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Abstract

Laser cooling of BaH molecules, and new ideas for the detection of dark matter

Rees McNally

The advent of laser cooling and optical manipulation for atomic samples revolutionized

atomic physics in 1990’s, allowing the creation of new phases of matter, more accurate atomic

clocks, and enabling leading candidates for the first functional quantum computer. This could not

have been predicted at the time, and is a testament to the value of fundamental research for its

own sake. These same laser cooling techniques are now being applied to simple molecular

systems with the same revolutionary potential. In this thesis, I will present a range of experiments

exploring these schemes in a new class of molecules, the diatomic alkaline earth hydrides. We

present the creation and characterization of a bright beam of cold barium hydride molecules, high

precision spectroscopy of these samples, as well as optical deflection and transverse cooling. This

represents the first laser cooling of a Hydride molecule. This is a crucial step towards the creation

of new cold molecular samples for a variety of scientific applications.

In the final chapter, I will change gears, and introduce new ideas for the detection of scalar

field dark matter. While this variety of dark matter is typically searched for using atomic clocks, I

will show that the same coupling also leads to anomalous acceleration of test masses. This

acceleration would be detectable using both a network of precision acceleration sensors known as

the IGETS network, and by the LIGO observatory. This new technique will compliment existing

search strategies, and has higher sensitivity for a wide region of parameter space.
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Chapter 1: Why Molecules

The study of atomic and molecular systems is one of the oldest fields in physics, and early

experiments lead directly to the quantum revolution of the 1920’s. Continued progress since those

early days has lead to a transition in how we think about atomic systems. It is becoming increas-

ingly common that the field of AMO no longer studies atoms for atoms sake. Instead, we use

them to study some other process. These simple quantum systems are now used to test the funda-

mental symmetries of nature [1, 2, 3], to simulate condensed matter systems [4, 5], and to build

increasingly accurate measurement and metrological tools [6, 7, 8, 9]. However this new paradigm

has been hard fought, and requires precise knowledge of the atom/system you want to exploit.

To use the properties of these systems you must be able to control it, and to control it you must

understand it. This thesis will present work for a new quantum system, the diatomic barium mono-

hydride (BaH) molecule. We will start with measurements of the molecule so we can understand

it, and end with demonstrations that this knowledge allows us to control and cool these molecules

using laser light. This is the first demonstration of laser cooling for hydride molecule, and the first

steps towards using these systems to explore new opportunities. To motivate this work, I will intro-

duce a range of applications for diatomic molecules, and discuss why the additional complication

of a molecule are worth the extra effort. I will also present why we need new molecular systems to

study, and why BaH and the hydrides more generally, are worth particular attention.

1.1 Applications

The additional degrees of freedom in a diatomic molecule require new control techniques,

but also form the basis for why molecules interesting. This additional complexity enables unique

scientific opportunities for precision measurements, quantum simulation, and cold/ultracold chem-
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istry which has no analog in simple atomic systems. For each of these applications I will discuss

why laser cooling and control can be of great benefit, or is critically important. This list is by no

means exhaustive, but includes the applications I find most exciting.

1.1.1 Precision Tests of Fundamental Physics

The standard model is the crowning jewel of modern physics. It has successfully explained

a huge variety of observations, and has been used to make theoretical predictions that match ex-

perimental data to an incredible fractional accuracy of 10−12 [10, 11]. This level of theory and

experimental agreement is unparalleled in any other branch of science. However, we know that

it cannot be complete. There is no place in the framework for Dark Matter (DM) which makes

up some 30% of our universe [12], and there are tantalizing numerical coincidences that hint at

additional particles [13]. Because the next generation of particle accelerators may be prohibitively

expensive, and searches for some of the currently favored DM candidates are approaching funda-

mental limits [14], its now more important then ever to consider a wide variety of ways to test

the standard model. One type of test that I find especially beautiful, are precision measurements

at low energies using atomic and molecular systems. Though it is not related to molecules, I will

also discuss a new low energy dark matter search technique in Chapter 8. In general, a precision

measurement has a few requirements. You must choose a physical system, which is as sensitive

as possible to the effect you want to measure, and as insensitive as possible to everything else.

An example would be making a magnetometer based on the energy levels of atom trapped in a

vacuum chamber [9]. If properly built this system will be sensitive to applied magnetic fields, and

not the temperature in the lab. Laser cooling helps enable this pristine isolation, and decouple the

system of interest from the environment as much as we can. Moving from atoms to molecules, we

also gain access to new systems which are sensitive to new types of effects, or that have greatly

enhanced sensitivity [15].

To take a specific example, there is large body of work focused on the use of atomic clocks to

study temporal or spatial variation in fundamental constants. These searches operate by monitoring
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energy levels in an atom, and seeing if they change over time [16, 17]. Because atomic energy

levels are primarily determined by the Rydberg constant (or equivalently the fine structure constant)

this means atomic clocks are most sensitive to changes in the fine structure constant U and less

sensitive to changes in other fundamental constants [18]. Moving to molecular samples we have

new degrees of freedom such as vibration and rotation, with associated energy levels that are

determined by the electron proton mass ratio ` and the relative mass of the atomic constituents.

This means using rotational/vibrational levels instead of atomic levels to perform these searches

measures an entirely different parameter space [19]. The concept for the two experiments is the

same, but we are sensitive to new physical effects when we switch to molecules.

Another example, is the search for permanent electric dipole moments (EDM) of fundamental

particles. While atoms can be used for EDM searches [20, 21], diatomic[22, 23] or poly atomic

molecules [24, 25] have a substantially larger sensitivity thanks to the large electric field present

inside a molecule [26]. This means for the price of the additional complexity, we can search

for substantially smaller effects. This has been experimentally demonstrated, and modern EDM

searches using molecules are now searching for new physics beyond the reach of even the LHC

[27]. However, in order to take full advantage of these new systems we need to make as accurate

a measurement of possible. In general these searches come down to the precise measurement of a

frequency difference caused by the presence on an EDM. A frequency measurement, in the absence

of additional noise or decoherence, has an accuracy Δl which scales as

Δl =
1/g
√
#
, (1.1)

where g is the measurement time, and # is the number of atom/molecules. One type of molecular

EDM experiment is done using a molecular beam [22, 28], which leads to large # by using bright

molecular beams, but the finite beam length and forward beam velocity limits g. Another type is

done with trapped molecular ions [23] which have very long g but finite trap volume limits you

to relatively small # . Both techniques currently have similar sensitivity to new physics. If we are
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able to use laser cooling/trapping to obtain large samples of trapped EDM sensitive molecules, this

would allow large # and large g simultaneously. This could lead to an orders of magnitude im-

provements in sensitivity, and early experiment towards this goal are underway [29, 30]. However,

the techniques to trap laser cooled molecules are relatively new, and have so far only been demon-

strated using a handful of specially chosen molecules (CaF[31, 32], SrF [33], and YO[34]). If we

wish to extend these techniques to EDM sensitive molecules we need to learn more about these

systems, and improve our techniques for molecules that are sub-optimal for laser cooling. The

large atomic mass, and low applied force, make BaH an example of a “harder" to cool molecule,

and I hope lessons we have learned can be applied to these EDM experiments.

1.1.2 Quantum Simulation

Another fascinating emerging field is the use of simple quantum systems (individual atoms/molecules)

laser cooled, and used simulate much more complex systems. This can be broken down into two

different categories, the direct simulation experiments [35, 36], and generalized gate based quan-

tum computation [37, 38, 39]. For direct simulations the idea is that some relatively simple quan-

tum models for real world materials cannot be solved analytically, or even computationally, in an

efficient way [40]. However atoms are quantum objects so if we can control them sufficiently well

we can engineer the model we want to study, and simulate it directly using the atoms. This idea

was originally proposed by Richard Feynman in the 1980’s [41]. An example of such a model is

the 2D Fermi-Hubbard model, which describes Fermions with onsite interactions hopping on a 2D

lattice [42]. Even this relatively simple model, with no long range interactions, leads to a rich phase

diagram and is thought potentially explain high temperature super conductivity. A recent experi-

ment in the group of Waseem Bakr was able to simulate this system experimentally, and show that

this model contains one of the key experimental signatures of high temperature superconductivity

known as T-Linear resitivity [43]. This was an exciting example where they were able to use an

engineer a quantum system made of individual atoms, use it to simulate a model that is right at the

edge of what can be studied using computational techniques, and gain insight into a very important
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open problem in condensed matter physics.

While this is a very fruitful idea for atoms, they are limited to models which rely on short range

interactions because, in general, ultracold atoms only experience ’hard-sphere’ scattering (though

some highly magnetic do have appreciable dipolar interactions [44]. By contrast molecules have

preferred axis and can be easily polarized, leading to large long range dipole-dipole type inter-

actions. This additional interaction would allow you to simulate a wide variety of new models

that are challenging or not feasible with atoms alone [45, 46]. However, these experiments re-

quire extremely low temperatures and high densities making them very challenging for existing

direct molecule laser cooling techniques. Personally, I think a better route for these sort of stud-

ies is to assembly molecules from ultracold atoms [47, 48], and avoid the need to directly cool

the molecules to the incredibly low temperatures required. This alternative technique is well de-

veloped, and simulations with these systems is being pursued by a number of groups. While a

fascinating application, this was not the focus of my work, because BaH is not a good candidate

for a variety of reasons that will be discussed in this thesis.

Generalized quantum computing, also serves as an excellent opportunity for ultracold molecules.

Large arrays of atoms trapped in micro-traps have already demonstrated some of the highest fidelity

gate operation [49], and scalability to thousands of qubits should be possible. Compared to atoms,

molecules offer additional challenges (due to the new degrees of freedom) but also unique oppor-

tunities. The additional degrees of freedom mean molecules have a much larger number of states,

that can be used to store quantum information using special robust techniques [50]. Additionally,

the long range dipole-dipole interactions discussed previously could enable more efficient 2 qubit

gates, but this is an open question. The use of optical tweezers traps also relaxes the temperature

requirements (compared to quantum gas microscopes), and has been experimentally demonstrated

for directly laser cooled molecules [51, 52]. This a relatively unexplored parameter space, that I

am sure will lead to some exciting results in the near term.
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1.1.3 Cold and Ultracold Chemistry

In a similar spirit, we can also use the unique control enabled by laser cooling/trapping to study

chemical reactions in new regimes. This can do done using an atom first picture where we can build

molecules from individual atoms, or using samples of laser cooled molecules. Cold collisions

between molecules are a deceptively complicated interaction, especially considering cold atom

collisions are so well understood. In fact, there is a recent evidence that in the ultracold regime,

molecular collision lead to formation of new bound states, with extraordinarily long lifetimes. To

discuss this more quantitatively, in a typical chemical reaction � + �� → �� + � there will

exist an intermediate state [���] that forms while the chemical reaction is progressing. These

intermediate states very unstable, with a typical lifetime on the order of a picosecond (10−12 s)[53]

but the chemical reaction must go through this intermediate step in order for it to occur. It is now

believed that when two cold diatomic molecules collide (�� + �� → �� + ��) an intermediate

4 body state ([����]) is formed, making the collision almost like a chemical reaction. This

was first observed because if one shines laser light onto two cold molecules as they collide, the

molecules are lost after a collision [54, 55, 56, 57], and mass spectrometry shows fragments of

this 4 body bound state are produced [58]. It is thought that the laser excites this transient 4 body

bound state and breaks it apart. By modulating this laser several groups have now measured the

lifetime of this 4 body state, and instead of picoseconds, they have found the low temperature

leads to extremely long lived intermediate state lifetimes of up to 500`B [59, 60]. This opens up

very exciting opportunities to study the intermediate states, and allows unprecedented insights into

how chemical reactions proceed. These experiments are excellent opportunities for the direct laser

cooling because quantum degeneracy is not needed, and these collisional losses have already been

seen in several experiments.

There are many open questions about how these reactions take place, how they depend what

state the molecules are in, and performing these measurements for a variety of different molecu-

lar species will be important to gaining insight. Hydrides are also computationally simpler than

many other classes of molecules thanks hydrogen only possessing a single electron, and could
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be uniquely suited for comparisons with theory. So far these experiment have been done using

directly laser cooled diatomic molecules, and diatomic molecules that have been assembled from

cold atoms. If one wishes to study collisions with larger polyatomic molecules, direct laser cooling

shows great promise for molecules of up to 5 atoms, or more [61, 62, 63]. By comparison there

are no clear prospects for how to scale atomic assembly to this large of a molecule. Because of this

I think cold and ultracold chemistry are an especially important application for direct molecular

cooling experiments. Improving our understanding for how these intermediate complexes form,

and how chemistry occurs in the cold and ultracold regimes has the potential to provide insights

into how some complex molecules form in interstellar space [64]. This is a large open question that

will take lots of experimental work, and has potential to improve our understanding of the origin

of life, and I hope that laser cooling can help.

1.2 New Molecules and New possibilities

Each of the the applications I have discussed above have different, and sometimes competing

requirements. For simulations we want strong dipolar interactions between molecules, and the abil-

ity to get to ultracold temperatures. For direct quantum computing experimental control in king,

and we want to select a system which is easy to handle, and has extremely weak coupling to its en-

vironment (as well as a strong dipole interaction for two qubit gates). For precision measurements

the size of the signature of new physics typically scales quite strongly with the atomic number of

the heavy nuclei in the molecule, so we want heavy molecules. Lastly, for cold chemistry, we want

everything, but are particularly interested in more. This means any particular molecular species

we chose will not be able to study all the physics we want. We need a diverse set of molecules to

study, so expanding this set of laser cooled candidates is very important.
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Figure 1.1: Rough scaling of potential applications for the direct laser cooling of molecules. Atom-
Atom assembly is currently limited to diatomic molecules, and how to scale to more complex
polyatomics molecules is not obvious. By contrast laser cooling as the potential to work for large
polyatomic species.

Slowing/Cooling higher mass molecules is typically more challenging because it requires a

larger transfer of momentum, but the scaling along this axis is relatively straightforward. As we

increase the complexity of the molecules from diatomic, to large polyatomic molecules, the scaling

is less than obvious. As the number of vibrational modes (which scales linearly with the number

of atoms in a molecules) increase there are more decay paths available, and vibrational closure

becomes harder to achieve. In addition to this, the higher density of states can lead to more pertur-

bations, and can potentially break rotational closure through mixing in the excited state. However,

it has recently been shown that this can be experimentally overcome for triatomic molecules, and

theoretical studies and spectroscopic studies show that some larger linear, symmetric-top, and even

non-linear, molecules could be laser cooled [61, 62, 63]. This is a very exciting opportunity, be-

cause the generation of ultracold polyatomic molecules through other means will be extremely

challenging, and I believe laser cooling is currently the best route. Lessons learned with simpler

diatomic such as BaH will help pave the way for this next generation of experiments.
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1.3 Hydrides: An interesting stepping stone

With many exciting new molecular species to chose from, why choose the hydrides, and BaH

specifically. Beyond the interest in showing a new species can be laser cooled, hydrides can poten-

tially be used for precision measurement applications in the novel way. What we are interested in

is using a laser cooled sample of BaH, as a new way to generate cold samples of atomic hydrogen.

This concept is based on a proposal from Ian Lane [65], and on the low energy photo-dissociation

work carried out by the our sister experiment in the ZLab. Consider a trapped gas of some di-

atomic molecule in thermal equilibrium. In this case the velocity distribution of the molecules

will be given by a Maxwell-Boltzmann distribution defined by the mass of the molecule and the

temperature T. In the limit where photo-dissociation adds no additional energy (and excess energy

on the order of 100 nK has been experimentally achieved using strontium dimers) the molecule’s

atomic continents after photo-dissociation will have the same velocity distribution as the original

molecule. This means the velocity distribution of the molecules, and the velocity distribution of

each of the atomic constituents will be essentially the same. However, temperature and velocity

are related in a Boltzmann distribution by the mass of the particle

) =
"E2

?

2 1
, (1.2)

where :1 is the Boltzman constant, and E? is the most probable velocity. Because both the initial

molecule and atomic constituents have the same velocity in this low energy limit we can relate the

atomic temperature to the molecular temperature

)� =
)��

"��/"�

. (1.3)

This means the lighter atom will be cooled relative to the original temperature, by the mass fraction

"��/"�. For BaH this results in a reduction of temperature of 138, which is a large factor. This

effective cooling is why we chose BaH, instead of a lighter hydride molecule. However recent
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experiments have achieved extremely cold temperatures for molecular laser cooling (as low as 5.4

` ) so this cooling factor may not be needed, and we are currently exploring lighter hydrides as

alternatives.

So why do we need new ways to generate cold hydrogen? I think there are two very compelling

reasons. The first, is that while hydrogen has been cooled to degeneracy in the past [66], these

experiments were based on evaporative cooling and had extremely high densities. These high

densities lead to collisional shifts that made the samples challenging for precision measurements

[67, 68]. Instead, precision measurements in atomic hydrogen are performed in sophisticated

beam experiments which have been steadily improving for many decades. The most accurate

transition these experiments have measured is the 1( → 2( transition, to an incredible accuracy

on the order of 10−15 fractional uncertainty [69]. Currently the largest systematic uncertainty in

these experiments come from residual Doppler shifts, and a line-shape model that depends on the

beams forward velocity. Modern atomic clocks where able to avoid these systematic limitations

for other atoms by moving away from beam experiments, and into magic-wavelength traps. The

magic wavelength for this 1( → 2( transition has been calculated, and samples generated via this

photo-dissociation technique would be cold enough to be directly loaded into these traps. This

could enable a magic-wavelength optical clock for hydrogen, and potentially allow substantial

improvements in the measurement of this transition. This would be a very technically challenging

experiment, and would likely require a collaboration between several groups, but hydrogen is the

gold standard for precision measurements, and any improvements to the current state of the art are

worth the effort, and help settle discrepancies in current measurements [70].

The other reason I find low energy dissociation an extremely exciting idea to work on, is be-

cause this idea is potentially scalable, and hydrides would be an excellent place to start. There is

an ever increasing catalog of molecules that have been laser cooled, including hydrides, oxides,

fluorides, and hydroxides. Going even larger there are strong prospects for even more compli-

cated molecules, as has been previously discussed. If this idea of dissociation works, and can be

extended to these other systems, we could generate a wide variety of cold samples that can not
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currently be generated using other techniques. These new samples would offer new opportunities

to explore each application I have discussed, and will be particularly interesting to study cold col-

lisions. As with any new technology it is impossible to know what applications will be found for

cold molecules, but I think there is a bright future for these techniques. In this thesis I will discuss

our contributions to this emerging field, and the details required to take BaH from a system we

want to study, to a system we can control.

1.4 BaH: A unique opportunity

Typically, laser cooling techniques rely on spontaneous emission of some excited state as a part

of the cycle. You engineer a situation where absorption occurs for certain velocity classes, and not

for others, then the molecule decays back to the ground state and we can repeat the process. This

style of manipulation is fundamentally limited by the lifetime of the excited state. If it is long lived

the molecule will not decay for some time and this limits how quickly we can scatter light, and

the maximum force we can apply. However with some creativity you can find a way to beat this

seemingly fundamental limit. Consider a molecule at rest in its ground state. If we apply a short

laser pulse with the correct intensity and duration, we can transfer this molecule to it’s excited

state, and give it a ~: momentum kick in the direction of the laser pulses propagation. Now, before

it has a chance to decay, we apply a second pulse of laser light travelling in the opposite direction

of the first. This second pulse takes the excited state molecule, transfers it back to the ground state,

and gives it a second ~: momentum kick in the same direction as the first. This leads to a net

momentum transfer of 2~: . Because spontaneous decay is not needed anywhere in this cycle there

is no fundamental limit to how quickly this process can repeat and only technical limitations such

as laser power will apply. This type of optical forces are generally known as coherent forces, and

has a variety of different implementations [71, 72].

BaH is an excellent molecule to explore these schemes. The relatively long lifetime of the

excited state (136 ns) means we can really increase the maximum applied force, and the cycling

transition requires a laser at 1060 nm. For this wavelength there are extremely high power lasers
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available, up to several kW, thanks to advanced fiber-optic based amplifiers. The only limit is cost,

and your willingness to deal with extremely high powered lasers. Theoretical work we recently

published [73], but I will not discuss in this thesis, shows we can obtain forces up to 100 times

the limit imposed by spontaneous emission. We have also shown how this coherent force scheme

can be extended to provide velocity dependent forces and allow for cooling. This is an exciting

theoretical proposal for an entirely new type of optical cooling force, with a much higher peak force

and capture velocity than traditional techniques. Looking to the future, as laser power increases, I

think this type of cooling will become increasingly important. High forces at the cost of increased

laser power becomes a better trade-off as lasers become cheaper, and that historically has been

the case. In addition to the benefit of higher peak forces, because these schemes do not rely on

spontaneous emission, there are fewer opportunities for the molecules to decay to dark states. This

means more complex molecules with a higher number of vibrational decay modes could potentially

be cooled more efficiently. This has been experimentally demonstrated for a polyatomic molecules

[74], and I think it has huge potential for the future.

1.5 Thesis Outline

Structurally, this thesis will walk through the experiments required to first understand and then

control BaH in the order they occurred. Chapter 2 is an overview for how energy levels in a di-

atomic molecule are labeled, and how these energy levels scale. I will also discuss how cycling is

possible for diatomic molecules by introducing selection rules and Frank-Condon Factors (FCF).

In Chapter 3 I will introduce the experimental techniques that make this work possible, and briefly

discuss how they all work together. This is the “Hardware" section of the thesis. For chapter 4 I

will discuss the cryogenic buffer gas source, and experiments that were performed while the BaH

molecule was immersed in this buffer gas. Chapter 5 will discuss the properties of the molecular

beam, and spectroscopy that was performed using it as the molecular source. Chapter 6 I will dis-

cuss the theoretical and experimental complications that arose while trying to optimizing the scat-

tering rate for BaH, and the repumping scheme we use to close the leakage to the first vibrational
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state. Chapter 7 I will discuss the results of deflection and cooling experiments, and demonstrate

the understanding of the molecule obtained in previous chapters allows the optical manipulation

of BaH. This chapter also discusses some of the challenged associated with slowing and trapping

BaH in a magneto optical trap, based on Monte-Carlo simulations. For the final chapter (chapter

8) I will change gears completely, and introduce a new technique for the direct detection of dark

matter based on acceleration measurements. This final chapter can be read separately, and does not

depend on other results in the thesis.
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Chapter 2: The Diatomic Molecule

The diatomic molecules, as its name implies, features two atoms and is generally agreed to

contain ”One atom too many" [75]. This additional degree of freedom leads to new quantizied

energy levels, and new symmetries that are not present in atomic systems. These new degrees of

freedom (rotation and vibration) can be accurately described separately, using a formalism known

as the Born-Oppenheimer approximation. This allows a lot of the intuition that has been developed

working with atomic systems, to be directly carried over, with some additional terms. For the

purpose of this thesis there are two ingredients I would like to discuss. Firstly, I will introduce the

concept of a term symbol, which is used to label specific states, and show how that label defines

the energy of the state. Secondly I will show how the concept of selection rules can be applied

to molecules, and how they define what transition are allowed between different states. These

selections rules are critical because the symmetries in diatomic molecules allow us to restrict the

range of transitions down to a manageable number. In fact one of the ideas that originally enabled

this field, was the recognition of how selection rules could be exploited to allow optical cycling.

This chapter is by no means exhaustive but I hope it will serve as a good introduction and aid

understanding. I primarily learned this topic from the excellent textbook Molecular Spectra and

Molecular Structure by Gerhard Herzberg [76], and this chapter is based on his work. For more

details I would refer the interested reader there, or to these review articles/theses [77, 78, 79, 80].

2.1 Molecular Level Structure

The Born-Oppenhiemer approximation states, that to a decent approximation, the energy levels

in a molecule can be treated as the sum of separate contributions, and the wavefunction can be

treated as a product of separate wavefunctions. For a diatomic molecule in a specific state, we can

14



express its energy as directly as this sum

�C>C0; = �4;42CA>=82 + �E81A0C8>=0; + �A>C0C8>=0; + �#D2;40A/(?8= (2.1)

Where electronic refers to the energy of the electrons in a the state, vibrational refers to the energy

in the relative motion of the two atoms, rotational refers to the energy bound in rotation about

the center of mass, and nuclear spin is the energy of any interactions between the spin of the

nucleus and either the spin of the electrons, or the rotation of the molecule. I will work through

each of these terms individually using analogies to simpler systems, then introduce how they come

together to completely define the energy levels and states in the BaH molecule. This will include

the relevant quantum number for each contribution, and how the its energy scales.

2.1.1 Electronic Levels

The electronic levels can be best understood as direct analogs to the electronic levels in an

atom. However, the additional degrees of freedom lead to additional quantum numbers. The direct

calculation of the energy associated with an electronic excitation molecule is not a simple task,

and is beyond the scope of this thesis. However many simple diatomic systems have been studied

extensively, so ab-initio work on the electronic structure is not typically needed. For the electronic

energy levels in diatomic molecules we use a single letter label, where the ground state electronic

level is X, and the excited states are labeled A B C etc. where A is the first electronic excited state,

B is the second etc. etc. However the states may not have been discovered in order of increasing

energy, which leads to breaks from this pattern. For example, in BaH the energy ordering goes X,

A, H, B, E, C, D. This means you have to be careful assuming the order of any excited states. The

other three quantum numbers needed to label a diatomic electronic energy level are

2(+1Δ (+/−)
Ω

, (2.2)
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Where S is the total spin quantum number, Δ is the projection of the orbital angular momentum

along the internuclear axis, Ω is the projection of the total angular momentum along the internu-

clear axis, and the (+/-) labels the reflection symmetry of the electronic wave-function along an

arbitrary plane containing the internuclear axis. The projection of the orbital momentum Δ will

determine the shape of the electronic wavefunction, and is given a symbolic label using capital

Greek letters (0→ Σ 1→ Π 2→ Δ). This should be compared to the S, P, D,... orbitals familiar

from atomic hydrogen. For BaH, there are 3 types of electronic transitions. The ground state is a

X2Σ+, which means we do not need to specify the projection of total angular momentum, because

it only has one. There are also 2Σ+ and 2Π excited states that will be used throughout this thesis,

and a 2Δ state which we did not directly study. The 2Π states split into two bands because the

different projections of the total angular momentum (Ω) have very different energies. Formally,

this large splitting compared to the rotational splitting means these states are known as Hunds case

a, but I will not discuss this in detail. The lower branch is the 2Π1/2 and the upper branch the

2Π3/2. These are both shown in Fig. 2.2.2. Due to selection rules that will discussed later in this

chapter, we primarily use the 2Π1/2 state, but have used a few transitions in the 2Π3/2 states for

optical pumping. For BaH electronic transitions have an energy scale in the NIR (the A state is at

1060 nm) up into the UV for higher lying states.

