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The behavior of a uniform charged particle bunch is studied. External and own bunch fields are taken

into account. Two-dimensional and three-dimensional self-consistent problems are considered. The

equations for bunch radii are obtained in the case of the bunch formed as a rotation ellipsoid. The model

is proposed for the bunch with zero longitudinal emittance.
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I. INTRODUCTION

For a lot of accelerator physics problems, the description
of the charged particle bunch as an arbitrary ellipsoid is
very useful. When accelerating, forming, and transporting
the dense charged particle bunch changes its own shape
under the influence of external and its own electromagnetic
fields, so the relation between longitudinal and transverse
dimensions of the bunch is changing widely. Thus, the
problem of self-consistent ellipsoidal bunch description
is of great interest [1]. Such a description allows one to
predict the bunch behavior, in particular, to obtain the
beam envelopes, without numerical simulation (therefore,
more physically) or with numerical simulation when in-
cluded as a model into the Poisson solver. Usually, for the
bunch description the uniform density approximation is
used [2], leading to the own fields linear dependent from
coordinates. But in the three-dimensional case it is difficult
to obtain exact nonstationary solutions for the kinetic
distribution function if the bunch is considered as uniform
charged ellipsoid [1,3,4]. In this paper the kinetic distribu-
tion functions are found which describe the bunch shaped
as a rotation ellipsoid with uniform charge density for the
various relations between transverse and longitudinal
bunch sizes.

II. 2D PROBLEM

Initially the development of nonstationary theory of the
dense beams with strong own fields compared with the
external ones was inspired by an exact solution of the two-
dimensional problem. Let us study the nonrelativistic mo-
tion of the bunch particles, and let us suppose that the
coordinate system origin coincides with the bunch mass

center. The particle motion in the central force field may be
represented by the next equation:

€r ¼ aðtÞrþ l2

r3
; (1)

where l ¼ M=m, M is an angular momentum, r is a
distance from symmetry axis. The function aðtÞ character-
izes the action of both the own bunch field and the external
field in the case of the field forces linear dependent on
transverse coordinates. The invariant that plays the
Hamiltonian role may be written in the next form:

I ¼ ½RðtÞ _r� _RðtÞr�2 þ "20
r2

R2
þ l2

R2

r2
: (2)

One can prove that RðtÞ is the beam radius and "0 is the
beam emittance. Taking into account the condition dI

dt � 0

with Eq. (1) for r, we can obtain the equation for beam
envelope (radius) RðtÞ:

€RðtÞ ¼ aðtÞRþ "20
R3

: (3)

The kinetic distribution function as a Vlasov’s equation
solution may be an arbitrary function of the motion inte-
grals. In our case such integrals are I and l ¼ M=m. The
beam density may by written as

n ¼
Z

fðI;MÞdprdp’: (4)

Taking into account that pr ¼ m _r, p’ ¼ mr _’ ¼ m l
r , after

conversation in the momentum space, one can obtain

n ¼ m2
Z dIdlfðI; lÞ

rR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� l2R2

r2
� "2

0
r2

R2

q : (5)

The problem to find the distribution that gives the uni-
form beam density has not a single solution. We can write
two expressions for function f, which lead to uniform
density inside the beam (and, hence to linear dependence
of the forces—the base for the invariant construction). In
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the first expression the function f is not dependent on the
angular momentum l and should be considered as a
‘‘monochromatic’’ function:

f ¼ �

m2
�ðI � "20Þ:

The calculation of the integral over the phase space in
which the radicand is positive leads to the next equality:

n ¼ ��
R2 �ð1� r2

R2Þ, where �ðxÞ is the Heaviside function:

�ðxÞ ¼ 1, x � 0, � ¼ 0, x < 0. The parameter � is the
normalization constant. One should note that this simple
distribution is a particular case of Kapchinsky-Vladimirsky
(KV) distribution [2]. In [5] another distribution was found
leading to uniform density inside the beam too and in our
notation it can be written as

f ¼ �0

2m2"0

�ð"20 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"20 þ l2 � I

q :

