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Abstract

In this note we will describe the measurement of the tt̄ production cross
section in the 6ET + jets final state, using a Neural Network to isolate the decay
channel. We will show how this choice guarantees a high acceptance to general
leptonic W decays, with a sizeable presence of τ + jets top pair decays, that
are very difficult to isolate by means of the standard τ identification procedure.
Moreover 6ET + jets tt̄ decays provide complementary results with respect to
standard lepton+jets, di-lepton, and all-hadronic top pair searches: in fact the
signal sample we will extract is by means of our choice of cuts orthogonal to the
ones used by any other cross section analysis produced so far by the collaboration.
This allows us to obtain a measurement that is expected to have a strong impact
on the combination of the results produced by the CDF experiment. The analysis
reported in this note is based on 2.2 fb−1 of data collected up to August 2007 by
the TOP MULTI JET trigger. After a set of clean-up cuts, a neural network is
used to discriminate the tt̄ events from the background. After the requirement
of at least one jet b-tagged by SECVTX, the cross section is extracted by means
of a counting experiment on the sample of data whose neural network output is
greater than 0.8. The background in the final selected sample is estimated by
means of a b-tagging matrix built on data events (method-1 approach).

The resulting tt̄ production cross section, assuming Mtop = 172.5 GeV/c2, is:

σtt̄ = 7.99 ± 0.55 (stat) ± 0.76 (syst) ± 0.46 (lumi) pb
= 7.99 ± 1.05 pb
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1 Introduction

In pp̄ collisions at
√
s = 1.96 TeV top quark pairs are produced through qq̄ annihilation

(∼ 85%) and gluon fusion (∼ 15%). Since |Vtb| ∼ 1 and Mt > MW +Mb, the t→ W+b
decay is dominant (and has branching ratio ∼ 100% in Standard Model); so we can
classify the different top quark pairs search channels with respect to the W boson decay
modes. When both the produced W bosons decay into eν̄e (or c.c.) or µν̄µ (or c.c.) we
have the so called “di-lepton” channel; if both W bosons decay into quark pairs, the
final state is instead called “all-hadronic”. If one W decays hadronically and the other
one leptonically, we have the “lepton+jets” channel.

In this note we describe the measurement of the the tt̄ production cross section in
the 6ET + jets final state, using a Neural Network (NN) to isolate the decay channel.
The 6ET + jets decay channel has a signature characterized by large jet multiplicity,
large missing transverse energy from neutrinos and at least one jet identified as a prod-
uct of the decay of a b-quark (b-tagged jet). The search for this signature makes the
measurement sensitive to W leptonic decays regardless of the lepton type and has a
large acceptance with respect to the W → τν decays, very difficult to isolate with the
standard τ identification tools. The search focuses on the missing transverse energy
from the neutrino rather than on lepton identification, and thus it gives complementary
and independent results with respect to the “lepton+jets” channel; moreover, with ap-
propriate cuts on the 6ET , the measurement is also independent from the “all-hadronic”
one. The impact on the combined cross section measurement is thus greatly enhanced.

The analysis starts with a series of clean-up cuts in order to perform a first raw
selection of events with high 6ET and jet multiplicity. A NN is then used to discrim-
inate the signal from the background, mainly composed by QCD and W/Z+ heavy
flavour jets events. A cut on the NN output selects the final sample, and the cross
section measurement is extracted by means of a counting experiment on the number
of SECVTX b-tagged jets in the selected events. The background in the final sample
is estimated using a method 1 approach: a matrix is built on data to assign each jet
in the final sample the probability to have been produced by a b-quark coming from a
background process.

In the following section we will describe in detail all the analysis steps: first the
choice of the datasets, the clean-up cuts and the background parametrization. Then
we will move to the description of the neural network training and performances. Then
the systematic uncertainties affecting the measurement will be described, to conclude
with the cross section determination.

2 Datasets

2.1 Data

Several among the available CDF datasets can contain a detectable amount of 6ET +jets
tt̄ events and, in principle, many of the available trigger paths could be used to select
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a data sample in which to perform the analysis.
Our choice was to use the TOP MULTI JET trigger, which is specifically designed

for the all hadronic tt̄ decays, whose final state nominally consists of six hadronic jets.
The trigger requirements are the following:

• at Level 1 (L1): at least one calorimetric tower with ET ≥ 10 GeV (from Run
210012 ET ≥ 20 GeV );

• at Level 2 (L2): at least four calorimetric clusters with ET ≥ 15 GeV each plus
a total

∑
ET ≥ 125 GeV (from Run 194328

∑
ET ≥ 175 GeV );

• at Level 3 (L3): at least four jets with ET ≥ 10 GeV .

This choice of trigger is mainly due to the analysis strategy we want to deploy:
this “multijet” trigger contains the signal signature we are looking for and gives us
the possibility of investigating a sample of events that are normally not used by other
analyses, providing a cross section determination uncorrelated with the remaining ones
at CDF. Moreover, we will rely on the SECVTX b-tagging algorithm to indentify heavy
flavour jets due to top quark decay: for this reason, triggers using selections based on
SVT tracks with large impact parameter are not suitable for our purpose, since they
can enrich the heavy flavour fraction of the data sample at the cost of introducing
a sizeable and difficult to model bias as far as the b-tagging algorithm is concerned.
Additionally, triggers with explicit missing ET requirements can reduce the initial
background amount in the triggered data sample, but they enhance the EWK+jets
component with respect to the QCD-dominated fraction of events, which is essential
to parameterize background b-tagging rates, as will be described in Sec. 5.1.

For these reasons, our choice is to use the TOP MULTI JET trigger which provides,
at the first order, a QCD-dominated sample in which background prediction tools can
be developed and used to estimate the background to 6ET + jets tt̄ decays.

The results reported in this work are based on data collected from March 2002 to
August 2007. With the requirement of fully operational silicon detectors, calorimeters
and muon systems2, the total integrated luminosity used in the analysis and corre-
sponding to this period is 2.2 fb−1. Additional details about the datasets used in this
analysis are reported in Tab. 1.

2.2 Monte Carlo

The signal events are simulated using the ttop25 dataset, generated using PYTHIA
with Mtop = 172.5 GeV/c2. For the evaluation of the systematic uncertainties (see
Section 7) we used the following samples:

• dtopa2 and dtopa3 (HERWIG) for the systematics on the MC generator;

2Good run list v26 “em mu si cmxignored”.
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Dataset Run Range CDF code version Lum. (nb−1)
gset0d 138425 - 186598 prod 5.3.1 - topCode 6.1.4 326671
gset0h 190697 - 203799 prod 6.1.1 - topCode 6.1.4 356320
gset0i 222529 - 228596 prod 6.1.1 - topCode 6.1.4 572150
gset0j 228664 - 246231 prod 6.1.1 - topCode 6.1.4 911217

tot. 2166358

Table 1: CDF datasets used for this analysis. The table shows the available run range
and the version of the production and reconstruction software. Offline luminosity is
still not corrected by the factor of 1.019.

• dtops1 and dtops2 (PYTHIA) for ISR/FSR systematic error;

• ctopse and ctopsd (PYTHIA) for color reconnection systematic error.

3 Trigger simulation

The TOP MULTI JET trigger requirements have been revised during data taking to
cope with Tevatron increasing luminosity. The data used in this analysis are collected
with three versions of the trigger, differing for L1 and L2 requirements:

• Runs 138425-195408 (p0-p1 ): at L1 at least one calorimetric tower with ET >
10 GeV, at L2 four clusters with ET > 15 GeV and ΣET > 125 GeV;

• Runs 195409-212133 (p2-p7 ): at L1 at least one calorimetric tower with ET >
10 GeV, at L2 four cluster with ET > 15 GeV and ΣET > 175 GeV;

• Runs 217990-246231 (p8-p13 ): at L1 at least one calorimetric tower with ET >
20 GeV, at L2 four clusters with ET > 15 GeV and ΣET > 175 GeV;

L3 requirement was always the presence of at least four jets with ET ≥ 10 GeV .

In order to work on a uniform sample of data, we decided to simulate the new L2
requirement of ΣET > 175 GeV on the events taken before p2.

On all MC samples, instead, we will perform a full simulation of the trigger path
using the scale factors computed by A.Mitra [1] in order to correct the L2 cluster
transverse energy for a bug in the CDF code used for MC simulation.

