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Abstract We define a quasiclassical limit of the Lian-Zuckerman homotopy BV
algebra (quasiclassical LZ algebra) on the subcomplex, corresponding to “light
modes”, i.e. the elements of zero conformal weight, of the semi-infinite (BRST)
cohomology complex of the Virasoro algebra associated with vertex operator al-
gebra (VOA) with a formal parameter. We also construct a certain deformation of
the BRST differential parametrized by a constant two-component tensor, such that
it leads to the deformation of the A∞-subalgebra of the quasiclassical LZ algebra.
Altogether this gives a functor the category of VOA with a formal parameter to
the category of A∞-algebras. The associated generalized Maurer-Cartan equation
gives the analogue of the Yang-Mills equation for a wide class of VOAs. Apply-
ing this construction to an example of VOA generated by β -γ systems, we find a
remarkable relation between the Courant algebroid and the homotopy algebra of
the Yang-Mills theory.

1 Introduction

The relation between the dynamics of two-dimensional world and D-dimensional
field theory is in the very heart of String Theory. An important problem is to
find how the classical nonlinear equations of motion of gauge theory and gravity
emerge from such two-dimensional dynamics.

In the early days of string theory, the solutions of the linearized equations
of motion modulo gauge symmetry were identified with the semi-infinite co-
homology classes of the Virasoro algebra for a certain Virasoro module. On
the other hand, in the same time period the nonlinear equations of motion, e.g.
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Yang-Mills and Einstein equations with extra fields, have been derived as rela-
tions coming from the conformal invariance condition for two-dimensional sigma
models (5; 6; 8; 9; 29). These relations are usually written as β (φ{ν},h) = 0,
where β (φ{ν},h) = ∑i∈N hiβi(φ{ν}) is some function of all the fields φν , which are
present in the sigma-model, and h is a formal parameter having a meaning of the
Planck constant. The equation β1(φ{ν}) = 0 (β1 is known as a 1-loop β -function)
is equivalent to the classical nonlinear field equations.

The definition of β was and is still a mystery from the mathematical point of
view. However, it was suggested by some authors in the 1980s that the algebraic
version of the equation β (φ{ν},h) = 0 should be something like the (generalized)
Maurer-Cartan equation.

Soon after that, the open and the closed String Field Theories (SFT) have been
constructed (36; 49). The equations of motion of String Field Theory, which are
supposed to contain nonlinear field-theoretic equations of motion, had the form
of Maurer-Cartan equations for certain homotopy algebras: associative algebras
for open strings and strong homotopy Lie algebras for closed ones. However, it
was very hard to derive these equations from SFT (3; 7), moreover, the relation of
these Maurer-Cartan equations to the β -function vanishing condition was also not
clear. It is worth noting several attempts to establish such a relation (1; 33).

At the same time, in the 1980s, the Vertex Operator Algebra (VOA) theory was
constructed (see e.g. (10; 12)): a mathematical theory describing two-dimensional
conformally invariant models, which are of special importance in string theory.
It was observed by B.H. Lian and G.J. Zuckerman (21), that a special class of
VOAs, the topological VOAs (TVOAs), possesses a homotopy algebra. This al-
gebra turned out to be a homotopy Batalin-Vilkovisky (BV) algebra. It was also
conjectured in (20) that there are “higher homotopies” for this algebra, such that
it can be extended to the object which the authors of (20) called G∞-algebra (see
also (13; 18)), which first appeared in (15) (see also (35)). In a recent article (14),
it was also conjectured and proven (for a certain class of TVOA) that there exists
a BV∞-algebra, which is the extension of Lian-Zuckerman homotopy algebra.

One of the important classes of TVOAs is the semi-infinite cohomology com-
plex (or simply BRST complex) associated with certain VOAs.

Taking into account the physical motivation, in order to construct the β -
function and classical field equations, one has to construct a functor from the cat-
egory of vertex operator algebras to the category of homotopy algebras. A natural
candidate for this functor is the one provided by the construction of LZ algebra
on the BRST complex of the Virasoro algebra. We show by means of several ex-
amples, that it is enough to consider a certain quasi-isomorphic subcomplex of
this BRST complex, the so-called light modes, which are annihilated by the L0
Virasoro mode and therefore generate a subalgebra in the LZ algebra.

When conformal weights in the VOA are bounded from below (in this paper
we assume them to be bounded by zero), the complex of light modes is easy to
work with. In this paper we will consider only this light mode complex.

We define what we call the quasiclassical limit of the LZ homotopy BV alge-
bra, which leads to a certain “truncation” of higher homotopies. This means that
it contains A∞- and L∞-algebras, such that all polylinear operations vanish starting
from the quadrilinear ones. We conjecture that it is actually the BV∞-algebra, mo-
tivated by the results of (13; 14). In the β -γ example, this gives a homotopy BV
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algebra associated to The Courant algebroid on the sum of tangent and cotangent
bundles. The corresponding L∞-algebra is the one constructed by D. Roytenberg
and A. Weinstein (32).

Then we introduce a deformation of the BRST differential, which we call a
f lat background deformation, which corresponds to the Abelian vertex subalgebra
and involves a constant two-component tensor. We prove that this deformation can
be continued to the deformation of the homotopy commutative A∞ subalgebra of
the LZ algebra. This gives us a functor from the category of VOAs with a chosen
Abelian subalgebra to the category of A∞-algebras parametrized by this constant
tensor. In the beta-gamma example, this deformed A∞-algebra turns out to be the
A∞-algebra of the Yang-Mills theory with external fields.

The structure of the paper is as follows. In Sect. 2 we set up notations and
recall the basic facts concerning Lian-Zuckerman homotopy BV algebra. We also
give a short reminder about A∞-algebras. In Sect. 3, we define the quasiclassical
limit of the LZ algebra of light modes. We prove explicitly that the quasiclassical
limit of LZ product extends to the A∞-algebra. In Sec. 4 we define what we call
a flat background deformation of the quasiclassical LZ algebra. This is a defor-
mation of the differential, such that in general only the homotopy commutative
A∞-subalgebra of the homotopy BV algebra can be deformed in such a way to
satisfy all necessary conditions with the deformed differential.

In Sect. 5 we apply the constructions we introduced earlier to the VOA gener-
ated by a family of β -γ systems. In particular, we obtain that the quasiclassical LZ
algebra corresponds to the BV algebra, which in conformal weight 1 reproduces
the Courant
algebroid. After that, we show that the flat background deformation in a certain
case leads to the Yang-Mills theory with matter fields, which yields a remarkable
relation between Courant/Dorfman brackets and gauge theory. In the last section
we outline some of the numerous possible directions continuing the studies started
in this paper.

2 Lian-Zuckerman Homotopy BV Algebra

2.1 Notation and conventions

Throughout the paper we will work with vertex operator algebras (VOA), using
physics notation. Therefore the elements of the VOA’s vector space will be re-
ferred to as states and A(z) denotes the vertex operator Y (A,z) (see e.g. (10; 12)),
corresponding to the state A. To simplify the calculations, we introduce a spe-
cial notation for certain operator product coefficients. Namely if A and B are the
elements of the VOA, then we denote

〈A,B〉 ≡ Resz(zA(z)B), [A,B]≡ Resz(A(z)B), AB ≡ Resz

(
A(z)B

z

)
. (1)

2.2 Topological VOA and the Lian-Zuckerman homotopy BV algebra

Topological vertex operator algebra (TVOA) is a vertex superalgebra (see e.g.(10))
that has an additional odd operator Q which makes the graded vector space of
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VOA a chain complex, such that the Virasoro element L(z) is Q-exact. The formal
definition is as follows (see e.g. (20) for more details).

Definition 21 Let V be a Z-graded vertex operator superalgebra, such that V =
⊕iV i = ⊕i,µV i[µ], where i represents grading of V with respect to conformal
weight and µ represents fermionic grading of V i. We call V a topological vertex
operator algebra (TVOA) if there exist four elements: J ∈ V 1[1],b ∈ V 2[−1],F ∈
V 1[0],L ∈V 2[0], such that

[Q,G(z)] = L (z), Q2 = 0, G2
0 = 0, (2)

where Q = J0 and G(z) = ∑n bnz−n−2,J(z) = ∑n Jnz−n−1,L (z) = ∑n Lnz−n−2,
F(z) = ∑n Fnz−n−1. Here L (z) is the Virasoro element of V ; the operators F0,L0
are diagonalizable, commute with each other and their egenvalues coincide with
fermionic grading and conformal weight correspondingly.

A natural example of such object, which will be crucial in the following, is
the semi-infinite cohomology (or simply BRST) complex for the Virasoro algebra
(11) of some VOA with central charge equal to 26. The necessary setup for the
construction of the semi-infinite complex (for more details, see (11) or (22)) is the
VOA Λ , obtained from the following super—Heisenberg algebra:

{bn,cm}= δn+m,0, n,m ∈ Z. (3)

One can construct the space of Λ as a Fock module:

Λ = {b−n1 . . .b−nk c−m1 . . .c−ml 1,n1, . . . ,nk > 0,m1, . . . ,ml > 0;
ck1 = 0, k > 2; bk1 = 0, k >−1}. (4)

Then one can define two fields:

b(z) = ∑
m

bmz−m−2, c(z) = ∑
n

cnz−n+1, (5)

which according to the commutation relations between modes have the following
operator product:

b(z)c(w)∼ 1
z−w

. (6)

The Virasoro element is given by the following expression:

LΛ (z) = 2 : ∂b(z)c(z) : + : b(z)∂c(z) :, (7)

such that b(z) has conformal weight 2, and c(z) has conformal weight −1. Here,
as usual, :: stand for normal ordered product, e.g. b(z)c(w) = 1

z−w+ : b(z)c(w) :
(for more details see e.g. (10), Sect. 2.2).

