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Synopsis

Since the discovery of the Higgs boson in 2012 at CERN, the Standard Model (SM) has become
a validated theory to understand the fundamental physics of the universe. All of the SM
parameters are now established as a result of this discovery. Despite this success, it does not
explain several observed phenomena such as dark matter, hierarchy problems, and neutrino
masses. This motivates to explore new theories beyond the SM (BSM), which could explain
these phenomena while preserving the achievements of SM. Apart from this, Higgs boson self-
coupling is yet to be determined precisely as Higgs boson pair production cross section is too
low to measure it with current experimental potential. Nevertheless, its range constrained by

current measurements allows the possibility of Higgs self-coupling interaction via BSM physics

The Large Hadron Collider (LHC) at CERN is the largest hadron collider, where hadron-
hadron collisions occur at high energies. It plays a vital role in the search for new physics and
SM precision measurements, including the measurements of Higgs trilinear self-coupling. For
the thesis work, we use LHC data collected by Compact Muon Solenoid (CMS) experiment. It
is a general-purpose detector at LHC, collecting hadron-hadron collision data to study a wide
range of physics phenomena. In the central part of the CMS experiment, a superconducting
solenoid of 6 m internal diameter provides a magnetic field of 3.8 T. A silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter are found within the solenoid volume, each consisting of a barrel and two endcap
parts. Forward calorimeters expand the barrel and endcap pseudorapidity coverage of the
detector. Qutside the solenoid, muons are detected in the muon gas-ionization chambers
embedded in the steel flux-return yoke. During the collision, a two-tiered trigger scheme is
used to select events of physics interest. The first level (L1), made up of custom hardware

processors, selects events at a rate of about 100 kHz within a time interval of less than four
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microseconds using data from calorimeters and muon detectors. The second stage, named the
high-level trigger (HLT), consists of a farm of processors that run a speed-optimized version
of the complete event reconstruction process and reduces the event rate to about 1 kHz before
data storage. Using the information from the various elements of the CMS detector, the object
reconstruction and identification algorithms recreate and classify each particle in an event. The

identified particles are the final objects to carry forward any analysis study.

As the last discovered piece of the SM, we use the Higgs boson as a handle to explore
BSM predictions. The thesis focuses on the di-Higgs production searches, where at LHC, a
pair of Higgs bosons gets produced in the proton-proton collision. We study both resonant and
non-resonant di-Higgs production modes.

The non-resonant Higgs boson pair production is the only possible process within SM to study
the shape of Higgs potential. Besides, the effective field theory (EFT) approach to study low
energy signatures of physics existing at a high energy scale is also suitable for such a production
mechanism. We explore BSM resonances for resonant di-Higgs production mode, predicted by
the warped extra dimension model and the next-to-minimal supersymmetric model that directly
couple with the SM-like Higgs boson. Therefore, it is more accessible to perform direct resonant

searches, which could improve the overall sensitivity of di-Higgs searches at LHC.

In the first part of the research work, we perform di-Higgs searches at the high luminosity
LHC (HL-LHC) in the final state of four b quarks at 14 TeV center-of-mass energy. With a
vast amount of data up to 3 ab~! of the total integrated luminosity, the HL-LHC would allow
investigation of known SM mechanisms with high accuracy and rare new particles. The study
is made using simulations of phase-2 CMS detector assuming multiple proton-proton collisions
(up to 200) within each bunch-crossing. We start with the analysis for the vector boson
fusion (VBF) resonant di-Higgs production in a boosted regime. The resonance is a massive
spin-2 bulk KK graviton particle predicted by the warped extra dimension model. Previous
s-channel searches made by the ATLAS and CMS collaborations for these resonances observed
no deviation from the SM predictions, which indicates that the resonances might not directly
couple with SM quarks and gluons. This inspires us to study the massive resonance production
in the VBF production mode as quark-quark fusion starts contributing equally at high energies,
thus enhancing the VBF production cross section. The analysis is the first one that explores

