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Abstract. We review formulations of the equations of (inviscid) general
relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with
methods for their numerical solution. Both systems can be cast as first-
order, hyperbolic systems of conservation laws, following the explicit choice of
an FEulerian observer and suitable fluid and magnetic field variables. During
the last fifteen years, the so-called (upwind) high-resolution shock-capturing
schemes based on Riemann solvers have been successfully extended from classical
to relativistic fluid dynamics, both special and general. Nowadays, general
relativistic hydrodynamical simulations in relativistic astrophysics are routinely
performed, particularly within the test-fluid approximation but also for dynamical
spacetimes. While such advances also hold true in the case of the MHD equations,
the astrophysical applications investigated so far are still limited, yet the field is
bound to witness major developments in the near future. The article also presents
a brief overview of numerical techniques, providing state-of-the-art examples of
their applicability to general relativistic fluids and magneto-fluids in characteristic
scenarios of relativistic astrophysics.

1. Introduction

Relativistic hydrodynamics is the part of physics devoted to the study of both, flows in
which the velocities attained by individual particles or by the fluid as a whole approach
the speed of light in vacuum, or those for which the strength of the gravitational field
— either background or that generated by the matter itself, or both — is important
enough to render mandatory a description in terms of Einstein’s theory of gravity.
These two extreme circumstances, far from being met by the flows present in our daily
life, are routinely encountered in some violent places of our cosmos. In fact, almost any
high-energy astrophysical phenomenon astronomers observe and investigate requires
a relativistic treatment. Moreover, to understand their dynamics and evolution
astrophysicists usually resort to mathematical and numerical models which incorporate
relativistic hydrodynamics as a key building block. Scenarios involving compact
objects such as supernova explosions leading to neutron stars, microquasars, active
galactic nuclei, and coalescing neutron stars, all contain flows at (varying degrees of)
relativistic speeds and, in many cases, strong shock waves. In particular, flow velocities
as large as 99% of the speed of light are required to explain the apparent superluminal
motion inferred in many of the observed jets in extragalactic radio sources associated
with active galactic nuclei. A relativistic description of the matter hydrodynamics
and of the gravity is also necessary in scenarios involving the gravitational collapse of
massive stars to form black holes, or at the last stage of the coalescence of neutron
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star binaries. Such events are believed to be the mechanisms responsible for long
and short gamma-ray bursts, respectively, the most luminous events in the Universe
after the Big Bang. Again, the flow speeds achieved in the highly collimated, jetted
emission of a gamma-ray burst may amount to figures well beyond 99% times the
speed of light. Last but not least, the presence of both relativistic flows and massive
compact objects in the aforementioned astrophysical scenarios turns them into main
sources of potentially detectable gravitational radiation. The direct detection of these
elusive ripples in the curvature of spacetime, and the wealth of new information that
could be extracted thereof, is one of the driving motivations of present-day research
in relativistic astrophysics.

The investigation of the dynamics and evolution of such relativistic astrophysical
systems strongly relies on the assistance of accurate, large-scale numerical simulations.
This task is, however, daunting, as the governing equations to solve, the general
relativistic hydrodynamics and magneto-hydrodynamics equations (GRHD/GRMHD
hereafter) coupled to Einstein’s equations, are rich in conceptual and technical
difficulties. In some cases approximations are justifiable, as e.g. whenever the self-
gravity of the fluid is negligible in comparison with the “background” gravitational
field. Nowadays, such test-fluid approximation is highly developed numerically,
particularly for the GRHD case. On the other hand, there has also been intense work
in recent years on formulating and solving the MHD equations in general relativistic
spacetimes (either background or dynamical), which has allowed for the first accurate
simulations ever in the fields of gravitational collapse, black hole accretion and jet
formation. Mathematically, as we shall see in this paper, the GRHD/GRMHD
equations are nonlinear hyperbolic systems of balance laws. For such systems there
exist solid mathematical foundations and highly sophisticated numerical methodology
imported from computational fluid dynamics. A “preferred” choice among the various
approaches at one’s disposal are the so-called high-resolution shock-capturing schemes
(HRSC hereafter), either upwind or central, and written in conservation form.

