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Cross-section distributions are calculated for the reaction e+e− → J/ψ → �̄(→ p̄π+)�(→ pπ−), and 
related annihilation reactions mediated by vector mesons. The hyperon-decay distributions depend on a 
number of structure functions that are bilinear in the, possibly complex, psionic form factors Gψ

M and 
Gψ

E of the Lambda hyperon. The relative size and relative phase of these form factors can be uniquely 
determined from the unpolarized joint-decay distributions of the Lambda and anti-Lambda hyperons. 
Also the decay-asymmetry parameters of Lambda and anti-Lambda hyperons can be determined.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Two hadronic form factors, commonly called G M (s) and G E (s), 
are needed for the description of the annihilation process e−e+ →
��̄, Fig. 1a, and by varying the c.m. energy 

√
s, their numerical 

values can in principle be determined for all s values above ��̄

threshold. For the general case of annihilation via an intermediate 
photon, the joint �(→ pπ−)�̄(→ p̄π+) decay distributions were 
calculated and analyzed in Ref. [1], using methods developed in 
[2,3]. Recently, a first attempt to calculate the hyperon form factors 
G M(s) and G E (s) in the time-like region was reported in Ref. [4].

Previously, the interesting special case of annihilation through 
an intermediate J/ψ or ψ(2S), Fig. 1b, has been investigated in 
several theoretical [5,6] and experimental papers [7–9]. This pro-
cess has also been used for determination of the anti-Lambda 
decay-asymmetry parameter and for CP symmetry tests in the 
hyperon system. A precise knowledge of the Lambda decay-
asymmetry parameter is needed for studies of spin polarization 
in �− , �− , and �+

c decays.
Presently, a collected data sample of 1.31 × 109 J/ψ events 

[10] by the BESIII detector [11] permits high-precision studies of 
spin correlations.

In the experimental work referred to above, the joint-hyperon-
decay distributions considered are not the most general ones pos-
sible, but seem to be curtailed. Incomplete distribution functions 
do not permit a reliable determination of the form factors and we 
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Fig. 1. Graph describing the reaction e+e− → �̄�; a) general case, and b) mediated 
by the J/ψ resonance.

therefore suggest to fit the experimental data to the general distri-
bution described in [1], and further elaborated below.

Since the photon and the J/ψ are both vector particles, their 
corresponding annihilation processes will be similar. In fact, by a 
simple substitution, the cross-section distributions in Ref. [1], valid 
in the photon case, are transformed into distributions valid in the 
J/ψ case, but expressed in the corresponding psionic form factors 
Gψ and Gψ .
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In order to specify events and compare measured data with 
theoretical predictions, we need distribution functions expressed 
in some specific coordinate system. For this purpose we employ 
the coordinate system introduced in [1]. Many investigations em-
ploy different coordinate systems for the Lambda and anti-Lambda 
decays, a custom which in our opinion can lead to confusion.

Our calculation is performed in two steps. After some prelimi-
naries we turn to the inclusive process of lepton annihilation into 
polarized hyperons. The results obtained are the starting point 
for the calculation of exclusive annihilation, i.e. the distribution 
for the hyperon-decay products. Our method of calculation con-
sists in multiplying the hyperon-production distribution with the 
hyperon-decay distributions, averaging over intermediate hyperon-
spin directions. The method is referred to as folding.

2. Basic necessities

Resolving the hyperon vertex in Fig. 1a uncovers a number of 
contributions. The one of interest to us is described by the dia-
gram of Fig. 1b, whereby the photon interaction with the hyperons 
is mediated by the J/ψ vector meson, and the coupling of the 
initial-state leptons to the J/ψ related to the decay J/ψ → e+e− .