the VBF resonant production mechanism. The Higgs bosons coming from the decay of massive
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resonance must be sufficiently Lorentz-boosted in order to reconstruct them as a large-area jet.
The signal also contains two energetic VBF jets in the forward pseudorapidity regions of the
detector. Despite having the largest branching fraction with four final state b quarks among
various di-Higgs modes, the channel suffers from high contamination of SM multijet processes.
The unique topology of the production and decay would benefit from the upgraded phase-2
CMS detector, which features an extended tracker coverage to identify b quark originated jet
and increase signal acceptance. On the other hand, a high granularity calorimeter in the forward
pseudorapidity region will help to identify energetic VBF jets in the signal from the background
jets. The SM multijet processes are considered as the main background. We optimize event
selection for signal topology and the algorithm to identify b quark-originated jets inside the
large-area jet from the Higgs boson. The systematic uncertainties are taken following the CMS
recommendations for HL-LHC conditions. Expected signal significance for observation of a bulk
KK graviton, having a mass between 1.5-3.0 TeV and up to 5% narrow-width, is projected,
assuming 1 fb signal cross section and considering di-Higgs invariant mass as an observable.
Following a similar boosted analysis strategy, non-resonant di-Higgs production for the SM
and effective field theory (EFT) motivated shape benchmarks are also studied in the same final
state. A 95% confidence level (CL) upper limit on the product of Higgs boson pair production
cross section and branching fraction is presented for the benchmarks. This boosted strategy
has not been proven optimal for the SM benchmark. However, the results project significant

sensitivity for EF'T motivated non-resonant di-Higgs production benchmarks at the HL-LHC.

In the second part, we use the 2016, 2017, and 2018 LHC Run-2 period data collected by
the CMS detector at 13 TeV center-of-mass energy with 137 fb~! total integrated luminosity
and present the study for resonant di-Higgs production via gluon-gluon fusion in the final state
of two photons and two bottom quarks (bbyy) in a resolved regime. The physics is motivated by
the warped extra dimension model where spin-0/2 resonance decays into two Higgs bosons and
the next-to-minimal supersymmetric model where spin-0 resonance decays into a Higgs boson
and another spin-0 particle different from the discovered Higgs boson. This is the first analysis
in CMS collaboration, which explores an NMSSM motivated scenario in bbyy state. The
analysis benefits from the excellent energy resolution of the CMS electromagnetic calorimeter
and good trigger efficiency, which improves the invariant mass of the diphoton system resulting

from the decay of the Higgs boson. This channel is the most sensitive among the di-Higgs decay
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modes, especially for low resonance masses. The data-driven diphoton QCD background and
simulated single Higgs production processes are used as the main backgrounds. The analysis
uses machine learning methods and validates them to reject these background contamination.
It increases the analysis sensitivity despite having a low di-Higgs branching fraction channel.
For signal extraction, the fit is performed in a two-dimensional mass plane of diphoton and
dijet invariant mass observables. The impact of systematic uncertainties on final results is
found to be around 1-2%. With the narrow-width approximation, a model-independent 95%
CL upper limit on the product of resonant di-Higgs production cross section and branching
fraction is set for resonance mass up to 1 TeV. The results are also compared with appropriate

BSM predictions to exclude allowed resonance mass ranges.
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Chapter 1

The Higgs Boson

1.1 Introduction

The universe has always been like a mystery box for us. The deeper we dig into it, our
curiosity gets increased. For the last many centuries, human beings have been trying to
understand this mystery. The foremost curiosity is the science behind the origin of the
universe that could explain all the observed physics phenomena.

After studying the results from many experiments, scientists have constructed a
particle theory named the standard model (SM) that consists of elementary constituents
of the universe and their interactions. There is no doubt that SM is the most successful
theory so far after the discovery of Higgs-like particle by the two largest collaborations
ATLAS [46] and CMS [47,48], at CERN.

However, SM only explains about 5% of the universe; the remaining 95% indicates
that SM might be an effective theory that shows a low energy signature of physics
existing at a high energy scale [49]. It does not explain many physics observations, e.g.,
gravitational force does not fit within it. However, this is not the only drawback. The
SM also does not provide any explanation for dark matter and dark energy [50-53],
baryongenesis [54], hierarchy problems [55], neutrino masses [56], amongst others.