The aim of this paper is to present a brief overview of 341 formulations of general
relativistic hydrodynamics and magneto-hydrodynamics, with an emphasis on their
suitability for advanced numerical work with HRSC schemes. In this respect the
paper is intended to provide the bare bones of such a broad topic, supplying pointers
on further reading. The interested reader is addressed to more detailed review articles
and monographs on the subject, such as those of [1, 2, 3, 4] regarding mathematical
and numerical aspects of the GRHD/GRMHD equations, and [5, 6] regarding general
issues on numerical methods for conservation laws. The paper is organized as follows:
Section 2 discusses the equations of 341 general relativistic hydrodynamics. The
corresponding GRMHD equations are considered in Section 3. Next, in Section 4
we give a short overview of the various formulations of Einstein’s equations (within
the 341 framework) that are most widely employed in current numerical simulations,
incorporating explicitely in the equations the matter content. Section 5 discusses
numerical methods for conservation laws, providing connections with the GRHD and
GRMHD systems. Some astrophysical examples are mentioned in Section 6. Finally,
the paper closes with a short summary in Section 7. Throughout the paper Greek
indices are assumed to run from 0 to 3 while Latin indices run from 1 to 3; geometrized
units G = ¢ = 1 are used, and boldface letters indicate vectors.



VII Mexican School on Gravitation and Mathematical Physics IOP Publishing
Journal of Physics: Conference Series 91 (2007) 012002 doi:10.1088/1742-6596/91/1/012002

2. General relativistic hydrodynamics equations

Undergraduate students in Physics are all familiar with the standard textbook
derivation of the classical fluid (or gas) dynamics equations (see e.g. [7]) in which three
basic physical principles are used, the conservation of mass, momentum (Newton’s
second law), and energy. To derive those equations two fundamental assumptions
are made. First, fluid dynamics is supposed to deal with the behaviour of matter
in the large (average quantities per unit volume), i.e. on a macroscopic scale large
compared with the distance between fluid molecules. This permits not to take into
account the molecular structure of fluids, a task reserved for the kinetic theory of
gases. Even when an infinitesimal volume element is considered, it must be presumed
that it is much smaller than the dimensions of the fluid, but still much larger than the
distance between molecules. The second assumption presumes a perfectly continuous
macroscopic behaviour of fluids, and physical quantities such as mass, density, or
momentum contained within a given small volume are regarded as uniformly spread
over that volume. Therefore, those quantities characterizing a fluid (in the continuum
limit) are functions of time and space.

Under these two key assumptions the principles of conservation of mass,
momentum, and energy within a given fluid volume element lead, respectively, to
the equations of continuity, Euler’s equation, and energy equation. These equations
can be written in a compact way as a first-order, flux-conservative, hyperbolic system:

ou , o
ot Oxt

where the state-vector U, the vector of fluxes (along each direction i) F?, and the
vector of (undifferentiated) source terms S read, respectively:

= S(U), (1)

U=(ppie | @
F' = (pv*, pv"v* + pd¥, (e + p)v*), (3)

In these equations p is the mass density, v/ is the velocity, e is the total (internal plus
kinetic) energy, namely e = pe + % pv?, € being the specific internal energy, p is the
(thermal) pressure, and §" is Kronecker’s delta. In addition, a conservative external
force field (e.g. the gravitational field) is supposed to exist, g = —V®, where & is
the gravitational potential satisfying Poisson’s equation, A® = —4nGp, where G is
Newton’s gravitational constant, and V and A are the Nabla and Laplacian operators,
respectively.

We note that in the above equations viscous effects have been explicitely
neglected. Otherwise, Euler’s equation would have to be replaced by Navier-Stokes’
equation (no longer hyperbolic) and the energy equation would contain additional
terms accounting for heat transfer and dissipation of kinetic energy. While their
numerical description still represents a challenging task, viscous effects due to the
transfer of momentum along velocity gradients by turbulence and thermal motions,
should in general be considered in some representative astrophysical scenarios, namely
accretion disks for which shearing motions or steep velocity gradients may appear.
In addition, viscosity is also believed to play a significant role on the stability and
dynamics of compact stars, destroying differential rotation in rapidly rotating neutron
stars or suppressing the bar-mode instability as well as gravitational-radiation driven
instabilities.
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The distinctive property of hyperbolic, partial differential equations is to have
finite propagation speed: of information. This can travel with a maximum speed
given by the largest of the characteristic curves of the system. The range of influence
of the solution is hence bounded by the eigenvalues of the Jacobian matrix of the
system, A+ = v’ & ¢4, where ¢, is the sound speed. This property has consequences
on the design of numerical procedures to solve hyperbolic equations (see Section 5
below).

