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Abstract. In this work, electron-capture rates on nuclei for stellar conditions are cal-

culated for Ni isotopes, using a self-consistent microscopic model based on the finite-

temperature Skyrme Hartree-Fock plus finite-temperature charge-exchange random-

phase approximation approach. The results of the calculations show that electron-capture

rates obtained either with different Skyrme sets or with different available models can

differ by up to a few orders of magnitude.

1 Introduction

Weak interaction processes play a crucial role in the life of a star, especially during the late evo-

lutionary stages of massive stars [1, 2]. During the pre-supernova phase, β decays, (Z,N) −→

(Z + 1,N − 1) + e− + ν̄e , and electron captures (ECs), (Z,N) + e− −→ (Z − 1,N + 1) + νe , de-

termine the core entropy and the electron fraction Ye, which defines the mass of the inner core. When

such a core exceeds the Chandrasekhar mass, MCh ∝ Y2
e , it undergoes a gravitational collapse fol-

lowed by a bounce. This leads to the formation of a shock wave that expels the outer layers of the star

and triggers the explosion. During the supernova core collapse, EC on free protons and on exotic nu-

clei controls the neutronisation phase, until the formation of an almost deleptonised central compact

object, the neutron star. While the EC on free protons is reasonably well known, computing this on

nuclei requires knowledge of the nuclear structure, and therefore it is not straightforward. ECs and

β decays are dominated by Gamow-Teller (GT) and Fermi transitions. For initial Ye ≈ 0.5, the EC

dominates over β decay, and mainly occurs on nuclei with mass number A . 60 for densities below

few 1010 g cm−3 and temperatures between 300 and 800 keV. Under these conditions, the electron

chemical potential µe is of the same order of magnitude as the nuclear Q-value, and EC cross sections

are sensitive to the details of the GT strength distribution. With increasing density and temperature

during collapse, the EC occurs on heavier nuclei and the electron chemical potential is higher than

the nuclear Q-value. The EC rates are therefore mainly determined by the centroid and the total GT

strength [2, 3].
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Because of their pivotal role in astrophysical applications, weak interactions were extensively in-

vestigated within various approaches (see e.g. Refs. [2, 3] and Refs. therein for a review). Recently,

mean-field based models have also been used to predict EC cross sections and rates (see e.g. Refs. [4–

8]). In the present work, we compute EC rates using the mean-field self-consistent model introduced

in Ref. [4], based on the finite-temperature Skyrme Hartree-Fock (FTSHF) and finite-temperature

charge-exchange random-phase approximation (FTRPA) approach. We will summarise the frame-

work and the formalism of the FTSHF + FTRPA in Sect. 2, we discuss the results on nickel isotopes

in Sect. 3, and we will give our conclusions in Sect. 4.

2 Formalism

We recall here the formalism to calculate the EC cross sections and rates within the FTSHF+FTRPA

approach (see Refs. [4, 7] and Refs. therein for details). The FTSHF model is employed to calculate

the single-nucleon spectra, occupation probabilities and wave functions of the initial state of target

nuclei, and the chemical potential is calculated from the particle conservation equation. To describe

the transitions relevant in EC on nuclei, we use the charge-exchange FTRPA in the matrix form. Both

in the ground state calculations and in the equations of FTRPA, the same Skyrme functional has been

employed. Therefore, the FTSHF + FTRPA model is completely determined by the choice of the

nuclear interaction, which is the only input in the calculation. This is the specificity and the advantage

of this approach, which can be extended over arbitrary mass regions of the nuclide chart without

additional assumptions or adjustment of the parameters.

Iron group nuclei contribute to stellar EC rates in the temperature interval 0.3 . T . 2 MeV. The

expression for the total cross section for EC on a nucleus (Z,N) at temperature T is:

σ(Ee, T ) =
G2

F

2π

∑

i

F(Z, Ee)
(2Ji + 1)e−Ei/(kT )

G(Z, A, T )

∑

f ,J

(Ee − Q + Ei − E f )
2 |〈i|ÔJ | f 〉|

2

(2Ji + 1)
, (1)

where GF = GF/(~c)2 is the Fermi coupling constant, Ee is the energy of the incoming electron,

Q is the Q-value of the reaction (computed from the experimental masses [9]: Q = M f − Mi, Mi, f

being the masses of the parent and daughter nucleus respectively), J is the total angular momentum,

ÔJ is the generic notation for the multipole operators, G(Z, A, T ) is the partition function accounting

for the thermal average of levels, and F(Z, Ee) is the Fermi function correcting the cross section for

the distortion of the electron wave function by the Coulomb field of the nucleus (see Ref. [4] for

details). The finite temperature also induces the thermal population of excited states in the parent

nucleus (labelled as “i”), connected by the multipole operators to many levels in the daughter nucleus

