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Rapidity-only evolution of TMDs
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Abstract. The most known scheme to regulates the rapidity/UV divergences

of the Transverse Momentum Distribution operators due to the infinite light-like

gauge links are the Collis Soper Sterman (CSS) formalism or the Soft Collinear

Effective Theory (SCET) formalism. An alternative procedure is provided by

the scheme used in the small-xB physics. The corresponding evolution equa-

tions differ already in leading order. Because of the future Electron-Ion Collider

experiment, which will probe the TMDs at values of the Bjorken x in the region

between small-xB to xB ∼ 1, the different formalisms need to be reconciled. I

will discuss the conformal properties of TMD operators and present the result

of the conformal rapidity evolution of TMD operators in the Sudakov region.

In particular, I will present the calculation of the scale of the coupling constant

obtained using the BLM procedure.

1 Introduction

Recent developments in the study of transverse-momentum dependent parton distributions

(TMDs) [1–3] have greatly expanded their use in processes such as semi-inclusive deep in-

elastic scattering (SIDIS) and particle production in hadron-hadron collisions. TMDs, which

are defined as quark or gluon matrix elements accompanied by light-like gauge links, are

subject to rapidity divergences due to the nature of these links. To deal with this, various

regularization schemes have been proposed. The most common approaches involve the CSS

or SCET formalisms, but alternative methods from small-x physics have also gained atten-

tion. However, discrepancies between these methods, even at leading order, pose theoretical

challenges that need to be resolved, especially in view of the upcoming Electron-Ion Collider

(EIC) experiments, which will probe a wide range of Bjorken-x values, from small-xB to

values closer to 1.

A key strategy to tackle these discrepancies is to derive leading-order evolution equations

from conformal considerations. Since perturbative QCD (pQCD) is conformally invariant at

leading order, one might be able to derive evolution equations without an explicit running

coupling at this order. Given that TMD operators include light-like Wilson lines, their behav-

ior should, in principle, follow the transformations of the conformal subgroup that preserves

this light-like direction. However, regularizing rapidity divergences remains an obstacle, as

no regularization method currently preserves full conformal invariance. A conformal regula-

tor for leading-order calculations could still be a valuable tool, with higher-order calculations
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accounting for the breaking of conformal symmetry due to the QCD running coupling. In-

sights from N = 4 Super-Yang-Mills (SYM) theory, which retains conformal symmetry,

could provide a useful framework, as results in this theory often match the most complex

parts of pQCD calculations. This approach has been applied to the rapidity evolution of

color dipoles, leading to conformal invariance in the leading-order evolution of the Balitsky-

Kovchegov (BK) equation, and offers a promising direction for similar studies in TMD evo-

lution.

Th focus is the extension of the TMD formalism to small-xB processes, a region that is

becoming increasingly important for future experimental studies like those at the EIC. Tra-

ditionally, TMDs have been used at larger Bjorken-x, but expanding the formalism to the

small-xB regime has led to the development of new evolution equations based on rapidity

cutoffs inspired by small-xB physics [5, 6, 10, 11]. These new equations can smoothly inter-

polate between linear evolution at moderate xB and the nonlinear dynamics at small xB, cap-

turing important transitions between different evolution regimes such as DGLAP, BFKL, and

Sudakov forms. Despite this success, the evolution equations in the intermediate region are

complex and present practical difficulties, such as the indeterminate argument of the coupling

constant at leading order, which can only be determined through next-to-leading order cal-

culations. This issue has been addressed through the Brodsky-Lepage-Mackenzie (BLM) [9]

approach, which has been successfully applied to similar small-x evolution studies in color

dipoles.

In this context, the results presented here aim to explore these theoretical issues and pro-

pose pathways to construct a unified framework for TMD evolution that is applicable across

a broad range of kinematic regimes, from small to moderate xB, in preparation for the future

data from the EIC and other experiments.

2 Rapidity factorization for particle production in hadron-hadron

collisions

As a working example of the of the rapidity-only formalism, let us consider the Drell-Yan

(DY) hadronic tensor Wµν(q), which in the TMD-factorization scheme [7] can be written as

PA

PB

q

Projectile

fields

Central

fields

Target

fields

Figure 1. Diagrammatic representation of rapidity factorization in particle production in hadron-hadron

collisions.

Wµν(q) =
∑

flavors

e2
f

∫

d2k⊥D(i)

f /A
(xA, k⊥)D(i)

f /B
(xB, q⊥ − k⊥)Cµν(q, k⊥)

+ power corrections + Y − terms (1)

Here D f /A(xA, k⊥) is the TMD density of a quark f in hadron A with fraction of momentum

xA and transverse momentum k⊥,D f /B(xB, q⊥−k⊥) is a similar quantity for hadron B, and co-

efficient functions Ci(q, k) are determined by the cross section σ( f f → µ+µ−) of production

of DY pair of invariant mass q2 in the scattering of two quarks.

