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Abstract
We investigate the Majorana fermions in a semiconductor nanostructure with
two wires connected through a ring. The nanostructure is mirror symmetric and
in the proximity of a superconductor. The Rashba spin–orbit coupling and a
magnetic field parallel to the wires or perpendicular to the ring are included.
Moreover, a magnetic flux is applied through the center of the ring, which makes
the phase difference of the superconducting order parameters in the two wires
being zero or π due to the fluxoid quantization and the thermodynamic equili-
brium of the supercurrent in the superconducting ring. If the phase difference is
π, two Majorana modes are shown to appear around the ring without interacting
with each other. In contrast, if the phase difference is zero, these Majorana
modes disappear and the states localized around the ring have finite energies.
These states can be detected via the conductance measurement by connecting
two normal leads to the wires and a third one directly to the ring. It is shown in
the bias dependence of the differential conductance from one of the leads
connected to the wire to the one connected directly to the ring that the tunnelings
through the Majorana modes (i.e., in the case with π phase difference) leads to
two peaks very close to the zero bias, while the tunneling through the states with
finite energies (i.e., in the case with zero phase difference) leads to peaks far
away from the zero bias if the ring radius is small. This difference for the cases
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with and without the Majorana modes in small ring radius is distinct and hence
can be used to identify the Majorana modes.

Keywords: Majorana fermion, nanostructure, transport

1. Introduction

In recent years, Majorana fermions have attracted immense attention due to their possible
applications in quantum computation [1–7]. They are proposed to exist in various systems
[3, 8–21] and many experimental attempts have been devoted to identify them [22–29]. Among
these attempts, the zero-bias conductance peak [30–36] is a characteristic property from the
Majorana modes which is often detected. This conductance measurement is easy to perform and
the zero-bias conductance peak has already been observed [24–29]. Nevertheless, these
experimental results can not serve as decisive evidence since the zero-bias conductance peak
can appear due to many other mechanisms [37–40]. Hence, to further identify the Majorana
fermions, the comprehension and detection of more transport properties at different Majorana
configurations are needed.

Among the works investigating Majorana nanostructures, the system of two connected
nanostructures with different order parameter phases is often investigated. It is found in various
materials [41–44] that when this phase difference is π, two Majorana modes can appear around
the contacting point. Although they are close, these Majorana modes do not interact with each
other, which is quit different from the result that the Majorana fermions at the adjacent ends of
the nanowire interact with each other due to their wave-function overlapping [45]. Inspired by
these results, we propose a semiconductor nanostructure with two wires connected through a
ring as illustrated in figure 1. The nanostructure is in the proximity of a superconductor. With a
magnetic flux ϕ through the superconducting ring, the variation of the supercurrent in the
superconductor ring is governed by the fluxoid quantization and the thermodynamic
equilibrium [46]. Then, due to the proximity effect, the order parameter in the semiconductor
ring varies as [46]

Δ θ Δ ϕ ϕ θ= ⎡⎣ ⎤⎦( )i( ) exp 2 . (1)0 0

Here, x[ ] denotes the integer closest to x (if x is a half-integer, it is rounded up) and
ϕ = h e/0 is the flux quantum. Since the phase difference of the order parameters between the
left (θ = 0) and right (θ π= ) wires is ϕ ϕ π[2 / ]0 , Majorana fermions are expected to appear
around the ring when ϕ ϕ[2 / ]0 is an odd number. With these Majorana fermions, the differential
conductance through the lead at the ring (i.e., lead 3 in figure 1) is expected to be different from
those without these Majorana fermions. Moreover, since ϕ ϕ[2 / ]0 is an odd integer in a large
range of ϕ (e.g., ϕ ϕ⩽ <0.25 / 0.750 ), these Majorana modes should be robust against the small
variation of ϕ.

