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Abstract: We discuss matters related to the point that topological quantization in the strong interaction

is a consequence of an infinite spacetime volume. Because of the ensuing order of limits, i.e., infinite

volume prior to summing over topological sectors, CP is conserved. Here, we show that this reasoning

is consistent with the construction of the path integral from steepest-descent contours. We reply to

some objections that aim to support the case for CP violation in strong interactions that are based on

the role of the CP-odd theta-parameter in three-form effective theories, the correct sampling of all

configurations in the dilute instanton gas approximation and the volume dependence of the partition

function. We also show that the chiral effective field theory derived from taking the volume to infinity

first is in no contradiction with analyses based on partially conserved axial currents.

Keywords: quantum chromodynamics; CP violation; neutron electric dipole moment

1. Introduction

The strong interactions conserve charge–parity (CP). This has been established through
many observations, to the greatest precision in searches for the permanent electric dipole mo-
ment (EDM) of the neutron [1,2], and calls for an explanation of certain theoretical aspects.

Only a few years after the discovery of quantum chromodynamics (QCD) being the
theory of strong interactions [3], it has been suggested that due to the generic presence of a
topological term in the action, the charge–parity symmetry CP should be violated [4–6].
To the present day, there has been no such observation, so arguably, the coefficient θ of
the topological term (more precisely θ̄ as we introduce below) would need to be zero,
corresponding to unnatural tuning and therefore a problem.

The present paper adds to the discussion following Ref. [7]. There, it has been brought
up that the effective decomposition (quantization) of gauge field configurations of finite
action into topological sectors of integer winding number without imposing ad hoc bound-
ary conditions can only be derived when taking the volume of Euclidean spacetime to
infinity. In contrast, there is no physical motivation for fixed boundary conditions on a
finite surface in Euclidean space. As a consequence, the limit of infinite spacetime volume
must be taken before summing over topological sectors, and it turns out that CP remains
conserved this way.

One of the main points of the present paper is to extend this line of reasoning by
demonstrating that this order of limits corresponds to a well-defined integration contour
in the path integral constructed from the steepest-descent flows. In contrast, the opposite
conventional order of limits results in an integration that is inequivalent in the sense of the
Cauchy theorem. Another purpose of this article is to address some criticisms regarding
Ref. [7]. This article also partly serves as a review on the related topics, though without
including a complete list of references. For some other reviews, see, e.g., Refs. [8–10].

Without going into extensive technical detail, the basic reasons for CP conservation in
the strong interaction are given in the summary of Section 2. There, we refer to the sections
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in the remainder of the paper where the statements of Section 2 are supported at a more
technical level.

2. Summary and Outline

Strong interactions are described by a Yang–Mills theory, which generally involves
CP-odd parameters through the masses of the quarks as well as through the topological
term. The Lagrangian in the Euclidean spacetime is

L =
1

2g2
trFµνFµν + ψ̄

(
γ̂µDµ + meiαγ5

)
ψ − i

16π2
θ trFµν F̃µν , (1)

where we use the convention Tr(TaTb) = δab/2, [Ta, Tb] = i f abcTc for the Lie algebra
generators Ta and the structure constants f abc. Above, Fµν = Fa

µνTa with Fa
µν ≡ ∂µ Aa

ν −
∂ν Aa

µ + f abc Ab
µ Ac

ν being the field strength tensors. F̃a
µν ≡ 1

2 εµναβFa
αβ (ε1234 = 1) is the Hodge

dual of Fa
µν. The covariant derivative takes the form

Dµψi =
(

∂µ − iAa
µTa

)
ψi (2)

when ψi lives in the fundamental representation of the gauge group and

Dµψi = ∂µψi − iAa
µ[T

a, ψi] (3)

when ψi lives in the adjoint representation.
The Euclidean gamma matrices γ̂µ are obtained from the Minkowskian counterparts

γµ =

(
0 σµ

σ̄µ 0

)
, (4)

(where σµ = (12, σ⃗) and σ̄µ = (12, −⃗σ) with σ⃗i the Pauli matrices) via

γ̂4 = γ0 = γ0 , γ̂i = iγi = −iγi . (5)

These matrices satisfy the Clifford algebras

{γµ, γν} = 2gµν
14 , {γ̂µ, γ̂ν} = 2δµν14 . (6)

Following Ref. [7], we use the same γ5 in Euclidean spacetime as for Minkowski spacetime
(In Ref. [7], it is mistakenly stated that γ5 = γ̂1γ̂2γ̂3γ̂4.)

γ5 ≡ iγ0γ1γ2γ3 = −γ̂1γ̂2γ̂3γ̂4 . (7)

Since, in this paper, we mostly work in Euclidean space, from now on, we remove the
hat on the Euclidean gamma matrices. Note that the γ5 in the Euclidean spacetime used
here may differ from that used in some other papers, e.g., Ref. [11], by a minus sign. The
chirality in Euclidean spacetime in these two notations is thus defined oppositely. The only
effect of this appears in applying the Atiyah–Singer index theorem [12] when, e.g., deriving
the anomalous axial current by counting the zero modes of the massless Dirac operator.

We note that the terms trFµν F̃µν and ψ̄iγ5ψ are both parity-odd and charge-conjugation
even [13]. The CP-odd parameters are therefore α, the phase pertaining to the mass m of the
fermion ψ, and θ, the coefficient of the topological term. The fermion ψ in the fundamental
representation is referred to as quark. To focus on the principal aspects, for the most part of
the discussion, we take here just one quark flavor and the gauge group to be SU(2). This is
the minimal setup that allows us to study the interplay of the CP-odd parameters α and θ.
In particular, we are interested in how α and θ appear in the effective interaction (known as
‘t Hooft operator) that captures nonperturbative effects associated with the chiral anomaly.
In the single-flavor model, this operator has the same form as a quark mass term, and



Universe 2024, 10, 189 3 of 37

therefore, both would be hard to discern. Nonetheless, the main question of whether and
how α and θ appear in the effective ‘t Hooft operator can be answered within this setup.
The generalization to the phenomenologically relevant case of several flavors is presented
in Ref. [7]. In strong interactions, the group SU(2) can be viewed as embedded within the
SU(3) color group. The technical details of this construction are reviewed in Ref. [14].

It is well known that the presence of a CP-odd Lagrangian term does not readily
imply CP-violating physical effects. A necessary condition is the existence of a CP-odd
combination of the Lagrangian terms that is invariant under field redefinitions. In the
present case, this condition is met, as the parameter

θ̄ = θ + α (8)

is invariant under redefinitions of the quark fields, in particular through anomalous chiral
transformations. The chiral anomaly [15,16] also implies that θ is an angular variable, i.e.,
all observables must be 2π-periodic in θ. Therefore, the integral 1/(16π2)

∫
d4x trFF̃ that

multiplies θ must be an integer in order to contribute to the action and thereby to the
partition function.

Here, we ask the question of whether a nonvanishing θ̄ is also a sufficient condition
for CP violation in strong interactions. Does θ̄ have physical effects, in particular, is there a
neutron EDM depending on its value? Evidently, θ̄ has no impact on the classical equations
of motion since the topological term is a total derivative. Nonetheless, under certain
assumptions, based on the fact that the third homotopy group of the gauge group or
one of its SU(2) subgroups is π3(SU(2)) = ❩, the energy functional is periodic under
so-called large gauge transformations. The situation is therefore reminiscent of a periodic
quantum mechanical potential in a crystal, and θ̄ would then correspond to the crystal
momentum [4–6,11].

One way to see how far the analogy goes is to study canonical quantization of the
gauge theory [4]. Since non-Abelian gauge theories are typically handled through functional
quantization, this possibility has not yet been investigated in all aspects pertinent to the
present questions. We briefly comment on canonical quantization in Section 4 and in more
detail in a separate paper [17].

For the time being, we focus on functional quantization since it has been the principal
method to carry out calculations on CP violation in strong interactions ever since the matter
was brought up [5,6,11,18]. In the functional approach, we take the partition function

Z[η, η̄] =
∫

Dψ̄DψDA e
− lim

Ω→∞

∫
Ω

d4x (L−η̄ψ−ψ̄η)
(9)

as the defining point of the quantum field theory, where A is the gauge potential. We
write this as a functional of external fermionic sources η(x), η̄(x) as a provision in order to
derive quark correlation functions that may or may not exhibit CP invariance. Furthermore,
we make it explicit that the integral over Euclidean spacetime is understood as a limiting
procedure, taking the spacetime volume Ω to infinity. It is this limit that allows us to state
Equation (9) without specifying boundary conditions on the path integral, and, moreover,
this way, we obtain the vacuum correlation functions of the theory [19]. We shall review
this point in Section 3.

Now, as argued in Ref. [11], the partition function (9) in infinite spacetime volume
Ω → ∞ receives its nonvanishing contributions from saddle points of finite action and
fluctuations about these. For these field configurations, the winding number ∆n is an
integer that labels the topological sector:

∆n = lim
Ω→∞

∫

Ω
d4x

1

16π2
trFF̃ ∈ ❩ for nonvanishing contributions to Z . (10)
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This is the desired outcome because it is consistent with θ being an angular variable, as re-
quired by the chiral anomaly. As topological quantization, i.e., integer ∆n, is a consequence
of Ω → ∞, we must carry out this limit before summing over topological sectors.

Suppose now that it is valid to organize the calculation of the path integral by adding
contributions from the individual topological sectors. Then, Equation (9) implies that the
partition function should be evaluated as

Z[η, η̄] = ∑
∆n

∫
Dψ̄DψDA∆ne

− lim
Ω→∞

∫
Ω

d4x (L−η̄ψ−ψ̄η)
. (11)

The subscript ∆n on DA∆n indicates that the path integral is supposed to cover the configu-
rations with given ∆n, i.e., to sweep over the given topological sector. The contributions of
the topological sectors are evaluated with the limit Ω → ∞ before they are added together.
A rearrangement of the limits will in general lead to different results and is therefore
not justified.

In Section 3, we expand on this argument and put it on a more formal footing. The
path integrals within individual topological sectors correspond to steepest-descent contours
for the exponent of the Euclidean path integral. For different ∆n, these contours can only
be connected by configurations of infinite action. It thus follows that the arrangement
of limits in Equation (11) indeed corresponds to a good contour for the path integral in
Equation (9). Further, this formally establishes that the decomposition of the path integral
into topological sectors is valid in the first place.

This brings us to the salient point: in Ref. [7], it has been shown that the limit Ω → ∞

does not commute with the sum over ∆n in Equation (11), with the consequence that the
quark correlations do not exhibit CP violation. While we review this technical argument
in Section 5, the basic reason is that lim∆n→±∞ limΩ→∞ ∆n/Ω = 0, see also Section 3. As
explained in Section 7, one can thus conclude that there is no EDM for the neutron, no
matter what the value of θ̄ is. Since, in the sum over ∆n, all integer values are taken, this is
where the analogy with the quantum-mechanical crystal breaks down; as for the latter, the
number of potential minima may be large but remains finite. Therefore, the order of the
path integral and the limit of an infinite spacetime volume are not an issue in that case.

After all, strong interactions are complete without the necessity of tuning the parameter
θ̄ to be small or extending the theory by additional scalar fields and nonrenormalizable
operators. While this is a gratifying conclusion, a scrutiny of the argument is warranted,
not least because the prevalent line of reasoning arrives at the contrary verdict: in order
to deduce CP-violation in strong interactions, one would have to impose that the limit
Ω → ∞ is taken last, i.e.,

Z[η, η̄†]
?
= lim

Ω→∞

∫
Dψ̄DψDA e−

∫
Ω

d4x (L−η̄ψ−ψ̄η) , (12)

and, at the same time, specify boundary conditions on the finite surfaces ∂Ω, such as

Aµ = iω∂µω−1 on some finite ∂Ω , (13)

where ω(x) ∈ SU(2), which corresponds to a pure gauge and implies topological quantiza-
tion, i.e., ∆n ∈ ❩. Equations (12) and (13) together are either directly or indirectly implied
in the bulk of the existing literature, including the initial papers on the topic [5,6,11,18].
Although Equation (13) may be motivated by considering fields in the classical ground
state, i.e., of vanishing classical energy, on the initial and final spatial hypersurfaces, the
quantum ground state also receives contributions from other field configurations. There-
fore, the boundary condition (13) does not follow from the partition function (12) (note
that Equation (13) moreover assumes that three-dimensional space is finite), unlike the
topological quantization (10) that is implied by the partition function (9), see Section 3 for
more detail.
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To our knowledge, the published papers do not provide a conclusive reason for how
the procedure given by Equations (12) and (13) might be deduced from the functional (9)
that defines the theory. Given that the limits do not commute, i.e., that Equation (11) is not
equivalent to Equations (12) and (13), as shown explicitly in Section 5, there also cannot be
such a derivation. (Note that while in Ref. [11], it is shown that the correlators in a large
but finite box depend only on the boundary conditions through the Chern–Simons flux, the
issue that the limits do not commute is not addressed in that work.) Neither are we aware
of an argument why Equation (9), which is the standard textbook expression (up to the fact
that we write the infinite-spacetime limit explicitly, which is a purely notational matter),
might be incorrect to start with. Unless taking Ω → ∞, there is also no apparent reason
why the boundary condition (13) should be physical.

In the simplest terms, the reason for CP-conservation in strong interactions can thus
be stated as follows:

• For θ to be physical, we must have ∆n ∈ ❩ since θ is an angular variable. Since fixed
boundary conditions on a finite surface are not physical, this topological quantization
can only follow from Ω → ∞.