The corresponding GRHD equations which would replace the above classical
hydrodynamics equations in situations involving strong gravitational fields or flows
approaching the speed of light are also described by local conservation laws, of
momentum and energy on the one hand, encoded in the stress-energy tensor THY,
and of the matter current density on the other, J* (the continuity equation):

VT =0, V" =0. (5)

Here, V,, stands for the 4-dimensional covariant derivative. The current density is
given by J* = pu*, where u” is the 4-velocity of the fluid and p its rest-mass density.
As customary we assume hereafter a perfect fluid stress-energy tensor

T = phutu” + pg"”, (6)

where h stands for the specific enthalpy, h = 1 + € + p/p, and g, is the spacetime
metric tensor.

The previous system of equations, either classical or relativist, is closed once
an equation of state (EOS hereafter) is chosen, namely a thermodynamical relation
connecting the pressure to two independent state variables, e.g., p = p(p,e). The
available EOSs have become sophisticated enough to take into account physical and
chemical processes such as molecular interactions, quantization, relativistic effects,
nuclear physics, etc. Nevertheless, the most widely employed EOSs in numerical
simulations in astrophysics are the ideal fluid EOS, p = (I' — 1)pe, where T is the
adiabatic index, and the polytropic EOS (e.g. to build equilibrium stellar models),
p = Kpb' = Kp'tY/N_ K being the polytropic constant and N the polytropic
index. State-of-the-art, microphysical EOSs that describe the interior of compact
stars at nuclear matter densities have also been developed. While they are being
increasingly used in the numerical modelling of relativistic stars, the true EOS of
neutron star interiors remains still largely unknown, as reproducing the associated
densities and temperatures is not amenable to laboratory experimentation. In the
test-fluid approximation where the fluid’s self-gravity is ignored, the dynamics of
the matter fields is completely described by the previous conservation laws and the
EOS. Whenever such approximation does not hold, these equations must be solved
in conjunction with Einstein’s equations for the gravitational field which describe the
evolution of a dynamical spacetime.

Most approaches for the numerical solution of the general relativistic
hydrodynamics equations adopt spacelike foliations of the spacetime, within the so-
called 3+1 (Cauchy) formulation [8, 9]. However, covariant forms of these equations
are also available in ways well suited for advanced numerical methods [10, 11]. The
interested reader is addressed to [4] for a review of the latter formulations, which will
not be covered here. Introducing a coordinate chart (2°, 2*) the 3+1 line element (see
e.g. [12] for details) reads

ds® = —(a? — 3;8))dz"da® + 26;da’dz® + ~;;dx' da? (7)
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where « is the lapse function, 3¢ is the shift vector, and ~;; is the spatial 3-
metric induced on each spacelike slice. Therefore, the above (covariant) conservation
equations 5 read

0
ot —gJ" =0, (8)
0
D = - LT, )

where g = det(gu,) = a7, v = det(vi;), and I', are the so-called Christoffel
symbols.

The traditional approach for relativistic hydrodynamics on spacelike hypersur-
faces is based on Wilson’s pioneering work [8]. In this formalism the equations were
written as a set of advection equations, sidestepping an important guideline for the
formulation of nonlinear hyperbolic systems of equations, namely the preservation
of their conservation form. This feature is necessary to guarantee correct evolution
in regions of sharp entropy generation, i.e. shocks, a common feature of nonlinear
hyperbolic equations. (However, in the absence of such features, non-conservative for-
mulations are equivalent to conservative ones.) The approach is simple to implement
and has been widely used over the years in numerical relativistic astrophysics.