In this work, we investigate the low energy states and the transport properties of the
semiconductor structure addressed above (figure 1). The Rashba spin–orbit coupling and the
Zeeman splitting from a magnetic field along either x or z-axis are included. A magnetic flux is
applied through the ring which varies the phases of the order parameters in the ring and the two
wires (see equation (1)). We find that when the difference of phases in the wires is π, two
Majorana modes indeed appear around the ring. However, when the phase difference is zero,
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the states around the ring have finite energies. When the ring radius is small, the properties of
the differential conductance from leads 1 to 3 in these two cases are different. For the case with
the Majorana modes, the interference of the Andreev reflections through these two Majorana
modes leads to two differential conductance peaks very close to the zero bias in the bias
dependence. For the case without the Majorana modes, the localized states around the ring lead
to resonant peaks far away from the zero bias. The different behaviors in the two cases under
small ring radius are easily distinguished from each other. Moreover, since the phase difference
changes discontinuously from zero to π, the differential conductance peaks also change
discontinuously from the case without the Majorana modes to those with them. This is a unique
property which can be used to identify the existence of the Majorana modes from the other
mechanisms leading to the zero-bias peak. Nevertheless, this detection is necessary to be carried
out under small ring radius. This is because the energies of the states around the ring under zero
phase difference can be close to zero at a large ring radius, which makes the peaks difficult to
distinguish from each other. Furthermore, we also find that if the magnetic filed is along the x-
axis and the magnetic flux is not applied, the Andreev reflection probability through lead 3 is
zero around the zero bias due to the mirror inversion symmetry.

This paper is organized as follows. In section 2, we set up the model and lay out the
formalism. In section 3 the results obtained numerically are presented. We summarize and
discuss in section 4.

2. Model and formalism

We investigate the semiconductor nanostructure shown in figure 1. The Rashba spin–orbit
coupling, proximity-induced superconducting pairing and the Zeeman splitting from a magnetic
field are included. Without the leads, the Hamiltonian is expressed as

ˆ = ˆ + ˆ + ˆ + ˆ = ˆ + ˆH H H H H H H . (2)eff rib ring SC hop 0 hop

By discretizing the continuous Hamiltonian over a discrete lattice, the Hamiltonian under
the tight-binding approximation is obtained. Here, the width of the wire w is assumed to be very
small so that there is only a single 1D mode occupied. Then, for the Hamiltonian of the
nanowire, it is treated as one-dimensional one and expressed as [47]

Figure 1. Schematic view of the Majorana nanostructure with two wires connected
through a ring. The nanostructure is connected with three normal leads. A magnetic flux
Φ is applied through the center of the ring (which is also the origin of the x and z-axes
marked as (0, 0) in the figure). Moreover, if the magnetic flux is absent, the
nanostructure has the mirror inversion symmetry with the inversion axis shown as the
dashed line.
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Here, Vn (with n = x or z) stands for the Zeeman splitting from the magnetic field along the
n-axis; μ0 represents the chemical potential; σ stand for the Pauli matrices; L is the number of
sites at each wire; μ = −1 (1) stands for the left(right) wire; = *t m a/(2 )0
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in which M is the number of sites in the ring and the distance between the nearest neighbors
in the ring is determined by πr M2 / ; σci ,0 is the annihilation operator for the electron with
spin σ at the site i of the ring; π=V t Ma r2 ( ) /(2 )i

r
0
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nian for the hopping between the ring and the wires is
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As for the pairing potential, it is given by
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with Δ Δ= | |−n, 1 0 , Δ Δ ϕ ϕ π= | | iexp ( [2 / ] )n,1 0 0 and Δ Δ ϕ ϕ π= | | i n Mexp ( [2 / ]2 / )n,0 0 0 .
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being the Bogoliubov-de Gennes (BdG) Hamiltonian [50]. From this HBdG, the
eigenstate ψ =μ μ μ μ μ↑ ↓ ↓ ↑u u v v( , , , )i

n
i
n

i
n

i
n

i
n T for the nth state can be obtained numerically

under the normalization condition of the wave function ∑ | | + | | +σ σ± ±σ ± a u v( )i
n

i
n

, 1 , 1i , 1 0
2 2

π∑ | | + | | =σ σσ r M u v(2 / )( ) 1i
n

i
n

, 0 , 0i
2 2 .

To calculate the transport property of this nanostructure, we connect normal leads to it as
shown in figure 1. The Hamiltonian of the lead is given by

∑
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in which η = 1, 2, 3 represent the leads shown in figure 1 and μη stands for the difference of the
chemical potential between lead η and the nanostructure. The hopping between the leads and the
nanostructure is

∑= +σ σ
η

η σ
η

′
†

ησσ
σ

′
′H a cd H.c., (10)i j i, j0

with δ= −σ σ
η

′ σσ′ ti j, , where i and j stand for the contacting points between the leads and the
nanostructure.