• Given the order of limits that is thus implied, there is no CP violation for Ω → ∞ since
lim∆n→±∞ limΩ→∞ ∆n/Ω = 0.

While the main conclusions and technicalities on the absence of CP violation in strong
interactions have been presented in Ref. [7], one objective of the present paper is to add
a more formal interpretation of the difference between Equations (9) and (11) versus
Equations (12) and (13). In Section 3, we recall to that end the reason for taking Euclidean
time to infinity in the first place. Then, we show that Equation (11) corresponds to a
contour integration that can be derived and assembled from steepest-descent flows, while
the prescription of Equations (12) and (13) does not correspond to a connected integration
contour. Since the reasoning in the present work is based on infinite Euclidean spacetime
as the analytic continuation of Minkowski spacetime, we briefly comment in Section 4 on
how calculations in finite Euclidean spacetimes with and without boundaries can be made
meaningful, but we leave a detailed discussion to a separate paper. Next, as it allows for
an explicit demonstration of CP conservation as a consequence of Equation (11) and for
an intuitive interpretation of the matter, we review in Section 5 the dilute instanton gas
calculation of Ref. [7]. This lays the ground to address objections concerning the volume
dependence of the partition function in Section 6. Since there is no physical interpretation of
fixed boundary conditions on finite Euclidean surfaces, we show that the partition function
in fact shows the expected behavior when evaluated in finite volumes with open boundary
conditions. Further objections are based on effective field theory (EFT) descriptions, which
is why we review the role of the θ parameter in the effective ‘t Hooft vertex as well as in
chiral perturbation theory in Section 7. With this preparation, we can reply in Section 8 to
an objection using the topological term in hadronic matrix elements and the role of θ in
the effective description of the dynamics of the topological current. After some additional
comments on the sampling of topological configurations in the different orders of limits
and the recent literature, we wrap up and conclude in Section 9. Except for Section 7,
where we work in Minkowski spacetime, we work in Euclidean spacetime throughout all
other sections.

3. Path Integral and Topological Quantization

3.1. Euclidean Partition Function for Infinite Volume

As a defining point of the quantum field theory, one may take the partition function (9).
Such a partition function based on an infinite Euclidean volume is a common starting point
for a wide range of calculations. Here, we go for variations with respect to the sources η(x)
and η̄(x) that yield Euclidean correlation functions for the quarks. Eventually, these can be
analytically continued to Minkowski spacetime and interpreted as vacuum correlations.

Nonetheless, as some of these matters are contested in the context of CP conserva-
tion in strong interactions, we shall briefly revisit here the reasons for taking an infinite
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Euclidean spacetime volume, or, more precisely, why we take imaginary time to infinity.
For more discussion, see Ref. [19]. In short, it allows one to obtain vacuum correlation
functions without specifying the vacuum in terms of a wave functional (which appears to
be practically impossible in quantum field theory at the nonlinear level).

Imaginary time arises from the analytic continuation of real time. The corresponding
Wick rotation is straightforward for any spacetime that is stationary in real time. Note
that taking the spacetime volume Ω to infinity comes as a consequence of the limit of
infinite Euclidean time. The spatial geometry is not the decisive reason for this, even
though we take here unbounded Cartesian space❘3 for definiteness. The reason for taking
time to infinity is as follows: by Wick rotation, the correlations derived from Z for infinite
imaginary time correspond to the analytically continued expectation values for the state of
the lowest energy that is accessible given the conservation laws. This remains true also for
clockwise rotations of the real-time axis by an angle 0 < ϑ ≤ π/2 in the complex plane,
provided the infinite time limit is applied prior to taking ϑ to zero (do not confuse ϑ here
with the angle θ as the coefficient of the topological term). That is, for given initial and final
states |i, f ⟩ (which, here, may be taken as the usual linear combinations of field eigenstates
of the integer Chern–Simons number to comply with gauge invariance under large gauge
transformations, i.e., the so-called θ-vacua), the path integral corresponds to

Zϑ = lim
t→∞

⟨ f |e−iHt exp(−iϑ)|i⟩ , (14)

where H is the Hamiltonian. It therefore projects on the lowest energy eigenstate that
is accessible. For ϑ = π/2, one obtains the Euclidean path integral. In this sense, the
Minkowskian vacuum correlation functions are analytic continuations of the Euclidean
ones with a discontinuity on the real-time axis.

If, instead, we were keeping time purely real or still complex in general but finite,
then we would have to weigh each path contributing to the partition function by the
ground state wave functional Ψ evaluated at the endpoints of these paths, as we discuss
in Section 4. The main reason for taking complex time to infinity is therefore to avoid this
complication because then we can evaluate the path integral without explicit use of the
vacuum state. In particular, since the ground state wave functional in Yang–Mills theory is
not known to an approximation that addresses the present purpose, taking the imaginary
part of time to infinity is the main method of making the analytic approximation of vacuum
correlators feasible.

3.2. Evaluation of the Partition Function and Topological Quantization

Having specified the problem through the partition function (9), we now turn to its
evaluation. In the following, we show that Equation (9) implies an integration contour
that joins together the steepest-descent paths for each topological sector ∆n. The field
configurations on these steepest-descent contours are not bound by any finite spacetime
volume, i.e., there is no value R so that Fµν(x)Fµν(x) = 0 (at least to some approximation)
for |x| > R for all field configurations on a given steepest descent. Therefore, we must
evaluate the path integrals for the different topological sectors ∆n in the limit Ω → ∞

before interfering with these [7]. This also implies that organizing the evaluation of the
path integral in terms of a sum over contributions from the individual topological sectors is
valid in the first place. Further, we argue that the order of limits in Equations (12) and (13)
is opposite to what is implied by the form of the correct integration contour.

To start, we state why it is necessary to specify an appropriate integration contour.
Since the integrand in Equation (9) for θ̄ ̸= 0 mod 2π is not positive definite, explicitly
because of the topological term and implicitly because of fermion determinants, we must
determine the integration contours to leave the integral well defined. These specify the
order in which the integral

∫
DA must be carried out so that we can derive how to sum over

the topological sectors. In particular, it will allow us to discern whether it is Equation (11)
or Equations (12) and (13) that correspond to the correct procedure.
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To determine the contours, we first note that, in general, the real part of the Euclidean
Yang–Mills action

S ⊃ SYM =
1

2g2

∫

Ω
d4x trFµνFµν (15)

should be bounded from below on its domain and thus have global or local minima that
may or may not exhibit degeneracies. If Ω is infinite, this implies that the vector potential
at such minima reduces to pure gauge configurations at infinity, i.e.,

Aµ(x) → iω(x)∂µω−1(x) for |x| → ∞ for local minima of Re[S] , (16)

where ω(x) ∈ SU(2). Because the surface at infinity is homeomorphic to S3, and the third
homotopy group of the gauge symmetry is π3(SU(2)) = ❩, this immediately implies
topological quantization as in Equation (10) for these minima, i.e., integer winding number
∆n. In addition, for each of these minima, there are degeneracies, i.e., flat directions of the
action, parameterized by moduli [20]. Note that this reasoning applies without imposing
boundary conditions ad hoc (as in Equation (13)) because the limit Ω → ∞ appears inside
the path integral (9). This is in line with standard introductions of path integrals in infinite
spacetimes that do not impose particular boundary conditions, see, e.g., Ref. [21], where
this point is mentioned explicitly.

Given the minima of the real part of the classical Euclidean action with integer winding
number, the contributions to the path integral for the individual topological sectors ∆n
can then be evaluated on steepest-descent contours (of the negative action −S) passing
through these minima. The contours are Lefschetz thimbles and are determined through
flow equations [22–25]. By this reasoning of steepest-descent contours, upon dealing with
the usual ultraviolet divergences and the vacuum contributions in the infinite spacetime
volume, the path integrals in the individual topological sectors are convergent. The steepest-
descent contours for different ∆n do not intersect for finite S because, in the infinite
spacetime volume, solutions of different winding number are separated by infinite action
barriers. The integration contours over the different sectors ∆n can therefore only be
connected via configurations of infinite action S that give no contribution to the partition
function (9). Note that these infinite action configurations connecting the sectors are
allowed precisely because we do not impose boundary conditions when evaluating the
partition function. For comparison, in finite volumes with fixed boundary conditions (13),
the field configurations in different topological sectors are not continuously connected,
not even via a path through configurations of infinite action since paths with a noninteger
winding number are forbidden by the boundary conditions (13), no matter whether S is
finite or infinite. In Figure 1, we schematically illustrate these integration paths and their
crucial differences.

Therefore, we first carry out the integration over the entire infinite spacetime in a
given topological sector ∆n individually. Then, we can connect this integration with the
steepest-descent contour for a different ∆n via configurations of infinite action that do
not contribute to the path integral. This determines the integration contour that should
be used in order to evaluate Equation (9) and that is given by the order of limits spec-
ified in Equation (11). Any alternative contour must be a continuous deformation in
compliance with the prerequisites of the Cauchy theorem, a criterion that is not met with
Equations (12) and (13), which consequently lead to a different result. In practice, this
means that, without specifying ad hoc boundary conditions, we must not interfere the
different sectors before taking Ω → ∞. Otherwise, we would partition and rearrange the
full integration contour in a noncontinuous way that, in general, leads to an inequivalent
result because the integrand, or, more specifically, the sum over the topological sectors, is
not positive definite and not absolutely convergent.
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−S

−∞

A

−S

−∞
μ

increasing  Ω

Figure 1. Upper panel: The integration contour given by the steepest-descent trajectories for the

partition function (9) may be followed by successive full integrations (i.e., over all field configurations

in the infinite spacetime), along the particular thimbles. This corresponds to Equation (11). The

thimbles can be thought of as being connected via configurations of infinite action, leading to a

connected integrated contour represented by the blue line. Lower panel: Equations (12) and (13)

amount to a contour (represented again by the blue lines) that is not connected because there is no

continuous deformation from one topological sector into another in finite Ω. The upper and lower

contours are therefore not equivalent in the sense of the Cauchy theorem.

We can therefore write the path integral as in Equation (11) and as indicated in Figure 1.
We emphasize that the decomposition into topological sectors follows from Ω → ∞ and
is not a consequence of the saddle point approximation (which only comes into play in
the dilute instanton gas approximation in Section 5). In turn, finite surfaces ∂Ω imply that
topological charge is not quantized, i.e., it can flow in and out of the volume Ω, unless
imposing unphysical constraints.

Since the winding number density ∆n/Ω apparently is a measure of CP violation, it
is already clear that for each term of the series (11), there is no CP-violating contribution,
as limΩ→∞ ∆n/Ω = 0. For the quark system, the corresponding calculation is explicitly
presented in Section 5.

3.3. Commuting the Order of Limits

The decisive point in the present discussion regarding the CP symmetry of strong
interactions is whether Equations (12) and (13) are consistent with Equation (9) and the
integration contour that it implies. As we shall review in Section 5, the conclusion that
the CP symmetry is violated when α + θ ̸= 0 mod π relies on a partition function as in
Equation (12) in conjunction with the ad hoc boundary conditions (13). In Equation (12),
the order of limits is therefore opposite to Equation (11) that we have derived from the
starting point given by Equation (9).

Now, to further (beyond the apparent contradiction with Equation (9) regarding CP)
assess the validity of Equations (12) and (13), we take Ω to be finite and first assume that
the boundary conditions from Equation (13) are not imposed. In particular, one can then
move topological charge (i.e., instantons in the weak coupling limit) across the boundary
∂Ω so that there is no topological quantization into sectors with integer winding number
∆n and also no conservation of topological charge within Ω. Without these, nontrivial
minima of the action do not exist also. To bring topology back into the picture, one
might therefore impose the boundary conditions given in Equation (13). These boundary
conditions can be derived as a consequence of the infinite spacetime volume Ω → ∞ in the
partition function (9) [11]. However, imposing these boundary conditions and computing
the partition function according to Equations (12) and (13) requires commuting the limit of
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infinite spacetime volume with the sum over infinitely many topological sectors, which is,
however, not justified.

Equations (12) and (13) therefore do not follow from Equation (9) so that one may keep
looking for alternative arguments. However, while topological quantization also emerges
for fixed boundary conditions on a given compact ∂Ω as in Equation (13), there does not
appear to be a valid reason for imposing such configurations. In fact, the vacuum wave
functional has nonvanishing support on configurations that do not observe Equation (13)
and thus have a nonvanishing classical energy. Since the field operators do not commute
with the Hamiltonian, the configurations obeying Equation (13) are as good or as bad as any
other field configuration subject to a different boundary condition on ∂Ω (for the boundary
conditions given in Equation (13), ∆n are integers, whereas, for more general boundary
conditions specified up to gauge transformations, ∆n are given by a fixed real number plus
any integer). Therefore, there is no preference for choosing pure gauges as a boundary
condition on a sequence of finite surfaces, even as these surfaces are taken to infinity. For
example, if ∂Ω is spherical, instantons could be placed at certain angles and close to the
radius of ∂Ω, what defines boundary conditions with noninteger ∆n. Except that there is
not a valid reason to impose Equations (12) and (13), whose consequence for the outcome
of the calculation is material, there also is no a priori justification why Ω should be taken to
infinity at the same rate for all topological sectors in Equation (12).

Finally, note that for examples that do not involve noncommuting limits, correlations
from fixed boundary conditions on finite ∂Ω converge in imaginary time to the vacuum
correlators as Ω → ∞. However, this does not imply by analogy that in the present case,
where we must sum over infinitely many topological sectors, Equations (12) and (13) yield
the correct vacuum correlation functions.