Since no information on L1 is available in the MC TopNtuples we used for our
analysis, we need a way to simulate correctly the L1 requirements on MC events.
Previous studies [2] show that the requirement of L1 JET10 is 99% efficient when
TOP MULTI JET L2 with ΣET > 175 GeV is fired, so we can safely choose not to
simulate the L1 JET10 requirement on MC events corresponding to runs before p8.



6 4 EVENT CLEANUP

Figure 1: L1 JET20 rate versus offline SumEt, L5 corrected, derived from Tower10
dataset, together with its fit. See text for details.

In order to simulate correctly the requirement of L1 JET20 on MC events corre-
sponding to runs after p8, we derive a turnon function from Single Tower 10 dataset.
Tower10 dataset is collected using the following trigger requirements:

• at Level 1 (L1): at least one calorimetric tower with ET ≥ 10 GeV ;

• at Level 2 (L2): a static prescaling factor of 1K;

• at Level 3 (L3): auto-accept.

Using this data sample we derive the turnon NL1&&L2(SumEt)/NL2(SumEt), where
NL1&&L2(SumEt) is the number of events in the sample vs offline SumEt L5 corrected
that have fired both L1 JET20 and TOP MULTI JET L2 with ΣET > 175 GeV, while
NL2(SumEt) is the number of events in the sample vs offline SumEt L5 corrected that
have fired TOP MULTI JET L2 with ΣET > 175 GeV. The turnon obtained using this
procedure is shown in Fig. 1, together with the sigmoid function used to fit it.

We will use the fit of the turnon to reweigh MC events passing the TOP MULTI JET
L2 simulation and corresponding to runs after p8. This introduces a correction of order
∼ 4% in the simulated L2 trigger efficiency.

4 Event cleanup

The following prerequisites are applied both to data and Monte Carlo samples before
any kinematical selection:

• we consider Good run list v26 em mu si cmxignored
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• we discard events whose primary vertex location is not well centered in the CDF
II detector, in particular:

– In order to select well centered events, the z coordinate of the highest-
∑
PT

good quality vertex is required to be within ±60 cm from the geometrical
center of the detector: |zvert| < 60 cm.

– We require that the vertex used for jet reclustering and then for the sec-
ondary vertex search is close to be the primary vertex found in the event
by means of the PrimVtx. So we require the distance between the event
primary vertex and the vertex used for jet reclustering |zjet − zprimvtx| to
be less than 5 cm, where zjet denotes the z0 of the good quality highest-PT
vertex.

– A good quality vertex, by definition, is formed with at least three COT
tracks [3]. We require the number of good quality vertices in the event to
be greater than zero.

• We simulate the new L2 ΣET > 175 GeV trigger requirement on data taken
before run 194328, to have an homogenous sample to perform our analysis.

• When dealing with Monte Carlo events, we perform a full simulation of the
TOP MULTI JET trigger path using for L2 ΣET > 175 GeV and weighing events
by the L1 JET20 rate if necessary.

• We reject events with a good, high−PT reconstructed electron or muon to avoid
overlaps with other top lepton+jets analyses.

• We clean up our sample by requiring events to have at least 3 tight jets, i.e. jets
with EL5

T ≥ 15 GeV and |η| ≤ 2.0.

• We reject events with low 6ET by requiring 6ET
sig ≥ 3 GeV 1/2, thus avoiding

overlaps with top all-hadronic analyses.

The impact of these preliminary selections on data and inclusive Monte Carlo tt̄
is shown in Tab. 2, 3 and 4. After prerequisites application we expect a signal to
background ratio S/B of 1.0% in the sample with NJets ≥ 3, of 0.1% in the sample
with exactly 3 tight jets and of 1.4% in the sample with NJets ≥ 4.

5 Background determination

Our measurement will be performed counting the number of jets b-tagged by the
SECVTX algorithm. In order to derive a cross section measurement from the final
tagged sample we need to find an estimate of the number of b-tagged jets yielded by
background processes.
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N evts gset0d gset0h gset0i gset0j tot.
Good Run 4466188 2674058 3349900 4414134 14904280
Trigger 1167368 1744704 3349899 4414134 10676105
|Zvert| < 60 cm 1091891 1527136 3018242 4144055 9781324
|Zjet − Zprimvtx| < 5 cm 1059897 1433601 2877148 3845855 9216501
Nvert good quality ≥ 1 1059896 1433601 2877148 3845855 9216500
N tight leptons = 0 1058342 1431754 2872926 3841620 9204642
NJets ≥ 3 1023215 1341713 2806210 3614881 8786019
6ET

sig ≥ 3 GeV 1/2 13496 20699 38919 65413 138527

Out of which:
with NJets= 3 3922(0.1%) 7815(0.3%) 9529(0.3%) 23044(0.5%) 44310(0.3%)
with NJets≥ 4 9574(0.2%) 12884(0.5%) 29390(0.9%) 42369(1.0%) 94217(0.6%)

Table 2: Events surviving the clean-up requirements for data, divided in each period
of data taking.

Rel. Eff. (%) gset0d gset0h gset0i gset0j tot.
Good Run 100 100 100 100 100
Trigger 26.1 65.3 100 100 71.6
|Zvert| < 60 cm 93.5 87.5 90.1 93.9 91.6
|Zjet − Zprimvtx| < 5 cm, 97.1 93.9 95.3 92.8 94.2
Nvert good quality ≥ 1 100 100 100 100 100
N tight leptons = 0 99.9 99.9 99.9 99.9 99.9
NJets ≥ 3 96.7 93.7 97.7 94.1 95.4
6ET

sig ≥ 3 GeV 1/2 1.3 1.5 1.4 1.8 1.6

Table 3: Relative efficiency of the clean-up requirements for data, divided in each
period of data taking.

In the following we will describe a procedure to obtain a reliable prediction of the
total amount of b-tags coming from background events, which will then be a part of
the neural network selection optimization procedure on the data sample. Given our
tight prerequisite cut on 6ET/

√
ΣET and the ≥ 1 positive b-tag requirement that will

be enforced on the final sample, we expect the main background contributions to come
from events like bb̄+ jets and Wbb̄+ jets [7].

In order to determine the background parameterization, the complete data sample
after the clean-up cuts can not be directly used since it has a sizeable signal contami-
nation. Making the assumption that the per-jet positive tagging rate does not depend
on the number of jets in the event, we will limit ourselves to the subsample of events
with exactly 3 tight jets (i.e. jets with ET ≥ 15 GeV and |η| ≤ 2.0), where the tt̄
fraction is negligible, and we will use this background-dominated sample to derive a



5.1 b-tagging rate parameterization 9

N evts MCincl Rel. eff.(%) Abs. eff.(%) evts in 2.2 fb−1

Good Run 4787475 100 100 16390
|Zvert| < 60 cm 4580599 95.7 95.7 15682
Trigger 2446149 53.4 51.1 8374
|Zjet − Zprimvtx| < 5 cm 2442174 93.8 51.0 8361
Nvert good quality ≥ 1 2442174 100 51.0 8361
N tight leptons = 0 2199776 90.1 46.0 7531
NJets ≥ 3 2199302 99.9 46.0 7529
6ET

sig ≥ 3 GeV 1/2 396924 18.0 8.3 1359

Out of which:
with NJets= 3 9087 2.3 0.2 31
with NJets≥ 4 387837 97.7 8.1 1328

Table 4: Events surviving the clean-up requirements for inclusive Monte Carlo tt̄ sam-
ples. Last column shows the amount of tt̄ events expected in 2.2 fb−1 of data assuming
σtt̄ = 7.45 pb.

per-jet b-tagging probability parameterization for events that are not top-like. We will
then check the parameterization predictions for higher jet multiplicities and use it for
the background determination in the neural network selected sample.

5.1 b-tagging rate parameterization

The basic idea of our background prediction method rests on the assumption that
b-tag rates for tt̄ signal and background processes show differences that are due to
the different properties of the b-jets produced by the top quark decays compared to
the b-jets arising from qcd and vector boson plus heavy flavour production processes.
In this hypothesis, parameterizing the b-tag rates as a function of some chosen jet
characteristics, in events depleted of signal contamination, will allow to predict the
number of b-tagged jets from background processes present in a given selected sample.

We summarize below the steps needed for this approach:

1. identify a subsample of data with negligible tt̄ contamination;

2. in the identified sample, parameterize the b-tagging rate as a function of the N
variables on which it mainly depends.