We investigate the conductance of the nanostructure at zero temperature. Then, the current
through lead η is given by [47]
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Here, εĜ ( )
r a,

are the retarded and advanced Greenʼs functions in the nanostructure
connected with the leads; Γ εˆη

α
( ) is the self-energy from the electric (α = e) or hole part (α = h)

of the lead η [47].
With the bias applied to the nanostructure, the chemical potentials of the leads are shifted

according to μ μ= −V12 1 2 and μ μ= −V13 1 3. Then, with the further constraint of current
conservation

∑ =
η

ηI 0, (13)

the differential conductance is obtained. In this work, we investigate the differential
conductance between two leads without current flowing through the remaining one, i.e.,

= | =G I
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1

12 3
and = | =G I
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1

13 2
. It is noted that when the wires are very long, the transmission

between different leads becomes negligible around the zero bias due to the superconducting
gap. In this case, only the Andreev reflection contributes and whence equation (11) becomes
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Then, the differential conductance is given by

μ μ μ= − + − ∂ηη ηηη η η ηη

⎡⎣ ⎤⎦( ) ( )G e P P h. (15)eh eh
V1 1

Here, μη and μ∂ ηV13
are determined by the current conservation and μ μ= −η ηV1 1 .

3. Results

We investigate the low energy states and the transport properties of the nanostructure. In our
computation, Δ = =E t0.2R0 , L = 200, M = 256, μ = t0.40 and =V t0.8n unless otherwise
specified. It is noted that, with these parameters, the nanostructure is in the topological non-

trivial regime, i.e., Δ μ Δ μ+ < | | < + −V t( 4 )0
2

n
2 2

0
2 [47]. Hence, the Majorana modes are

expected to appear at the ends of the nanostructure.

3.1. Majorana states and energy spectrum

In this section, we present the numerical results of the low-energy spectrum and the eigenstates.
The radius of the ring is taken to be =r a2 0. Due to the particle-hole symmetry of HBdG, we
only investigate the results with positive eigenvalues. The low-energy spectra of the
nanostructure under different magnetic fluxes are plotted in figure 2(a) and the magnitudes
of the wave functions for the lowest two states are shown in figures 2(b) and (c). It is noted that
the energy spectra with the Zeeman splitting from a magnetic field along either x- or z-axis are
similar. Hence, we only plot the results with a magnetic field in z-axis in figure 2.

From figure 2(a), one finds that for the case with the magnetic flux ϕ = 0 (red dots), the
eigenvalue ε1 is extremely small while the other eigenvalues are much higher. Moreover, from
the distribution of the wave functions shown in figure 2(b), it is found that the lowest state
mainly distributes at the ends of the nanostructure and the second lowest state mainly distributes
around the ring. These behaviors can be easily understood as follows. If the ring is removed
from the nanostructure, it is well known that Majorana modes exist at the ends of the left and
right wires (marked as γ1 to γ4 in figure 1). With a ring connecting these two wires, the
Majorana modes close to the ring in each wire (i.e., γ1 and γ2 in figure 1) interact with each other
and form the second lowest state. For the remaining Majorana modes (γ3 and γ4 in figure 1),
they compose the lowest eigenstate with the corresponding non-zero eigenvalue coming from
the interactions between them. To further confirm this, we also calculate the case with a shorter
wire length L = 100 (blue squares). It is shown that ε1 increases markedly while ε2 remains
almost unchanged, which is consistent with the feature of the interacting Majorana fermions.

We further investigate the influence of the magnetic flux by increasing ϕ. The results are
similar to the case with ϕ = 0 until ϕ ϕ= 0.25 0 where ϕ ϕ =[2 / ] 10 and Δ Δ= −−n n, 1 ,1. The low
energy spectrum is plotted as yellow triangles in figure 2(a). It is shown that both the lowest and
the second lowest energies are very close to zero. Furthermore, from the magnitudes of the
wave functions for the lowest two eigenstates shown in figure 2(c), it is found that the two wave
functions distribute both around the ring and at the ends of the nanostructure. These behaviors
indicate the existence of the Majorana modes around the ring. These Majorana modes interact
with those at the ends of the nanostructure (γ3 and γ4) which leads to the small non-zero
eigenvalues (i.e., ε1 and ε2). Since the interaction between them decreases exponentially with
the increase of their distance, we also calculate the case with L = 300, which leads to much
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lower ε1 ( × −2.5 10 t8 ) and ε2 ( × −7.7 10 t8 ). This behavior confirms the existence of the
Majorana fermions around the ring. It is noted that this result is similar to those appearing in
two connected nanostructures with a π phase difference of the order parameters investigated in
the literature [41–44].