2.1.2 Vibrational Levels: The an-harmonic Oscillator

Atoms form molecules because it is energetically favorable for certain atoms to sit with a

finite separation, as compared to having each atom be free. However, the nucleus of each atom

is positively charged so we know they will not want to sit exactly on top of each other. These

two simple facts lead us to have some immediate understanding for what the bond potential for a

diatomic molecule should be. Let us to define zero energy, to be the energy when the two molecules

are infinitely separated. As they get closer this energy will start to become negative and at some-

point reach a minimum and start to increase again, diverging as the distance becomes very small.

The exact shape of this curve is different for every combination of atoms, for each electronic state
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of a molecule itself, and calculating these curves is a part of theoretical physical chemistry.

Figure 2.1: Molecular potentials for various electronic states of BaH from Ian Lane [81].

Looking closely we see that to a decent approximation the shape of each potential near the

bottom of the curve looks quadratic. That implies that a good model the energy levels in this

system, for low vibrational levels, is a quantum harmonic oscillator. We go one step further and

account for deviations for quadratic using the energy levels of the an-harmonic oscillator in the Eth

excited state.

�E81A0C8>=0; (E) = l4 (E + 1/2) − l4G4 (E + 1/2)2 + l4H4 (E + 1/2)3 + ... (2.3)

The determination of l4, G4, and H4 can either be performed by ab-initio theory, or fit experimen-

tally by measuring where the energy levels of the molecule. Spectroscopy for BaH has already

been done several time over the last 100 years, at varying accuracy, so these coefficients have been
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previously measured. This means we do not need to rely on theory to estimate where the energy

levels in BaH are, and that theorists have experimental data they can use to tune their models.

This additional contribution also breaks the equal spacing in energy levels typical of a harmonic

oscillator, and we expect the spacing to decrease as vibrational quantum number increases. More

details of the vibrational degrees of freedom will be included later in this chapter. For BaH, the

vibrational energy spacing is on the order of 30 THz.

2.1.3 Rotational Levels: The Rigid and Floppy Rotor

The next additional energy scale, and degree of freedom, for a diatomic molecule is rotation.

For this new variable, we can start by looking at it’s symmetry. Because diatomic molecules have

cylindrical symmetry, we expect them to have only one rotational degree of freedom, and therefore

one additional quantum number to define this rotation. This is reminiscent of a classic model in

quantum mechanics, the quantum rigid rotor. We know if we have two particles a distance r, each

with a mass <8 we can define the moment of inertia for this system as,

� =
<1<2
<1 + <2

A2 = `A2, (2.4)

where ` is known as the reduced mass. We can solve for the energy levels of this system, and find

�A>C0C8>=0; (#) =
ℎ2# (# + 1)

8c2�
. (2.5)

From this we can draw two important insights. The first, is how the spacing of rotational levels

scales as we increasing rotational quantum number N. Additionally, because there is such a large

mass imbalance in BaH the reduced ` ≈ <� which means � is smaller than for other more mass

balanced diatomic molecules. This means there should be a larger rotational splitting than for other

species, and that’s exactly what we see. For BaH typical rotational splitting in the ground state,

occurs on the order of 200 GHz, for CaF it is only 20 GHz.

Going beyond this approximation of completely rigid rotor one would expect that for higher
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rotational levels, the molecule will stretch and the moment of inertia will no longer be a constant.

Additionally, for higher lying vibrational levels the average separation between the molecules will

increase and that will also change the moment of inertia. In a similar spirit to the an-harmonic

oscillator, we can solve these issues by taking higher order terms, and recognizing that the Born-

Oppenheimer approximation will start to break down in this case, because vibration and rotation

are not completely separate. There are several ways to parameterize this, but a general one that I

personally find instructive is with an explicit dependence of the coefficients in the expansion on

the vibrational state

�A>C0C8>=0; (#, E) = �(E)# (# + 1) − � (E)#2(# + 1)2 + .... (2.6)

Typically the expansion coefficients (� and �) will be specified for each vibrational level sep-

arately, and the parameters are extracted by fit to spectroscopy data. This is a very convenient

formulation for fitting to experimental data.

2.1.4 Spin-Rotation and Hyperfine Structure

The last contribution to the energy of a specific state is the interaction between rotational angu-

lar momentum, electronic spin, and nuclear spin. For BaH we have two contributions from these

interactions. The first is the spin rotation splitting, from coupling between the spin ( and the rota-

tional angular momentum. For the 2Σ and 2Π states in BaH we have S=1/2 so their are two possible

projections for each rotational state, � = # − 1/2 and � = # + 1/2. This rule is broken for the

ground rotational state where there the rotational angular momentum is zero and only the positive

projection exists. More explicitly, we can write this Hamiltonian for this spin rotation interaction

between the electronic spin angular momenta S, and the rotational angular momentum N, as

�(' = WS · N. (2.7)
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In general the spin rotation constant W will be different for each vibrational level, and we observe

this dependence in BaH. For these experiments we use Ba138 (which is spin-less) so the only

nuclear spin comes from the hydrogen, which has a nuclear spin of 1/2. This gives two projections

for each spin rotation level � = � + 1/2 and � = � − 1/2, and which introduces hyperfine splitting.

This can be written as,

��� = 1 5 S · I + 2�I(I, (2.8)

where I is nuclear spin angular momenta. The two constants 1 5 (the Fermi contact constant) and 2

(the dipolar coupling constant) are of similar magnitude in BaH. Measurements of these constants

for each relevant state will be provided in Chapter 4. This final quantum number � also determines

the multiplicity of the states, with each manifold comprising of 2� + 1 sublevels ranging from

< 5 = −�, < 5 − � + 1, ... , < 5 = �. For BaH the spin rotation splitting is on the order of 10 GHz,

and the hyperfine is on the order of 10 MHz. hyperfine splitting will be relevant in later chapters,

but is not included in either Fig. 2.2.2 or Fig. 2.2.1.

2.2 Electronic transitions

How the energy levels in a molecule are studied, and how we plan on controlling them, relies

on transitions between distinct levels. Dipole allowed transitions are only possible from a given

state, to a small sub-set of other states, and this coupling is defined by a series of selection rules.

Focusing on electric dipole transitions, we know that the photon is a spin one particle, and that

spin is a conserved quantity. Similarly, we know that angular momentum is conserved. Therefore

when a transition is either driven (decays) from absorption (emission) of a photon, there are a

finite number of choices that are allowed. Detailed selection rules can be derived for the coupling

between each type of state, but we will focus on the two types of electronic transitions relevant

to this work. For 2Σ to 2Σ we have no ambiguity, because 2Σ states are always Hund’s case b.

For the 2Σ to 2Π transitions will will only consider Hund’s case a, because that is the only case

relevant for BaH. In addition to other quantum numbers, each state also has a parity denoted by (±).
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This term specifies whether the wavefunction for this state changes sign or remains constant under

reflection. Because we are interested in electric dipole transitions (simple absorption and emission

of a photon) transitions must always change sign, so (+) couples to (−) but coupling between (+)

and (+) or (−) and (−) do not occur.

With quantum numbers defined above it is useful to introduce some of the conventions used

when labeling states, and provide some examples. For historical reasons the quantum numbers

used to define the ground state in a system are labeled with a single dash, while excited electronic

states are labeled with two dashes. For example, if I want to refer to the first rotational state in the

ground electronic level, I would label that as #′ = 1. If I wanted to refer to the same rotational

level in the excited electronic state, it would be #′′ = 1.

2.2.1 2Σ to 2Σ Transitions

The simplest transitions in BaH occur between two 2Σ states. In this case each transition

must change the rotational states by an integer margin (Δ# = ±1) and Δ# = 0 transitions are

forbidden. Transitions where the excited state has higher (lower) rotational quantum number, are

known as R type (P type). Each of these classes of transitions are further split by selection rules

in J, Δ� = 0,±1. -1 transitions have Δ� = +1, -2 transitions have Δ� = −1 and -&12 transitions

have Δ� = 0, where X can be either ' or %. It can confusing to keep these types of transitions

straight, but I find a diagram (Fig. 2.2.1) helps makes the patterns clear.
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Figure 2.2: Allowed transitions for a 2Σ →2 Σ system. Each allowed transition is shown and
labeled based on the selection rules described in the text. Note the special case when #′ = 0 has
greatly reduced decay pathways, allowing for optical closure. Taken from Herzberg [76]
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Looking closely at the #′ = 0 state, we can see that being the lowest rotational state means no

R type transitions exist, and only %1 and %&12 transitions remain. These states both decay back

to the #′′ = 1 state, and that is exactly why we have rotational closure for this transition. This

closure can be broken if there are nearby levels that perturb this #′ = 0 state and cause mixing

with different states, but for BaH we have no evidence that this occurs.

2.2.2 2Σ to 2Π Transitions

For transitions between 2Σ and 2Π states, we have some additional complication. First of all,

for 2Π state Δ = 1 and this leads to two different projections of the total angular momentum Ω. In

Bah the Π states are Hunds case a, which means these different Ω values form two well separated

bands. In this case we no longer have selection rules for Δ# , and only Δ� = 0,±1 selection rules

remain, in addition to the usual parity requirements. This leads to more 12 possible transition types

instead of the previous 6. I will not list them out, because we only care about a subset of them for

the purpose of the work, for completeness they are all shown in Fig. 2.2.2.

23



Figure 2.3: Allowed transitions for a 2Σ→2 Π system. Each allowed transition is labeled, and for
this case there are no longer selection rules limiting Δ# . Taken from Herzberg [76]

Again, because we are interested in rotational closure, we need to find excited state which only

couple to a single ground state. Thankfully this situation also occurs here for positive parity portion

of lowest levels of the 2Π1/2 state. Just like for the 2Σ case, if we drive &12 and %1 transitions from

the #′ = 1 state, they have will decay back to the same state and we can continue to cycle.
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2.2.3 Rotational Closure

Optical cycling, and the majority of laser cooling techniques, all rely on the ability to continu-

ously scatter light from the object your interested in. For simple atoms the relatively sparse energy

structure makes this straightforward. However, as I have introduced here, the case of even simple

diatomic molecules does not seem vary promising. The large number of states lead to new types

of decay channels with no analog in atomic systems, and finding closed cycles seems daunting.

Thankfully, it was noticed, that there are indeed some closed cycles with respect to rotational lev-

els. The idea here, is that because each of the transitions shown in Fig. 2.2.1 and Fig.2.2.2 (for

the 2Π1/2 manifold) decay from the lowest lying excited rotational level can only decay the # = 1

rotational state of the ground potential. This means if I drive transitions from # = 1 ground state

to the # = 0 excited state, they will decay back, and are ready to be excited again.

This leads to complications, because for BaH the spin rotation splitting (responsible for the

splitting of the � = 1/2 and � = 3/2 states in the # = 1 ground state has a splitting on the order

of 10 GHz, and both spin rotation states must be addressed. Additionally, we are now discussing

optical cycling in a system where there are a larger number of ground states than excited state.

There are 1 + 3 from the � = 1/2 spin rotation state, and 3 + 5 for the � = 3/2 state while both

the 2Σ and 2Π1/2 ground rotational states have 1 + 3 states. Such a system is not typically used in

atomic experiments, and leads in general to the creation of dark states, which are super-positions

of ground states that do not couple to the excited state. This will be discussed in further detail in

Chapter 6 when we discuss optical cycling in this system.

2.3 Vibrational Closure and Franck-Condon Factors

We can exploit selection rules to ensure rotational closure, because angular momentum is a con-

served quantity. However there is no conservation of vibration, so it is not obvious why molecules

will not simply decay from an excited electronic state into a range of excited vibrational states in

the ground potential. The likelihood that any given decay will occur is determined by the Franck-
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Condon factor for that transition specific transition, which is proportional to overlap between the

vibrational wavefunction of the initial and final state. To visualize this, it is helpful to consider a

simplified model of a molecular potential, known as the Morse potential.

+ (A) = �4 (4−20(A−A4) − 24−0(A−A4)) (2.9)

Where �4 is the depth of the potential, A4 determines the location of the minimum energy, and

0 control the width of this potential. Here the potential is written such that the energy goes to

zero as r runs to infinity. This potential is simple enough that you can analytically solve both for

the eigenvalues (energies of the bound vibrational states) as well as analytic expression for their

wavefunctions. This is shown for a specific potential, in Fig. 2.3.

Figure 2.4: Morse Potential and the first 5 vibrational wavefunctions (�4 = 64, A4 = 1, 0 = 1).
Dashed lines show bound state energies, and wavefunctions are vertically centered about their
eigenenergy for clarity.

Now to visualize how wavefunctions overlaps will affect decay, lets add an additional molecular

potential for some excited state, and look at the overlap between the wavefunctions in two different

regimes. The first, is for two different shaped potentials, visualize the states (Fig. 2.3 (a)) and see

26



what the numerical value of each FCF (@E′,E′′) is (Fig. 2.3 (b)) where we define @E′,E′′ as

@E′,E′′ =

∫ ∞

0
k∗E′kE′′3A. (2.10)

Figure 2.5: a) Potential curves for the ground and excited state for a model system b) Log of the
integral overlap between combination of states. The 0-0 overlap in the top left corner.

Here, we can see that the ground vibrational level in the excited state, (left most column) has

substantial overlap with the first three vibrational levels in the ground state. This would not be a

molecule we can laser cool, because the potentials are shaped too differently, and there is not good

matching between the wavefunctions. To contrast this, a system we could potentially laser cool is

shown in Fig.2.3.
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Figure 2.6: a) Potential curves for the ground and excited state for a model system, where the
potentials only differ by a small displacement b) Log of the integral overlap between combination
of states, the 0-0 overlap in the top left corner. Here we see strong overlap for diagonal transitions
(0-0,1-1, 2-2, etc.)

For this case the two potential curves vary by only a small offset, and we see much stronger

overlap between each excited state, and one specific ground state. This is a system we could laser

cool, because we have a substantial portion of the molecules going back to the ground state. This

problem will be treated again more quantitatively in chapter 4, when we represent measurements

of the FCF for BaH.

2.4 Thermal Population Distributions

For molecular laser cooling experiments we need to be careful about how we define tempera-

ture. While the kinematic motion of molecules can be controlled, and lowered to tiny factions of

a degree kelvin, the internal degrees of freedom will be far from equilibrium. This is because, as

discussed previously, we can only laser cool molecules that start from the # = 1 rotational level.

To be in true thermal equilibrium, the equipartition theorem tells us this we will have a distribution

of internal states with equal energy to the kinematic motion. This means for a fixed temperature,

T we would expect many rotational and vibrational levels to be occupied.

Beginning with the vibrational levels, we know that the ratio of probabilities that two states are
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populated is given by the Boltzman factor, so looking at the population of the first vibrational state

relative to the ground state, we have
%E1
%E0

= 4
−Δ�
:) (2.11)

Where Δ� is the separation of the two states, k is the Boltzmann constant, and T is the temperature.

To determine if there is any population in the first vibrational state at our temperatures we can

solve for the temperature where the populations are comparable. This occurs at the extremely high

temperature around 2000 K. When our sample is first created we have temperatures on this order (as

will be discussed in chapter 4), but they rapidly cool to order of a 10 kelvin where this vibrational

degree of freedom is effectively frozen out. However for experiments with more complicated poly-

atomic molecules this vibrational splitting for some normal modes is substantially lower, and will

eventually be one of the limitations to these techniques.

For rotational levels, we have an additional complication that each rotational level has a differ-

ent number of states, which scales as 2# + 1 for the N’th rotational state. This means we need to

include this changing multiplicity as a statistical weight. Ignoring normalization we can write the

relative population of the N’th state as

%# ∝ (2# + 1)4 −Δ�:) = (2# + 1)4
�# (#+1)

:) , (2.12)

Where we are using the rigid rotor approximation. For the ground state of BaH, � = 3.382<−1,

and we can directly solve for this distribution as a function of temperature. As an important design

consideration, we find the relative population of the N=1 state, is maximized at around 10 K.
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Figure 2.7: Relative population of each rotational level as a function of temperature. We expect
to maximize the population of the N=1 state, which can use for laser cooling, around 10K. This is
hotter then many species being used due to the large rotational splitting, as discussed previously.
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Chapter 3: Experimental Apparatus

The direct laser cooling of molecules relies on a wide range of experimental techniques. These

include tools familiar to cold atom experiments such as frequency tunable lasers, and acousto/electro-

optical modulators, as well as less commonly used tools such as cryogenic systems and pulsed

ablation lasers. The combination of these techniques makes molecular laser cooling experiments

uniquely challenging, but especially fun to develop. In this chapter I will describe the major sub-

system of the experiment, with an emphasis on practical implementation.

3.1 The CBGB Source

The additional vibrational and rotational degrees of freedom present in diatomic molecules

mean it is challenging to generated a high flux of molecules in a specific state using an oven

source. This is because high oven temperatures result in a many rotational, and in some situations

vibrational, states being occupied as discussed in Chapter 2. To concentrate the distribution down

to the first rotational state where we can attempt laser cooling, we need to start at cryogenic tem-

peratures. We achieved this by thermalization of the molecules with a cryogenically cooled buffer

gas of helium, as shown in fig. 3.1. This allows us to leverage the commercially available, high

power, pulse tube refrigerator (PTR) technology to cool the molecules down to a few kelvin using

purely classical techniques. Here I will detail the construction of the Cryogenic Buffer Gas Beam

(CBGB) source. Data collected while characterizing the CBGB will be discussed in Chapter 4.
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Figure 3.1: a) Cyrogenically cooled He buffer gas inside the cell. b) Laser ablation introducing
a hot plume of the target of interest (BaH in this case) c) Thermalization with the He gas, and
extraction from the cryogenic cell.

The CBGB serves as the initial state preparation for the experiment, and is a quite general

technique [82, 83]. By relying on helium collisions to cool the molecular sample, we are able to

cool the internal and external degrees of freedom for a wide class of molecules. This technique has

found extensive application for cooling simple diatomic molecules, as well as increasingly com-

plicated polyatomic samples. It is also a convenient way to study chemistry in cold environments

[84, 85], without the additional complications of laser cooling. The CBGB can be broken down

into three main elements, the cryostat, the cell, and the buffer gas delivery.
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3.1.1 The Cryostat

The core of our cryostat is a two stage PTR-415 pulse tube refrigerator from Cryomech. This

system has a base temperature of 4K, with a cooling power of 1.5 Watts. Based around this de-

vice, we designed a cryostat consisting of an external vacuum chamber, and two layers of thermal

shielding anchored to the 40K and 4K cold heads of the PTR. The outer 40K shield is made from

aluminum, the inner 4K shield is made from OFHC copper. Each shield is supported from the top

via structural connection to the outer vacuum chamber, and thermally connected to the PTR’s cold

heads via a braided copper connection to minimize vibrations. The vacuum system used for the

cryostat is described in further detail later in this chapter.

Figure 3.2: Photo showing 40k (aluminum) and 4K (copper) thermal shielding. The gap in the 4K
shield allows from the absorption probe to pass into the cell, and two panels of the 40K shield have
been removed.

The large internal volume of this design allows us a lot of flexibility when adding additional
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features to the cryostat. This includes several iterations of cryogenic beam apertures, and a large

volume of “fins" to increase the amount of charcoal inside the 4K region. In addition to this, it

allows a wider variety of cell geometries, that we explored in order to maximize the brightness

of the molecular beam. We find typical cooling times on the order of 12 hours, and stable beam

performance over the course of ≈ 8 hours, but the system must be allowed to warm each night (see

section 4.1 of this chapter for details).

Figure 3.3: Interior of the 4K shield. The additional charcoal coated fins are designed to increase
the cryogenic pumping capacity. The window on the side of the cell allows us to probe the interior
of the cell, and the beam exits to the right.

3.1.2 The Cell

Cell geometry is very important to the design of CBGB sources, because you must carefully

balance several time constants in order maximize performance. This is best described in the ex-

cellent review paper on CBGB sources [82], but is worth discussion in the context of this design.

We have direct experimental access to the first time scale, and that is the thermalization time of

the molecule of interest. This happens rapidly and depends only on the collisional cross section f0

and the density of the buffer gas which is determined by the rate that we flow He into the system
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5�4. The other two time constants we need to balance are the diffusion (g38 5 5 ) of the molecules

to the wall of the cell (where they stick and are lost) and the time it takes to extract the molecules

from the cell g4GCA02C . In order to generate a large flux, of cold molecules, we need thermalization

to happen more quickly than extraction, and extraction to happen more quickly than diffusion to

the walls. I found a ratio of the diffusion and extraction times useful for cell design, scales as

W24;; =
g38 5 5

g4GCA02C
∝ f0 5�4
!24;; ā�4

, (3.1)

where 5�4 is the flow rate of the helium buffer gas into the cell, !24;; is the length of the cell

(distance from the target to the exit aperture) and ā�4 is the mean thermal velocity of the buffer

gas. While the scaling on this equation is useful as a design tool, the exact environment inside

the buffer gas cell is quite complicated, and we have not been able to quantify the diffusion time

accurately. However we can estimate the thermalization time, and the extraction time, based on in

cell measurements discussed in Chapter 4.

In order to generate a bright beam, we would like W24;; > 1 so molecules are extracted from

the cell (into the beam) faster than they diffuse to the walls of the cell. The cross section (f0) is

a constant, and not something we can control experimentally. The thermal velocity ā�4 is fixed

because in order to maximize the population of the # = 1 state we want a cell temperature of

6 . This leaves the flow rate and the length of the cell as free parameters. Experimentally, we

observe an increase in the molecular beam’s forward velocity for flow rates above 10 sccm, which

limits the range we can tune this parameter and maintain a slow beam. In order to optimize the

cell we played with a variety of lengths to get decent cell performance for low flows, and various

aperture sizes, because different aperture sizes gave different forward velocity distributions of the

beam. This is discussed in the detail in Chapter 4. A drawing of the cell we found the optimal

performance from is shown in Fig. 3.1.2.
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Figure 3.4: Details of the cell geometry used for the majority of these experiments. In addition to
the provided details, a fine copper mesh is also placed in front of the helium inlet, to help diffuse
helium homogeneously throughout the cell. We found this mesh decreased our sensitivity to the
exact ablation spot we chose on the BaH Target.

There are a design requirements that are not captured in the simple scaling I have already

introduced. The first is that repeated ablation of the sample leads to a coating building up on the

inner surface of any window attached to the cell. For the window that the ablation laser enters

through (top of the drawing in Fig. 3.1.2) this is a problem, because a tightly focused ablation

beam will crack the coated windows. To get around this an extension was installed on the cell so

the laser spot size on the window is increased. This coating leads to decreased transmission of

the probe laser used to monitor molecular production, but for most experiments incell signals are

used as a diagnostic tool and the decreased signal is not important. For careful incell spectroscopy

frequent window replacements (≈ 1 a month) are required. When the ablation sample is changed,

we always remove the cell and carefully clean out the residual dust generated by ablation. We find

this leads to a slower molecular beam, but I am not entirely sure why.
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3.1.3 Buffer Gas Delivery

The final ingredient for the CBGB is well controlled flow of the cryogenic buffer gas. For

our system we utilized two different mass flow controllers (AERA FC780C, and MKS 1259C)

each capable of regulating the flow rate in different regimes. The controllers feed into a partially

closed needle valve in order to step down the pressure, and then through several bobbins thermally

anchored to the 4K head in order to ensure the helium is well cooled prior to it’s introduction into

the cell.

Figure 3.5: Thermally anchored bobbins are used to ensure the Helium buffer gas is well thermal-
ized prior to reaching the cell.

Each flow controller was calibrated by monitoring the pressure in the cryostat when the system

was at room temperature, and the vacuum pumps were valved off. The increase in pressure from

out-gassing was quantified, then various flow rates of Helium were introduced and the rate of

increase in the pressure was recorded. In the end, the factory calibration of both devices agreed

to within 5% of the measured value. This was worth checking because the flow controllers are

not designed to work with large pressure differentials across them, so we were unsure of their

performance. We occasionally had leaks in the Helium delivery system from bad connectors or
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when swapping to a new Helium bottle that lead to freezes in the line. These freezes were due to

non Helium contaminants getting into the system and icing somewhere along the feed-line. These

blocks require the system to be warmed for them to be cleared, and would cost a day of data

collection. Care should be taken when swapping out helium bottles, to avoid this.

3.1.4 Sample Preparation Techniques

There have been several different techniques used to inject the molecular sample of interest

into CBGB sources but the most versatile, and the most common, is laser ablation. This technique

requires a sample which either contains or is chemically similar to the molecule of interest. This

sample is prepared into an ablation target and then hit with a focused pulsed laser. For our system

we used a BigSky Ultra CFR 50 mJ pulsed ND:YAG.

In order to optimize the molecular yield we explored a wide variety of ablation targets. These

included pressed and sintered ablation targets made from �0�2 powder, �0�2 pellet targets di-

rectly ablated, and the ablation on �0 in combined He + �2 buffer gas (with Hydrogen concen-

tration between .01 and 1 %). After trying each of these techniques, we found that �0�2 “rocks"

purchased from Sigma Aldritch were the best ablation target. Each technique generated similar av-

erage yields, which was a bit surprising, but the rocks targets had the most consistent yield and the

targets lasted the longest time. Our sample preparation took place entirely in a home built glovebox

because �0�2 reacts aggressively with water, and we found that to contaminate the samples. In

order to ensure a clean sample each “rock" was initially broken in half and the interior surface that

had never been exposed to air was placed facing the ablation laser. We then arranged ≈ 5 samples

onto the sample holder and glued them in place with locktite. We see increased sample lifetime

(maintained signal strength after thousands of ablations events in the same spot) when we used

more glue than necessary, and the glue “wicked" up the sides of the sample. I believe this helped

hold the sample together, and decreased the rate at which the ablation laser physically removed

material from the sample. This makes a substantial difference in sample lifetime.
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Figure 3.6: Example image of the BaH targets ready to be loaded into the cell. Note that slight
"shine" caused by glue wicking up the sides of the targets. We found this greatly improved the
lifetime of the sample during sustained ablation.

3.2 Laser Systems

In order to properly control cycling and applied optical forces we need to build laser systems

that enable this control. Diode lasers make this relatively straight forward, and allow us to build

the systems we need, on a smaller budget. I will not go into the basic’s of laser operation, but

instead focus on the practical implementation of external cavity diode lasers (ECDL), amplifiers,

laser frequency stabilization based on a WS-7 wavemeter, and the various modulation techniques

we use to control the frequency distribution of the lasers.

3.2.1 ECDL

In its most general form a laser is simply of a gain medium placed inside a leaky optical cavity.

The cavity selects a specific mode that the gain medium amplifies, and the leak from the cavity is

used to couple useful light out of the system, to be used for whatever application is desired. For the

ECDL, the gain medium in a semiconductor chip, driven electronically, that is capable of emission

at the wavelength of interests. The cavity is generated by a mirror placed behind the gain median,

and an external element that used to selectively reflect light back into the chip, forming the cavity.