Now let V be a VOA with the Virasoro element L(z). Let us consider the tensor
product V ⊗Λ . Then we have the following proposition.
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Proposition 21 (11). If V is a VOA with the central charge of Virasoro algebra
equal to 26, then V ⊗Λ is a topological vertex algebra, where

J(z) = c(z)L(z)+ : c(z)∂c(z)b(z) : +
3
2

∂
2c(z), G(z) = b(z),

F(z) =: c(z)b(z) :, L (z) = L(z)+LΛ (z). (8)

The operator Q = J0 is traditionally called the BRST operator and the eigen-
value of F0, i.e. fermionic grading is usually called the ghost number.

Lian and Zuckerman observed that each TVOA possesses a rich algebraic
structure. They have shown the following. One can define two operations which
are cochain maps with respect to Q:

µ(a1,a2) = Resz
a1(z)a2

z
, {a1,a2}=

(−1)|a1|

2πi

∮
dz(b−1a1)(z)a2. (9)

These operations satisfy the following relations:

Proposition 22 (21). The operation µ is homotopy commutative and homotopy
associative:

Qµ(a1,a2) = µ(Qa1,a2)+(−1)|a1|µ(a1,Qa2),

µ(a1,a2)− (−1)|a1||a2|µ(a2,a1)

= Qm(a1,a2)+m(Qa1,a2)+(−1)|a1|m(a1,Qa2),

Qn(a1,a2,a3)+n(Qa1,a2,a3)+(−1)|a1|n(a1,Qa2,a3)

+(−1)|a1|+|a2|n(a1,a2,Qa3) = µ(µ(a1,a2),a3)−µ(a1,µ(a2,a3)),

(10)

where

m(a1,a2) = ∑
i≥0

(−1)i

i+1
ReswResz−w(z−w)iw−i−1b−1(a1(z−w)a2)(w)1,

n(a1,a2,a3) = ∑
i≥0

1
i+1

ReszReswwiz−i−1(b−1a1)(z)a2(w)a3 (11)

+(−1)|a1||a2| ∑
i≥0

1
i+1

ReswReszziw−i−1(b−1a2)(w)a1(z)a3.

The operation {·, ·} measures the failure of b0 to be a derivation of µ . In other
words we have the following proposition:

Proposition 23 (21). The operations µ and {·, ·} are related in the following way:

{a1,a2}= b0µ(a1,a2)−µ(b0a1,a2)− (−1)|a1|µ(a1,b0a2). (12)

Moreover, the bracket satisfies the relations of a homotopy Gerstenhaber alge-
bra.
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Proposition 24 (21). The operations µ and {·, ·} satisfy the relations:

{a1,a2}+(−1)(|a1|−1)(|a2|−1){a2,a1}
= (−1)|a1|−1(Qm′(a1,a2)−m′(Qa1,a2)− (−1)|a2|m′(a1,Qa2)),

{a1,µ(a2,a3)}= µ({a1,a2},a3)+(−1)(|a1|−1)||a2|µ(a2,{a1,a3}),
{µ(a1,a2),a3}−µ(a1,{a2,a3})− (−1)(|a3|−1)|a2|µ({a1,a3},a2)

= (−1)|a1|+|a2|−1(Qn′(a1,a2,a3)−n′(Qa1,a2,a3)

− (−1)|a1|n′(a1,Qa2,a3)− (−1)|a1|+|a2|n′(a1,a2,Qa3),

{{a1,a2},a3}−{a1,{a2,a3}}+(−1)(|a1|−1)(|a2|−1){a2,{a1,a3}}= 0,

(13)

where m′,n′ are some bilinear and trilinear operations on the TVOA (see p. 621
of (21)).

In fact, the operations m′ and n′ are constructed from µ,m and n. However,
we will not need explicit expressions in the following. The relations (10)–(13) by
definition mean that µ(·, ·) and {·, ·} generate the homotopyBV algebra. In the
following we will refer to the concrete homotopy BV algebra generated by µ and
{,} as the LZ algebra.

We note here, that in this article when we say “homotopy” (associative, Lie,
Gerstenhaber, BV. . . ) algebra it means that we have a certain set of operations
endowed with just a first level of homotopies. This provides the structure of a strict
(associative, Lie, Gerstenhaber, BV. . . ) algebra structure on the cohomology, as
in (21). When we talk about ∞-algebras, we mean that there is a full set of higher
homotopies (see below the explicit description of A∞-algebras) satisfying some
relations. Therefore ∞-algebra is a homotopy algebra, but the inverse is not true in
general.

Lian and Zuckerman made a conjecture, that the LZ algebra can be extended to
G∞-algebra (see e.g. (20)). It was recently proved (13; 14) that for a certain class of
TVOAs, that this algebra is in fact the BV∞-algebra (14). As we discussed above,
this means that there are “higher homotopies”, i.e. in the general case nonzero
multilinear operations which satisfy the higher associativity/Jacobi/Leibniz rela-
tions.

Here we will not discuss this complicated object in detail. However, this con-
jecture implies that there exists a homotopy algebra, which “extends” the relations
between µ and n only. Such an algebra is called an A∞-algebra, and we will discuss
the precise definition in the next subsection.

2.3 Short reminder of A∞-algebras

The A∞-algebra is a generalization of a differential graded associative algebra.
Namely, consider a graded vector space V with a differential Q. Consider the mul-
tilinear operations µi : V⊗i →V of the degree 2− i, such that µ1 = Q.
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Definition 22 (see e.g. (27)). The space V is an A∞-algebra if the operations µn
satisfy bilinear identity:

n−1

∑
i=1

(−1)iMi ◦Mn−i+1 = 0 (14)

on V⊗n, where Ms acts on V⊗m for any m ≥ s as the sum of all possible operators
of the form 1⊗l ⊗µs⊗1⊗m−s−l

taken with appropriate signs. In other words,

Ms =
n−s

∑
l=0

(−1)l(s+1)1⊗
l ⊗µs⊗1⊗

m−s−l
. (15)

Let us write several relations which are satisfied by Q,µ1,µ2,µ3:

Q2 = 0,

Qµ2(a1,a2) = µ2(Qa1,a2)+(−1)|a1|µ2(a1,Qa2),

Qµ3(a1,a2,a3)+ µ3(Qa1,a2,a3)+(−1)|a1|µ3(a1,Qa2,a3)

+(−1)|a1|+|a2|µ3(a1,a2,Qa3) = µ2(µ2(a1,a2),a3)−µ2(a1,µ2(a2,a3)).

(16)

In such a way we see that if µn = 0,n ≥ 3, then we have just a differential
graded associative algebra (DGA). If the operations µn vanish for all n > k, such
A∞-algebras are sometimes called A(k)-algebras (34), so e.g. DGA is the A(2) al-
gebra.

We observe that putting µ2 ≡ µ and µ3 = n, these relations are manifestly the
same as the ones relating Q,µ and n. The Lian-Zuckerman conjecture states that
there are “higher homotopies” µn,n > 3 satisfying the relations (14).

It is well known that the relations (14) can be encoded into one equation ∂ 2 = 0
(27). To see this one can apply the desuspension operation (the operation which
shifts the grading s−1 : Vn → (s−1V )n−1) to µn. In such a way we can define oper-
ations of degree 1: µ̃n = sµn(s−1)⊗n. More explicitly,

µ̃n(s−1a1, . . . ,s−1an) = (−1)s(a)s−1
µn(a1, . . . ,an), (17)

such that s(a) = (1−n)|a1|+(2−n)|a2|+ . . .+ |an−1|. The relations between µ̃n
operations can be summarized in the following simple equations:

n

∑
i=1

M̃i ◦ M̃n+1−i = 0 (18)

on V⊗n, where each M̃s acts on V⊗m (for m ≥ s) as the sum of all operators 1⊗l ⊗
µ̃s ⊗1⊗k, such that l + s + k = m. Combining them into one operator ∂ = ∑n M̃n,
acting on a space ⊕kV⊗k the relations (14) can be summarized in one equation
∂ 2 = 0.

An important object in the theory of A∞-algebras is the generalized Maurer-
Cartan (GMC) equation. Let us pick X ∈V of degree 1. Then the equation

QX + ∑
n≥2

µn(X , . . . ,X) = 0 (19)



8 A. M. Zeitlin

is called the generalized Maurer-Cartan equation on X . It is worth mention-
ing that it is well defined in general only on nilpotent elements, i.e. such that
µn(X , . . . ,X) = 0 for n > k. This will not be a problem in the following, because
the only A∞ algebras we will consider in this article, are A(3)-algebras and there-
fore GMC equation will be well defined for all elements of degree 1.

The Generalized Maurer-Cartan equation is known to have the following in-
finitesimal symmetry:

X 7→ X + ε(Qα + ∑
n≥2,k

(−1)n−k
µn(X , . . . ,α, . . . ,X)), (20)

where ε is infinitesimal, α is an element of degree 0 and k means the position of
α in µn.