3.2. Electric conductance

In this section, we investigate the influence of the Majorana modes on the conductance by
varying the magnetic flux ϕ. Here, the wires are long enough and only the Andreev reflection
contributes to the transport. Thus, the differential conductance through each lead is mainly
determined by the states around the lead which helps to show their influence clearer. It is noted

Figure 2. (a) Low energy spectra with different wire lengths for ϕ = 0 and ϕ0.25 0,
respectively. n labels the eigenvalues of HBdG starting with zero energy. (b) and (c)
Magnitudes of the wave functions of the lowest two states (ϵ1 and ϵ2) for ϕ = 0 and

ϕ0.25 0, respectively. Those of the second lowest states (blue squares) are shifted by
30a0 along the z-axis for clarity. The insets zoom the wave functions at the ring of the
nanostructure. The magnetic field is along the z-axis and the radius of the ring is 2a0.
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that the property of the differential conductance between leads 1 and 2, i.e., G12, is mainly
determined by the Majorana modes at the ends of the nanostructure (γ3 and γ4 shown in
figure 1), which is similar to previous works in the literature [47, 51]. Hence, it is not shown in
the figure. In this work we only concentrate on the differential conductance between leads 1 and
3, i.e., G13.

We first focus on the case with a short ring radius (i.e., =r a2 0). For the case with
ϕ ϕ= 0.25 0 where the phase difference of the order parameters in the two wires is π (i.e., with
the Majorana modes around the ring), two conductance peaks appear in the bias voltage V13

dependence which are very close to the zero bias (i.e., =V 013 ) and hence lead to a sharp valley
between them as shown in figure 3(a). With the increase of ϕ to ϕ0.4 0, where the phase
difference is still π, the valley is shown to become milder. Nevertheless, the corresponding
peaks are still close to the zero bias. On contrast, for the case with zero phase difference (i.e.,
without any Majorana modes around the ring), e.g., ϕ = 0 and ϕ0.1 0, the peaks appearing in the
bias dependence become close to the energies of the second lowest states (marked as arrows)
which are far away from zero. This behavior is quite different from that with the Majorana
modes and hence can be used to distinguish the two cases. Moreover, since the phase difference
varies discontinuously from zero to π, the conductance peaks without the Majorana modes also
change to the ones with them discontinuously. This is a unique property of the Majorana modes
which helps to exclude the other mechanisms leading to the zero-bias peaks.

Here, we give an analytical investigation on the properties of the differential conductance
peaks in the cases with and without the Majorana modes around the ring. The differential
conductance G13 is determined by the Andreev reflections through leads 1 and 3 under the
constraint of current conservation (which determines μ1 and μ3 incorporating with

μ μ= −V13 1 3). For the Andreev reflection through lead 1, it is strong due to the Majorana
mode near lead 1 (i.e., γ3) and the corresponding Peh11 is almost 1 in our parameter range. In
contrast, the Andreev reflection through lead 3 varies largely and the corresponding Peh33 is found
to be zero around the zero bias. Therefore, due to the current conservation (equations (13) and
(14)) and μ μ= −V13 1 3, μ3 is close to −V13( μ∂ ηηV1

is close to −1) and the differential conductance
is mainly determined by the Andreev reflection through lead 3 (i.e., μ μ+ −ηη ηηP P( ) ( )eh eh

3 3 , see
equation (15)). With this understanding, the conductance peaks close to the zero bias in the case
with π phase difference are understood to come from the Andreev reflection through the
Majorana modes around the ring. And the peaks close to the energies of the second lowest states
in the case with zero phase difference are understood to come from the resonance Andreev
reflection through these subgap states (which are also localized around the ring, see figure 2(b)).
It is noted that both the contributions of the Majorana modes (with π phase difference) and the
second lowest states (with zero phase difference) can be studied formally by investigating the
Andreev reflection through states ψn and ψ−n with ψ ψ=− †n n due to the partial-hole symmetry.
Here, by setting ψn being the fermion mode composed by the Majorana modes γr1 and γr2
around the ring (i.e., ψ γ γ= + i( )/ 2n

r r1 2 ) and setting the corresponding energies ε ε= =− 0n n ,
the result describes the tunneling through the two Majorana modes. Meanwhile, by setting ψn

being the second lowest state (i.e., n = 2) and using ε ε= − ≠− 02 2 , it describes the tunneling
through the second lowest states.