This element usually consists of a diffraction grating, allowing the user to tune the wavelength
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of the reflected light, and therefore the frequency of the laser. In recent years these diodes have

rapidly improved, leading to higher power outputs, and a broader spectral coverage. The two most

common types of ECDL’s, and the types used in this thesis, consist of the Littrow (Fig 3.2.1a) and

Littman-Metcalf (Fig. 3.2.1b).

Figure 3.7: Schematic for the Littrow (left) and Littman Metcalf (right) ECDL configurations.

In the Littrow configuration, the first order diffraction mode of the grating is sent directly back

to the chip, and the wavelength of the laser is tuned via the angle of this grating. The output of

the laser is the reflection from the grating which is then sent to shaping optics (to get a circular

Gaussian beam) and an optical isolator to avoid optical feedback destabilizing the laser mode.

The Littrow configuration offers very strong feedback and higher power. The downside, is they

generally have wider linewidth (≈ 1"�I) and the complication that changing the wavelength

of the laser changes the angle of the output. Additionally, for applications where the desired

wavelength is on the extreme reaches of the diode’s specified output, the strong feedback allows

for wider range of stable operation.

In the Littman-Matcalf configuration, the grating is stationary, and the first order diffraction

peak is sent to a secondary mirror. The angle of this secondary mirror is tunable, and this allows

the wavelength of the laser to be controlled. The output of the laser is again the reflection from the

grating, and must undergoes the same shaping and isolation. The power of the Littman-Metcalf

laser is typically ≈ 20% lower than a Littrow laser, but the feedback requiring two diffraction’s
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from the grating, and the increased length of the cavity, generally give a lower linewdith while

lasing (≈ 100 kHz). In addition, the output does not change when the laser is tuned, so realignment

is not required when the laser is set to different wavelengths.

The performance of these two ECDL designs, is very dependent on the laser diodes they are im-

plemented with. For the NIR around 1060 nm there are numerous very high power, and extremely

stable diodes that make the cycling lasers used in this experiment extremely robust. However, for

other wavelengths the performance is not always as good. I have found that Anti-Reflection coated

diodes are required to make stable Littman-Metcalf lasers, but the strong feedback of the Littrow

configuration mean non AR coated diodes can be used. The wider availability and reduced price

of non AR coated diodes makes this a notable advantage.

3.2.2 Wavemeter Locking

Laser frequency stabilization in experiments with cold atoms is normally achieved by locking

the lasers directly to the desired atomic transition using some form of saturation spectroscopy.

However, for molecular experiments we cannot generate vapor cells with high enough molecular

density in the state of interest to make this technique feasible. Instead, we have developed a digital

locking scheme based on frequency measurements made with a WS-7 Wavemeter to accurately

lock each laser for extended periods of time.
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Figure 3.8: Block diagram for the digital laser locking servo. Control is implemented using a
digital PID loop, based on measured error signals from the WS-7.

The system works by continuously monitoring the wavelength of each laser of interest using

the WS7, then feeding that measurement into a digital PID loop on the central control computer.

The control output for this loop is then passed digitally to an Attocube piezo driver, and the piezo

used to control the feedback for each ECDL is adjusted. This loop operates at about 50 Hz for

each laser and allows us to stably lock the lasers all day, limited only by occasional mode-hop.

This technique is very convenient but does not narrow the laser below its free running linewidth.

This is because the latency of the loop (limited by the time the WS7 wavemeter takes to acquire

the signal) means feedback is relatively slow. It may be more accurate to think of this as a steering

vs more traditional locking.

In order to verify the accuracy/stability of this scheme we performed a frequency comparison

between the WS-7, a stabilized HeNe (Thorlabs HRS015B), and the Sr clock laser used by our
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sister experiment in the ZLab. The experiment operated by locking the clock laser to a frequency

comb and establishing it as a stable absolute frequency reference. We then locked each laser used

in the molecular cooling experiment to a constant wavelength, and left the system to collect data

over the period of several hours. We found that when binned, the frequency spread of the clock

laser had a FWHM of 1.6 MHz, indicating an instantaneous accuracy for the wavemeter lock, of

≈ 1.6"�I. This was actually more accurate than the stabilized HeNe (2.7 MHz) indicating the

wavemeter is a more precise reference than the HeNe. For long term stability tests, we have shown

a day to day drift on the order of 5 MHz, by measuring the molecular transitions at the beginning

of each day, and recording how they vary. No substantial drift on longer time constants then a day

has been observed.

Figure 3.9: Setup used to test the stability of the wavemeter, and the wavemeter locking system

With an understanding of how accurate the WS7 can measure the wavelength of each laser

we can also study how well the digital locking scheme can operate. We found that in general

the infrared ECDL’s used for cycling and repumping (1060 nm and 1009 nm) showed a FWHM
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frequency spread of 2.5"�I operating under normal conditions. This is consistent with the accu-

racy of the wavemeter limiting the lock, as the in loop error should be about the same as the open

loop error of the sensor used for feedback. However, we did find that the “quality" of the mode

and the thermal stability of the laser to be extremely important to achieving this performance.

When the thermal control loops were improperly tuned, or the laser was slightly multi-mode (an

un-observable difference on the wavemeter itself, but visible on a scanning Fabry Perot Interferom-

eter) an order of magnitude worse performance was observed. This must be carefully monitored

because unlike locking to a saturation spectroscopy setup, the lasers will not always tell you when

they are misbehaving.

This system is a scalable way to lock many lasers, and the only cost to increasing the number of

lasers your control is a reduction in the speed of the feedback. We currently use a 8-1 multiplexing

input to the wavemeter, so 8 lasers can be stabilized, but laser switches are available. Because

molecule cooling experiments require many lasers, and the large splitting in the ground state make

hydrides particularly challenging, an easily scalable solution like this digital lock has proven to be

very important.

3.2.3 Laser Amplification

In order to achieve efficient cycling and laser cooling high optical powers are required, typically

above what is possible with ECDL’s alone. To increase the available laser power we used two

technologies, fiber amplification, and tapered amplifier amplification. The fiber amplifier was

bought commercially from NKT, and operated as a turn key solution to amplify 10 mW of seed

light, up to 2 Watts of output light. For the tapered amplifier we built our own system in house,

to use the high power NIR chips sold by DILAS systems. Drawings for this design are provided

in the appendix. Tapered amplifiers are essentially the gain chip from a diode laser, without the

mirror required to form a cavity. Light is focused into the input facet (as shown in Fig. 3.2.3) and

as the input is amplified, the transverse width of the gain medium increases, to keep the intensity

inside the gain medium low. The output is then re-collimated, goes through beam shaping and
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isolation, and is then fiber coupled.

Figure 3.10: Simplified schematic, for laser amplification using a tapered amplifier chip, and photo
of the implemented system

For this experiment, we actually used two seed lasers separated by ≈ 10 GHz as the input to the

amplifier. We find this works well, as long as the spacing between the two inputs is greater than

about 1 GHz. For smaller separations, we observe non-linear mixing in the gain medium, resulting

in the generation of a comb type spectrum. This has been previously measured, but was surprising

when we first observed it. Tapered amplification provides a cost efficient way to amplify laser light

but the imperfect shape of the amplified beam limits fiber coupling efficiency to ≈ 50%. Fiber

amplification however is capable of much higher powers, has excellent beam quality, but does not

cover as broad a range of wavelengths.

3.3 Laser Modulation Schemes

ECDL’s and amplifiers are responsible for the rough shaping of the spectra we use for address-

ing the molecules but finer control is also needed. The splitting of energy levels due to various

couplings introduced in Chapter 2 must each be addressed, with a typical energy splittings from 1

MHz and 10 GHz. For splitting above 1 GHz we address each transition with a separate laser. For
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smaller splittings we use two modulation techniques. Phase modulation using the Electro-Optical

Modulator (EOM), and direct sideband addition using an Acoustic Optical Modulator (AOM).

3.3.1 The EOM

EOM’s are based on the Pockel’s effect inside a crystal. By applying an electric field, we

can control the index of refraction of the crystal, which effects the phase of the laser as it passes

through the crystal. By applying a time varying voltage across the crystal (leading to a time varying

internal electric field) we can modulate the phase of the laser. To demonstrate how this can be used

for sideband generation, first let us consider the electric field generated by a monochromatic laser

beam.

� (C) = �48lC . (3.2)

Where, the amplitude of the electric field A depends on the intensity of the laser, and the field

oscillates at the angular frequency l. Now, if a periodic phase modulation is applied, we can write

this without simplification, as

� (C) = �48(lC+�B8=(ΩC))) , (3.3)

Where Ω is the angular frequency of the modulation, and D is known as the modulation depth.

This expression, can be rewritten using the Jacobi–Anger expansion as a sum of terms, each with

a fixed frequency.

� (C) = �48lC
(
�0(�) +

∞∑
:=1

�: (�)48:ΩC +
∞∑
:=1
(−1):�: (�)4−8:ΩC

)
, (3.4)

where �= is the nth order Bessel function of the first kind. We see that based on the modulation

depth (D) we add symmetric side-bands each spaced Ω away from the carrier frequency l. An

example for how these Bessel function behave vs. the modulation depth, and an example of how

the side-bands appear is shown in 3.3.1.
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Figure 3.11: Bessel Functions, and the resulting spectrum for three different modulation depths.
Note that the spectra is symmetric, and only the modulation depth and frequency are free parame-
ters.

The crystals that make up the core of the EOM, are Lithium tantalate with gold electrodes

placed on two sides (provided by Almaz Optics). The two electrodes act like a parallel plate

capacitor, and that allows use to add a tuned inductor to build LC tank circuits at the desired

modulation frequency. This is helpful because by building a resonantor, we can apply a larger

voltage across of the inductor for the same drive power, increasing the modulation depth. For

convenience, we want the system to have 50 Ohms input impedance so it can be easily driven

using commercial RF amplifiers, so we use a transform at the input of the circuit for impedance

matching. The electrical schematic, and the implemented system are shown in 3.3.1

Figure 3.12: Electrical schematic, and physical implementation of a resonant tank circuit to drive
an EOM
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The addition of multiple EOM’s in the row, can be used to broaden the spectra of a laser in a

controllable way. This is used in the technique known as “White Light" slowing, by broadening

the laser so it stays resonant with a wider range of velocity classes. By varying the modulation

depth, and having multiple modulation frequencies, you gain a lot of control over the spectrum. To

demonstrated this, a simulated spectra for the white light slowing of BaH is shown in fig.3.3.1. The

relatively flat top, ensures an even force, and the range of velocities you address is easily tuned.

Figure 3.13: Simulated spectra for the white light slowing of BaH. The two bands indicate the
absorption range for the J=3/2 ground state (hyperfine splitting of 40 MHz) with a 30 m/s spread
in forward velocity. 60% of the light, ends up being resonant with this desired class of molecules.

3.3.2 The AOM

For this experiment AOM’s are used when we wish to add side-bands that are not symmetric.

AOM’s work by generating an acoustic wave using a piezo element attached to a crystal, resonantly

driven at some desired frequency. When the angle between this acoustic wave, and the laser passing

through the crystal satisfy the Bragg condition, diffraction occurs. This diffracted beam has an

angular displacement, and the frequency is shifted by an integer of the driving frequency. Typically

these devices are designed to operate at the +/- first order, but higher order diffraction is possible.

The optical layout used for the generation of balanced sidebands, is provided in fig.3.3.2.
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Figure 3.14: Optical layout to add a sideband to a laser using an AOM. The first order diffraction
is realigned with the 0th order using a mirror, and combined using polarization on a polarizing
beam splitter. Results in crossed polarization for the two sidebands, and the height of the relative
sidebands can be controlled using the drive power of the AOM.

Note, that because polarization is used to recombine the laser light after the AOM this scheme

has very low loss for adding a single sideband but has ≈ 50 % loss when trying to add 2 side

bands. This makes EOM sidebands potentially more efficient, but it depends on the details of the

spectrum you are trying to obtain. For this experiment we used commercially purchased AOM’s

from ISOMET, and used an amplified DDS for all the driving frequencies.

3.4 Vacuum System and Beam Chamber

Like other cold atom experiments we require the samples to be well isolated from the environ-

ment, and in particular from collisions with background gases. To avoid these collisions typical

experiments need to operate in ultra high vacuum (UHV) with pressures as low as 10−10 Torr.

In this UHV region, background gas collisions become negligible, but it quite hard to achieve

experimentally. For our system we do not require as low a vacuum because the lifetime of our

experiments is on the order of 10-100 ms (versus 10-100 seconds) so we can tolerate a higher

background collision rate. A schematic for the vacuum system we designed is given in fig.3.4.

Both turbos are backed with XDS-10 scroll pumps. We find that the cryostat, when it is being

pumped down the first time after opening, requires the ballast of the scroll pump to be open for ≈

3 hours to remove moisture from the system. If this is not done moisture builds in the scroll pump

and it’s base pressure is never reached. I believe this is due to the charcoals affinity for collecting

moisture from the room when exposed directly to air.
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For the cryostat we have a Pfieffer TPU-170 turbo pump to provide rough vacuum prior to

the cryostat cooling down. We find that while the cryostat is at room temperature we hit a base

pressure of mid 10−6 Torr, limited by out-gassing in the system and not by the O-ring seals used on

the cryostat. When the cryostat is fully cold we reach a base pressure low 10−8 Torr, consistent with

the base pressure you can achieve with O-ring seals. This is partly due to the reduced out-gassing

of the cold components, but is primarily due to cryogenic pumping provided by the charcoal in the

4K region. We have not performed a carefully measurement of the charcoals pumping speed, but

when the turbo is valved off from the cryostat we see no reduction in the pressure of the cryostat.

This implies the pumping speed on cryogenic charcoal is much higher than that of the pump itself.

It also worth noting that after several years of operation a micro crack in one of the welds of the

cryostat was discovered. Fixing this with UHV epoxy lead to an order of magnitude improvement

in the vacuum level while warm, but no improvement while cold, implying the pumping rate is so

high even a micro-crack worth of gas load can be efficiently pumped. More details of the charcoal

sorbs are discussed in section 3.4.1.

When the buffer gas beam is operating, and 1-5 SCCM of He is being sent into the system,

we see the pressure rise to the high 10−7 or low 10−6 Torr level. The exact vacuum level depends

on the flow rate, and how long the system has been operating since we last warmed up. This is

currently being improved, with the addition of more charcoal sorbs, to increase the pumping speed

(lowering the vacuum level under operation) and extending the lifetime of the system.
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Figure 3.15: Representative schematic for the vacuum system used in these experiments. Separate
turbo pumps and a gate valve allow us to break vacuum on either region independently, allowing
for faster upgrades and tolerance in the case of pump failure.

The cryostat is separated from the rest of the beam region, using a KF 50 gate valve, allowing

the two regions to be fully isolated. The pumping in the beam region is provided by a HiPace

700 l/s turbo pump mounted at the end of the beam region, ensuring there is no helium build up

under operation. This system has a base pressure of 10−8 Torr limited by the KF connection to the

cryostat, and the O-Ring seal for the extended interaction region (shown in fig.3.4). While He is

flowing we see an increase of the pressure in the beam region to the low 10−7 Torr. Various iteration

of the vacuum system were used, but always featured an Pfieffer PKR 360 ion gauge to monitor

the pressure in the region, and ExTorr RGA to help find any leaks. The final system capable of 3D

trapping will require improved vacuum performance, and a differential pumping stage in order to

not be limited by the vacuum of the cryostat itself.

51



Figure 3.16: Photo of an early version the beam region, prior to the installation of optics.

By using commercially available vacuum components, early versions of the beam region were

quite cheap, and could be assembled very rapidly. However, the limited optical access from com-

mercial 2.75 inch CF windows lead to relatively small interaction times and made the detection

of transverse cooling/deflection of the molecular beam challenging. To extend the interaction time

a custom 2D cooling region was designed using long rectangular windows to increase the optical

access. This, along with custom rectangular mirrors, allowed is to have sustained interaction over

an ≈ 13cm region, by sending the laser light back and fourth through the molecular beam. An

image of the this long interaction region is shown in fig.3.4. This extended interaction region has

been used for 1D cooling of the molecular beam (Chapter 7) and can also be used for 2D cooling

in the future.
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Figure 3.17: Side image of the custom interaction region, and laser light for ≈ 40 passes through
the molecular beam.

3.4.1 Cryo-Sorb Performance

It is bit surprising that CBGB sources can be integrated with laser cooling experiments because

high vacuum and the active introduction of a buffer gas seem to be conflicting requirements. The

incredible pumping speed of cryogenically cooled coconut charcoal makes this possible, A happy

coincidence that enables each of these experiments. When cooled below ≈ 14K, the surface of the

charcoal begins to act as an extremely good physio-sorb pump. That is to say, when helium collides

with the surface, it physically (versus chemically) bonds and sticks to the surface. This combined

with the massive surface area of charcoal, a highly amorphous solid, allow coconut charcoal to act

as a rapid pump with a high pumping volume able to efficiently pump enough He to maintain high

vacuum in the cryostat for an entire day of data collection. Each internal surface of the 4K region is

covered in charcoal, which is glued to the copper shields using a thermal epoxy (see appendix for

details). In addition, we saw greatly improved beam performance with the addition of several fins,

and with a coated skimmer the molecular beam must pass through prior to leaving the cryostat.

The sorb pumps are reactivated nightly, by allowing the cryostat to warm up. When the tem-

perate reaches around 14K the helium no longer sticks to the charcoal and a large spike in pressure
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occurs, often driving the pressure above 1 Torr. This pressure spike is pumped out using a turbo

attached to the top of the cryostat (see fig.3.4) and the system is left to pump down overnight.

The PTR is then restarted automatically around 6 hours before we plan on taking data, allowing

time for the system to cool back down. We see that even if the in cell absorption signal is strong

(indicating we are still making molecules), data collected at the end of the day typically has a di-

minished signal size down stream. We believe this is due to decreased pumping speed of the sorbs

as they saturate, leading to higher pressure in the cryostat which attenuates the beam. Increasing

the total surface area of charcoal in the system improved the performance, but it still limits us to ≈

8 hours of continuous data.
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Chapter 4: Cryogenic Buffer Gas Source and Absorption Studies

A CBGB is the first step towards the direct laser cooling of molecules, but it also provides an

excellent environment to study the molecule of interest. The high density generated post ablation

leads to high SNR for absorption spectroscopy, and the cryogenic environment limits Doppler

broadening, and concentrates the population into low lying rotational levels. In this chapter I will

discuss experiments performed both to characterize the CBGB source as well as experiment done

with the molecules immersed in the buffer gas. This work was essential to understand the system

we built (the CBGB) and the system we want to use (BaH itself).

4.1 CBGB Source Characteristics

In order to be useful as a source for cold molecules for laser cooling applications, the CGBG

needs to act a stable and high output source of molecules in the N=1 rotational level. This re-

quires stable molecular production, as well as thermalization of the external and internal degrees

of freedom. For BaH we quantified the thermalization rates of the rotational state and the motional

degree of freedom. This served to validate the source is able to generate the cold molecules we

need for the rest of the experiments in beam. This is essentially a study of the elastic collisions that

thermalize the velocity distribution, and the inelastic collisions that thermalize the molecules inter-

nal rotational distribution. In this experiment we were unable to observe higher lying vibrational

states as a product of ablation, so we did not study vibrational relaxation. To begin, it is useful to

consider the on resonance absorption of a laser passing through the cell after the ablation laser has

fired.
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Figure 4.1: Typical absorption trace, for an on resonance probe. The initial spike is caused by
electrical noise from the firing of the ablation laser. Exact shape of these traces is highly dependent
on the details of where on the sample ablation occurs, as well as the detuning of the probe laser

We see the molecules pass through the probe laser ≈ 1 ms after the ablation laser has fired,

with a fairly broad arrival time. Depending on the flow rate and the quality of the sample we see

between 3% and 20% peak absorption of the probe light, however higher in cell absorption does

not always correlate with a brighter molecular beam outside the cell. As a crude measurement

of the signal strength we can integrate this absorption signal and use that as a metric to perform

spectroscopy.
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Figure 4.2: By integrating the absorption trace and varying the probe detuning we can perform in
cell spectroscopy for any transition of interest. This is the highest sensitivity way to find transitions
in our experiment

4.1.1 Motional Temperature

Based on previous studies, we know that immediately after ablation the ejected molecular cloud

is extremely hot, on the order of 1000 K. Thanks to collisions with the He buffer gas we can reduce

this temperature, but the rate of this thermalization is very important. We need thermalization to be

faster than the cell extraction time (so the molecules are fully cooled) and faster then the diffusion

time of the molecules to the walls of the cell (where the molecules are lost).

To quantify this we performed in cell spectroscopy then looked at the time dependence of the

center location and width of the absorption resonance. This allows for a real time measurement of

the molecules velocity distribution, and therefore the rate of thermalization. there is also collisional

broadening in cell, and unresolved hyperfine structure, so the final linewidth is an upper bound.

This data is analyzed by taking time slice of absorption traces for various laser detunings, and

fitting them each to a Gaussian distribution.
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Figure 4.3: Fitted amplitude of the spectra taken at each time slice. Shows the same approximate
shape as Fig. 4.1.

As expected, we see a pulse like structure when we just consider the amplitude of the fitted

spectra. This is a direct measurement the molecular density passing through the probe laser after

ablation occurs.

Figure 4.4: Here we see a clear time dependence for the fitted line center after ablation. This is
consistent with the molecules having a net velocity after ablation, that takes some time to settle
down as they thermalize with the buffer gas
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Somewhat surprising we see that there is a meaningful oscillation in the fitted line center after

ablation. This is consistent with “sloshing" of the molecules post ablation. Because the molecules

have preferred direction after ablation (ejection from the surface of the sample) it takes a while for

that net velocity to be damped.

Figure 4.5: We see the measured linewdith decrease as the molecules thermalize with the He
buffer gas. This allows us to estimate the thermalization time, to be on the order of 300 `s by
fitting this measured linewidth to an exponential. Note, that due to unresolved hyperfine structure,
this final linewidth is artificially large, but we only care about its time dependence to estimate the
thermalization time.

Finally, we can see that the width of spectra meaningfully decreases over the course of its transit

through the laser beam, with a decay constant of ≈ 300 `S. This is encouraging, because we see

that thermalization has occurred. Final linewdith here is not important, as there are unresolved

hyperfine transitions in this spectra, and there will be some amount of collisional broadening in

cell. However, the rate of change of this width is a useful confirmation that thermalization occurs

faster than extraction time. This time constant is quite fast, and happens before the molecules

are extracted from the cell. In fact, we see that thermalization occurs before the majority of the

molecules even reach the probe laser location.
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4.1.2 Rotational Temperature

To study the thermalization of the rotational degree of freedom, we took repeated measure-

ments of the absorption vs. time for various different rotational states in the molecule. We did this

ensuring that the analogous transition was driven each time, so the relative absorption of each state

was a faithful representation of that’s states population. We can then take the population of each

rotational state at a given time, and fit it to a the known relationship between temperature and ro-

tational distribution. This allows us to extract the rotational temperature, and study how it evolves

post ablation. For this data, we were unable to simultaneously collect absorption measurements on

each transition at the same time, so we quickly changed which transition we addressed, maintained

the same ablation properties, and collected the data in a random order. A snapshot of the thermal

distribution at 1 mS post ablation is shown below.

Figure 4.6: By measuring the relative population of each rotational state, we can estimate the
internal temperature of the molecule by fitting it to the weighted Boltzmann distribution discussed
in Chapter 2

We are then able to take this distribution, and the fitted temperature with uncertainties, to

estimate the rotational temperature post ablation, and extract the thermalization rate.
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Figure 4.7: By estimating this population distribution as a function of time, we can estimate the
rotational thermalization rate, finding it occurs at ≈ 100 `s, faster than the motional thermalization
rate.

We find that the the rotational distribution thermalizes on the order of 100 `s, which is suffi-

ciently fast to ensure a large population in the N=1 state, as the target state for laser cooling. We

find the final rotational temperature to be above the measured temperature of the cell (10 K vs 6K)

but are primarily concerned with maximizing the N=1 state, so the discrepancy is not a concern.

4.2 In Cell State Searches

Thanks to the high sample density in cell, it is the ideal place to search for new transitions and

states in the molecule. This allows us to focus more precise in beam searches on a narrower range.

In particular, we used in cell absorption measurements to find the vibrational repumping states in

BaH, which proved to be the best way to perform this search.

4.2.1 v=0→ v=1 Pumping Search

In order to close the vibrational loss the the v=1 state, and maintain closure of the cycling tran-

sition, we need to efficiently pump molecules out of the v=1 state. This requires precise knowledge

of the transition energy, which was beyond the measured accuracy of measurements available for
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BaH before we began this project. This means we must go and find these transitions ourselves.

However, the v=1 state is not naturally populated in cell post ablation. Therefore, we first need to

pump molecules into the v=1 state. We achieved this by optically pumping the molecules using an

off diagonal v=0→ v=1 transition.

Figure 4.8: Experimental diagram showing the energy levels, and experimental setup, that were
used to search for off diagonal transition in the �2Σ+ and �2Π states.

For this search we used previous measurements to estimate the location and performed simulta-

neous absorption measurements of the pumping state and a known cycling transition. This allows

us to monitor the molecular yield even when the pumping laser is off resonance.
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Figure 4.9: Absorption spectra for two -2Σ+(v=0) to higher lying vibrational states. These were
used for Frank-Condon factor measurements (see Section 3 of this chapter) and for direct popula-
tion of the -2Σ+(v=1) state.

By finding each of these transitions we can efficiently populate the v=1 state in order to search

for the vibrational repumping transition. Note, that we can also use the this data for direct mea-

surements of the FCF, as discussed in section YYY
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4.2.2 v=1→ v=0 Repumping Search

With confirmation that we can pump into the v=1 state, we can now search for the repumping

transition. In order to perform accurate spectroscopy we also need to pump the the molecules into

the v=1 through an alternative state so as not to perturb the resonance. This is performed using a

displaced pump laser. A diagram for this experiment is shown in fig.4.2.2.

Figure 4.10: Level structure diagram, and experimental setup used for the -2Σ+(v=1) repump
search. The 912 nm pump light was used to populate the -2Σ+(v=1) state, and two different
transitions were used to probe the population, and perform spectroscopy.

With this scheme, we were able to directly find the repumping transitions, and accurately mea-

sure the spin rotation splitting of the -2Σ(� = 1, E = 1) state. This was a crucial step, as direct

searches for the repumping transition in the molecular beam (vs. incell) were not successful. The

increased SNR of incell absorption was critical.
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Figure 4.11: Direct measurement of the transition frequencies, for both repump transitions.