3 Light Modes and the Quasiclassical Limit

3.1 Vertex operator algebras with a formal parameter

In this article we will be interested in computing quasiclassical limits, therefore
we need to consider the vertex operator algebras depending on a formal parameter.
Namely, we consider the VOAs on the spaces of the form V =⊕n∈Z≥0V

n, where
n stands for the grading with respect to conformal weight, and V n = V n[h−1,h],
where V n are some vector spaces and h is a formal parameter. Let us denote V =
⊕n∈Z≥0V

n.
Then, we require the operator products to meet the following conditions:

i) For any state A the associated vertex operator A(z) = ∑n Anz−n−1 is such
that its Fourier modes An ∈ EndC[h,h−1](V ), i.e. they commute with the nat-
ural action of C[h,h−1] on V .

ii) Let A,B ∈V and A(z) = ∑n Anz−n−1, then

AnB ∈ hV [h], n ≥ 0. (21)

Moreover, we put the following conditions on the Virasoro action:
iii) V is invariant under the action of the operator L−1.
iv) Let A ∈V be a state of conformal weight 1, then L1A ∈ hV .1

As a consequence of properties i)− iv), we observe that letting h = 1 we obtain
a VOA structure on V .

Let us consider some simple examples of such parameter-dependent VOAs.

Examples. i) Heisenberg VOA. We consider the Fock space for the Heisenberg
algebra,

[an,am] = hnδn,−m, (22)

1 This condition, in principle, can be relaxed, by letting L1A ∈ hV [h], and (with some modifi-
cations) one can apply the constructions of the article to this case. However, being motivated by
certain concrete examples we keep the more restrictive form of condition iv).
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i.e. the space Fa[h−1,h], where Fa = {a−n1 . . .a−nk |0〉,n1, . . . ,nk > 0;an|0〉=
0,n≥ 0}. The space Fa is a VOA, such that on the operator product expansion
language these commutation relations are summarized as follows:

a(z)a(w)∼ h
(z−w)2 , (23)

where a(z) = ∑n anz−n−1. The Virasoro element is given by the operator
L(z) = 1

h : a(z)2:, where dots stand for standard normal ordering in the Fock
space.

ii) β -γ system. This is the most interesting example for us, because in this case
there is a nontrivial subspace of the VOA of conformal weight equal to zero.
For all the details we refer to the paper (26). Let us consider the Heisenberg
algebra of the following kind:

[γn,βm] = hδn,−m. (24)

The construction of the corresponding VOA space Fβγ [h−1,h] is as fol-
lows. Let us consider again the Fock space for the Heisenberg algebra (24):
F̃βγ = {β−n1 . . . .β−nk γ−m1 . . .γ−ml |0〉,n1, . . . ,nk > 0,m1, . . . ,ml > 0; βn|0〉= 0,n≥
0,γn|0〉 = 0,n > 0}. In other words, F̃βγ = C[β−n,γ−m]n>0,m≥0. The space
F̃βγ [h−1,h] already carries an algebraic structure of a VOA, but one can proceed
further and construct the space Fβγ = F̃βγ ⊗A Â, where A = C[γ0] and Â = C[[γ0]] or
any other function field containing C[γ0]. From (26) one can prove that Fβγ [h−1,h]
is a VOA with a formal parameter, such that the commutation relations (24) can
be expressed via the operator product:

γ(z)β (w)∼ h
z−w

, β (z)β (w)∼ 0, γ(z)γ(w)∼ 0, (25)

where β (z) = ∑n βnz−n−1 is a quantum field of conformal dimension 1 and γ(z) =
∑n γnz−n is a quantum field of conformal dimension 0. The Virasoro element is
given by Lβ ,γ(z) =− 1

h : β∂γ(z) :, where dots stand for normal ordering.
One can easily continue this list of examples. In fact, there is a quite large

class of VOAs, which can be obtained from the VOAs with a formal parameter by
letting this parameter be equal to 1.

3.2 The light modes

Let us consider the space V ⊗Λ , where Λ is the b-c ghost VOA defined in Sub-
sect. 2.2. When the central charge of the Virasoro algebra of V is equal to 26,
this space is the semi-infinite cohomology complex of the Virasoro algebra. How-
ever, there is a subspace of V ⊗Λ which is a complex with respect to the BRST
operator regardless of the value of the central charge.

Definition 31. We call the subspace of V ⊗Λ which is annihilated by L0 (i.e.
space of states of conformal weight zero) the space of light modes.
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Since the conformal weights in the VOA are greater than zero, the following
proposition holds.

Proposition 31. (i) The space of light modes FL0 is linearly spanned by the
elements which correspond to the operators:

u(z), c(z)A(z), ∂c(z)a(z), c(z)∂c(z)Ã(z),

c(z)∂ 2c(z)ã(z), c(z)∂c(z)∂ 2c(z)ũ(z). (26)

Here u, ũ,a, ã∈V are of conformal weight 0 and A, Ã∈V are of conformal
weight 1.

(ii) The space FL0 is a chain complex, quasi-isomorphic to the semi-infinite
complex when the central charge is equal to 26. The differential acts on
FL0 in the following way (we recall that the grading is given by the ghost
number):

V 1

��6
66

66
66

66
66

66
66

V 1

1
2 L1

��6
66

66
66

66
66

66
66

L−1⊕ ⊕
− 1

2 L1

V 0

L−1

EE















V 0

CC���������������

id
// V 0 V 0

(27)

where V i (i = 0,1) is the space of the elements of V of conformal dimension
i.

Proof. The first part of the proposition can be proven by comparing the conformal
weights of differential polynomials of operator c(z) and the operators in vertex
algebra V in such a way that the total conformal weight is zero. Part ii) can be
obtained using the following formulas:

QA(z) = ∂c(z)A(z)+ c(z)∂A(z)+
1
2

∂
2c(z)L1A(z), Qc(z) = c(z)∂c(z), (28)

where u ∈V 0,A ∈V 1. Really, using (28), we get:

Qu(z) = c(z)∂u(z), Q(c(z)A(z)) =−c(z)∂ 2c(z)L1A(z),

Q(∂c(z)a(z)) = c(z)∂ 2c(z)a(z)+ c(z)∂c(z)∂a(z), (29)

Q(c(z)∂c(z)Ã(z)) =
1
2

c(z)∂c(z)∂ 2c(z)L1Ã(z), Q(c(z)∂ 2c(z)ã(z)) = 0.

Proposition 31 is proved. ut

Another important observation is about the operator b0.
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Corollary 31. The space FL0 is invariant under the action of the operator
b0, [Q,b0] = 0 on FL0 and b0 has a trivial cohomology. The explicit form of the
action of b0 is:

V 1 V 1−idoo⊕ ⊕
V 0 V 0idoo V 0 V 0−idoo

(30)

Important remark about notation. In order to simplify some of the calculations, in
the following we will sometimes write instead of the element of the complex FL0
the corresponding state of V , i.e. instead of the element corresponding to cA we
will just write A, or Ã instead of c∂cÃ. Since according to our notation the states
without tilde correspond to tensor products with elements of ghost number 0 and
1, and the states marked by tilde correspond to the tensor product with elements
of ghost number 2 and 3, this should never lead to confusion.

We note here that the operations µ and {·, ·} act invariantly on the space of
light modes, therefore the light modes form a homotopy subalgebra of LZ algebra.
Moreover, from Proposition 31, and Corollary 31, we see that the Lian-Zuckerman
algebra on light modes is determined by means of operator product expansion
of the elements of V of conformal dimensions 0 and 1. For example, explicit
expressions for the bilinear operation µ is collected in the table:

µ(a1,a2) = (31)
H

HHHHa2

a1 u1 A1 v1 Ã1 ṽ1 ũ1

u2 u1u2 A1u2 v1u2 Ã1u2 ṽ1u2 ũ1u2
+[A1,u2]

A2 u1A2 −[A1,A2]+ −v1A2
1
2 〈Ã1,A2〉 [ṽ1,A2] 0

1
2 〈A1,A2〉 −[ṽ1,A2]

v2 u1ũ2 A1v2 0 −[Ã1,v2] −ṽ1v2 0
Ã2 u1Ã2

1
2 〈A1, Ã2〉 [v1, Ã2] 0 0 0

ṽ2 u1ũ2 [A1, ṽ2] −v1ṽ2 0 0 0
ũ2 u1ũ2 0 0 0 0 0

Let us denote by F+
L0

the space of light modes, which belong to V [h]⊗Λ . The
Lian-Zuckerman algebraic operations act on this space invariantly since V [h] is a
vertex algebra. Let us denote F+

L0
(1) the Lian-Zuckerman algebra on F+

L0
when

h = 1. Below we construct the embedding of F+
L0

(1) into F+
L0

as a chain complex.
The following proposition holds:

Proposition 32. Let F be the subspace of F+
L0

, linearly spanned by the elements
corresponding to the vertex operators:

u(z), c(z)A(z), h∂c(z)v(z), hc∂c(z)Ã(z),

hc(z)∂ 2c(z)ṽ(z), h2c(z)∂c(z)∂ 2c(z)ũ(z), (32)

where u, ũ,v, ṽ,A, Ã ∈V . Then the following two statements hold:
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i) The complex F is a BRST subcomplex of F+
L0

isomorphic to F+
L0

(1). Moreover,
it is a subcomplex with respect to the operator h−1b0.

ii) The Lian-Zuckerman operations act as follows on F :

µ : Fi⊗F j →Fi+ j[h], m : Fi⊗F j →Fi+ j−1[h],
n : Fi⊗F j ⊗Fk →Fi+ j+k−1[h], {Fi,F j}→ hFi+ j−1[h], (33)

where Fi is a subspace of F of ghost number i.