Since the lead 3 is connected to the nanostructure at one point, the couplings between these
two states ψn and ψ−n to the lead 3 are determined by their wave functions at the connecting
point which are described by ψ = ↑ ↓ ↓ ↑u u v v( , , , )n T and ψ ψ=− †n n in the Nambu spinors. Then
the approximate formula is given as (see the appendix)
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ε Γ Γ ε ε= ↓ ↓P u v D( ) 64 ( ). (16)L
e

L
heh 2 2 2

Here, ε ε ε Γ Γ Γ Γ ε Γ Γ ε= − + | | − | | + + | | + | | + −↓ ↓ ↓ ↓D u v u v( ) [4( ) ( ) ] 4[( ) ( ) ( )n L
e

L
h

L
e

L
h

L
e

L
h

n
2 2 2 2 2 2 2 2

| | − | |↓ ↓u v( )]2 2 2. From this equation, P (0)eh is found to be zero which explains the valley in our

results. Moreover, under the approximation Γ Γ=L
e

L
h (valid around the zero bias), one further

finds that the peaks locate at ε Γ Γ± + | | − | |↑ ↑u v( ) /4n L
e

L
h2 2 2 2 . From this result, one understands

that both | | − | |↑ ↑u v2 2 and the energy of the state εn influence the location of the corresponding
peaks (as well as the steepness of the valley between them). Nevertheless, if the energy εn of the

Figure 3. Differential conductance for cases with the magnetic field along the z-axis
with (a) =r a2 0 and (b) =r a6 0 as well as the case along the x-axis with (c) =r a2 0

and (d) =r a8 0 under different magnetic fluxes. The results with ϕ ϕ= 0.1 0 (blue
dashed curve) in (c) is enlarged by 10 for clarity. The arrows indicate the energies of the
corresponding second lowest states of the nanostructure.
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second lowest state in the case with zero phase difference (e.g., ϕ = 0 and ϕ0.1 0) is much larger

than Γ Γ| | − | |↑ ↑u v( ) /4L
e

L
h2 2 2 , the corresponding peaks will be far away from those due to the

Majorana modes (i.e., ε = 0n in the case with π phase difference, e.g., ϕ ϕ= 0.25 0 and ϕ0.4 0) as
shown in figure 3(a).

With this understanding, we further investigate the case with a different ring radius. The
variation of the ring radius changes the couplings between the states in different wires. As a
result, the energies of the second lowest states in the case with zero phase difference can be
close to zero, making the location of the peaks (or the steepness of the corresponding valley)
difficult to be distinguished from those due to the Majorana modes. This can be seen in
figure 3(b) in which the differential conductance G13 is plotted against the bias voltage V13 with

=r a6 0. For the case with zero phase difference (i.e., without any Majorana modes), it is shown
that the second lowest eigenvalues (marked by the arrows) can be very close to zero (e.g.,
ϕ = 0). Then, the steepness of the valley is mainly determined by | | − | |↑ ↑u v2 2 as the case due to
the Majorana modes. As a result, the conductance valleys with (e.g., ϕ ϕ= 0.4 0) and without
(e.g., ϕ = 0)1 the Majorana modes can be similar. This makes the two cases difficult to be
distinguished from each other. These results suggest the importance to rule out the second
lowest states in the case with zero phase difference. Thus, we further show the energies of the
second lowest states at ϕ = 0 as the function of the ring radius in figure 4(a). It is shown that,
with the increase of the ring radius, the energy of the second lowest state oscillates and tends to
decrease. Nevertheless, the energies in the cases with <r a5 0 are always large. This indicates
that, to identify the existence of the Majorana modes around the ring, it is necessary to detect in
the case with small ring radius (< a5 0).

In addition to the case with a magnetic field along the z-axis, we further investigate the
case with the magnetic field along the x-axis as shown in figures 3(c) and (d). Since the
properties of the energy spectra for these two magnetic field directions are similar (see figure 4),
the corresponding conductances are also expected to be similar as confirmed by the cases with

Figure 4. The ring radius dependence of the energy of the second lowest state ε2 with
the Zeeman splitting from the magnetic field along the (a) z- and (b) x-axes. Here, the
magnetic flux ϕ = 0.