On the other hand, a numerical scheme in conservation form allows naturally
for shock-capturing. Writing the relativistic hydrodynamic equations as a system of
conservation laws, identifying the suitable vector of unknowns, and building up an
approximate Riemann solver, permitted the extension of modern HRSC schemes from
classical fluid dynamics into the realm of relativity [13] (see also [10]). The main
theoretical ingredients to construct such a HRSC scheme in 3+1 general relativity can
be found in [9]. In this reference the GRHD equations were written as a first-order,
flux-conservative, hyperbolic system, amenable to numerical work [4]:

1 (MU(w) | OVGF (w)) st )
V=g 0xY ox’

reminiscent of Eq. (1) save for the presence of geometrical terms in /7 and \/—g. With
respect to the Eulerian observer and in terms of the primitive variables, w = (p,v*, €),
the state vector U (conserved variables) and the vectors of fluxes F and source terms
S, are given by

U(w) = (D, S;,7), (11)

F'(w) = (Dv',8;0" + pd}, 70" + pv') (12)
s 5 o Olna V0

S(W) = (O’Tﬂ <67: - Fyugé‘j> , & (Tﬂ W - T FVN ,(13)

where ©° = v*— 3" /a.. The conserved quantities in Eq. (11) are the relativistic densities
of mass, momenta, and energy, respectively, defined as D = pW, §; = phWQUj, and
T = phW? — p — D. In these expressions W stands for the Lorentz factor, defined
as W = au’. We note that in the energy equation the continuity equation has been
subtracted in order to properly recover the Newtonian limit.

It is worth noting that the presence of the Lorentz factor in the convective terms
of the hydrodynamics equations (and of the pressure in the specific enthalpy) makes
the relativistic equations much more coupled than their Newtonian counterparts. This
has significant implications in their numerical solution, particularly if nonconservative
approaches are used. The most important consequence is the unavoidable numerical

5
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limitations when dealing with situations involving ultrarelativistic flows. While
implicit schemes were proposed to capture more accurately such coupling [14],
restrictions persisted for values of W ~ 10 and larger. Ultrarelativistic flows
could only be handled (with explicit schemes) once conservative formulations were
adopted [13, 10, 9].

HRSC numerical schemes based on Riemann solvers (see below and [5, 6]) use
the local characteristic structure of the hyperbolic system of equations. For the
previous system, Eq. (10), this information was provided in [9] (see also [15, 4]). The
eigenvalues (characteristic speeds) are all real but not distinct, one of them showing
a threefold degeneracy, and complete sets of right- and left-eigenvectors exist. The
above system satisfies, thus, the definition of hiperbolicity (yet it is not either strictly
hyperbolic nor symmetric hyperbolic in its particular form). We note, however, an
important difference with the Newtonian case, namely the existence of couplings in
the eigenvalues along a given direction, say the x—direction, with components of the
velocity field transversal to v*:

e

— x 2

Ai—l—ilﬁcg{v (1—05)
+ eo/(1—v?)ye (1 —v2e2) —vroe(1 — 63)]} - B (14)
In this expression such coupling is apparent through the modulus of the velocity,
v? = ~v;;v07. In addition, even in the purely one-dimensional case, v = (v*,0,0),

the flow speed and the sound speed are connected through the relativistic addition
of velocities Ay = %, instead of the Galilean addition present in the Newtonian
case, A+ = v” + ¢s;. Finally, we note that degeneracies in the entire set of GRHD
eigenvalues occur as the flow speed reaches the speed of light and when the lapse
function goes to zero (which is purely a gauge effect), e.g. at the horizon of a black

hole (which behaves as a sonic sphere).

3. General relativistic magneto-hydrodynamics equations

General relativistic MHD is concerned with the dynamics of relativistic, electrically
conducting fluids (plasma) in the presence of magnetic fields. Here, we discuss only
purely ideal GRMHD, neglecting effects due to viscosity and heat conduction in the
limit of infinite conductivity (the fluid is assumed to be a perfect conductor with no
resistivity). We note that there are examples in astrophysics in which resistivity
effects may become important and ideal MHD may not be valid to describe the
dynamics of the plasma, typically in situations involving dilute accretion flows. For
example, the Hall effect in protostellar disks is one of those effects, with significant
implications regarding the so-called magneto-rotational instability, the mechanism
believed to regulate angular momentum transport in disks through sustained accretion.
In addition, reconnection of magnetic field lines (in e.g. solar flares) is another
important non-ideal MHD effect which may appear in turbulent plasmas near the
scale of energy dissipation. When the fluid is no longer a perfect conductor kinetic
effects become important and the so-called particle-in-cell methods (not discussed
here) are usually employed instead of finite volume methods.