The above drawbacks prove that even after being on the right track to unravel the

universe, we are still far from the fundamental science behind it. This is why physicists

1
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Figure 1.1: Higgs Physics: Door to new physics?

are developing new theories that could reproduce the SM observations with providing
an explanation of the above mysterious phenomena. These are known as beyond the
standard model (BSM) theories. It comprises supersymmetry (SUSY) [57], warped extra
dimension (WED) [58] and many other models. However, the question is where to look
for new physics? One possibility is that we use the Higgs boson as a stairway to reach

the door of new physics.

After discovering Higgs boson at the large hadron collider (LHC) [59], CERN, all the
SM parameters have been measured. The couplings of Higgs boson with the SM gauge
bosons and fermions (known as Yukawa couplings) have also been measured within a
certain uncertainty by studying various production and decay modes. Considering these
uncertainties, we still have experimentally allowed phase space supporting the existence
of the BSM physics within the SM itself. Hence SM precision measurements are essential
in this prospect.

Following direct and indirect search techniques, colliders can play a crucial role in the
search for the new physics (might appear at a very high energy scale) and SM precision
measurements (any observed deviation from the SM predictions will be an indication for
the new physics). Thus, the goals of LHC include new physics searches at high energy

scale and SM precision measurements, including studies related to the self-interactions of
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the Higgs boson as the SM predicts that Higgs boson interacts with itself via trilinear self-
coupling. However, this trilinear coupling is yet to be determined. Experimentally, the
trilinear coupling can be directly measured using the Higgs boson pair production mode
pp — HH, also known as Di-Higgs production. Within SM, non-resonant production
is the only process for di-Higgs production, while the resonant di-Higgs production has
its own importance to look for the new BSM particles. Briefly, we can understand the
importance of di-Higgs production in two ways:

1) Non-resonant di-Higgs production: It is a direct probe for the SM Higgs trilinear
self-coupling. This approach is also suitable for BSM effective field theories (EFT)
searches where resonance might appear at the large TeV scale, but we look for its low
energy signatures.

2) Resonant di-Higgs production: There are BSM theories that provide the solutions
to the SM inconsistencies like hierarchy problems, dark matter, etc. The predicted
resonances by these BSM models with an enhanced cross section directly couple to Higgs

boson, which might be easier to probe using the direct search methods.

We have explored these production modes with the two exciting decay channels, 1)
both Higgs boson decay into pair of bottom quark resulting in bbbb final state, 2) one
Higgs boson decays into a pair of the bottom quark, and another one decays into a
pair of photon resulting in bby~y final state. Since the H — bb has the large branching
fraction among all Higgs boson decay modes, therefore HH —bbbb also has the large
branching fraction (33%) but, the SM multijet backgrounds make it a challenging final
state to perform any study. On the other side, despite of low H — ~~ branching ratio,
HH — bbyy keeps benefit of high purity and selection efficiency due to low background

contamination for H — 77 handle.

This thesis work focuses on the searches using both the di-Higgs production. We can
divide this research work into two parts,
1) resonant and non-resonant di-Higgs HL-LHC projection studies in the bbbb final state
using simulations.

2) resonant di-Higgs study in bby~y final state with proton-proton collision data.
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Within projection studies, a search for a massive resonance produced by vector boson
fusion (VBF) at the high luminosity large hadron collider (HL-LHC) in proton-proton
collisions at /s =14 TeV is explored. The resonance decays into a pair of Higgs bosons,
each decaying to a bb pair. The motivation for this search also comes along with detector
configurations for the phase-2 upgrade. The phase-2 CMS detector has a high-granularity
calorimeter in the forward pseudorapidity region to reject the background misidentified
jets and select signal VBF jets (additional jets along with Higgs boson pair) and larger
tracker coverage to identity b quark originated jets (b jets) using the information of the
tracks. Therefore, it might help to detect a clean signal for this topology. We analyze
heavy resonance searches within this analysis, which decay into highly Lorentz-boosted
Higgs bosons (i.e., Higgs bosons are in high transverse momentum (pr) regime). The
Higgs bosons are reconstructed using a single large-area jet. The analysis selections are
optimized for the boosted regime. It includes a Higgs boson jet tagging (H tagging) [60]
and subjet (jet within a large reconstructed jet is called subjet) b jet identification
algorithms [61] to enhance analysis sensitivity. FEvents are categorized on the basis
of the number of subjets identified as b jet. The signal sensitivity is studied for a
narrow bulk KK graviton in extra-dimensional scenarios [19,58] using a simulation of the
upgraded phase-2 CMS detector, assuming multiple proton-proton collisions (pileup) in
the same bunch crossing (up to 200), for data corresponding to an integrated luminosity
of 3 ab™!. The expected significance for different assumed masses of the bulk graviton
is calculated using di-Higgs invariant mass mygg as an observable and 1 fb signal cross
section. The result projects a possible observation of 3 TeV bulk kk graviton using this
analysis strategy. This is the first CMS analysis that explores VBF topology for resonant
production mode.