4. Finite Euclidean Spacetimes

Above, we have reviewed the reasoning for computing the path integral without
specifying boundary conditions in favor of taking complex time to infinity. While yielding
the physical correlation functions, taking time to infinity clearly is a mathematical trick.
However, as we have discussed in Section 3, simply using Equations (12) and (13) is not a
valid procedure. Nonetheless, it should still be possible, at least in principle, to carry out
the calculation in a finite spacetime volume.

To this end, we see three ways of doing this. All of these turn out to require the
replacement of the fixed boundary conditions (13) with different configurations that again
lead to the same conclusion of CP conservation. These particular possibilities are:

• We can take a finite time interval at the price of having to project on a vacuum wave
functional (see the present section).

• In order to avoid the projection on the wave functional, we can stay within functional
quantization and consider a finite subvolume of infinite Euclidean space. Then, we
have to integrate over all possible boundary configurations on the subvolume (see
Section 6).

• We can take compact spacetimes without boundaries. For definiteness, consider here a
four-torus with a finite Euclidean time interval of length β = 1/T, where T is the tem-
perature. The relation with Minkowski spacetime is given by its correspondence with
the canonical thermodynamic partition function. This once again requires canonical
quantization that restricts the form of the wave functionals (see the present section).

4.1. Projecting on the Wave Functional

Regarding the first option, unless taking complex time to infinity or assuming finite
temperature, we need to specify the ground state in order to obtain the correct boundary
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conditions for the path integral. That is, when restricting to a real time interval from t′ to t,
we must weigh each path contributing to the partition function

ZM(t2, t1) =
∫

Dψ̄DψDA Ψ∗[Aµ(t2, x), ψ(t2, x)]Ψ[Aµ(t1, x), ψ̄(t1, x)]

×e
i
∫

Ω12
d4x (LM−η̄ψ−ψ̄η)

, (17)

by the unknown ground state wave functional

|Ψ, t⟩ = Ψ[Aµ(x, t), ψ̄(x, t))] |Aµ(x, t)⟩ ⊗ |ψ(x, t)⟩ (18)

evaluated at the endpoints of these paths. Here, LM is the Minkowskian Lagrangian,
|Aµ(x, t)⟩ and |ψ(x, t)⟩ are field eigenstates and Ω12 is the four-volume bounded by the
three-volumes at the times t1 and t2.

In turn, for physical boundary conditions that do account for fluctuations about the
classical minimal-energy states, topological quantization cannot be assumed. Note while
this means that the action generally receives contributions from field configurations of
noninteger ∆n, this does not preclude the wave functional from transforming with a phase
factor under large gauge transformations. However, one may wonder whether one can still
assume topological quantization in an approximate sense, so that one might still obtain
a good result from the sum over path integrals with boundary conditions corresponding
to pure gauges imposed on some finite volume. To settle this question, we would have to
find the ground state wave functional in canonical quantization of Yang–Mills theory [26],
which does not appear to be practically possible. Finite temperature field theory also relies
on canonical quantization, but tangible conclusions may be drawn in that context, as we
discuss next.

4.2. Compact Spacetimes without Boundary

As for introducing finite spacetime volume through temperature, a notable example is
de Sitter space, where the Euclidean counterpart is a sphere, and hence Ω is finite for this
spacetime. The latter can be interpreted as the representation of a canonical ensemble of
states over a static patch of de Sitter space with a Lorentzian signature. Another important
situation where Ω is finite is when space is a three torus and we consider a canonical
ensemble as well. Then, the Euclidean representation is a four torus and corresponds to the
continuum limit of computations in lattice QCD. Both of these very relevant examples of
finite Euclidean volume therefore require first the canonical quantization in the respective
background geometries in order to connect these with physical observables in Lorentzian
spacetimes. This is mandatory in order to evaluate the trace of the canonical density matrix
from which the path integral representation can then be derived.

In canonical quantization of gauge theory, large gauge transformations on the spatial
section can play a special role. These are gauge transformations that are not continuously
connected with the identity but give rise to equivalence classes that are a representation of
the homotopy group. This also happens for infinite volumes (provided that the gauge field
configurations approach a unique value at spatial infinity) and leads to the well-known
θ-vacua [4–6]. However, the infinite volume limit taken inside the path integral readily
implies CP conservation so that it is interesting to further focus on finite spatial volumes.

On finite spatial volumes, large gauge transformations are only singled out when
fixing the gauge corresponding to periodic (i.e., single-valued) gauge potentials on the
torus or single-valued gauge potentials on the sphere. Imposing single-valuedness, we find
that the canonical quantization on these finite spatial volumes only admits states that are
invariant under large gauge transformations, i.e., without any phase incurred, and that
there hence can be no CP violation. This also resolves the matter of renormalizability of the
states raised in Refs. [27,28]. On the other hand, without imposing single-valuedness, all
gauge transformations on the spatial sections are continuously connected with the identity
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transformation, and, again, no CP-violating effects can be deduced. The details of this
argument shall be published elsewhere [17].

5. Dilute Instanton Gas Approximation

The most sensitive probe of possible CP violation associated with strong interactions is
the EDM of the neutron. At the relevant energy scale, QCD is deeply in the nonperturbative
regime. This is a well-known and obvious drawback for any analytical approximation. Yet,
one can observe from semiclassical calculations that instantons play a central role in the
spontaneous breaking of chiral symmetry as well as in mediating the effects from the anoma-
lous axial U(1)A symmetry that notably explains the large mass of the η′ meson [29,30]. It
is therefore also strongly indicated that the role of the topological term can be understood
from a semiclassical evaluation of the effective fermion interaction mediated by instantons,
i.e., the ‘t Hooft operator [29,30]. This corresponds to the expectation that the presence or
absence of CP violation should prevail when crossing between the strongly and weakly
coupled regimes at low and high energies, respectively. Moreover, the generic arguments
in Section 3 as well as in Refs. [7,19], where cluster decomposition and the index theorem
are used, do not refer to the semiclassical approximation.

The semiclassical approximation therefore remains of substantial interest, being the
only analytic procedure to make quantitative statements about CP violation in strong
interactions. Also, it offers a very useful perspective on the central issues with this topic.

In the present context, the semiclassical approach is given by the dilute instanton
gas approximation. Stationary and quasi-stationary points of the action are described in
terms of instantons and their individual collective coordinates [10,11,29,30]. Stationary
points are the classical solutions. These are the minima of the action for each topological
sector characterized by winding number ∆n. For ∆n = ±1, they are given by Belavin–
Polyakov–Schwarz–Tyupkin (BPST) (anti-)instanton solutions [31], whose classical Yang–
Mills action is

SBPST =
8π2

g2
. (19)

Explicitly, the BPST instanton reads in the regular gauge

Aa
µ = 2ηaµν

(x − x0)ν

(x − x0)2 + ρ2
, (20)

where x0 and ρ are free parameters corresponding to the center location of the instanton
and its size, respectively. Here, ηaµν are the ‘t Hooft symbols [30]

ηaµν =





εaµν, µ, ν = 1, 2, 3

−δaν, µ = 4

δaµ, ν = 4

0, µ = ν = 4

. (21)

Similarly, one can define η̄aµν by a change in the sign of δ in the above equation. For the
anti-instanton, we should replace ηaµν with η̄aµν in Equation (20).

To visualize the BPST instanton (in analogy to Ref. [32] for one-dimensional instantons),
we consider some explicit expressions with x0 = 0, i.e., with the center set at the origin.
For example,

A3
1(x) =

2x2

x2 + ρ2
, (22)

A3
2(x) = − 2x1

x2 + ρ2
. (23)
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A3
1(x) is symmetric in the hyperplane {x1, x3, x4} and A3

2 symmetric in the hyperplane
{x2, x3, x4}. Without loss of generality, in Figure 2, we show these as a function of x1, x2 by
taking x3 = x4 = 0 in arbitrary units. The field strength components read

Fa
µν = −4ηaµν

ρ2

x2 + ρ2
. (24)

As an example, we plot F3
21 as a function of x1 and x2 in Figure 3. These quantities are

gauge-dependent. The gauge-independent quantities are

trFµνFµν = trFµν F̃µν = − 96ρ4

[x2 + ρ2]4
. (25)

For the anti-instanton, one would have trFµνFµν = −trFµν F̃µν. We plot these in Figure 4.
From the graph, one can see that the instanton indeed has a radius characterized by the
value of ρ (ρ = 1 in the plot).

Figure 2. Visualization of the gauge potential components A3
1 and A3

2 in the BPST instanton solution

on the {x1, x2} plane (ρ = 1) .

Figure 3. The field strength component F3
21 for the BPST instanton solution as a function of x1 and x2

with x3 = x4 = 0, ρ = 1.
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Figure 4. trFµνFµν = trFµν F̃µν as a function of |x| with ρ = 1 for the BPST instanton.

For |∆n| > 1, they should be obtained from the Atiyah–Drinfeld–Hitchin–Manin
(ADHM) construction [33]. In the dilute gas picture, they correspond to ∆n instantons, no
anti-instantons for ∆n > 0 and −∆n anti-instantons, no instantons for ∆n < 0. The collec-
tive coordinates for the individual instantons describe their size, their gauge orientation as
well as their position in Euclidean spacetime. As we follow the steepest-descent contours,
the action S evolves towards larger values, and we can encounter quasi-stationary points.
These can be described in terms of the number n of instantons and n̄ of anti-instantons,
where both of these objects can coexist within such configurations. In the sector (i.e., on
the thimble) characterized by ∆n, it must hold that n − n̄ = ∆n. Each of these individual
instantons and anti-instantons is again parametrized in terms of the aforementioned col-
lective coordinates. In Figure 5, we illustrate the typical structure of the thimbles in the
semiclassical approximation.

Aμ

...

...

...

−S

−∞

Figure 5. Some projections of steepest-descent contours (thimbles) in the semiclassical approximation.

Within each topological sector, there is a set of points with minimal action. This is continuously

connected via steps of height 2SBPST, corresponding to the addition of pairs of instantons and anti-

instantons, to additional plateaus. Double lines indicate that these plateaus extend over infinite sets

in field space, in the direction of the (approximate) collective coordinates.

Now, we aim to integrate out the gluon fields in order to see explicitly what quark
correlations breaking the anomalous chiral symmetry U(1)A they leave behind. We follow
Ref. [7], but here, we work with Euclidean time for simplicity.

The relevant quark correlation function is given by

⟨ψ(x)ψ̄(x′)⟩ = − δ2 log Z[η, η̄]

δη̄(x)δη(x′)

∣∣∣∣
η=η̄=0

=

∫
Dψ̄DψDA ψ(x)ψ̄(x′)e

− lim
Ω→∞

∫
Ω

d4x L

∫
Dψ̄DψDA e

− lim
Ω→∞

∫
Ω

d4x L . (26)

While this is a standard expression, one should note that the numerator and denominator
in this equation are not well defined in the thermodynamic limit Ω → ∞, even when
ultraviolet divergences have been renormalized. However, this does not force us to keep Ω

finite. Rather, divergent extensive contributions in the numerator and denominator from
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spacetime regions far away from x and x′ cancel. In standard perturbation theory, these
contributions are represented by vacuum diagrams where the divergence results from their
overall invariance under spacetime translations. We go into more detail regarding this
point in Section 6. In the present semiclassical evaluation, we shall see how to deal with
these extensive contributions a bit further down the line of argument.

To proceed with the evaluation of Equation (26), we approximate the Green’s function
of the quarks in the background of one anti-instanton (∆n = −1) as

S(x, x′) = ∑
∫ ψ̂λ̄(x)ψ̂†

λ̄
(x′)

λ̄
≈ ψ̂0L(x)ψ̂†

0L(x′)
m e−iα

+ ∑
∫

λ ̸=0

ψ̂λ(x)ψ̂†
λ(x′)

λ
. (27)

The middle expression is the exact spectral sum representation in terms of the eigenvalues
λ̄ of the Dirac operator of massive quarks in the anti-instanton background, and ψ̂λ̄ are
the corresponding eigenfunctions. As for the approximation on the right, by ψ̂0L,R, we
denote the ‘t Hooft zero modes of the massless Dirac operator in the corresponding one
anti-instanton or instanton background [29,30], which are purely chiral and where their
handedness is indicated by L, R. The nonzero eigenvalues of the massless Dirac operator
are given by λ and the pertaining eigenmodes by ψλ. Note that the contribution breaking
chiral symmetry, i.e., the first term in the approximate expression, aligns with the CP phase
α pertaining to the quark mass and not with the angle θ. For real masses, this approximation
has been used in Refs. [34,35].