As further confirmation of the state identification, we parked the repump laser on resonance,

and studied how the absorption signal depended on the pumping light. We see a clear dependence

(Fig. 4.2.2) and were able to verify that the transitions saturates at a relatively low power Fig 4.2.2.
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Figure 4.12: Experimental evidence supporting the classification of these states as originating from
the -2Σ+(v=1) state. We see a greatly enhanced population when the pump light is applied.

Figure 4.13: Saturation measurement of the -2Σ+(v=0) to �2Π3/2(v=1). We see the pump transi-
tion saturates at relatively low power, and more than doubles signal.

With the states located and identified we can now use incell absorption to study properties

of the cycling transition. Of particular interest, is a measurement of the how closed the cycling

transition is, via a measurement of the states Franck-Condon Factor (FCF) as first introduced in

chapter 2.
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4.3 Franck-Condon Factor ratio measurements

To perform measurements of the branching ratios for the relevant electronic transitions in BaH,

we utilize two complimentary techniques, absorption ratios and fluorescence ratios. The absorption

technique is based on a differential measurement of the absorption cross-section from one ground

vibrational state E′′, to two different excited vibrational levels E′. This concept of a FCF was

introduced in Chapter 2, but now lets revisit it more carefully. We begin by writing the integrated

absorption cross-section for a rovibronic transition as

f
E′� ′E′′� ′′ =

(2�′ + 1)
4(2�′′ + 1)

�E′� ′,E′′� ′′

(ã
E′� ′E′′� ′′)2

=
4c3ã

E′� ′E′′� ′′

3Y0ℎ(2�′′ + 1)
(E′� ′,E′′� ′′,

where ã
E′� ′E′′� ′′ is the line-centre wavenumber, �

E′� ′,E′′� ′′ is the Einstein A-coefficient describing

the absorption to the E′�′ excited ro-vibrational state from the E′′�′′ ground level and (E′� ′,E′′� ′′ is

the transition line strength,

(
E′� ′,E′′� ′′ = | 〈Λ

′E′�′n′|` |Λ′′E′′�′′n′′〉|2 = |" |2(
� ′,� ′′, (4.1)

where n is the parity label, |" |2 is the square of the vibronic transition moment and (
� ′,� ′′ is

the Honl - London factor for the transition (explicit expressions for these rotational factors can

be found in Watson). As all the transitions studied originate on a level where � = 1/2, and the

principle result is measuring ratios between transitions with identical Δ� = �′ − �′′ values, we

will drop the explicit references to �. |" |2 is approximately the product of the transition’s Franck-

Condon (FC) Factor @
E′E′′ and |'4 |2, the square of the electronic transition dipole moment (all the

transitions studied here preserve the electronic spin)

|" |2 = | 〈Λ′E′|` |Λ′′E′′〉|2 ≈ @
E′E′′ |'4 |

2.
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In the results we quote these FC factors @
E′E′′, even though it is more accurate to say we actu-

ally measure the vibronic moments. We relate the cross-section f
E′E′′ (l) to an experimentally

measurable optical absorption to give the absorbance A(E′, E′′)

Δ �

�
= 1 − 4−#fE ′E ′′ (l); = A(E′, E′′),

where # is the molecular density, l is the angular frequency and ; is the path length. By taking the

ratio of absorption between two transitions that differ only in the excited state vibrational number

(E′ = 0 or 1), we can cancel the dependence on every term (including the molecular density)

except @E′E′′ and ã, the latter we have previously measured to high accuracy. We can then relate the

experimentally measured ratio of absorption to the ratio of the FC Factors for the two transitions

in question or the absorption vibronic transition ratio (VTR):

+)' =
A(E1, E

′′) ãE2E′′

A(E2 = E′′, E′′) ãE1E′′
≈
@
E1E′′

@
E2E′′

. (4.2)

This definition ensures the quoted VTR is always < 1 for a diagonal system such as the electronic

transitions in BaH. Measurements of the VTR using this technique are consequently invariant to

potential changes in the beam density (molecule number) and relies only on quantities we can

accurately measure in the lab. The measurement of the emission VTR relies on direct observation

of the decay probability between two states. The ratio RE′E′′ of the measured emission to the total

overall decay rate (branching ratio) can be expressed in terms of the transition’s FC factor:

RE′E′′ =
@
E′E′′ ã

3
E′E′′
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:=0

@
E′,: ã

3
E′,:

. (4.3)

where the summation is over all available radiative decay channels. By observing simultaneous

fluorescence from a single excited ro-vibrational state, E′ = 0 and �′ = 1/2, to two different

vibrational ground states E′′ = 0 and 1, we directly compare the relative decays R0E′′ and we can
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determine the @
E′E′′ ratio for the two transitions (the emission VTR) using:

+)' =
�0E1

ã3
0E2

�0E2
ã3

0E1

≈
@0E1

@0E2

, (4.4)

where �0E8 in the intensity of the observed decay to the ith ground vibrational state. These two

complimentary techniques allow us to measure a variety of @
E′E′′ ratios, using a series of differential

measurements. Experimental results, and the comparison to theoretical work presented later, are

provided in Table 4.3.2. All the ground state rovibrational levels involved are of (−)-parity (#′′ =

1).

4.3.1 Relative Absorption Measurements

For absorption measurements we utilize the high molecular density inside the cryogenic cell,

as shown in Fig. 4.2.2, to increase the size of the absorption signal. We take data by alternating

the probe beam between two co-aligned lasers, each tuned to the resonant frequency of the energy

levels of interest, with intensities well below saturation. This allows for real-time cancellation of

any variability on the molecular yield, as the lasers intersect the same region of the cell. Based

on laser availability, we were able to perform three measurements, obtaining @10
@00

for the B2Σ+ ←

X2Σ+ and A2Π3/2← X2Σ+ electronic transitions, and @01
@11

for B2Σ+← X2Σ+ only. To measure @01
@11

,

an additional laser was co-aligned with the absorption lasers, and tuned to the A2Π3/2(E = 1) ←

X2Σ+ (E = 0) transition. This is required to increase the population in the X2Σ+(E′′ = 1) ground

state, as the E′′ = 1 population is negligibly small for BaH thermalized to 6 K [86]. Only the &12

rotational lines were measured for each transition. A representative measurement, showing the

absorption signal for each transition and the ratio of the two signals is shown in Fig. 4.3.1.
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Figure 4.14: Absorption ratio measurements for each combination of states we explored. His-
tograms are generated by looking at the ratio of the two signals while the SNR was high, with
regions denoted by the vertical bars.
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4.3.2 FCF based bond length estimates

Based on these accurate measurements of the VTR, and a collaboration with theorist Professor

Ian Lane, we are able to make improved estimates for the length of the �2Σ+ state potential. Spec-

troscopy is able very accurately determine the energy difference between bound states, and this

constrains the shape of the potential curve, but the overall displacement is not experimentally ac-

cessible. This is discussed in Chapter 2 when I introduced the FCF. Based on these measurements,

Ian Lane was able to fit the bond equilibrium distance A4, that best fit our observations. We found

excellent agreement for the ground and A state, but a meaningful adjustment was required for the

B state compared to previous theoretical and experimental work.

Figure 4.15: VTR for various transitions as a function of an applied shift to the B2Σ+ bond length.
We see improved agreement with all three sets of measurements, for a shift of 1.5 pm. Here zero
shift is the ab-intio results of Ian lane, and A and B denote the experimental results of Appledblad
and Bernard.

71



The data, previous theory, and theory with the modified bond length are summarized in Table

1. We find both absorption measurements agree quite well with the new value, but the direct decay

measurement (with substantially larger error bars) disagrees slightly.

Electronic VTR0 Experimental Theoretical1 Proposed

transitions value

A2Π3/2← X2Σ+ q10/q00 0.037 ± 0.002 0.037 0.037

B2Σ+← X2Σ+ q10/q00 0.072 ± 0.006 0.059 0.076

B2Σ+← X2Σ+ q01/q11 0.115 ± 0.005 0.072 0.118

B2Σ+→ X2Σ+ q01/q00 0.092 ± 0.020 0.045 0.065

a J = 1/2← J =1/2 only for the absorption lines.

b Bernard et al [87] A4 value used

c With proposed +1.5 pm shift in B2Σ+ bond length

Table 4.1: Comparison between the present experimental measurements of the vibronic transition
ratios (VTRs) and the corrected theoretical results. @E′E′′ is the ratio of vibronic transition moments
between the E′th level in the excited state and the E′′th level in ground state. The difference in
equilibrium bond lengths between the ground and excited states, Δ (A4), is set at the value proposed
by Bernard et al for the theoretical values, and last column correspond to the longer excited bond
length proposed here.

This is a demonstration that tools beyond spectroscopy are very helpful to improve our un-

derstanding of molecular potentials, and this is not always utilized in the field. Branching ratios

can be very sensitive to on the difference in the equilibrium bond length between the excited and

ground state. For BaH’s B2Σ+ state a ΔA4 of 1-pm (0.5%) can have a 25% effect on the branching

ratios but only a 1% effect on the lifetime. Ian Lane was able to take these shifted potentials, and

produce an updated estimate for each decay pathway that is relevant to the experiment, as shown

in Table 4.2. As more molecule cooling experiments obtain these FCF measurements, there is an

opening for theorist to take this data and improve their models.
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Decay pathways
Final state E′′ A / s−1 Ratio / %

A2Π1/2 X2Σ+1/2 (# = 1) 0 7.23 × 106 98.772

E′ = 0 X2Σ+1/2 1 8.94 × 104 1.221

X2Σ+1/2 2 1.50 × 102 0.002

H2Δ3/2 (� = 3
2 ) 0 3.24 × 102 0.004

Lifetime (ns) 136.5

B2Σ+1/2 X2Σ+1/2 (# = 1) 0 7.61 × 106 95.312

E′ = 0 &12 4.13 × 106 51.704
%1 3.48 × 106 43.609

X2Σ+1/2 1 3.64 × 105 4.564

&12 2.88 × 105 3.611
%1 7.62 × 104 0.953

X2Σ+1/2 2 3.44 × 103 0.043

A2Π1/2 (� = 1
2 ) 0 1.48 × 103 0.019

A2Π1/2 (� = 3
2 ) 0 1.37 × 103 0.017

A2Π3/2 0 1.14 × 103 0.014
H2Δ3/2 0 2.39 × 103 0.030

Lifetime (ns) 125.1

A2Π1/2 X2Σ+1/2 (# = 1) 0 6.91 × 105 9.400

E′ = 1 X2Σ+1/2 1 6.47 × 106 87.952

X2Σ+1/2 2 1.93 × 105 2.633

X2Σ+1/2 3 5.60 × 102 0.008

A2Π1/2 (both �) 0 1.45 × 102 0.002
H2Δ3/2 (� = 3

2 ) 1 3.62 × 102 0.005

Lifetime (ns) 135.9

B2Σ+1/2 X2Σ+1/2 (# = 1) 0 8.81 × 105 11.595

E′ = 1 X2Σ+1/2 1 6.16 × 106 81.081

X2Σ+1/2 2 5.39 × 105 7.100

X2Σ+1/2 3 1.00 × 104 0.132

B2Σ+1/2 0 9.41 × 101 0.001

A2Π1/2 (both �) 0 5.88 × 102 0.008
A2Π1/2 1 2.63 × 103 0.035
A2Π3/2 (� = 3

2 ) 0 4.07 × 102 0.005
A2Π3/2 1 1.01 × 103 0.013
H2Δ3/2 1 2.24 × 103 0.029

Lifetime (ns) 131.7

Table 4.2: Radiative decay pathways from the lowest rovibronic states of B2Σ+ and A2Π1/2. A
is the Einstein � coefficient for each transition and Ratio is the value of RE′E′′. This data was
presented originally in [88]
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4.4 Detected BaH Transitions

Over the course of these studies, we were able to perform accurate measurements for a number

of transitions in BaH, beyond the accuracy of previous studies. Below is a summary of each

of these transitions, the previous measurements, and the difference we observed. This can help

serve more accurate determination of the BaH level structure, and to improve future estimates of

transition energies.
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BΣ(E = 1) BΣ(E = 1) AΠ3/2(E = 0) AΠ3/2(E = 1) AΠ1/2(E = 0) EΠ1/2(E = 0) EΠ1/2(E = 1)

XΣ(E = 0, � = 1/2) 905.296646 826.163909 1008.42539 909.215720 1060.78398 683.727374 632.427361

XΣ(E = 0, � = 3/2) 905.320245 826.183562 1008.45183 909.237214 1060.81324 683.740838 632.438881

XΣ(E = 1, � = 1/2) 1009.39451 911.995871 1139.29992 1014.26462 1206.58409 741.479507 681.527162

XΣ(E = 1, � = 3/2) 1009.42309 912.019205 1139.33367 1014.29137 1206.62194 741.494929 681.540191

Table 4.3: Values from previous spectroscopy and theory [89, 90]

BΣ(E = 0) BΣ(E = 1) AΠ3/2(E = 0) AΠ3/2(E = 1) AΠ1/2(E = 0) EΠ1/2(E = 0) EΠ1/2(E = 1)

XΣ(E = 0, � = 1/2) 905.29615 826.1642 1008.42120 909.2093 1060.7868 683.72754

XΣ(E = 0, � = 3/2) 905.31980 826.18390 1060.8191 683.74103

XΣ(E = 1, � = 1/2) 1009.3931 911.9957 681.52728

XΣ(E = 1, � = 3/2) 1009.42181

Table 4.4: Experimentally determined values, based on in-cell absorption spectra.
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BΣ(E = 0) BΣ(E = 1) AΠ3/2(E = 0) AΠ3/2(E = 1) AΠ1/2(E = 0) EΠ1/2(E = 0) EΠ1/2(E = 1)

XΣ(E = 0, � = 1/2) 182 -132 1236 2329 -751 -107

XΣ(E = 0, � = 3/2) 163 -149 -1562 -123

XΣ(E = 1, � = 1/2) 515 62 -76

XΣ(E = 1, � = 3/2) 380

Table 4.5: Theory experiment comparison, in MHz. Accuracy of experimental values is limited by linewdith of the states, and modestly

assumed to be on the order of ≈ 20"�I
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We see decent agreement for the �2Σ+, but the �2Π is quite a bit worse. Also note, there

are definite correlations between similar measurements, which would imply that we can make

improvements to some of the low j and low v theory for this molecule.
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Chapter 5: Molecular Beam Characterization and Spectroscopy Studies

While in-cell studies have a large SNR thanks to the high molecular density, helium collisions

limit the sort of physics we can study. In order to make high precision measurements, and op-

tically manipulate the sample, we need to avoid helium collisions. We achieve this by using the

cryogenic source, to generate a cryogenic beam. As the molecules travel away from the cell the

pressure rapidly drops, and we can enter a regime where background gas collisions are negligible.

This chapter I will discuss our beam system, and present a range of precision studies enabled by it.

These studies allow the accurate determination of molecular constants to improve our understand-

ing of the level structure.

5.1 Experimental Setup

5.1.1 Molecular Beam Baffles

For studies that require precise spectroscopy we found the addition of molecular baffles to be

vital. After several iterations we found that a baffle which protrudes into the interaction region

made alignment of the lasers to the molecular beam much easier. The edge of the baffle itself was

sharpened to a point, and the encasing structure had a series of fins cut out, to ensure there is as

little helium build up as possible. A CAD drawing, and installation image is show in Fig. 5.1.1.
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Figure 5.1: CAD drawing and photo of the molecular beam baffle system.

We saw a reduction in the total flux of about 6 when the baffle was installed, which is con-

sistent with the reduction expected from the geometric constraints. This indicates that additional

Helium collisions introduced by the baffle are not likely to limit the performance. The addition of

the molecular baffle was critical when optimizing the scattering rate, and observing optical manip-

ulation. Without the baffle installed we were unable to optimize the system, due to a large fraction

of the molecules that the cycling/cooling light never interacted with.

5.1.2 Fluorescence Collection

For studies in the molecular beam, we have two primary detection methods, PMT’s for time

sensitive analysis, and an EMCCD for spatially sensitive detection. The collection efficiency of

the PMT system is ≈ 2 times that of the EMCCD, due to the use of a spherical reflector, effectively

doubling the collection. Both systems required the chamber to be blackened, and extensive baffles

for the probe laser to be installed, as discussed in further detail in the Appendix. For a further

discussion of the imaging system used with the camera, see Chapter 6.
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Figure 5.2: Detection optics for the each system. Collimating lens are 2 inch diameter 60 mm
focal length biconvex lenses from Thorlabs, and the camera objective is a MVL35M1 fixed focal
lengths lens.

Several collection systems with a higher collection efficiency were also attempted, and designs

for one of the systems in provided in the Appendix. However, we found that these improved

collection systems also increased the background light scattering, and therefore the SNR was not

actually improved. Ways around this using a two photon detection scheme is discussed at the end

of this chapter.

5.2 Beam Characterization

In the context of creating samples of trapped ultracold molecules the most important molecular

beam properties are the flux, forward velocity distribution, and transverse temperature. We are

limited by the radial size of the slowing light so only the central portion of the beam can be

slowed. We are limited by interaction time, and the total distance of the slowing region, to only
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slow molecules below a fixed forward velocity. Finally, we always want to have as many molecules

as possible. These constraints drive the optimization we must perform for the molecular beam.

The molecular flux downstream from the source is detected via fluorescence with a PMT as

shown in Fig. 5.1.2. For characterizing the molecular beam in these studies we use a single-

frequency laser resonantly driving the #′′ = 1, �′′ = 1/2 spin-rotation level of the electronic

ground state to the #′ = 0, �′ = 1/2 level of the E2Π1/2 excited state. This means, for these

experiments, there is no optical cycling. Assuming that the molecules are equally distributed in

each hyperfine magnetic sublevel, we detect one third of the total molecules present in the #′′ = 1

rotational state. In addition, the probe laser intersects slightly less than a tenth of the molecular

beam cross-sectional area. The detection efficiency of the system is the product of the 2% PMT

quantum efficiency at 684 nm and the 2.5% geometric collection efficiency of the detection optics.

Each of these factors combined with the signal size of ∼ 500 PMT counts in the detection region

per ablation pulse yields approximately 4 × 107 molecules in the X2Σ+ (E′′ = 0, #′′ = 1) state per

pulse. Some of our ablation targets yield up to three times as many molecules.
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Figure 5.3: a) Measured forward velocity distributions of BaH molecules for various aperture
diameters. b) Measured forward velocity distributions of BaH molecules for a range of buffer gas
flow rates. Velocity distributions above ∼ 250 m/s (dashed line) are slightly less reliable due to
a moderate sensitivity on specific data cuts made to reject fluorescence noise from ablation light.
The inset shows the population below 100 m/s.

To determine the forward velocity distribution of the molecules, we make time-resolved molec-

ular density measurements 2 cm away from the cell exit via absorption spectroscopy and, simul-

taneously, downstream in the fluorescence detection region, using the X2Σ+ (E′′ = 0, #′′ = 1)

ground state. These two measurements of beam density as a function of time are deconvolved to

yield the forward velocity distribution in a process analogous to spatial time-of-flight analysis in

quantum gas experiments. The results of this analysis are given in Fig. 5.2 for various He flow

rates from 4.4 to 22 sccm. While the overall number of detected molecules per ablations pulse
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does not significantly vary in this range of flow rates, Fig. 5.2 and its inset show that the number

of slow molecules with forward velocities below 100 m/s doubles as the He flow is reduced from

22 to 4.4 sccm, reaching a fraction of ∼ 11%. At even lower flow rates the molecular flux begins

to degrade. It is evident from the data in Fig. 5.2 that while the low-velocity behavior is stable and

systematic in its dependence on the flow rate, the overall shape of the velocity distribution can be

affected by the particular choice of target or ablation spot, as is the case for the 17 sccm trace. The

velocity distributions above ∼ 250 m/s are slightly less reliable than those for lower velocities since

this signal comes from faster molecules arriving in the detection region very shortly after ablation,

while there is a minimum waiting time after ablation to begin detecting in order to avoid the stray

ablation light. The present configuration of the beam source was chosen to produce a maximized

number of molecules with velocities below 100 m/s, but could be further optimized by making

additional changes to the buffer-gas cell geometry. It is worth noting, that we see a substantially

faster beam for certain ablation spots, but this is typical performance for a “slow" spot.

In the fluorescence detection region we can limit the transverse temperature of the molecules to

0.1 K by comparing the expected natural linewidth of the B2Σ+ state [91] to the measured spectra

Fig 5.3.1. This cold transverse temperature is consistent with geometric constraints on the beam

and allows us to characterize the relevant properties of BaH at a higher optical resolution than was

previously possible, enabling direct measurements of hyperfine structure and molecular 6-factors,

as will be discussed later on.

Alternatively, we can also estimate the divergence angle of the molecular beam, by measuring

how the density of the beam decreases as it propagates, and the molecules spread out. To achieve

this, we performed a series of measurements using the same detection laser, and identical detection

systems at two points along the molecular beam 70 cm and 135 cm away from the source. By tak-

ing simultaneous measurements then swapping the detection systems to control for differences in

collection and detection efficiency of two systems, we can estimate the reduction in the molecular

density between these two regions. We start, by taking a simultaneous measurement in the first
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configuration, and obtain two signals.

B1 ∝ d2;>B4Ω0#<>;1

B2 ∝ d 5 0AΩ1#<>;1
(5.1)

Where d is the density in the two regions,Ω- is the total detection efficiency in region X and #<>;1

is the number of molecules generated in this first set of data. Because both regions use the same

detection laser this term is common to both measurements, so when we take a ratio of them (as we

will at the end) this dependence, as well as dependence of the flux of the molecular beam (#<>;1),

cancels. Now, we repeat the same measurement, by swap the A and B detection systems.

B3 ∝ d2;>B4Ω1#<>;2

B4 ∝ d 5 0AΩ0#<>;2
(5.2)

Here, the molecular flux may have changed, but again if we only consider the ratio of these two

signals, this dependence cancels. Finally, by multiplying the ratio of these two signals, we can

extract the relative molecular density in the two regions.

d2;>B4

d 5 0A
=

√
B1
B2
B3
B4

(5.3)

For this analysis, we simply integrate the signal over all time to get the total signal size for s for

each configuration.
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Figure 5.4: Fluorescence signals in the two detection regions, for both combinations of PMT’s

We find that the molecular density, is 38% lower at the far (135 cm) region, as compared to

the close (70 cm) region. This is quite encouraging, because it shows the molecules are quite well

collimated, and longer slowing regions are possible. This is consistent with blooming we would

expect, based solely on geometric constraints of the molecular beam.

5.3 In Beam Spectroscopy

In beam the low vacuum pressure and small transverse velocity enable high precision spec-

troscopy of the molecular transitions. This is critical because we need to understand the structure

of the molecule of interest, before attempting to cool and trap it.

5.3.1 Hyperfine Characterization

While BaH has been studied for over 100 years (we even used some papers in microfilm for the

Columbia Library), it is less well explored than other molecular candidates for laser cooling. The
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cold molecular beam we have built is well suited for optical spectroscopy to measure the hyperfine

structure of the ground and excited states.

The transverse Doppler width of the molecular beam in the fluorescence detection region, in

combination with our signal-to-noise ratio, allows us to resolve hyperfine energy splittings at the

∼ 4 MHz level. As mentioned, it is challenging to directly detect fluorescence from the A2Π1/2 or

B2Σ+ excited states due to their NIR emission. However, these states can be probed by optically

pumping molecules between the two ground-state spin-rotation levels (�′′ = 3/2 and �′′ = 1/2)

while detecting population in one of them via the X2Σ+← E2Π1/2 transition. This is possible due

to the highly favorable vibrational branching ratios of the A2Π1/2 and B2Σ+ excited states into the

ground state [92, 81].
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Figure 5.5: Hyperfine-structure-resolved energy levels and measurements for BaH electronic states
relevant to laser cooling. Four types of spectra are collected (labeled A, B, C, and D). In all
cases, detection is made by monitoring the fluorescence of molecules excited from the X2Σ+(#′′ =
1, �′′ = 1/2) ground state to the E2Π1/2 excited state, indicated by the dashed arrows. Transitions
labeled A and C show population enhancement due to pumping from the X2Σ+(#′′ = 1, �′′ = 3/2)
state via B2Σ+ or A2Π1/2. Transitions labeled B and D show population depletion due to pumping
out of the X2Σ+(#′′ = 1, �′′ = 1/2) state. The studied ground-state and excited-state hyperfine
intervals are marked as Δ6 or Δ4 in the diagrams and in the spectra.

Hyperfine structure measurements are outlined in Fig. 5.3.1 and the results are reported in
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Table 5.1. Four types of optical spectra were collected to fix the values of the four unknown hy-

perfine intervals. These are labeled A, B, C, and D in Fig. 5.3.1. In each of these experiments, the

X2Σ+(�′′ = 1/2) population is monitored by sending a 683.7268 nm laser beam through the de-

tection region and recording fluorescence from the spontaneous decay of the E2Π1/2 state. Several

beam waists upstream, a probe laser drives transitions from one of the ground electronic spin-

rotation levels through the B2Σ+ or A2Π1/2 excited state. The A and C transitions (905.3197

nm and 1060.8191 nm) enhance the detected fluorescence as the molecules get pumped from

the �′′ = 3/2 ground-state level to �′′ = 1/2, while the B and D transitions (905.2962 nm and

1060.7868 nm) decrease the fluorescence as the molecules are pumped out of the �′′ = 1/2 level.

Each data point in the spectra of Fig. 5.3.1 is an average of 5 ablation shots.

State Measured hyperfine spacing (MHz)

X2Σ+(�′′ = 1/2) −0(4)

X2Σ+(�′′ = 3/2) 39(4)

B2Σ+(�′ = 1/2) −52(5)

A2Π1/2(�′ = 1/2) 0(4)

Table 5.1: Measured hyperfine intervals for the electronic states of BaH that are relevant to laser
cooling. Negative values denote ‘flipped’ hyperfine structure.

The peaks and their spacing’s in the spectra can be identified by assuming an ordering for

the excited-state hyperfine structure and fitting the peak positions. The relative peak amplitudes

are given by the hyperfine level multiplicities, and are not independently fit. A correctly chosen

ordering yields peak spacing and heights that are consistent for all four data sets in Fig. 5.3.1. The

shown fits to the fluorescence spectra are constrained only by the expected peak height ratios. The

hyperfine structure data can be analyzed to extract molecular hyperfine constants which have been

previously measured for ground-state BaH in cryogenic solid argon [93]. Excluding negligible
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terms, the hyperfine structure of X2Σ+ is described by the Hamiltonian

�hf = 1�S · I + 2�I(I (5.4)

where 1� is the Fermi contact interaction constant, 2 is the dipolar coupling constant, and S and I

are the electronic and nuclear spin angular momenta. Each term in Eq. (5.4) can be evaluated as in

Sec. 9.5 of Ref. [94]. The resulting hyperfine interaction matrix elements for 2Σ+ states are

�hf =

©­­­­­­­­«

1�
4 +

2
20 0 0 0

0 − 1�5
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12
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Our hyperfine structure measurements yield 1� = 50(7) MHz and 2 = 39(8) MHz. The value for

1� is consistent with previous measurements of 47(2) MHz [93]. The value for 2, while lacking

previous reliable measurements, is consistent with those for other alkaline-earth-metal monohy-

drides [93].