Therefore, one can consider the expansions µ(·, ·) = µ0(·, ·)+O(h),m(·, ·)h =
m0(·, ·)+O(h),n(·, ·, ·)h = n0(·, ·, ·)+O(h),{·, ·}= h{·, ·}0 +O(h2). Then we have
a theorem, which follows from Proposition 32.

Theorem 31. The operations µ0(·, ·),m0(·, ·),{·, ·}0,n0(·, ·, ·) and the differentials
Q and h−1b0, defined on the space of the light modes of V ( i.e. FL0(1)), satisfy
the relations of the homotopy BV algebra.

We will call the resulting algebra on F the quasiclassical Lian-Zuckerman
algebra. 2

Further we need explicit expressions for all bilinear operations and their ho-
motopies. We use the following notation. Let 〈a1,a2〉0 = limh→0h−1〈a1,a2〉 and
[a1,a2]0 = limh→0h−1[a1,a2], where a1,a2 ∈V . Below, the expression a1a2 means
the normal ordered product of the two elements of V in the h → 0 limit.

Then we can express the bilinear operations µ0(·, ·) and {·, ·}0 via the follow-
ing tables:

µ0(a1,a2)=

H
HHHHa2

a1 u1 A1 v1 Ã1 ṽ1 ũ1

u2 u1u2 A1u2 v1u2 Ã1u2 ṽ1u2 ũ1u2
+[A1,u2]0

A2 u1A2 −[A1,A2]0− −v1A2
1
2 〈Ã1,A2〉0 [ṽ1,A2]0 0

1
2 〈A1,A2〉0

v2 u1ũ2 A1v2 0 0 −ṽ1v2 0
Ã2 u1Ã2

1
2 〈A1, Ã2〉0 0 0 0 0

ṽ2 u1ũ2 [A1, ṽ2]0 −v1ṽ2 0 0 0
ũ2 u1ũ2 0 0 0 0 0

2 Let us stress here, that the quasiclassical limit we consider, is different from the standard
limit that takes vertex algebra to Poisson vertex algebra. If one applies such limit to our construc-
tion, one gets only the subalgebra of the homotopy Lie algebra, which is a part of the homotopy
BV algebra.
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{a1,a2}0=

H
H

H
HHa2

a1 u1 A1 v1 Ã1 ṽ1 ũ1

u2 0 −[A1,u2]0 0 [Ã1,u2]0 0 0
A2 0 −[A1,A2]0 0 −[Ã1,A2]0 [ṽ1,A2]0 −[ũ1,A2]0

− 1
2 〈Ã1,A2〉0

v2 0 −[A1,v2]0 0 0 0 0
Ã2 0 −[A1, Ã2]0 0 〈Ã1, Ã2〉0 [ṽ1, Ã2]0 0
ṽ2 0 −[A1, ṽ2]0 0 −[Ã1, ṽ2]0 0 0
ũ2 −[A1, ũ2]0 0 0 0 0 0

In the tables above we keep the same notation as in (31) except for the fact that
uivi, ũi, ṽi and Ai, Ãi are associated with the elements from V 0 and V 1 correspond-
ingly. The bilinear operation m is nonzero only if both its arguments. . . belong to
F1:

m0(A1,A2) =−〈A1,A2〉0. (34)

The expression n0(a1,a2,a3) is nonzero only when all three elements belong
to F1 or one of the first two belongs to F2 and the other lies in F1:

n0(A1,A2,A3) = A2〈A1,A3〉0−A1〈A2,A3〉0,

n0(A1, ṽ,A2) = n0(ṽ,A1,A2) =−ṽ〈A1,A2〉0.
(35)

We believe that the quasiclassical Lian-Zuckerman homotopy BV algebra is
actually a BV∞-algebra from (14), motivated by the results of (13; 14). Below we
prove an important part of this conjecture, which is needed in the paper.

Theorem 32. The homotopy associative algebra with the operations Q,µ0,n0 is
an A∞-algebra where the higher homotopies vanish starting from the tetralinear
one. In other words, Q,µ0,n0 generate the A(3) algebra.

Proof. In order to prove this statement, it is enough to show that the relations:

(−1)na1 µ0(a1,n0(a2,a3,a4))+ µ0(n0(a1,a2,a3),a4)
= n0(µ0(a1,a2),a3,a4)−n0(a1,µ0(a2,a3),a4)+n0(a1,a2,µ0(a3,a4)). (36)

hold. The last relation is trivial. Let us prove the first one in the most nontrivial
case, when ai = Ai ∈F1:

(−1)nA1 µ0(A1,n0(A2,A3,A4))+ µ0(n0(A1,A2,A3),A4)

=−1
2
〈A1,A3〉0〈A2,A4〉0 +

1
2
〈A1,A2〉0〈A3,A4〉0

+
1
2
〈A2,A4〉0〈A1,A3〉0−

1
2
〈A1,A4〉0〈A2,A3〉0

=
1
2
〈A1,A2〉0〈A3,A4〉0−

1
2
〈A1,A4〉0〈A2,A3〉0

= n0(µ0(a1,a2),a3,a4)−n0(a1,µ0(a2,a3),a4)+n0(a1,a2,µ0(a3,a4)).
(37)

We leave for the reader to establish these relations in all other situations. ut
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3.3 Remarks on quasiclassical limits and Vertex/Courant algebroids

In the end of this section we want to draw attention to an important notion, intro-
duced in (16) called the vertexalgebroid. It basically reflects the relations between
the operator products of the elements of conformal dimension 0 and 1 and the op-
erator L−1 in the vertex algebra (the authors of (16) do not require the presence of
the Virasoro element). As one can see from the explicit construction of the oper-
ations, those relations are included in the relations of the LZ algebra (10). At the
same time, for the LZ algebra one needs extra relations, involving the L1 operator,
which are absent in the definition of vertex algebroid (see e.g. (4; 16; 25)).

We also indicate here that the quasiclassical limit of the LZ algebra is not
equivalent to the usual quasiclassical limit, which truncates the vertex algebra into
the Poisson algebra, and the vertex algebroid into the Courant algebroid (see e.g.
(4)). In this limit the L1 action vanishes, partly destroying the differential and
almost all structures in the homotopy BV algebra, which we obtained, leaving
only the subalgebra of the L∞-algebra corresponding to the states of ghost number
0 and 1. This is, in fact, the usual L∞-algebra of the Courant algebroid (32).

In the same way the authors of (16) build a functor assigning to the vertex
algebra the vertex algebroid and therefore the L∞-algebra, LZ construction yields
a functor which assigns to the VOA the homotopy BV algebra. Considering VOA
with a parameter, we see that we have a functor which maps each such VOA in the
quasiclassical limit of the LZ algebra, which, as we have seen are highly truncated
homotopy BV algebra (see Theorem 32). As a direct consequence of Theorem 32
we have a functor from the category of VOA with a parameter into the category of
A∞-algebras.

One might wonder if this construction of the classical limit could be modified
to be applied to other TVOA, e.g. the chiral de Rham complex (26) in order to
obtain some nontrivial homotopy BV structure. However, the space of light modes
there is just spanned by differential forms and the operation µ is given by the
wedge product, while the analog of b0 acts as a derivation of µ . Therefore the
bracket {·, ·} vanishes and the whole LZ algebra is just the differential graded
algebra of differential forms. There is, in fact, a nontrivial modification of the
LZ algebra in this case, which is worth mentioning here. It basically corresponds
to the interchanging of the roles of b(z) and J(z) operators (see Definition 21),
such that the bracket is constructed by means of Q, but not b0. Reducing it to a
certain subcomplex of b0 one can construct a BV algebra of polyvector fields on a
manifold (25). This might lead to the chiral version of the Barannikov-Kontsevich
results (2).

4 Deformation of Lian-Zuckerman Homotopy Commutative Algebra

4.1 Flat background deformation: the case of general TVOA

Let V be a TVOA. Let us consider the set of elements { fi}0, where fi ∈ V 0[1]
are primary elements (i.e. they correspond to the highest weight vectors of the
Virasoro algebra) of conformal dimension 0 and of fermionic degree 1, such that

b0 fi = 0, Q fi = 0, µ( fi, f j) = 0 ∀i, j. (38)
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An immediate consequence is that { fi, f j}0 = 0. We will call the operator

Rη = ∑
i, j

η
i j

µ( fi,{ f j, ·}), (39)

where η i j is some constant matrix, the flat background deformation of Q. First of
all we show that our definition is consistent, i.e. the following proposition holds:

Proposition 41. The operator Rη obeys the properties:

(Rη)2 = 0, [Q,Rη ] = 0. (40)

Proof. The second relation is an immediate consequence of the fact that Q is a
derivation of both µ(·, ·) and {·, ·}0. Let us prove the first one. In order to do that
let us write in detail (Rη)2a for some a ∈V :

(Rη)2a = ∑
i, j,k,l

η
i j

µ( fi,{ f j,η
kl

µ( fk,{ fl ,a})})

= ∑
i, j,k,l

η
i j

η
kl

µ( fiµ( fk,{ f j{ fl ,a}0}0)

= ∑
i, j,k,l

η
i j

η
kl(µ(µ( fi, fk),{ f j{ fl ,a}})+(Qn+nQ)( fi, fk,{ f j{ fl ,a}})).