In the semiclassical approximation, we carry out the path integral by taking the
quasistationary configurations of the action, i.e., with n instantons and n̄ anti-instantons,
and evaluate the leading fluctuations, i.e., the functional determinants corresponding to
one-loop order. For such a quasistationary background, the Green’s function for the quarks
should be well approximated by [35]

Sn,n̄(x, x′) ≈ S0(x, x′)+
n̄

∑
ν̄=1

ψ̂0L(x − x0,ν̄)ψ̂
†
0L(x′ − x0,ν̄)

m e−iα

+
n

∑
ν=1

ψ̂0R(x − x0,ν)ψ̂
†
0R(x′ − x0,ν)

m eiα
. (28)

Here, x0,ν and x0,ν̄ are the locations of instantons and anti-instantons, respectively, and S0

is the Green’s function of a Dirac fermion with mass m exp(iαγ5) in a translation-invariant
(i.e., void of instantons) background. This approximation neglects contributions from
overlapping instantons, which are more suppressed as the instanton gas becomes more
dilute. While the Green’s function close to the individual instantons and anti-instantons is
dominated and therefore approximated by the ‘t Hooft zero modes, sufficiently far away
from the points x0,ν and x0,ν̄, the Green’s function is given by the form in the background
without instantons, i.e.,

S0(x, x′) = (−γµ∂µ + m e−iαγ5
)
∫

d4 p

(2π)4
e−ip(x−x′) 1

p2 + m2
. (29)

In Equation (28), we note the alignment of the instanton-induced breaking of chiral symme-
try with the quark masses so that there is no indication of CP violation at this level but also
note that θ has not yet entered into the calculation.
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Given the Green’s functions (28), we can proceed with evaluating the fermion corre-
lation on the thimble (or equivalently in a fixed topological sector) characterized by the
winding number ∆n:

⟨ψ(x)ψ̄(x′)⟩∆n

= ∑
n̄,n≥0

n−n̄=∆n

∫
DAn̄,nDψ̄Dψ ψ(x)ψ̄(x′)e−S[A,ψ̄,ψ]

= ∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

(
n̄

∏
ν̄=1

∫

Ω
d4x0,ν̄dΣν̄ Jν̄

)(
n

∏
ν=1

∫

Ω
d4x0,νdΣν Jν

)
Sn̄,n(x, x′)

× e−SBPST (n̄+n)e−i(n̄−n)(α+θ)(−Θϖ)(n̄+n) . (30)

The symbol DAn̄,n implies that the path integral is evaluated in terms of fluctuations and
moduli about the classical background, i.e., (quasi-)stationary point, made up from n
instantons and n̄ anti-instantons. The integration over collective coordinates other than
the locations of the instantons and anti-instantons are denoted by dΣν,ν̄, and the Jacobians
from the transformation of the zero modes in the path integral in favor of the collective
coordinates are denoted by Jν,ν̄. The one-loop determinant of the gauge field about a single
instanton or anti-instanton (denoted by Ā below) with the zero modes omitted and divided
by the gauge field determinant in the background A = 0 is given by

ϖ ≡ 1√
det′Ā/detA=0

, (31)

where the prime on the determinant indicates the omission of zero eigenvalues. In an
analogous manner, Θ represents the modulus of the ratio of the fermionic determinants in
the one-(anti)instanton and A = 0 backgrounds,

Θ ≡
∣∣∣∣∣
det(− /D − meiαγ5

)

det(−/∂ − meiαγ5)

∣∣∣∣∣ . (32)

As usual, the partition function diverges in the thermodynamic limit so that we keep the
spacetime volume Ω finite for now. Nonetheless, we need to take Ω → ∞ before eventually
summing over the topological sectors ∆n, as the latter are only a consequence of infinite
spacetime volume and to remain true to the integration contour implied by Equation (9), cf.
the discussion in Section 3.

In order to normalize, i.e., to divide out vacuum contributions, we also need the
partition function in a fixed topological sector. Proceeding as for the fermion correlation,
we obtain

Z∆n = ∑
n̄,n≥0

n−n̄=∆n

∫
DAn̄,nDψ̄Dψ e−S[A,ψ̄,ψ]

= ∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

(
−ΩJ Θ ϖ e−SBPST

∫
dΣ
)(n̄+n)

e−i(n̄−n)(α+θ) .

(33)

Next, we turn to the collective coordinates and integrate out the location of a single
anti-instanton as

∫

Ω
d4x0,ν̄ S(x, x′)

≈
∫

Ω
d4x0,ν̄

[
S0(x, x′)+

ψ̂0L(x − x0,ν̄)ψ̂
†
0L(x′ − x0,ν̄)

me−iα
+ · · ·

]

=Ω (S0(x, x′) + · · · )+m−1eiαh(x, x′)PL .

(34)
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The dots above represent contributions from the zero modes of the (anti)-instantons whose
centers were not integrated over. This expression defines the overlap function h(x, x′)—a
rank-two tensor in spinor space:

h(x, x′)PL =
∫

Ω
d4x0,ν̄ ψ̂0L(x − x0,ν̄)ψ̂

†
0L(x′ − x0,ν̄) , (35)

h(x, x′)PR =
∫

Ω
d4x0,ν ψ̂0R(x − x0,ν)ψ̂

†
0R(x′ − x0,ν) . (36)

Further, we integrate over the remaining collective coordinates as

h̄(x, x′) ≡
∫

dΣ h(x, x′)∫
dΣ

. (37)

Notice that we ignore here the fact that for the classical instanton, the integral over the
dilatational mode is divergent. The running coupling will however render the correlations
finite in a more complete calculation.

Strictly speaking, the dilute instanton gas approximation is only applicable when the
integral over the dilatational mode converges, i.e., when contributions from both large
and small instantons are cut off. This is naturally the case in the ultraviolet, where small
instantons are suppressed for asymptotically free theories as g → 0. In the infrared, one
may attempt to keep g perturbatively small by a bespoke particle content that controls the
running coupling. As a matter of principle, an infrared cutoff can also be enforced when
the gauge symmetry is spontaneously broken so that the size of the instantons is limited
by the inverse gauge boson mass [29,30]. While none of this applies to strong interactions,
such considerations show that the dilute instanton gas is a meaningful concept. Note
that an infrared cutoff for the instanton size has no implications for the integration over
the locations x0,ν, x0,ν̄ of the instanton centers. The preservation of Poincaré symmetry,
and, in particular, Lorentz invariance, demands that the values of x0,ν, x0,ν̄ should remain
unconstrained. Hence, the dependence of the results on the spacetime volume is unchanged
in the presence of a cutoff for the instanton size. As a consequence, the former has no
consequence for the order of limits of infinite spacetime volume and infinite maximal
absolute value of the topological charge. Note that even with the aforementioned size
cutoff, it is clear that either expression (11) or (12) can be technically evaluated. Further, the
presence or absence of divergences from infrared instantons does not decide which order of
limits must be taken because the presence of sectors of integer ∆n is a topological argument
that does not depend on the validity of the semiclassical expansion. We eventually note
here that the validity of the dilute instanton gas and its generalization toward the inclusion
of interactions between instantons has been addressed in Refs. [9,10].

The present point of view is that the saddle point approximation in the dilute instanton
gas approach, while not quantitatively applicable to strong interactions, yields information
about the symmetries that are respected by the theory. This does not only apply to the
present work that argues in favor of the evaluation of the partition function according to
Equation (11) but also to Refs. [5,18] that assume Equations (12) and (13). To our knowledge,
Ref. [18] is the only paper that explicitly evaluates the ’t Hooft operator for nonzero θ̄. While
the saddle point approximation is an important cross check, we note that the conclusion
about the absence of CP violation does not rely on it, cf. the boxed argument in Section 2
and in the part of Section 3 on the evaluation of the partition function and topological
quantization as well as Refs. [7,19]. Furthermore, as will be reviewed at the end of Section 6,
the results obtained with the dilute instanton gas can be recovered from general arguments
based on cluster decomposition and the index theorem, without making use of the dilute
gas approximation.
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Integrating now over all locations of instantons and anti-instantons, we obtain the
correlation function for fixed ∆n:

⟨ψ(x)ψ̄(x′)⟩∆n

= ∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

[
h̄(x, x′)

(
n̄

me−iα
PL +

n

meiα
PR

)
Ωn̄+n−1 + S0(x, x′)Ωn̄+n

]

× κn̄+n(−1)n+n̄ei∆n(α+θ)

=
[(

eiαI∆n+1(2κΩ)PL + e−iαI∆n−1(2κΩ)PR

) κ

m
h̄(x, x′) + I∆n(2κΩ)S0(x, x′)

]

× (−1)∆nei∆n(α+θ) , (38)

where κ =
∫

dΣ J Θ ϖ e−SBPST is the instanton density per spacetime volume and Iν(x)
is the modified Bessel function. (Note that in Minkowskian spacetime, we define iκ =∫

dΣ JΘϖe−SBPST in Ref. [7]. The κ in both cases is the same and is real due to the fact that
the Jacobian J in Minkowski spacetime contains an additional factor of i compared to its
Euclidean counterpart.)

The terms involving the overlap function h̄ are due to the instanton effects on the
quarks and break chiral symmetry. While we should expect that these scale in the same
way with the spacetime volume Ω as the term with S0, i.e., the contribution from regions
between instantons, the explicit dependence on Ω in Equation (38) is different. However,
we see that the scaling after all is the same. Relax for the moment the constraint of fixed
∆n and use that κ may be interpreted as the likelihood for finding an instanton in a unit
four-volume. Then, for large Ω, the sum is dominated by a particular value of n ≈ n̄:

⟨n⟩ = ∑
∞
n=0 n

(κΩ)n

n!

∑
∞
n=0

(κΩ)n

n!

= κΩ . (39)

Moreover, the relative fluctuation vanishes in the infinite-volume limit [7]:

√
⟨(n − ⟨n⟩)2⟩

⟨n⟩ =
1√
κΩ

. (40)

This means that in the coefficients in front of the chiral projection operators within the
middle expression in Equation (38), we can replace n, n̄ → κΩ. This basic behavior, i.e., that
the central value for the number of instantons is given by κΩ, is also reflected by the fact
that for large arguments, the modified Bessel functions become independent of their index,
i.e., limx→∞ I∆n(x)/I∆n′(x) = 1. Since all the modified Bessel functions in Equation (38)
tend to the same value, we see directly from this expression that there is no relative CP
phase between the terms from the quark masses and instanton-induced breaking of chiral
symmetry in the infinite-volume limit. Correspondingly, the partition function for fixed ∆n
turns out as [36]

Z∆n = I∆n(2κΩ) (−1)∆nei∆n(α+θ) . (41)

Now, when calculating the correlation function as the sum over the topological sectors,
we have to take the limit Ω → ∞ first for the reasons explained in Section 3. Because of the
divergence in the thermodynamic limit, the numerator and denominator have to be treated
together, and we obtain

⟨ψ(x)ψ̄(x′)⟩ = lim
N→∞
N∈◆

lim
Ω→∞

∑
N
∆n=−N⟨ψ(x)ψ̄(x′)⟩∆n

∑
N
∆n=−N Z∆n

=S0inst(x, x′) + κh̄(x, x′)m−1e−iαγ5
. (42)
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In Section 6, we show that this procedure amounts to dropping the divergent extensive
contributions that correspond to the vacuum diagrams in standard perturbation theory. In
this final result, the phase from the quark mass in S0inst, cf. Equation (29), is aligned with
the phase from the instanton-induced effects in the term with the overlap function h̄, so
that there are no CP-violating effects.

One may wonder about Equation (42) why we take the limit N → ∞ in front of the
fraction, whereas, by Equation (9), it appears that it should hold for numerator and denom-
inator separately in the first place. As we have noted though, without normalization by
vacuum contributions, the partition function is not well defined in the thermodynamic limit.
The present procedure is necessary to divide out the extensive contributions causing the di-
vergence. It is unique in the sense that we carry out the integrals over each steepest-descent
contour before interfering them. Doing otherwise would correspond to a partitioning and
reordering of the full integration contour that consists of the steepest-descent contours
connected via configurations of infinite action, see Figure 1 for illustration. This amounts
to an incorrect manipulation of a path integral that is not absolutely convergent.

Now, we consider what happens when the limits are ordered the other way around, i.e.,
sum over the topological sectors before taking Ω → ∞, according to Equations (12) and (13).
We reiterate though that this procedure is not valid because topological quantization can
only be deduced in infinite spacetime volume. As for the fermion correlation, one obtains

∑
n̄,n≥0

1

n̄!n!

[
h̄(x, x′)(n̄ m−1eiαPL + n m−1e−iαPR)(Ω)n̄+n−1+ S0(x, x′)(Ω)n̄+n

]

× (−κ)n̄+nei∆n(α+θ)

=
[
−
(

e−iθ PL + eiθ PR

) κ

m
h̄(x, x′) + S0(x, x′)

]
e−2κΩ cos(α+θ) , (43)

and for the partition function

∑
n,n̄

1

n!n̄!
(−κΩ)n̄+ne−i(n̄−n)(α+θ) = e−2κΩ cos(α+θ) . (44)

Taking the ratio, the overall exponential factors cancel, but now there is a misalignment
between the phases in S0inst and in the instanton-induced term. This means that as Ω → ∞,
there is an infinite amount of destructive interference that suppresses the statistically more
likely contributions with approximately equal numbers of n and n̄ (see Equation (39)) in
favor of outliers for which ∆n/Ω does not go to zero. Equations (43) and (44), if they were
correct, would signal CP-violating effects. Note that in either result, terms that break the
U(1)A symmetry from both instanton-mediated effects and the quark mass m are present.
When we turn to the phenomenology of strong interactions and generalization to several
flavors in Section 7, we shall recall that both the breaking of chiral symmetry through the
quark masses and from instantons are necessary in order to explain the spectrum of mesons,
in particular why the η′-meson is much heavier than the pions [18,29,30]. In either order of
limits, this phenomenology is explained. Therefore, the meson spectrum alone cannot be
used in order to conclude the correct order of limits.

6. Thermodynamic Limit and Cluster Decomposition

We establish here that with the limiting procedure in Equation (42), contributions that
are divergent due to the infinite spacetime volume cancel between numerator and denomi-
nator. This corresponds to the usual cancellation of vacuum diagrams when evaluating
connected correlation functions in standard perturbation theory (i.e., without expanding
around nontrivial classical solutions).