For non-resonant di-Higgs studies in bbbb final state, a similar VBF resonant analysis
strategy has been used to project analysis sensitivity in the boosted regime. The boosted
analysis is not optimal for the SM scenario. However, the BSM effective field theory
(EFT) motivated non-resonant di-Higgs production [62] shows good analysis sensitivity

due to strong contact interactions and high mpyy event fractions. We set 95% CL
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exclusion limits on the product of non-resonant di-Higgs production cross section and

branching fraction.

In the second part of research work, we search for BSM motivated resonant di-Higgs
production mode in bbyy final state using Run-2 data of compact muon solenoid (CMS)
experiment with the total integrated luminosity L=138 fb~!. For these searches, two
BSM models are explored.

The first one is the warped extra dimension (WED) model that predicts the existence
of small and compactified extra dimensions [19,58]. The searches are performed in
the RS_bulk scenario, where the coupling of resonances with top quark and SM bosons
is enhanced. The model provides an initial solution to the SM hierarchy problems.
It predicts bulk radion (spin-0) and bulk KK graviton (spin-2) resonances (X) with
significantly larger branching fractions to decay into the pair of the SM Higgs boson
(H).

Another one is the next-to-minimal supersymmetric standard model (NMSSM) that is
the most straightforward supersymmetric extension to the SM where the electroweak
scale originates from the SUSY-breaking scale [63]. The model extends the Higgs sector
by seven Higgs bosons allowing the heavy Higgs boson to decay into lighter Higgs boson.
We study gluon-gluon fusion production of X (spin-0) resonance, i.e., heavy Higgs boson,
decaying to an SM Higgs boson H and a Y NMSSM Higgs boson with the largest singlet
component [63].

The analysis strategy is motivated from the CMS di-Higgs searches [1,64] with the same
final state. Most of the developments and techniques have been adapted from them after
a dedicated study for the analysis. Events are selected using similar selections. The
analysis strategy mainly focuses on rejecting background events and extracting signal
events by fitting reconstructed mass m.., and m;; observables in a two-dimensional (2D)
mass plane within an optimized reduced 4-body mass window. For background rejections,
a multiclass BDT (boosted decision tree) classifier is trained on signal and background
simulations. Based on BDT output and signal significance, the events are categorized into

three categories. The impact of systematic uncertainties on the final results is around
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1-2% and this analysis is statistically limited because of the purity of bbyy channel,
therefore, statistical uncertainty dominates. The final results are presented as 95% CL
exclusion limits on the product of the resonant production cross section and branching
fraction for different signal mass hypotheses. The main highlight of this work is to
analyze a new strategy that improves the previously published 2016 CMS data results
from 6-25% [64] and NMSSM topology, which we are exploring for the first time in CMS
with bbyy final state.

The thesis is structured in the following way: Chapter 1, motivates for the collider
searches discussed within Chapter 4 and 5. Chapter 2 and 3 convey the details of the
collider and experiment that provide us data used for the research work. Chapter 4 is
the first part of our research work where we perform projection studies for HL-LHC by
studying resonant and non-resonant di-Higgs production modes with the bbbb final state
in the boosted regime. In the second part, Chapter 5 details the collider searches of
the resonant di-Higgs production mode in the bby~y final state using CMS Run-2 data.
In Chapter 6, we conclude with a detailed summary of the main results from both the
analyses performed in Chapter 4 and 5. In the appendix A, B and E, additional studies
are added on which we have worked, and they are directly or indirectly adapted for our
research projects. So let us start reading about my research work with all the above

chapters.

