the mass of the manifold obtained by boundary-gluing of two three-
dimensional manifolds (Ma, ga), a = 1, 2. This includes the Horowitz–Myers metrics
which are conformally compactifiable, have no boundary, and have negative mass, as
well as Kottler metrics which are conformally compactifiable and have totally geodesic
boundaries.
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Let us denote by Va the static potential of the asymptotic backgrounds on Ma, a = 1, 2.
For the spherical components of the boundary at infinity, if any, one only needs to
consider the static potential

√
1 + r2, as follows from (4.79) below.

We start with the boundary-gluing of section 4.4. Letting x = 1/R in (4.56), and
using the fact that the metric is exactly hyperbolic in Ua we have

ma := m(Va, ∂Ma) = − lim
x→0

�
{x}×∂Ma

DjVa(Ri
j − R

n
δi

j) dσi

= − lim
x→0

�
{x}×(∂Ma\Ua)

DjVa(Ri
j − R

n
δi

j) dσi . (4.77)

Let us write r for the radial coordinate as in (4.34) on M1, so that the static potential
entering into the definition of the mass of (M1, g1) reads

V1 =
 

r2 + k . (4.78)

Let us write (M̄, ḡ) for the boundary-glued manifold, V̄ for the associated static potential,
and r̄ for the radial coordinate on M̄ . Viewing M1 \ U1 as a subset of M̄ , using (4.74)
with ψ there denoted by ψ1 here, we can write on M1 \ U1

V̄ =
�

r̄2 + k̄ = r̄ + O(r̄−1) = ψ1r + O(r−1) = V1ψ1 + O(r−1) . (4.79)

Here ψ1 has been extended to the interior of M̄1 by requiring ∂rψ1 = 0.
An identical formula holds on M2 \ U2, with a conformal factor which we denote by

ψ2.
Assuming in addition to (4.42)-(4.46) that the b-norm of Ri

j − R
n δi

j decays as o(r2−n)
for large r,

m̄ := m(V̄ , ∂M̄) = − lim
x→0

�
{x}×∂M̄

Dj V̄ (Ri
j − R

n
δi

j) dσi

= −
2%

a=1
lim
x→0

�
{x}×∂Ma

Dj(ψaVa)(Ri
j − R

n
δi

j) dσi . (4.80)

Comparing with (4.77), we see that the mass of the glued manifold is the sum of
mass-type integrals, where the original integrands over ∂Ma are adjusted by the conformal
factor relating the metric on the glued boundary to the original one.

The above applies also to the case where the mass aspect tensor is well-defined, giving
a simpler formula

m̄ = −
2%

a=1

�
∂Ma

ψa

�
(n − 1)µnn + n

n−1%
i=1

µii


dn−1µhk

. (4.81)
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It should, however, be pointed out that the gluing-in of an exactly hyperbolic region
as in [23] is not known to lead to a metric with well defined mass-aspect tensor in the
region where the deformation of the metric is carried out, so that in our analysis below
we have to use (4.80).

The difference in the mass formulae between the boundary-gluing of section 4.4 and that
of [83] is essentially notational, concerning the integration domains in (4.80) and (4.81).
Indeed, after the gluing construction presented in section 4.2 of [83] has been done, the
boundary manifold there is obtained by removing discs D(ϵa) of coordinate radii ϵa from
∂Ma, and connecting the boundaries of the discs with a neck S1 × [0, 1]. (The radii ϵa are
taken to be one in [83, section 4.2], which is due to a previous rescaling of the coordinates.)
For the purpose of the formulae below let us cut the boundary neck S1 × [0, 1] into two
pieces N1 := S1 × [0, 1/2] and N2 := S1 × [1/2, 1], and let Ωa = (∂Ma \ D(ϵa)) ∪ Na.
In the construction of [83] each Ωa comes naturally equipped with a constant scalar
curvature metric which coincides with the original one on ∂Ma \ D(ϵa). The relative
conformal factors ψa are defined on the Ωa’s with respect to these metrics. We then have

m̄ := m(V̄ , ∂M̄)

= −
2%

a=1
lim
x→0

�
{x}×Ωa

Dj(ψaVa)(Ri
j − R

n
δi

j) dσi . (4.82)

Whenever a mass aspect tensor is globally defined on the glued manifold, this last formula
coincides with

m̄ = −
2%

a=1

�
Ωa

ψa

�
(n − 1)µnn + n

n−1%
i=1

µii


dn−1µhk

. (4.83)

It should be clear how this generalizes to the boundary-gluing of several three-
dimensional manifolds.

4.6.5. Noncompact boundaries
When defining hyperbolic mass, it is usual to assume, and we did, that the conformal
boundary at infinity is compact. This is done for convenience: when the boundary
manifold is compact, to obtain convergence of the integrals defining mass it suffices to
impose decay conditions of the metric g to the asymptotic background b.

Now, the “exotic gluings” construction in [23] creates an open neighborhood, say O, of
a subset of the conformal boundary at infinity, such that the metric is conformal to the
hyperbolic one in O.

One can then create non-trivial non-compact boundary manifolds by removing closed
sets, say Σ, from the boundary at infinity inside ∂M ∩ O and changing the asymptotic
background b to a new background b on ∂M \Σ. A simple non-trivial example is provided
by taking ∂M to be a two-dimensional torus, Σ to be a finite collection of points pi ∈ ∂M
(e.g., one point), and replacing the original background with a flat conformal metric h0
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on ∂M by a complete hyperbolic metric with cusps at the (removed) points pi. Then,
instead of measuring the mass of M with respect to the original background with a
toroidal boundary, we can define a mass with respect to the new background b̄, as in
(4.70)-(4.71).

Since the removed set Σ is contained in the set O, where the metric is conformal to
the hyperbolic metric, the convergence of the new mass integrals readily follows from
the convergence of the original mass: the support of the boundary integrals near infinity
is included in a neighborhood of the compact set ∂M \ O. The arguments presented in
section 4.6.4 readily lead to the following formula for the new mass:

m(V̄ , ∂M̄ \ Σ) = − lim
x→0

�
{x}×(∂M̄\Σ)

Dj(ψV )(Ri
j − R

n
δi

j) dσi ; (4.84)

recall that ψ is the conformal factor which relates the original metric hk to the new
one as hk̄ = ψ−2hk and x is a coordinate which vanishes at the conformal boundary at
infinity.

4.7. Higher genus solutions with negative mass
In this section, we show existence of classes of three-dimensional ALH manifolds (M, g)
with constant scalar curvature, higher-genus conformal boundary at infinity, and negative
mass.

4.7.1. Genus two
We start with a construction leading to ALH manifolds with genus at infinity equal to
two.

The manifold (M, g) will be obtained by a boundary-gluing of two ALH manifolds,
(M1, g1) and (M2, g2), with identical toroidal conformal geometries at infinity. We assume
the existence of a coordinate system near the conformal boundary at infinity in which
each of the original metrics ga takes the form

ga = dr2

r2 + r2h0� �� �
b

+ea , r ≥ r0 , a = 1, 2 , (4.85)

for some r0 > 0, where
|ea|b + |Dea|b + |D2ea|b ≤ Cr−σ (4.86)

with constants σ > 5/2 and C > 0. This guarantees the possibility of performing an
“exotic gluing” with a well-defined final mass [23], and is satisfied in particular for the
Birmingham-Kottler and Horowitz-Myers metrics, in which cases σ = 3.
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zoom
∂U1,�

∂U1,2�

∂M1

Figure 4.4.: The sets U1,ϵ ⊂ U1,2ϵ and their boundaries.

Figure 4.5.: A punctured torus with a hyperbolic metric; the figure is misleading in that the cusp region
is actually infinitely long.

We make an appeal to the construction described in Section 4.4, where the hyperbolic
metric has been glued in within an ϵ-neighborhood of boundary points pa ∈ ∂Ma. We
use the coordinates of (4.85)-(4.86) with polar coordinates for the boundary metric

h0 = dρ2 + ρ2dφ2 (4.87)

on ∂Ma, with pa located at the origin of these coordinates. Such coordinates can always
be defined, covering a disc D(ρ0) for some ρ0 > 0. Without loss of generality, we can
rescale the metric h0 on ∂Ma so that the coordinates are defined on the unit disc D(1).
(This might rescale the total mass by a positive factor; one then reverts to the original
scaling before calculating the mass.)

The metric g1 is thus the original metric outside the half-ball U1,2ϵ of coordinate radius
2ϵ < 1, and is exactly hyperbolic inside the half-ball U1,ϵ of coordinate radius ϵ (see
Figure 4.4); similarly for g2. For reasons that will become clear in the proof, we need to
consider a family of boundary gluings indexed by a parameter i → ∞.

As notation suggests, the parameter i will be taken in N; we will indicate how to
transition to a continuous parameter i in Remark 4.12 below.

For i ≥ 8/ϵ we choose both hyperbolic hyperplanes h1,i and h2,i of section 4.4 to be
half-spheres of radius 1/i centered at the origin of the coordinates (4.87). We choose any
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pair (Λ1 := Λh1,i,+, Λ2 := Λh2,i,−) as in section 4.4 to obtain the boundary-glued manifold
M := MΛ1,Λ2 .

Recall that, given a flat torus (T2, h0) and a point p ∈ T2, there exists on T2 \ {p} a
smooth function ω such that the metric eωh0 is complete, has constant Gauss curvature
equal to −1, with (T2, eωh0) having finite total area; see Figure 4.5 and Appendix B,
compare [100, Proposition 2.3].

We claim:

Theorem 4.3. Consider two three-dimensional ALH manifolds (Ma, ga), a = 1, 2, with
constant scalar curvature and with a metric of the form (4.85)-(4.86) with the same flat
metric h0. Let p ∈ ∂M1 and let eωh0 be the unique constant negative curvature metric
with a cusp at p. The mass of the Maskit-doubled metric as described above converges, as
ϵ tends to zero and i tends to infinity, to the finite limit

−
2%

a=1
lim

r→∞

�
{r}×T2

Dj(e−ω/2r)(Ri
j − R

n
δi

j) dσi . (4.88)

In this sum Rij is the Ricci tensor of g1 when a = 1 and of g2 when a = 2.

This leads us to existence of negative-mass solutions without boundary:

Corollary 4.4. There exist three-dimensional conformally compactifiable ALH manifolds
without boundary at finite distance, with constant scalar curvature, genus two infinity,
and negative mass.

Proof of Corollary 4.3: We apply Theorem 4.1 to two identical copies of a Horowitz-
Myers instanton. Keeping in mind that mc > 0, it follows from (4.88) and (4.81) that m
approaches

−∞ < −2mc

�
T2

e−ω/2dµh0 < 0 (4.89)

when ϵ tends to zero and i tends to infinity, and hence is negative for sufficiently small ϵ
and sufficiently large i.