The present argument is also interesting for what concerns Equation (9). The partition
function is defined in the limit Ω → ∞ in the first place. This appears as an obstacle to
using log Z as an extensive, volume-dependent quantity in line with what is familiar from
thermodynamics. We shall see here that an expression with such a property can nonetheless
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be defined when restricting Z to some subvolume of Ω. Note that as such a restriction is
arbitrary, no boundary conditions on the subvolume can be placed.

While we are working here at zero temperature, we note that one can use the Polyakov
line at finite temperature in order to control and study the deconfinement phase transition,
including contributions from the gradient expansion of the quark determinant [37].

We use a well-known line of reasoning [38] and consider the expectation value of an
operator O in an infinite spacetime volume Ω and interfere different topological sectors ∆n as

⟨O⟩ = lim
N→∞
N∈◆

lim
Ω→∞

N

∑
∆n=−N

f (∆n)
∫

∆n

DϕO e−SΩ [ϕ]

N

∑
∆n=−N

f (∆n)
∫

∆n

Dϕ e−SΩ [ϕ]

, (45)

where Dϕ is the path integral measure over all fields involved. Now, let O be an operator
corresponding to a correlation function evaluated for some spacetime points. For example,
in Equation (42), O = ψ(x)ψ̄(x′). For the action, we write SΩ to indicate that it is obtained
from integrating the Lagrangian over the spacetime volume Ω. As for the Lagrangian, we
take it not to include the topological term −iθtrFF̃/(16π2). Rather, we have the function
f (∆n) taking care of the dependence on the topological sector.

Now, consider partitioning the spacetime volume as Ω = Ω1 ∪ Ω2 so that ∆n(Ω) =
∆n1(Ω1) + ∆n2(Ω2). We further assume that the spacetime arguments of the operator fall
within Ω1, and we write O1 in favor of O to indicate this. We can thus write

⟨O1⟩ = lim
N1,N2→∞

N1,N2∈◆

lim
Ω→∞

N1

∑
∆n1=−N1

N2

∑
∆n2=−N2

f (∆n1 + ∆n2)
∫

∆n1

DϕO1 e−SΩ1
[ϕ] ∫

∆n2

Dϕ e−SΩ2
[ϕ]

N1

∑
∆n1=−N1

N2

∑
∆n2=−N2

f (∆n1 + ∆n2)
∫

∆n1

Dϕ e−SΩ1
[ϕ] ∫

∆n2

Dϕ e−SΩ2
[ϕ]

. (46)

Since there may be instantons sitting right at the boundaries of the two subvolumes, ∆n1,2

will not be strictly integer. However, if the instanton gas is sufficiently dilute, integer
winding numbers may still correspond to an adequate approximation.

Now, as required by the cluster decomposition principle, provided Ω1 is chosen large
enough, ⟨O1⟩ must not depend on contributions from Ω2 to the path integral. This is
generally the case when the numerator and the denominator decompose into factors that
only depend on ∆n1, Ω1 or ∆n2, Ω2, respectively. Then, the contributions from the volume
Ω2 can be reduced from the fractions. This generally happens when

f (∆n1 + ∆n2) = f (∆n1) f (∆n2) ⇒ f (∆n) = ei∆nθ . (47)

Therefore, the contributions from the topological term, that we have left aside thus far, can
indeed be accounted for through f (∆n). Note that the argument holds for either order of
limits, i.e., the one from Equation (9) that implies Equation (11), which is imposed here, as
well as for the commuted version from Equation (12).

To carry out the limits, we write Equation (46) as

⟨O1⟩ = lim
N1,N→∞

N1,N∈◆

lim
Ω→∞

N

∑
∆n=−N

N1

∑
∆n1=−N1

f (∆n)
∫

∆n1

DϕO1 e−SΩ1
[ϕ] ∫

∆n2=∆n−∆n1

Dϕ e−SΩ2
[ϕ]

N

∑
∆n=−N

N1

∑
∆n1=−N1

f (∆n)
∫

∆n1

Dϕ e−SΩ1
[ϕ] ∫

∆n2=∆n−∆n1

Dϕ e−SΩ2
[ϕ]

. (48)

Corresponding to Equation (41), the integrations over the volume Ω2 lead to
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⟨O1⟩ = lim
N1,N→∞

N1,N∈◆

lim
Ω2→∞

N

∑
∆n=−N

N1

∑
∆n1=−N1

f (∆n) I∆n−∆n1
(2κΩ2)(−1)N f (∆n−∆n1)ei α(∆n−∆n1)

∫
∆n1

DϕO1 e−SΩ1
[ϕ]

N

∑
∆n=−N

N1

∑
∆n1=−N1

f (∆n) I∆n−∆n1
(2κΩ2)(−1)N f (∆n−∆n1)ei α(∆n−∆n1)

∫
∆n1

Dϕ e−SΩ1
[ϕ]

. (49)

The explicit exponential factors here are phases from the fermion determinants. Note that
these have not been absorbed in κ, which we have defined to be real.

Now, we are aiming for an expression for ⟨O1⟩ with finite Ω1, without making refer-
ence to Ω2. This proves to be possible because the contributions from Ω2 can be interpreted
as vacuum factors that reduce out from the normalized expectation value.

Since we must take Ω → ∞ to have well-defined integer ∆n, we also have to take here
Ω2 → ∞. The Bessel functions with a factor Ω2 in their argument then go to a common
limit so that we can factorize out the sum over ∆n. We are left with

⟨O1⟩ =

∞

∑
∆n1=−∞

∫
∆n1

Dϕ (−1)−N f ∆n1 e−i α∆n1O1 e−SΩ1
[ϕ]

∞

∑
∆n1=−∞

∫
∆n1

Dϕ (−1)−N f ∆n1e−i α∆n1 e−SΩ1
[ϕ]

. (50)

We therefore see that taking the limits as in Equation (42) leads to the correct cancellation of
“disconnected” terms, in particular those that originate from regions that are far separated
from the spacetime arguments of the observable O1.

Moreover, in Equation (50), the θ-angle from the function f (∆n) does not occur any-
more. We can see this as a consequence of phases incurred in Ω1 being canceled against
complementary phases from Ω \ Ω1. The remaining explicit dependence on the unphysical
phase α cancels when the fermionic part of the path integral Dϕ is carried out. Since the
path integral here is restricted to Ω1, which is finite, we can compute the expectation values
in finite volumes after all from a partition function in the form of Equation (12) but with
the parameter θ̄ set to zero. This way, the logarithm of the partition function can be taken
as an extensive quantity.

In the previous derivation, when going from Equation (48) to (49) we made use of the
result for the partition function in the dilute instanton gas approximation, Equation (41).
However, it is worth pointing out that the latter result can be derived from the cluster
decomposition principle alone, without making use of the dilute instanton gas approxima-
tion. One can start by noting that the factorization of the path integrals in the denominator
in Equation (46) can be written in terms of the following relations between the partition
functions Z∆n(Ω) in the full volume and their counterparts Z∆n1

(Ω1), Z∆n2
(Ω2) for the

subvolumes Ω1, Ω2,

Z∆n(Ω) = ∑
∆n1

Z∆n1
(Ω1)Z∆n−∆n1

(Ω2) . (51)

Equation (51) is an infinite set of identities that can be used to solve for Z∆n(Ω) from a set
of minimal assumptions. First, we note that Z∆n(Ω) are complex. For starters, they receive
a phase eiθ∆n due to the θ term. Further complex phases in Z∆n(Ω) can only come from the
phases αi of the fermion masses. At least at the leading order, the fermionic path integration
yields determinants of the massive Dirac operator in a background of topological charge
∆n, which can be fully general and is not assumed to be precisely captured by the dilute
instanton gas approximation. The phase of the total fermionic determinant is then fixed
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by the Atiyah–Singer index theorem [12] and for a single fermion is given by eiα∆n. As a
consequence, one can write

Z∆n(Ω) = ei(θ+α)∆n g̃∆n(Ω) , g̃∆n(Ω) ∈ R . (52)

Parity considerations and appropriate limits of the cluster-decomposition relation (51) can
be used to motivate the simple ansatz [7]

g̃∆n(Ω) = Ω|∆n| f∆n(Ω
2), f∆n(0) ̸= 0 . (53)

Notably, the previous ansatz together with the assumption of analyticity in Ω give rise to a
unique solution for the infinite tower of identities in Equation (51), which can be written as

Z∆n(Ω) = ei(θ+α) I∆n(2βΩ) , β ≡ f∆n=1(0) ∈ R . (54)

As advertised, this recovers the result of Equation (41) without making use of the dilute
instanton gas approximation.

Equation (54) can be taken even further, as it allows one to rederive the phases of
fermionic correlators and confirm the conclusions of this section without using the dilute
instanton gas approximation. Defining a complex mass parameter m as

m ≡ meiα , (55)

the mass terms in the Lagrangian of Equation (1) can be written as

L ⊃ mψ̄PRψ +m
∗ψ̄PLψ . (56)

Then, one can view the complex mass parameters as sources for integrated correlators,

∂

∂m
Z∆n = −

∫
d4x ⟨ψ̄PRψ⟩∆n ,

∂

∂m∗ Z∆n = −
∫

d4x ⟨ψ̄PLψ⟩∆n . (57)

As the partition functions of Equation (54) have been derived on general grounds, the
previous correlators are meant to include nonperturbative effects. Noting that the re-
ality condition in the β parameter of Equation (54) implies β = β(mm

∗) and writing
α = −(i/2) log(m/m∗) yields the following spacetime-averaged correlators [7]

1

Ω

∫
d4x ⟨ψ̄PRψ⟩ = lim

N→∞
lim

Ω→∞

∑|∆n|<N

∫
d4x ⟨ψ̄PRψ⟩∆n

Ω ∑|∆m|<N Z∆m
= −2m∗ ∂mm

∗ β(mm
∗) ,

1

Ω

∫
d4x ⟨ψ̄PLψ⟩ = lim

N→∞
lim

Ω→∞

∑|∆n|<N

∫
d4x ⟨ψ̄PLψ⟩∆n

Ω ∑|∆m|<N Z∆m
= −2m ∂mm

∗ β(mm
∗) .

(58)

It is readily seen that the total phase of the fermionic correlators, including nonperturbative
effects, is aligned with the phases of the tree-level masses in the Lagrangian. This general-
izes the result of Equation (42) and leads again to the conclusion of no CP violation. Again,
the order of limits plays a crucial role in Equation (58).

7. Effective Theories and Effective Operators

We shall now draw the connection from the results of the semiclassical approximation
corresponding to integrating out gluons from Section 5 with observables probing CP
conservation or violation in strong interactions. The main object of interest in that context
is the ‘t Hooft vertex, which can be inferred from the correlation function (42) as the
Lagrangian term

−ψ̄(x)Γeiαγ5
ψ(x) . (59)
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This vertex generates the same correlation functions as in Equation (42) for the EFT where
gluons have been integrated out. Figure 6 illustrates how such a model fits into the picture
of the different EFTs discussed in the present context. In addition, there will also be in
general nonlocal operators from the long-range interactions of the gluons, because with
quark degrees of freedom still in the theory, there is no cutoff parameter that allows for a
local expansion. The new operators appear in favor of the gluon kinetic term FµνFµν as well

as the topological term Fµν F̃µν, which disappear together with the gluons.

QCD
Integrate out all

fields but Kμ 

EFT for Kμ ; generally 
nonlocal model

Integrate out
gluons

EFT with ‘t Hooft vertex;
nonlocal terms covering gluon 

dynamics

Introduce hadronic d.o.fs; spurion 
analysis of input parameters; match 

operator coefficients

Chiral perturbation 
theory

Figure 6. Schematic representation of the different effective field theories (EFTs) discussed in the

present article and their relation with QCD. Note that the nonlocal operators due to gluon dynamics

are all but under calculational control.

In the dilute instanton gas approximation in Section 5, one has integrated out gluons
in the semiclassical approximation. For this to be valid, the theory should be perturbative
throughout, which can be achieved in principle by adding a bespoke matter content that
controls the renormalization group evolution in this peculiar way. Certainly, however, this
is neither the case for the theory specified in Equation (1) with the gauge group SU(2)
and one quark flavor nor for QCD with SU(3) and three flavors of light quarks. As a
consequence, one should expect substantial deviations from the correlation function given
in Equation (42), in particular for large distances between x and x′. Nonetheless, there
should still be a small distance, high energy contribution of this form. When drawing
conclusions about CP conservation or violation, one therefore must make the assumption
that the CP-odd coefficient of the ‘t Hooft vertex appears in the same way within the extra
operators that have to be added in principle to account for the low-energy behavior. Note,
however, that this shortcoming applies to the conclusions based on either order of limits
when the calculation is carried out semiclassically.