1.2 The Standard Model (SM)

The SM [65-67] describes the fundamental non-gravitational forces and fundamental
constituents of the universe. The fundamental constituents list contains fermions,
including six quarks, three leptons and three neutrinos and gauge bosons, including
eight gluons, a Z boson, two W bosons, and a photon as given in Fig. 1.2.

Within the SM, particles are considered quantum fields of a gauge theory invariant
under local gauge transformations. Interactions between the gauge fields are mediated

via interaction specific gauge boson known as a propagator. The SM gauge theory is
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Figure 1.2: Particle spectrum of the Standard Model (image reproduced from Ref. [9])

given by gauge group [68],

Gen = SU(3)e x SU©2) x U(1)y (1.1)

where the subscript ¢ stands for colour, L stands for the left-handed chiral group,
whereas Y is the hypercharge. The strong, weak, and electromagnetic forces arise
from the SM gauge symmetry, and gauge bosons are quanta of the fundamental forces
(i.e., gluons for strong force, W bosons and Z boson for weak force and photon for
electromagnetic force). The particle spectrum and their gauge transformation properties

under the Ggy; are given as,
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Ur; 1 = 2
Q=" |~ (3,2,—> Ui = up; ~ (3,1,—)
di 0 ’
= 1

Vri 1
Li=|"" ~(1,2,——) Ei=ep~(1,1,—1)
€1, 2
Li

In the above expression, the index i runs over the three generations of SM; @); represents
the left-handed up and down quark doublets; L; stands for left-handed lepton doublets;
U; and D; refer to right-handed up and down quarks, and F; refer to right-handed leptons.
The numbers given in parenthesis represents the transformation properties with respect
to SU(3)., SU(2)1, and U(1)y groups. For example, for @; quark doublets, the equation
tells that they transform as a triplet under SU(3). of strong interactions, as a doublet

under SU(2)y, of weak interaction and carry hypercharge (Y/2) of 1/6.

To preserve the SM gauge symmetry under the local transformations, fermions and
gauge boson are required to be massless as the mass terms are not invariant under these
transformations; but, the discovery of W and Z bosons at super proton synchroton (SPS),
CERN [69], in 1983 with a mass around 80 GeV and 91 GeV respectively, questioned the
validation of the SM since the large mass values of W and Z cannot be considered as small
fluctuations to keep going on with the SM predictions. That indicates the spontaneous
breaking of the SU(3). x SU(2), x U(l)y gauge symmetry. Thus, to solve this, the
BEH mechanism (Brout-Englert-Higgs or Higgs mechanism) [70-72] was proposed by

adding a new scalar particle to the SM particle content named Higgs boson.

1.2.1 Higgs mechanism

The Higgs field is a complex SU(2) doublet as shown in Eq. (1.3). Its electric charge is
zero; its weak isospin is 1/2, and the third component of weak isospin is -1/2; its weak

hypercharge (Y) is 1.
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The Higgs mechanism, referred as the spontaneous symmetry breaking of the
SU(2)r, x U(1)y gauge symmetry associated with the electroweak force, generates masses
for the particles and separates the electromagnetic and weak forces. In other words, at
energies much greater than O(100) GeV, all these particles behave in a similar manner,
but, at lower energies, SU(3). x SU(2), x U(1)y symmetry is broken so that the photon
and the massive W and Z bosons emerge and we end up with SU(3). x U(1) gy gauge

symmetry. The most general expression for SM Lagrangian contains three terms:

£SM - £kin + EHiggs + ACYukawa (14)

First is the kinetic term originating from Dirac fermion spinors and vector bosons,

given as follows:

Lian = 107 D0 — L(GHAGH, + WIS, 4 B B,) (15)
with
Gh, = 0,Gy — 0,G) + gs fapcGLGS
Wi, =0.W,) —0,W! + gfrxW,W)E
B,, =0,B,—0,B,
where fapc(rsk) represent the structure constants of the SU(3) (SU(2)) non-abelian

group and D, represents the covariant derivative of the field given as,

. .g .

D, = 0, — ig:GyA* — Z§W571 —ig'B,Y
Here WU represents fermion field, A = 1,..,8 with G’ﬁ representing the SU(3). gauge
bosons and I = 1,2, 3 with IV representing the SU(2),, gauge bosons. The U(1)y gauge

field is represented by B,,. g5, g and ¢’ are the coupling constants corresponding to strong,
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weak and electromagnetic interactions.