Remark 4.5. In the case of the square torus with area equal one, discussed in Appendix B,
the function ω in (4.89) satisfies (cf. (B.5))

e−ω/2 ≤ Γ(1/4)2

4π3/2 ≈ 0.59 , (4.90)

which leads to a rough lower estimate of the mass m of the manifolds obtained by gluing
two identical copies of the Horowitz-Myers instanton manifold, for small ϵ and large i,

−1.18 mc < m < 0 . (4.91)
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An upper bound can be obtained by numerically integrating the inverse of the right-hand
side of (B.3), leading to

−1.18 mc < m < −0.68 mc . (4.92)

(The integral of the inverse of the left-hand side of (B.3) gives a worse lower bound
≈ −4.02 mc.)

Proof of Theorem 4.3: By construction, the boundary ∂M of the new manifold is a
doubling of

M̂i := ∂M1 \ D(1/i) . (4.93)

We will often view both M̂i and its double as subsets of ∂M .
Consider the conformal class of metrics on ∂M induced by g. This conformal class

depends upon i but is independent of ϵ, keeping in mind that ϵ ≥ 8/i. In this class there
exists a unique metric h−1 with constant scalar curvature equal to minus two which can
be constructed as follows: Let ĥi be any representative of the conformal class of metrics
on ∂M1 induced by g which is

1. invariant under reflection across M̂i, so that the coordinate circle

S1/i = M̂i (4.94)

of coordinate radius 1/i is a totally geodesic boundary for (M̂i, ĥi), and which is

2. invariant under rotations near S1/i.

While any metric ĥi as in 1. and 2. is adequate, a useful example is provided by the
metric which on ∂M1 equals χ2h0, where χ ≥ 1/2 is any smooth function on ∂M1 \ {p}
which equals to 1/ρ on D(1)\{0}, where ρ is the coordinate radius in the local coordinates
on ∂M1. This can be accompanied by the introduction of a new coordinate

ρ̂ = log(ρ)
log(i) + 1 , (4.95)

so that the flat metric

h0 = dρ2 + ρ2dφ2 , ρ ∈ [1/i, 1] (4.96)

becomes
h0 = ρ2(dρ2

ρ2 + dφ2) = ρ2(log2(i)dρ̂2 + dφ2) , ρ̂ ∈ [0, 1] , (4.97)

thus ĥi = log2(i)dρ̂2 + dφ2 on [1, i] × S1.
In this coordinate system the reflection across M̂i is the map (ρ̂, φ) �→ (−ρ̂, φ), after

extending the range of ρ̂ from [0, 1] to [−1, 1].
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Given a function f defined on D(1) \ D(1/i) in the original coordinates (ρ, φ), the
mirror-symmetric doubling of f is defined as the function

[−1, 1] × S1 ∋ (ρ̂, φ) �→ f̂(ρ̂, φ) =
�

f(elog(i)(ρ̂−1), φ) ρ̂ ≥ 0;
f(elog(i)(−ρ̂−1), φ) ρ̂ < 0. (4.98)

The mirror-symmetric doubling of a tensor field is obtained by transforming the tensor
field to the coordinates (ρ̂, φ) and mirror-doubling all its coordinate-components. For
example, after doubling of M̂i, the tensor field ĥi = log2(i)dρ̂2 + dφ2 just defined above
on [0, 1] × S1 maintains the same form log2(i)dρ̂2 + dφ2 on [−1, 1] × S1 after doubling.

Another example, which plays an important role in our proof below, is provided by
the daunting-looking metric (cf., e.g., [60])

eω∗,ih0 :=
� π

log(i2) sin(π log ρ
log(i2))ρ

2
(dρ2 + ρ2dφ2) , ρ ∈ (1/i2, 1) , (4.99)

which has constant negative scalar curvature equal to −2. The conformal factor eω∗,i

tends to infinity at ρ = 1/i2 and at ρ = 1. In the coordinates (ρ̂, φ) the metric (4.99)
reads

eω∗,ih0 =
� π

2 cos(πρ̂/2)
2

(dρ̂2 + 1
log2(i)

dφ2) , ρ̂ ∈ (−1, 1) , (4.100)

which is manifestly mirror-invariant. Note that the circle ρ̂ = 0 is a closed geodesic
minimizing length, of length π2/ log(i).

Let ui : ∂M → R be the unique solution of the two-dimensional Yamabe equation

∆ĥi
ui = −Reui + R̂i , (4.101)

with R = −2, and where R̂i is the scalar curvature of the metric ĥi, so that the metric
eui ĥi has scalar curvature R. It is important in what follows that the function ui is
independent of ϵ.

(As uniqueness is likewise important in our analysis, let us provide an argument: let
ũi and ûi be two solutions, rename the metric eûi ĥi to ĥi, then from ũi one obtains a
solution of (4.101) with R = R̂ = −2. Multiplying the resulting equation by ui and
integrating over ∂M one obtains�

|dui|2dµĥi
= 2

�
(1 − eui)uidµĥi

. (4.102)

Since the integrand of the right-hand side is negative except at ui = 0, we find ui ≡ 0,
hence ũi ≡ ûi.)

Uniqueness implies that ui is invariant under reflection across M̂i. Hence ui has
vanishing normal derivative on S1/i.

As ĥi is conformal to h0 on M̂i, there exists a function ûi so that we have
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ĥi = eûih0 (4.103)

on M̂i. Then the metric
eui+ûih0 (4.104)

defined on M̂i, has scalar curvature equal to minus two. The mirror-symmetric doubling
of ĥi across S1/i coincides with the metric h−1 on ∂M1.

Now, by construction, ûi is rotation-invariant near S1/i. The fact that S1/i is totally
geodesic is equivalent to the vanishing of the radial derivative of eûi/2ρ on S1/i:

0 = ∂ρ(eûi/2ρ)|S1/i
=⇒ ∂ρûi|S1/i

= −2i . (4.105)

From what has been said we have

∂ρui|S1/i
= 0 . (4.106)

Since h0 is flat, we conclude that the function

ωi := ui + ûi (4.107)

satisfies on M̂i the equation
∆h0ωi = 2eωi , (4.108)

with Neumann boundary data at the coordinate circle S1/i of radius 1/i centered at the
origin:

∂ρωi|S1/i
= −2i . (4.109)

Now, while the function ωi depends only upon i, the metric on M depends upon both
ϵ and i. This has the unfortunate consequence that the sign of the mass of M is not clear.
In what follows we will determine this sign for i large and ϵ small. For this, we need to
understand what happens with the mass integrand (4.80) when i tends to infinity and ϵ
tends to zero. The idea of the argument is to show that the sequence of functions ωi, or
at least a subsequence thereof, converges to a limit, with sufficient control of the limit
to guarantee control of the mass. The needed convergence result is perhaps contained
in [101], but it is not completely apparent to us that this is the case, so we provide a
direct argument, different from the one in [101].

The maximum principle shows that ωi has no interior maximum on the compact
manifold with boundary ∂M1 \ D(a) for a ∈ [1/i, 1], where D(a) denotes an open
coordinate disc of radius a lying on the boundary ∂M1 and centered at p.

Integrating (4.108) over M̂i and using (4.109) one finds�
M̂i

eωidµh0 = 2π (4.110)

which follows from Stokes’ theorem.
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We continue the proof of Theorem 4.3 with the (well known, cf. e.g. [60]) observation,
that solutions of the equation

∆ω = 2eω (4.111)

satisfy a comparison principle, which we formulate in the simplest form sufficient for our
purposes: If both ω and ω̂ satisfy (4.111) in a bounded domain Ω with boundary, and if
ω̂ > ω near the boundary, then ω̂ > ω on Ω. (This comparison is particularly useful with
functions ω̂ which tend to infinity when ∂Ω is approached.) Indeed, if ω is continuous
on the closure Ω̄ of Ω, the function ω − ω̂ is then negative near ∂Ω, and satisfies the
equation

∆h0(ω − ω̂) = 2eω − 2eω̂ . (4.112)

If ω > ω̂ somewhere, then ω − ω̂ would have a positive maximum at some point q ∈ Ω
away from the boundary. Since the function x �→ 2ex is increasing, the right-hand side of
(4.112) would be positive at q. But the left-hand side is nonpositive at a maximum, a
contradiction. We rephrase this loosely as

ω̂ > ω on ∂Ω =⇒ ω̂ > ω on Ω. (4.113)

For 0 < a < b let
Γ(a, b) := D(b) \ D(a) .

The comparison principle allows us to prove:

Lemma 4.6. On Γ(1/i, 1) it holds that

ewi ≤ eω∗,i :=
� π

log(i2) sin(π log ρ
log(i2))ρ

2
. (4.114)

Remark 4.7. On the circle ρ = 1/i we have

eω∗,i = π2i2

4 log2(i)
, (4.115)

which is unbounded in i, but the metric length ℓi of S1/i equals

ℓi = 1
i

�
φ∈[0,2π]

(eωi/2)|ρ=1/idφ ≤ 1
i

�
φ∈[0,2π]

(eω∗,i/2)|ρ=1/idφ = π2

log i
, (4.116)

so that ℓi approaches zero as i tends to infinity.

Proof of Lemma 4.6: The metric (compare (4.99))

eω∗,
√

th0 =
� π

| log t| csc(π log |z|
log |t| )

�2 |dz|2
|z|2 (4.117)
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has constant negative scalar curvature equal to −2. Furthermore, the circle S1/i is
minimal when t = i2:

∂ρ(ρe
ω∗,i

2 )|ρ=1/i = 0 . (4.118)

The conformal factor eω∗,i tends to infinity at ρ = 1/i2 and at ρ = 1.
The change of the complex variable z �→ w = −1/(i2z̄), where z̄ is the complex

conjugate of z, reproduces the metric on w ∈ Γ(1/i2, 1) and exchanges the regions
on both sides of the geodesic |z| = |w| = 1/i. Our doubled metric on ∂M is likewise
symmetric relatively to this geodesic. The conformal factor eωi , extended to ρ ∈ (1/i2, 1/i)
using the map just described, provides a smooth solution of the Yamabe equation (4.111)
on Γ(1/i2, 1) (compare the discussion around (4.98)). It takes finite values both at
ρ = 1/i2 and at ρ = 1. The result follows from the comparison principle.

Corollary 4.8. For any ρ1 ∈ (0, 1), there exists a constant ĉ = ĉ(ρ1) such that

ωi ≤ ĉ (4.119)

on M̂i \ D(ρ1), independently of i.