The hyperfine structure results in Table 5.1 can guide experiments on radiation-pressure slow-

ing and cooling of BaH. For the lower spin-rotation level of the ground state (�′′ = 1/2) hyperfine

structure is unresolved, while for the higher level (�′′ = 3/2) the splitting is 39(4) MHz and can

be easily covered by sidebands imprinted on the laser light with standard techniques introduced

in Chapter 3. Hyperfine structure is also small, or on the order of the natural linewidth, in the

A2Π1/2 excited state as is the case for other diatomic molecules that have been investigated as

laser cooling candidates. This feature allows all excited-state sublevels to participate in optical

cycling, thus maximizing radiation pressure forces. The 52(5) MHz hyperfine interval in the B2Σ+

excited state is ∼ 30 times larger than the natural linewidth and is of a similar magnitude to that of

the ground-state �′′ = 3/2 level, such that the combination of the two can be easily managed.
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5.3.2 G Factor studies

Magnetic 6-factors are crucial for understanding magneto-optical trapping forces on molecules.

In particular, the trapping forces depend strongly on the ratios of the 6-factors in the ground and

excited states [95]. Here we report predictions and measurements of the relevant magnetic 6-

factors in BaH.The Zeeman shifts for 2Π states are strongly influenced by the parity dependent

contributions 6′
;
≈ ?

2� and 64
′
A ≈

@

�
, where ? and @ are the Λ-doubling constants and � is the

rotational constant. These constants have been measured in BaH for the A2Π1/2 excited state [89]

and for the detection state E2Π1/2 [96]. The matrix elements of the applicable Zeeman Hamiltonian

are expressed in Eq. (9.71) of Ref. [94], and the dominant parity dependent term can be described

with a single effective 6-factor as 6eff = (6′
;
− 64′A )/3. This contribution alone would result in a

6-factor value of −0.27 for A2Π1/2, while a purely semiclassical prediction would yield a value of

0. The predicted 6-factor, however, is −0.44 in this case, because additional contributions to 6eff

result from interactions between electronic states. In BaH, the lowest 53 excited states form an

interacting complex [90] where the strongest mixing is between B2Σ+ and A2Π1/2. This results in

an enhancement of the A2Π1/2 state 6-factor and a slight reduction of the B2Σ+ state 6-factor.
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State Measured 6eff Prediction
-2Σ+(#′′ = 1, �′′ = 1/2) −1.39(3) −1.4
-2Σ+(#′′ = 1, �′′ = 3/2) +0.56(10) +0.50
�2Σ+(#′ = 0, �′ = 1/2) +2.54(11) +2.86
�2Π1/2(#′ = 0, �′ = 1/2) −0.56(4) −0.44
�2Π1/2(#′ = 0, �′ = 1/2) −0.16(10) −0.04

Table 5.2: Measured and predicted effective 6-factors in the <� basis which is most pertinent to
the field regimes used in magneto-optical trapping.

Figure 5.6: Measured Zeeman shifts of the X2Σ+(�′′ = 3/2) magnetic sublevels, overlayed with
a prediction from the Zeeman Hamiltonian. Solid lines represent energies of the <� sublevels.
Shaded areas between pairs of sublevels emphasize structure that is spectroscopically unresolved
even if selection rules allow both sublevels to couple to the excited state.

While at very low magnetic fields it is natural to use the <� basis for the Zeeman interaction

Hamiltonian, at fields exceeding ∼ 10 G the Zeeman shifts are best described in the <� basis. As

a result, the reported factors 6eff describe the measured energy shifts for magnetic field strengths

of tens of gauss. These shifts are Δ� = 6eff`�<��, where � is the applied field and `� is the

Bohr magneton. High-resolution Zeeman spectra were collected for both excited states, for both

spin-rotation levels of the ground state, and for the E2Π1/2(#′ = 0, �′ = 1/2) state used in the

detection scheme. Figure 5.3.2 shows data for Zeeman shifts of the X2Σ+(�′′ = 3/2) ground state

sublevels, along with the prediction from the Zeeman Hamiltonian.
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The experimental results together with the predictions are listed in Table 5.2. For all exper-

iments, magnetic field was applied perpendicularly to the probe laser propagation direction and

calibrated in situ with a commercial gaussmeter. Measurements of the ground-state Zeeman shifts

were done via the X2Σ+ ← E2Π1/2 transition, where we could separately identify the ground and

excited state splittings, as well as the relative signs of their 6-factors, by switching the probe laser

polarization between c and f± transitions. The Zeeman shifts in the B2Σ+ and A2Π1/2 excited

states were measured via the fluorescence depletion method as in the hyperfine structure studies,

and polarization was again switched to drive c and f± transitions in order to determine the rela-

tive signs of all the 6-factors. To fix the absolute signs, a calibration measurement was made by

applying a magnetic field along the laser propagation axis and using circularly polarized light.

The results in Table 5.2 highlight an interesting difference in laser cooling prospects between

BaH and other diatomic molecules currently in use such as SrF [97] and CaF [98]. Unlike the

fluorides, BaH has a large magnetic moment in both excited states that could be used for optical

cycling, B2Σ+ and A2Π1/2. This could allow several approaches to magneto-optical trapping using

simpler MOT schemes than what is needed for the fluorides [95].

5.4 Cycling Detection Scheme

A complication of BaH, compared to other diatomic molecules currently being studied, is both

cycling transitions are in the NIR. For in-cell detection this is not a limiting feature, because photo

diodes sensitive to the NIR are readily available. However, for beam studies we need single photon

sensitive detection and in the NIR this requires extremely expensive cameras. To get around this

we use a higher lying state, the �Π state, which decays in the visible (680 nm) as was mentioned in

the previous discussions. However by only using one laser beam, we are limited in the fluorescence

signal we see, to less than one photon per molecule. The EΠ state does not have excellent FCF’s

so we are limited in the number of photons we can scatter to image the molecular beam, but we

can still see some cycling. By applying two lasers, and one EOM, we can improve the SNR and

scatter a handful of photons before the molecules decay to dark states. A schematic of this scheme,
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and the laser spectra used, is shown in fig.5.4

Figure 5.7: Level structure relevant for the fluorescence detection of the molecular beam. Side-
bands are generated using an EOM to address the J=3/2 hyperfine splitting.

With both lasers on resonance, we see a clear increase in the PMT counts as the molecular beam

passes through the detection region, compared to the background light that is introduced by the

detection lasers themselves. For PMT detection the SNR is primarily limited by this background

light, so further improvements to the light baffle system, or more complicated detection schemes

using two lasers have potential to improve the SNR. Schemes to achieve this are discussed later in

this chapter. An example TOF curve is shown in fig.5.4.

Figure 5.8: TOF signal using the EΠ state for detection. Typical region of interested used to
analyze these traces, is shown using the black bars. Early time data is sometime corrupted by
increased backgrounds introduced by the ablation laser, but this can be removed.

To confirm we are on resonance independent spectra of the two excitation lasers were per-
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formed and the results for the J=3/2 lase are shown if 5.4. For this spectra, the J=1/2 laser remains

on resonance, and we see that the symmetric sidebands on the J=3/2 laser optimize the signal when

the detuning between the two lasers matches the spin rotation splitting of 8.65 GHz.

Figure 5.9: Spectra taken with the EΠ(J=3/2) laser only. Multiple resonances are observed due to
the EOM sidebands overlapping with the molecular levels.

When the detuning between the two lasers in locked to this optimal value, we can sweep them

together to characterize how sensitive the detection is to the exact lock point of the lasers fig. 5.4.

Figure 5.10: Spectra obtained by sweeping the detuning of the both laser used for detection.

Finally, we can characterize the amount of photon cycling that occurs in the detection system,

by comparing the fluorescence when just one leg of the excitation laser is present, compared to the
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case when both are present. When only one laser is present, we expect to quickly pump into the

spin rotation state (either J=1/2 or J=3/2) that is not being addressed. By comparing the signal we

see in these two cases, to the signal when cycling is occurring, we can estimate that we scatter ≈ 3

photons per molecule. This is not a huge number, but greatly enhances the SNR.

Figure 5.11: Confirmation and quantification of cycling with the EΠ detection system. We find an
average scattering of ≈ 3 photons per molecule.

5.4.1 Biased Detection Issues

Beyond the SNR enhancement cycling is important for the �Π detection scheme because we

want our measurement to be a faithful measurement of the total population of the v=0 state. This

is critical for later measurements of photon cycling rates, and repumping efficiencies, and was an

early source of confusion in this work. When the sideband structure is not well optimized, you do

not detect each hyperfine manifold equally, and this can lead to apparent depletion/enhancement

of the v=0 state, that is actually attributable to a change in the population distribution in each

hyperfine state.
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Figure 5.12: EPi Spectra for different ground state distributions with un-optimized detection.
When Detection lasers are optimized, we see no change in the line center, and the collected counts
are a good measurement of the ground state population.

To illustrates this Fig.5.4.1 shows early data, before the �Π detection was optimized. By

pumping turning on one leg of the �Π laser light, the initial distribution of hyperfine states is

perturbed, and we measured a different apparent line center when sweeping the �Π laser across

the transition. This is a major problem because if we do not change the �Π detuning our data

becomes hard to interpret. After optimization, and the addition of a 3 MHz EOM broadening the

�Π detection lasers, we were able to solve this issue, and ensure a consistent interpretation of the

detected fluorescence as proportional to the total population in the ground state.

5.5 In Beam Re-pumping Detection

With precise measurements of the level structure and g-factor for the ground and relevant ex-

cited states, and a stable means of quantifying the v=0 population, we now move on to character-

ization of the repumping transition. In order to maximize the scattering rate we chose to repump

through the �Σ excited state while cycling on the �Π state. This means there is no direct coupling

between the ground and first vibrational levels, and the we do not double the number of effective

ground states. Previous spectroscopy of BaH provided estimated locations of the repumping tran-

sition, but with an uncertainty on the order of several GHz. We initially found the location of these
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states in Chapter 4, but precise measurements in beam are needed. For this search we monitored

the v=0 population using the �Π detection lasers, then directly pumped into the v=1 ground state

using an off diagonal transition (Fig 5.5). We then pump the molecules back to v=0.

Figure 5.13: Level of states and lasers used for the vibrational repumping search.

For the v=1 pump, we only had one laser, so we are unable to pump the ground state completely

to v=0 directly. Instead, we combined the v=1 pump light, resonant with the J=1/2 spin rotation leg,

with J=3/2 leg of the �Π cycling transition. This allows us to pump molecules into the J=1/2 state,

and then into the v=1 state, increasing the population we are able to transfer. A spectra showing

the depletion of the ground state with and without the additional �Π light is shown in Fig. 5.5.

Note that this data was taken on two different days so the total molecules number is different, and

the for the first spectra wee swept over a more narrow region, and did not resolve the hyperfine

splitting in the �Σ excited state.
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Figure 5.14: A) Depletion of the ground state, using only the X2Σ+(E = 0, 9 = 1/2) to B2Σ+(v=1)
pump laser. Note that we only deplete around half of the ground state, consistent with the state mul-
tiplicity. b) Depletion of the ground state with the additional X2Σ+(E = 0, 9 = 3/2) to A2Π(v=0)
laser. The additional laser allows us to reach almost complete depletion. The two transitions come
from hyperfine splitting the in �Σ state, as measured previously.

With confirmation that we can directly transfer ≈ 80% of the molecules into the v=1 state

(based on the depletion we see from the ground state) we can now try and put them back. By

sweeping each laser repumping independently, we can confirm the incell measurements, by looking

for an enhancement of the v=0 population when the repumping light is on resonance with either of
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the spin rotation components (Fig.5.5). We find the same results as incell, as expected.

Figure 5.15: Enhancement of the v=0 population, by repumping both spin rotation components of
the X2Σ+(E = 1) state. Spin rotation splitting matches what was previously measured in cell.

This is confirmation that we understand the vibrational splitting, and can achieve vibrational

repumping in beam, as well as incell. For this measurement we did not perform a careful measure-

ment of the repumping percentage, and the details of that will be discussed in the next chapter.
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5.6 Higher Lying States

In the interest of the eventual photo-dissociation of BaH, we must explore dissociation path-

way’s. The C2Σ+ state is a potentially good candidate because it is above the continuum (≈ 7400

2<−1 or 1350 nm), and it’s strong mixing with the D2Σ+ state means different vibrational levels

can have very different overlaps with the ground state and the continuum (Fig. 5.6.1). For this

purpose I will present all the data we have collected about the C2Σ+ state. This has the additional

benefit, of being a potential candidate for two photon detection, and therefor a background free

measurement.

Figure 5.16: Potentials from Ian Lane. Note the highly perturbed C2Σ+ state, which depending
on what vibrational level we consider, could have decent overlap with both the ground, and the
continuum.

We were able to collect three pieces of data about the C state of BaH. The first is an accurate
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measurement (within 10 MHz) of the A2Π1/2(#′′ = 0, � = 1/2) → C2Σ+(#′ = 1, � = 3/2)

transition energy, and therefore the most accurate measurement of the energy of this electronic

state. The second is an accurate measurement of the linewidth of the A2Π1/2(#′′ = 0, � = 1/2)

→ C2Σ+(#′ = 1, � = 3/2) transition. The third is a measurement of the saturation intensity of

this transition. As I will argue, the first two pieces of data are useful, and will help pin down the

nature of the C2Σ+ state. However, I do not believe we have enough data to get useful information

from the saturation intensity measurement. This because the C2Σ+ state is not well closed, and we

cannot isolate the effect of saturating the transition (in the sense that the Rabi rate is higher then

the decay rate) and saturation in the sense that the molecules are pumped into dark states during

the interaction time. If we repeated this experiment, and varied the interaction time to separate the

two effect, this may be possible.

5.6.1 State Assignment

The assignment of the observed resonance to the C2Σ+(#′ = 1, � = 3/2) is based on earlier

spectroscopy results from Kopp "Rotational analysis of the perturbed C and D states of BaH and

BaD" [89]. This paper is very useful, as it describes the energy levels of the highly perturbed C and

D states in BaH. To predict where the transition will occur, we took the provided term value for

the X2Σ+(# = 1, � = 1/2) state (587.57 2<−1), and the term value for the C2Σ+(#′ = 1, � = 3/2)

(24298.77 2<−1). This is a transition into the vibrational manifold the paper labels as the C0a

level, as their is a splitting in the ground vibrational level of the C state (labeled a and b). See

the paper for additional details. This term value and the precisely measures transition energy for

the X2Σ+(#′ = 1, � = 1/2) → A2Π1/2(#′′ = 0, � = 1/2) transition (9426.97 2<−1) allows us

to predict the energy for the A2Π1/2(#′′ = 0, � = 1/2) → C2Σ+(#′ = 1, � = 3/2) transition of

14284.2 2<−1 or 700.07259 =<.
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Figure 5.17: Level Structure for the experiments performed in this paper. Here all detection hap-
pens on decay from the C2Σ+ → X2Σ+ state, with dichroic filters blocking light from all other
decay paths.

5.6.2 Spectroscopy Results

Because we are monitoring decay from the C2Σ+ state directly, each spectra requires a two

photon transition. For each experiment, there are 3 frequencies present in the A2Π1/2 laser, in order

to efficiently excite every ground hyperfine state to the A2Π1/2 where it can in turn be excited to

the C2Σ+ state. We took spectra of the A2Π1/2 → C2Σ+ transition, for various A2Π1/2 → C2Σ+

powers, and X2Σ+ → A2Π1/2 powers to try and study any power dependence. We did not see

any but we can use the data to get a good estimate of the line center and the uncertainty in the

line center, by combining all the spectra. Here is one example spectra. For all of this data, the
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X2Σ+(#′ = 1, � = 1/2) → A2Π1/2(#′′ = 0, � = 1/2) Laser was fixed at 1060.78657 nm.

Figure 5.18: Binned data, and the best fit curve

We took a total of 6 good spectra for various values of X2Σ+ → A2Π1/2 and A2Π1/2 → C2Σ+

Power, and fit each to a Gaussian. Here is the spread in this fit location, about the average. Note

that each of these was taken for different powers, but no systematic dependence was found.
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Figure 5.19: 1 to 4 are various X2Σ+ → A2Π1/2 powers, 11-13 are for different A2Π1/2 → C2Σ+

powers.

If we average these best fit parameters for these spectra, we get an estimate of central wave-

length of 700.07155 ± 2 ∗ 10−5 nm. Which is a uncertainty of 10 MHz on this transition. This

means we know the X2Σ+(#′ = 1, � = 1/2) →-C2Σ+(#′′ = 1, � = 1/2) transition occurs at

421.741247 ± 3 ∗ 10−5 nm. Based on your exact assignment of the X2Σ+(#′ = 1, � = 1/2) term

value, this allows us to pin down the location of the C2Σ+ electronic levels. This is about 600

MHz away from the predicted transition energy, which is reasonably close given the accuracy of

the prediction.

5.6.3 Line Width and Saturation Intensity Theory

Before I present the data we collected on the linewdith and saturation intensity, I want to in-

troduce some theory results to give the data context. This is taken from a very relevant paper by

Michael Tarbutt "Lifetime of the A state and Franck-Condon factor of the � − - transition of CaF

measured by the saturation of laser-induced fluorescence". Interpreting the linewdith measure-

ments is straight forward, and gives us a direct estimate of the total decay constant for a state Γ
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and the states lifetime g

Γ =
1
g
. (5.5)

Analyzing the saturation intensity measurements is a bit more complicated. We can obtain an an

expression for the saturation intensity of a transition between a ground state with label i, and an

excited state labeled j based on the standard definition of saturation intensity.

�

�B
=

2Ω2

Γ2 (5.6)

Here � = 1
2n02�

2
0 is the intensity of the drive,Ω = �0I8 9/~ is the rabi rate (with I 9 : =

〈
9 |3̂.Î |:

�� 9 |3̂.Î |:〉
being the transition dipole element) and we can redefine Γ based on a sum of all the decay pathways

from the j’th state.

Γ =
1

c~n023

∑
:

l3
9 : I

2
9 : =

1
g

(5.7)

Now, we can directly measure Γ based on the measurement of the linewidth, and that gives us

experimental access to the value of this potentially very hard to calculate sum. By contrast, if we

instead consider the saturation intensity of a transition we can obtain a different expression.

�B =
1

425c2I2
8 9
n0

(∑
:

l3
9 : I

2
9 :

)2
(5.8)

To summarize the measurement of the linewidth gives us access to the value of the sum term

and to the lifetime of the state. The measurement of the saturation intensity gives us access to one

specific dipole transition element, assuming we can recover the value of the sum from the linewidth

measurement.

5.6.4 Line Width Results

Using the same data, we can also analyze the width of the A2Π1/2→ C2Σ+ transition, relative

to the X2Σ+ → A2Π1/2 transition. Again, we took this data for several different powers of both

lasers, and so no observable dependence.
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Figure 5.20: 1 to 4 are various X2Σ+ → A2Π1/2 powers, 11-13 are for different A2Π1/2 → C2Σ+

powers. Here we report the fitted FWHM of the distribution, and obtain similar values when a
functional form of a Gaussian, or Lorentizian in used.

Now, we can compare this width to X2Σ+ → A2Π1/2 width taken at lower power, which has

a width of 41 MHz (using data collected on the same day). This shows that the X2Σ+ → A2Π1/2

is broadened past the natural linewidth due to a combination of needing many side-bands, and

Doppler broadening (there was no aperture installed for this data collection period). Because the

A2Π1/2→ C2Σ+ is substantially broader than the X2Σ+→ A2Π1/2 this indicate that the C2Σ+ state

must have a shorter lifetime then the A2Π1/2 state. Averaging the widths we get 358 ± 15 MHz.

Similar (within error bars) fit parameters are obtained when the data is fit to either a Lorentzian

or a Gaussian, but we do not have the SNR to identify which functional form fits the data best.

This would indicate the lifetime of the C state is 4 ± .2 ∗ 10−10 seconds which is very short. One

caveat of this measurement, is there may be some hyperfine structure in the C2Σ+ excited state (the

hyperfine A2Π1/2 state is less than 4 MHz) which leads to a broadened transition. I would expect

the hyperfine splitting to be similar to the X2Σ+(# = 1, � = 3/2) and B2Σ+(# = 0, � = 1/2) states,

which is ≈ 40"�I, but I am not 100% sure.

106



5.6.5 Saturation Results

The last data point, we locked the lasers at the observed optimal values, then varied the power

for both the X2Σ+ → A2Π1/2 laser, and the A2Π1/2 → C2Σ+ laser. We then looked at the counts

observed on the PMT. We also used a camera to make sure the two beams were well coaligned, and

the same size (≈ 1 cm radius). This is a useful measurement for the X2Σ+ → A2Π1/2 transition,

because the closure of the state allows us to use the theory developed above. However, for the

C2Σ+ state (which is not closed) we cannot be sure we are measuring saturation in the sense of

sufficiently high rabi rate, or saturation in the sense of optical pumping into dark states, so the data

is very hard to interpret. However I have included the data, as it may be useful anyway.

Figure 5.21: It takes a very small amount of power, to saturate the AΠ transition. Here the A2Π1/2
→ C2Σ+ laser had 10 mW. With a measured beam radius of 1 cm, this corresponds to a saturation
intensity of 3.8,/<2
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Figure 5.22: Here we see it takes about twice the power to saturate the A2Π1/2→ C2Σ+ transition.
Here X2Σ+ → A2Π1/2 was set to 100 mW. With a beam radius of 1 cm, this corresponds to a
saturation intensity of 7.7,/<2

5.6.6 AΠ Benchmark

We independently know that AΠ state has a lifetime of 138 ns. This allows us to directly

estimate the value for the sum term presented before (and repeated below).

Γ =
1

c~n023

∑
:
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2
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g

(5.9)

We obtain
∑
: l

3
9 :
I2
9 :
= 5.8 ∗ 10−13 for this term. We can use this, to estimate the value of the

specific coupling between the X2Σ+→ A2Π1/2 state I8 9 = 1 ∗ 10−29. We also know one additional

thing about the AΠ state, which is that it is very diagonal, so we can reduce this sum down to a

single term reducing
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This allows us to do a sanity check, and estimate the saturation intensity a second way. Alterna-

tively you can think of this as way to calibrate the beam size based on a known transition. For a

beam radius of 1 cm, they agree very well (within 5%).

Another way to look at this result is as measurement of the closure of this state. We find the

contribution to the sum from this single term is 98% of the value of the total sum. This means the

FCF is something like 98%. This is a nice result, but the result depends on the measurement of the

beam width, which is very hard to do accurately, so I don’t trust it as much as other techniques.

5.6.7 A2Π1/2→ C2Σ+ Analysis

We can repeat the same analysis covered above, for the A2Π1/2 → C2Σ+ transition which we

know much less about. We obtain
∑
: l

3
9 :
I2
9 :
= 1.7∗10−10B−1 and I8 9 = 1∗10−27. However, there is

a problem with this analysis. Because we know the wavelength of the A2Π1/2→ C2Σ+ transition,

and have an estimate for the dipole element for this transition, we can calculate the contribution of

this one decay channel to the sum. We find, that this single term, is larger then our estimate for the

entire sum. Clearly this is nonsensical so something in the analysis must wrong. I believe it comes

down to the fact, that this analysis holds, when the interaction time is less than the time it takes to

deplete a state. Because the AΠ is pretty closed, this analysis works for that transition. However,

the C state is NOT closed, and has an extremely short lifetime, so we do not appear to be in that

limit.That means interpreting this measurement alone, cannot be used to get the dipole element.

We are only able to recover the energy of the state, and it’s lifetime, but this is still useful result

for theorist to help guide work on dissociation. A collaboration with Professor Ian Lane using this

measurement is ongoing.
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Chapter 6: Optical Cycling, and Vibrational Repumping

6.1 Optical Cycling

In order to optically manipulate an atomic or molecular species you need to scatter as many

photons as possible, in order to maximize the applied force. In this chapter I will introduce a

theoretically the requirements we must satisfy to maintain a high scattering rate, and then show

how optical cycling was experimentally obtained and optimized in our system. This represents a

shift in the work, from trying to understand the properties of BaH, to exploiting those properties.

Optical cycling is a prerequisite to laser cooling, laser slowing, and the eventually trapping in a

magneto-optical trap.

6.1.1 Rate Equation Formulation

Theoretically the goal of maintaining high scattering rate comes down to the ability to maintain

a large state population in the excited state. This provides a simple optimization that we can

consider when approaching a new system. In general, there are two approaches to study a system

like this theoretically. The first is the so called rate equation model where we model the evolution

of the system while neglecting any coherence in the system. This results in a system of coupled

ODE’s where each variable is the population of a specific state, and the couplings between states

are either spontaneous decay coupling excited states to ground states, or laser fields coupling two

states together. As a simple example we can express a driven two level system using the following
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set of ODE’s.

3d6 (C)
3C

= −Ωd6 (C) + (Γ +Ω)d4 (C)
3d4 (C)
3C

= Ωd6 (C) − (Γ +Ω)d4 (C)
(6.1)

Here the population of the excited (ground) state is denoted as d4 (d6). The spontaneous decay

rate of the excited state back to the ground state is Γ and the excitation rate (which drives both

stimulated absorption and stimulated emission) is Ω. Solving for the steady state population, with

the requirement that the total state population is one, we find.

d4 =
Ω

Γ + 2Ω
(6.2)

We see that as we increase the laser power (Ω) we not only increase the excitation, but we also

increase the stimulated decay. This results in a balance where in steady state we cannot fully

transfer the population to the excited state. This results in a maximum excited state population

of 1/2. In fact, it can be shown that the best you can do under strong coupling, is get an equal

population in each state. This means the maximum excited state fraction in general, is limited by

the number of excited states (#4) divided by the total number of state (#4 + #6). As discussed

in chapter two, the requirement of rotational closure limits optical cycling in diatomic molecules

to Δ# = −1 rotational transitions. This means there will always be more ground states than

excited states, and that reduces the scattering rate. This is also why we repump through a different

excited state than we cycle on, because if the repump lasers coupled to the same excited state that

effectively doubles the number of ground states and reduces the maximum scattering rate by 50%.