Integration with this function leads to next expression
for the beam density:

n ¼ �0

R2
�

�
1� r2

R2

�
:

The difference between the distribution functions con-
sidered above affects on the calculation of the rms radial
velocity variations (so, of the emittance). In the case of
monochromatic distribution, we obtain

h _ri2 � h _r2i ¼ "20
2R2

�
1� r2

R2

�

and in the case of distribution, presented in [5] we obtain

h _ri2 � h _r2i ¼ 2"20
3R2

�
1� r2

R2

�
:

In both cases the value "20 is a measure of the velocity

spread (emittance), which vanishes at the boundary of the
beam. One should note the more general character of
the monochromatic distribution. It can be used for the
description of the beam with elliptical cross-section.
To satisfy this case, one should take the invariant as a
sum I ¼ I1 þ I2, where

I1 ¼ ðRx _x� _RxxÞ2 þ "21x
2;

I2 ¼ ðRy _y� _RyyÞ2 þ "22y
2:

Rx, Ry are the values of semiaxes of the elliptical cross-

section. From the condition of the invariant conservation,
one can obtain the equations for the semiaxes (radii). The
presence of the �-function in the expression for the invari-
ant leads to uniform density in the beam cross-section.
Such a function and such a method were used in [6] for
the channel with quadrupole systems.

III. SPHERICAL BUNCH

Let us consider a bunch with a spherical symmetry,
coordinate system connecting with the bunch center. For
simplicity, let us consider that there are no external fields,
and the bunch mass center is not moving. In spherical
coordinates the charged particle motion equations may be
written

mr2 _�sin2� � const ¼ M’; (6)

m2ðr2 _�Þ2 þ M2
’

sin2�
� L > 0; (7)

€r� aðtÞr ¼ L

m2r3
: (8)

HereM’, L are the motion integrals that follow from the

given bunch symmetry, M’ is the projection of the whole

momentum on the axis Z, L is the total momentum in the
second power, and m is the mass of the particle. Equation
(3) is valid only in the case of a sphere with uniform charge
density, otherwise value a depends not only on t but on r.

Using the relation div ~E ¼ 4�en, where e is the electron
charge and n is the particle density, one can obtain for aðtÞ,

aðtÞ ¼ e2N=mR3ðtÞ; (9)

where N is the total number of particles in the bunch, and
RðtÞ is the time-dependent bunch radius. For a complete
description of the bunch it is necessary to find three inte-
grals of the motion. In our case, the third integral may be
found from Eq. (3), which describes the radial motion of
the particle. Let us introduce an invariant which is similar
to the invariant (2):

I ¼ ½RðtÞ _r� _RðtÞr�2 þ �
R2

r2
þ "20

r2

R2
(10)

(� ¼ L=m2). It is easy to obtain that dI
dt � 0, if

€R� aðtÞR ¼ "20
R3ðtÞ : (11)

The distribution function for our bunch may be written
as a function of the motion integrals—�ðI; L;M’Þ. Then
during calculation of the particle density n ¼R
�dprdp�dp’, let us replace integration variables by

I; � ¼ L=m2;M’. Here

p’ ¼ mr sin� _’ ¼ M’

r sin�
;

p� ¼ m _� ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� M2

’

sin2�

s
;

pr ¼ m _r ¼ m

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I � L

m2

R2

r2
� "20

r2

R2

s
:
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So for the density we obtain

n ¼ m2

r2R

Z 1

"2
0
ðr2=R2Þ

dI
Z ðr2=R2Þ½I�"2

0
ðr2=R2Þ�

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� � R2

r2
� "20

r2

R2

q
�

Z ffiffiffi
�

p
m sin�

� ffiffiffi
�

p
m sin�

�ðI; �;M’ÞdM’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sin2�� M2

’

m2

q : (12)

The integration limits in (12) are determined according to
the requirement for expressions under the integral signs to
be more or equal to zero. Let us find solutions that corre-
spond to the case of the function� which is not dependent
on M’. In this case the expression for density n looks as

n ¼ �m3

r2R

Z 1

"2
0
ðr2=R2Þ

dI

�
Z ðr2=R2Þ½I�"2

0
ðr2=R2Þ�

0

d��ðI; �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

R2 ðI � "20
r2

R2Þ � �
q : (13)