The TMD densities D f /A(xA, k⊥) and D f /B(xB, k⊥) are defined by quark-antiquark oper-

ators with gauge links going to −∞. For example, the TMD f1 responsible for the total DY

cross section for unpolarized hadrons is defined by

f
f

1
(xB, k⊥) =

1

16π3

∫

dz+d2z⊥ e−ixBz+
√

s
2
+i(k,z)⊥�pN |ψ̄ f (z+, z⊥)[z, z −∞n]/nψ f (0)|pN� (2)

where |pN� is an unpolarized nucleon with momentum pN ≃ p−
N

and n = ( 1√
2
, 0, 0, 1√

2
) is a

lightlike vector in the “+” direction (almost) collinear to vector pA. For a straight-line gauge

link, known as Wilson line, connecting points x and y we use the notation

[x, y] ≡ Peig
∫

du (x−y)µAµ(ux+(1−u)y) (3)

Here, we will consider the rapidity-only evolution of the quark operator

ψ̄(x+, x⊥)[x, x ± ∞n] [±∞n + x⊥,±∞n + y⊥]Γ[±∞n + y, y]ψ(y+, y⊥) (4)

with Γ is one of the matrices γ−, γ−γ5, γ
−γ⊥ so we single out “good” projections in the light-

cone language.

A diagrammatic representation of the factorization in rapidity is given in Fig. 1. Here the

fields are cut with respect to the light-cone component of their momenta. The gluon fields,

which are the dominant degree of freedom at this regime, are factorized in target fields (in red)

with light-cone component |k+| < σb, projectile fields (in green) with light-cone component

|k−| < σa, and central fields (in blue) for the coefficient functions. Here, σa and σb are two

parameters which cut the gluon longitudinal momenta to distinguish them in target, projectile

and central fields.

In section 4 we will present the evolution of the TMDs operator arising either from the

target fields or the projectile ones with respect to the rapidity cut-off σ.

3 Conformal invariance of TMD Operators

Before delving into the calculation of the evolution equation, let us present the TMDs confor-

mal group. The algebra of the full conformal group S O(4, 2) consists of 16 generators: four

operators Pµ, six Mµν, four special conformal generators Kµ, and dilatation operator D. One

can easily check that in the leading order the following 11 operators act on TMDs covariantly

Pi, P−,M12,M−i,D,Ki,K−,M−+ (5)

while the action of operators P+,M+i, and K+ do not preserve the form of the TMD operator.

The action of the generators (5) on the TMD operator is the same as the action on the field

F−i without gauge link attachments. The corresponding group consists of transformations

which leave the hyperplane z− = 0 and vector n invariant. Those include shifts in transverse

and “+′′ directions, rotations in the transverse plane, Lorentz rotations/boosts created by M−i,

dilatations, and special conformal transformations

z′µ =
zµ − aµz

2

1 − 2a · z + a2z2
(6)
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with a = (a+, 0, a⊥). In terms of “embedding formalism” [8] defined in 6-dim space, this

subgroup is isomorphic to “Poincare + dilatations” group of the 4-dim subspace orthogonal

to our physical light-like “+” and “-” directions. In ref. [10], we have shown that the LO evo-

lution equation in the Sudakov approximation is invariant under the TMDs group represented

by the generators (5) provided that the cut-off is chosen in the appropriate way.

4 Rapidity-only evolution equation with running coupling

The evolution equation of the quark TMD (4) is obtained calculating the diagrams in Fig.2

with rapidity cut-off defined as

Aσµ (x) =

∫

d4k

16π4
θ
(

σ̺ − |k+|
)

e−ik·xAµ(k) (7)

However, instead of a rigid one imposed by θ-function, it turned out that it is more convenient

a)

y

x

b)

d)

g) h)

e)

i)

f )

c)

Figure 2. One-loop diagrams for TMD operator (4) in the background quark field. The dashed lines

denote gauge links.

to use smooth cutoff in |k+|. This can be encoded in coordinate space by defining the rapidity-

regularized operators as

ψ̄σ(x+, x⊥) ≡ ψ̄
(

x+, x⊥,−
1

ρσ

)

[x+,−∞]x, ψ
σ(y+, y⊥) ≡ [−∞, y+]yψ

(

y+, y⊥,−
1

ρσ

)

(8)

We will consider the evolution equation in the Sudakov region σxBs ≫ k2
⊥ ∼ q2

⊥, where s is

the Mandelstam variable, q2
⊥ is the transverse momenta of the produced lepton-pair or Higgs

boson in DY process (or of the produced hadron in SIDIS), while k2
⊥ is the typical transverse

momenta of the parton participating in the interaction.