1 The differential conductances for the cases with ϕ = 0 and ϕ0.1 0 shown in figure 3(b) do not exhibit peak
structure in the investigated energy range. This comes from the contribution of the third lowest state, whose energy
is also small when the ring radius is large (ε = t0.0463 for ϕ = 0 and t0.044 for ϕ ϕ= 0.1 0 in this case).
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the magnetic fluxes under both small ( =r a2 0 shown in figure 3(c)) and large ( =r a8 0 shown in
figure 3(d)) ring radii. Nevertheless, if the magnetic flux is not applied (i.e., ϕ = 0), it is shown
in figures 3(c) and (d) that the corresponding differential conductances keep zero in our
parameter range. This special property comes from the mirror inversion symmetry of the
nanostructure which is understood as follows.

With the magnetic field along the x-axis applied to the nanostructure, the spin degeneracy
in the lead is split into σ+

x and σ−
x . Since the Zeeman splitting is larger than the chemical

potential, only the lower eigenstate σ−
x in the lead contributes to the conductance. This

eigenstate only couples the state in the nanostructure with spin parallel to it, whose component
in the corresponding wave function ψn is −↑ ↓u u( )/ 2 for the electron part and +↑ ↓v v( )/ 2
for the hole part. Then, the Andreev reflection probability is understood to be proportional to

− +↑ ↓ ↑ ↓u u v v( )( ) (see also the appendix). For our nanostructure without the magnetic flux, the
Hamiltonian is invariant under the mirror inversion with the inversion axis along the lead 3 (the
corresponding operator is πσx, with π π = −†x x). Then, at the point contacting with lead 3, each
non-degenerate eigenstate of the nanostructure has to satisfy the relation ψ σ ψ= ±n

x
n, i.e.,

= ±↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓u u v v u u v v( , , , ) ( , , , )T T . As a result, − =↑ ↓u u 0 or + =↑ ↓v v 0. Hence the Andreev
reflection through lead 3 is forbidden, leading to the zero G13. It is noted that this analysis is
valid only when several states contribute to the conductance. If the bias is large and the
continuum states are involved, G13 becomes non-zero.

4. Summary and discussion

In summary, we have investigated the Majorana fermions in a semiconductor nanostructure
with two long wires connected through a ring. The nanostructure is in the proximity of a
superconductor and the Rashba spin–orbit coupling, proximity-induced superconducting
pairing and the Zeeman splitting from a magnetic field are included. A magnetic flux is applied
through the center of the ring. Then, due to the fluxoid quantization and the thermodynamic
equilibrium of the supercurrent in the superconducting ring [46], the phase difference between
the order parameters of the two semiconductor wires is zero or π. We show that when it is zero,
the states in the two wires are coupled through the ring and the eigenstates localized around the
ring have finite energies (i.e., there is no Majorana modes around the ring). Nevertheless, when
the phase difference becomes π, two Majorana states appear around the ring without interacting
with each other.

We further investigate the transport property of the nanostructure by connecting two
normal leads to the wires and a third one directly to the ring. The low bias differential
conductance between one of the leads connected at the wire and the one at the ring is mainly
limited by the small Andreev reflection probability through the lead connected at the ring, due
to the current conservation. Hence, in both cases, i.e., with and without the Majorana modes
around the ring, this differential conductance can show very distinct features. In the case with
the Majorana modes (i.e., with π phase difference), the bias dependence of the differential
conductance exhibits two peaks very close to the zero bias due to the interference of the
Andreev reflections through these two Majorana modes. On contrast, in the case without the
Majorana modes (i.e., with zero phase difference), it shows peaks far away from the zero bias if
the ring radius is small. This is due to the resonant Andreev reflections through the localized
states with finite energies. The behaviors in these two cases under small ring radius can be
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easily distinguished from each other. This is a unique property of the Majorana modes which
helps to exclude the other mechanisms leading to the zero-bias peak. Nevertheless, we also
point out that if the ring radius becomes large, the energies of the states in the case with the zero
phase difference can be very close to zero, which makes the corresponding peaks difficult to be
distinguished from those due to the Majorana modes in the case with π phase difference. Hence,
to identify the Majorana modes, small ring radius is a must.

In addition, we also find that due to the mirror symmetry of the nanostructure, the Andreev
reflection through the lead connected at the ring (which is along the inversion axis) is forbidden
around the zero bias if the magnetic field is parallel to the wires and the magnetic flux is absent.