As the GRHD equations discussed in the preceding section, the GRMHD
equations can also be cast in first-order, flux-conservative, hyperbolic form. In recent
years there has been intense work on formulating and solving numerically the MHD
equations in general relativistic spacetimes, either background or dynamical [16, 17,

6
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18, 19, 20, 21, 22, 23, 24, 25|. Both, artificial viscosity and HRSC schemes have
been developed and most of the astrophysical applications previously attempted
with no magnetic fields included are currently being revisited, namely for studies of
gravitational collapse, neutron star dynamics, black hole accretion, and jet formation.
The discussion reported in this section follows the particular derivation of these
equations as presented in [23] to which the reader is addressed for further details.

In terms of the (Faraday) electromagnetic tensor F*¥, defined as

R —UrEY —UYEWF — nuu)\(sU)\B(s ’ (15)
Maxwell’s equations read
V,*F* =0, V., F* = TJH, (16)

where the dual of the Faraday tensor is *F* = %n’“’)“SF,\(;, and pHA = \/;_—g[,ul/)\(ﬂ,

with [urAd] being the completely antisymmetric Levi-Civita symbol. Quantities E*
and B* appearing in the Faraday tensor stand for the electric and magnetic fields
measured by a generic observer with 4-velocity U*, respectively. Furthermore, J* is
the electric 4-current, defined as J* = p,ut + o F*"u,, where p, is the proper charge
density and o is the electric conductivity.

Maxwell’s equations can be simplified if the fluid is a perfect conductor. In this
case o is infinite and, to keep the current finite, the term F*”u, in the definition of
the 4-current must vanish, which results in E# = 0 for a comoving observer. This case
corresponds to the so-called ideal MHD condition. Under this assumption the electric
field measured by the Eulerian observer has components

EO — 07 E’L — _anOijk,UjBk’ (17)

and Maxwell’s equations V, * F*” = 0 reduce to the divergence-free condition of the
magnetic field plus the induction equation for the evolution of the magnetic field
9(v7¥B")
—— =0 18
8.TZ Y ( )
1 0 - 1 0 o -
— B)=—— v'B’ — av’ B*]}. 19
T (VB = =g (VAler B — o B (19)

In addition, for a fluid endowed with a magnetic field, the stress-energy tensor
can be naturally split in two parts, one corresponding to the fluid and a second piece
corresponding to the electromagnetic field, TH” = T, + Ty, where Th ., is given
by Eq. (6) for a perfect fluid. On the other hand T}, can be built from the Faraday
tensor as follows:

1
Ty = FPAFY = 29" FY Fs, (20)
which, in ideal MHD, can be rewritten as
1
Tt = (1w + o ) 2 - 0 (21)

where b* is the magnetic field measured by the observer comoving with the fluid and
b2 = b”b,. The total stress-energy tensor is thus given by

THY — ph*uuuz/ _'_p*guu . b,ubu’ (22)
where we have introduced the following definitions, p* = p + b2/2 and h* = h + b /p.

Following [23] the conservation equations for the energy-momentum tensor,
together with the continuity equation and the equation for the evolution of the

7
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magnetic field, can be written as a first-order, flux-conservative, hyperbolic system
equivalent to (10). The state vector and the vector of fluxes of the GRMHD system
of equations read:

U(w) = (D,S;,7,B"), (23)
F'(w) = (D", S;0' 4+ p*6; — b;B' /W, 70" 4 p*v' — ab’ B /W,
o' B* — 5% BY), (24)

where the conserved quantities are now defined as D = pW, S; = ph*W?2v; — ab®b;,
and 7 = ph*W?2—p*—a?(b°)%2 — D. The corresponding vector of sources coincides with
the one given by Eq. (13) save for the use of the complete (fluid plus electromagnetic
field) stress-energy tensor (the magnetic field evolution equation is source-free). We
note that expressions (23) and (24) contain components of the magnetic field measured

by both, a comoving observer and an Eulerian observer. The two are related by
B0 — W Biv; b — B+ ozboui.