3. Build a N -dimensional b-tagging matrix in order to associate to a given jet a
probability to be identified as a b-jet given its characteristics.

4. Predict the total amount of expected background tags in a given sample by
summing b-tagging probabilities over all jets in the selected events.
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5. In samples depleted of signal, check the matrix background prediction by com-
paring the number of expected and observed secvtx tagged jets.

6. Use the tagging matrix to calculate the amount of background tags in the sample
to be used for the cross section measurement.

We remind that the use of this method based on tagging rate parameterizations rests
on the assumption that the sample used for b-tag rates dependencies studies shows
a negligible tt̄ contamination: a tt̄ presence in the sample used to parameterize the
tagging rate may have a sizable impact in the amount of background tags prediction.
For this reason, we need to choose as base sample a data region depleted as much
as possible of signal: in our case, we decide to use for the background tagging rate
parameterization the data sample obtained after the prerequisites application with
exactly 3 tight jets (i.e. jets with EL5

T ≥ 15 GeV, |η| ≤ 2.0).
Tab. 5 show the number of events in the data sample and the tt̄ contamination

expected from Monte Carlo assuming the theoretical production cross section of 7.45 pb,
corresponding to a top mass of Mtop = 172.5 GeV/c2 for different tight jet multiplicities.

Number of Events 3 jets 4 jets 5 jets 6 jets 7 jets 8 jets

Data 44,310 52,691 22,760 9,871 2,714 660
tt̄ MC 9,090 107,938 152,740 87,342 30,074 7,789
Exp. tt̄ in 2.2 fb−1 31 371 524 300 103 27
Exp. Contamination (%) 0.07 0.7 2.31 3.04 3.81 4.05

Table 5: Expected signal contamination for different jet multiplicities.

We can define the b-tagging probability as the ratio of the number of positive
secvtx tagged jets to the number of taggable jets in the sample of data events after
prerequisites with exactly 3 jets, where we define as taggable a tight jet (with EL5

T ≥
15 GeV , and |η| < 2.0) with at least two good secvtx tracks.

The per-jet b-tagging probability has been parameterized as a function of several jet
and event variables in order to extract its main dependencies, and is found to depend
mainly on jet characteristics such as ET , the number of good quality tracks contained
in the jet cone Ntrk, and the 6ET projection along the jet direction 6ET

prj, defined by:

6ET
prj = 6ET cos ∆φ(6ET , jet). (1)

Figure 2 shows both the positive and negative tagging rates dependence on the set of
variables chosen to parametrize the tagging probability.

Jet ET and Ntrk correlation with the tagging probability is expected due to the
implementation details of the b-tagging algorithm. The 6ET projection along the jet
direction is instead correlated with the heavy flavour component of the sample [6, 7] and
with the geometrical properties of the event: in fact b-quarks can yield a considerable
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Et (GeV)

  

MetProj (GeV)

Figure 2: Positive and negative b-tagging rates as a function of ET , Ntrk and 6ET
prj

for the data sample with exactly 3 tight jets in the event. The dotted vertical lines
represent the binning used in the matrix parametrized with these variables.
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Figure 3: 6ET
prj distribution for inclusive Monte Carlo tt̄ and data 3-jet events. Top

row: left (right) 6ET
prj plot for taggable jets in tt̄ (data). Second row: missing transverse

energy projection for positive tagged jets for both tt̄ (left) and data (right).

amount of missing transverse energy due to their semi-leptonic decays and in that
case the 6ET is expected to be aligned with the jet direction; on the contrary, 6ET

produced in W boson decays stands more likely away from jets, depending on the
process-allowed regions of the phases space. By requiring the events to have large
missing ET significance ( 6ET/

√
ΣET ≥ 3 GeV 1/2) as an analysis prerequisite, we reject

those events whose missing ET is mainly due to residual energy mis-measurement
effects, and in turn concentrate our attention on physics-induced 6ET .

These 6ET
prj features are depicted in Fig. 3. The upper left plot of Fig. 3 shows the

6ET
prj for taggable jets in 3-jet inclusive Monte Carlo tt̄ events. On the other hand,

in the upper right plot the corresponding distribution extracted from 3-jet events in
multijet data is shown for comparison. On the second row, the missing transverse
energy projection is drawn for secvtx positive tagged jets, for both the samples.

5.2 b-tagging matrix

Now we can define a so-called b-tagging matrix, using the per-jet b-tagging probability
dependencies studied previously. The 3-dimensional matrix binning we decided to
choose, according to the tagging rate dependencies shown in Fig. 2 and in order to
minimize the number of low statistics or undefined matrix bins, is the one that was
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already successful in previous analyses:

• 3 bins in jet ET : [15, 40); [40, 70); ≥ 70 GeV;

• 11 bins in jet Ntrk: from Ntrk = 2 to Ntrk ≥ 12;

• 10 bins in 6ET
prj: < −40; [−40, − 30); [−30, − 20); [−20, − 10); [−10, 0);

[0, 10); [10, 20); [20, 30); [30, 40); and ≥ 40 GeV.

Each jet contained in the 3-jet events data sample will be classified according to the
matrix bin it belongs to, in terms of the corresponding jet variables ET , Ntrk and
6ET

prj. After the classification, for each matrix bin (x, y, z), with x, y, z integers in
the range allowed by the chosen matrix binning, the total number of positive b-tagged
jets N+

jets(x, y, z) and the total number of taggable jets N taggable
jets (x, y, z) falling in the

(x, y, z) matrix bin will be used to calculate the following tagging rate

R(x, y, z) =
N+
jets(x, y, z)

N taggable
jets (x, y, z)

(2)

This allows us to associate to each k−th jet in an event a 3−d b-tagging probability:

P(Ek
T , N

k
trk, 6ET

k
prj) = R(x, y, z) (3)

by finding the (x, y, z) matrix bin corresponding to the (Ek
T , N

k
trk, 6ET

k
prj) triplet of jet

variables.
This per-jet probability will allow to calculate the number of background b-tags

expected in a given data sample as follows: the number of expected background b-tags
in the i− th event in a given sample, is defined as:

N i
tags =

n∑
k=1

P(Ek
T , N

k
trk, 6ET

k
prj) (4)

where the sum on k is over all taggable jets in the event. The total number of tagged
jets expected for a given data sample will then be the sum of the expected tags per
each event.

In the next section we will check if this choice of parameterization and binning is
satisfactory.

5.3 b-tagging matrix checks

Before applying the parameterization we found previously to estimate the number of
background b-tagged jets in a given data sample, we first want to check that it can
predict the right kinematical distributions for b-tagged events in samples of data before
any selection, where the tt̄ signal contamination is quite small. Moreover, we will check
its prediction as a function of the jet multiplicities. In both cases, as we have to apply
the b-tagging matrix to a sample data, we first need to correct for the presence of top
events in the sample.
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5.3.1 Iterative correction for the presence of top

In general, before applying the tag matrix to a data sample, we have to ensure that the
data sample before the tagging requirement contains a negligible tt̄ component. If this
is not the case, then the tagging rate parameterization procedure will overestimate the
background. In fact the expected number of b-tags provided by the positive tagging
matrix parameterization will not refer only to background events, since it receives a
contribution from tt̄ events in the pre-tagging sample.

We can correct for this effect by removing the tt̄ contribution in the sample in order
to have a background-only determination of the number of expected b-tags. To do so,
we iteratively correct the number of expected b-tags in the sample as follows [8]:

N ′exp = N fix
exp

Nevt −N tt̄
evt

Nevt

= N fix
exp

Nevt − Nobs−Nexp
εavetag

Nevt

(5)

where:

• N fix
exp is the number of expected tags coming from the tag rate parameterization

before any correction; this number is fixed during the iterative procedure.

• Nevt is the number of events in the pre-tagging data sample used to determine
N fix
exp through the tag matrix prediction;

• εavetag is the average tagging efficiency, defined as the Monte Carlo ratio between
the number of positive b-tagged jets and the number of events in the pre-tag
sample;

• N tt̄
evt is the tt̄ contamination in the pre-tagging sample, estimated as Nobs−Nexp

εavetag
.

The iterative procedure stops when the difference |N ′exp −Nexp| ≤ 1%.

5.3.2 Kinematical distributions of matrix-predicted background

Once we have chosen our parameterization variables and built the tagging matrix, we
can use the matrix definition to construct kinematical distributions and compare them
with the observed data distributions for events with Njet(E

L5
T ≥ 15 GeV, |η| ≤ 2.0) ≥ 3

and at least one b-tagged jet before any other kinematical requirements except the
clean-up prerequisites selection.