For a J/ψ decay through an intermediate photon, tensor cou-
plings can be ignored. Thus, the effective coupling of the J/ψ to 
the leptons is the same as that for the photon, provided we replace 
the electric charge eem by a coupling strength eψ ,

�e
μ(k1,k2) = −ieψγμ, (2.1)

with eψ determined by the J/ψ → e+e− decay (see Appendix A).
At the J/ψ-hyperon vertex two form factors are possible and 

they are both considered. We follow Ref. [1] in writing the hyperon 
vertex as

��
μ(p1, p2) = −ieg

[
Gψ

Mγμ − 2M

Q 2
(Gψ

M − Gψ
E )Q μ

]
, (2.2)

with P = p1 + p2, and Q = p1 − p2, and M the Lambda mass. The 
argument of the form factors equals s = P 2. The coupling strength 
eg in Eq. (2.2) is determined by the hadronic-decay rate for J/ψ →
��̄ (see Appendix A).

In Ref. [1] polarizations and cross-section distributions were ex-
pressed in terms of structure functions, themselves functions of 
the form factors Gψ

M and Gψ
E . Here, we shall introduce combina-

tions of form factors called D , α, and 
�, which are employed by 
the experimental groups [7–9] as well.

The strength of form factors is measured by D(s),

D(s) = s
∣∣∣Gψ

M

∣∣∣2 + 4M2
∣∣∣Gψ

E

∣∣∣2
, (2.3)

a factor that multiplies all cross-section distributions. The ratio of 
form factors is measured by α,

α =
s
∣∣∣Gψ

M

∣∣∣2 − 4M2
∣∣∣Gψ

E

∣∣∣2

s
∣∣∣Gψ

M

∣∣∣2 + 4M2
∣∣∣Gψ

E

∣∣∣2
, (2.4)

with α satisfying −1 ≤ α ≤ 1. The relative phase of form factors is 
measured by 
�,

Gψ
E

Gψ
M

= ei
�

∣∣∣∣∣
Gψ

E

Gψ
M

∣∣∣∣∣ . (2.5)

The diagram of Fig. 1 represents a J/ψ exchange of momen-
tum P . J/ψ being a vector meson, its propagator takes the form
gμν − Pμ Pν/m2
ψ

s − m2
ψ + imψ�(ψ)

, (2.6)

where mψ is the J/ψ mass, and �(ψ) the full width of the J/ψ . 
However, since the J/ψ couples to conserved lepton and hyperon 
currents, the contribution from the Pμ Pν term vanishes. In conclu-
sion, the matrix element for e+e− annihilation through a photon 
will be structurally identical to that for annihilation through a J/ψ
provided we make the replacement

eψeg

s − m2
ψ + im2

ψ�(ψ)
→ e2

em

s
, (2.7)

where eem is the electric charge.

3. Cross section for e+e− → �(s1)�̄(s2)

Our first task is to calculate the cross-section distribution for 
e+e− annihilation into polarized hyperons. From the squared ma-
trix element |M|2 for this process we remove a factor Kψ , to get

dσ = 1

2s
Kψ |Mred|2 dLips(k1 + k2; p1, p2), (3.8)

with dLips the phase-space factor, with s = P 2, and with

Kψ = e2
ψe2

g

(s − m2
ψ)2 + m2

ψ�2(mψ)
. (3.9)

The square of the reduced matrix element can be factorized as
∣∣Mred(e+e− → �(s1)�(s2))

∣∣2 = L · K (s1, s2), (3.10)

with L(k1, k2) and K (p1, p2; s1, s2) lepton and hadron tensors, and 
s1 and s2 hyperon spin four-vectors.

Lepton tensor including averages over lepton spins;

Lνμ(k1,k2) = 1
4 Tr

[
γν /k1γμ /k2

]
= k1νk2μ + k2νk1μ − 1

2 sgνμ. (3.11)

Hadron tensor for polarized hyperons;

Kνμ(s1, s2) = Tr
[
�

�

ν (/p1 + M) 1
2 (1 + γ5/s1)

× ��
μ(/p2 − M) 1

2 (1 + γ5/s2)
]
/e2

g, (3.12)

with p1 and s1 momentum and spin for the Lambda hyperon and 
p2 and s2 correspondingly for the anti-Lambda hyperon. The trace 
itself is symmetric in the two hyperon variables.