Proof. The inequality

ewi ≤ eω∗,i =
� π

log(i2) sin(π log ρ1
log(i2))ρ1

2 −→i→+∞
1

ρ2
1 log2(ρ1)

, (4.120)

shows that the ωi’s are bounded by a constant ĉ(ρ1) independently of i on S(ρ1) for
ρ1 ∈ (0, 1). The result follows from the maximum principle.

The corollary gives an estimation of the conformal factors from above. To prove
convergence of the sequence ωi, away from the puncture, we also need to bound the
sequence of conformal factors away from zero. The next lemma provides a first step
towards this. At its heart lies the inequality (4.123), which shows that the area does not
concentrate near the minimal geodesic S1/i. The parameter ε > 0 below should not be
confused with the parameter ϵ introduced by the exotic gluing of M1 with M2:

Lemma 4.9. For all ε > 0 sufficiently small and all i sufficiently large we have the
bounds

inf
∂M1\D(ε/2)

(ωi − log 2) ≤ log π

|∂M1 \ D(ε/2)|h0
≤ sup

∂M1\D(ε/2)
ωi , (4.121)

where |U |h0 denotes the h0 area of a set U , and note that the middle term is independent
of i.

Proof. We have �
Γ(a,b)

eω∗,idµh0 = −
2π2 cot

�
π log(ρ)
log(i2)


log(i2)

''''b
a

, (4.122)
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and note that

�
Γ(1/i,ε/2)

eω∗,idµh0 =
2π2 cot

�
π log(2/ε)

log(i2)


log(i2) →i→∞

2π

log(2/ε) →ε→0 0 . (4.123)

Equation (4.110) gives

2π =
�

M̂i

eωidµh0 =
�

∂M1\D(ε/2)
eωidµh0 +

�
Γ(1/i,ε/2)

eωidµh0 . (4.124)

The estimate (4.114) shows that�
Γ(1/i,ε/2)

eωidµh0 ≤
�

Γ(1/i,ε/2)
eω∗,idµh0 . (4.125)

Equation (4.123) shows that there exists ε0 such that for all 2/i < ε ≤ ε0 the last term
in (4.124) is in (0, π), which implies

π ≤
�

∂M1\D(ε/2)
eωidµh0 < 2π . (4.126)

The conclusion readily follows using�
∂M1\D(ε/2)

einf ωidµh0 ≤
�

∂M1\D(ε/2)
eωidµh0 ≤

�
∂M1\D(ε/2)

esup ωidµh0 . (4.127)

We continue with:

Lemma 4.10. There exists a smooth function

ω∞ : ∂M1 \ {p} → R (4.128)

such that a subsequence of {ωij }j∈N converges uniformly, together with any number of
derivatives, to ω∞ on every compact subset of ∂M1 \ {p}.

Proof. Let K be any compact subset of ∂M1 \ {p}, there exists ρK > 0 such that
K ⊂ ∂M1 \ D(ρK). It thus suffices to prove the result with K = ∂M1 \ D(ρK), which
will be assumed from now on.

Let K1 = ∂M1 \ D(ρK/2). Choosing ε < ρK/4 in Lemma 4.9 ensures that (4.121)
holds on K1 for all i ≥ i1 for some i1 < ∞. Let i ≥ i1, by Corollary 4.8 there exists a
constant c1, independent of i, such that

vi := −ωi ≥ c1 (4.129)

on K1. Define
v̂i := vi − c1 + 1 . (4.130)
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It holds that v̂i ≥ 1 on K1. Moreover, v̂i satisfies the equationa

∆h0 v̂i = ψiv̂i , (4.131)

where
0 ≥ ψi := −2e−vi

v̂i
≥ −2e−c1 . (4.132)

By Harnack’s inequality there exists a constant C1 = C1(K, K1) > 0 such that on K we
have

sup
K

v̂i ≤ C1 inf
K1

v̂i . (4.133)

This, together with the definition of v̂i, shows that

sup
K

vi ≤ C1 inf
K1

vi + d1 = C1(− sup
K1

ωi) + d1 , (4.134)

for some constant d1. Equation (4.121) gives

− sup
K1

ωi ≤ − ln π

|∂M1 \ D(ε/2)|h0
=: c2 , (4.135)

From (4.134) we obtain

sup
K

vi ≤ C1c2 + d1 =⇒ inf
K

ωi = − sup
K

vi ≥ −(C1c2 + d1) . (4.136)

This, together with (4.129), shows that that for every compact subset K of ∂M1 \ {p}
there exists a constant ĈK such that

−ĈK ≤ ωi ≤ ĈK . (4.137)

Elliptic estimates, together with a standard diagonalisation argument, show that there
exists a subsequence ωij which converges uniformly on every compact subset of ∂M1 \{p}
to a solution ω∞ of (4.108) on ∂M1 \ {p}. Convergence of derivatives follows again from
elliptic estimates.

We return to the proof of Theorem 4.3. Equation (4.110) shows that we can use [102]
to conclude that there exists α > −2 such that for small ρ we have

ω∞ = α log ρ + O(1) =⇒ eω∞ ∼ ρα , (4.138)

or
ω∞ = −2 log(−ρ log ρ) + O(1) =⇒ eω∞ ∼ ρ−2 log−2 ρ . (4.139)

Now, we claim that the case α ≥ 0 cannot occur in our context. Indeed, if (4.138) holds,
aWe are grateful to Yanyan Li for providing the argument leading to (4.134).
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integrating (4.111) over T2 \ D(p, δ) one finds, for i large enough,

0 < 2
�
T2\D(p,δ)

eωi dµh0 =
�
T2\D(p,δ)

∆ωi dµh0

= −
�

Sδ

∂ρωi dφ →i→∞ −2πα + O(δ) . (4.140)

Choosing δ sufficiently small, we conclude that

α ∈ (−2, 0) . (4.141)

We are ready now to analyse the mass of M . By construction, M is the union of
M1 \U1,1/i and M2 \U1,1/i, identified along the boundary h1,i. Since the metric is exactly
hyperbolic in U1,ϵ, the mass integrands vanish in U1,ϵ \ U1,1/i. Let mi,ϵ denote the mass
of either summand in (4.80). In space-dimension n = 3 we have

mi,ϵ = − lim
x→0

�
{x}×∂M1

Dj(ψiV1)(Rk
j − R

3 δk
j ) dσk

= − lim
x→0

�
{x}×(∂M1\D(ϵ))

Dj(ψiV1)(Rk
j − R

3 δk
j ) dσk , (4.142)

where
ψi = e−ωi/2 . (4.143)

We will need to estimate the derivatives of the functions ψi. As a step towards this,
for y ∈ D(4) \ D(1/2) we set

fi,ϵ(y) =
�

ωi(ϵy) − α log(ϵ|y|), under (4.138);
ωi(ϵy) + 2 log(−ϵ|y| log(ϵ|y|)), under (4.139). (4.144)

Each of the functions fi,ϵ satisfies on D(4) \ D(1/2) the equation

∆h0fi,ϵ =


2ϵ2+α|y|αefi,ϵ , under (4.138);

2efi,ϵ

|y|2(log(ϵ|y|))2 − 2
|y|2(log(ϵ|y|))2 , under (4.139). (4.145)

For every ϵ there exists i0(ϵ) such that the functions fi,ϵ are bounded uniformly in ϵ
and i for i ≥ i0. This leads to an estimate on the derivatives of fi,ϵ on D(2) \ D(1)
(see [103, Section 3.4]):

|∂fi,ϵ| + |∂∂fi,ϵ| ≤ C , (4.146)

for some constant C independent of ϵ and of i provided that i ≥ i0(ϵ).
In view of (4.142)-(4.143), we will need estimates for e−ωi/2. From (4.146) one obtains

on D(2ϵ) \ D(ϵ), for i ≥ i0(ϵ),

|∂Ae−ωi/2| ≤ Cϵ−1e−ωi/2 , |∂A∂Be−ωi/2| ≤ Cϵ−2e−ωi/2 , (4.147)
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for some possibly different constant C which is independent of ϵ and i when i ≥ i(ϵ).
Directly from [102], or replacing vi by v∞ in the argument just given, one finds

|∂Ae−ω∞/2| ≤ Cρ−1e−ω∞/2 , |∂A∂Be−ω∞/2| ≤ Cρ−2e−ω∞/2 , (4.148)

for possibly yet another constant C.
Equation (4.142) can be rewritten as

mi,ϵ = −2
�

∂M1\D(2ϵ)
Dj(ψiV1)(Rk

j − R

n
δk

j ) dσk� �� �
=:m̂i,ϵ

−2 lim
x→0

�
{x}×(D(2ϵ)\D(ϵ/2))

Dj(ψiV1)(Rk
j − R

n
δk

j ) dσk� �� �
=:(∗)

. (4.149)

We claim that the second line can be made arbitrarily small by choosing i sufficiently
large and ϵ sufficiently small. For this, we apply the divergence theorem on the set

Ωϵ := {0 ≤ x ≤ ϵ/100} × (D(2ϵ) \ D(ϵ/2)) .

Letting
Xk := (Rk

j − R

n
δk

j )Dj(ψiV1) , (4.150)

where ψi has been extended away from ∂M1 by requiring ∂rψi = 0, we have�
Ωϵ

DkXkdµg = (∗) +
�

Ωϵ∩{x=ϵ/100}
Xkdσk� �� �

=:a

+
�

[0,ϵ/100]×S2ϵ

Xkdσk� �� �
=:b

+
�

[0,ϵ/100]×Sϵ/2
Xkdσk� �� �

=:c

.

(4.151)
On [0, ϵ/100] × Sϵ/2 the metric is exactly hyperbolic, thus c = 0.
We will do the calculation that follows in general dimensions n ≥ 3. We will assume

(4.86) except that we require now

σ > n − 1
2 . (4.152)

Following [63] we define s via the inequality

σ > (n − 1)/2 + s for some s ∈ (n/2, (n + 1)/2) (4.153)

(actually s = n/2 is also allowed in [63] but we need s > n/2 in our calculations below).
We then have the following estimates in Ωϵ ( [23], see also [63, Remark 2.1]):

|g − b|b + |Db|b + |D2b|b = O(r−σ) + o(ϵσ−sr−s) ; (4.154)
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recall that D is the covariant derivative of g and r = 1/x. Let V̄ = ψir ≡ ψiV1. Then
dV̄ = ψidr + r∂AψidxA so that |dV̄ |b =

�
r2ψ2

i + |dψi|2h0
. We thus have

|dV̄ |b ≤ ψir + |dψi|h0 , (4.155)

and

|Ri
j − R

n
δi

j |b =


0, in the hyperbolic region;
O(r−σ) + o(εσ−sr−s), in the gluing region;
O(r−σ), elsewhere.