6.1.2 Linblad Master Equation

The rate equation is a very useful and very intuitive way to understand population dynamics in

driven systems, but it does have limitations, because it does not have any coherence. This is to say,
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we are talking about quantum states (d4 and d6) but this approach only relies on their population,

not their phase. The more complete approach is known as the Linblad master equation, based on

the density matrix formulation of quantum mechanics. To obtain accurate theoretical estimates

for the photon scattering rate we numerically solved the master equation for time evolution of the

density matrix d in the Lindblad form,

3d(C)
3C

= Ld(C), (6.3)

with L being the Lindblad superoperator of the form

Ld(C) = −8~[�, d] +
#2−1∑
8=1

W8

(
�8d�

†
8
− 1

2

{
�
†
8
�8, d

})
, (6.4)

where �8 belong to a set of orthonormal operators with eigenvalues W8 and # is number of states

included [99, 100]. We used jump operators as our orthonormal set [101], and in our case the

dissipative part of the superoperator included only effects of spontaneous emission: for a decay

from state |8〉 to | 5 〉 with rate Γ8→ 5 , we used �8→ 5 =
√
Γ8→ 5�8→ 5 =

√
Γ8→ 5 | 5 〉 〈8 |.

Practically, solving this equation for large systems is challenging and requires a modest amount

of computer time. In our group Konrad Wenz took point on these simulations and for details I

would refer you to his upcoming thesis. However, we can still tackle small systems analytically

and there are useful insights to be gained. For these calculations I used the excellent Atomic-

DensityMatrix Mathematica package to build these states, and solve for the resulting dynamics.

The poor performance of Mathematica on large numerical simulations limits the usefulness of this

technique to systems of ≈ 10 states, it is a great help to visualize and understand toy systems.

There are some interesting consequences one only appreciates when the full master equation

is considered, and I want to take a little time to discuss some toy systems that capture this. We

have not seen experimental signatures for some of these, but they have been observed in atomic

systems. Nevertheless, it is important to keep them in mind as they may observed in the future.

The core of these effects can be captured in two systems, a 3-1 (3 ground, 1 excited) state, and a _
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system usually discussed in the context of EIT.

6.1.3 3-1 System

The first toy model to consider is 3 ground states each coupled to a single excited state, that

decays equally to all three. This system is driven by a single laser field with a Rabi rateΩ0, there is

a symmetric splitting between the ground states of Δ6, and the excited state has a total decay rate

of Γ. This ground state splitting, can be thought of as Zeeman splitting. For clarity, this system is

shown in Fig. 6.1.3.

Figure 6.1: The 3-1 toy model for optical cycling in Δ� = −1 systems

Using the linblad master equation, we can solve for the steady state population distribution

of this system analytically. Because we are interested in the scattering rate, we can solve for the

excited state population (d4), and we find a simple expression, thanks to the relative simplicity of

this system.

d4 =
6Δ62Ω2

0

6(Γ2 + 4X2)Δ62 + 16Δ64 + 9Ω4
0

(6.5)

Immediately, we can draw some interesting insights. In steady state, if the ground states are degen-

erate (Δ6 = 0) there is no excited state population, and no scattering will occur. This is referred

to as dark state remixing, and there are several techniques available to break this degeneracy in-
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cluding microwaves and magnetic fields. In addition to this, we see an unexpected behavior as the

Rabi rate increases. In the limit of very strong drive (Ω0 >> Γ and Δ6) the scattering rate goes to

zero. So as compared to the two level system discussed previously, when there are more ground

states than excited states, increasing the drive power does not necessarily increase the scattering

rate. Exploring this we see there exist some optimal drive rate (at zero detuning) depending on the

exact splitting in ground state Fig 6.1.3. We see as expected, that the maximum population is .25

(1/(1 + 3)) but this is only true for a range of splittings and drive rates.

Figure 6.2: Steady state excited fraction for various splittings and Rabi rates. The Rabi rate is
expressed in units of Γ. We see for small splittings reduced optimal scattering, and a non-montonic
dependence on the Rabi rate, which is not captured in more simple systems.

In general, it seems that a Rabi rate comparable to the ground state splitting leads to the highest

scattering. More explicitly, when X = 0, we can solve for the optimal Rabi rate as a function of the

ground state splitting.

Ω<0G0 =
21/4(3Γ2Δ62 + 8Δ64)1/4

√
3

(6.6)

This result is for a toy model with equal couplings but the result holds for more realistic systems

(BaH included) that are less analytically friendly. The lesson here is that higher power doesn’t
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equate to increased scattering.There has to be a balance of the splittings, and the drive intensity,

that is not present in more traditional cycling systems with more excited states than ground states.

The analogy between this system in our molecule, is for the hyperfine levels on the ground state.

6.1.4 Λ System

We now move to classic system in atomic research, commonly referred to as the Λ system.

Here, we have two well separated ground states, each driven with a independent optical field with

a Rabi rate of Ω- and detuning from resonance of X- . Schematically this is shown in Fig. 6.1.4.

For this discussion, the two optical fields are coherent with each other.

Figure 6.3: The lambda system with unequal detunings and drive intensity.

We can solve this system analytically, using the simplification that the Rabi rates for each laser

are equal (Ω0) to keep things simple, and find the steady state excited population.

d4 =
(X1 − X2)2Ω2

0

(X1 − X2)2(Γ2 + 2(X2
1 + X

2
2)) + (X1 − X2)2Ω2

0 +Ω
4
0

(6.7)

Again, we can immediately see some interesting behavior. In the limit where the two detunings

are equal (X1 = X2), the steady state population of the excited state is zero, regardless of any other

parameters. This implies that if we set the sidebands from our lasers exactly equal to the hyperfine

splitting we will see reduced scattering. We also see that as the drive power goes to infinity, the
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scattering rate go to zero. Exploring the detuning dependence (Fig. 6.1.4) we can see asymmetric

detuning leads to the optimal scattering rate, but again this is all power dependent.

Figure 6.4: Maximum excited state population when Ω1 = Ω2 = 1Γ. Notice that asymmetric
detuning leads to the optimal scattering rate.

The lesson here is that just putting everything on resonance, is not always what will lead to

the optimized scattering rate. Everything must be in balance, and all rates must be comparable.

We have seen limited evidence that these effects have limited our experimental efforts, but they

have been observed in some systems, and I want to emphasize their presence, which is not widely

appreciated.

6.1.5 Full System

With help from Konrad Wenz, we are also able to simulate the response of the full system.

Here, we neglect decay to first vibrational level, and have lasers resonant with the �Π state as

shown in Fig.6.1.5. Side-bands are generated with an AOM with 38 MHz detuning. This generates

an additional off resonant sideband, that we include in the simulation as well.
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Figure 6.5: Level Structure and laser spectra used for optical cycling studies.

The simulation results in Fig. 6.1.5 were performed with the � = 1/2 light on resonance with

Rabi rate Ω = 13 Γ and a background magnetic field � = 9 G. Both lasers have linear polarization

perpendicular to each other, and the � = 1/2 laser polarization was at an angle of 1 rad with respect

to the quantization axis defined by the magnetic field. Magnetic field and laser polarization were

assumed to lie in the same plane.
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Figure 6.6: Average scattering rate in the BaH model as a function of the Rabi rate and detuning
of the � = 3/2 light. Notice, that we see an optimal scattering rate when the J3/2 laser is off
resonance by ≈ −5Γ. We also see the non-monotonic dependence of drive intensity present in
simpler systems.

In our calculations we included both spin-rotational manifolds � = 1/2 and � = 3/2 in the

E′′ = 0 vibrational state of the -2Σ+ ground electronic state with all the hyperfine levels and the

�′ = 1/2 rotational manifold of the �2Π1/2 excited electronic state. We have also assumed no

decay into higher vibrational states (F00 = 1). Having set up the equations, we also performed an

optimization of the average scattering rate over the experimental interaction time ) ,

Γ =
∑
8

1
)

∫ )

0
d4848 (C)Γ3C, (6.8)

where the sum is over all excited states decaying with the same rate Γ. To find the maximum scat-

tering possible, an optimization was performed with respect to the Rabi rate for the
��-2Σ+; � = 1/2

〉
to

���2Π1/2; � = 1/2
〉

transition, Rabi rate for the
��-2Σ+; � = 3/2

〉
to

���2Π1/2; � = 1/2
〉

transition,

detunings of both transitions, polarization of the light fields, and the background magnetic field

responsible for dark state remixing. Given the experimental constraints, we found the maximum

achievable average scattering rate of Γ ≈ Γ/5.21, which agrees well with the highest scattering
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rate we achieved in the experiment (see Sec. 2).

In Fig. 6.1.5 we observe that the scattering rate is highest for relatively large Rabi rates, which

can be expected since the excitation rates have to match remixing rates in order to reach optimal

values [102]. We also see that, because of the nature of our coupling scheme where we effectively

create a Λ-type system with many more ground states than excited states, having both lasers on

resonance is detrimental to achieving high scattering rates.

We find that a lot of the dynamics I present in the toy models, are also present in the full

system. The optimal detuning actually occurs when the lasers are off resonance, and increasing

the laser power past a given point, leads to reduced scattering. After an optimization over the full

parameter space, we found that the highest steady state population we could achieve, was actually

.2, reduced from what you would expect based on the rate equation model. I think comes from the

fact, that some of the splittings (the hyperfine splitting in particular) is out of our control, and leads

so “imperfect" values that are inherent to BaH. We are unable to confirm some predictions from

this model, due to limited SNR, and imperfect control over experimental parameters (B-Field in

particular) and limited laser power. A major takeaway from this numerical work, is the importance

of optimizing each parameter in the full system. It is not enough to scan the transition then lock

the laser, you should vary and optimize each set point, and the sidebands in order to maximize the

scattering rate, and that is exactly what we did.

6.2 Experimental Optimization

The first step in achieving laser control and cooling of molecular motion is to establish repeated

scattering of photons (optical cycling) and characterize dominant loss channels. As discussed pre-

viously our detection scheme relies on a non-cycling transition at 683 nm, necessitating a different

approach to characterizing the photon scattering dynamics for the main laser cooling transition at

1060 nm. The experimental setup used for characterizing the (0, 0) -2Σ+ ↔ �2Π1/2 scattering

rate is shown in Fig. 6.2(a): the (0, 1) -2Σ+ → �2Σ+ repumping light (orange) was blocked, and

the number of passes of the (0, 0) -2Σ+ → �2Π1/2 laser (blue) was varied from zero to ∼ 20
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passes. The 1060 nm laser beam was alternated between “on" and “off" to account for any drift in

the molecular beam yield, and each data point is the average of 200 molecular beam pulses. These

depletion measurements were performed with a total power of 100 mW (30 mW for repumping)

divided evenly between each hyperfine component. Accounting for the beam forward velocity

(160 ± 40 m/s [103]) and the measured diameter of the laser beam (1.5 ± 0.1 mm), we can convert

the number of passes to the molecule-light interaction time. As seen from the error bars in Fig.

6.2(c,d), this conversion is the dominant source of uncertainty, primarily because of the substantial

spread in the beam forward velocity. We can estimate the number of photons scattered (#scat)

based on the fraction of molecules that remain in ground vibrational state (%E=0), and the known

diagonal FCF F00 from previous measurements [104, 88]. Figure 6.2(b) provides a representative

ToF data for an unperturbed BaH beam (blue) and with the (0, 0) -2Σ+ → �2Π1/2 cycling laser on

(orange) resulting in 15% of the molecules remaining in E′′ = 0 at the detection region. We found

no significant dependence of the scattering rate on an applied magnetic field used to destabilize the

dark states, most likely because residual field in the interaction region of a few Gauss was sufficient

to cause a dark state precession rate comparable to the excitation rate (∼ 106 s-1).

Following Di Rosa [105], we model the repeated spontaneous emission events by a molecule

as a Bernoulli sequence with probability ? = 1−F00 that decay will result in populating an excited

vibrational level E′′ > 0. The probability that a molecule initially in the vibrational ground state

will still be in E′′ = 0 after scattering #scat photons is given by:

%E′′=0 = (F00)#scat . (6.9)

Therefore, we can convert the fraction %E′′=0 into the number of scattered photons for the remaining

molecules:

#scat =
log %E′′=0
logF00

. (6.10)

The expectation value of #scat for a molecular ensemble can be estimated by modeling the photon

scattering process before the molecule is optically pumped into E′′ = 1 as a geometric distribution
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with the expected value of

〈#scat〉 =
1

1 − F00
≈ 80, (6.11)

and the standard deviation in #scat of

f#scat =

√
F00

1 − F00
≈ 80. (6.12)

Equation 6.10 allows us to estimate the photon scattering rate for the molecules remaining in E′′ = 0

as a function of the laser interaction time, #scat = 'scatCint. However, as shown in equations 6.11

and 6.12, for any specific molecule there is a wide range of actual number of scattering events,

meaning this setup would not be efficient for optical manipulation, as a wide range in transverse

momentum would be imparted. As shown in Fig. 6.2(c), a constant scattering rate of 1.4(1)×106/s

can be maintained, which is ∼ 80% of the expected maximum scattering rate 'scat,max based on the

ground and excited state multiplicities,

'scat,max =
1
gsp

=4

=4 + =6
= 1.8 × 106/s, (6.13)

where gsp = 136.5 ns [88] is the spontaneous excited state lifetime and =6 (=4) is the number of

ground (excited) <� magnetic sublevels. While Eq. (6.13) provides a useful way to approximate

the maximum possible scattering rate for molecules, our estimates for the achievable scattering rate

in the experiment using both a multilevel rate equation model as well as an optimized numerical

simulation of the full system using the Lindblad master equation predict 'OBE ≈ 1.4 × 106 s-1.

The data presented in Fig. 6.2(c) shows that we achieve 'scat ≈ 0.96'OBE in this experimental

configuration with maximum interaction time Cint ≈ 900gsp. However, we were not able to obtain

this high scattering rate for deflection and slowing experiments, instead only obtaining ≈ 60% of

the maximum value. We attribute this to reduction in scattering rate due to slower then optimal

repumping, or presence of dark states we were unable to remix efficiently. We find good agreement

with the full simulation, which is about 25% lower than the rate equation solution.
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Figure 6.7: (a) Diagram of the experimental setup showing the spatially separated depletion and
clean-up (CU) regions, followed by (0, 0) -2Σ+ → �2Π1/2 fluorescence detection. b) Example
time-of-flight signals for the unperturbed (AΠ off), depleted (AΠ on), and vibrationally repumped
(AΠ on and CU on) molecular beam signals. c) Scattering rate for the (0, 0) -2Σ+ → �2Π1/2
transition, based on depletion of E′′ = 0 population as a function of interaction time. Blue points
and band represent the data and the 1f uncertainty from a linear fit. Green (slope 1.84 × 106

s-1) and red (slope 1.41 × 106 s-1) lines show the theoretical estimates obtained from Eq. 6.13 d)
Estimation of scattering rate for the repumping transition based on repopulation of the E′′ = 0 state.
We find a rate of 1.25 × 105 photons/s.

Our measurement of the scattering rate relies on (1, 0) -2Σ+ ← �2Π1/2 being the dominant

loss mechanism out of the quasi-cycling transition. As shown in Fig. 6.2(b), with an addition of the

(0, 1) -2Σ+ → �2Σ+ repumping laser in the “clean-up” region, we return most of the molecules

(green curve) back into the ground vibrational level. The �2Σ+ (E′ = 0) state has a good Franck-

Condon overlap with -2Σ+ (E′′ = 0) (F00 = 0.953 [88]) so molecules excited to this state decay to

the desired ground state |E′′ = 0, #′′ = 1〉 with a 95% probability. In order to determine the photon

scattering rate for the (0, 1) -2Σ+ → �2Σ+ repumping transition, we begin by depleting E′′ = 0
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on the main cycling transition (0, 0) -2Σ+ → �2Π1/2 at the maximum interaction time. Then in

a separate region (Fig. 6.2(a)) we apply the repumping light, while varying the number of passes

through the molecular beam. Because F00 ≈ 1 for the (0, 0) -2Σ+ ← �2Σ+ transition, it will only

take 1/F00 ≈1 photon scattered from the repumping laser to optically pump a molecule back to

E′′ = 0. As shown in Fig. 6.2(d), we model the interaction time required for scattering one photon

in the CU region as an exponential distribution with a cumulative distribution function given as

#scat = #offset (1 − exp{−'scatCint}), which becomes #scat ≈ #offset'scatCint for Cint � 1/'scat and

allows us to extract a scattering rate of 1.3(2) × 105 s-1. Note that an offset (#offset) is included

in the fit to account for imperfect alignment of the CU laser and the depletion laser in Fig. 6.2(d),

resulting in incomplete vibrational repumping. For perfect alignment, we would expect #offset = 1,

and for the fit shown, we obtain #offset = 0.9±0.1, indicating that we repump almost all molecules.

Since 'scat ∝ fabs�0 and the resonant absorption cross section depends on the corresponding

FCF fabs ∝ FE′′E′, the scattering rate will be lower for the off-diagonal transition for a given laser

intensity �0. However, using the experimentally measured 'scat for the main cycling (0, 0) -2Σ+ →

�2Π1/2 excitation, together with the estimate of the off-diagonal FCF F01 ≈ 0.012, we determine

that the rate of optical pumping into the excited vibrational level E′′ = 1 in the optical cycling

region (∼ 1.7 × 104 s−1) is a factor of 7 less than our measured repumping rate, indicating that

there is sufficient repumping laser intensity to rapidly return the molecules into the optical cycle.

We attribute the incomplete repumping for long interaction times to imperfect alignment of the

repumping laser relative to the molecular beam, and not to loss to E = 2. This is because when

repumping light is co-aligned with the A2Π1/2 light, no increase in this offset is observed, even

though more photons are scattered per molecules, and therefore more opportunities to scatter to

E = 2 occur. This rate is sufficiently high to maintain fast scattering given the small probability of

decay to E = 1, and is limited by laser power (total power of ≈ 100 mW at the chamber).
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6.3 Sustained Cycling in a Longitudinal Configuration

We have confirmed optical cycling for ∼ 80 photons via depletion as well as transverse de-

flection of the molecular beam (see chapter 7). However, for slowing the beam to a magneto-

optical trap (MOT) capture velocity over 30,000 photons need to be scattered in a longitudinal

configuration. To demonstrate that we can maintain optical cycling for BaH in a slowing setup,

we performed experiments with the cooling and repumping light counter-propagating against the

molecular beam. The (0, 0) -2Σ+ → �2Π1/2 main cycling and (0, 1) -2Σ+ → �2Σ+ repuming

light were both detuned to address a central velocity class of 140 m/s and broadened with a series

of three EOMs (2, 5, and 15 MHz) until the observed laser spectrum was approximately flat on a

scanning Fabry-Perot cavity, with a FWHM of ∼ 70 MHz. This so-called “white light” slowing

[106, 107] allows the laser light to be resonant with a majority of the forward velocity distribution

of the cryogenic molecular beam.

To study the scattering rate, we monitored the instantaneous -2Σ+(E′′ = 0) population at two

points along the molecular beam propagation direction as a function of the A2Π1/2 light power, al-

ternating the A2Π1/2 light on and off every shot. By taking the ratio of consecutive shots we reduce

our sensitivity to molecular beam fluctuations and can isolate the effect of the A2Π1/2 light (Fig.

6.3(a)). Because we detect molecules with the excitation to the E2Π1/2 state, while simultaneously

cycling on the (0, 0) -2Σ+ ↔ �2Π1/2 transition, we can observe the instantaneous vibrational

ground state fraction 75 cm and 150 cm from the beam source; the presence of optical cycling will

manifest as a reduction in the fraction of molecules residing in E′′ = 0. While for laser powers be-

low 90 mW the measured E′′ = 0 population fraction is the same for both regions, for high A2Π1/2

light powers (>90 mW) we observe a E′′ = 0 population of 49± 3% in the near region and 37± 4%

in the far region (Fig. 6.3(b)). Using ab initio calculations that utilized spectroscopically accurate

molecular potentials for BaH [88], we attribute this population decrease to a combined loss into

the -2Σ+(E′′ = 2) excited vibrational state and �2Δ3/2 metastable electronic state. We experi-

mentally confirmed there is no dependence of the signal in the far region, on the presence of the
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E2Π1/2 laser in the close detection region. Based on the previous measurements and calculations

of the BaH vibrational branching ratios [88], this E′′ = 0 population reduction allows us to estimate

∼ 4, 500 scattering events between the near and far regions or ∼ 8, 500 total photon cycles. Given

the time it takes the average molecule to reach the far detection region (11 ms), this gives a rate

of 'scat ∼ 8 × 105 photons/s, consistent with what we measured using transverse beam deflection

(Chapter 7). We see equal depletion for the full ToF beam profile, which indicates that we are able

to maintain this high scattering rate for all forward velocities despite the additional complexity of

achieving rapid photon cycling in the slowing configuration.

The data in Fig. 6.3(b) suggests that the scattering rate bottleneck in this measurement is the

repumping rate out of the E′′ = 1 state. If the repumping light power was not limiting the overall

scattering rate, there would be very little population in the -2Σ+(E = 1) state as we are decou-

pling the cycling and repumping lasers using two different electronic states. The main cycling

- − � laser light couples 12 ground state to 4 excited state sublevels, making 75% an expected

population fraction residing in -2Σ+(E′′ = 0) in a steady-state cycling configuration. Combin-

ing the -2Σ+(E′′ = 0) population measurement with the measured scattering rate from Sec. 6.1,

we can estimate state population of 50%, 37.5% and 12.5% for the -2Σ+(E = 0), -2Σ+(E = 1)

and �2Π1/2(E = 0) states, respectively. This reduction of the excited state population from the

maximum attainable value of 25% to 12.5% leads to a reduction in the scattering rate to a value of

'scat ∼ 9×105 photons/s, consistent with the estimate based on the molecule loss to -2Σ+(E′′ = 2)

and �2Δ3/2. This reduced repumping rate is not entirely understood, and is not a product of insuf-

ficient RP power, because saturation is clearly observed Fig.6.3.
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Figure 6.8: a) Schematic of the experimental setup for the slowing experiment. The instantaneous
E′′ = 0 population is measured in two locations, 75 cm and 140 cm downstream from the molecular
source. b) Fractional population of E′′ = 0 for a range of (0, 0) -2Σ+ → �2Π1/2 light powers, with
the (0, 1) -2Σ+ → �2Σ+ power fixed at 100 mW. This measurement, shown for both the close and
far locations, yields the average scattering rate in two ways, as described in the text.

Figure 6.9: Measured saturation of the repumpng transition in a slowing configuration. Power is
split evenly between each hyperfine state, and the total power is reported.

This high number of observed photon scattering events implies a reduction in the average beam

velocity of ∼ 25 m/s, or ∼ 15%. Unfortunately, the current apparatus is not capable of Doppler-

sensitive forward velocity measurements since the narrow linewidth of the cooling transition and

the large spread in forward velocities would reduce the signal-to-noise ratio by a factor of ∼ 20. A

planned upgrade using two-photon detection via a higher-lying electronic state, combined with a

high-solid-angle detection system, should make this possible. See appendix for details.
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Chapter 7: Optical Manipulation and Cooling

7.1 Camera and Beam Imaging

Cooling and deflection of the molecular beam require spatially sensitive measurements to quan-

tify the shape and position of the molecular beam. Thankfully, the cycling transition we used for

PMT detection (683 nm) allows a range of single photon sensitive cameras to be used. Due to the

extremely low light levels, and the desire to bin multiple pixels together, we went with an Andor

Ixon EMCCD camera. The EM gain and controllable hardware binning allow us to suppress read

noise and maintain as high an SNR as possible. For the imaging we used a two component system

with 60 mm biconvex lens collecting and collimating the light from the detection region and a

MVL35M1 fixed focal lengths lens to image the collimated light onto the focal array. To calibrate

and focus the lens we broke vacuum and inserted an 8-32 screw into the center of the detection re-

gion. This allows us to focus the system onto the expected image plane, and the known periodicity

of the screw allowed us to calibrate the mm/px amplification.
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Figure 7.1: Image of the screw, and the resulting 2D cut. We find the conversion to be .020 pixels
per mm, with an uncertainty of around 2%.

In front of the final lens, we placed a Semrock band-pass filter to limit background light from

the room. One advantage of a camera, compared to a PMT, is the spatial information allows an

additional way to suppress background light introduced by the probe laser. In Fig. 7.1 You can see

3 images, background only, background and signal, and the background subtracted result. In these

images, the molecular beam is heading upwards from the bottom to the top of the page. Because

we are imaging the fluorescence, the resulting image is the overlap between the Gaussian laser

beam, and the collimated molecular beam.
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Figure 7.2: Images taken with an EMCCD gain of 800, and 16x16 hardware binning to improve
the SNR a) Raw image of the molecular beam b) Raw image taken 30 mS after the ablation pulse,
collecting only stray light. c) Background subtracted image, showing only the fluorescence from
the molecules.

Once the background subtracted image was obtained we used a variety of analysis techniques

to extract the spatial properties of the beam. The first technique, was to fit the image directly to a

2D Gaussian, and use the central location and width. This worked best for seeing relatively small

changes in the width. We also analyzed some of the data by binning the 2D image, down into a 1D

cut across the molecular beam. We found that this binning worked well when there was relatively

low SNR.
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7.2 Radiative Deflection

The depletion-based scattering measurements described in chapter 6 provide strong evidence

that we maintain a sufficiently high scattering rate in the optical cycling region to pump most of the

molecules from the E′′ = 0 vibrational manifold into E′′ = 1. Moreover, we achieve a repumping

rate that is significantly higher than the rate of optical pumping into E′′ = 1. Therefore, by merging

both (0, 0) -2Σ+ → �2Π1/2 main and (0, 1) -2Σ+ → �2Σ+ repumping lasers (Fig. 7.2(a)) we

expect to deflect the BaH molecular beam using the radiation pressure force. In this experiment,

the deflection laser passes through the vacuum chamber perpendicular to the molecular beam and

strikes a 90◦ mirror prism (a hollow rooftop mirror, HRM) which reflects the light back through the

vacuum chamber but displaced downward by ∼ 2 cm, thus traversing below the molecular beam.

The light then strikes another 90◦ mirror prism that translates the beam upward and redirects it

back through the molecules, deflecting the molecular beam in the same direction as the first pass

(Fig. 7.2(b)). The process is repeated & 10 times to increase the interaction time while maximizing

the laser intensity. Since the number of mirror bounces is doubled in order to propagate the light

from a single direction and because the reflectivity AHRM < Amirror, the effective molecule-light

interaction time is shorter than in the depletion studies. This experiment was performed with the

same beam size and power as the scattering rate measurements in chapter 6.
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Figure 7.3: a) Schematic of the beam deflection experiment. In the first interaction region, the
molecular beam interacts with both the cooling and the repumping light, with each pass coming
from the same direction, with each pass spatially separated from the preceding pass in a “zig zag"
pattern. The molecules then enter a clean-up region where they are pumped back to E′′ = 0, and
subsequently a detection region 75 cm away where their spatial location is imaged on an EMCCD
camera. b) Diagram of the mirror prisms that allow the laser light to interact with the molecular
beam while always traveling in the same direction. c) Measured deflection of the molecular beam,
where the deflection light is either blocked or applied, showing the statistical uncertainty. Each
point is the average of ∼ 200 images. d) Taking 1D cuts of each beam image, combining them,
and applying a smoothing average filter allows us to visualize the 1 mm beam deflection.