The spin four-vector s(p, n) of a hyperon of mass M , three-
momentum p, and spin direction n in its rest system, is

s(p,n) = n‖
M

(|p|; Ep̂) + (0;n⊥). (3.13)

Here, longitudinal and transverse designations refer to the p̂ direc-
tion; n‖ = n · p̂ and n⊥ = n − p̂(n · p̂) are parallel and transverse 
components of the spin vector n. Also, observe that the four-
vectors p and s are orthogonal, i.e. p · s(p) = 0.

For the evaluation of the matrix element we turn to the global 
c.m. system where kinematics simplifies. Here, three-momenta p
and k are defined such that

p1 = −p2 = p, (3.14)

k1 = −k2 = k, (3.15)

and scattering angle by,

cos θ = p̂ · k̂. (3.16)
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The phase-space factor becomes

dLips(k1 + k2; p1, p2) = p

32π2k
d�, (3.17)

with p = |p| and k = |k|.
The matrix element in Eq. (3.10) can be written as a sum of 

four terms that depend on the hyperon spin directions in their 
respective rest systems, n1 and n2,∣∣Mred(e+e− → �(s1)�(s2))

∣∣2

= sD(s)
[

H00(0,0) + H05(n1,0) + H50(0,n2) + H55(n1,n2)
]
.

(3.18)

The polarization distributions Hab are each expressed in terms of 
structure functions that depend on the scattering angle θ , the ratio 
function α(s), and the phase function 
�(s). There are six such 
structure functions,

R = 1 + α cos2θ, (3.19)

S =
√

1 − α2 sin θ cos θ sin(
�), (3.20)

T1 = α + cos2θ, (3.21)

T2 = −α sin2θ, (3.22)

T3 = 1 + α, (3.23)

T4 =
√

1 − α2 cos θ cos(
�). (3.24)

The definitions and notations are slightly different from those of 
Ref. [1]. In particular, a factor sD(s) has been pulled out from the 
structure functions, and placed in front of the sum of the polariza-
tion distributions of Eq. (3.18).

The polarization distributions Hab are,

H00 = R (3.25)

H05 = S
[

1

sin θ
(p̂ × k̂) · n1

]
(3.26)

H50 = S
[

1

sin θ
(p̂ × k̂) · n2

]
(3.27)

H55 =
{
T1n1 · p̂n2 · p̂ + T2n1⊥ · n2⊥

+ T3n1⊥ · k̂n2⊥ · k̂

+ T4

(
n1 · p̂n2⊥ · k̂ + n2 · p̂n1⊥ · k̂

)}
(3.28)

Transverse components n1⊥ and n2⊥ are orthogonal to the Lambda 
hyperon momentum p in the global c.m. system. Also, transverse 
n⊥ and longitudinal n‖ = p̂ · n polarization components enter dif-
ferently, since they transform differently under Lorentz transfor-
mations.

All polarization observables, single and double, can be directly 
read off Eqs. (3.25)–(3.28), and there are no other possibilities. The 
set of scalar products involving n1 and n2 is complete. As an exam-
ple, the Lambda-hyperon polarization is obtained from Eq. (3.26)
which shows that the polarization is directed along the normal to 
the scattering plane, p̂ × k̂, and that the value of the polarization 
is

P�(θ) = S
R

=
√

1 − α2 cos θ sin θ

1 + α cos2θ
sin(
�) (3.29)

From Eq. (3.27) we conclude that the polarization of the anti-
Lambda is exactly the same, but then one should remember that 
p is the momentum of the Lambda hyperon but −p that of the 
anti-Lambda.

4. 
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Fig. 2. Graph describing the reaction e+e− → �(→ pπ−)�̄(→ p̄π+).