The matrix-predicted kinematical distributions are obtained by weighting each jet
according to its parameterized tagging probability.

Fig. 4 shows the observed and matrix-predicted distribution for kinematical vari-
ables such as jet ET , Ntrk, 6Eprj

T , η, φ, then global event variables Aplanarity, Centrality
and Sphericity.

Fig. 5 shows the observed and matrix-predicted distribution for another set of kine-
matical variables such as 6ET , 6Esig

T ,
∑
ET ,

∑
E3
T , the minimum difference in φ between
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the 6ET and each jet in the event ∆φmin, the number of good quality vertices Nv12,
luminosity and event run.

The insets at the bottom of each panel display the bin-by-bin ratio of observed to
matrix-calculated distributions. In general, the observed to expected ratio is almost flat
for all the variables here considered. Exceptions are for example the jet ET and jet η
spectra. For jet ET the ratio shows some structure at low ET , in the range 15÷40 GeV ,
where the b-tagging rate is parameterized with a single matrix bin. Generally the ratio
between observed and expected distributions behaves well, confirming the effectiveness
of the tagging matrix in describing the kinematical distribution of tagged data.

5.3.3 b-tagging rate extrapolation at high jet multiplicities

Another important check consists in extrapolating the b-tagging rate dependencies at
jet multiplicities higher than 3, where the matrix is parameterized, and compare the
b-tags prediction from tagging matrix application to data to the observed number of
b-tagged jets. This extrapolation is performed on the complete data sample obtained
after the application of the prerequisites but before any additional kinematical require-
ment.

The results of this approach are shown in Fig. 6, where we assumed a tt̄ production
cross section σtt̄ = 7.45 pb for the Monte Carlo. The red error bands in the plot are
statistical only and come from the tag matrix application: we recall that for each
matrix bin, the tag rate is calculated as N+

bin/N
taggable
bin with N+

bin being the number
of positive tagged jets and N taggable

bin the number of taggable jets in that matrix bin
in the 3-jets sample used for matrix parameterization. We thus propagate the error
associated with this ratio to the expected number of tags.

Once we take into account the tt̄ signal contamination in the sample and its con-
tribution to the number of observed b-tags, the agreement between the number of
observed and predicted b-tags is good in all the jet multiplicity bins, being exactly the
same by definition for 3-jet events, on which the matrix is calculated.

6 Top Events selection

In order to enhance the signal to background ratio in our final sample, we will use a
neural network, trained to discriminate tt̄→ 6ET + jets signal events from background.

6.1 Neural Network training

To build our Neural Network (NN) we use the class TMultiLayerPerceptron available
in ROOT. For what concerns training samples, as background we will use all the
data taken with the TOP MULTI JET trigger and passing the prerequisites previously
discussed; additionally, we will require the presence of at least 4 tight jets in the
event (i.e. jets with EL5

T ≥ 15 GeV and |η| ≤ 2.0) to perform the training in a
sample completely uncorrelated with the one we used to determine the background
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Figure 4: Checks of tagging matrix-based variables distributions in data events with
at least three EL5

T ≥ 15 GeV and |η| ≤ 2.0 jets. From top to bottom, from left to
right: Jet ET , Ntrk, 6Eprj

T η, φ; then global event variables Aplanarity, Centrality and
Sphericity. All plots except the one for η are in log scale. The insets at the bottom of
each panel display the bin-by-bin ratio of observed to matrix-calculated distributions.
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Figure 5: Checks of tagging matrix based event variables distributions in data events
with at least three EL5

T ≥ 15 GeV and |η| ≤ 2.0 jets. From top to bottom, from left
to right: 6ET , 6Esig

T ,
∑
ET ,

∑
E3
T , ∆φmin, the number of good quality vertices Nv12,

luminosity and event run. All plots are in log scale. The insets at the bottom of each
panel display the bin-by-bin ratio of observed to matrix-calculated distributions.
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Figure 6: Tagging matrix check after prerequisites application and before any kine-
matical selection. Observed and predicted positive b-tags as a function of the jet
multiplicity. The expected contribution coming from tt̄ events is also shown, see text
for details.

parameterization. For signal we will use the same amount of events passing the same
requirements of the data, taken randomly from the available Monte Carlo sample.

Moreover, in order to further clean up our sample and to select a signal enriched
region, we remove events with low angle between jets and 6ET , ∆φmin using an additional
cut on ∆φmin > 0.4 (see Fig. 7). This cut has been choosen following the same approach
of the previous analysis in this decay channel [4]; it allows to select a sample with
well known and modeled kinematical properties and avoids any possible enhancement
by the Neural Network of signal characteristics that can be difficult to model, since
events with low angle between jets and 6ET in our sample are mainly due to energy
mismeasurements.

After applying this cut on Data and MC samples with at least 4 tight jets, we have
the following results: on the MC we are left with 207, 381 events, to be compared with
387, 837 events with 4 tight jets before the ∆φmin cut (efficiency 53.5%). On Data
20, 043 out of 94, 217 events with 4 tight jets pass the ∆φmin cut (efficiency 21.3%).

After these requirements, the signal contamination in the data sample withNJets ≥
4 obtained after prerequisites application is ∼ 3.5% (assuming σtop = 7.45 pb) and can
thus be considered negligible, meaning that we can consider all these data events as
background in our neural network training without affecting its rejection power.

We used the topology depicted in Fig. 8, using as inputs for the network the fol-
lowing kinematical variables, normalized with respect to their maximum value:

• ET1, the transverse energy of the leading jet;
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Figure 7: Up: ∆φmin distribution for tt̄ +1 tagged jets and background matrix pre-
dicted +1 tagged jets. In order to remove events affected by energy mismeasurement,
we require ∆φmin > 0.4. Bottom: efficiency of the cut on ∆φmin for tt̄ +1 tagged jets
and background +1 tagged jets, as expected from tag matrix application.

• ∆φmin, already defined as min ∆φ( 6ET , jet), the minimum difference between the
6ET and each jet in the event in the φ coordinates;

• 6ET
sig, the 6ET significance of the event, defined as 6ET/

√
ΣET ;

• the energy-related variables
∑
ET ,

∑
E3
T and the Centrality;

• the topology-related variables Sphericity and Aplanarity.

Fig. 9 shows the signal versus background distributions of each input variable going
into the network after the application of the previously discussed prerequisites. The
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Figure 8: The 8-16-8-1 topology of the network used in the analysis: a feed forward
neural network with 2 hidden layers, 8 input nodes and one single output for classifi-
cation. The thickness of the black lines connecting each perceptron is proportional to
the associated weight.

obtained sample made of signal and background events will be split in two parts: half
will be used for neural network training and the other half for the so called testing
during each iteration of the training procedure; a plot describing the “history” of the
training is shown in Fig. 10: for each training epoch the average error made by the
network in trying to discriminate events belonging to the signal or background class is
calculated both for the events in the training sample and in the test one.

We stop our training pocedure after 200 epochs, since after this number of itera-
tions the network reaches the minimum of the error function for the chosen topology.
Additionally, we want to avoid a situation of overtraining : overtraining happens when
a neural network learns “too well” the details of the training set, getting stuck in the
statistical fluctuations of its input variables, and looses the capability of generalizing
its results on a different sample. The fact that errors on the training sample and on
the test one are almost the same over all the training period tells us that the network
has not been overtrained.

6.2 Neural Network performances

The neural network obtained after the training procedure is then applied to all the
available events (training + test samples) and its output is shown in Fig. 11: signal
and background are well separated and their distributions are well peaked around their
expected values.

The performances of the neural network are described in terms of efficiency and
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Figure 9: Distribution of neural network input variables for top multi jet data (back-
ground) and tt̄ Monte Carlo (signal) samples, after prerequisites application (see text
for details).
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Figure 10: Average neural network error during training on training and test samples.