Figures 7.2(c,d) summarize the radiative deflection experiments for BaH. The magnitude of the

displacement is determined by fitting the molecular beam images to a 2D Gaussian distribution and

monitoring the fitted center of the molecular beam with and without the deflection light. Quoted

error bars are determined based on the statistical fit uncertainty. By using the change in the fitted

center of the whole molecular beam we provide a conservative lower bound on the number of

scattered photons per molecule. The measured center-of-mass molecular beam deflection is ∼ 1

mm, which is consistent with each molecule scattering ∼ 80 photons at the average rate of 8 × 105
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photons/s. A number of experimental differences could explain why this scattering rate is 40%

slower than that measured via depletion experiments: i) slower than anticipated repumping in

the main region, ii) the presence of transverse Doppler shifts,and iii) the presence of imperfectly

remixed “dark” states which do not play a dominant role in depletion experiments. Importantly,

we do not see a statistically significant increase in the width of the molecular beam (Fig. 7.2(d)),

indicating consistent scattering for each detected molecule. The scattering rate of 8 × 105 s-1

extracted from the deflection of the molecular beam accurately represents the scattering rate that

we can achieve and maintain for the entire ensemble of molecules.

7.3 Transverse Laser Cooling

While laser deflection results presented in Sec.7.2 provide a valuable benchmark for the de-

velopment of radiative slowing of BaH molecules, the data does not demonstrate a decrease in

the entropy of the molecular ensemble (as can be seen from the beam widths in Fig. 7.2(d)).

To achieve a reduction in transverse velocity spread for the molecular beam, we establish a 1D

standing light wave intersecting the molecular beam (Fig. 7.3(a)). Figure 7.3(b) demonstrates ef-

fective transverse temperature of the molecular beam as a function of the common detuning for

the (0, 0) -2Σ+ → �2Π1/2 cooling laser with the repumping (0, 1) -2Σ+ → �2Σ+ laser fixed on

resonance. We observe broadening of the molecular beam for red-detuned laser frequencies and

narrowing for blue-detuned frequencies, consistent with Sisyphus laser heating and cooling of the

ensemble, respectively [108, 109, 110, 111].

To estimate the temperature of the beam we performed Monte Carlo simulations of the molec-

ular beams spatial propagation. We begin with molecules uniformly sampled across a 5 mm radius

circle (the size of the collimation aperture in the experiment). We then give each molecule a

transverse velocity (sampling from a Maxwell-Boltzman distribution at a fixed temperature), and

propagate them from the collimation aperture, through the interaction region where they feel the

optical force, and into the detection region at a typical forward velocity. Based on the width of the

distribution at the detection region, relative to the 5 mm width defined at the aperture, we can ex-
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tract the effective transverse temperature. For example, if the transverse temperature is effectively

zero, the beam will not expand at all, and will remain 5 mm wide. This allows us to map a relation-

ship between a measured width, and an effective transverse temperature. Sisyphus cooling applied

over a 3 cm long interaction region reduced the effective transverse temperature by ∼ 25%, from 20

mK to 15 mK, as shown in Fig. 7.3(b). This experiment and simulations were performed with the

same beam size and power as the depletion experiments in Sec. 6.1. We benchmark the strength

of the Sisyphus cooling force by comparing a Monte Carlo simulation with only Doppler cooling

to one with both Doppler and Sisyphus cooling. We find that the at the experimentally determined

optimal detuning of 5 MHz the magnitude of the damping coefficient for the Sisyphus force is

∼ 5.6 ± 1.7 times greater than Doppler, with error dominated by fit uncertainty. This explains why

we were unable to observe Doppler cooling, because the signature is below the signal-to-noise

ratio. The experimental power and optimal detuning corresponds to a damping coefficient with a

magnitude of 330 ± 100 s-1 for Sisyphus cooling.

Figure 7.4: a) Experimental diagram showing the standing wave generated by the cooling light
that includes both the cycling and repumping lasers. Before molecules enter the detection region,
they are optically pumped back to E′′ = 0 using the off-diagonal (0, 1) -2Σ+ → �2Σ+ excitation.
b) Effective transverse temperature as a function of the common detuning of both spin-rotation
components of the (0, 0) -2Σ+ → �2Π1/2 cooling lasers. The blue (gray) dashed lines are the
result of a Monte Carlo simulation of Sisyphus (Doppler) cooling of the molecular beam, [112].
The only free parameter in the fit is the amplitude of the Sisyphus force relative to Doppler.
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7.4 Imaging Anomalies

In the course of optimizing and and investigating optical manipulation, several interesting and

unexpected signatures were discovered. While these may not be of immediate scientific impor-

tance, I think an explanation of them is useful to help other groups who may see similar signatures.

7.4.1 Anomalous Transverse Displacement

While attempting to observe Doppler cooling of the BaH beam, we have observed a systematic

shift in the molecular beam position as shown in Fig. 7.4.1. The small natural linewidth of the

cooling transition (Γnat/2c ≈ 1.2 MHz) leads to an acute dependence of the cycling rate on the

alignment and detuning of the cooling laser relative to the molecular beam (Fig. 7.4.1(a)). The

asymmetric Doppler shifts lead to a unidirectional deflection of the molecular beam in the cooling

configuration (Fig. 7.4.1(b)), where the direction of the deflection depends on the alignment angle

as shown in the data in Fig. 7.4.1(c). While such shifts were not important for transverse beam

cooling of molecules with larger natural linewidth like SrF [110] and SrOH [108], a pronounced

effect for misalignment of < 1◦ observed in our work indicates that a careful geometry optimiza-

tion will be required for performing precision spectroscopy for molecular beams of laser-coolable

molecules with Γnat/2c ≈ 1 MHz (e.g. TlF [113] or TlCN [114]). For a two level system, we can

provide a simplified model of this effect as shown in Fig. 7.4.1(d). This model uses a realistic

Rabi rate for our experiment, and realistic distribution of forward velocity. Force imbalance (Δ�)

is based on the detuning dependent force from the left �; (X) (right �A (X)) propagating laser beam:

Δ� =
<0G(�; (X)) − <0G(�A (X))

<0G(�; (X), �A (X))
. (7.1)

We see that even small angular misalignment can lead to large imbalance in the maximum force

pushing the beam to either direction. As shown in Fig. 7.4.1(d) an imbalance as large as 60% is

possible for even a small misalignment of 1 degree. This is consistent with the data showing a 0.6

mm deflection in Fig. 7.4.1(c), and the maximum deflection of 1 mm we observed in Fig. 7.2.
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Figure 7.5: a) A misalignment of the molecular beam relative to the multi-passed cooling laser. q
is the unavoidable angle present in the system to allow multiple passes, and \ is the misalignment
between the parallel retroreflecting mirrors and the molecular beam. This misalignment results in
different projections of the light propagation vectors onto the molecular beam forward velocity. b)
Measured position and width of the molecular beam in a Doppler cooling configuration. The data
shows a displacement due to a finite angular misalignment \. The three peaks are due to hyperfine
structure of the cycling transition and the laser sidebands used to address them. c) As \ is varied
in a controlled way, it can be experimentally minimized by zeroing the molecular beam deflection.
d) A model accounting for the spread in the molecular beam’s forward velocity can explain the
observed beam deflection. Here, the imbalance is defined as the difference between the optimal
force for each laser beam’s direction divided by the maximum force.

7.4.2 Anomalous Longitudinal Displacement

When imaging, the region we expect light to originate from is the overlap of the probe laser

with the molecular beam. Because the probe laser is stationary,] you would naively expect the

position and width along that dimension to be fixed, and depend only on of the alignment of the

camera relative to the probe beam and the width of the probe beam. However, as was discussed

previously in chapter 6, cycling on the detection transition is not a pure representation of the ground

state population, and depends on the exact distribution of ground states the molecule has when it
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is detected. If a given state scatters photons more quickly before it is pumped into dark states, that

will result in a shift of the observed center of the image towards the molecular source, and reduce

the width. This is because the molecules will only scatter when they first enter the probe region. A

similar argument can shift the observed center of the beam away from the source and broaden it, if

the molecules scatter more slowly. This was observed experimentally as we varied the cycling laser

detuning and changed the distribution of states the molecules had when they entered the detection

region (Fig. 7.4.2).

Figure 7.6: The exact spin rotation distribution effects of location and width of the imaged beam.
This is along the propagation direction of the molecular beam. Different detunings, lead to one
or the other spin roation state being preferentially populated, and that changes how the beam is
imaged. This is not important for our experiment, but highlights that care must be taken in detecting
the molecular beam, and could introduce systematic effects in other experiments.

This can important to consider when analyzing data generated in these experiments as this

change must be accounted for. We found that two dimensional fits lead to better results, and I think

this is one of the reasons why. Simply compressing the data into one dimension doesn’t capture

the full behavior. This also shows that for detection, we are not in a steady state, and steady states

in general can take long time to reach for these complex systems. Exploring this in more detail,

we can pump the molecules entirely into either the J=1/2 or J=3/2 spin rotation state, and compare

an image of the molecules starting in that state, compared to an even distribution Fig.7.4.2.
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Figure 7.7: Gray contours show the unperturbed beam images, and the colored contours show the
beam images when the molecules are pumped into either the J=1/2 or J=3/2 spin rotation state.
Notice a horizontal displacement in either direction, based on which states are populated

We see a small, but noticeable shift in the center as predicted. This indicates that the J=3/2 state

has faster scattering in this measurement, as the center is shifted closer to the molecular source.

This result is not general and depends on the details of the detection laser, which were fixed for

this measurement. However, short of actively balancing the power of the two detection lasers, this

sort of effect will remain present.

7.5 Simulated Magneto Optical Trapping

In order to characterize the feasibility for magneto-optical trapping for BaH molecules, we per-

form studies of confining forces using numerical solutions of the multilevel rate equation model

following the framework presented in Ref. [95] and later used to model the MgF MOT properties

[115]. These simulations will not capture coherent effects, but have been proven to accurately

model MOT behavior in existing experiments. The simulation included =6 = 12 magnetic sub-

levels of the #′′ = 1 rotational manifold in the vibronic ground state (Fig. 5.6.1(b)), =4 = 4
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magnetic sublevels of the �′ = 1/2 manifold (�′ = 0, 1) of the E′ = 0 vibrational level of the

excited �2Π1/2 electronic state, and between three and six light frequency components from each

direction. Because of the complex interplay between the ground and excited state 6-factors as well

as the specific nature of spacings between the hyperfine components in the ground vibronic state,

a detailed numerical study is necessary in order to identify the optimal laser polarization structure

and detunings [95]. Depending on whether the current in magnetic field coils used for MOT oper-

ation is static (DC) or alternating (AC), there are two types of molecular MOT operating regimes,

correspondingly [116, 117]. Moreover, in order to enhance the confining force in the DC MOT

configuration, both “blue” and “red” detuned laser beam components can be applied resulting in a

dual-frequency DC MOT [118].
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Figure 7.8: Calculated BaH MOT confining (a) and cooling (b) characteristics for different polar-
ization configurations for DC or AC MOT operation. The order of circular polarization labels in
the legend starts with the lowest hyperfine substate, i.e. (−, +, +, +) = (− for �′′ = 1/2, �′′ = 1; +
for �′′ = 1/2, �′′ = 0; + for �′′ = 3/2, �′′ = 1; + for �′′ = 3/2, �′′ = 2) and (+, +,−) = (+ for
�′′ = 1/2, �′′ = 1; + for �′′ = 3/2, �′′ = 1; − for �′′ = 3/2, �′′ = 2). For the dual-frequency DC
operation, two frequency components separated by approximately 3 Γsp were applied.

Following earlier work [118, 95, 115], we present the strength of the achievable BaH magneto-

optical trapping configurations by plotting molecular acceleration as a function of (a) the distance
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to the trap center for the E = 0 velocity class, and (b) as a function of the velocity for a fixed

position slightly displaced from the trap center (3 = 0.1 mm), in order to have a well defined

quantization axis set by the direction of the magnetic field.

Figure 7.5 provides a summary of the predicted acceleration profiles as a function of distance

to the MOT center (for E = 0 m/s) and molecular velocity (for 3 = 0.1 mm) under experimental

conditions approximating those in the experiments above (%tot = 200 mW and 1-inch 1/e2-diameter

laser beams) and previously achieved in molecular MOT experiments (15 G/cm magnetic field

gradient [119]). By comparing different MOT operation parameters (varying the number of laser

frequencies and polarization settings) and configurations (AC vs DC vs DC dual-frequency), we

conclude that the AC MOT has the highest potential for future trapping of BaH molecules providing

both the highest peak deceleration (∼ 2 km/s2) and the largest velocity range affected by the MOT

potential (up to ∼ 15 m/s). We determine that the optimal polarization setting for the AC MOT is

the same as that used for capturing CaF molecules [119].

A unique property of BaH that distinguishes it from other molecules to which magneto-optical

forces have been applied (SrF [120], CaF [119], YO [34, 121] and CaOH [122]) is that a large

excited state 6-factor (6eff ≈ −0.51 for the �2Π1/2 state [103]), arising from a strong mixing

with the adjacent �2Σ+ electronic state, is approximately the same as that of the ground state

(6eff ≈ +0.56 for �′′ = 3/2 [103]). Based on the model proposed in Ref. [95], it was anticipated

that the DC configuration will lead to strong MOT confining forces for BaH molecules [103].

However, as can be seen from Fig. 7.5(a), a complex interplay between the Zeeman shifts for the

ground and excited magnetic sublevels contributes to a relatively weak confining force with an

undesirable spatial structure with a repulsive trap center and a small effective velocity range (Fig.

7.5(b)). It was previously shown that for molecules with small Zeeman shifts in the excited state

(like CaF [95] and MgF [115]), the “dual-frequency" contribution to the MOT forces far outweighs

the confining effects arising from non-zero 6-factors in the excited state. As can be seen from Fig.

7.5, using the dual-frequency method outlined in Ref. [118] we can significantly improve the BaH

MOT properties. However, in order to obtain a large velocity capture range, the use of the AC
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MOT configuration is necessary.

Estimation of escape and capture velocities (Eesc, Ecap) are experimentally relevant ways to

characterize the magneto-optical trapping potential. 3D MOT capture velocities have been mea-

sured for CaF (Ecap ≈ 11 m/s) [123] and SrF (Ecap ≈ 5 m/s) molecules [124] and provide useful

benchmarks for our calculations. Previously it has been experimentally observed that an approx-

imately linear relationship can be established between the MOT capture and escape velocities,

Ecap = 1Eesc, with a proportionality coefficient 1 & 1 [125, 126]. Figure 7.5 presents the simulated

trajectories of BaH molecules that start at the geometric center of the MOT, for different initial

velocities. As shown in the plotted curves, we estimate Eesc for the BaH AC MOT to be ∼ 3 m/s,

leading to the MOT capture velocity ∼ 3.5 m/s.1
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Figure 7.9: Trajectories of BaH molecules inside a magneto-optical trapping potential, starting
from the trap center with different initial velocities. From these trajectories, we estimate the MOT
escape velocity to be Eesc ≈ 3 m/s. The simulations are performed for the AC MOT configuration
in Fig. 7.5(b).

Large vibrational spacing for diatomic monohydrides (MH) compared to monofluorides (MF)

1Previously, the proportionality coefficient 1 has been measured to be 1.2 − 1.4 [125, 126, 127].
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and monohydroxides (MOH) will lead to enhanced vibrational decay from the E′′ = 1 levels pop-

ulated during the MOT loading process. Previous accurate ab initio calculations for BaH predict

spontaneous vibrational lifetime for E′′ = 1, #′′ = 1 state of gvib = 12.6 ms [88]. In order to

understand the time evolution of BaH trajectories inside a magneto-optical potential for different

initial velocities, we plotted both trapped and untrapped BaH trajectories in Fig. 7.5 with the time

information provided as a color gradient. In order to minimize the loss of molecules to dark rota-

tional sublevels due to spontaneous vibrational decay, one would ideally transfer BaH molecules

from a MOT into a conservative magnetic [33, 128] or optical [129] trap within the first ∼ 10 ms

of capturing them in a MOT. However, if one can minimize the population in the E′′ = 1 state by

using a large amount of re-pump light this requirement could be avoided. This means that for BaH

you must re-pump with a different excited state than you cycle on, otherwise all ground states will

be evenly occupied, and this mechanism will be a dominant source of loss.
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Figure 7.10: Simulated time evolution of BaH molecules inside a magneto-optical trapping po-
tential for different initial velocities starting at the trap center for (a) trapped and (b) untrapped
trajectories. Color gradient scale provides time information not available in Fig. 7.5.
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7.6 Simulated Slowing

One of the primary barriers for the magneto-optical trapping of molecules is the efficient slow-

ing of the molecular beam. This has proven to be a bottleneck in other experiments, and a potential

limit as the field becomes interested in larger, and more exotic molecular candidates. While we

were unable to observe slowing in BaH, I think a brief discussion and comparison of the various

slowing techniques is worth the time to benchmark their performance, and to help guide the design

of future experiments.

To model slowing we use a Monte-Carlo simulation similar to the one used in modeling Sisy-

phus cooling. We use forward velocity distribution that matches previous measurements (discussed

in chapter 5) and limit the total laser power available for cooling to 1 Watt. This is the amount of

power readily available from an NKT fiber amplifier we have in the lab. For simulations I dis-

cuss here the molecules are assumed to be very well collimated and transverse blooming of the

beam during the slowing process is ignored. Therefore the slowing efficiency is an upper bound.

We do not solve the full rate equation or Linblad equation for this simulations, and instead use

a scaled two level system, greatly reducing the computational complexity. The maximum attain-

able force is limited by the maximum attainable scattering rate, which is 8 × 105 photons/s in the

pushing/slowing configuration. The change in a velocity from a single scattering event is given

by the recoil velocity EA = ℎ
_"�0�

= .272</B. Combining these two terms we find the maximum

experimentally obtained acceleration in our system is 2200 </B2. This is below the theoretical

maximum, but multiple groups have been unable to achieve the theoretical maximum scattering

rate in these experiments, and being conservative is important for experimental design. This pro-

vides a benchmark for what we can achieve, based on what we have already demonstrated.

7.6.1 White Light Slowing

This first slowing scheme we investigate, is known as white light slowing. For this technique,

the cooling laser is detuned relative to the transition, and then spectrally broadened by a series

142



of over-driven EOM (see chapter 3). If properly setup, this can take a single laser, and allow it

to address a large range of velocity classes. This is needed, because we want to be able to slow

the beam to rest, and a single laser by itself is in capable of this. The force profile used in these

simulations, is shown in Fig 7.11.

Figure 7.11: Acceleration generated for a white light slowing configuration. The fall off around

v=0 is essential, as it allows molecules to bunch at low velocity, and compresses the velocity

distribution.

This profile is generated using 75 sidebands, each separated by 3 MHz, and a detuning from

resonance of 120 MHz. The exact shape may be different based on the exact EOM setup used,

but the results are not sensitive to these details. The total laser power is limited to 1 Watt, and

the slowing beam has a radius is 13 mm. A relative large beam is required, to match the slowing

volume with the size of the MOT. Note, that the force profile falls off around zero velocity, allowing

molecules to accumulate. This is important because if the force profile is flat across the entire

range there is no phase space compression, and MOT loading is very inefficient. We need as many

molecules as possible to enter the MOT region, with a velocity below the capture velocity. If

we do not have any phase space compression only a tiny subset of the molecules will meet these

requirements, due to the low capture velocity.

After ablation, we can model the evolution of the molecular velocity distribution, by enacting
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this force profile on an ensemble of particles selected from the forward velocity distribution Fig

7.12a). The simulation uses newton’s method to directly propagate the molecules, under the force

profile defined in Fig 7.11. We see an initial evolution of constant slowing across the ensemble

as expected, but for later times an accumulation around v=0. This shows efficient compression of

the beam in velocity space, based on where the edge of the force profile is placed, which is easily

controlled in the lab.

Figure 7.12: a) Evolution of the forward velocity distribution under whitelight slowing. after 60

ms we see substantial compression of the initial distribution. b) Evolution of the position of the

molecules in the beam. We see a wide spread, and no compression.

However, when we observe the spatial distribution of the molecules (Fig. 7.12b) we see a dif-

ferent story. Unlike the velocity distribution there is nothing encouraging compression in position

space and this leads to a large spread. To determine the optimal MOT location, we vary the location

of the MOT along the molecular beam axis. We then calculate the percentage of the molecules that

enter the variable trap position, with a velocity below the capture velocity. Based on simulation

discussed above, the trap is assumed to have a radius of 13 mm, and a capture velocity of 3.5 m/s.

We use hard cutoffs to determine whether a particular molecules is captured, which is not entirely

accurate, but is a useful approximation.
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Figure 7.13: Capture probability for an AC MOT (as simulated previously) for white light slowing

of BaH. We see a low capture percentage, due to the small capture velocity of the MOT, and

because the relatively long time it takes to slow leads to the molecules spreading out in space.

We find relatively consistent MOT loading, for a range of MOT positions between 1.5 and 3

meters. Because this simulation does not account for the finite transverse spread in the beam it is

likely that 1.5 is better because shorter slowing distances lead to less blooming. 3% is a relatively

low capture probability, and will be a substantial bottleneck in the system. To benchmark this code

I also ran simulations for CaH (an alternative candidate we are exploring) and CaF a molecule

that has been successfully slowed and trapped by a number of groups. For these molecules cap-

ture efficiencies as high as 30% are possible and require a substantially shorter slowing distance.

This is due to higher scattering rate, lower mass and shorter wavelength cycling transition. These

simulation helped motivate a switch to CaH, that is currently in process.

7.6.2 Chirped Slowing

Another slowing scheme that has been used in the field, is that of chirped slowing. Here, instead

of broadening the laser to address multiple velocity classes at once, the laser is swept (or chirped)

to maintain resonance as the molecules are slowed. The primary advantage of this technique is that

because the laser does not need to be broadened out, the power requirements are much lower. This
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also means a wider velocity class can be slowed for a fixed laser power. For some molecules with

a lack of high power laser options, this makes the technique very attractive. However for BaH we

have plenty of power so it is less of an issue.

The laser for this technique has the same size and power as for white light slowing, but we

will sweep it from an initial detuning of 150 MHz, to a final detuning of 0MHz at a rate of (240

MHz)/(100 mS). This is an easily achievable chirp, either through a current sweep of the laser

diodes themselves, or with a double passes AOM setup. The chirp speed here is limited by the force

we can apply to the molecules. Chirp too slow, and the cooling distance is elongated unnecessarily.

If you chirp too fast, the force will be too small to keep the molecules on resonant, and they will

leak out of the system. This chirp rate was determined by optimizing the system, and is consistent

with back of the envelope estimates based on the maximum acceleration.

Figure 7.14: Initial and final acceleration profiles for the laser used in chirp slowing. This beam

is swept 150 MHz in total, at a rate of (240 MHz)/(100 ms). Due to the high power, we expect

substantial power broadening, ans that is apparent in the two level scaled model.

Now, as the laser sweeps across the velocity distribution, we see a clear compression just as

we expected Fig. 7.15 a. We also see that the spatial distributions are not quite as broad (relatively

speaking) as for white light slowing, but that this technique requires almost twice the slowing

distance. This means that blooming will be a larger issue, and we are starting to get to slowing
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distances that are unfeasible experimentally. It all has to fit inside a room after all.

Figure 7.15: a) Evolution of the forward velocity distribution under chirped slowing. We see as

the laser is swept strong compression occurs, and is eventually concentrated at low velocities b)

Evolution of the position of the molecules in the beam.

It is worth emphasizing here, that this increased slowing distance is entirely expected. For

white light slowing each molecule will feel the slowing force immediately, until it is slowed below

the cutoff. Here, only a range of molecules will feel the force at any given time, and most of

them will keep traveling unperturbed. White light slowing, for this region, is able to slow more

efficiently.

Now, we can again see what MOT capture we are able to achieve, and how long a slowing

region chirped slowing would require Fig. 7.16. We find that chirped slowing is able to capture

about half the molecules, at a distance that is twice as far.
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Figure 7.16: We see that chirped slowing has a worse capture percentage. This is because the

spatial spread of the beam is even more pronounced, because not all of the molecules feel the force

at the same time, and therefore it takes longer to slow. This long slowing distance would make

chirped slowing challenging.

While chirped slowing can be tailored to focus on slower molecules, by changing the initial

detuning, I focused on settings that allowed the entire beam to be cooled for comparisons sake.

For white light slowing no such trade-off exists because we have sufficient laser power to address

all the velocity classes at once. The slow molecules take less distance to slow so if we put the

MOT chamber closer, they are the ones we capture. The inverse applies to the fast molecules, so

all that matters is the capture percentage in optimizing the distance. For these reasons, I believe

that white light slowing is preferred for BaH. However, simulation with experimentally achievable

powers for CaH, indicate that white light slowing is not feasible. Instead, for that system, chirped

slowing is clearly preferred, and capture probabilities of 70% are possible. This simulation show

that BaH is a challenging candidate for slowing using traditional techniques. However, the large

laser power make it an ideal test-bed for coherent slowing techniques, as discussed in our recent

paper.
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Chapter 8: Kinematic Detection of Scalar Dark Matter

8.1 Niche Dark Matter Searches

The direct detection of dark matter is among the best motivated search for physics beyond

the standard model. There is an abundance of cosmological evidence for its existence, yet we

have been unable to probe its nature in the laboratory. As the search for WIMPs approaches

the background limits set by neutrino interactions [130], it has become increasingly important

to consider a broader range of models and experimental platforms. However, when one starts

considering the extremely broad range of candidates, it becomes clear that financial limitations will

be a major constraint. It is therefore important to be as efficient as possible to try and maximize

the range of these searches. This logic has lead to an explosion of smaller scale experiments,

each interested in searching for one specific model, a collection of which are cited here [131,

132, 133, 134, 135, 136, 137, 138]. However, in addition to a range of new detection ideas, we

can also ask how existing measurements can be re-purposed. This is very cost effective, as no

hardware development is needed, and a graduate student’s time is cheap. Several examples of

these reanalysis style searches are cited here [139, 140, 141], but the best known is the search for

ultralight dark matter using GPS satellites [142].