To some extent, the above matter is addressed by the concluding argument from
Section 5, where the leading fermion correlations are constrained without the dilute instan-
ton gas approximation but using instead cluster decomposition and the index theorem.
There, no assumption about the fermion correlation is made but for its U(1)A-violating
form. While the resulting fermion correlation then can only be stated in the coincident
limit, the conclusions about CP conservation based on the order of the infinite volume
limit and the sum over topological sectors should therefore extend to the nonperturbative
low-energy regime as well.
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The underlying theory that we are concerned with after all is QCD, which is specified
(now with the gauge group SU(3), N f flavors of light quarks and in Minkowski spacetime)
as (we choose ε1230 = +1 in Minkowski spacetime)

LM ⊃ − 1

2g2
trFµνFµν +

N f

∑
i,j=1

ψ̄i

(
iγµDµδij − MijPR − M†

ijPL

)
ψj +

1

16π2
θ trFµν F̃µν , (60)

where in the mass-diagonal basis

Mij = δijmj (no sum over j) . (61)

For the model as in Equation (60), the vertex corresponding to Equation (59) is

−ΓN f
e−iᾱ

N f

∏
j=1

(ψ̄jPLψj)− ΓN f
eiᾱ

N f

∏
j=1

(ψ̄jPRψj) , (62)

where

ᾱ =

N f

∑
i

αi = arg det M . (63)

We need to sort in what way (cf. Figure 6) this is connected to the EFT of hadrons that
is valid at low energies and should describe those possible CP-violating effects that are
accessible by current precision experiments. A principal obstacle to systematically deriving
quantitative predictions lies of course within the circumstance that perturbation theory is
not valid anymore at low energies.

Yet, the symmetries, even when realized approximately only, offer a standard method
of constraining the EFT. In the fundamental theory, as well as on the EFT side, one can
introduce operators of the physical fields coupled to external sources (sometimes called
spurions) so that these operators are invariant under local symmetry transformations.
On the side of the EFT, the coefficient of these operators has to be obtained through
computational or experimental matching. Variation with respect to these sources then
allows one to express matrix elements of the fundamental theory in terms of parameters of
the EFT.

In the present case, we can apply this method by perceiving the quark masses that
break the chiral flavor symmetries SU(N f )A as well as the operators breaking U(1)A as
external sources that transform according to these explicitly broken symmetries. In the
following discussion, we occasionally let N f = 2, meaning that only up and down quarks
are considered, for simplicity. But for expressions explicitly depending on N f , we keep N f

general. First, we parametrize a chiral transformation as

ψ → LPLψ + RPRψ , (64)

where PL,R = (1 ∓ γ5)/2 and L, R are independent unitary matrices. For an axial transfor-
mation, R = L−1 so that the SU(2)A transformations are given by

ψi → [ei⃗γ·⃗σγ5
]ijψj . (65)

The Lagrangian (60) would remain invariant if the mass matrix transformed as

M → LMR† = e−i⃗γ·⃗σ Me−i⃗γ·⃗σ . (66)

In this transformation, M corresponds to a spurion field.
The corresponding EFT Lagrangian (cf. Figure 6) with the lowest-order terms is (see,

e.g., Refs. [8,39,40] where the effective theory is derived from integrating out quark fields)
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LEFT
M =

f 2
π

4
Tr ∂µU∂µU† +

f 2
π B0

2
Tr(MU + U† M†) + |λ|e−iξ f 4

π det U + |λ|eiξ f 4
π det U† , (67)

where

U = U0e
i

fπ
Φ
= U0Ũ , U0 = ⟨U⟩ =

(
eiφu 0

0 eiφd

)
, Φ =

[
π0 + η′ √

2 π+
√

2 π− −π0 + η′

]
. (68)

In the equations above, fπ is the pion decay constant and λ, B0 are EFT coefficients to be
determined experimentally or computationally and B0 is directly related to the magnitude
of the chiral quark condensate. The phases of the latter correspond to φu, φd, and we have
assumed a diagonal mass matrix M. The squared pion and η′ masses are then given by

m2
π = B0(mu cos(αu + φu) + md cos(αd + φd)) ,

m2
η′ ≈ 16|λ| f 2

π cos(ξ − φu − φd) ,
(69)

where we have made the phenomenologically valid approximation that m2
π ≪ m2

η′ . We

leave the terms with the parameter λ aside just yet as det U is invariant under SU(2)A but
transforms with U(1)A in a way that we shall approach shortly. In correspondence with
Equation (65), the meson fields behave under axial transformations as

U → RUL† = ei⃗γ·⃗σUei⃗γ·⃗σ (70)

The term with the parameter B0 should be matched so that the correct correlation func-
tions are produced. Corresponding to the invariance of the underlying theory (60), the
Lagrangian (67) is invariant under the simultaneous SU(2)A transformations (66) and (70).

Now, after all, the (up and down) quark masses do not transform under SU(2)A, they
rather break this symmetry explicitly. We can still perceive these as local sources though,
that perturb the correlators of the theory about the case with full SU(2)A symmetry. For the
local source, we can then take the fixed physical values of M so that Equation (67) accounts
for the perturbation through the quark masses to linear order. In the EFT, one can continue
this to higher orders pending on the precision that is aimed for.

Now, consider U(1)A transformations

ψi → eiβγ5
ψi (71)

and recall the expression for ᾱ from Equation (63). The fundamental theory (60) would
remain invariant if the quark mass transformed as

M → e−2iβ M , so that ᾱ → ᾱ − 2βN f . (72)

The chiral anomaly requires that the coefficient θ of the topological term goes as

θ → θ + 2N f β (73)

in order to keep the Lagrangian invariant. Note that this implies that the combination

θ̄ = θ + ᾱ (74)

is invariant under chiral rephasings and in general is nonzero. The presence of such an
invariant does however not yet guarantee that it leads to physical effects.

We thus see that there are two local sources that transform under the symmetry U(1)A:
θ and −α. Noting that under this symmetry

det U → e2iN f β det U , (75)
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the EFT Lagrangian (67) remains invariant if either

ξ =

{
−ᾱ

θ
. (76)

In principle, one may also allow linear combinations of the parameters −ᾱ and θ. As
this does not follow from either order of limits for the sum over topological sectors and
spacetime volume that we discuss here, we do not consider this combination option further.

We also note that the operator with the coefficient B0 breaks U(1)A. Therefore, instead
of the quark mass phase in M, one could also use θ to write this as an invariant operator
with the help of chiral-variant source fields. However, the symmetric theory should respond
to U(1)A-breaking perturbations through a quark mass term in the same way as it does for
SU(2)A-breaking. In this sense, the term with B0 is unique to linear order in M. The explicit
breaking of U(1)A through instantons is independent of the quark masses, cf. Equation (42)
together with the fact that κ = O(|M|), and, therefore, M does not appear in the terms
with det U.

Now, recall that Equation (42) leads to the effective vertex (62) in the theory where
gluons have been integrated out. At this level, θ has disappeared so that the only option
for the EFT Lagrangian (67) is

ξ = −ᾱ . (77)

The CP-odd coefficients can then be removed by an overall field redefinition. On the other
hand, if it were ξ = θ, there would be a residual CP-odd term.

Further, note that Equation (69) shows that the mass of the η′ in general does not
vanish in the limit of mu,d → 0, no matter which of the values ξ takes in Equation (76).
In turn, the fact that the η′ is heavy compared to the pions as such does not lead to a
conclusion about which is the correct order of limits.

Finally, the parameter ξ in the coefficient of the ‘t Hooft operator enters the calculation
of the nucleon EDM as follows: Given the EFT Lagrangian (67) and choosing a basis in
which M is diagonal, the minimum of the field U is given by U0 as in Equation (68), where,
in the limit of |λ| ≫ B0md/ f 4

π , and for ξ + αu + αd in the first quadrant, one has [41,42]

mu sin(φu + αu) = md sin(φd + αd) =
sin(ξ + αu + αd)√

1
m2

u
+ 1

m2
d

+ 2 cos(ξ+αu+αd)
mumd

. (78)

Going beyond the assumption |λ| ≫ B0md/ f 4
π leads to a mixing of the flavor eigenstates

π0 and η′ within the mass eigenstates.
In order to expand in terms of the meson fields, following Equations (68) and (78)

leads to

Tr[MU + U† M†] =
1

2
[mu cos(φu + αu) + md cos(φd + αd)]Tr[Ũ + Ũ†]

+
i

2
[mu sin(φu + αu) + md sin(φd + αd)]Tr[Ũ − Ũ†]

+terms mixing π0 with η′ . (79)

The operators in the second line are CP-odd, and we note that

Tr
[
Ũ − Ũ†

]
=

2i

fπ
Tr[Φ]− i

3 f 3
π

Tr
[
Φ3
]
=

4i

fπ
η′ − i

f 3
π

(
2

3
η′3 + 2η′

[
(π0)2 + 2π+π−

])
. (80)

Substituting this into the term with B0 in Equation (67) and expanding in the meson
fields, one generally would obtain CP-violating effects if ξ ̸= −ᾱ, the most immediate
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consequence of which would be η′ → 2π (recall that the meson fields are CP-odd) through
the interaction term

LEFT
M ⊃ B0 sin(ξ + αu + αd)

fπ

√
1

m2
u
+ 1

m2
d

+ 2 cos(ξ+αu+αd)
mumd

[
(π0)2 + 2π+π−

]
η′

≈mumd(ξ + αu + αd)

(mu + md)2

m2
π

6 fπ
Tr[Φ3] . (81)

The latter expression (which follows when assuming ξ + αu + αd ≪ 1) is shown here for
comparison with Equation (8) of Ref. [43]. In the latter, the quark masses are taken as
real (see Equation (5) in [43]), which means that the parameter θ of that reference should
correspond to ±θ̄ in Equation (74). Matching the resulting signs for the phases of the quark
masses in Equation (8) of Ref. [43] leads to an identification with −θ̄. It then follows that
up to the central issue that which value in Equation (76) is taken by ξ, the results from the
present EFT description and the partially conserved axial currents in Ref. [43] are therefore
in agreement, as they should be. We further compare the two approaches given different
values of ξ in Section 8. Finally, let us note also that the coefficient in Equation (81) is
different in the approximation of three light flavors where an extra factor of

√
2/3 occurs.

To see what the above CP-odd interactions of the pions and η′ would imply for the
nucleons, one can add their interactions to the EFT Lagrangian as

Lπ,p,n
M ⊃ iN̄/∂N −

(
mN N̄UPLN + icN̄U† /∂UPLN + dN̄M†PLN + eN̄UMUPLN + h.c.

)
, (82)

where the nucleon doublet transforms as

N → L PLN + R PRN . (83)

Again, promoting M to a source that transforms under the axial symmetries rather than
breaking these, this Lagrangian is invariant. Substituting the expectation value of the chiral
condensate (68), (78) for small ξ + ᾱ, expanding in the meson field and applying field
redefinitions N → N so as to obtain the canonically normalized flavor eigenstates of the
nucleons, one finds the interaction terms [41]

Lneutron
M ⊃ c1∂µπaN̄ τa

2
γµγ5N + c2(ξ + ᾱ)N̄πa τa

2
N . (84)

The first of these is CP-even, as it couples two axial currents, πa being a pseudoscalar field.
The second term is CP-odd, as it couples a scalar density with a pseudoscalar field. At one
loop level, if it were ξ ̸= −ᾱ, this would induce an EDM through the famous diagrams
shown in Figure 7. Note that the weak interactions make an additional contribution to the
neutron EDM [44,45], which, however, is too small and usually neglected in the discussion
of CP in strong interactions.

n p n

π+π+

γ

+
n p n

π+π+

γ

Figure 7. Leading order contribution to the neutron EDM from the strong interactions for ξ ̸= −ᾱ.

The CP-violating vertex is indicated by a cross. A similar diagram involves π−.
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8. Some Objections and Answers to These

We review here and reply to some objections that we have been made aware of, mostly
to the extent that these can be related to (partly earlier) articles or to conference talks that
have been published online.

8.1. Instanton Configurations in the Different Limits

As argued in Section 3, the different orders of limits correspond to a partitioning
and rearrangement of the integration contour that leads to inequivalent results for the
path integration. Still, upon taking the limits, the path integral covers the same field
configurations. Yet, arguments have been put forward that partitioning the contour should
be harmless or that the order of limits as in Equations (9) and (11) does not include all
relevant contributions as opposed to Equations (12) and (13) [46].

Regarding the partitioning of the contour, one may state that for a given configuration
of finite action, one can find a radius R so that [11]

Aµ(x) = iω(x)∂µω−1(x) +O(1/R2) (85)

and, consequently,

∆n =
1

16π2

∫

|x|<R

d4x trFF̃ = integer +O(1/R) . (86)

Therefore, in this sense, even for finite volumes, one can at least approximately categorize
certain configurations by an integer ∆n. However, R is not universal and not even a
function of ∆n since the individual units of winding number can be separated arbitrarily
far for given ∆n. Therefore, we cannot take this as an argument for the calculation in fixed
volumes Ω to be equivalent to the full result.

Concerning Equation (11) perhaps not accounting for all relevant configurations, one
may attempt to argue as follows: Consider the dilute instanton gas picture and let ρ
be the radius of an instanton. Then, demanding that the instantons and anti-instantons
do not overlap, the maximum number of instantons and anti-instantons n + n̄ satisfies
|∆n| ≤ N ≤ (n + n̄)max ≈ Ω/ρ4. Therefore, there is room to take N → ∞ as Ω → ∞,
and it seems not to be appropriate to cap ∆n by some finite value in an infinite volume as
Equation (11) suggests.

However, such a cap is not forced by Equation (11) in the following sense: Decompose
the full spacetime into subvolumes, e.g., Ω = Ω1 ∩ Ω2. For each topological sector ∆n,
there is a constraint ∆n1 +∆n2 = ∆n, where ∆n1, ∆n2 are the winding numbers (which may
not be integers precisely) in the subvolumes, but no constraint on ∆n1 and ∆n2 separately.
Therefore, ∆n1 can be arbitrarily large. For an observer in a subvolume, say Ω1, the path
integral (11) therefore includes configurations of arbitrarily large winding number density
∆n1/Ω1 within Ω1. Hence, there is no cap on ∆n1 in the finite subvolume Ω1. Indeed,
this is already clear from Equation (50), which is derived from the cluster decomposition
principle.