Figure 11: Output of the neural network after the training, right figure shows the same
plot in log scale.

purity, defined as follows:

ε(cut) =
Npass
s (cut)

Ns

, η(cut) =
Npass
s (cut)

Npass
s (cut) +Npass

b (cut)
(6)

and Npass
s (cut) (Npass

b (cut)) is the number of signal (background) events passing the cut
on the neural network output (i.e. with NNout >= cut), and Ns is the total number of
signal events in the test sample. Basically, purity describes how well a neural network
can discriminate between signal and background, while efficiency is a measure of the
neural network capability in recognizing signal events. An ideal neural network should
have infinite precision in discriminating signal from background, so ε ≈ 1 and η ≈ 1
and the efficiency vs. purity plot would be in this case a step function: the more the
plot obtained after the training approaches the ideal one, the better the performances
of the neural network.
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Figure 12: Performances of the Neural Network after training: efficiency vs cut on the
output variable on top and purity vs cut on the output variable on the bottom.

Figure 13: Efficiency versus Purity plot of the network obtained after the training.

As can be seen in Fig. 12, the efficiency of the network is good over all possible cuts
on the output variable, while purity as a function of the cut on the output variable has
a good trend, showing low background contamination for high cuts. We recall that the
purity parameter does not refer directly to the purity of the final sample we will use
for the cross section measurement: in fact it is just a measure of the performances of
the network, being calculated submitting to the network a sample made of the same
number of signal and background events. Finally, the efficiency versus purity plot
approaches quite well the ideal “step” one, as shown in Fig. 13.

Another important variable we can use to characterize the neural network obtained
after the training is the impact of each different input variable on the output of the
network itself. A way to estimate this quantity is the following: we choose a fixed input
variable α and, for each event, while keeping all the other input variables untouched,
we shift the value of the αi input by ± 1

10
· RMS, where RMS denotes the root mean
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Figure 14: Impact of the input variables on the output of the neural network (see text
for details).

square (
√∑

i α
2
i ) of that input variable calculated over all events submitted to the

network. The output of the network after the shift of this single input is calculated
and then compared to the output of the network without the shift. Finally, the square
root of the difference of the squares of the 2 outputs is calculated and then used to fill
an histogram. This is repeated for every variable and for each event in the sample, and
provides a way to quantify how the output of the network depends on the fluctuations
of each single input variable. The result of this procedure is shown in Fig. 14: it is
easy to notice how

∑
ET and 6ET

sig variations have the most determinant impact on
the output of the network.

6.2.1 b-tagging rate extrapolation and Neural Network

An additional check we want to perform is related to the behaviour of the matrix
predictions with respect to the output of the Neural Network we will use later for our
kinematical selection; we want to verify that the prediction of the background works
well over all the spectrum of the output of the neural network. Fig. 15 shows the
output of the Neural Network and the corresponding background prediction from the
tag matrix and the expected contribution from tt̄ signal both for events with at least
three tight jets and exactly three, four and five tight jets. Matrix predicted tags for
bins with a considerable amount of signal contamination have been corrected according
to the iterative procedure described in Sec. 5.3.3.

Results are quite good over all the neural network spectrum, altough some discrep-
ancies arise mainly in the low output region. In the high neural network output region
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Figure 15: Tagging matrix check after prerequisites application and before any kinemat-
ical selection. Observed and predicted positive b-tags as a function of Neural Network
output. Upper left plot shows the predictions for data events with at least three tight
jets. The other plots refer to data events with exactly three (upper right), four (lower
left) and five (lower right) tight jets.

we can see that the tagging matrix predictions are not sufficient to justify the number
of observed tags, while the agreement is good if we add the amount of tags coming from
the expected tt̄ signal contribution. This is both a confirmation of the effectiveness of
the method we used to estimate the background and an additional check of the correct
behaviour of the neural network we trained.

As expected, agreement is very good in the 3 jets sample and this provides an
additional check of the fact that the matrix parameterization is not affected by the
application of the neural network. Furthermore, since we don’t expect a sizeable signal
presence in the sample, the fact that the vast majority of 3 jet events has a neural
network output close to zero is again an indication of a well trained network.
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7 Systematic Errors

7.1 Background prediction systematic

The systematic uncertainty on the background prediction is calculated by comparing
the number of b-tags yelded by the tagging matrix application to the actual number
of observed positive secvtx tags in a control sample depleted of signal contamination
(we choose the one with NNout ≤ 0.6). The observed number of tags in this sample
is 14870, while the tag matrix prediction is of 14792 ± 312.4, giving a ratio |NExp −
NObs|/NObs < 1%.

Considering the obs/exp b-tag ratio as a function of the jet multiplicity , we obtain
the results of Tab. 6.

Number of +1 Tags 3 jets 4 jets 5 jets 6 jets 7 jets 8 jets

Observed 3074 6159 3819 1345 405 68
Mtx predicted 3086.7 6168.1 3726.2 1360.4 371.8 79.5
Error (stat.) 57.0 129.3 89.4 35.5 13.5 3.6
|NExp −NObs|/NObs ratio (%) 0.41 0.15 2.5 1.2 8.2 17

Table 6: Difference between observed and matrix predicted +1 Tags for different jet
multiplicities in the data sample with NNout ≤ 0.6.

By calculating the weighed average of the errors in each bin, weighing each error
by the number of + Tags observed in that jet multiplicity sample so that our result is
not dominated by low statistics bins, we obtain an error < 2%. We also note that the
high statistics jet multiplicity sample with the largest error is for NJets = 5 and has
an error of ∼ 2.5%.

The overall discrepancy between observed and matrix predicted number of b-tags
due to intrinsic limits of the matrix and to the dependance from the sample in which
the matrix has been built can then be quoted conservatively at 2.5%. This value will be
assumed as the systematics uncertainty to be associated to our background prediction.

7.2 Luminosity systematic

Two components of uncertainty play a role in the luminosity measurement determina-
tion: the acceptance and operation of the luminosity monitor (the CLC detector) and
the theoretical uncertainty of the total inelastic pp̄ cross section (60.7± 2.4 mb). The
uncertainties on these quantities are 4.2% and 4.0% respectively, giving a total uncer-
tainty of 5.8% on the integrated luminosity calculated for any given CDF dataset [9].
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Figure 16: Top: relative kinematical efficiency of prerequisites and neural network
selection versus cut applied on neural network output for both ALPGEN+PYTHIA
Monte Carlo sample (dtopa2) and ALPGEN+HERWIG sample (dtopa3) generated at
Mtop = 172.5 GeV/c2. Bottom: Monte Carlo generator dependent systematic versus
cut on neural network output. The error peak for neural network output cuts close to
1 is due to low statistics effects.

7.3 Monte Carlo generator dependent systematics

The base Monte Carlo sample adopted for this work is ttop25 dataset generated using
PYTHIA assuming Mtop = 172.5 GeV. In order to evaluate the generator dependence
of the kinematical efficiency computed for signal events we use two tt̄ samples (dtopa2
and dtopa3 ) generated with ALPGEN+PYTHIA and ALPGEN+HERWIG for the
same top mass Mtop = 172.5 GeV.

Since the ALPGEN+HERWIG sample was generated without QED FSR, we expect
lepton ID to have higher efficiency on this sample. This causes our tight lepton veto
prerequisite to have a lower efficiency on the ALPGEN+HERWIG sample.

We correct for this effect following the prescription available in [10]. We compare
the relative efficiency on the two samples, defined as:

εrel(cut) =
Nevts passing cut NNout ≥ cut

Nevts passing tight lepton veto prerequisite
(7)

The overall systematic uncertainty to be assigned to generator effects can then be
computed for each neural network output cut as:

systgen(cut) =
∆εrel(cut)

εrel(cut)
=
|εrelHERWIG(cut)− εrelPY THIA(cut)|

εrelPY THIA(cut)
(8)
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Figure 17: PDF dependent systematic, obtained with Monte Carlo reweighting tec-
nique, versus cut on neural network output. The error increases for neural network
output cuts close to 1 because of low statistics effects.

where εrelPY THIA(cut) and εrelHERWIG(cut) are the relative kinematical efficiencies for
the chosen cut on tt̄ inclusive Monte Carlo events generated with PYTHIA and HER-
WIG, respectively.

Fig. 16 shows the results of this calculation in the 0.6− 1.0 neural network output
cut range.

7.4 PDF-related systematics

The parton distribution functions (PDFs) chosen for the standard CDF Monte Carlo
generation correspond to the CTEQ parameterization outlined in [11]. There are un-
certainties associated with this parameterization, since the usage of different parame-
terizations of the PDFs could slightly change the kinematics and thus the acceptance
for signal events.