a w
The wave structure of the above GRMHD hyperbolic system is, understandably,
more involved than that corresponding to the GRHD case. Anile and Pennisi [26] and
Anile [1] (see also [27]) have studied the characteristic structure of these equations
(eigenvalues, right- and left-eigenvectors) in the (10-dimensional) space of covariant
variables (u,,b,,p,s), where s is the entropy. It was found that only the entropic
waves and the Alfvén waves are explicit, namely (for the formulation of [23] discussed

in this section)

(25)

e =avt = f, (26)
_ b +/ph+ B!

Ay o= ,
= b0 + \/ph + B2uY

while the (fast and slow) magnetosonic waves are given by the numerical solution
(through a root-finding procedure) of a quartic characteristic equation. We note that
as a result of working with the unconstrained, 10 x 10 system of equations, there appear
superfluous eigenvalues associated with unphysical waves which need to be removed
(the entropy waves as well as the Alfvén waves appear as double roots). Any attempt
to develop a numerical procedure based on the wave structure of the RMHD equations
must hence remove these nonphysical waves (and the corresponding eigenvectors) from
the wave decomposition. In the particular case of special relativistic MHD, [28] and
[29] eliminate the unphysical eigenvectors by enforcing the waves to preserve the values
of the invariants u*u, = —1 and u*b, = 0, as suggested by [1]. Correspondingly, [30]
selects the physical eigenvectors by comparing with the equivalent expressions in the
nonrelativistic limit.

Among the magnetosonic waves, the two solutions with maximum and minimum
speeds are called fast magnetosonic waves )\’J} ., and the two solutions in between are

(27)

the so-called slow magnetosonic waves A’ . The seven waves can be ordered as follows
YRS VED VD VP WIE-S LD VI (28)

which defines the domain of dependence of the GRMHD system.
To close this section we note that, as in the classical case, the relativistic MHD
equations have degenerate states in which two or more wavespeeds coincide, which

breaks the strict hyperbolicity of the system and may affect numerical schemes for its
solution. These degeneracies have been analyzed by [28], who found that, with respect

8
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to the fluid rest frame, the degeneracies in both classical and relativistic MHD are the
same: either the slow and Alfvén waves have the same speed as the entropy wave when
propagating perpendicularly to the magnetic field (Degeneracy I), or the slow or the
fast wave (or both) have the same speed as the Alfvén wave when propagating in a
direction aligned with the magnetic field (Degeneracy II). On the other hand, [31] has
derived a covariant characterization of such degenerate states which can be checked
in any reference frame. In addition, [31] has also worked out a single set of right
and left eigenvectors which are regular and span a complete basis in any physical
state, including degenerate states. Such renormalization procedure can be seen as a
relativistic generalization of the work performed by [32] in classical MHD.

4. Formulations of Einstein’s equations for nonvacuum spacetimes

Simulations of astrophysical systems in the strong gravity regime have recently
benefited from advances in the formulations of both the GRHD and GRMHD
equations, but also from important breakthroughs in the arena of the gravitational
field equations themselves, both at the theoretical and at the numerical fronts.
Indeed, formulations of Einstein’s equations suitable for long-term stable numerical
simulations are available and have proved adequate in a variety of scenarios, including
remarkably merging binary black holes, the archetypal and most challenging problem
in Numerical Relativity (see [33] and references therein). In the following we briefly
review some of the formulations which are most commonly used nowadays.