(41)

Since { f j,{ fl ,a}}= { fl ,{ f j,a}},(Rη)2a = 0. ut

Geometric/physical meaning of the flat metric deformation. It can been shown
that the operator Rη has the natural geometric meaning. Let us consider the opera-
tor φ (0)(z, z̄) = ∑i, j η i j fi(z) f j(z̄), where z̄ is the complex conjugated variable for z,
and the operator-valued differential forms φ (2) = ∑i, j η i j[b−1, fi(z)][b−1, f j(z̄)],φ (1) =
dz̄∑i, j η i j[b−1, fi(z)] f j(z̄)−dz∑i, j η i j fi(z)[b−1, f j(z̄)], such that the following de-
scent equations are satisfied:

Qφ
(2) = dφ

(1), Qφ
(1) = dφ

(0), Qφ
(0) = 0. (42)

Let us consider the operator R̃η which acts on the elements of TVOA as fol-
lows:

R̃η a = P0

∫
Cε,0

φ
(1)a, (43)

where Cε,0 is the contour around zero of the radius ε and P0 is the projection on
the ε0-component. Counting the powers of ε , one can see that R̃η = Rη .

Physically, it means the following. Suppose the TVOA V is described by the
action S0. Let us consider its perturbation by the operator φ (2), i.e. the perturbed
action is Sφ = S0 −

∫
φ (2). Therefore, the deformed BRST current is given by

JB,φ = JB(z)dz + φ (1), i.e. the deformed charge has the form Qφ =
∫

JB,φ , but it
must involve some regularization, as it usually happens in the quantum theory.
The regularization is given by the projection on the ε-independent part. After ex-
amples are considered, it will be quite clear why we call the perturbation of the
form φ (2) = ∑i, j η i j[b−1, fi(z)][b−1, f j(z̄)] by “flat background”.
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4.2 Deformation of the quasiclassical LZ algebra of light modes

Let V be a VOA and V ⊗Λ is the corresponding BRST complex. Then the follow-
ing proposition holds.

Proposition 42. The flat background deformation of the BRST operator is deter-
mined by Abelian vertex subalgebras of V generated by the primary elements {si}
of conformal weight 1, such that

si(z)s j(w)∼ 0, ∀i, j, (44)

where si(z) = ∑n sn,iz−n−1, in other words, [sn,i,sm, j] = 0 for any m,n.

Proof. Let us consider all possible primary fields of conformal weight 0 and of
ghost number 1 in V ⊗Λ . They have the form cs(z) and ∂cu(z), where s(z),u(z)
are primary fields of conformal dimensions 1 and 0 correspondingly. The condi-
tion that such field should be annihilated by b0 leaves us only the quantum fields
of the form cs(z). Therefore, the flat background deformation of the BRST oper-
ator is determined by the sets of primary fields si of conformal weight 1. Finally,
condition (44) can be obtained from the fact that µ( fi, f j) = 0, where fi is the state
corresponding to the quantum field csi(z).

ut

Therefore, one can introduce the elements fi from FL0 corresponding to si(z)
of ghost number 1 of conformal weight 0. In the case with parameter, let us define
the operator Rη

h ≡ h−1
∑i, j η i jµ( fi,{ f j, ·}). Then we have a proposition.

Proposition 43. i) The operator Rη

h commutes with the BRST operator and

(Rη

h )2 = 0. It acts on FL0 as follows:

V 1

��6
66

66
66

66
66

66
66

6
∆ // V 1

1
2 L̂1

��6
66

66
66

66
66

66
66

6

L̂−1⊕ ⊕
− 1

2 L̂1

V 0

L̂−1

EE���������������

−∆

// V 0

DD����������������
V 0

∆

// V 0

(45)

where ∆ = h−1
∑i, j η i js0,is0, j, L̂1·=−h−1

∑i, j η i j〈si,s0, j·〉,
L̂−1·=−h−1

∑i, j η i jsis0, j·.

ii) On the complex F the operator Rη

h acts in such a way:

Rη

h : F →F [h]. (46)

The quasiclassical version of Rη

h , i.e. the operator Rη

0 = ∑i, j η i jµ0( fi,{ f j, ·}0),
where fi = csi and si ∈V , acts on F invariantly and commutes with Q on F .
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A natural question is whether one can deform the quasiclassical LZ algebra in
such a way that all the relations will be satisfied with the differential Qη = Q+Rη

0 .
The answer is only partly positive. Namely, the following theorem holds.

Theorem 41. i) There exist a flat metric deformation of the homotopy associa-
tive subalgebra of the quasiclassical LZ homotopy BV algebra, i.e. there exist
η-deformed multilinear maps µ

η

0 ,mη

0 ,nη

0 on F , which together with Qη sat-
isfy the relations of the homotopy associative algebra. Moreover, mη

0 ≡m0 and
nη

0 ≡ n0.
ii) The homotopy associative algebra on F with operations Qη ,µ

η

0 ,nη

0 is an A∞-
algebra, such that all multilinear operations vanish starting from the tetralin-
ear one.

Proof. For simplicity of calculations in this proof we assume the Einstein summa-
tion convention, i.e. when an index variable appears twice in a single term, once
in an upper (superscript) and once in a lower (subscript) position, it implies that
we are summing over all of its possible values.

In the beginning, let us show how the bilinear operation is deformed. In order
to do that let us find an obstacle for Rη

0 to be a derivation of µ0:

Rη

0 µ0(a1,a2) = µ0( fi,µ0({ f j,a1}0,a2))η i j + µ0( fi,µ0(a1,{ f j,a2}0))η i j

= µ0(µ0( fi,{ f j,a1}0),a2)+ µ0(µ0( fi,a1),{ f j,a2}0)η i j

−(Qn0 +n0Q)( fi,{ f j,a1}0,a2)η i j − (Qn0 +n0Q)( fi,a1,{ f j,a2}0)η i j

= µ0(µ0( fi,{ f j,a1}0),a2)+(−1)|a1|µ0(µ0(a1, fi),{ f j,a2}0)

−(Qn0 +n0Q)( fi,{ f j,a1}0,a2)η i j − (Qn0 +n0Q)( fi,a1,{ f j,a2}0)η i j

+(Qr0 + r0Q)( fi,a1,{ f j,a2}0)η i j

= µ0(µ0( fi,{ f j,a1}0),a2)η i j +(−1)|a1|µ0(a1,µ0( fi, [ f j,a2]))η i j

+(Qr0 + r0Q)( fi,a1,{ f j,a2}0)η i j

= µ0(R
η

0 a1,a2)+(−1)|a1|µ0(a1,R
η

0 a2)− (Qν
η

0 +ν
η

0 Q)(a1,a2), (47)

where r0(a1,a2) = m0( fi,a1){ f j,a2}0η i j and

ν
η

0 (a1,a2) = n0( fi,{ f j,a1}0,a2)η i j −m0( fi,a1){ f j,a2}0η
i j. (48)

The explicit expression for ν
η

0 is given in the following table:

ν
η

0 (a1,a2)=
HH

HHHa2

a1 u1 A1 v1 Ã1 ṽ1 ũ1

u2 0 η i j〈si,A1〉0{ f j,u2}0 0 0 0 0
A2 0 νη(A1,A2) 0 0 −η i j〈si,A2〉0{ f j, ṽ1}0 0
v2 0 0 0 0 0 0
Ã2 0 0 0 0 0 0
ṽ2 0 −η i j〈si,A1〉0{ f j, ṽ2}0 0 0 0 0
ũ2 0 0 0 0 0 0
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where

ν
η

0 (A1,A2) = −〈si,A1〉0{ f j,A2}0η
i j − si〈{ f j,A1}0,A2〉0η

i j

+{ f j,A1}0〈si,A2〉0η
i j. (49)

We see that [Rη

0 ,µ0]+ [Q,νη ] = 0 and if [Rη

0 ,νη

0 ] = 0, then Qη is a derivation
of the bilinear operation µ

η

0 = µ0 + ν
η

0 . One can show it explicitly. We check
the most nontrivial situations, i.e. when a1 ∈ F1,a2 ∈ F1, and also cases when
a2 ∈F0,a1 ∈F1 and a1 ∈F0,a2 ∈F1.

So, let a1 = u ∈F0 and a2 = A ∈F1. Then ν
η

0 (u,A) = 0 and ν
η

0 (u,Rη

0 A) = 0.
At the same time

ν
η

0 (Rη

0 u,A) = ν
η

0 (si{ f j,u}0,A)η i j

= (−sk〈si{ fl ,{ f j,u}0}0,A〉0 + si{ fk,{ f j,u}0}0〈sl ,A〉0)η i j
η

kl = 0.

(50)

Now we check the case a2 = u ∈ F0,a1 = A ∈ F1. The bilinear operation
between these two elements is nontrivial, moreover:

Rη

0 ν
η

0 (A,u) = η
i j

η
klsk{ fl ,〈si,A〉0{ f j,u}0}0. (51)

According to the definition of ν
η

0 ,νη

0 (Rη

0 A,u) = 0. At the same time

(−1)|A|νη(A,Rη

0 u) = 〈sk,A〉0{ fl ,si{ f j,u}0}0η
i j

η
kl

+si〈{ f j,A}0,sk{ fl ,u}0〉0η
i j

η
kl . (52)

Therefore, Rη

0 is a derivation in this case also. Let us consider the last possi-
bility, when a1 = A1 ∈F1 and a2 = A2 ∈F1.