In order to account for these effects, we used a standard Monte Carlo reweighting
tecnique. Instead of generating new samples for each different PDF, we re-weighted
the events already generated with PYTHIA according to different PDF eigenvectors.
The weight for each event is calculated as the ratio of the new PDFs with respect to
the standard one. We then sum the weights in order to determine the effect on the
total kinematic efficiency [12].

The results of the calculation for neural network output cuts in the range 0.6− 1.0
are shown in Fig. 17.

7.5 ISR/FSR-related systematics

In general it is very difficult for Monte Carlo generators to model accurately initial and
final state radiation processes. If more or less extra radiation is present in the event with
respect to the default values set in the base Monte Carlo sample, the event kinematics
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Figure 18: Top: kinematical efficiency of trigger, prerequisites and neural network se-
lection versus cut applied on neural network output for PYTHIA Monte Carlo sample
(ttop25) and samples generated with more and less initial/final state radiation. Bot-
tom: Initial/Final state radiation systematic uncertainty versus cut on neural network
output. The behaviour of the error function for neural network output cuts in the
region close to 1 is due to low statistics effects.

could change affecting the kinematic efficiency determination. Indeed the presence of
less or more radiation associated to the tt̄ production can alter the acceptance of the
Njet and 6ET/

√
ΣET requirements.

We evaluated this effect using different inclusive Monte Carlo tt̄ samples generated
with different tunings for initial (ISR) and final state (FSR) radiation: less ISR/FSR
(dtops2), and more ISR/FSR (dtops1).

We calculate systematic effects for each cut on neural network output as follows:

systISR/FSR(cut) =
|ε+ISR/FSR(cut)− ε−ISR/FSR(cut)|

2εPY THIA(cut)
(9)

when our nominal value for the kinematical efficiency εPY THIA(cut) is in between the
values ε+ISR/FSR(cut) and ε−ISR/FSR(cut) we use for comparison; when it is not, we
will use half the maximum difference:

systISR/FSR(cut) =
max

(
|ε+ISR/FSR(cut)− εPY THIA(cut)|, |εPY THIA(cut)ε−ISR/FSR(cut)|

)
2εPY THIA(cut)

(10)
Fig. 18 shows the results of this calculation in the 0.6− 1.0 neural network output

cut range for both the ISR and FSR contributions respectively.



30 7 SYSTEMATIC ERRORS

Figure 19: Top: kinematical efficiency of trigger, prerequisites and neural network selec-
tion versus cut applied on neural network output for the Monte Carlo sample (ttop25)
with standard jet corrections and with jet energy corrections shifted by ±σ of their
systematic error. Bottom: Systematic uncertainty due to jet energy repsonse versus
cut applied on neural network output. In the neural network output cut region close
to 1 low statistics effects arise, causing the error to increase.

7.6 Systematics due to the jet energy response

In order to account for the jet response systematic in the cross section measurement,
we varied the corrected jet energies within ±1σ of their corresponding systematic un-
certainty. Therefore, signal trigger and prerequisites efficiencies are recalculated after
these variations.

We can assign a systematic uncertainty depending on the cut we apply on the neural
network output as follows:

systjetcorr(cut) =
|εjetcorr,+1σ(cut)− εjetcorr,−1σ(cut)|

2εkin(cut)
(11)

when our nominal value for the kinematical efficiency εkin(cut) is in between the val-
ues εjetcorr,+1σ(cut) and εjetcorr,−1σ(cut), while in the other case we will use half the
maximum difference defined according to Eq. 10.

Fig. 19 show the results of this calculation in the 0.6 − 1.0 neural network output
cut range.
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7.7 b-tagging scale factor systematics

The secvtx efficiency scale factor we use in this analysis, to count the number of b-
tags on Monte Carlo events, is SF = 0.95± 0.050. Since the average number of b-tags
per tt̄ event, εavetag , enters directly in the cross section measurement we have to compute
the systematics effect related to its determination.

To account for the scale factor uncertainty we varied it from its central value of 0.95
within the ±1σ range and we determined the difference in terms of average number
of b-tags per event on the Monte Carlo sample with respect to the standard value,
taking into account that the secvtx scale factor has the same central value for both
b- and c-quarks, but for the latter has a doubled uncertainty: SFb = 0.95 ± 0.050,
SFc = 0.95± 0.100.

For each cut on neural network output we can assign the following systematic
uncertainty:

systεtag(cut) =
|εtag,+1σ(cut)− εtag,−1σ(cut)|

2εavetag (cut)
(12)

The results are shown in Fig. 20. As expected, the systematic uncertainty due to
the scale factor application does not depend much on the choice of the cut on the
network output, since it only rescales the number of positive tags in a given sample.

7.8 Color reconnection systematics

Uncertainties arising from the modeling of color reconnections effects are estimated by
comparing the kinematical efficiency of our cuts using Monte Carlo samples PYTHIA
ctopsd and PYTHIA ctopse, both with Mtop = 172.5 GeV . These samples are gener-
ated using PYTHIA v6.4.20 so that the former, with “tune Apro”, is similar to the
default sample ttop25, while the latter, with “tune ACRpro”, includes an explicit color
reconnections model [13].

For each cut on the neural network output we can assign the following systematic
uncertainty:

systcolor(cut) =
|εctopse(cut)− εctopsd(cut)|

εkin(cut)
(13)

The results are shown in Fig. 21.

7.9 Trigger systematics

Altough a common aproach in many CDF analyses is to use a data driven turnon curve
to simulate the trigger on the Monte Carlo (MC) sample used in the analysis, we had
to use a complete simulation of the trigger requirements on the MC trigger variables
available through TrigSim, as already discussed in Sec. 3.

This is due to the fact that multijets triggers are in general very difficult to model
using a turnon curve. The TOP MULTI JET trigger involves multiple jets and SumEt,
correlated to each other, and is therefore sensitive to the event topology; as a result,
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Figure 20: Top: Average tagging efficiency in the sample obtained after trigger, pre-
requisites and neural network selection versus cut applied on neural network output for
the Monte Carlo sample (ttop25) with standard b-tagging Scale Factor and with Scale
Factor shifted by ±σ of its systematic error. Bottom: Systematic uncertainty due to
b-tagging scale factor application versus cut applied on neural network output. The
behaviour of the error function in the output region close to 1 is due to low statistic
effects.

trigger turnons are sample dependent. Therefore we cannot use a turnon curve derived
from data to reweigh Monte Carlo events.

This problem has a direct effect on the method used to calculate trigger systematics.
A first attempt to derive the trigger systematics would be to compare turnon curves
in ttop25 Monte Carlo to those found in SingleTower10 data. SingleTower10 is an
optimal candidate to derive the L2 TOP MULTI JET trigger turnon, since it shares
the same L1 requirement as the TOP MULTI JET trigger itself, has a static prescale
at L2 and auto-accept at L3, as already discussed in Sec. 3. Additionally, since we
alredy know that this trigger is mainly driven by its L2 requirements [2], we can limit
our systematics calculation to the L2 turnon.

Fig. 22 shows the L2 turnons calculated in the samples ttop25 (Monte Carlo) and
SingleTower10 (data) with respect to the variable offline SumEt, L5 corrected. Events
in the ttop25 sample are required to pass analysis prerequisites and to have at least 4
tight jets (i.e. jets with EL5

T ≥ 15 GeV and |η| ≤ 2.0). Due to lower statistics, events
in the SingleTower10 sample are required only to have at least 4 tight jets.
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Figure 21: Top: kinematical efficiency of trigger, prerequisites and neural network selec-
tion versus cut applied on neural network output for the Monte Carlo sample (ttop25)
used in the analysis compared with Pythia “tune Apro” (ctopsd) and with Pythia “tune
ACRpro” (ctopse) simulations for Mtop = 172.5 GeV . Bottom: Systematic uncertainty
due to color reconnection effects versus cut applied on neural network output. The
behaviour of the error function in the output region close to 1 is due to low statistic
effects.

The turnons show many differences: altough the L2 SUMET175 requirement turnon
matches quite well in the two samples, the L2 FOUR JET15 turnon is completely
different, because of the differences in the physics of the two samples. Obviously this
affects the overall L2 TOP MULTI JET turnon, which involves both the requirements.

By this comparison alone it’s difficult to get sensible information on the trigger
simulation systematics. This tells us that if we want a reliable determination of the
trigger systematics, we have to compare a Monte Carlo sample and a data sample with
the same physics.