The diagrams contributing the LO evolution equation are given in Fig. 2. The calculation

can be performed directly in coordinate space [10], or in momentum space and then perform

Fourier transform in coordinate space [11]. The result in coordinate space is

(

σ
d

dσ
+ σ′

d

dσ′

)

ψ̄σ
′
(x+, x⊥)Γψσ(y+, y⊥)

=
αs

4π2
cF

∫

dz+
{[

i
ln ̺(−x+ + z+ + iǫ) − ln

σb2
⊥ s

4
eγ

−x+ + z+ + iǫ
+ c.c.

]

ψ̄σ
′
(z+, x⊥

)

Γψσ(y+, y⊥)

+
[

i
ln ̺(−y+ + w+ + iǫ) − ln

σ′b2
⊥ s

4
eγ

−y+ + w+ + iǫ
+ c.c.

]

ψ̄σ
′
(x+, x⊥)Γψσ(y+, y⊥)

}

(9)

The solution of this equation has the form

ψ̄σ
′
(x+, x⊥)Γψσ(y+, y⊥) = e

− αscF
4π

(

ln σ
′
σ′

0

lnσ′σ′
0
+ln σ

σ0
lnσσ0

)

×
∫

dz+
[ iΓ

(

1 − αscF

2π
ln σ

′

σ′
0

)

(z+ − x+ + iǫ)
1− αscF

2π
ln σ

′
σ′

0

+ c.c.

]

∫

dw+
[ iΓ

(

1 − αscF

2π
ln σ
σ0

)

(w+ − y+ + iǫ)
1− αscF

2π
ln σ
σ0

+ c.c.

]

× 1

4π2

(

b2
⊥eγ
√

s/8
)− αscF

2π

(

ln σ
′
σ′

0

+ln σ
σ0

)

ψ̄σ
′
0 (z+, x⊥)Γψσ0 (w+, y⊥) (10)

The evolution equation (10) is invariant under the conformal sub-group represented by the

generators (5) if we take σ = σ′ = ς
√

2

̺|∆⊥| where ς is an evolution parameter.

In the LO, the rapidity evolution equation has the argument of the coupling constant left

undetermined. To include it, we adopted the BLM method: calculate the contribution of the

first quark loop to our TMD evolution and promote − 1
6π

n f to full b0 =
11

12π
Nc − 1

6π
n f . To this

end, each gluon propagator in diagrams in Fig. 2 should be replaced by a one-loop correction,

i.e.

1

p2 + iǫ
→ 1

p2 + iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 − iǫ

)

1

p2 − iǫ
→ 1

p2 − iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 + iǫ

)

2πδ(p2)θ(p0) →
iθ(p0)

p2 + iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 − iǫ

)

−
iθ(p0)

p2 − iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 + iǫ

)

(11)

where µ̃2 ≡ µ̄2
MS

e5/3.

The evolution equation for the TMD operator with running coupling takes the form

(

σ
d

dσ
+ σ′

d

dσ′

)

ψ̄σ
′
(β′B, x⊥)Γψσ(βB, y⊥) = − cF

2π
ψ̄σ

′
(β′B, x⊥)Γψσ(βB, y⊥)

×
[

αs(µσ′ ) ln
(

− i

4
(β′B + iǫ)σ′sb2

⊥eγ
)

+ αs(µσ) ln
(

− i

4
(βB + iǫ)σsb2

⊥eγ
)]

(12)

where b⊥ ≡ ∆⊥ = (x − y)⊥ We see that in the Sudakov region we can define TMD operator

(4) with two independent “left” and “right” cutoffs σ and σ′ defined in Eqs. (8) and the

evolutions with respect to those cutoffs are independent [except for b⊥ = (x − y)⊥]. The

solution of Eq. (12) has the form

ψ̄σ
′
(β′B, x⊥)Γψσ(βB, y⊥) = e

− 2cF

πb2
0

[(

1

αs(b̃−1
⊥ )
− b0

2
ln[−i(τ′

B
+iǫ)]
)

ln
αs(µσ′ )
αs(µ
σ′

0
)
+ 1
αs(µσ′ )

− 1
αs(µ
σ′

0
)

]

× e
− 2cF

πb2
0

[(

1

αs(b̃−1
⊥ )
− b0

2
ln[−i(τB+iǫ)]

)

ln
αs(µσ)

αs(µσ0
)
+ 1
αs(µσ)

− 1
αs(µσ0

)

]

ψ̄σ
′
0 (β′B, x⊥)Γψσ0 (βB, y⊥) (13)

where b̃2
⊥ =

b2
⊥
2

eγ/2 and τB =
βB

|βB | , τ
′
B
=
β′

B

|β′
B
| , µ

2
σ ≡ b−1

⊥
√

σ|βB|s, µ2
σ′ ≡ b−1

⊥
√

σ|β′
B
|s. As at lead-

ing order, the structure of the Sudakov evolution (13) resembles two independent exponential
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In the LO, the rapidity evolution equation has the argument of the coupling constant left

undetermined. To include it, we adopted the BLM method: calculate the contribution of the

first quark loop to our TMD evolution and promote − 1
6π

n f to full b0 =
11

12π
Nc − 1

6π
n f . To this

end, each gluon propagator in diagrams in Fig. 2 should be replaced by a one-loop correction,

i.e.