It should be noted that if we take� as� ¼ �1ðIÞ�2ð�Þ,
it leads to physically unreal result—negative density. First
found in [7] (see also [3]), the solution for the function
describing real physical conditions looks as

�ðI; �Þ ¼ 3N

4�2m3"20

�ð1� I="20 þ �="20Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� I="20 þ �="20Þ

q �ð�Þ�ð"20 � �Þ:

(14)

According to (13) and (14), one can obtain for the density

n ¼ �m3

r2R

3N

�2m3�20

Z "2
0

0
d�

�
Z �þ"2

0

�ðR2=r2Þþ"2
0
ðr2=R2Þ

dIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� � R2

r2
� "20

r2

R2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"20 þ �� I

q :

(15)

In (15) the upper integration limit must be more than the
lower limit, i.e., this integral is proportional,

�

�
�þ �20 � �

R2

r2
� "20

r2

R2

�
¼ �ðR� rÞ�

�
"20

r2

R2
� �

�

þ �ðr� RÞ�
�
�
R2

r2
� "20

�
:

(16)

Here the second summand in the right part is not essential,

because the condition � R2

r2
> "20 (when r > R) leads to

� > "20. Finally, for the density we obtain

n ¼ 3N�m3

4r2R�2"20m
3

"20r
2

R2
�ðR� rÞ ¼ 3N

4�R3ðtÞ�½RðtÞ � r�:
(17)

If the invariant depends onM’ as �ðM’Þ, then the beam
density cannot be uniform because the factor 1

sin� appears.

So the density has a singularity when � ! 0 or � ! �. In
this case the own forces will not have linear character, and
there is incorrectness in [5]. In [5] the absence of the factor
mentioned above means the calculations were made with
some other dependence on the angular momentum, not
with the �-function.

IV. ELLIPSOIDAL BUNCH

A spherical model is unsuitable for description of a real
bunch behavior in external fields due to spherical symme-
try absence. So a bunch model should be built in the case of
axial symmetry. The motion equations in cylindrical coor-
dinates may be written as

€rþ a?ðtÞr ¼
M2

’

mr3
; €	 þ akðtÞ	 ¼ 0: (18)

HereM’ ¼ rp� ¼ mr2 _’ is the motion equation integral, r

is the distance between the particle position and the axis,
and 	 ¼ z� z0 is the projection of the distance between
the particle and bunch center on the axis z. Equations (18)
are valid for the uniform density bunch. They permit to use
two motion integrals:

I1 ¼ ½R?ðtÞ _r� _R?ðtÞr�2 þ
2
R2
?
r2

þ "2?
r2

R2
?
;

I2 ¼ ½RkðtÞ _	 � _RkðtÞ	�2 þ "2k
	2

R2
k
:

(19)

Here R?ðtÞ, RkðtÞ are the transverse and longitudinal sizes

of the bunch respectively, "?, "k are the transverse and

longitudinal emittances respectively, and 
 ¼ M’

m .

Invariants I1, I2 are constant, if R?Rk satisfy the equations

€R? þ a?R? ¼ "2?
R?3

; €Rk þ akRk ¼
"2?
Rk3

: (20)

The density n ¼ R
fdpzdprdp’ may be represented by

means of the motion integrals as follows:

n ¼ m3
Z

�ðI1; I2; 
Þd

r

dI2

Rk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � "2k

	2

R2
k

r

� dI2

R?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 �
2 R2

?
r2
� "2?

r2

R2
?

r (21)

(where pz¼m _z, pr ¼ m _r, p’ ¼ mr _’ ¼ M’=r). Function

� � 0 must satisfy relation n ¼ n0�ð1� r2

R2
?
� 	2

R2
k
Þ, e.g., it

must result in uniform density inside the bunch and to zero
density outside the bunch. The limits of integration should
be determined from the requirement of positive values of
the radicands in (21). Let us consider the next expression
for distribution function �:
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�ðI1;I2;
Þ¼ 3N