To quote a systematic error related to our trigger simulation, we refer to the exten-
sive study performed in [1] by A. Mitra. We will repeat his studies with our choice of
jets. The method relies on the comparison of turnon curves between QCD40 MC and
JET50 data.

Both samples are required to pass the following prerequisites:

• Good Run (QCD Silicon v24)

• |Zvertex| < 60 cm
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Figure 22: Comparison of the offline SumEt (L5 corrected) L2 turnon in the Monte
Carlo sample ttop25 after analysis prerequisites versus the data sample SingleTower10.
Both samples are required to have 4 or more tight jets. Upper left plot shows the
turnon of the requirement L2 SUMET175 alone, upper right plot the turnon of the
requirement L2 FOUR JET15 alone, while the lower plot shows the turnon of the L2
TOP MULTI JET.

• Leading Jet ET > 60 GeV

• At least 4 tight jets (i.e. cone 0.4 jets with EL5
T > 15 GeV and |η| < 2.0)

We remind that we defined ΣET as the sum of the jet ET over all tight jets in the
event. To avoid any possible bias due to different kinematical properties of the two
samples, we reweigh QCD40 events to have the same distributions of JET50 in the
kinematical variables ΣET , Jet1 , Jet2, Jet3, Jet4 ET and min∆R among the jets.

To do so, we reweigh QCD40 events using a reweigh matrix defined as follows:

Mtxrwg(EJet1
T , EJet2

T , EJet3
T , EJet4

T ,ΣET ,min∆R) =

=
NJET50
evts (EJet1

T , EJet2
T , EJet3

T , EJet4
T ,ΣET ,min∆R)

NQCD40
evts (EJet1

T , EJet2
T , EJet3

T , EJet4
T ,ΣET ,min∆R)

Fig. 26 shows the behaviour of the chosen kinematical variables on JET50 data and
on QCD40 before and after reweigh using the matrix we just defined.
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Figure 23: Comparison of the offline SumEt (L5 corrected) L2 turnon in the Monte
Carlo sample QCD40 after reweigh and prerequisites versus the data sample JET50
after prerequisites. Both samples are required to have 4 or more tight jets. Upper
left plot shows the turnon of the requirement L2 SUMET175 alone, upper right plot
the turnon of the requirement L2 FOUR JET15 alone, while the lower plot shows the
turnon of the L2 TOP MULTI JET.

We can then calculate the L2 turnons in the JET50 data sample and in the
reweighed QCD40 MC sample. The L2 trigger is simulated on the Monte Carlo sam-
ple QCD40 following the same method described in Sec. 3 for ttop25: we rescale the
L2 cluster energies using A.Mitra’s run dependent scale factors and then evaluate the
different requirements. The results are shown in Fig. 23.

All the turnons match quite well, in particular the two TOP MULTI JET turnons;
in order to derive the trigger systematics we fit the latter turnons with a sigmoid
function. Fig. 24 shows the result of the fit of the two turnons.

Finally, we compute the systematic error following the same aproach of [4]. We
compare in terms of distribution integrals simulated and real L2 turnon curves in the
samples using the following formula:

∆εtrg =

∫
DpassL2(ΣET )dΣET −

∫
DpreL2(ΣET )× F turnon

jet50 (ΣET )dΣET∫
DpreL2(ΣET )dΣET

(14)

where DpreL2(ΣET ) is the SumEt distribution of QCD40 events before any L2 re-



36 7 SYSTEMATIC ERRORS

Figure 24: Fit of the JET50 data (left) and QCD40 MC (right) L2 TOP MULTI JET
turnon.

Figure 25: Fit of the bin by bin ratio of JET50 and QCD40 turnons, see text for details.

quirement, DpassL2(ΣET ) is the SumEt distribution of QCD40 events passing L2, and
F turnon
jet50 (ΣET ) is the SumEt TOP MULTI JET turnon derived from JET50 data. The

resulting systematics on the efficiency is 2%.
The systematics we’ve just derived takes into account only the differences in nor-

malization of the two turnons. To get an idea on how turnon shape differences can
impact our analysis we check the Data/MC bin by bin ratio of the two turnons and
then fit it with a straight line, excluding the regions where the turnon was obtained
with less data. This method is used in [1].

Considering the bin by bin ratio, shown in Fig. 25, only the region with SumEt
in the inerval 150-400 GeV could be fitted with a straight line, giving a difference in
turnons of 2%, similar to the result we already found using the method of Eq. 14. The
regions excluded from the fit have low statistics and contain only about 4% of ttop25
MC events after kinematical selection: so even if the difference in the turnons in this
region is large (about 20%), the error in this region would affect our efficency with a
systematics < 1%. To be conservative, we quote an overall trigger systematics of 3%.
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Figure 26: Kinematical distributions of JET50 data, QCD40 MC and QCD40 MC after
reweigh. Plots from top to bottom, from left to right, show: leading Jet ET , second,
third and fourth Jet ET , event

∑
ET and min∆R among the 4 leading jets in the event

for the three samples.
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8 NN cut optimization

Once we have trained the NN, we need to choose an optimized cut on the NN output to
select the final data sample. The optimization procedure we seek is aimed at minimizing
the statistical uncertainty on the cross section measurement, in order to optimize the
measurement in terms of the expected number of b-tags over the background prediction.
The former quantity is evaluated from inclusive Monte Carlo tt̄ sample, the latter is
derived from the b-tagging matrix application to data.

The optimization procedure for the event selection definition is performed after the
Njets ≥ 4 requirement and scans different cuts on neural network output; among all
possible cuts it chooses the one promising the minimum relative statistical error on the
cross section measurement.

The central value of the production cross section we want to measure is given by:

σ(pp̄→ tt̄)×BR(tt̄→ 6ET + jets) =
Nobs −Nexp

εkin · εavetag · L
(15)

where Nobs and Nexp are the number of observed and matrix-predicted tagged jets in
the selected sample, respectively; εkin is the trigger, prerequisites and neural network
selection efficiency measured on inclusive Monte Carlo tt̄ events; εavetag , defined as the
ratio of the number of positive tagged jets to the number of pre-tagging events in the in-
clusive tt̄ Monte Carlo sample, gives the average number of b-tags per tt̄ event. Finally,
L is the luminosity of the dataset used. Using in input to Equation 15 the measured
kinematical efficiency, the average number of b-tags per tt̄ event, the actual integrated
luminosity and the number of b-tagged jet expected from the tag rate parameteriza-
tion in the selected sample, we can estimate the expected cross section value and its
relative statistical uncertainty for each neural network cut. The only missing piece is
Nobs. We cannot use the actual number of observed b-tags in the selected data, since
it would bias our conclusion given its possible statistical fluctuations. For this reason,
in order to obtain an a priori determination of the best cut, we substitute Nobs with
the expression Nexp +NMC , where Nexp and NMC are the number of expected b-tagged
jets from the tagging rate application and from inclusive tt̄ Monte Carlo samples after
the application of the given neural network cut, respectively. Using these values, the
statistical uncertainty affecting the measurement can be computed before looking at
the “post-tagging” data sample, allowing in this way to choose the cut minimizing the
relative error on the cross section measurement.

For each neural network output cut the following quantities are calculated:

• MCevt, and Dataevt: number of inclusive Monte Carlo tt̄ and data events in the
selected sample, before any b-jet identification requirement.

• NMC and Nexp: number of positive tags expected from Monte Carlo inclusive
events and from tagging rate parameterization after the kinematical selection de-
fined by the cut on the neural network output. Since we want to derive a “blind”
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Figure 27: Expected statistical error as a function of the cut on the NN output. We
decide to cut at NNout ≥ 0.8

minimization procedure, we don’t want to look at the post-tagging sample, mean-
ing we won’t use any information on the number of observed b-tags Nobs in the
sample obtained after the neural network cut.

• εkin and εavetag are derived from the application of the cut to the Monte Carlo
sample.

• the signal statistical significance obtained as S/
√
S +B: ratio of the number of

tags expected for tt̄ events and the square root of the number of tags expected
from background processes plus the number of tags expected from signal.

• σxsec/xsec: relative error on the cross section measurement.