1

p2 + iǫ
→ 1

p2 + iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 − iǫ

)

1

p2 − iǫ
→ 1

p2 − iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 + iǫ

)

2πδ(p2)θ(p0) →
iθ(p0)

p2 + iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 − iǫ

)

−
iθ(p0)

p2 − iǫ

(

1 + b0αs(µ) ln
µ̃2

−p2 + iǫ

)

(11)

where µ̃2 ≡ µ̄2
MS

e5/3.

The evolution equation for the TMD operator with running coupling takes the form

(

σ
d

dσ
+ σ′

d

dσ′

)

ψ̄σ
′
(β′B, x⊥)Γψσ(βB, y⊥) = − cF

2π
ψ̄σ

′
(β′B, x⊥)Γψσ(βB, y⊥)

×
[

αs(µσ′ ) ln
(

− i

4
(β′B + iǫ)σ′sb2

⊥eγ
)

+ αs(µσ) ln
(

− i

4
(βB + iǫ)σsb2

⊥eγ
)]

(12)

where b⊥ ≡ ∆⊥ = (x − y)⊥ We see that in the Sudakov region we can define TMD operator

(4) with two independent “left” and “right” cutoffs σ and σ′ defined in Eqs. (8) and the

evolutions with respect to those cutoffs are independent [except for b⊥ = (x − y)⊥]. The

solution of Eq. (12) has the form

ψ̄σ
′
(β′B, x⊥)Γψσ(βB, y⊥) = e

− 2cF

πb2
0

[(

1

αs(b̃−1
⊥ )
− b0

2
ln[−i(τ′

B
+iǫ)]
)

ln
αs(µσ′ )
αs(µ
σ′

0
)
+ 1
αs(µσ′ )

− 1
αs(µ
σ′

0
)

]

× e
− 2cF

πb2
0

[(

1

αs(b̃−1
⊥ )
− b0

2
ln[−i(τB+iǫ)]

)

ln
αs(µσ)

αs(µσ0
)
+ 1
αs(µσ)

− 1
αs(µσ0

)

]

ψ̄σ
′
0 (β′B, x⊥)Γψσ0 (βB, y⊥) (13)

where b̃2
⊥ =

b2
⊥
2

eγ/2 and τB =
βB

|βB | , τ
′
B
=
β′

B

|β′
B
| , µ

2
σ ≡ b−1

⊥
√

σ|βB|s, µ2
σ′ ≡ b−1

⊥
√

σ|β′
B
|s. As at lead-

ing order, the structure of the Sudakov evolution (13) resembles two independent exponential
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factors which describe two independent evolutions of operators (8). However, this property

should not be expected beyond the Sudakov region.

5 Conclusions

We described the rapidity evolution of quark (and gluon) TMDs using small-xB methods. By

employing a rapidity-only cutoff, we simplified the evolution to depend on a single parameter

– rapidity. However, as highlighted in the introduction, the argument of the coupling constant

in such evolution is not determined at leading order. To address this, we applied the BLM

scale-setting procedure to both quark and gluon TMDs, leading to the result that the effective

BLM scale for Sudakov evolution is halfway between the transverse momentum and the lon-

gitudinal energy of the TMD in logarithmic scale. This approach mirrors previous successful

applications in NLO BK evolution [12].

Despite using small-xB methods, our findings are valid for any value of xB, provided

certain kinematic conditions are met. The distinction between small and moderate xB only

emerges at the endpoint of evolution, where different evolution regimes, such as DGLAP for

moderate xB and BFKL/BK for small-xB, should be applied.

We also observed the importance of choosing a smooth rapidity cutoff to preserve the

analytic properties of Feynman diagrams and avoid infrared (IR) divergences, a consideration

that distinguishes TMD evolution from dipole evolution. Finally, future work will focus on

extending this framework to TMD factorization and calculating cross sections for processes

like Higgs production and Drell-Yan at q⊥ ∼ a few GeV, as well as comparing our results

with those from the CSS method at higher orders. This ongoing research aims to provide a

more comprehensive understanding of TMD evolution across different kinematic regimes.
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