Folding of distributions

Our next task is to calculate the cross-section distribution for 
− annihilation into hyperon pairs, followed by the hyperon 
ays into nucleon–pion pairs. This reaction is described by the 
nected diagram of Fig. 2.
Again, we extract a prefactor, K = KψK1K2, from the squared 
trix element, writing

|2 = K|Mred|2. (4.30)

 prefactor originates, as before with the propagator denomi-
ors. Due to the smallness of the hyperon widths each of the 
eron propagators can, after squaring, be approximated as,

= 1

(p2
i − M2)2 + M2�2(M)

= 2π

2M�(M)
δ(p2

i − M2). (4.31)

ectively, this approximation puts the hyperons on their mass 
lls.
Hyperon-decay distributions are obtained by a folding calcu-
on, whereby hyperon-production and -decay distributions are 
ltiplied together and averaged over the intermediate hyperon-
n directions. It was proved in Ref. [2] that the folding prescrip-
n gives the same result as the evaluation of the connected-
nman-diagram expression. Hence, summing over final hadron 
ns,

|2 =
∑

±s1,±s2

〈∣∣M(e+e− → �(s1)�̄(s2))
∣∣2

× ∣∣M(�(s1) → pπ−)
∣∣2 ∣∣M(�̄(s2) → p̄π+)

∣∣2
〉

n1n2
. (4.32)

duction and decay distributions are,

(e+e− → �(s1)�̄(s2))
∣∣2 = L · K (s1, s2), (4.33)

(�(s1) → pπ−)
∣∣2 = R� [1 − α1l1 · s1/l�] , (4.34)

(�̄(s2) → p̄π+)
∣∣2 = R� [1 − α2l2 · s2/l�] , (4.35)

h l� the decay momentum in the Lambda rest system. R� is 
ermined by the Lambda decay rate.
The notation in Eq. (4.34) is the following; s1 denotes the 
bda four-spin vector, l1 the four-momentum of the decay pro-

, and α1 the decay-asymmetry parameter. Similarly for the anti-
bda hyperon parameters of Eq. (4.35).

We evaluate the hyperon-decay distributions in the hyperon-
t systems, where

(�(s1) → pπ−)
∣∣2 = R�

[
1 + α1 l̂1 · n1

]
, (4.36)

(�̄(s2) → p̄π+)
∣∣2 = R�

[
1 + α2 l̂2 · n2

]
, (4.37)

ere l̂1 = l1/l� is the unit vector in the direction of the pro-
 momentum in the Lambda-rest system, and correspondingly 
 the anti-Lambda case.
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Angular averages in Eq. (4.32) are calculated according to the 
prescription〈
(n · l)n

〉
n = l. (4.38)

The folding of the production distributions, Eqs. (3.25)–(3.28), 
with the decay distributions, Eqs. (4.36, 4.37), yields

|Mred|2 = sD(s)R2
�

[
G00 + G05 + G50 + G55

]
, (4.39)

with the Gab functions defined as

G00 = R, (4.40)

G05 = α1S
[

1

sin θ
(p̂ × k̂) · l̂1

]
, (4.41)

G50 = α2S
[

1

sin θ
(p̂ × k̂) · l̂2

]
, (4.42)

G55 = α1α2

{
T1 l̂1 · p̂l̂2 · p̂ + T2 l̂1⊥ · l̂2⊥

+ T3 l̂1⊥ · k̂l̂2⊥ · k̂

+ T4

(
l̂1 · p̂l̂2⊥ · k̂ + l̂2 · p̂l̂1⊥ · k̂

)}
. (4.43)

Thus, we conclude the connection between joint-hadron produc-
tion and joint-hadron decay distributions simply to be,

Gab(l̂1; l̂2) = Hab(n1 → α1 l̂1;n2 → α2 l̂2). (4.44)

We repeat the notation; p and k are momenta of Lambda and 
electron in the global c.m. system; l1 and l2 are momenta of pro-
ton and anti-proton in Lambda and anti-Lambda rest systems; or-
thogonal means orthogonal to p; and structure functions R, S , and 
T are functions of θ , α, and 
�. The angular functions multiply-
ing the structure functions form a set of seven mutually orthogonal 
functions, when integrated over the proton and anti-proton decay 
angles.