Rη

0 ν
η

0 (A1,A2) =
1
2
〈sk,{ fl ,〈si,A2〉0{ f j,A1}0}0〉0η

i j
η

i j
η

kl

− 1
2
〈sk,{ fl ,〈si,A1〉0{ f j,A2}0}0〉0η

i j
η

kl ,

ν
η

0 (Rη

0 A1,A2) =
1
2
〈si,A2〉0{ f j,〈sk,{ fl ,A1}0〉0}0η

i j
η

kl ,

−ν
η

0 (A1,R
η

0 A2) =−1
2
〈si,A1〉0{ f j,〈sk,{ fl ,A2}0}0〉0η

i j
η

kl .

(53)

Comparing the terms above, we find that Rη

0 ν
η

0 (A1,A2) = ν
η

0 (Rη

0 A1,A2)−
ν

η

0 (A1,R
η

0 A2), i.e. Rη

0 is a derivation.
The next step is to show that µ

η

0 satisfies the homotopy commutativity relation.
From the table for ν

η

0 we see that

ν
η

0 (a1,a2)−ν
η

0 (a2,a1) = Rη

0 ν
η

0 (a1,a2)+ν
η

0 (Rη

0 a1,a2)+(−1)na1 ν
η

0 (a1,R
η

0 a2).
(54)
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Therefore, mη

0 ≡ m0. The last statement does mean that µ
η

0 satisfies the ho-
motopy associativity relation. We will show this in the case when all the argu-
ments belong to F1, leaving to check the other combinations to the reader. Let
A1,A2,A3 ∈F1, then

µ0(ν
η

0 (A1,A2),A3) =
1
2
(〈A3,{ f j,A1}0〉0〈si,A2〉0η

i j

−〈 fi,A1〉0〈{ f j,A2}0,A3〉0η
i j −〈si,A3〉0〈{ f j,A1}0,A2〉0η

i j,

ν
η

0 (µ0(A1,A2),A3) = ν
η

0 (−1
2
〈A1,A2〉0,A3)

=
1
2

η
i j〈 fi,A3〉0{ f j,〈A1,A2〉0}0,

ν
η

0 (A1,µ0(A2,A3)) = ν
η

0 (A1,−
1
2
〈A2,A3〉0)

=
1
2

η
i j{ f j,〈A2,A3〉0}0〈si,A1〉0,

µ0(A1,ν
η

0 (A2,A3)) =
1
2
(〈A1,{ f j,A2}0〉0〈si,A3〉0η

i j

−〈si,A2〉0〈{ f j,A3}0,A1〉0η
i j−〈si,A1〉0〈{ f j,A2}0,A3〉0η

i j).
(55)

Therefore,

µ0(νη(A1,A2),A3)+ν
η

0 (µ0(A1,A2),A3)−ν
η

0 (A1,µ0(A2,A3))
−µ0(A1,ν

η(A2,A3))

=
1
2

η
i j{ f j,〈A3,A1〉0}0〈si,A2〉0−

1
2

η
i j{ f j,〈A2,A3〉0}0〈si,A1〉0. (56)

On the other hand,

Rη

0 n0(A1,A2,A3)+n0(R
η

0 A1,A2,A3)−n0(A1,R
η

0 A2,A3)+n(A1,A2,R
η

0 A3)

=
1
2

η
i j{ f j,〈A3,A1〉0〈si,A2〉0}0−

1
2

η
i j{ f j,〈A2,A3〉0〈si,A1〉0}0

+
1
2
〈A2,A3〉0〈si,{ f j,A1}0〉0η

i j − 1
2
〈A1,A3〉0〈si,{ f j,A2}0〉0η

i j

= µ0(νη(A1,A2),A3)+ν
η

0 (µ0(A1,A2),A3)

−ν
η

0 (A1,µ0(A2,A3))−µ0(A1,ν
η

0 (A2,A3)). (57)

Hence, µ
η

0 is associative up to homotopy provided by n. Hence, we proved i).
In order to prove ii) we just note that νη doesn’t contribute to the higher associativ-
ity relation involving µ

η

0 ,nη

0 . Then ii) follows from the proof of the similar state-
ment for
Q,µ0,n0. ut

Since we have an A∞-algebra it is natural to consider the associated gener-
alized Maurer-Cartan equation. However, due to the properties of the operations
µ0,n0, the resulting equation coincides with the linear one. In order to get around
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this, we multiply the A∞-algebra with some noncommutative associative algebra
S. The resulting object is also from the category of A∞-algebras, but there will
be no homotopy commutativity in general. Let us choose S = U(g), the universal
enveloping algebra of some Lie algebra g. In this case it is possible (as we will see
on several examples below) to find the relation with gauge theory.

Definition 41. Consider the A∞-algebra on F ⊗U(g) generated by Qη ,µ
η

0 ,nη

0 .
Consider the Maurer-Cartan element Ψ ∈ F1 ⊗ g. We will refer to the Maurer-
Cartan equation

Qη
Ψ + µ

η

0 (Ψ ,Ψ)+nη

0 (Ψ ,Ψ ,Ψ) = 0 (58)

as the Yang-Mills equation associated to the VOA with a formal parameter V
and Lie algebra g. We will refer to the infinitesimal symmetries of the generalized
Maurer-Cartan equations, which are

Ψ →Ψ + ε(Qη u+ µ
η

0 (Ψ ,u)−µ
η

0 (u,Ψ)), (59)

where u ∈F0⊗g, as gauge symmetries.

In the next section we will show that this equation and its gauge symmetries
are actually equivalent to the system of Yang-Mills equations with matter fields
and their gauge symmetries for certain vertex algebras.

In the end of this section we write the explicit expression for the Yang-Mills
equation associated with VOA V and the Lie algebra g, since it is needed in the
following.

The Maurer-Cartan element for F ⊗U(g) has the form Ψ = A + v, where
A,v ∈ F1 ⊗ g are the elements corresponding to the states of conformal weights
1,0 correspondingly. The equation for v is as follows:

v =
1
2

L1A+
1
2

η
i j〈si,{s j,A}0〉0 +

1
2
〈A,A〉0. (60)

Then the equation for A is:

2∆A+L−1L1A+∑
i, j

η
i jL−1〈si,{s j,A}0〉0

+∑
k,l

η
klsk{sl ,L1A+∑

i, j
η

i j〈si,{s j,A}0〉0}0

+A(L1A)+A∑
i, j

η
i j〈si,{s j,A}0〉0− (L1A)A

+∑
i, j

η
i j〈si,{s j,A}0〉0A+2[A,A]−〈Aad ,Aad〉0A = 0, (61)

where Aad ∈F1⊗End(g) stands for the element A ∈F1⊗g with the Lie algebra
elements are considered in the adjoint representation. The gauge symmetries of
this equation can be written as follows:

A → A+ ε(L−1u+η
i jsi{s j,u}0 +Au−uA), (62)

where u ∈F0⊗g.
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5 Beta-Gamma Systems, Courant Algebroid and Yang-Mills Theory

5.1 A toy model: Heisenberg VOA

Let us start with the simplest nontrivial vertex algebra with a formal parameter,
i.e. we consider the vertex algebra V (a,g)[h,h−1], generated by quantum fields
ai(z)(i = 1, . . . ,D) with operator products

ai(z)a j(w)∼ hgi j

z−w
, (63)

where gi j is a symmetric matrix. In the case of this VOA the elements of zero
conformal weight are just constants and the fields of conformal dimension 1 have
the form Aiai(z), where Ai are constant. This example is very special because of
the following two facts presented in Proposition 51:

Proposition 51. i) The quasiclassical limit of the LZ algebra of light modes
on V (a,g)[h,h−1] is isomorphic to the LZ algebra of light modes on V (a,g).

ii) Any flat background deformation of BRST operator is trivial for V (a,g).

Proof. To prove i) it is enough to note that the terms corresponding to higher pow-
ers in h usually correspond to the multiple “contractions” of the quantum fields.
In the case of V (a,g) this does not happen, since all the elements from the light
mode complex are at most linear in ai(z).

Expressing ai(z) = ∑n ai
nz−n−1, we find that ai

0 annihilates each element in
V (a,g) for every i. Therefore, ii) is also proven. ut

The next proposition is about the Yang-Mills equation on V (a,g).

Proposition 52. The Yang-Mills equation for V (a,g) with Lie-algebra g is equiv-
alent to the system of equations

∑
i, j

gi j[Ai, [A j,Ak]] = 0 (64)

for certain Ai ∈ g(i = 1, . . . ,D)

One can see that these equations coincide with Yang-Mills equations with a
flat metric gi j and constant gauge fields Ai.

However, this example was a toy model for us: it was too degenerate. In order
to have less trivial example, one should “enrich” the space of fields of conformal
weight zero.