(labelled as “ f ”). Since the calculation of all possible transitions is computationally prohibitive, the

Brink hypothesis is often adopted (see e.g. Refs. [10–12]). Using this approximation, Eq. (1) becomes

[4]:

σ(Ee, T ) =
G2

F

2π
F(Z, Ee)

∑

f

(Ee − Q − ω f )
2
∑

J

S J(ω f , T ) , (2)

where ω f is the excitation energy in the daughter nucleus, and S J is the discrete finite-temperature

RPA response for the multipole operator ÔJ . The EC rate is then computed from the EC cross section

[12]:

λec(T )
[

s−1
]

=
V2

ud
g2

V
c

π2(~c)3

∫ ∞

Emin

σ(Ee, T ) Ee pec fe(Ee) dEe , (3)

where Vud is the up-down element in the CKM quark mixing matrix, gV = 1 is the weak vector

coupling constant, Emin is the threshold energy for EC, and pec = (E2
e − m2

ec4)1/2 is the electron
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momentum. Under stellar conditions encountered in core-collapse supernova, the electron distribu-

tion function fe is well represented by a Fermi-Dirac distribution, fe =

[

1 + e
Ee−µe

kBT

]−1

. The electron

chemical potential µe is determined from the baryon density ρ by inverting the relation:

ρYe =
1

π2NA

1

(~c)3

∫ ∞

0

[ fe(Ee) − fe+ (Ee)] (pec)2 d(pec) , (4)

where NA is the Avogadro’s number. The positron distribution function, fe+ , is also given by a Fermi-

Dirac distribution, with µe+ = −µe. Since neutrinos are expected to escape from the star at least in the

first stage of core collapse, we assume fν = 0.

3 Results on Ni isotopes

In this section, we present the results on the EC rates for even-even 58−62Ni for typical stellar condi-

tions encountered during the pre-supernova and initial phase of core-collapse supernova. In Fig. 1, the

FTSHF+FTRPA rates are displayed as a function of temperature for the Skyrme forces SLy4 [13] and

BSk17 [14]. For comparison, the results obtained by different theoretical models (shell model with

the GXPF1J interaction [15] and deformed Skyrme Hartree-Fock plus quasi-particle RPA [8] taken

from Figs. 19, 21, 22 in Ref. [8]), as well as the rates obtained from the experimental GT distributions

extracted from (n, p) reactions [16–18] (taken from Figs. 16, 20, 22 in Ref. [19]), are also shown.

The trends of the results agree, i.e. the EC rates increase with temperature and electron density. The

discrepancy among the various approaches decreases with increasing temperature, as already noticed

in Ref. [7] for Fe and Ge isotopes. In particular, for 60Ni, the rates calculated with BSk17 agree rea-

sonably well with those obtained from experimental data and from other calculations. For 58Ni (62Ni),

the FTSHF+FTRPA method predicts larger (smaller) rates with respect to those obtained from other

approaches or from (n, p) experiments. The inclusion in our calculations of the multipole transitions

Jπ = 0±, 1±, 2± might account for larger rates. Indeed, only the GT transitions have been taken into

account in the other theoretical works considered here. Moreover, the EC cross sections, and thus the

rates, are very sensitive to the single particle spectra and the GT strength. In our approach, correlations

beyond mean field other than 1 particle-1 hole excitations treated at the RPA level, as well as pairing

correlations, are neglected. On the other hand, in the calculations by Sarriguren [8], pairing has been

included. Indeed, these correlations may have an important impact on the nuclear spectra, especially

at low temperatures, where the discrepancies among different methods are more pronounced.

Regarding the rates extracted from the experimental GT, we notice that these are not necessarely

the rates encountered in the stellar environment at high ρ and T , as pointed out in Ref. [8]. Moreover,

apart from uncertainties inherent to the extraction of the experimental GT strength, the latter is mea-

sured in laboratories up to some excitation energies, and thus does not include contributions coming

from transitions beyond the measured energy range, which might be important in stellar environments.

Finally, the results obtained with different approaches or different Skyrme interactions deviate by

up to a few orders or magnitude. This is in agreement with the conclusions of Ref. [7].

4 Conclusions

We have presented EC rates on even-even 58−62Ni isotopes, carried out in the microscopic FT-

SHF+FTRPA approach. The only input is the Skyrme interaction employed; therefore, the method

is self-consistent. Comparing the calculations performed with different Skyrme interactions or with

various approaches leads to a few orders of magnitude difference on the EC rates.
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Figure 1. Electron-capture rates as a function of temperature for 58,60,62Ni and for different stellar conditions.
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