8.2. Chiral Limit

In a theory with at least one massless quark, the parameter ᾱ can be chosen arbi-
trarily with no consequence to the Lagrangian. Without further ado, this implies that
θ̄ in Equation (8) cannot be physical and that there is no CP violation in such a model.
In the dilute instanton gas picture, this behavior results from the suppression of single
instantons through the zero-mode from the fermion determinant that makes the factor ϖ in
Section 5 and consequently κ vanishes proportionally to the absolute value of the quark
mass determinant.

In this sense, as κ ∼ m, we can take in Equation (42) m → 0 and obtain a well-defined
limit. Since the gluons and therefore the topological term have been integrated out, the
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parameter α in this expression is still arbitrary but unphysical, as it can be removed by a
chiral rotation of the fermion field. The same reasoning applies to the effective operator (62).

8.3. Effective Theory for the Topological Current

We respond here to comments concerning Ref. [7] that have been made in Ref. [47],
see also Ref. [48]. It is argued there that finite spacetime volumes Ω lead to an unphysical
breaking of the conservation of the winding number ∆n (or the density ∆n/Ω) so that the
absence of CP violation would be an artifact of such regularization. But, apparently, in
Equation (9) and consequently Equation (11) that lead us here as well as in Ref. [7] to the
conclusion of no CP violation, Ω → ∞ is the first limit that is taken. This is in contrast to
Equations (12) and (13), which lead to CP-violating observables but where the topological
sectors are fixed prior to taking Ω → ∞. Therefore, the criticism of producing finite volume
artifacts would rather be an issue for the latter prescription, and, in fact, it is, as we have
discussed in the previous sections.

While this comes as a rather immediate conclusion, it is of interest to see how the
EFT for the topological current, which is introduced in Refs. [47,49,50], fits into the present
considerations of imposing boundary conditions and orders of limits. (See Figure 6 for
where it stands in relation to the other EFTs that are discussed here.) The topological current
can be defined as

Kµ =
1

4π2
ϵµναβtr

[
1

2
Aν∂α Aβ −

i

3
Aν Aα Aβ

]
, (87)

where we recall tr(TaTbTc) = i f abc/4 for SU(2). The topological charge density and hence
the topological term can be explicitly written as a total divergence

q =
1

16π2
trFµν F̃µν = ∂µKµ . (88)

One of the interesting points concerning the current Kµ is the form of its two-point
correlation. Some information can be extracted from the chiral susceptibility

χΩ =
1

Ω
⟨∆n2⟩

∣∣∣
θ̄=1/2(1−(−1)

Nf )π

=
1

Ω

〈(∫

Ω
d4x q(x)

)2
〉∣∣∣∣∣

θ̄=1/2(1−(−1)
Nf )π

=
∫

Ω
d4x ⟨q(x)q(0)⟩|

θ̄=1/2(1−(−1)
Nf )π

. (89)

We evaluate this for the CP-even values of θ̄ = 1/2(1 − (−1)N f )π. When summing over
topological sectors in a finite spacetime volume with fixed boundary conditions according
to Equations (12) and (13), the vacuum energy is minimized at the chosen value of θ̄ and
χ remains positive. Choosing instead the starting point Equation (9) and consequently
Equation (11), the value of θ̄ is irrelevant by the arguments of Sections 5 and 6. We attach
a subscript on χ in order to indicate that it is important which volume is referred to.
Significant differences can arise when Ω corresponds to a subvolume of the spacetime as
opposed to the full spacetime, in particular when boundary conditions control the overall
topological fluctuations. For expressions that apply to all volumes, we omit the subscript.

One should also pay attention to the fact that χ will in general have connected and
disconnected parts. If there is CP violation in a certain setup, e.g., imposed by unphysical
boundary conditions, then ⟨∆n⟩/Ω ̸= 0. When one aims to characterize the volume-scaled
variance of the topological charge, one should then subtract the disconnected contributions,
i.e., consider

χΩ − ⟨∆n⟩2

Ω
. (90)
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Of course, one may also define χ without the disconnected pieces to start with, which we
do not do here for the sake of simpler expressions.

Applying the result (50) to Equation (89) yields

χΩ1
≡ 1

Ω1

〈(∫

Ω1

d4x q(x)

)2
〉

=
1

Ω1

∞

∑
∆n1=−∞

∫
DA∆n1

Dψ̄Dψ
∫

Ω1
d4z q(z)

∫
Ω1

d4z′ q(z′)e−SΩ1
[Aµ ](−1)−N f ∆n1e−i ᾱ∆n1

∞

∑
∆n1=−∞

∫
DA∆n1

Dψ̄Dψe−SΩ1
[Aµ ](−1)−N f ∆n1e−i ᾱ∆n1

=
1

Ω1

∞

∑
n1=0

∞

∑
n̄1=0

1
n1!n̄1! (n1 − n̄1)

2(κΩ1)
n1+n̄1

∞

∑
n1=0

∞

∑
n̄1=0

1
n1!n̄1! (κΩ1)n1+n̄1

= 2κ . (91)

That is, when calculating the susceptibility from the partition function (9) but evaluating
Equation (89) in a finite subvolume Ω1 of infinite Euclidean spacetime, χΩ1

is nonzero. On
the other hand, as limΩ→∞ ∆n/Ω = 0, in infinite volume we have

χΩ→∞ = 0 . (92)

One next introduces the Fourier transforms of the correlation functions, which we
indicate here by a tilde:

⟨̃qq⟩(p) =
∫

d4(x − y) eip(x−y)⟨q(x)q(y)⟩ = pµ pν
˜⟨KµKν⟩(p) . (93)

From Equation (89), one can conclude the following infrared behavior [51]:

lim
p→0

pµ pν
˜⟨KµKν⟩(p) =

∫
d4x ⟨∂µKµ(x)∂νKν(y)⟩ = χ . (94)

The former equation implies, e.g., in transverse gauge [51], where ∂µϵµνρσ Aσ = 0,

⟨K̃µKν⟩(p) =
χ pµ pν

p4
+O(p2) (95)

so that one would expect for χ ̸= 0 a simple massless pole in ˜⟨KµKν⟩(p) for pµ → 0. Here,
we have further dropped the spacetime volume subscript on χ.

Now, per Equation (87), Kµ can be understood as the Hodge dual of a three-form field.
Therefore, it is of interest to compare it with the action for a massless three-form Lµ,

S =
∫

Ω
d4x (∂µLµ)

2 . (96)

The expression “massless” refers here to the absence of a mass term in the action and is not
supposed to indicate that there is a massless propagating degree of freedom, which in fact
there is not. The variation of this action is given by

δS = −2
∫

Ω
d4x

(
∂ν∂µLµ

)
δLν + 2

∫

∂Ω
daν

(
∂µLµ

)
δLν , (97)

where aν is a normal surface element on Ω. Discarding the boundary term for the moment,
one would conclude that ∂µLµ = const. But then again, dropping the boundary term is
in general not justified because it in general contributes to the equations of motion. The
situation here is different from the model specified by the Lagrangian (1) in an infinite
spacetime volume Ω: There, solutions of finite action exist while the topological term does
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not need to vanish and can be written per Equations (10) and (88) as a boundary term.
However, within a given topological sector the boundary term gives a fixed contribution
−iθ∆n to the action. Therefore, it has no impact on the equations of motion.

Back to the action (96), we must therefore make further assumptions about the
boundary term. While there are many different options, we follow Ref. [50] that works
with solutions

∂µLµ = θL , (98)

where θL is an integration constant. While not stated explicitly in Ref. [50], this appears to
require boundary conditions δLµ = 0 on ∂Ω and

θL =
1

Ω

∫

∂Ω
daν Lν . (99)

Interpreting for the moment Lµ as a four-dimensional electric field in the background of a
constant charge density θL, it should be clear that Equation (98) has solutions that satisfy
the condition (99). Note that for a given θL, Lµ ∼ θLΩ1/4. To keep the boundary conditions
well defined in terms of finite Lν, we therefore have to impose these on finite Ω or we have
to take θL = 0.

Given the boundary condition δLµ = 0, we can also derive the equation of motion

∂x
µ∂x

ν⟨Lν(x)Lρ(y)⟩ = −δµρδ4(x − y) (100)

for the correlation function. It further implies

⟨(∂µLµ(x))(∂νLν(y))⟩ = 4δ4(x − y) + const. (101)

To arrive at the above equation, one uses the translation invariance to deduce that the
correlator is a function of (x − y). Then, one can take ∂x

µ = −∂
y
µ and contract µ and ρ in

Equation (100).
Having stated all this, it is interesting to follow Ref. [50] and consider the action (96) as

an EFT of the full model (1), of which all degrees of freedom but Kµ have been integrated
out. The effective action should generally feature higher-order terms in ∂µLµ beyond
Equation (96) as well as nonlocal expressions that account for the rich phenomenology
of QCD compared to the present simplistic model [50]. Yet, it appears that the following
characteristic features of QCD are recovered.

Equation (101) indicates that the topological fluctuations correspond to white noise.
In that sense, the model (96) without higher-order and nonlocal terms captures the infrared
behavior on scales where the fluctuations are indeed expected to be uncorrelated. We may
use the δ-function term in relation (101) to identify

Lµ =
2Kµ√

χ
. (102)

Indeed, substituting the above into Equation (101) (ignoring the constant term for the
moment) and taking a Fourier transform, one recovers Equation (94).

On the basis of these correspondences, the argument of Ref. [50] then goes that
the integration constant θL selects a vacuum state with a nonzero value of the CP-odd
observable ∂µLµ that it is therefore proportional, at least at the linearized level, to the
parameter θ in the microscopic theory, which would thus turn out to be physical. However,
as we shall see next, we disagree with this interpretation. Because of the different boundary
conditions, the EFT for Lµ cannot correspond to either of the QCD partition functions (12)
or (9), due to reasons that will also make clear why θL is not proportional to an angle.
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Translating the boundary condition (99) back to the fundamental theory implies that
one fixes

∆n =
∫

∂Ω
daν Kν =

1

16π2

∫

Ω
d4x FF̃ . (103)

Moreover, these boundary conditions do not imply that the physical fields vanish on ∂Ω,
and, in fact, per Equation (98), they do not for θL ̸= 0, because θL ∝ ∂µLµ ∝ ∂µKµ, which
is gauge invariant. The present setup is therefore not an EFT for the partition function
specified through Equations (12) and (13). For the latter, one samples over all integer values
of ∆n and the physical fields vanish on ∂Ω.

A consequence of this discrepancy is the fact that from Equations (12) and (13), one
concludes that ⟨∆n⟩/Ω = 2i(−1)Nf κ sin θ̄ is purely imaginary [7], whereas in the EFT and
for the boundary conditions that are assumed here, ∆n is given by the fixed real value (103).
The two setups therefore are not only different, but they also predict distinctly inequivalent
results for the observables. There should also be no relation between θ from the model of
Equations (12) and (13) and θL, which explains why the EFT in terms of the latter does not
show any periodic behavior, as would be required for an angular variable.

One should notice that while ∆n is fixed over the full volume Ω, it will nonetheless
fluctuate in any subvolume, cf. Equation (101). Still, the boundary conditions on ∂Ω are
required, and these are very different from those in Equation (13). Further, if we interpret
Lµ as an effective infrared field, nonvanishing ∂µLµ on ∂Ω does not conflict with vanishing
microscopic fields on that surface. But following the above remark concerning real versus
imaginary ⟨∆n⟩, the expectation values for ∆n in Ω still do not agree between the EFT and
the setup specified through Equations (12) and (13).

It is also clear now that the present EFT (96) with the boundary condition (99) is also
not equivalent to the partition function (9) that we take as the object to theoretically define
strong interactions. The EFT corresponds to imposing a fixed flux (99)—not necessarily an
integer—on a finite surface. This is in contrast to the case of Equation (9), for which we see
from Equation (11) that all integer values of the topological flux at infinity are accounted
for in the action. Imposing a fixed flux on a finite surface cannot yield the correct vacuum
correlations, not least since a general finite Euclidean ∂Ω does not have a geometrically
meaningful continuation to some domain in Minkowski space.

Though, as just has been argued, the EFT is not compatible with the usual QCD
partition functions, one may nevertheless point out that the topological susceptibility in the
EFT can have a similar infrared behavior as in the theory (9). To see this, consider the case
θL = 0 for simplicity. The generalization can be carried out by accounting for disconnected
contributions to the correlations in Equation (89). Since the topological flux ∆n vanishes,
this means by Equation (89) that χΩ = 0. In fact, this requirement fixes the constant term in
Equation (101). This clearly resembles the behavior exhibited in Equation (92). For either
setup, there is no problem with χΩ = 0 on the full volume Ω because there is no inhibition
of topological fluctuations in subvolumes. Note that in the EFT for the topological current,
for θL ̸= 0, it follows that χΩ = ⟨∆n⟩2/Ω is purely disconnected (because the winding
number in Ω is fixed through the flux on ∂Ω) and still does not correspond to the value
that is locally observed in a subvolume and includes connected contributions.