(4.156)

We are ready now to consider the integral b in (4.151). There we are in the last case of
(4.156) so that, setting x = 1/r, it holds

b =
�

[0,ϵ/100]×S2ϵ

O(xσ)
�
O(x−1)ψi + |dψi|h0

�
x1−n dx dn−2µ , (4.157)

where dn−2µ is the measure induced by h0 on S2ϵ. Convergence of the integral in x
requires σ > n−1 (which is satisfied in view of (4.152)), and after integration one obtains

b =
�

S2ϵ

O(ϵσ−n+1)
�
ψi + ϵ|dψi|h0

�
dn−2µ . (4.158)

Consider, next, the integral a in (4.151). At r = 100/ϵ we find, after taking into account
the measure induced by g,

a =
�

D(2ϵ)\D(ϵ/2)

�
O(ϵσ−n)ψi + O(ϵσ−n+1)|dψi|h0

�
dµh0 . (4.159)

We pass now to the analysis of the integral over Ωϵ. A calculation shows that

D̊D̊V̄ = V̄ b + r∂A∂Bψi dxAdxB (4.160)

(recall that D̊ is the covariant derivative of the metric b = dr2/r2 + r2h0), so that

|D̊D̊V̄ − V̄ b|b =

�
hAB

0 hCD
0 ∂A∂Cψi∂B∂Dψi

r
≡ |∂2ψi|h0

r
. (4.161)
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Thus, with the error terms for tensors in b-norm unless explicitly indicated otherwise,

DkDj V̄ = D̊kD̊j V̄ +
�
O(r−σ) + o(εσ−sr−s)

�
DV̄

= V̄ bkj + O(|∂2ψi|h0r−1) +
�
O(r−σ) + o(εσ−sr−s)

�
DV̄

= V̄
�
gkj + O(r−σ) + o(εσ−sr−s)

�
+ O(|∂2ψi|h0r−1)

+
�
O(r−σ) + o(εσ−sr−s)

��
ψir + |dψi|h0

�
= V̄ gkj + O(|∂2ψi|h0)r−1 + ψi

�
O(r1−σ) + o(εσ−sr1−s)

�
+|dψi|h0

�
O(r−σ) + o(εσ−sr−s)

�
. (4.162)

Next, the curvature scalar R is constant, which implies that DiR
i
j = 0 by the (twice

contracted) second Bianchi identity. We thus find

DkXk = (Rk
j − R

n
δk

j )� �� �
O(r−σ)+o(εσ−sr−s)

DkDj V̄

= (O(r−σ) + o(εσ−sr−s))(O(r1−σ) + o(εσ−sr−s+1))ψi

+(O(r−σ) + o(εσ−sr−s))(O(r−σ) + o(εσ−sr−s))|dψi|h0

+
�
O(r−σ−1) + o(ϵσ−sr−s−1)

�|∂2ψi|h0

= (O(r−2σ+1) + o(εσ−sr−s−σ+1) + o(ε2σ−2sr−2s+1))ψi

+(O(r−2σ) + o(εσ−sr−s−σ) + o(ε2σ−2sr−2s))|dψi|h0

+
�
O(r−σ−1) + o(ϵσ−sr−s−1)

�|∂2ψi|h0 . (4.163)

The requirement of convergence of the integral in r together with (4.153) leads to the
restriction n < 5. Assuming this, we find�

Ωϵ

DkXkdµg =
�

D(2ϵ)\D(ϵ/2)

�
O(ϵ2σ−n)ψi+O(ϵ2σ−n+1)|dψi|h0 +O(ϵσ−n+2)|∂2ψi|h0

�
dµh0 .

(4.164)
Collecting terms in (4.151) leads to the following form of (4.149)

mi,ϵ = m̂i,ϵ +
�

S2ϵ

O(ϵσ−n+1)
�
ψi + ϵ|dψi|h0

�
dn−2µ

+
�

D(2ϵ)\D(ϵ/2)

�
O(ϵσ−n)ψi + O(ϵσ−n+1)|dψi|h0 + O(ϵσ−n+2)|∂2ψi|h0

�
dµh0 .

(4.165)

Let η > 0 and ψ∞ = e−ω∞/2. If n = 3 (thus σ > 5/2), by (4.138)-(4.139), (4.141) and
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4. Positivity of Mass at Negative Cosmological Constant

(4.148) we can choose ϵ small enough so that�
S2ϵ

O(ϵσ−n+1)
�
ψi + ϵ|dψi|h0

�
dn−2µ

+
�

D(2ϵ)\D(ϵ/2)

�
O(ϵσ−n)ψ∞ + O(ϵσ−n+1)|dψ∞|h0 + O(ϵσ−n+2)|∂2ψ∞|h0

�
dµh0 < η/2 .

(4.166)

The function ψi tends uniformly on D(2ϵ) \ D(ϵ/2) to ψ∞ when i tends to infinity. This,
together with (4.147), shows that we can choose i large enough so that�

S2ϵ

O(ϵσ−n+1)
�|ψ∞ − ψi| + ϵ|dψ∞ − dψi|h0

�
dn−2µ

+
�

D(2ϵ)\D(ϵ/2)

�
O(ϵσ−n)|ψ∞ − ψi| + O(ϵσ−n+1)|d(ψ∞ − ψi)|h0

+O(ϵσ−n+2)|∂2(ψ∞ − ψi)|h0


dµh0 < η/2 . (4.167)

We conclude that the integral over the annulus D(2ϵ) \ D(ϵ/2) tends to zero as ϵ tends
to zero and i tends to infinity.

The above analysis of the mass can be summarised as follows:

Proposition 4.11. Suppose that for every η > 0 we can find i large enough so that
(4.166)-(4.167) hold. Then, when ϵ tends to zero and i tends to infinity the mass of each
summand of (M, g) tends to

− lim
x→0

�
{x}×∂M1

Dj(ψ∞V1)(Rk
j − R

n
δk

j ) dσk , (4.168)

where the limit exists and is finite.

By Remark 4.7 and Deligne-Mumford compactness (cf., e.g., [104, Proposition A.2,
Appendix A.1]) the metric eω∞h0 is the hyperbolic metric on the punctured torus. This
finishes the proof or Theorem 4.3.

Remark 4.12. For further reference, we comment on the possibility that the discrete
family of circles S1/i across which the doubling has been done is replaced by a continuous
family Sa, with a ∈ (0, a0) for some a0 > 0, with associated family of solutions ωa.
The only place in our arguments above where the discrete character of the parameter
a matters is the extraction of a diagonal subsequence so that the solutions converge to
a limiting function. For this we take any sequence ai converging to zero, so that the
resulting sequence ωai has a subsequence ωaij

converging to a limiting function, say
ω{aij

}, on compact subsets of T2 \ {p}. By what has been said the metric e
ω{aij

}
h0 is

the unique hyperbolic metric on T2 \ {p} with puncture at p, hence is independent both
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Figure 4.6.: Two punctured tori, connected by a thin neck. In the limit i → ∞ the necks become longer
and longer with circumferences shrinking to zero.

of the sequence aij and of the sequence ai. Setting ω∞ := ω{aij
}, it is then standard to

show that ωa converges to ω∞ on any compact subset of T2 \ {p} as a tends to zero, and
depends continuously on a on any compact subset of T2 \ {p} in C∞, with the length of
the minimizing geodesic in the middle of the connecting neck depending continuously
upon a, and with the mass of (M, g) depending continuously upon a.

It is of interest to enquire about the shape of the glued boundary-manifold. From what
has been said the metric on the conformal boundary converges (uniformly on compact sets
away from the puncture) to the cusp metric on each of the two copies of the punctured
torus (cf. Figure 4.5), with asymptotic behavior near the puncture approximated by
(compare [105])

1
ρ2 log2(ρ)

(dx2 + dy2) = 1
ρ2 log2(ρ)

(dρ2 + ρ2dφ2) . (4.169)

Since � 1
ρ log ρ

dρ = log(− log ρ) →ρ→0 ∞ , (4.170)

the connecting necks become longer and longer, with a circumference ≈ 2π/| log ρ| =
2π/ log i tending to zero when i → ∞, see Figure 4.6.

4.7.2. Higher genus
It should be clear that one can iterate the construction of the last section to obtain
three-dimensional conformally compact ALH manifolds without boundary, with constant
scalar curvature, negative mass, and a conformal infinity of arbitrary genus. One possible
way of doing this proceeds as follows: Let (M1, g1) be a three-dimensional ALH metric
with constant scalar curvature and toroidal boundary at infinity. Let N ∈ N and let
{pi}N

i=1 be a collection of points lying on the conformal boundary ∂M1 of M1. Let Ui be
any pairwise-disjoint family of coordinate half-balls of coordinate radius ϵi centered at the
points pi. Let (M2, g2) be another ALH manifold with the same asymptotic behaviour
and identical conformal geometry at infinity; e.g., an identical copy of (M1, g1). The
manifold (M, g) is taken to be a boundary-gluing of (M1, g1) with (M2, g2), where each
Ui ⊂ M1 is glued with its partner in M2 in a symmetric way; Figure 4.8 illustrates what
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4. Positivity of Mass at Negative Cosmological Constant

Figure 4.7.: The symmetry ψ is a reflection across the vertical plane passing through the center of the
figure. The gluing is done at the discs, whose boundaries become closed geodesics on the
boundary, indicated in red in the figure. The construction is symmetric under the reflection
across the horizontal plane passing through the center of the figure.

happens at the conformal boundary at infinity. Solving the Yamabe equation on ∂M ,
for j ∈ N one obtains a function ωj on

M̂j := ∂M1 \ � ∪N
i=1 D(pi, 1/j)

�
(4.171)

such that the constant-Gauss-curvature representative of the conformal metric on ∂M
equals

eωj h0 . (4.172)

This leads to the integral identity�
M̂j

eωj dµh0 = 2Nπ . (4.173)

The analysis of Section 4.7.1 applies near each of the punctures pi. Letting m(ϵ1, · · · , ϵN , j)
denote the mass of (M, g) we conclude that if we started with a Horowitz-Myers metric
we will have

m(ϵ1, · · · , ϵN , j) < 0 (4.174)

for all j larger than j0, for some j0 that depends upon max ϵi.
From (4.173) we find

|∂M |h−1 = 2
�

M̂j

eωj dµh0 = 4Nπ . (4.175)
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Figure 4.8.: The gluing is done at the discs, whose boundaries become closed geodesics on the boundary,
indicated in red in the figure. The construction is symmetric under the reflection across
the horizontal plane passing through the center of the figure.