5.2 BV extension of the Courant algebroid

Let us consider a family of β -γ systems generated by quantum fields pi(z),X i(z),(i =
1, . . . ,D), where pi(z) = ∑n pi,nz−n−1,X i(z) = ∑n X i

nz−n−1 are quantum fields of
conformal dimensions 1 and 0 correspondingly, and the operator products are

X i(z)p j(w)∼
hδi, j

z−w
, X i(z)X j(w)∼ 0, pi(z)p j(w)∼ 0 (65)
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and the Virasoro element is given by the formula

L(z) =−1
h ∑

i
pi∂X i. (66)

The space of the VOA is given by Fp,X [h−1,h],Fp,X ≡⊗D
i=1Fpi,X i (see Sec. 3.1).

For definiteness, from now on let us assume that the space of zero conformal
weight of Fp,X is given by the formal powers series in X i

0. The operators from the
VOA Fp,X of conformal dimensions 0 and 1 have the form

u(z) = u(X)(z), A(z) = ∑
i

: Ai(X)(z)pi(z) :,

(67)
B(z) = ∑

j
B j(X)(z)∂X j(z),

where u(X),Ai(X),B j(X) are considered as power series in X i. Let M be the for-
mal scheme Spf(C[[X1

0 , . . . ,XD
0 ]]). Then the states u,A,B can be identified with

sections of OM,T M,T ∗M correspondingly.
Now let us consider the semi-infinite complex associated with Fp,X . The BRST

operator acts as follows:

T M
1
2 div

&&LLLLLLLLLLL T M
− 1

2 div

%%KKKKKKKKKKK⊕ ⊕
OM

d %%KKKKKKKKKK OM
id //

d &&LLLLLLLLLLL OM OM⊕ ⊕
T ∗M T ∗M

(68)

where divA = ∑i ∂iAi. The action of the BV operator b0 is given by the diagram
below:

T M T M
−idoo⊕ ⊕

OM OM
idoo OM OM

−idoo⊕ ⊕
T ∗M T ∗M

−idoo

(69)

It is useful to write down the explicit values for the operation µ in the LZ
algebra on the complex F :

µ0(a1,a2)=
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H
H

H
HHa2

a1 u1 X1 v1 X̃1 ṽ1 ũ1

u2 u1u2 X1u2 v1u2 X̃1u2 ṽ1u2 ũ1u2
−LX1u2

X2 u1X2 (X1,X2)D+ −v1X2 − 1
2 〈X̃1,X2〉 LX2 ṽ1 0

1
2 〈X1,X2〉

v2 u1ũ2 v2X1 0 0 −ṽ1v2 0
X̃2 u1X̃2 − 1

2 〈X1,X̃2〉 0 0 0 0
ṽ2 u1ũ2 LX1 ṽ2 −v1ṽ2 0 0 0
ũ2 u1ũ2 0 0 0 0 0

where Xi,X̃i stand for pairs (Ai,Bi),(Ãi, B̃i), such that Ai, Ãi ∈ T M and Bi, B̃i ∈
T ∗M. The expression (X1,X2)D stands for the Dorfman bracket (see e.g. (23;
31)) defined as

((A1,B1),(A2,B2))D = (LA1A2,LA1B2− iA2dB1). (70)

The pairing 〈·, ·〉 between two elements (A1,B1) and (A2,B2) is defined as fol-
lows:
〈(A1,B1),(A2,B2)〉 = ∑µ(Aµ

1 B2,µ + B1,µ Aµ

2 ), i.e. it is a natural pairing between
the elements of T M and T ∗M. The operation LX u for X = (A,B) denotes the
Lie derivative with respect to the vector field A.

This suggests that there is a certain relation between the Courant algebroid
(23) on T M⊕ T ∗M and the quasiclassical LZ algebra for β -γ systems. Namely
the following proposition holds:

Proposition 53. The homotopy BV algebra generated by µ0 and {,}0 on F con-
tains the Courant algebroid structure on T M⊕T ∗M, i.e. {,}0 being restricted to
T M⊕T ∗M coincides with the Dorfman bracket, µ0 : F0 ⊗F1 → F1 is a multi-
plication of function on an element of T M⊕T ∗M, and the pairing between two
elements of F1 is given by the operator product coefficient 〈·, ·〉.

In fact, this relation between such “short” homotopy BV algebras and Courant
brackets can be extended to the large class of Courant algebroids (we will discuss
this and related questions in (47)).

In the following we will call this homotopy BV algebra the BV double of
Courant algebroid.

5.3 Deformation of the homotopy commutative algebra and Yang-Mills equations

In the previous subsection we showed that the quasiclassical Lian-Zuckerman al-
gebra associated with a family of β -γ systems gives a homotopy BV algebra ex-
tending the Courant algebroid. In this section we consider the flat background
deformation of this algebra according to considerations of the previous section.
First of all we will pick the Abelian subalgebra of the operators of conformal
dimension 1 in the beta-gamma VOA. We will consider the VOA subalgebra gen-
erated by pi(z),(i = 1, . . . ,D). Moreover, in this subsection we assume that the
deformation matrix η i j is symmetric. Then the deformation of the BRST operator
is given in the following proposition.
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Proposition 54. Let fi(z) = cpi(z). Then Rη

0 = ∑ı, j η i jµ0( fi,{ f j, ·}0) acts on F
as follows:

T M
∆ // T M⊕ ⊕

OM

d̂
99sssssssssss −∆ // OM

d̂
88rrrrrrrrrrr
OM

∆ // OM⊕ ⊕
T ∗M

1
2 d̂iv

88rrrrrrrrrrr
∆ // T ∗M

− 1
2 d̂iv

99ssssssssss

(71)

where ∆ = ∑i, j η i j∂i∂ j, d̂ivB = ∑i, j η i j∂iB j (here B∈ T ∗M) and (d̂u) j = ∑i η i j∂iu
(here u ∈OM).

Let us also assume that the matrix η{i j} is invertible, such that η{i j} is the
inverse matrix. This yields the following proposition.

Proposition 55. The complex (F ,Qη) is isomorphic to the following complex
(G,Q′η) which decomposes into a direct sum of three subcomplexes:

0 // Ω 0(M) d // Ω 1(M) ∗d∗d // Ω 1(M) ∗d∗ // Ω 0(M) // 0⊕ ⊕
0 // Ω 1(M) ∆ // Ω 1(M) // 0⊕ ⊕
0 // Ω 0(M) id // Ω 0(M) // 0

(72)

where Ω 0(M) ≡ OM and Ω 1(M) ≡ T ∗M and the Hodge star operator ∗ is con-
structed via the metric corresponding to the invertible and symmetric matrix η{i j}.

Proof. The embedding can be constructed in the following way. Let us denote the
three subcomplexes above as (G·

i,Q
′η)(i = 1,2,3). We construct the following

emebeddings:

G0
1

id−→F0, G3
1

id−→F3,

G1
1

f1−→F1, G1
1

g1−→F1,
(73)

G1
2

f2−→F1, G1
2

g2−→F1,

G1
3

f3−→F1, G1
3

g3−→F1,

such that fi,gi are explicitly given by:

f1(B) = B+B∗− ˆdivB, g1(B̃) = B̃+ B̃∗,

f2(B) = B−B∗, g2(B̃) = B̃− B̃∗, (74)

f3 ≡ id, g3(ṽ) = ṽ− (dṽ+ d̂ṽ),

where B∗ ∈ T M such that B∗i = η i jB j. Combining fi,gi and other maps into the
map of complexes, one can see that this is an isomorphism. ut
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It can be observed that the cohomology of the complex (F ,Qη) in degree 1 is
equivalent to the solutions of Maxwell equations and scalar field equations

∗d∗dA = 0, ∆Φ = 0, (75)

modulo gauge transformations A→A+du. Now we recall that we have the struc-
ture of the homotopy associative and homotopy commutative algebra on (F ,Qη),
which is in fact the A∞-algebra. Let us consider the tensor product of (F ,Qη) with
U(g), where g is some Lie algebra and find out what the Yang-Mills equations are
for the β -γ VOA. The answer is given in the proposition below.

Proposition 56. The Yang-Mills equation for the VOA Fp,X and the Lie algebra g
is equivalent to the following system of equations

∑
i, j

η
i j[∇i, [∇ j,∇k]] = ∑

i, j
η

i j[[∇k,Φi],Φ j],

(76)
∑
i, j

η
i j[∇i, [∇ j,Φk]] = ∑

i, j
η

i j[Φi, [Φ j,Φk]],

where Φi = Bi −∑ j A jηi j,Ai = Bi + ∑ j A jηi j and ∇i = ∂i +Ai. Here Bi are the
components of B ∈ T ∗M⊗g and Ai are the components of A ∈ T M⊗g.

The gauge symmetries correspond to the following transformation of fields:

Ai →Ai + ε(∂iu+[Ai,u]), Φi → Φi + ε[Φi,u]. (77)

Proof. To prove this statement we just need to substitute the generic Maurer-
Cartan element, which is the sum of (A,B,v) ∈ (T M ⊕ T ∗M ⊕OM)⊗ g. Sub-
stituting it in (61), we obtain Eqs. (76). The equation for v is as follows:

v =−1
2
(∑

i
∂iAi +∑

i j
η

i j
∂iB j)−

1
2 ∑

i
(AiBi +BiAi). (78)

Substituting appropriate elements in (62), we obtain gauge symmetries
(77). ut

This statement is very close to the particular results obtained in relation to the
“original” logarithmic open string vertex algebra (39; 40; 41; 42). Equations (76)
are the Yang-Mills equations in the presence of D scalar fields Φi (see also (46)).