2�3m3

"2?ð1�I2="
2
kÞ2

"k

��ð1�I2="
2
kÞ�½"2?ð1�I2="

2
kÞ2�
2�

½"2?ð1�I2="
2
kÞ2�
2�3=2

��½"2?ð1�I2="
2
kÞþ
2=ð1�I2="

2
kÞ�I1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½"2?ð1�I2="
2
kÞþ
2=ð1�I2="

2
kÞ�I1�

q :

(22)

Integrating (21) with respect to I1 and taking into account
(22), we obtain

Z "2?ð1�I2="
2
kÞþ
2=ð1�I2="

2
kÞ


2ðR2
?=r

2Þþ"2?ðr2=R2
?Þ

dI1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 �
2 R2

?
r2
� "2?

r2

R2
?

r

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2?ð1� I2="

2
kÞ þ
2=ð1� I2="

2
kÞ � I1

q
¼ ��

�
"2?ð1� I2="

2
kÞ þ


2

1� I2="
2
k
�
2

R2
?
r2

� "2?
r2

R2
?

�
:

The last expression may be transformed as

�

�
"2?ð1� I2="

2
kÞ þ


2

1� I2="
2
k
�
2

R2
?
r2

� "2?
r2

R2
?

�

¼ �

�
1� I2

"2k


2

"2?

R2
?
r2

�
�

�
1� II

"2k

r2

R2
?

�

þ �

�
�1þ I2

"2k
þ 
2

"2?

r2

R2
?

�
�

�
�1þ I2

"2k
þ r2

R2
?

�
:

Here the condition 1> I2="
2
k was taken into account.

The last summand in the right part is not essential because

1< I2
"2k
þ r2

R2
?

contradicts relations I2
"2k
þ 
2

"?2

R2
?
r2
> 1 and

"2?ð1� I2
"2k
Þ2 >
2.

Let us do integration with respect to 
. So

Z "?ðr=R?Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðI2="2kÞ

p
�"?ðr=R?Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðI2="2kÞ

p d


½"2?ð1� I2
"2k
Þ2 �
2�3=2

¼ 2r=R?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� I2

"2k
� r2

R2
?

r 1

"2?ð1� I2
"2k
Þ2 :

Finally for the density, one can obtain

n ¼ 3N

4�R2
?Rk

�

�
1� r2

R2
?
� 	2

R2
k

�
: (23)

First the distribution (22) was found in [7].

V. SEMIAXIS EQUATIONS

The potential of the ellipsoid with uniform charge den-
sity in vacuum is performed by the next expression [8]:

� ¼ 3eN

4

Z 1

0

dy

TðyÞ
�
1� z2

R2
k þ y

� r2

R2
? þ y

�
; (24)

where

TðyÞ ¼ ðR2
? þ yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
? þ y

q
:

From (24), one can obtain the relations for the own fields of
the bunch. For the case Rk >R?, we can obtain

Er ¼ 3eNr

2ðR2
? � R2

kÞ3=2
Q? ¼ �ma?ðtÞr

e
; (25)

where

Q? ¼
Rk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
k � R2

?
q
R2
?

� 1

2
ln
Rk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
? � R2

k
q

Rk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
? � R2

k
q ;

Ez ¼ 3eN	

2ðR2
k � R2

?Þ3=2
Qk ¼ �makðtÞ	

e
;

(26)

where

Qk ¼ ln
Rk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
k � R2

?
q

Rk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
k � R2

?
q � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
k � R2

?
q

Rk
:

Time-dependent functions a?ðtÞ and akðtÞ take part in

the particle motion equations and in the equations for the
bunch semiaxes R?, Rk [see (20)]. So Eqs. (20), (25), and