Equivalently, since the scalar curvature Rh−1 of the metric h−1 equals −2 we have

4πχ(∂M) =
�

∂M
Rh−1dµh−1 = −4

�
M̂j

eωj dµh0 = −8Nπ , (4.176)

which shows that χ(∂M) = −2N , and thus ∂M has genus N + 1.
A variation of the above is the following: Let ψ : ∂M1 → ∂M1 be an isometry of

(M1, h0) such that ψ ◦ ψ is the identity map. Let N be even, say N = 2N̂ , and suppose
that the collection {pi}N

i=1 of N distinct points on ∂M1 takes the form {qi, ψ(qi)}N̂
i=1. We

can then pairwise glue, as above, neighborhoods of the points qi with neighborhoods of
their ψ-symmetric partners ψ(qi). Thus ∂M is obtained by adding to ∂M1 a family of
N̂ necks connecting the points qi and ψ(qi); see Figure 4.7.

Let M1 be the Horowitz-Myers instanton. If we choose ψ and the necks in a way
compatible with the constructions described in Section 4.7.1, one obtains a family of
ALH manifolds with constant scalar curvature, with conformal infinity of genus N̂ + 1,
with masses m(ϵ1, · · · , ϵN̂ , j) which are negative for j large enough.

4.8. A lower bound on mass?
It has been conjectured [20, 62] that the Horowitz–Myers instantons have the lowest
mass within the class of ALH manifolds without boundary and with the same conformal
metric at their toroidal infinity. If it were true, that the mass for conformally compact
three-dimensional manifolds with constant scalar curvature and toroidal infinity can
be arbitrarily negative at fixed conformal class at infinity, then our construction would
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4. Positivity of Mass at Negative Cosmological Constant

provide higher-genus constant-scalar-curvature metrics which have arbitrarily negative
mass at fixed conformal class at infinity.

As such, one can envision a construction that cuts a metric with conformal infinity of
higher genus into pieces, producing a finite number of ALH metrics with toroidal infinity
which would assemble together to the original one by a boundary-gluing in the spirit of
this work. The validity of the Horowitz–Myers conjecture would then provide a lower
bound for the mass of each summand. It is thus tempting to formulate the following
conjecture

Conjecture 4.13. Let (M, g) be an n-dimensional conformally compact ALH manifold,
without boundary with well defined mass m and with scalar curvature satisfying R ≥
−n(n − 1). There exists a constant m0, which depends only upon the conformal class
of the metric at infinity and which is negative if this conformal class is not that of the
round sphere, such that

m ≥ m0 . (4.177)

It is also tempting to conjecture existence of unique static metrics as above which
saturate the inequality if m0 is optimal.
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5. Conclusions

In this thesis, we have investigated aspects of general relativity with negative cosmological
constant in three and four spacetime dimensions. In chapter 3, we focused on a particular
solution to Einstein gravity with negative cosmological constant, the BTZ black hole,
and showed that it can be visualized using projection diagrams [24], introduced in this
thesis in chapter 2. Indeed, the diagrams provided in [35] are precisely such projection
diagrams. We argued why slices of the BTZ black hole do not provide a meaningful
representation of the causal structure of the three-dimensional spacetime.

Projection diagrams were also used to visualize the causal structure of a different class
of spacetimes, so-called warped flat spacetimes [1]. It was shown that the quotients of
warped flat space studied in [22] do not describe black hole solutions, contrary to claims
made in that paper. As projection diagrams do not rely on the existence of a conformal
completion, we do not conformally complete warped flat spacetimes to study their causal
structure. Preliminary calculations based on the asymptotic behavior of geodesics strongly
suggest that the asymptotic boundary is null and that a conformal completion does
not exist. It would be of interest to prove non-existence of the conformal completion of
warped flat spacetimes and prompt a similar study for warped dS3 and warped AdS3
spacetimes. Quotients of warped AdS3 and warped flat space appear in the near horizon
region of extremal Kerr (dS) black holes and boundary conditions encompassing these
spacetimes have been studied extensively for AdS/CFT applications. We expect that
clarifying these issues will shed further light on the geometry of extremal black holes and
prove useful for the study of boundary conditions and asymptotic symmetries.

At the end of chapter 3, we discussed how a microstate counting of the (2 + 1)-
dimensional BTZ black hole can be performed based on the asymptotic symmetry analysis
of Brown and Henneaux [21] and the assumption that the phase space of quantum gravity
falls into representations of this algebra [13]. For this microstate counting to work,
the energy of asymptotically AdS3 spacetimes has to be bounded from below. Results
supporting this statement were provided in [50], where positivity of energy is studied using
coadjoint orbits. While in higher dimensions many positive energy theorems are available
in the mathematical general relativity literature, we do not know of any literature (aside
from [50]) covering the case of spacetime dimension three with negative cosmological
constant. It would be of interest to formulate a theorem for the case of (2 + 1) dimensions
similar to the ones available in higher dimensions. I plan to focus on this question in the
near future.

The status of positive energy theorems for general relativity in space dimension greater
or equal to three was reviewed in chapter 4 with a particular focus on the Horowitz–Myers
conjecture and its connection to the AdS/CFT correspondence. We provide the results
of [2], where a formula for the energy of asymptotically locally hyperbolic (ALH) manifolds
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5. Conclusions

obtained by a gluing at infinity of two ALH manifolds was derived. As an application, we
showed that there exist three-dimensional conformally compact ALH manifolds without
black hole boundary with connected conformal infinity of higher genus, constant negative
scalar curvature and negative mass. Such spaces were not known to exist previously.
Recall that the mass is normalized with respect to locally hyperbolic space, which then
per definition has mass zero. While this does not provide a lower bound on the energy of
ALH manifolds with higher genus conformal infinity, it shows that in space dimension
three the lower bound is not provided by locally hyperbolic space. Employing a putative
AdS/CFT correspondence, proofing (or falsifying) the existence of a lower bound on the
energy of ALH spaces, would put constraints on conformal field theories on higher genus
surfaces. It would be of interest to use the gluing construction of [23] and the results
from [2] to construct ALH spaces of a given topology and mass, which could be used
to put further constraints on table 4.1. A particular example, currently in progress, is
the construction of three-dimensional conformally compact ALH manifolds with toroidal
black hole boundary, connected conformal infinity of higher genus, constant negative
scalar curvature and negative mass.

I hope to have convinced the reader that the study of general relativity on negatively
curved spacetimes is a fruitful endeavor with many mysteries to be unraveled — amongst
them the positivity of energy and its implications on the AdS/CFT correspondence.
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A. Warped Spacetimes as
pseudo-Riemannian submersions

In this appendix the origin of the terminology warped AdS3, warped dS3 and warped
flat space is explained. According to [106] AdS3 can be written “as a kind of Hopf
fibration” over AdS2. As already discussed in the main text in subsection 3.5.2 the
suitable mathematical terminology is pseudo-Riemannian submersion.

Definition A.1. Submersion
If π : M → B is a smooth map, we have the push-forward π∗ : TM → TB. If π∗ is
surjective at every point, we say that π is a (smooth) submersion.

Definition A.2. Riemannian Submersion
Let (M, g) and (B, h) be Riemannian manifolds. A Riemannian submersion π : M → B is
a surjective submersion from one Riemannian manifold to another satisfying that the push-
forward π∗ : TM → TB preserves the length of horizontal vectors: π∗ : ker(π∗)⊥ → TB
is an isometry.

The definition of a Riemannian submersion can be extended to pseudo-Riemannian
manifolds. In the examples below, we have that (M, g) is warped AdS3, warped dS3 and
warped flat space, while (B, h) is AdS2, dS2 and R1,1.

Warped AdS3 Space
We start with warped AdS3 space (M, g) with metric

g = 1
ν2 + 3ϵ

�
− cosh2 σdτ2 + dσ2 + 4ν2

ν2 + 3ϵ
(dy + sinh σdτ)2

�
. (A.1)

The first two terms in the bracket comprise AdS2 space (B, h) with metric

h = 1
ν2 + 3ϵ

�
− cosh2 σdτ2 + dσ2


(A.2)

and curvature R = −6ϵ + 2ν2. We now check explicitly whether π : M → B, (y, σ, τ) �→
(σ, τ) is a pseudo-Riemannian submersion. We have

ker(π∗) = span{∂y} (A.3)

and
ker(π∗)⊥ = {v|g(∂y, v) = 0} = span{∂σ, − sinh σ∂y + ∂τ } . (A.4)
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A. Warped Spacetimes as pseudo-Riemannian submersions

Now, π is a pseudo-Riemannian submersion if π∗ : ker(π∗)⊥ → TB is an isometry. Since

g(∂σ, ∂σ) = 1
ν2 + 3ϵ

= h(∂σ, ∂σ) , (A.5)

g(− sinh σ∂y + ∂τ , − sinh σ∂y + ∂τ ) = − 1
ν2 + 3ϵ

cosh2 σ = h(∂τ , ∂τ ) , (A.6)

g(− sinh σ∂y + ∂τ , ∂σ) = 0 = h(∂τ , ∂σ) . (A.7)

the map π : WAdS3 → AdS2, (y, σ, τ) �→ (σ, τ) is a pseudo-Riemannian submersion.

Warped dS3 Space
Warped dS space (M, g) is given by

g = 1
3 − ν2

�
−dσ2 + sinh2(σ)dτ2 + 4ν2

ν2 − 3(dy + cosh(σ)dτ)2
�

. (A.8)

The relation to the coordinates in the main text (3.131) is given by

r = cosh(σ) . (A.9)

The first two terms in the bracket comprise dS2 space (B, h) with metric

h = 1
3 − ν2

�
−dσ2 + sinh2(σ)dτ2


. (A.10)

and curvature R = 6 − 2ν2. The map π : M → B, (y, σ, τ) �→ (σ, τ) is a pseudo-
Riemannian submersion since

ker(π∗) = span{∂y} (A.11)

and
ker(π∗)⊥ = {v|g(∂y, v) = 0} = span{∂σ, − cosh σ∂y + ∂τ } (A.12)

yields

g(∂σ, ∂σ) = − 1
3 − ν2 = h(∂σ, ∂σ) , (A.13)

g(− cosh σ∂y + ∂τ , − cosh σ∂y + ∂τ ) = 1
3 − ν2 sinh2(σ) = h(∂τ , ∂τ ) , (A.14)

g(− cosh σ∂y + ∂τ , ∂σ) = 0 = h(∂τ , ∂σ) . (A.15)

Warped Flat Space
Warped flat space (M, g) reads

g = −dτ2 + dx2 + 12(dy + xdτ)2 (A.16)
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and B = R1,1

h = −dτ2 + dx2 . (A.17)