One category of these less common models attributes DM to the existence of an ultralight field

with mass ranging from 10−22 to 104 eV. An example of such a field is the axion [143] which has

been the focus of tremendous experimental effort [144]. These searches are also performed using

modern atomic clocks, but this is happy coincidence, and not the primary motivation for building

better clocks so I do not consider these experiments to be “dedicated" searches.
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8.2 Quadratic Scalar Dark Matter

Here, I will discuss the details of a proposed detection scheme based on a new phenomenolog-

ical signature. For some models dark matter forms inhomogeneous clumps that couple to standard

model particles in such a way that it changes the apparent value of fundamental constant. An anal-

ogy of this, would be the effective mass of a charge carrier changing based on the interactions inside

a conductor. These changes in fundamental constant would in turn cause anomalous accelerations

we can measure in the lab, using superconducting gravimeters (SCG) in the IGETS network, and

with gravitational wave detectors such as LIGO and LISA. This search technique complements

existing efforts to detect spatially structured ultralight DM using atomic clocks [145, 146, 142,

147] and atomic magnetometers [148, 149, 149, 150, 151, 152]. We point out (as derived in Eq.

(8.11)) that a large enhancement can be achieved with these proposed acceleration measurements

for a range of domain wall sizes 3: in terms of the fractional change in a fundamental constant, n ,

the acceleration scales as n22/3. While 2D (sheet-like), 1D (line-like), and 0D (point-like) spatial

distributions of ultralight scalar fields are possible in stable formations, we focus on the domain

wall (2D) distribution [153].

8.2.1 Quadratic scalar couplings and fundamental constants

For this work, We focus on fields with quadratic scalar couplings to the Standard Model because

limits on linear scalar coupling are already stringent, and derivative couplings are better suited

for spin-dependent searches [152]. Neglecting interactions at lower orders, we can denote the

interaction Lagrangian between an ultralight DM field at a specific position and time, q(A, C), and

any Standard Model (SM) field as

−L�"−(" = q2(A, C)
(
Γ 5< 5 2

2k̄ 5k 5 −
ΓU

4
�`a�

`a + ...
)
, (8.1)

where < 5 and k 5 are the mass and field for each fermion (with an implied sum over the fermions),

�`a is the electromagnetic tensor, and Γ- is the coupling constant between the -th component of
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SM field and the DM field. Comparing this to the SM Lagrangian

−L(" = < 5 2
2k̄ 5k 5 +

1
4
�`a�

`a + ..., (8.2)

we observe that to lowest order this DM-SM interaction acts by changing the effective value of the

coupling constant for each field. Stated another way, the presence of the DM field has the effect of

shifting the apparent values of fundamental constants in the following way:

U4 5 5 = U

(
1

1 − ΓUq(A, C)2

)
≈ U(1 + ΓUq(A, C)2), (8.3)

<
4 5 5

5
= < 5 (1 + Γ 5 q(A, C)2), (8.4)

where < 5 can refer to the mass of the electron, proton, or neutron (the three terms our measure-

ment will be sensitive to), and U is the fine-structure constant which captures the strength of the

electromagnetic interaction. This type of interaction, will be the focus of the detection scheme I

propose here.

It is worth taking a second here, to emphasize some subtle issues when taking about changes

in fundamental constants. Conventional wisdom says that you can only talk about unitless funda-

mental constants changing, but in the equations above I also include Fermion masses. In this case

I am not talking about the bare value of the fundamental constant, I am talking about the effective

value. This means what matters is <4 5 5 /<10A4 which is itself unitless. This applies to spatial

variations, as well as time averaged variations, where we can discuss the instantaneous value, over

the average value. This distinction was discussed at length in a very good paper by Jun Ye and

Dimitry Budker[154], and I think it clarifies the issue quite well. This logic applied to the search

at hand, means we are looking for changes in the effective value of the constant inside a clump of

dark matter, compared to value in vacuum.
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8.2.2 Frequency Domain Searches

In the case where Dark matter is distributed evenly, or approximately evenly, throughout the

galaxy these ultralight fields are spatially coherent with a wavelength given by the Compton wave-

length. Because of this a detector travelling through this medium will see a coherent oscillation

in the field density, and therefore a coherent oscillation in some fundamental constant, that the

sensor may be able to resolve. From a detection standpoint this means a frequency domain search

is every will suited because you will be looking for a very narrow band signal, and this greatly

improves the detection capability. This is also powerful because, in my opinion, detection will

need to be made by several independent experiments to be reliable. The fact that these exper-

iments will have to agree of the frequency of the signal is an excellent check, especially if the

detection is made in very different systems. We have not analyzed how frequency based searches

could be used based on IGETS, but a recent publication explored the applicability of LIGO and

other gravitational wave detectors to these frequency domain searches [155]. There are also several

experiments using atomic clock based detection [16, 156]. They found very encouraging results,

with performance at or beyond the state of the art. This detection scheme also has a lot of promise,

because there is enormous funding available to improve gravitational wave detectors in the near

term. Piggy backing on these searches is a great chance to get more data for free.

8.2.3 Time Domain Searches

In different models, the ultralight scalar field forms spatially inhomogeneous structures [157,

158, 159]. This results in apparent changes of fundamental constants as the Earth travels through

areas of varying field density. This means a time domain search for these signals as transient events

make the most sense. We would require multiple sensors, each spread out spatially, and require

any detection to be present in a consistent way across each detector. This dispersed sensor model is

also used by LIGO (which looks for small transient signals) and the GNOME collaboration which

is looking for similar types of dark matter models, based on a different standard model coupling.

For clumpy DM models, q(A, C) can generate spatially varying effective values for the funda-
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mental constants. If we assume that this field constitutes all of DM, and that each defect has the

same peak field amplitude (q<0G), then we can relate the size of the defect to q<0G using the known

density of DM over galactic scales. We begin by expressing the energy density inside the DM field

defect with a characteristic size 3 (related to the mass scale of the DM field by its Compton wave-

length, 3 ∼ ~/(<q2)), as

d8=B834 =
q2
<0G

~232 . (8.5)

Since the average energy density over many defects must be equal to the overall energy density

measured over the Milky Way of d�" ≈ 0.4 GeV/cm3, we can connect the overall DM density to

the density inside a defect of dimension = (where = = 0 is a point defect, = = 1 is a line defect, and

= = 2 is a domain wall defect) using simple scaling arguments [142],

d�" ≈ d8=B83433−=!=−3(~2)−1 ≈ q2
<0G3

1−=!=−3(~2)−1, (8.6)

where L is is the typical separation between defects, which we can be related to the expected

time between defect encounters g based on the velocity of the Earth relative to the galactic frame,

EA ≈ 300 km/s. So for a given defect size and geometry we know the amplitude of the field inside

the defect. This can be related to the fractional change in fundamental constants inside a defect,

where we focus on domain walls (= = 2):

Δ< 5

< 5

= Γ 5 q
2
<0G = 3gEA~2Γ 5 dDM, (8.7)

ΔU

U
= ΓUq

2
<0G = 3gEA~2ΓUdDM. (8.8)

This allows us to relate any measured change in fundamental constants to the coupling between

q(A, C) and the standard model (Γ 5 ), and the distribution of the DM defects in the galaxy (defined

by g and 3). Every other parameter is known. Furthermore, the length scale of the defect 3 and the

mass of the field are related by the Compton wavelength. For comparison to other work, we will
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express limits in the effective energy scale, which is related to the the coupling constant,

Λ- =
1√
|Γ- |

. (8.9)

8.2.4 Anomalous Acceleration from Changes in Rest Mass

The changes in the effective mass of fundamental particles will also change the masses of

macroscopic objects. This has a pronounced effect on their motion, because conservation of energy

requires a force associated with the gradient of the object’s rest mass energy,

®0 = −
®∇<22

<
. (8.10)

This expression has significant consequences [160, 161] as it implies an apparent violation of the

universality of free fall: since ∇" is not the same for different fermions, the anomalous accelera-

tion is composition-dependent.

The test mass composition determines how a fractional change in fundamental masses affects

the total mass, and a fractional change in the fine structure constant affects the electronic binding

energy of each atom in the test mass. This analysis will be presented in Table 1. For simplicity,

here we focus on the overall fractional change in a test mass. For a defect of size 3 that provides a

fractional change n of the test particle mass, the maximum acceleration is

|0 | ≈ n2
2

3
. (8.11)

This means gravimeters have a high sensitivity to these signals for defect sizes when 22/3 >> 6.

Therefore, this technique can compete with high-precision measurements such as atomic clocks,

since the fractional change we are searching for is enhanced relative to n . To emphasize this point,

domain wall dark matter search using GPS satellites [147] is most sensitive to a fractional change

in fundamental constants on the order of 10−12 for a defect size of 104 km. These parameters
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would result in an acceleration of 10−2 m/s2 that lasts ∼ 30 s. This is a large acceleration, for

quite a long duration. For comparison, the SCGs that make up the IGETS network are capable

of acceleration measurements of 10−11 m/s2 over minute timescales [162, 163], making them very

competitive for these searches using existing technology and data sets. This acceleration signature

has not been widely discussed, but I think it shows some important points. When you start talking

about variations in fundamental constants, there are a lot of potentially tricky consequences, and

its important to consider them all. Atomic clocks are extremely sensitive, but not necessarily the

based way to search for these types of dark matter.

8.3 Detection Schemes

What makes this new search strategy particularly interesting, is the potential to perform this

search on existing data, and there are two exceptional sources. The IGETS network, is a global

network of extremely sensitive gravitational acceleration senors, typically used for geophysics

applications and the LIGO observatory. These are both freely available data sources, and as we

will show, able to match or exceed current search limits.

8.3.1 IGETS Network and the Superconducting Gravimeter

The Super-Conducting Gravimeter (SCG) is currently the most precise gravimeter design demon-

strated, and a common tool in the field of Geodesy. SCG’s work as force balance, using the Lorentz

force between a the magnetic field from a superconducting coil and a superconducting current in-

side a test mass, to delicately balance against the force of gravity. The technology has been fully

developed in the last 30 years, and fractional precision on the order of 10−12 are regularly achieved

in commercially available devices. A standardized library of measurements from many of these

devices is organized by the International Geodynamics and Earth Tide Services (IGETS) as a tool

for monitoring, and archiving gravitational acceleration measurements at various locations around

the world. This database is a powerful tool for geophyscists, and has recently been used for several

Lorentz invariance studies.
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To estimate the detection sensitivity for these devices, we can take the noise spectra (n(f)) for

a superconducting gravimeter (SCG) in the IGETS network, during a quiet 10 day period after

known tidal forces and local disturbances were removed. This sensor is a typical example of the

≈ 20 SCG that make up the IGETS network, which have been collecting data continuously for the

last 20 years.

Figure 8.1: Noise power density for a superconducting gravimeter (in Germany) during seismically
quiet times. For the purpose of our analysis we approximate these curves as the sum of 3 power
laws that are fit to this data. Figure taken from [164].

With this noise performance we can simulate the SNR for a given signal and see what the

detection threshold for a single sensor would be. There additional concerns when it comes to

signal reconstruction, because we need to look for simultaneous events across many detectors, in

order to be sure the signals are real and not a local disturbance. Thankfully, the dominant source

of correlation between these sensors, is seismic activity, which has has a relatively slow, and well

characterized speed of ≈ 10 km/s. Compare this to the virial velocity of the earth traveling through

a clump of dark matter (300 km/s) and we can separate out seismic activity. A down side though, is

the sensitivity of these devices mean seismic activity will swamp the sensors for extended periods
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of time, that will reduce the effective uptime of the system. To illustrate this, we can compare the

sensors during seismically calm, and active times. Here, 60 = 9.80665 a standard gravitational

acceleration value used in geodesy.

Figure 8.2: a) raw acceleration data, shown for a 30 hour period prior to the 2004 Indian ocean
Earthquake for three sensors. B) The same data, with known tidal forces removed, and small
residuals left. Notice, that there is no correlation between these signals, and we attribute the small
fluctuations to local disturbances.
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Figure 8.3: a) Raw acceleration measurements showing the onset, and ring down from the 2004
earthquake. b) The same data, with tidal forces removed. Notice the scale is some 3 orders of
magnitude larger than during seismically quiet times, and despite the single event causing the
signal there is a pronounced delay as measured in each sensor. This delay comes from the physical
separation of the sensors, and shows that the relatively slow speed of sound can be exploited in this
search. Also note the revival of the signal in the green trace, consistent with the waves from the
earthquake traveling around the circumference of earth, at around 6 km/s

While these events complicate the analysis, it is possible to reject them with high certainty

thanks to their characteristic speed, and other groups have shown that useful fundamental physics

can still be extracted from these sensors.

8.3.2 LIGO

The sensitivity curve for LIGO has been very well characterized, and is among the most dis-

cussed plots in modern physics. This is great for this search, because we can take this as an input,

and estimate the SNR for signals here we wish to measure. As a reminder, the LIGO sensitivity

curve is shown below [165].
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Figure 8.4: Strain sensitivity curves for the LIGO. A power law fit to the nominal mode perfor-
mance was used for this analysis. This image was taken from [165]

Similar constraints from the timing of the detection also apply to LIGO. Gravitational waves

move at the speed of light, and this leads to a known delay based on the direction of the waves

prorogation relative to the two LIGO detectors. Here, we expect a larger delay, but still faster then

any seismic activity as discussed before. There are several “unmodeled burst" search strategies

used in the LIGO group that would be a good place to start for this analysis. With an idea for the

detection strategy, and the sensitivity for each detector established, we can now model the expected

signal to estimate the search capabilities in this application.

8.3.3 Accelerometer Based Fractional Mass Limits

For the sensitivity estimates, we assume the density of a domain wall follows a Gaussian dis-

tribution, with length scale 3 and a maximum fractional change in the rest mass of n . This choice

of distribution can be modified but, as long as the density is relatively smooth, the results will not

be strongly affected. For a test particle traveling perpendicularly through such a domain wall at
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speed EA , we can define the effective mass as a function of time,

<eff (C) = <0(1 + n4−C
2E2
A/32), (8.12)

where <0 is the unperturbed mass. Then we calculate the effective acceleration of this test particle

as a function of time using Eq. (11), keeping only the leading order in n ,

0(C) = 2nCEA22

32 4−C
2E2
A/32

. (8.13)

The fractional change in test mass (Eq. (13)) and the effective acceleration waveform (Eq. (14)),

as well as a cartoon of a passing domain wall, are shown in Fig. 4.

Figure 8.5: a) A domain wall approaching the Earth, with a highlighted accelerometer located in
Boulder, Colorado, USA. b) Fractional change in test mass caused by the domain wall’s passage
(Δ<eff/<0 = <eff/<0 − 1). c) Anomalous acceleration caused by the gradient in the domain wall
density, resulting in a changing mass of the test particle. The transient signal has a characteristic
time and acceleration of C0 = 3/EA and 00 = n22/3, respectively, with a peak acceleration of

0peak = 00

√
2
4

because of the specific density distribution chosen.

In order to be observed, the domain wall must produce a signal with high enough power in the
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frequency range where the accelerometer is sensitive. However, the frequency components of this

waveform are quite broadband. This means that for large domain walls the signal will have more

power at low frequencies, and for a specific domain size it will be well matched to the ∼ 0.01

Hz peak sensitivity of the SCGs. To calculate the sensitivity based on the frequency performance

of these sensors, we use the waveform in Eq. (14) and take its Fourier transform. We then find

the signal-to-noise ratio (SNR) at each frequency by dividing this signal amplitude by the noise

amplitude, and calculate the total SNR by integrating over all frequencies. Finally, we multiply by
√
C0 to account for the characteristic time over which the signal can be averaged, because the signal

we are looking for is transient. We then solve for the value of n that would result in a signal with an

SNR of 10 for a fixed defect size. This leads to a conservative estimate for the search sensitivity,

but the nature of the search would require a strong signal to be beleived.

Note that for a specifically designed acceleration based experiment, we could expect a sen-

sitivity improvement of several orders of magnitude. This is because the SCGs do not use the

free-fall-universality violating nature of the signal to cancel disturbances. In particular, a torsion

balance experiment with a test mass consisting of two different materials would be a natural setup

for these searches, similar to previous axion searches [166]. However, such a system would have

to run continuously for several years before it is sensitive enough to limit rare domain wall events.

8.3.4 LIGO Based Fractional Mass Limits

For example, suppose a domain wall approaches the LIGO detector, perpendicular to one arm

of the interferometer and parallel to the other, as shown in Fig. 5 . For the arm perpendicular to the

domain wall’s propagation direction, each mirror will accelerate by the same amount but the length

of the arm will not change. For the arm parallel to the domain wall propagation, the mirrors will

see slightly different field magnitudes (because of the 4 km separation) and therefore experience

different accelerations. At C = 0 when the domain wall is centered between the two mirrors, the
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differential acceleration is

Δ0(C) = 0(C − !/2EA) − 0(C + !/2EA). (8.14)

This differential acceleration can be integrated twice to find the change in separation between the

mirrors. Divided by the length of the interferometer ! it is the strain ((C),

((C) = n3
√
c22

2!E2
A

[
erf

(
! − 2CEA

23

)
+ erf

(
! + 2CEA

23

)]
, (8.15)

where erf (G) is the error function. This differential strain between the two LIGO arms is exactly

what it was designed to measure extremely precisely. The strain signal in the detector has qualita-

tively different behaviors depending on whether the defect is larger or smaller than the 4 km length

of the LIGO arms as shown in Fig. 2. We use this strain in Eq. (16) to perform a sensitivity anal-

ysis in analogy to what was done for accelerometers, using a power law approximation of LIGO’s

strain noise curve [167], and mandating a SNR of 10. Furthermore, this analysis was repeated for

the planned LISA mission based on its projected sensitivity.
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Figure 8.6: (a) Domain wall approaching a LIGO type optical interferometer, along one of the
directions of maximum sensitivity. The interferometer is formed by splitting laser light with a
beam splitter (BS), while the ends of each arm are free floating mirrors acting as test masses (TMs).
Differential changes in the length of each arm are monitored via a photodiode (PD). In the case
shown, the test masses along the arm perpendicular to the domain wall’s approach direction (⊥)
will feel no acceleration along the direction of the arm, while the two test masses in the parallel arm
(‖) will feel slightly different accelerations because of the difference in the gradient of the domain
wall at each location. This results in a differential acceleration of the TMs in the parallel arm which
changes the path length, while the perpendicular path length is unaffected. This change in relative
path length would be observed as a transient strain in the detector as the domain wall passes. The
resulting (normalized) strain wave forms show qualitatively different behavior when the domain
wall is larger (b) or smaller (c) then the path length of LIGO (! = 4 km). For long domain walls
the signal approaches a Gaussian with a peak strain size of (Long = n2

2/E2
A . For short domain walls

the plateau has a fixed duration C? = !/EA , and the peak strain scales like (Short = n32
2/(!E2

A ). For
both signals, the characteristic time is CShort = CLong = 3/EA . For wave forms shown, 3 � ! for the
long domain wall and 3 ≈ !/10 for the short domain wall.

8.3.5 Atomic Rest Mass and Fundamental Constants

Before we derive the constraints based on the described technique, we must estimate how a

fractional change in each fundamental constant affects the total test mass. This effect is composition-

dependent. For LIGO the test masses are the silica mirrors [168], for LISA they are Au-Pt compos-

ites[155], and for the accelerometers they are niobium (the test mass that is being levitated)[162].

The semi-empirical Bethe-Weizacker formula [160] accounts for the nucleon mass, the electron
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mass, and the mass associated with the binding energy,

<(�, /) ≈ /<? + (� − /)<=+

/<4 + (98.25 MeV/22) / (/ − 1)
�1/3 U,

(8.16)

where A is the total nucleon number and Z is the number of protons. This allows us to calculate the

sensitivity coefficient for the -th coupling to the DM field, �- , to relate a change in a fundamental

constant to the changes in test mass,

n = �-
X-

-
. (8.17)

The results of this calculation for each system are shown in Table 1.

Constant LIGO LISA SCG

�U 5 × 10−4 2 × 10−4 4 × 10−4

�<4 2 × 10−4 1 × 10−4 8 × 10−5

�<? 0.5 0.4 0.4

�<= 0.5 0.6 0.6

Table 8.1: Sensitivity coefficients quantifying how a fractional change in each fundamental con-
stant relates to the fractional change in the test mass for each experimental platform. As expected,
fractional changes in proton and neutron masses result in order unity changes in the total test mass,
while changes in electron mass and U result in smaller changes.
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8.3.6 Projected Limits on New Physics

Figure 8.7: Limits on the DM-SM coupling strengths set using GPS clocks [147] (blue) and as-
trophysical constraints [169] (black), and the projected limits set by the IGETS network (green),
LIGO (red) and LISA (orange). Here, the time g between domain walls is 7 years to allow a com-
parison to GPS limits. We have access to sufficient data taken with the SC gravimeters to look
for such rare events, but for LIGO, only g . 1 year is currently achievable. We see smaller sen-
sitivities to the U and <4 couplings as they contribute less to the total system mass, making them
well suited for clock based searches. Note that the constraints far from the peak of each system’s
sensitivity may be unreliable due to additional noise sources not present in the approximated noise
power spectral density, or for small defect sizes due to finite sampling rates.

The described analysis allows us to estimate what domain wall size and effective coupling

energy scale each experimental platform is sensitive to for the neutron, proton and electron masses

and the fine structure constant. The results are shown in Fig (3). For these projected constraints

we assume that the DM-SM coupling contribution comes entirely from one term, and that the

time between domain wall crossings is g = 7 years. This timing is well matched with the 20

years of IGETS data, and the same was chosen for the previous GPS based studies [147]. Recent

work with networks of atomic clocks has also set stringent limits for these coupling models [145,
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146]. However, the limited duration of the data collection period with this network of . 40 days

(compared to 20+ years of IGETS data) limit their sensitivity to only relatively frequently occurring

domain walls. As more data is collected using this clock network, this situation will improve and

will likely be the most accurate way to search for coupling to U.

8.3.7 Conclusions

We have shown that in addition to atomic clocks and atomic magnetometers, accelerometers

and gravitational wave detectors are natural platforms to search for domain-wall ultralight scalar

dark matter. Furthermore, a detection event that is seen in multiple systems simultaneously would

provide a strong evidence of interactions beyond the Standard Model. For the SCG accelerometers,

20+ years of data taken with over 20 sensors has already been recorded and archived. This will

allow us to mine for these signals and investigate an unexplored parameter space for the DM-SM

coupling models. For LIGO, & 1 year of data has been collected, and is also freely available for

these searches. This represents a unique opportunity to explore the origins of DM with existing

data sets.
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Appendix A: Tapered Amplifier Design

This tapered amplifier design is based on the idea that the more off-the-shelf components you

can use, the faster the turn around time, and the higher stability it will have. This is because

the design will not rely on the skill of the machinist making it, and instead relies on Thorlab

components. There are only 3 parts that need any modification, the base plate to mount the TA to

the table, the U-Bench requires you to mill a small groove, and custom mount for the chip itself.

Drawings for each of these components are included at the end of this chapter, along with a parts

list in Table A.1. Some of the parts will depend on the size of the asphere you select, and I will

leave this general by specifying XX. You need to buy the correct side adapters so everything fits

together, and that depends on the asphere selection. The extension from the EXXRMS adapter is

taken off the black mounting ring, and fed through the S1TMXX and glued, leaving the S1TMXX

free to screw in and out of the slip plate to set the focal length. In addition to the listed items a

temperature controller, current controller, optical isolator, and the TA chip itself are needed. Given

the large fluctuations in the prices of these items I will leave them off the parts list, instead focusing

on what is unique to this design.
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Name Part Number Quantity Unit Cost ($)

U-Bench CBB1 1 82

X-Y Slip Plate SPT1 2 67

Asphere Objective EXXRMS 2 35

Coated Apspheric Lens Numerous 2 80

Adater to Mount Objective S1TMXX 2 24

Cage Mount Post ER1 8 5.2

Thermistor TH10k 1 5

TEC Unit TECD6 1 15

Thermistor TH10k 1 5

Total Cost ($) 560.6

Table A.1: Parts list for optics and mounting structure of this tapered amplifier design.

The design gets it stability from a Thorlabs U-bench (CBB1) that every other component

mounts to. The angle between the aspheres which focus (collimate) the seed (output) of the ampli-

fier are set by this design, and are not adjustable. This means the TA-Chip mount must be carefully

aligned relative to the U-bench when it is first installed, but when everything is tightened the lack

of freedom means this angle does not drift, and will not need to be adjusted. As always there is a

trade-off between adjustability and stability. To adjust the height and lateral offset of the aspheres

relative to the TA chip, a SPT1 slip-plate is used. To align this slip-plate image the spontaneous

emission of the TA chip under low drive current without any seed light, looking at the the output

of the chip and light sent backwards from the input. Adjust each slip-plate’s position until both

images are symmetric, an offset lens will cause an aberration that is easily visible on the camera.

The distance between the lens’s and the TA chip are controlled by for far the asphere mount is

screwed into its holder. This can be very carefully controlled if the apply some Teflon tape to the

threads, increasing the resistance when the asphere is adjusted. Imaging the spontaneous emission

is also very helpful to ensure the input and output are both collimated, and the focal length and
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slip plate position will need to optimized a few times to get everything right. The TA is thermally

stabilized by a TEC placed between the U-Bench and the TA chip mount, and the heat is dumped

through the mounting structure into the table. To decrease the thermal resistance, and increase the

stability of the system, some thermal paste connecting the system to the table was applied for each

system. This system proved to be robust for daily operation, and requires minimal machining. The

mount as shown is designed for DILAS DHP chip formats, but can be easily modified for C-Mount

tapered amplifier chips. If possible, I would suggest the user avoid C-mount as it is much harder

to align properly, and thermally anchor.
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Appendix B: High NA Collection System

In order to maximize SNR for fluorescence detection it is important that you collect as much of

the emitted light as possible from the molecules. For the majority of the experiments in this thesis,

a two lens imaging system was used to collect the emission and focus it on the surface of the PMT.

This is a very spatially selective way of collecting light, and it had good background subtraction

because of this. However the limited size of the lens, means we were only able to collect around 5%

of the light emitted the molecules. To improve this number we designed two elliptical collection

mirrors that were both able to collect closer to 60% of the emitted fluorescence. The first design

offers only 90 degree probe angles, and the second allows for 90 degree and 45 degree laser probes

(relative to the molecular beam. Elliptical reflectors work by taking the light that is emitted at

one special point inside the curve of the mirror, and focusing it on a second point a fixed distance

away. These systems were design to have the molecular beam and the probe laser intersect at this

point, and the PMT’s surface was placed at the second point. Each collector is mounted in vacuum,

and can give you an order of magnitude increase in the collected light. However in practice, they

resulted in substantially higher background counts so the SNR actually decreased when they were

installed for direct detection experiments. In order to be useful, a background free detection scheme

such as two photon excitation would be needed. Both designs were manufactured by Optiforms,

and the drawings/part numbers for the design are included below.
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