5. Cross section for e+e− → �(→ pπ−)�̄(→ p̄π+)

Our last task is to find the properly normalized cross-section 
distribution. We start from the general expression,

dσ = 1

2s
K |Mred|2 dLips(k1 + k2;q1, l1,q2, l2), (5.45)

with dLips the phase-space density for four final-state particles. 
The prefactor K contains on the mass shell delta functions for the 
two hyperons. This effectively separates the phase space into pro-
duction and decay parts. Repeating the manipulations of Ref. [2]
we get

dσ = 1

64π2

p

k

αgαψ

(s − m2
ψ)2 + m2

ψ�2(ψ)

����̄

�2(M)
·

·
⎛
⎝D(s)

∑
a,b

Gab

⎞
⎠ d��d�1d�2, (5.46)

with k and p the initial- and final-state momenta; �� the hyperon 
scattering angle in the global c.m. system; �1 and �2 decay angles 
measured in the rest systems of � and �̄; �� and ��̄ channel 
widths; and �(M) and �(ψ) total widths.

Integration over the angles �1 makes the contributions from 
the functions G05 and G55 disappear [2], and correspondingly for 
the angles �2. Integration over both angular variables results in 
the cross-section distribution for the reaction e+e− → J/ψ → ��̄.
Suppose we integrate over the angles �2. Then, the predicted 
hyperon-decay distribution becomes proportional to the sum

G00 + G05 = R
(

1 + α1P� · l̂1

)
, (5.47)

P� = S
R

, (5.48)

with the polarization P� as in Eq. (3.29), and the polarization vec-
tor P� directed along the normal to the scattering plane

6. Differential distributions

We first define our coordinate system. The scattering plane with 
the vectors p and k make up the xz-plane, with the y-axis along 
the normal to the scattering plane. We choose a right-handed co-
ordinate system with basis vectors

ez = p̂, (6.49)

ey = 1

sin θ
(p̂ × k̂), (6.50)

ex = 1

sin θ
(p̂ × k̂) × p̂. (6.51)

Expressed in terms of them the initial-state momentum

k̂ = sin θ ex + cos θ ez. (6.52)

This coordinate system is used for fixing the directional angles 
of the decay proton in the Lambda rest system, and the decay anti-
proton in the anti-Lambda rest system. The spherical angles for the 
proton are θ1 and φ1, and the components of the unit vector in di-
rection of the decay-proton momentum are,

l̂1 = (cosφ1 sin θ1, sin φ1 sin θ1, cos θ1), (6.53)

so that

l̂1⊥ = (cosφ1 sin θ1, sin φ1 sin θ1,0). (6.54)

The momentum of the decay proton is by definition l1 = l� l̂1. This 
same coordinate system is used for defining the directional an-
gles of the decay anti-proton in the anti-Lambda rest system, with 
spherical angles θ2 and φ2.

Now, we have all ingredients needed for the calculation of the 
G functions of Eqs. (4.40)–(4.43), the functions that in the end de-
termine the cross-section distributions.

An event of the reaction e+e− → �(→ pπ−)�̄(→ p̄π+) is 
specified by the five dimensional vector ξ = (θ, �1, �2), and the 
differential-cross-section distribution as summarized by Eq. (4.39)
reads,

dσ ∝ W(ξ) dcos θ d�1d�2.