The map π : M → B, (τ, x, y) �→ (τ, x) is a Riemannian submersion since

ker(π∗) = span{∂y} (A.18)

and
ker(π∗)⊥ = span{∂τ − x∂y, ∂x} , (A.19)

which yields

g(∂τ − x∂y, ∂τ − x∂y) = −1 = h(∂τ , ∂τ ) , (A.20)
g(∂τ − x∂y, ∂x) = 0 = h(∂τ , ∂x) , (A.21)

g(∂x, ∂x) = 1 = h(∂x, ∂x) . (A.22)
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B. A punctured torus
This appendix is from [2] (co-
authored with Piotr Chruściel and
Erwann Delay)

In this appendix, we review some inequalities for the simplest hyperbolic one-punctured
torus which are used in the main text to provide a rough upper and lower bound on the
mass. Recall that the model for the cusp (at t = −∞ or ρ = 0) is :

dt2 + e2tdφ2 = 1
ρ2 log2(ρ)

(dρ2 + ρ2dφ2), (B.1)

with e−t = − log(ρ). Here the Gauss curvature is −1, thus the Ricci scalar equals −2.
The simplest hyperbolic one-punctured torus, also called “the hyperbolic torus with
one cusp”, is (R2\Z2)/Z2 with a hyperbolic metric. Let us use the notation of [107]
(keeping in mind a different scaling of the hyperbolic metric there) in order to compare
the hyperbolic metric and the flat metric on this torus. For a domain D in C, the
complete hyperbolic metric on D with Gauss curvature equal to −1, as obtained using
the Riemann mapping theorem applied to the universal covering space, is denoted by
4ρ2

D(z)|dz|2. If D ⊂ D′ then by the comparison principle (4.113), also known as the
Nevanlinna principle, we have ρD ≥ ρD′ . Let us set

D0 = Ĉ\{0, 1, ∞} , D∗ = B(0, 1)\{0} , Z[i] = {m+in , m, n ∈ Z} = Z2 , D̃ = C\Z[i] .
(B.2)

Because D∗ ⊂ D̃ ⊂ D0, by the inequality of [108] (see, e.g. [107], inequality (1.2)) we
have

1
|z|(| log(|z|)| + C1) ≤ 2ρD0(z) ≤ 2ρD̃(z) ≤ 2ρD∗(z) = 1

|z|| log(|z|)| , (B.3)

where C1 = Γ(1/4)4/4π2 ∼ 4.37688.
Let p : C −→ T0 = C/Z[i] be the canonical projection and denote by [z] = p(z)

the equivalence class of z. Let D = T0\{[0]}, then D is proper subdomain of T0 and
p−1(D) = D̃. On D, ρD([z]) = ρD̃(z) is well defined. This defines the “hyperbolic density”
ρX0 on X0 = D̃/Z[i], which is the simplest one-punctured hyperbolic torus.

Because of the symmetries of D̃, the inequalities (B.3) on {z = x + iy, x, y ∈
[−1/2, 1/2]}\{0} provide an estimate of ρX0 throughout X0.
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It follows from (B.3) that near the origin we have

2ρD̃ = 1
|z|| log(|z|)|


1 + O( 1

| log(|z|)|)


. (B.4)

Note also that by [107] the minimum of ρX0 is attained at 1+i
2 and is given by his

formula (1.3):

inf 2ρX0 = 4π3/2

Γ(1/4)2 ≈ 1.695 . (B.5)
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C. Static KIDs
This appendix is from [2] (co-
authored with Piotr Chruściel and
Erwann Delay)

In this appendix, we find all static potentials or equivalently static Killing Initial Data
(KIDs), introduced in section 2.3, for the Birmingham–Kottler metric and the Horowitz–
Myers metric in (n+1)-dimensions. We start by computing the KIDs for the Birmingham–
Kottler metric (C.1). We find that for mc ̸= 0 and n ̸= 2 the solution to the KID equations
is given by (C.44). Otherwise, the solution to the KID equations takes the form (C.26).
For mc = 0 and n ̸= 2 β is of the form (C.35) or (C.36) and Ω is a solution to the
differential equations (C.37). In the case n = 2, the function β is of the form (C.46)
or (C.47) and Ω takes the form (C.49). Next, we consider the Horowitz–Myers metric
(C.50), which for mc = 0 is of Birmingham–Kottler type. For mc ≠ 0 we have that the
solution to the KID equation is given by (C.75).

Birmingham–Kottler
The Birmingham–Kottler metric in (n + 1)-dimensions, n ≥ 2, which we denote by g̃,
reads

g̃ = −f(r)dt2 + 1
f(r)dr2 + r2̊hABdxAdxB , (C.1)

where h̊AB = h̊AB(xC) where A, B = 1, ...n − 1, and with

f(r) = r2 + k − 2mc

rn−2 (C.2)

and
R(̊h) = k(n − 1)(n − 2) , k ∈ {0, ±1} . (C.3)

For n = 2, R(̊h) vanishes and thus we set k = 0 without loss of generality and obtain

f(r) = r2 − 2mc . (C.4)

The metric (C.1) fulfills the Einstein equations with negative cosmological constant

Λ = −n(n − 1)
2 . (C.5)
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Using this normalisation of Λ, the Einstein equations read

Rab(g̃) = −ng̃ab , R(g̃) = −n(n + 1) , (C.6)

where a, b run from 1, ..., n + 1. To compute the KIDs we need the Ricci scalar and the
Ricci tensor of the spatial part of g̃, which we denote as g in what follows. These can be
obtained from the Gauss-Codazzi equation [6]

Rabcd(g) = R∥
abcd(g̃) − KacKbd + KbcKad . (C.7)

where Kab is the extrinsic curvature of the level sets of t (zero in our case)

Kab = ga
cD̃cñb , (C.8)

with ña being the normal one-form with the normalization chosen such that ñaña = −1.
The superscript “∥” means that the respective tensor is projected to the submanifold, e.g.
R∥

abcd(g̃) = ga
egb

f gc
ggd

hRefgh(g̃). Contracting with gac we obtain

Rab(g) = R∥
ab(g̃) +

�
Rcadb(g̃)ñcñd

∥ − KKab + KacK
c
b (C.9)

with [7, p. 518] �
Rcadb(g̃)ñcñd

∥
= −LñKab + KacK

c
b + D(aab) + aaab , (C.10)

where aa = ñbD̃bña, Da denotes the covariant derivative of the metric g, such that

Rab(g) = R∥
ab(g̃) − LñKab + 2KacK

c
b − KKab + D(aab) + aaab . (C.11)

The normal one-form to t = const. surfaces reads

ñ =
 

fdt (C.12)

such that ñag̃abñb = −1 . Finally,

g̃ab = gab − ñañb (C.13)

yielding that in coordinates t, r, xA, the tensor field g reads

gab =

0 0 0
0 1/f(r) 0
0 0 r2̊hAB

 , ga
b =

0 0 0
0 1 0
0 0 1AB

 (C.14)
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The only-nonvanishing Christoffel symbols (up to symmetries) are

Γ̃t
tr = ∂rf

2f
, Γ̃r

rr = −∂rf

2f
, Γ̃r

tt = −f∂rf

2 , Γ̃r
AB = −r̊hABf(r) , (C.15)

Γ̃C
rA = δC

A

r
, Γ̃C

AB = 1
2 h̊CD

�
∂Ah̊BD + ∂Bh̊AD − ∂Dh̊AB


. (C.16)

As already mentioned, in our case all components of Kab vanish, so that the expression
of the Ricci tensor of the constant t submanifold (C.11) simplifies to

Rab(g) = R∥
ab(g̃) + D(aab) + aaab . (C.17)

with a = ardr given by
ar = ñtD̃tñr = 1

2f
∂rf (C.18)

and

Drar = − 1
4f2 (∂rf)2 + 1

2f
∂r∂rf , DAaB = ∂rf

2 r̊hAB . (C.19)

The only non-vanishing components of the Ricci tensor of the metric induced on the
submanifolds of constant t are

Rrr = −n

f
+ 1

2f
∂r∂rf , RAB =


−nr2 + ∂rf

2 r

̊
hAB (C.20)

and thus
R = Rrrgrr + RABgAB = −n(n − 1) , (C.21)

where we have used the explicit form of f(r). Now we consider the KID equation

Aij := DiDjV − V


Rij − R

n − 1gij


= DiDjV − V (Rij + ngij) = 0 (C.22)

where i, j ∈ 1, ...n − 1. We have that

Arr = ∂r∂rV + 1
2f

∂rf∂rV − V

2f
∂r∂rf = 0 , (C.23)

ArA = ∂r∂AV − δA
C

r
∂CV = ∂r∂AV − 1

r
∂AV = 0 , (C.24)

AAB = ∂A∂BV − ΓC
AB∂CV + r̊hABf∂rV − V ∂rf

2 r̊hAB = 0 . (C.25)

Integrating the second equation in r we have that

V (r, x1, ..., xn−1) = β(r) + rΩ(x1, ...xn−1) , (C.26)
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for some functions β and Ω. Plugging (C.26) into Arr we find

Ω(x1, ...xn−1)(∂rf − r∂r∂rf)
f

+ ∂rf∂rβ − β∂r∂rf + 2f∂r∂rβ

f
= 0 . (C.27)

Thus, the differential equation can only be fulfilled if either Ω(x1, ...xn−1) is constant,
which can then be taken to be zero without loss of generality, or if

∂rf − r∂r∂rf ≡ 2mc(n − 2)nr1−n = 0 , (C.28)

which can only be fulfilled if mc = 0 or n = 2.
The remaining part of (C.27) reads

∂rf∂rβ − β∂r∂rf + 2f∂r∂rβ = 0 . (C.29)

Changing the dependent variable β to

β(r) =
�

f(r)β2(r) (C.30)

we can solve the differential equation

3∂rf∂rβ2 + 2f∂r∂rβ2 = 0 (C.31)

explicitly
β2(r) = c̃ − ĉ

�
dr

f(r) 3
2

, (C.32)

which yields
β(r) = c̃

�
f(r) − ĉ

�
f(r)

�
dr

f(r) 3
2

. (C.33)

C.0.1. mc = 0, n ̸= 2
In the case mc = 0 the function f reduces to

f(r) = r2 + k , (C.34)

and (C.33) readily integrates to

β(r) = − ĉr

k
+ c̃

 
r2 + k (C.35)

if k ̸= 0, and to

β(r) = ĉ

2r
+ c̃r (C.36)
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if k = 0. The differential equations (C.25) reduce to

DADBΩ ≡ ∂A∂BΩ − ΓC
AB∂CΩ = h̊AB(ĉ − kΩ) . (C.37)

This is an overdetermined system of equations, and all triples (M, h̊, Ω) satisfying (C.37),
where Ω ̸≡ 0 and (M, h̊) is a complete Riemannian manifold, were classified in [109]. In
the special case

h̊ABdxAdxB = dψ2 +
�
dθ1

2
+ ... +

�
dθn−2

2
(C.38)

the constant k is zero and all Christoffel symbols of the boundary metric h̊ vanish, so
that (C.37) becomes