Now, in Ref. [47], it is suggested that the calculations in Ref. [7] (i.e., using the partition
function (11)) are equivalent to choosing boundary conditions on a finite surface that lift
the mass of the three-form, supposedly preventing to capture the true massless dynamics.
However, as discussed above, the vanishing of the chiral susceptibility from the partition
function (11) for the full volume in Equation (92) also occurs for the EFT for the topological
current, up to disconnected contributions. In either case, this has the implication that the

massless simple pole in ˜⟨KµKν⟩(p) disappears when evaluating Equation (94) for the full
spacetime. In this sense, both models behave very similarly, and no conclusion can be
drawn that the EFT captures dynamics that Equation (11) does not. In particular, one cannot
support the statement from Ref. [47] that with Equation (11), one loses crucial information
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about CP-violating vacuum states based on some ill-behaved infrared behavior of, e.g., χ
compared to the EFT.

Though also for the three-form EFT, Equation (94) does not yield a massless simple
pole, it is of interest to give a more direct argument for why the presence of such a pole
is not necessary for consistency with observed topological fluctuations to start with. First
observe that Equation (94) is only true when the spacetime integral is taken over the full
spacetime; otherwise, the Fourier transform is not simply projected into its zero momentum
limit. To see this, consider a topological susceptibility defined by integrating over a finite
subvolume Ω1 ⊂ Ω

χΩ1
=
∫

Ω1

d4x ⟨∂µKµ(x)∂νKν(y)⟩ =
∫

Ω1

d4x
∫

d4 p

(2π)4
e−ip(x−y)pµ pν⟨K̃µKν⟩(p) . (104)

In an infinite spacetime Ω, when Ω1 = Ω is also infinite, the spacetime integral yields a
delta-function and one recovers the result of Equation (94). For a finite Ω1 ⊂ Ω, however,

the topological susceptibility will receive contributions from the correlator ⟨K̃µKν⟩(p)
evaluated at nonzero momentum.

Lattice calculations in frozen topologies (that have χΩ = 0 up to disconnected contri-
butions) still observe nonzero topological susceptibility when sampling over a subvolume
of the full lattice [52]. Hence, there is the logical possibility of a topological susceptibil-
ity that vanishes for the full spacetime yet is nonzero when defined over subvolumes.
This is exactly what happens with QCD defined as in Equation (9), as can be seen in
Equations (91) and (92). Now, with χ vanishing in the full spacetime volume, Equation (94)

implies that the correlator ˜⟨KµKν⟩(p) cannot have a massless pole. In Ref. [47], it is stated
without proof that this implies a massive pole instead. Let us adopt this assumption or
more loosely introduce mK as an infrared regulator that may or may not correspond exactly
to the effect from the finite-volume cutoff on the correlation function. We may also have
mK stipulate the absence of the simple pole in Equation (95). Either way,

⟨K̃µKν⟩(p) =
χ0 gµν

p2 + m2
K

. (105)

Provided such a massive pole is consistent with nonzero χΩ1
, there is then no motivation

for a massless pole for the three-form EFT of Ref. [47]. Hence, any conclusion derived from
insisting on a massless pole in the EFT does not apply.

One should therefore demonstrate how one can reconcile the topological susceptibility
being zero at infinite volume while remaining nonzero at finite subvolumes. It turns out
that such behavior can actually be derived from the massive correlator of Equation (105).
For estimating the susceptibility defined over a finite region ΩR of radius R, one can

consider an integration with a cutoff function e−R2/r2
, which suppresses the fluctuations

for r > R,

χΩΛ
≡
∫

d4 p

(2π)4

∫

R4
d4x e−R2/r2

e−ip(x−y)pµ pν⟨K̃µKν⟩(p) . (106)

Substituting Equation (105) and considering y = 0, the result is

χΩR
= χ0

(
1 − R4m4

16
e

R2m2
K

4 Ei

(
−1

4
m2

KR2

)
− 1

4
R2m2

K

)
∼
{

χ0, R ≪ 1
mK

,

0, R ≫ 1
mK

.
(107)

Above, Ei(z) = −
∫ ∞

−z e−t/t dt is the exponential integral function.
As advertised, one obtains a zero topological susceptibility in the full volume but also

constant susceptibility for subvolumes with associated length scales L ≪ 1/mK. This behavior
is compatible with lattice results [52] and matches the result of Equations (91) and (92), which
are based on the dilute instanton gas approximation.
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8.4. Taking θ as a Perturbation and PCAC

Sometimes it is argued that θ can be seen to be physical without making topological
considerations by referring to calculations of possible CP-violating effects using identities
for partially conserved axial currents (PCAC), e.g., in the discussion of Section 3 of Ref. [53]
or in Ref. [43]. (Note though that these papers do not state explicitly that their calcula-
tions would allow them to come to this result without making topological arguments.)
However, we show here that such conclusions ultimately rely on the assumption ξ = θ for
Equation (76). The answer to the question of whether ξ = ᾱ or ξ = θ relies however on
topology so that PCAC methods or related arguments cannot be used in order to bypass
this step.

To review such points, we express the anomalous divergence of the axial U(1) current as

∂µ

N f

∑
j=1

⟨ψ†
j γ5γµψj⟩ =

2N f

16π2
trFF̃ + 2

N f

∑
j=1

⟨ψ†
j γ5mje

iαiγ
5
ψj⟩ . (108)

Using this relation, we can therefore see that

⟨A| θ

16π2
trFF̃|B⟩ = − θ

N f
⟨A|

N f

∑
j=1

ψ†
j γ5mje

iαiγ
5
ψj|B⟩ , (109)

where we have dropped the total divergence of the axial current. We have inserted a factor θ
on each side in view of the subsequent discussion, which is however arbitrary at this point.

Now, we first follow Ref. [53] and carry out chiral field redefinitions so that in
Equation (60) the mass matrices are purely real (and diagonal) and in particular ᾱ = 0
and θ = θ̄. Moreover, one can take the freedom of non-anomalous SU(2)A chiral field
redefinitions to set αj = 0 individually. Assuming θ to be small, one may view the left-hand
side of Equation (109) as a perturbative insertion of the CP-odd topological term into a
hadronic transition matrix element. When |A⟩ and |B⟩ are eigenstates of CP with opposite
eigenvalues, a nonzero result would then signal CP violation.

Before proceeding, we note that we could just as well have set θ = 0, ᾱ = +θ̄ and
treated the axial U(1)A phase of the quark masses as the perturbation. This is an equivalent
point of view that is taken, e.g., in Ref. [43] and is perhaps more true to the circumstance
that the gluons have been integrated out in the chiral EFT so that the operator θFF̃ has been
removed as well. Either way, the right-hand side of Equation (109) turns out as

− θ̄

N f
⟨A|

N f

∑
j=1

ψ†
j γ5mjψj|B⟩ . (110)

This way, all explicit phases have been pulled out in terms of a single factor in front
of the matrix element (110). If, in addition, the chiral condensate has no phase, i.e., in
Equation (68) U0 = ✶N f

or, in other words, the condensate points into the real direction,
the matrix element (110) can be evaluated using standard reduction formulae as presented,
e.g., in Ref. [54] leading to a nonzero result.

Therefore, taking θ = 0 and ᾱ as a perturbation and under the additional assumption
that the chiral condensate points into the real direction, U0 = ✶N f

, one sees here CP
violation. This extra assumption, however, is exactly what characterizes the choice ξ = θ
in Equation (76)—as opposed to the correct choice in Equation (67)—as the ground state
implied by ξ = θ = 0 can always be chosen as U0 = ✶N f

. This can be seen to follow from
Equations (68) and (78), provided that one uses the freedom to perform field redefinitions
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without changing θ = 0 (or, equivalently, without changing ᾱ = αu + αd) to set αu, αd

as follows,

αu =
md

mu + md
ᾱ,

αd =
mu

mu + md
ᾱ.

(111)

If instead ξ = −ᾱ, U0 can be calculated according to Equations (68) and (78). Then, U0 will
be complex and aligned with −ᾱ, leading to additional perturbative corrections that will
compensate for Equation (110). That this cancellation has to happen is just a consequence
of the fact that we can dial ᾱ to zero in the chiral effective Lagrangian (67) by a redefinition
of the field U.

We can illustrate this point explicitly for the example of η′ → 2π discussed in Refs. [43,53]
as well as in Section 7 of the present paper. Suppose we start with the theory with θ = 0 and
ᾱ = 0. Then, ξ = 0 for either order of limits and there is no CP violation. Next, we reintroduce
ᾱ ̸= 0 with |ᾱ| ≪ 1 through the Lagrangian term

δLθ̄ = −iθ̄
mumd

mu + md

N f

∑
i=1

ψ̄iγ
5ψi , (112)

where, here, N f = 2 for simplicity and we have written ᾱ as θ̄ since θ = 0 per the present
assumptions. Equation (112) follows from expanding the mass terms in the Lagrangian (60)
to first order in αi, restricting to two flavors and substituting Equation (111). We could
have used the approximate SU(2)A symmetry to attribute the phases differently among
the flavors u and d, but the present form allows most straightforwardly to connect with
the relations from Refs. [43,53] and Section 7. In particular, inserting the Lagrangian of
Equation (112) between the vacuum and |η′π0π0⟩, using PCAC relations, leads to

⟨0|δL|η′π0π0⟩ = mumd

(mu + md)2

m2
π

fπ
θ̄ . (113)

The previous result would give the total contribution to the CP-violating matrix element
under the crucial assumption (which is not made explicit in references such as [43,53],
neither do these articles contain a derivation of the expectation value ⟨U⟩) that there are
no additional CP-odd phases from the quark condensates when taking matrix elements
on the physical states. Equation (113) matches Equation (5) of Ref. [53] up to a factor of√

2/3, which can be understood from the fact that the former reference included a third
light quark which was not accounted for here. Of course, this result from PCAC relations
also follows directly from the EFT Lagrangian term (81) when assuming ξ = θ = 0, so that
ξ + αu + αd = αu + αd = θ̄.

Rather than relying on assumptions, the values of the phases in the quark condensate
are calculable, as was shown in our effective theory analysis in Section 7, in which the
condensate phases were included in Equation (68) from the beginning and determined by
solving the tadpole conditions, cf. Equation (78). Now, when choosing the evaluation of
the partition function according to Equations (12) and (13), the chiral condensate U0 aligns
with θ. This follows from the fact that in this order of limits, one should identify ξ = θ in
Equation (67). Then, Equations (78) and (111) relate φu, φd to θ. As θ = 0 in the present
setup, one obtains φu = φd = 0, so that the chiral condensate induces no additional phases
and Equation (113) then is the only contribution to the total matrix element, as mentioned
before. If instead the evaluation is performed as in Equation (11), which corresponds to
an evaluation of the partition function (9) on a connected integration contour, ξ = −ᾱ in
Equation (67), so that Equations (68) and (78) give det U0 = e−iᾱ. Therefore, this deviation
from an orientation of the chiral condensate in the real direction must be accounted for,
which leads to additional complex phases in matrix elements, and thus extra contributions
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to Equation (113). The existence of additional phases to those leading to the PCAC result
of Equation (113) is captured by our EFT result (81) in the following manner: The angle
ᾱ = αu + α (which gives the part that can alternatively be evaluated through the PCAC
relation (113)) is compensated by ξ = −ᾱ, leading to a vanishing CP-violating amplitude.

In summary, the arguments from Refs. [43,53], while technically correct if it were U0 = ✶Nf

for θ = 0, do not demonstrate that this assumption actually holds. To assess this, one, after
all, has to consider topology in order to derive the effective ‘t Hooft vertex and to sort out the
correct limiting procedure, i.e., either Equation (11) or Equations (12) and (13). As Equation (11)
turns out to be correct, U0 aligns with −ᾱ instead of θ so that there is no CP violation.

8.5. Relation of the Present Arguments to Some Recent Literature

There are other recent papers that argue for CP conservation in strong interactions. We
do not discuss these here comprehensively but state why they substantially differ from the
line of reasoning in the present work, or, respectively, if there is some prospect to establish
connections.

In Ref. [55], the starting assumption is a finite toroidal four-dimensional geometry,
where the different topological sectors are weighted as exp(i∆nθ). Because of the finite
volume, this decisively differs from Equation (11). It is further reported in that work that for
θ ̸= 0, no confinement occurs so that the experimentally observed confinement must result
from θ = 0. We can neither confirm this latter statement nor is it central to the discussion in
the present work.

In Ref. [56], it is stated that topological charge, i.e., winding number, is not observable
and that no ‘t Hooft operator can be derived. We do not reproduce this, and the ‘t Hooft
operator (62) here is of physical consequence and is central to the present discussion.

The paper [57] makes the point that coherence between topological sectors must not
lead to observable consequences in the presence of causal horizons, which arguably only
happens when θ = 0. In the present work, it turns out that θ has no material consequence
in infinite Euclidean spacetime and hence neither in Minkowski spacetime. However, the
present result (50) is suggestive in that the partition function in a finite subvolume with free
boundary conditions of Euclidean space, as derived from Equation (9), does not exhibit the
parameter θ any more. It would therefore be interesting to understand the possible relation
between the Euclidean subvolumes and the domains within a causal horizon of Ref. [57].

9. Conclusions

Topological quantization appears central to the correct assessment of the CP-odd θ
parameter in QCD. It is therefore important to deduce its origin and to account for the
implications of the setup of the problem. When we take Euclidean spacetime as the analytic
continuation of Minkowski spacetime and do not impose ad hoc boundary conditions,
time must be taken to infinity. Then, integration contours can be deduced that imply that
we are first to evaluate the path integral in the individual topological sectors in infinite
volume and then to sum over these sectors. As a consequence, there is no CP violation
present in QCD, particularly not in the effective ‘t Hooft vertex. While this corresponds to
a stringent reasoning within zero-temperature QCD, beyond the present work, we shall
next address finite-temperature QCD as a setup with a clear physical meaning in a finite
spacetime volume.
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