Finally we address the feasibility of our model. If the nanostructure is realized in InAs, our
parameters correspond to Δ = 0.53 meV0 and t = 2.64meV [52]. Then, to make sure that only
the lowest subband is occupied as we assume in the model, the width of the wire w needs to be
less than 32 nm (the corresponding second subband energy π * m w4 /(2 )2 2 2 is larger than t10 ).
As for the temperature T, it limits the resolution of the conductance measurement. If kBT is
larger than the bias difference between the differential conductance peaks, these peaks can not
be distinguished from each other. From figures 3(a) and (c), the bias difference between the
differential conductance peaks for the case without Majorana modes around the ring (the phase
difference ϕ ϕ< 0.25 0) is larger than Δ = =V t0.08 0.21 meV. This corresponds to about 2.6K,
which is experimental available [25, 26]. Therefore, these two peaks can be distinguished from
each other and hence can be distinguished from those due to the Majorana modes around the
ring (the corresponding Δ <V t0.02 as shown in figures 3(a) and (c)). We further discuss the
influence of the electron–electron Coulomb interaction beyond the mean field level (i.e., beyond
just using the superconducting gap Δ0). Although the Coulomb interaction degrades the
superconducting gap [53], it also greatly expands the parameter range for the appearance of the
Majorana modes [54]. Therefore, the qualitative behaviors of the differential conductance
predicted in this work are still valid as long as the Majorana modes exist.
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Appendix. Interference effect of the tunneling through two Majorana modes

In this section, we present the interference effect of the Andreev reflections through two states
ψn and ψ−n. Due to the partial-hole symmetry, ψ ψ=† −n n and their corresponding energies
satisfy ε ε= − −n n. Then, the Green function is written as

ε ε
ε

ε
Γ Γˆ = − − + +

−⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )G

i
( )

0
0 2

, (A.1)
r n

n
e h

1

in which Γ−i /2e stands for the self-energy from the electron part of the lead and Γ−i /2h from the
hole part. They are expressed as
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Γ ε− = † i
G

2
( ) , (A.2)L

e h
e h

with Ge
L and Gh

L standing for the electron and hole Green functions in the lead and 
representing the hopping matrix from the two states to the lead.

For the case with the magnetic field along the z-axis, considering that the Majorana modes

appear only when the Zeeman splitting is larger than μ Δ+ | |0
2

0
2 , the Green functions in the

lead can be expressed as

Γ
Γ= − = −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

G
i

G i

0 0 0 0

0
2

0 0

0 0 0 0
0 0 0 0

, and

0 0 0 0
0 0 0 0

0 0
2

0

0 0 0 0

L
e L

e

L
h

L
h

in the Nambu spinor basis. On the other hand, for the case with the magnetic field along the x-
axis, they are expressed as

Γ Γ
Γ Γ

Γ Γ

Γ Γ

= −

−
−

= −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

G
i

G

4

0 0

0 0
0 0 0 0
0 0 0 0

,

and

0 0 0 0
0 0 0 0

0 0

0 0

.

L
e

L
e

L
e

L
e

L
e

L
h

L
h

L
h

L
h

L
h

i

4

As for the hopping matrix, it is expressed as

=
− −

↑* ↓* ↓* ↑*

↑ ↓ ↓ ↑

⎛
⎝⎜

⎞
⎠⎟ u u v v

v v u u
, (A.3)

with ↑ ↓ ↓ ↑u u v v( , , , )T being the Nambu spinors of ψn at the point of the nanostructure connecting
with lead 3. Then, substituting equations (A.1) and (A.2) into equation (12), the transmission
coefficient for the case with the magnetic field along the z-axis is given by equation (16) and
that along the x-axis is

Γ Γ ε ε= − +* *↓ ↑ ↓ ↑( )( )P u u v v D16 ( ) , (A.4)L
e

L
heh

2

with ε Γ Γ Γ Γ Γ ε ε Γ ε ε= | − | − | − | | + | + − + + −↓ ↑ ↓ ↑ ↓ ↑D u u u u v v i( ) 2 { 2 [ ( ) ( )]}L
e

L
h

L
e

L
h

L
h

L
e

n n
4 2 2

ε ε Γ ε ε Γ+ + | + | − + | + |↓ ↑ ↓ ↑i v v i v v[4( ) ][4( ) ].L
e

L
h

n n
2 2
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