∂A∂BΩ = ĉ δAB . (C.39)

We find

V (r) = c̃r + ĉ

2r
+ r

�
cψ + ĉ

ψ2

2

�
+ r

n−2%
I=1

cIθI + ĉ
|θ|2
2 , (C.40)

where c and cI are constants .

mc ̸= 0, n ̸= 2
In the generic case mc ̸= 0 the function Ω(x1, ...xn−1) = 0 and the function V reduces to

V (r, x1, ...xn−1) = β(r) = c̃
�

f(r) − ĉ
�

f(r)
�

dr

f(r) 3
2

. (C.41)

The final set of equations that needs to be solved is (C.25), which in this case reduces to

AAB = r̊hABf∂rV − V ∂rf

2 r̊hAB = 0 . (C.42)

Contracting with h̊AB yields
rf∂rV − V ∂rf

2 r = 0 (C.43)

which implies that ĉ = 0 and thus

V (r, x1, ..., xn−1) = c̃
�

f(r) . (C.44)

n = 2
As already discussed, in the case n = 2 the function f(r) reduces to

f(r) = r2 − 2mc , (C.45)
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which has the same functional form as (C.34) but with k in (C.34) now being replaced
by −2mc. Again, (C.33) thus readily integrates to

β(r) = ĉr

2mc
+ c̃

 
r2 − 2mc (C.46)

if mc ̸= 0, and to
β(r) = ĉ

2r
+ c̃r (C.47)

if mc = 0. The differential equations (C.25) reduce to just one differential equation as
the boundary metric is one-dimensional

DADAΩ = h̊AA(ĉ + 2mcΩ) (C.48)

with A = 1. In a coordinate system x1 = ψ in which h̊11 equals 1 the solutions are

Ω =


ĉ
2ψ2 + aψ + b, mc = 0;
ae

√
2mcψ + be−√

2mcψ − ĉ
2mc

, mc > 0;
a sin(

√−2mcψ) + b cos(
√−2mcψ) − ĉ

2mc
, mc < 0,

(C.49)

with constants a, b ∈ R.

Horowitz–Myers
We consider the Horowitz–Myers metrics

ds2 = 1
f(r)dr2 + f(r)dψ2 + r2

�
−dt2 + (dθ1)2 + (dθ2)2 + ... + (dθn−2)2


(C.50)

with
f(r) = r2 − 2mc

rn−2 , (C.51)

and n ≥ 2. The metric on constant time slices reads

gijdxidxj = 1
f(r)dr2 + f(r)dψ2 + r2

�
(dθ1)2 + (dθ2)2 + ... + (dθn−2)2


. (C.52)

The indices i, j run from 1 to n. The only non-vanishing Christoffel symbols (up to
symmetries) for (C.52) are

Γr
rr = −∂rf

2f
, Γr

ψψ = −f∂rf

2 , Γr
θIθI = −rf , Γψ

ψr = ∂rf

2f
, ΓθI

θIr = 1
r

.

(C.53a)
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Next,

DiDjV (r, ψ, θ1, ...θn−2) = ∂i∂jV (r, ψ, θ1, ...θn−2) − Γk
ij∂kV (r, ψ, θ1, ...θn−2) . (C.54)

yields

DrDrV = ∂r∂rV + 1
2f

∂rf∂rV , DrDψV = ∂r∂ψV − 1
2

∂rf

f
∂ψV , (C.55a)

DrDθI V = ∂r∂θI V − 1
r

∂θI V , DψDψV = ∂ψ∂ψV + 1
2f∂rf∂rV , (C.55b)

DψDθI V = ∂ψ∂θI V , DθI DθJ V = ∂θI ∂θJ V + rf∂rV δIJ , (C.55c)

where I, J run from from 1 to n − 2. The only non-vanishing components of the Riemann
tensor

Rijk
l = ∂jΓl

ik − ∂iΓl
jk +

�
Γm

ikΓl
mj − Γm

jkΓl
mi


(C.56)

read (up to the ones obtained from antisymmetry in the first index pair)

Rrψr
ψ = −∂r∂rf

2f
, Rrψψ

r = −f∂r∂rf

2 , RrθIr
θI = −∂rf

2fr
, RrθIθI

r = r∂rf

2 ,

(C.57a)

RψθIψ
θI = −f∂rf

2r
, RψθIθI

ψ = r∂rf

2 , RθIθJ θI
θJ = −f with I ̸= J .

(C.57b)

From this we obtain that the only non-vanishing components of the Ricci-tensor

Rij = Rikj
k (C.58)

read

Rrr = −∂r∂rf

2f
− (n − 2)

2
∂rf

rf
, Rψψ = −1

2f∂r∂rf − (n − 2)
2

f∂rf

r
, (C.59a)

RθIθI = −(n − 3)f − r∂rf . (C.59b)

This leads to
R = −n(n − 1) . (C.59c)

The KID equations,

Aij := DiDjV − V


Rij − R

n − 1gij


= DiDjV − V (Rij + ngij) = 0 , (C.59d)
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thus become

Arr = ∂r∂rV + 1
2f

∂rf∂rV − V


−∂r∂rf

2f
− (n − 2)

2
∂rf

rf
+ n

f


= 0 , (C.60a)

Arψ = Aψr = ∂r∂ψV − 1
2

∂rf

f
∂ψV = 0 , (C.60b)

ArθI = AθIr = ∂r∂θI V − 1
r

∂θI V = 0 , (C.60c)

Aψψ = ∂ψ∂ψV + 1
2f∂rf∂rV − V


−1

2f∂r∂rf − (n − 2)
2

f∂rf

r
+ nf


= 0 , (C.60d)

AψθI = ∂ψ∂θI V = 0 , (C.60e)

AθIθJ = ∂θI ∂θJ V + δIJ

�
rf∂rV − V

�−(n − 3)f − r∂rf + nr2�
= 0 . (C.60f)

Solving (C.60e) and (C.60f) with I ̸= J we obtain

V (r, ψ, θ1, ...θn−2) = α(r, ψ) + α1(r, θ1) + α2(r, θ2) + ... + αn−2(r, θn−2) . (C.61)

Plugging this into the equation (C.60c) we get that

αI(r, θI) = βI(r) + rγ̂I(θI) . (C.62)

Solving (C.60b) yields
α(r, ψ) = β̃(r) +

�
f(r)γ̂(ψ) . (C.63)

Setting β(r) = β̃(r) + &n−2
I=1 βI(r) we have

V (r, ψ, θ1, ...θn−2) = β(r) +
�

f(r)γ̂(ψ) + r
n−2%
I=1

γ̂I(θI) , (C.64)

with the last term omitted when n = 2. From (C.60f) we obtain (by pairwise substraction)

∂θI ∂θI V = ∂θJ ∂θJ V (C.65)

for any I, J which is equivalent to

∂I∂I γ̂I(θI) = ∂J∂JγJ(θJ) . (C.66)

such that (the θI -independent integration constant can be absorbed into β(r))

V (r, ψ, θ1, ...θn−2) = β(r) +
�

f(r)γ̂(ψ) + rcIθI + r
ĉ

2 |θ|2 . (C.67)
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We turn now our attention to the equation

Aψψ − f(r)2Arr = 0 = ∂ψ∂ψV − f2∂r∂rV

= 1
4

�
f(r)

�
γ̂(ψ)

�
(∂rf)2 − 2f∂r∂rf


− 4f

3
2 ∂r∂rβ + 4∂ψ∂ψγ̂


, (C.68)

from which we find

γ̂(ψ)
�
(∂rf)2 − 2f∂r∂rf


+ 4∂ψ∂ψγ̂ = 4f

3
2 ∂r∂rβ . (C.69)

For the function f(r) = r2 − 2mc
rn−2 we have�

(∂rf)2 − 2f∂r∂rf


= 4nmcr
2−2n((−1 + n)rn − (−2 + n)mc) . (C.70)

If mc = 0 the spatial parts of the toroidal Kottler and the Horowitz–Myers metrics
coincide, and this case has already been solved in section C.0.1. In the case mc ≠ 0 and
n ̸= 2 we see from (C.70) that γ̂(ψ) has to be a constant. This constant is irrelevant as it
can be absorbed by a redefinition of β(r), which is why we set it to zero in the following.
Equation (C.69) then reduces to

∂2
r β = 0 . (C.71)

Hence, we have β(r) = rc̃1 + c̃2 which yields

V (r, ψ, θ1, . . . , θn−2) = rc̃1 + c̃2 + rcIθI + r
ĉ

2 |θ|2 . (C.72)

Plugging this into the equation (C.60a), Arr = 0, together with the explicit form of f(r)
we obtain

Arr = −(rn + (−2 + n)mc)
r2(rn − 2mc)

c̃2 = 0 , (C.73)

from which follows that c̃2 = 0. The differential equation (C.60d) Aψψ = 0 is then
automatically fulfilled. Plugging all of this into (C.60f) AθIθI = 0 yields

AθIθI = rĉ = 0 , (C.74)

from which follows that ĉ = 0. Hence, we have

V (r, ψ, θ1, ..., θn−2) = rc̃1 + r
n−2%
I=1

�
cIθI


. (C.75)
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D. Transformation behavior of the mass
aspect tensor

This appendix is from [2] (co-
authored with Piotr Chruściel and
Erwann Delay)

Consider a metric of the following Fefferman-Graham form

g = x−2(dx2 + hABdxAdxB) , (D.1)

where the coordinate functions hAB depend upon both x and the local coordinates xA

on the boundary {x = 0}. Here, the index A runs from 1, ...n − 1. In the following we
will consider n ≥ 3. Let us further write a Taylor expansion

hAB = (1 − kx2/4)2̊hAB(xC) + xnµAB(xC) + o(xn) , (D.2)

where k is a constant. Here, the scalar curvature of h̊AB is given by

R(̊h) = k(n − 1)(n − 2) . (D.3)

Let ϕ = ϕ(xC) be a function on the boundary, set

h̄AB|x=0 = ϕ2hAB , (D.4)

thus (D.1) takes the form

g = x−2�
dx2 + (ϕ−2h̄AB + O(x))dxAdxB�

. (D.5)

We wish to rewrite this as

g = y−2�
dy2 + h̄ABdx̄Adx̄B�

. (D.6)

with
h̄AB = (1 − k̄y2/4)2ϕ2(x̄C )̊hAB(x̄C) + ynµ̄AB(x̄C) + o(yn) , (D.7)

where k̄ ∈ {0, ±1}.
R̄(ϕ2̊h) = k̄(n − 1)(n − 2) . (D.8)

139



D. Transformation behavior of the mass aspect tensor

By matching powers in Taylor expansions, this is equivalent to finding a function y
with a Taylor expansion

y = ϕx
�
1 + ϕ1x + ϕ2x2 + ϕ3x3 + ...