Results are reported in Fig. 27: we decide to cut at NNout ≥ 0.8, which gives
the lowest expected statistical error on the cross section (8.6%) and an expected S/B
ratio in terms of positive tags of 4 (Fig. 28). To fix this cut we also check its effect
on the total expected uncertainty and on the signal significance (Fig. 29). The total
error (stat+syst) is ∼ 12% at NNout = 0.8 and it varies of only about 1% moving
the cut below 0.8 (this determination includes only the contribution coming from sys-
tematic errors that depend on the chosen NN output cut, while it doesn’t consider the
background prediction systematics and the trigger systematics, which we assume to be
constant in the scanned cut range). The signal significance is maximum and almost
flat around NNout = 0.8.
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Figure 28: Signal to background ratio as a function of the cut on the NN output.

NJets 3 4 5 6 7 8 9 Tot.
allHad (%) 0.12 0.46 1.66 4.86 7.79 10.18 9.88 2.29
e +jets (%) 26.64 25.19 35.46 36.20 35.10 33.60 33.83 32.08
µ +jets (%) 32.16 32.51 19.09 15.78 14.46 16.08 12.87 22.71
dilepton (%) 6.46 2.30 1.07 0.70 0.52 0.64 0.00 1.45

had τ +jets (%) 15.79 21.86 30.53 31.49 31.85 29.86 34.43 27.73
lep τ +jets (%) 11.75 13.18 9.89 9.14 8.92 8.12 8.38 10.76

ττ (%) 1.06 1.15 0.65 0.47 0.43 0.44 0.30 0.77
e/µ + τ (%) 6.03 3.36 1.64 1.35 0.92 1.08 0.30 2.16

Table 7: MC Sample Composition after NNout cut.

9 Cross Section Measurement

After our selection we are left with 1420 events with at least 4 tight jets and we observe
636 positive b-tags. Observed and expected positive b-tags after selection for different
jet multiplicities are shown in Fig. 30.

The expected sample composition after this cut is shown in Tab. 7, while Tab. 8
shows the number of expected events for the different decay channels in 2.2 fb−1.

Using the tagging rate parametrization applied to the 1420 events passing the se-
lection, the background amount in terms of b-tagged jets is calculated to be 232.9 ±
12.8(stat) ± 5.8(syst), where the first uncertainty is statistical only, while the latter
is systematic and is calculated by comparing observed to matrix-predicted b-tags in
data control samples and quoting a 2.5% systematic uncertainty. This value needs
to be corrected for the signal presence in the pre-tagging sample: the application
of our iterative correction procedure yelds a top-free background determination of
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Figure 29: Up: total expected error as a function of the cut on the NN output. The
tag matrix systematic and trigger systematics contributions are not included as they
are considered costant as a function of the cut on NN out. Bottom: Signal signficance
as a function of the cut on the NN output. The cut NNout ≥ 0.8 maximizes the signal
significance with a total expected error on the cross section of ∼ 12%.

N corr
exp = 131. The uncertainty on the background correction depends both on the

uncertainty on Nexp and the uncertainty on εavetag . In order to evaluate both contribu-
tions we follow the tecnique adopted in [8]: we generate 1, 000, 000 random samples of
Nexp events smeared with its statistical uncertainty and apply the iterative correction
using εavetag smeared with its statistical uncertainty. The resulting Nexp distribution gives
N corr
exp = 131± 9 (stat) ± 3.3 (syst).

The summary of all the sources of systematic uncertainty to the cross section eval-
uation is listed in Tab. 9 for the chosen cut NNout ≥ 0.8.

Now that we have evaluated all the sources of systematic uncertainty affecting the
kinematical selection efficiency as well as the determination of the average number of
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NJets 3 4 5 6 7 8 9 Tot.
allHad 0.01 0.86 3.92 5.24 2.41 0.71 0.11 13.27
e +jets 2.34 47.24 83.55 39.01 10.88 2.35 0.39 185.75
µ +jets 2.82 60.96 44.98 17.00 4.48 1.12 0.15 131.51
dilepton 0.57 4.31 2.53 0.76 0.16 0.04 0.00 8.38

had τ +jets 1.38 40.99 71.92 33.94 9.87 2.09 0.40 160.58
lep τ +jets 1.03 24.71 23.29 9.86 2.77 0.57 0.10 62.32

ττ 0.09 2.15 1.54 0.51 0.13 0.03 0.00 4.47
e/µ + τ 0.53 6.30 3.86 1.46 0.29 0.08 0.00 12.51

Tot. 8.77 187.53 235.59 107.78 30.99 6.98 1.15 578.79

Table 8: Expected Signal events in 2.2 fb−1 after NNout cut.

Figure 30: Number of positive tagged jets versus jet multiplicity. Data (points), iter-
atively corrected background (yellow histogram) and tt̄ expectation (blue histogram)
for σtt̄ = 7.45 pb are shown after neural network selection. Statistical errors only.

b-tags per tt̄ event and the background prediction, we are ready to perform the cross
section measurement.

We remind that we will interpret the excess in the number of tags defined as Nobs−
N corr
exp as a sign of tt̄ production and it will be used for the cross section measurement.

The value of the cross section is given by:

σtt̄ =
Nobs −N corr

exp

εkin · εavetag · L
(16)

The input parameters of Eq. 16 are quoted in Tab.10.
The measured cross section value is:
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Source Method Uncertainty

εkin systematics

Generator dependence |εPY THIA−εHERWIG|
εPY THIA

3.9 %

PDFs MC reweighting 1.2 %
ISR/FSR samples comparison 2.7 %
Color Reconnection samples comparison 4.3 %

Jet Energy Scale |εjetcorr,+1σ−εjetcorr,−1σ |
2εkin

4.2 %

Trigger simulation turn-on curves 3.0 %
Primary Vertex Z0 0.2 %

εtag systematics

SecVtX scale factor |εtag,+1σ−εtag,−1σ |
2εtag

3.9 %

Tagging matrix systematics
Data control sample Nobs/Nexp 2.5 %

Luminosity systematics
Luminosity measurement − 5.8 %

Table 9: Summary of the sources of systematic uncertainty.

Variable Symbol Value

Integrated Luminosity (pb−1) L 2207.5± 128
Observed Tags Nobs 636
Expected Background Tags N corr

exp 131± 9.6
Kin. efficiency (%) εkin 3.53± 0.29
Ave. b-tagging efficiency εavetag 0.811± 0.032

Table 10: Input values for the cross section measurement.

σtt̄ = 7.99 ± 0.55 (stat) ± 0.76 (syst) ± 0.46 (lumi) pb

= 7.99 ± 1.05 pb
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10 Summary

We presented a research aimed at the isolation of the tt̄→ 6ET + jets signal by means
of neural network tools from a dataset containing “multijet” triggered events with a
total integrated luminosity amounting to 2.2 fb−1.

The decay channel has been extracted using a neutrino signature such as the pres-
ence of high 6ET in the event and by explicitly vetoing well identified high-PT electrons
or muons from W boson decay.

A 2-hidden layers neural network trained with input variables related to jet char-
acteristics and energy and event topology and energy has been used to classify and
discriminate between top-like events obtained from a Monte Carlo sample generated
at Mtop = 172.5 GeV/c2 and background processes contained in the data sample after
prerequisites requirements.

Secondary vertex b-tagging algorithm has been exploited to indentify heavy flavour
jets due to top quark decay, while the amount of tags coming from background processes
has been evaluated by means of a parameterization of the b-tagging rate as a function
of the jet transverse energy, jet number of tracks and projection of the 6ET of the event
along the jet direction, in a data sample with negligible signal contamination containing
exactly 3 tight jets.

Once checked the performance of the tagging parameterization and the correctness
of its predictions, the optimized cut on the neural network output NNout ≥ 0.8
has been computed by minimizing the relative statistical error on the cross section
measurement.

With the resulting selection we obtained a pre-tagging sample of 1420 events: in
order to derive our final cross section measurement, we added the requirement of the
presence of at least one jet identified as originating from a b-quark, observing 636 b-
tags. Thanks to our b-tagging rate parameterization we accounted for 131± 9.6 b-tags
coming from tt̄ events.

After taking into account the possible sources of systematics uncertainties and as-
suming a top quark mass of 172.5 GeV/c2, our final measurement of the top pair
production cross section is:

σtt̄ = 7.99 ± 0.55 (stat) ± 0.76 (syst) ± 0.46 (lumi) pb

= 7.99 ± 1.05 pb

in agreement with Standard Model predictions and with previous determinations.
Moreover, being derived from a data sample that was chosen by prerequisites to be
orthogonal to the ones used for the other cross section determinations at CDF, this
measurement promises to be particularly important in the combination of the results
obtained by the experiment.
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