The second term of Eq. (1.4) is given by
£Higgs = (D“q))f D“CD - V((I)> (1'6)
where Higgs potential is given as,
V(®) = ;201D + A (dfd)”

In the above equation, p parameter belongs to Higgs boson mass and A\ parameter
represents Higgs trilinear self-coupling. This is the most generalized renormalizable and
SU(2) invariant potential. For p? > 0, the minimum potential energy state is at zero
but, for y?> < 0, it is not. Thus, the scalar field develops a non-zero VEV (vacuum
expectation value). The direction of the minima in SU(2);, space is not determined
because the potential depends only on ®'®(= H} + H? + H? + HZ). Thus we choose
VEV (Eq. (1.7)) such that it breaks the SU(2)y, x U(1)y into a U(1)gy which is the

desired symmetry.

ooz L[ (1.7)

< >= — .
V2 \ o

Since Higgs is scalar particle, to preserve the electric charge only neutral component ¢"

of Higgs doublet in Eq. (1.3) can acquire the VEV and if we work in unitary gauge!,

goldstone bosons Hi, H, and H, are eaten away to make gauge bosons massive after

EWSB (electroweak symmetry breaking); thus, we end up with,

1 0

Y= (H +v)

!The final results of the Higgs mechanism are independent of the choice of gauge. If we do the same
calculation in a gauge other than the unitary gauge, fields are parameterized accordingly. Here unitary
gauge has been chosen to make the calculation easier to understand the concept.
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Figure 1.3: Higgs potential [10]

Replacing @ from Eq. (1.8) within kinetic energy term of Eq. (1.6), we obtain the physical

gauge field mass from Higgs mechanism:

2

v
(Duq))T D,® = g[QQWuTW” + (QW,? - g/Bu)Q] (1.9)

from this equation the mass of W boson is obtained as my = gv/2. The second term
corresponds to neutral gauge bosons Z and A,
Zy = (gW3 — ¢'B,)/\/¢? + ¢ with mass my = v(g® + ¢g’%)/2, and
Ay = (gW2+ ¢'B,)/\/9* + g with mass m, =0
Additionally, the fermions also interact with the Higgs boson through the

dimensionless Yukawa couplings given by
Lyuawa = Yi5QiU;® + yEQ,D; @ + y L E;® + h.c. (1.10)

where ® = i02® (0=Pauli matrices). These couplings make the fermions to attain masses
once the gauge symmetry is broken from Ggy — SU(3). X U(1)gy. Exceptionally,
neutrinos do not get any mass due to the absence of right-handed neutrinos in the
particle spectrum (This makes fermion mass term m2¥W¥ = 0 for neutrinos).

The parameter v can be found from the charged current for p decay (pn — everv,)

using Fermi coupling constant [12], which is measured very accurately to be Gp =
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1.16638 x 107° GeV~2. Since the momentum carried by the W boson is of order m,,, it

can be neglected in comparison with my,, and we make the following identification

G F 1 -1
— =—=v=(V2Gp)2 =246 GeV 1.11
\/§ 2,02 v (\/_ F) € ( )
One of the essential points about the Higgs mechanism is that coupling of the Higgs
boson to fermions and gauge bosons are entirely determined by coupling constants and
fermion or gauge boson masses. Figure 1.4 shows the Feynman diagram of Higgs boson

coupling with gauge bosons (a) and fermions (b). The Higgs potential has two free

parameters, ;1 and A\, which can be traded for,

> 1
2A (1.12)
2

m3 = 20%\

v

Using the Egs. (1.8) and (1.12) for Higgs potential (given at Eq. (1.6)), we get,

V= mT%{hﬂ + ?—ﬁuﬂ?’ + i%ﬁ‘* (1.13)