(26) are the equations for the bunch semiaxes if the require-
ment z0 � const is satisfied (z0 is the longitudinal coordi-
nate of the bunch mass center). Further, let us suppose
there are both the external field and the own bunch field in
the region considered, and the following condition is sat-

isfied: div ~Eext ¼ 0. Let us consider the nonrotating bunch
that moves along the axis z in the external field. The field is
supposed to be weakly nonuniform, the bunch dimensions
being less than the characteristic length of the nonuniform-
ity. The external field may be expanded in a series with
respect to the radial distance between the particle position
and the bunch center [z ¼ z0ðtÞ, r ¼ 0]. So the nonlinear
summand of the series may be neglected. In the paraxial
approximation the external field potential may be per-

formed as �ext ffi �0ðzÞ � r2

4 �
00
0 ðzÞ. Let us use paraxial

approximation for the external field force too. The external

force in the same approximation is ðz� z0Þ @Ez

@z jz¼z0 ¼
	�00

0 ðz0Þ. This means that in Eq. (20) function akðtÞ must

be replaced by akðtÞ þ e
m�

00
0 ½z0ðtÞ�, and function a?ðtÞ

respectively by a?ðtÞ � e
2m�

00
0 ½z0ðtÞ�. If there is external

field growth, transverse direction focusing appears, and
on the contrary, the phase variation increases, e.g. the
longitudinal defocusing is observed. If we will consider
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the motion of the bunch along the stationary magnetic field
lines, we must replace the function a?ðtÞ by the expression
a?ðtÞ þ ð eB2mcÞ2 in Eq. (20). Here B is a value of the external

stationary field. The replacement would be the same if the
magnetic field is changing slowly and the dimensions of
the bunch are quite small. In this case time dependence
would look as BðtÞ ¼ B½z0ðtÞ�, so the equation for Rk is not
changed and the longitudinal magnetic field affects the
longitudinal bunch size implicitly by means of the trans-
verse bunch size change.

VI. ZERO LONGITUDINAL EMITTANCE MODEL

Formula (22) does not allow one to describe the bunch
with zero longitudinal emittance, because "k is placed in

the denominator. So in this section another (rather simple)
method of distribution function construction will be con-
sidered, resulting in uniform charge density of an ellipsoi-
dal bunch. In the case of "k ¼ 0, Eq. (19) is followed by the
conclusion that invariant I2 is a linear invariant in the

second power. If €	 � ak	 ¼ 0, then expression I ¼
SðtÞ _	 � _SðtÞ	 � const, when function S satisfies the next

equation: €SðtÞ � a?ðtÞS ¼ 0. This equation has two
linearly independent solutions. Let us sign them as Rk
and S1. Let us consider their Wronskian (time independent)

equal to w: S1ðtÞ _Rk � _SðtÞRkðtÞ � w. Let us denote Ið1Þ2 ¼
S1 _	 � _S1	 , I

ð2Þ
2 ¼ Rk _	 � _Rk	 . The distribution function

will be represented in the form of two �-functions product:

�ðI1; Ið1Þ2 ; Ið2Þ2 Þ ¼ 3N

2�
�½I1 þ ðIð1Þ2 Þ2 � I0��ðIð2Þ2 Þ; (27)

where I1 is determined in (19). After integration with

respect to the _	 the single �-function stays with the
argument

I1 þ 	2w2=R2
k � I0 ¼ ð _rR? � r _R?Þ2 þ
2ðR?=rÞ2

þ "2?ðr=R?Þ2 þ 	2w2=R2
k � I0:

If I0 ¼ "2? ¼ w2 after integration with respect to the _r and
with respect to the 
, we obtain for the density

n ¼ 3N

4�R2
?Rk

�

�
1� r2

R2
?
� 	2

R2
k

�
:

Note, that the model constructed by the same method can
describe the bunch without axial symmetry. In paper [9] the
problem of emittance transformation in the transverse
magnetic field was studied by means of such a model.
Combined usage of linear and square invariants for 3D
bunches was considered in [10] too.

VII. CONCLUSION

In the paper the different variants of kinetic models are
represented describing the charged particle bunch shaped
as an arbitrary ellipsoid with uniform particle density. In
these models the own bunch fields are linear and may be
considered along with external linear fields. The equations
for the bunch envelopes are obtained in the case of weakly
nonuniform external field too.
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