5.4 Smooth manifold case

All the considerations we had above were applied only to the case of the flat metric
and a standard volume form on D-dimensional (pseudo-)
Euclidean space. Here we will give some statements about the case of a general
smooth manifold M. First of all we generalize the BV double of the Courant alge-
broid to the case of a D-dimensional smooth manifold M with a volume form Ω ,
such that in local coordinates Ω = eφ(X)dX1∧ . . . .∧dXD. We have the following
proposition.
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Proposition 57. Let us consider the quasiclassical LZ algebra for the VOA Fp,X ,
such that the Virasoro element is given by

Lφ (z) =−1
h ∑

i
pi∂X i +∂

2
φ(X). (79)

Then there exist a BV algebra defined on the sections of certain bundles of the
manifold M, such that in local coordinates it is given by this quasiclassical LZ
algebra.

Proof. The shift in ∂ 2φ(X) of the Virasoro element changes the action of the
differential in (68) in such a way that the div operation is changed by divA =
∑i(∂iAi + ∂iφAi). This is a local coordinate expression for the operator invariant
under the coordinate change. As one can see, the other operations are already
written in the covariant form, therefore, we have a BV algebra defined globally on
the sections of appropriate bundles on M. ut

The next question is whether the deformed homotopy commutative algebra
can be generalized to the case of the manifold M with the metric g = gi jdX idX j.
The answer is positive and the following proposition holds:

Proposition 58. There exists an A∞-algebra on the complex (72) for the smooth
Riemannian manifold (M,g), such that in the case of M = RD and gi j = η i j it
coincides with the A∞-algebra, generated by Qη ,µη ,nη .

Proof. Similar A∞-algebra for the general manifold M on the sum of upper and
lower complexes from (72) was considered in (42). In the same way one can con-
struct it on the full complex F . We leave the technical details to the reader. ut

For a compact manifold M, one can write the action for the Yang-Mills theory
interacting with 1-forms, corresponding to this A∞-algebra:

S =
∫

M
(−1

4
F∧∗F+

1
4

dA Φ ∧∗dA Φ +
1
4

dA ∗Φ ∧∗dA ∗Φ

+
1
2

F∧∗(Φ ∧Φ)− 1
4
(Φ ∧Φ)∧∗(Φ ∧Φ)), (80)

where F = dA + A ∧A is a curvature for A and dA = d + A is a covariant
derivative.

It is not clear, however, how to derive the Yang-Mills equations on the smooth
manifold M with some metric gi j from a the point of view of VOA, like we did
before in the flat case (see some suggestions in the last section). However, the
following statement is still true:

Proposition 59. Let us consider the A∞-algebra on the manifold M with the met-
ric g from Proposition 58. Let us introduce a formal parameter into g, such that
gi j → gi j(t) = tgi j. Then taking the limit t → 0 we recover the A∞-subalgebra of
the BV Courant algebroid on M with a volume form Ω =

√
g(X)dX1∧ . . .∧dXN ,

where g(X) = det(g{i j}(X)).

Proof. In the flat case this result is obvious. For nonconstant gi j we need to watch
that terms containing

√
g(t) will not blow up in the t → 0 limit. This never hap-

pens, since they always enter the expressions in the form ∂i log(g(t)) ≡ ∂i log(g).
ut
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6 Some Remarks, Open Problems and Conjectures

6.1 Physical interpretation: beta-functions and (deformed) LZ algebras

In this paper we have shown that the correspondence between VOA and A∞-
algebras we constructed using the quasiclassical limit of the Lian-Zuckerman
homotopy algebra of light modes allows us to write down an analogue of the
Yang-Mills equation for the general VOA with a formal parameter. It is known
that Yang-Mills equations show up as a 1-loop beta-function for the open string
theory. Therefore, one can give the pure algebraic meaning to the 1-loop beta
function in the generic case. In such a way the Maurer-Cartan element is asso-
ciated with a perturbation term. One can think of that as follows. Let the VOA
correspond to some CFT with the action S0 on the half-plane H+. Then the flat
background term may be interpreted as a perturbation of an action of the form∫

H+
1
h ∑i, j η i jsi(z)s j(z̄) as we already have seen. The perturbation corresponding

to the Maurer-Cartan element Ψ has the form
∫

∂H+ b−1Ψ . Therefore, the complete
action of the theory (sigma-model) for which we write the conformal invariance
condition has the form (for the β -γ example such action was considered in (46)):

S = S0 +
∫

H+

1
h

dz∧dz̄

(
∑
i, j

η
i jsi(z)s j(z̄)

)
+
∫

∂H+
dz(b−1Ψ). (81)

In the case of non-Abelian Lie algebra (when Ψ ∈F ⊗g) one cannot just add
the last term to the action. One has to insert a trace of the path ordered exponential
of b−1Ψ in the partition function.

One of the open mathematical questions, which is motivated by this paper, is to
prove partly the Lian-Zuckerman conjecture, i.e. reconstruct completely the LZ al-
gebra of light modes, and to compare the corresponding Maurer-Cartan equations
with the known expressions for the beta-functions. In particular, we partly know
the explicit form of the Maurer-Cartan equations in certain nontrivial situations,
i.e. in the standard open string case, the low derivative terms should correspond to
the equation in the Born-Infeld theory.

One of the ways to construct this homotopy algebra is to treat it as a deforma-
tion of the quasiclassical one. However, there can be several such deformations.
If so, it is also interesting to know what it means from the physical point of view,
i.e. from the point of view of perturbation theory.

6.2 B-field and the deformations of the BV homotopy algebra

In the example, studied in Subsect. 5.2, corresponding to the vertex algebra, gen-
erated by β -γ systems for simplicity we considered the deformation via the sym-
metric matrix η i j. In the case of general η , the antisymmetric part is related to the
so-called Kalb-Ramond field which is a necessary ingredient in string theory. It is
interesting to write the Yang-Mills equations and the corresponding action in this
instance.
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Another interesting structure arises when the matrix η i j becomes purely anti-
symmetric. We state here a proposition to which we will return in the subsequent
publications.

Proposition 61. Let η i j be antisymmetric. Then there exists a homotopy BV al-
gebra on F such that it is generated by Qη ,µ

η

0 , b̃0 = h−1b0,{·, ·}η

0 , such that
{a1,a2}η

0 = b̃0µ
η

0 (a1,a2)−µ
η

0 (b̃0a1,a2)− (−1)na1 µ
η

0 (a1, b̃0a2).

We note that if η i j is not antisymmetric, such a BV algebra does not exist,
and the obstacle corresponds to the generalization of the Laplace operator ∆ · =
∑i, j η i j{si,{s j, ·}.

As the simplest example, let us consider the β -γ system. In this case the de-
formation of the corresponding homotopy BV algebra via antisymmetric tensor
(related to the Abelian vertex subalgebra generated by p{i}) leads to a certain
deformation of the BV double of the Courant algebroid via the antisymmetric
bivector field. One can check that the corresponding deformation of the Courant
algebroid coincides with the one considered in (31) (see also (17) for the physical
insight). It appears that a necessary condition on the bivector field η for this defor-
mation to hold on the general smooth manifold M was that [η ,η ]S = 0, where [·, ·]
is a Schouten bracket. It is known that the Courant algebroid admits also another
deformation (or a twist), via the 3-form (see e.g. (31)) which was introduced by
Severa. It is interesting how to incorporate this deformation in the VOA formal-
ism we studied in this paper. One of the ways to do that is to consider instead of
the η-deformation based on the Abelian vertex algebra generated by pi, another
deformation based on the abelian vertex algebra generated by vertex operators of
the type ωk(X)∂Xk.

6.3 Yang-Mills equations for β -γ systems and T-duality

Looking at the Yang-Mills equations in the β -γ example, a physicist may be in-
terested in what is the meaning of the “matter” 1-form fields in the equations. The
answer is as follows. If you consider the conformal field theory, corresponding to
open strings in dimension 2D on the torus, it appears to be a logarithmic (see e.g.
(28)) VOA, and the Lian-Zuckerman construction does not work there. In order to
get rid of logarithms we considered another VOA on this space, corresponding to
β -γ systems, with the deformed BRST operator. However, even with this defor-
mation we didn’t recover the original open string theory, but the one, where half of
dimensions is T -dualized. We expect also the relation of our considerations to the
so-called “Double Field Theory” introduced by Hull and Zwiebach (19), where
the similar structures, like the Courant algebroid appear in the context of T-duality
in String Field Theory.

6.4 Nontrivial metric and a B-field. Einstein equations

Another question one can ask, being motivated by the example with the β -γ sys-
tem is about the meaning of the Yang-Mills A∞-algebra on a manifold with non-
trivial metric and a B-field from the VOA point of view. So far, we have the
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construction only with a flat metric. We propose the following solution to this
problem. We conjecture that there should be an L∞-algebra action on the LZ ho-
motopy commutative algebra, in such a way that the flat background deformation
can be treated as a deformation related to the Abelian L∞-subalgebra. From the
form of the η-deformation, one may suggest that this L∞-algebra comes from a
tensor product of two LZ algebras. There is an indication of the existence of such
L∞-algebra in (24; 43; 44; 45). The Maurer-Cartan equation for this homotopy Lie
algebra should be equivalent to the Einstein equations with external fields in the
case of β -γ VOA. We will address this question in (48).
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