At the moment, we are not interested in the absolute normal-
ization of the differential distribution. The differential-distribution 
function W(ξ ) is obtained from Eqs. (4.40)–(4.43) and can be ex-
pressed as,

W(ξ) = F0(ξ) + αF5(ξ)

+ α1α2

(
F1(ξ) +

√
1 − α2 cos(
�)F2(ξ) + αF6(ξ)

)

+
√

1 − α2 sin(
�) (α1F3(ξ) + α2F4(ξ)) , (6.55)

using a set of seven angular functions Fk(ξ ) defined as:
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F0(ξ) = 1

F1(ξ) = sin2θ sin θ1 sin θ2 cosφ1 cosφ2 + cos2θ cos θ1 cos θ2

F2(ξ) = sin θ cos θ (sin θ1 cos θ2 cosφ1 + cos θ1 sin θ2 cosφ2)

F3(ξ) = sin θ cos θ sin θ1 sinφ1

F4(ξ) = sin θ cos θ sin θ2 sinφ2

F5(ξ) = cos2θ

F6(ξ) = cos θ1 cos θ2 − sin2θ sin θ1 sin θ2 sinφ1 sinφ2. (6.56)

The differential distribution of Eq. (6.55) involves two parame-
ters related to the e+e− → ��̄ process that can be determined by 
data: the ratio of form factors α, and the relative phase of form 
factors 
�. In addition, the distribution function W(ξ) can be 
used to extract separately � and �̄ decay-asymmetry parameters: 
α1 and α2, and hence allowing a direct test of CP conservation in 
the hyperon decays.

The term proportional to sin(
�) in Eq. (6.55) originates with 
Eqs. (4.41) and (4.42), and can be rewritten as,

S(θ) (α1 sin θ1 sinφ1 + α2 sin θ2 sinφ2) ,

with the structure function S defined by Eq. (3.20). The relation 
between the structure functions and the polarization P�(θ) was 
discussed in Sect. 3, where it was shown that the polarization, 
P�(θ) of Eq. (3.29), and the polarization vector, ey , are the same 
for Lambda and anti-Lambda hyperons. This information tells us 
that � is polarized along the normal to the production plane, 
and that the polarization vanishes at θ = 0◦ , 90◦ and 180◦ . The 
maximum value of the polarization is for cos θ = ±1/(2 + α), and 
|P�(θ)| < 2

3 sin(
�).
It should be stressed that the simplified distributions used in 

previous analyses, such as Ref. [9], assume the hyperons to be un-
polarized and therefore terms containing P�(θ) are missing. In 
fact, such decay distributions, only permit the determination of 
two parameters: the ratio of form factors α, and the product of 
hyperon-asymmetry parameters α1α2.

In our opinion, the formulas presented in this letter should be 
employed for the exclusive analysis of the new BESIII data [10]. 
Due to huge and clean data samples: (440675 ± 670) J/ψ → ��̄

and (31119 ±187) ψ(3686) → ��̄, precision values for the decay-
hadronic-form factors could be extracted as well as precision val-
ues for � and �̄ decay-asymmetry parameters. The formulas pre-
sented could easily be generalized to neutron decays of the � and 
to production of other J = 1/2 hyperons with analogous decay 
modes.
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Appendix A

The coupling of the initial-state leptons to the J/ψ vector 
meson is determined by the decay J/ψ → e+e− . Assuming the 
decay to go via an intermediate photon, Fig. 1b, we can safely 
ignore any tensor coupling. The vector coupling of the J/ψ to 
leptons is therefore the same as for the photon, if replacing the 
electric charge eem by a coupling strength eψ . From the decay 
J/ψ → e+e− one derives

αψ = e2
ψ/4π = 3�( J/ψ → e+e−)/mψ. (A.57)

In a similar fashion we relate the strength eg of J/ψ cou-
pling to the hyperons to the decay J/ψ → ��̄. In analogy with 
Eq. (A.57) we get

αg = e2
g/4π = 3

(
(1 + 2M2/m2

ψ)

√
1 − 4M2/m2

ψ

)−1

× �( J/ψ → ��̄)/mψ. (A.58)

When the � mass M is replaced by the lepton mass ml = 0 we 
recover Eq. (A.57).
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