The Higgs boson couplings represent new type of interaction; very weak for light
particles, such as up and down quarks and electrons, but strong for heavy particles such
as the W and Z bosons and the top quark. More precisely, the SM Higgs boson couplings
to fundamental fermions are linearly proportional to the fermion masses, whereas the
couplings to bosons are proportional to the square of the boson masses. The SM Higgs
boson couplings to gauge bosons and fermions, as well as the Higgs boson self-coupling,
are shown in the Fig. 1.4. Because of charge-neutral and color-singlet property, the Higgs
boson does not couple at tree level to the massless photons and gluons. Its coupling to
gluons is induced at leading order by a one-loop process in which it couples to a virtual ¢
pair (with minor contributions from the other lighter quarks). Likewise, the Higgs boson
coupling to photons is also generated via loops. In this case, the one-loop graph with a

virtual WW pair provides the dominant contribution. This interferes with the smaller
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contribution involving a virtual ¢¢ pair (as such, the Higgs boson coupling to photons is

sensitive to the relative phase of the interactions between bosons and fermions).

Gauge interaction o< (M? / 0?) Yukawa interaction o (M. / v)
v _H f
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oy
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Trilinear self interaction o< (mi/ v?) Quatrtic self interaction e (mﬁ/ v?)
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............. ‘\ ‘
N H H
. H
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Figure 1.4: Higgs interactions (image motivated from Ref. [11])

The self-interaction of the Higgs boson is determined in terms of the Higgs boson
mass. Within Eq. (1.13), the first term is Higgs boson mass, the second one corresponds
to Higgs trilinear self-coupling (Aggy or A), and the last term is for Higgs quartic
coupling (Aggpy). The corresponding Feynman graphs are shown in Fig. 1.4 ((c¢) and

(d) respectively).

1.2.2 Higgs boson profile at LHC

At LHC, after discovering the Higgs boson, extensive efforts have been made to measure
the properties of this new particle. So far, experimental data show results consistent
with SM predictions with Higgs boson mass (mpy) around 125 GeV [73-75] as given
in Fig. 1.5. Apart from mass determination, measurements for the Higgs boson decay

width [76], spin-parity [77] and couplings with other SM particles [78] have also been
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made.

ATLAS and CMS —4~ Total [ | Stat. [ Syst.

7 TeV, 8 TeV and 13 TeV Tot. Stat. Syst.

ATLAS H —yyRun1 126.02 + 0.51 (£ 0.43 + 0.27) GeV

CMS H —yyRun1 124.70 + 0.34 (+ 0.31 + 0.15) GeV

ATLAS H - 4lRun 1 124.51 + 0.52 (+ 0.52 + 0.04) GeV

CMS H - 4IRun 1

ATLAS-CMS vy Run 1 125.07 + 0.29 (+ 0.25 + 0.14) GeV

125.59 + 0.45 (£ 0.42 + 0.17) GeV

ATLAS-CMS 4l Run 1

ATLAS-CMS Comb. Run 1 125.09 + 0.24 (+ 0.21 = 0.15) GeV

ATLAS H —yyRun 2 125.11 + 0.42 (+ 0.21 + 0.36) GeV

125.15 + 0.40 (+ 0.37 + 0.15) GeV

ATLAS H — 41 Run 2 124.88 + 0.37 (+ 0.37 + 0.05) GeV

CMS H —4lRun2 125.26 + 0.21 (+ 0.20 + 0.08) GeV
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118 120 122 124 126 128 130 132
m, GeV

Figure 1.5: SM Higgs boson mass measurements by ATLAS and CMS with Run-1 and
Run-2 data [12]

Various production processes have contributed to the precision measurement study of
Higgs boson properties. The process list includes gluon-gluon fusion (ggH ), vector boson
fusion (VBF H), associated production with top (bottom) quarks ttH (bbH) and vector
bosons (VH). The respective leading order Feynman diagrams are shown in Fig. 1.6.
These production mechanisms are very crucial for Higgs coupling measurement with
other SM particles.

Higgs boson is not a stable particle. Its lifetime is of the order of 10722 sec. As it gets
produced during the collision, it decays into the SM particles, which are further identified
as the final objects to carry forward any Higgs measurement study. Therefore, we collect
information of the final state objects at the detector level and further analyze them to
reconstruct the Higgs boson. How reconstruction is done, we will see in the upcoming
chapters. However, before that, we first need to understand the probability of Higgs
boson decay into any stable particles, which could be photons, jets (originating from
the hadronization of quarks coming from Higgs boson decay) or leptons. Here massless
neutrin