(D.9a)

and new boundary coordinates x̄A with Taylor expansions

x̄A = xA + ϕA
1 x + ϕA

2 x2 + ϕA
3 x3 + ϕA

4 x4... (D.9b)

In order to determine y as a function of the original coordinates, we note that

gyy ≡ g(dy, dy) = y2 ⇐⇒ |d(log y)|2g = 1 . (D.10)

This equation says that the integral curves of d(log y) are affinely parameterized geodesics.
The solutions can be found by shooting geodesics orthogonally, in the metric x2g, to the
conformal boundary, with suitable boundary conditions determined by the function ϕ.
Hence smooth solutions always exist, which justifies the existence of the expansion (D.9a).
Further, we see that the equation for y can be solved independently of the equation for
the x̄A’s. Next, the equation

0 = g(dy, dx̄A) (D.11)

says that the coordinates x̄A are constant along the integral curves of dy. So, when a
smooth function y is known, one obtains smooth functions x̄A by solving (D.11) along
the integral curves of dy, which again justifies the expansion (D.9b), and provides a
prescription for finding the expansion functions ψA

n .
We find that

ϕ1 = 0 , ϕ2 = −DAϕDAϕ

4ϕ2 , ϕ3 = 0 , (D.12a)

and

ϕA
1 = 0 , ϕA

2 = −1
2

DAϕ

ϕ
, ϕA

3 = 0 , (D.12b)

where D is the covariant derivative of the metric h̊ and the indices A are raised with
h̊AB. With this it holds that

g = x−2�
dx2 + (hAB + O(x2))dxAdxB�

= y−2�
dy2 + (h̄AB + O(y)2)dx̄Adx̄B�

(D.13)

However, for general h̊AB it is not possible to bring the y2dx̄Adx̄B term into the form
(D.7) by changing coordinates as (D.9) after the conformal transformation. Indeed, one
finds that the terms of order y0 in the coordinate-transformed metric read

−k
h̊AB

2 + DADB log ϕ − (DA log ϕ)(DB log ϕ) + 1
2(DC log ϕ)(DC log ϕ)̊hAB . (D.14)
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It follows that for (D.7) to hold true the following expression must vanish

ϕ2

2 (−k̄ϕ2 + k)̊hAB − ϕDADBϕ + 2(DAϕ)(DBϕ) − 1
2(DCϕ)(DCϕ)̊hAB = 0 . (D.15)

The trace of (D.15) is equivalent to the transformation of the Ricci scalar under conformal
transformations, which was already discussed in subsection 2.1.1,

R̄ = ϕ−2
�
R − 2(n − 2)DADA log ϕ − (n − 3)(n − 2)(DA log ϕ)(DA log ϕ)


. (D.16)

where we have used the explicit expressions for the Ricci scalars (D.3) and (D.8).

Relation to coordinates in the main text
The coordinates x, xA in (D.1) are related to the coordinates in the main text r, xA,
section 4.6, as

r = 1
x

− kx

4 , (D.17a)

x = 2
r +

√
r2 + k

= 1
r

− k

4r3 + k2

8r5 + O(r−7) (D.17b)

Under this change of coordinates the line element

g = x−2(dx2 +
�
(1 − kx2/4)2̊hAB(xC) + xnµAB(xC) + o(xn)


dxAdxB) (D.18)

changes as

g = dr2

r2 + k
+ r2

�̊
hAB(xc) + r−nµAB(xC) + o(r−n)


dxAdxB . (D.19a)

Using the relations (D.17) we have

x̄A = xA − 1
2

DAϕ

ϕ
x2 + O(x4) (D.20)

which, using
ψ := ϕ−1 ,

translates to

x̄A = xA + DAψ

2ψr2 + O(r−4) , (D.21)
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while the expansion in y

y = ϕx

�
1 − DAϕDAϕ

4ϕ2 x2 + O(x4)
�

(D.22)

leads to an expansion in r̄

r̄ = ψr

1 +

�
DAψDAψ + kψ2 − k̄


4ψ2r2 + O(r−4)

 . (D.23)

Using (D.16) we can also write

r̄ = ψr

1 +

�
−DADA log ψ + (n − 2)DA log ψDA log ψ


2(n − 1)r2 + O(r−4)

 . (D.24)

n = 3
For n = 3, the boundary metric is two-dimensional. Thus we have the relation that

RAB = R

2 h̊AB = k̊hAB , R̄AB = R̄

2 ϕ2̊hAB = k̄ϕ2̊hAB . (D.25)

Reconsidering (D.15) and using the expression for the Ricci tensor (D.25) we get

R̄AB = RAB − 2DADB log ϕ + 2DA log ϕDB log ϕ − h̊ABDC log ϕDC log ϕ . (D.26)

This coincides with the transformation behavior of the Ricci tensor in two dimensions if
and only if

h̊AB

�
DCDC log ϕ − DC log ϕDC log ϕ


= 2(DADB log ϕ − DA log ϕDB log ϕ) . (D.27)

Using (D.15) the y2dx̄Adx̄B term can be brought into the correct form. For n = 3 we
find that the new mass aspect tensor µ̄AB takes the form

µ̄AB = µAB

ϕ
= ψµAB , (D.28)

where ψ = ϕ−1, which is the variable sometimes used in the main text. From

h̊ABµAB = ϕ3h̄AB|x=0 µ̄AB ,

�
det h̊ = ϕ−2

 
det h̄|x=0 , x̄A = xA|x=0 (D.29)
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we conclude that�
h̊ABµAB

�
det h̊ dx1dx2 =

� �
ϕh̄ABµ̄AB

 
det h̄

''
x̄=0 dx̄1dx̄2 , (D.30)

as well as� �
h̄ABµ̄AB

 
det h̄

''
x̄=0 dx̄1dx̄2 =

�
ϕ−1̊hABµAB

�
det h̊ dx1dx2 . (D.31)

n = 4
We consider now the transformation formulae for the higher-order terms in the expansion
of the metric. These are irrelevant for the mass aspect tensor when n = 3 but become
relevant in higher dimensions. Because the powers of x in the expansion of y and x̄A

jump by two, and so do the powers in the expansion of the metric up to the mass-aspect
level xn−2, when n ≥ 4 the terms of order x in the physical metric remain zero after
the change of coordinates. The terms of order x2 change in a non-trivial way, which is
relevant for the mass aspect function in space dimension n = 4, and which we determine
now.

The explicit form of the coefficients ϕ1, ϕ2, ϕ3 and ϕA
1 , ϕA

2 , ϕA
3 in (D.12) holds true for

arbitrary dimensions n ≥ 3. However, to determine the transformation behaviour of the
mass aspect in n = 4 we need to determine further coefficients. We have

ϕA
4 = − k̄

8ϕDAϕ + 1
8ϕ2 DBϕDCϕDCDBxA , (D.32a)

ϕ4 = − k̄

16DCϕDCϕ + 1
16ϕ4 (DCϕDCϕ)2 , (D.32b)

where xA in the first equation (D.32a) is treated as a scalar for every A. In dimension
n = 4 the coefficients ϕA

5 vanish

ϕA
5 = 0 , ϕ5 = 0 . (D.33)

This leads to

ϕ2µ̄AB = µAB + 1
16 h̊AB

�
k2 − k̄2ϕ4


− k̄

4ϕDAD̊Bϕ − 3
8 k̄̊hABDCϕDCϕ + 3

4 k̄DAϕDBϕ

− 1
4ϕ2 DCDAϕDCDBϕ + 3

2ϕ3 DCD(AϕDB)ϕDCϕ − 1
4ϕ3 h̊ABDCϕDDDCϕDDϕ

− 1
2ϕ3 DADBϕDCϕDCϕ − 3

4ϕ4 DAϕDBϕDCϕDCϕ + 3
16ϕ4 (DCϕDCϕ)2̊hAB

− 1
4ϕ2 RACDBDCϕDDϕ . (D.34)
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This is best computed using coordinates in which the metric is diagonal, which can
always be done locally in dimension three [110]. Here and elsewhere, the symmetrization
is defined as M(AB) = 1

2(MAB + MBA). Contracting (D.34) with h̊AB we obtain

ϕ2µ̄ABh̊AB − µ A
A = 3

16(k2 − k̄2ϕ4) − k̄

4ϕDADAϕ − 3
8 k̄(DAϕDAϕ) − 1

4ϕ2 (DADBϕ)(DADBϕ)

+ 3
4ϕ3 DAϕDBϕDADBϕ − 1

2ϕ3 (DADAϕ)(DBϕDBϕ) − 3
16ϕ4 (DAϕDAϕ)2

+ 1
4ϕ2 RABDAϕDBϕ . (D.35)

Using the transformation behaviour of the Ricci scalar (D.16),

R̄ = ϕ−2


R − 4
ϕ

DADAϕ + 2
ϕ2 DAϕDAϕ


, (D.36)

and the explicit expression of the Ricci scalars (D.3) and (D.8),

R = 6k , R̄ = 6k̄ , (D.37)

for n = 4 we find that

k̄ = 3kϕ2 + (DAϕDAϕ) − 2ϕDADAϕ

3ϕ4 , (D.38)

which yields

ϕ2µ̄ABh̊AB − µ A
A = − 1

3ϕ4 (DAϕDAϕ)2 − 1
4ϕ3 (DAϕDAϕ)(DBDBϕ) + (DADAϕ)2

12ϕ2

− 1
4ϕ2 (DADBϕ)(DADBϕ) + 3

4ϕ3 DAϕDBϕDADBϕ

+ 1
4ϕ2 (RAB − 2k̊hAB)DAϕDBϕ . (D.39)

Making the change of variable
ϕ = exp(u) (D.40)

(so that u here corresponds to +ω/2 in (4.68)), Equation (D.39) becomes

exp(2u)µ̄ABh̊AB − µ A
A = − 1

12(DAuDAu)(DBDBu) + 1
12(DADAu)(DBDBu)

− 1
4(DADBu)(DADBu) + 1

4(DADBu)(DAuDBu)

+ 1
4(RAB − 2k̊hAB)DAuDBu . (D.41)
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Using �
det h̊ = ϕ−3

 
det h̄|x=0 , x̄A = xA|x=0 , (D.42)

and (D.41) we find that� �
µ̄ABh̄AB

 
det h̄


|x=0 dx̄1dx̄2dx̄3 =

�
e−u

�
µA

A + C(xA)
�

det h̊ dx1dx2dx3 (D.43)

with

C(xA) = 1
6(DADBDAu)(DBu) + 1

12


RAB − R

2 h̊AB


DAuDBu . (D.44)
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