4.1. CFC metric equations

Until recently the workhorse formulation of Einstein’s equations in Numerical
Relativity has been the so-called ADM 341 formulation (see e.g. [34] and references
therein). Given a choice of lapse function « and shift vector ¢, Einstein’s equations
in the 341 formalism split into evolution equations for the 3-metric v;; and constraint
equations that must be satisfied on any time slice. The evolution equations read

Oryij = —2aK;; +ViB; + VB, (29)
OK;j = —ViVja+a (Rij +K K;j — 2KimK;”) + 8"V K
+ Kim V" + K, V™ — 4 (2555 — 7S + prij) , (30)
where Kj;; is the extrinsic curvature of the 3—dimensional time slice, R;; is the Ricci

tensor of the induced 3-metric, and V; is the covariant derivative associated with ;.
In addition, the Hamiltonian and momentum constraint equations read, respectively

R+ K? - KYK;; = 16mpg, (31)
Vi (K9 —97K) =8r5, (32)
where R is the Ricci scalar, and K is the trace of the extrinsic curvature.

From the energy-momentum tensor 7#" it is possible to build the matter
quantities appearing in the above expressions: the total energy pg = n#n"T,, =
a?T% the momenta S; = — L/ n'T,, = —é(Tgi—Tijﬁ]% and the spatial components
of the energy-momentum tensor S;; =L 1% T, (with S denoting its trace, S = Sj).
To this aim we must use the projection operator LX= g¥ + n¥n, and the unit four-
vector n* normal to the hypersurface.
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If the spatial 3-metric is assumed to be conformally flat, i.e. 7;; = ¢*§;;, with
¢ being the conformal factor, and under the additional assumption of a maximally-
sliced spacetime (K = 0), the ADM 3+1 equations reduce to a system of five coupled,
nonlinear elliptic equations for the lapse function, the conformal factor, and the shift
vector [35, 36]:

N K.. K4

_ 5 2 ij
Ap = —2m¢ <phvv P+ ), (33)
N K. K%
A@m):2mw5Qm@wﬂ—2y+mr%zfé;—>, (34)
~ . AN o 1~
Ag :1&m¢ﬂw+2¢mK“va§>—§VWhﬁﬂ (35)

where V; and A are the flat space Nabla and Laplace operators, respectively. (The
hat symbol is used to denote flat spacetime operators.)

The simplified Einstein’s equations introduced by the conformally-flat condition
(CFC hereafter) are adequate in situations for which deviations from spherical
symmetry are not significant. The satisfactory accuracy of the CFC approximation
has been tested in various works, namely for stellar core collapse and equilibrium
models of neutron stars [37, 38, 39, 40, 41, 42], as well as for binary neutron star
mergers [43, 44]. Tt has been shown that the spacetime of rapidly (uniformly or
differentially) rotating neutron star models is very well approximated by the CFC
metric. Its accuracy degrades only in extreme cases, such as rapidly rotating massive
neutron stars or black holes.

4.2. CFC+ metric equations

The above CFC system of equations has been recently extended by [45] through the
incorporation of additional degrees of freedom in the approximation, which render the
spacetime metric exact up to the second post-Newtonian order. Despite the original
CFC system of metric equations (33)-(35) is augmented with additional equations, the
final system in this new CFC+ formulation is still elliptic.

The natural way of improving the CFC approximation is through a post-
Newtonian expansion of the traceless part of the 3-metric:

N 1
s = 043 T =5+ 1Y 0 (). (36)

where is the leading order in the expansion of hiTjT. The CFC+ metric is obtained
by truncating Eq. (36) at second post-Newtonian order in the traceless and transverse
part. We note that CFC+ becomes exact for spherically symmetric spacetimes, just
as CFC does, since in this case the TT part vanishes, while in a general nonspherical
spacetime, CFC+ behaves as a second post-Newtonian approximation of the metric.
The computation of h?JP N can be simplified by introducing auxiliary potentials
that are solutions of scalar/vector/tensor Poisson equations [45]. The (lengthy)
derivation of the CFC+ equations is described in detail in [45]. Here, we simply
summarize the main steps in the procedure to calculate the final CFC+ metric:

2PN

(i) Calculate “Newtonian” potential (one Poisson equation):

AU = —47G DT, (37)
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where the dagger symbol indicates “densitized” quantities, i.e. DT = V3D, where
¥ = /%, 4 being the determinant of the flat 3-metric.

(ii) Calculate intermediate (scalar, vector, and tensor) potentials (16 linear Poisson

equations):
R sfet
AS = —47‘(‘#%‘133], (38)
R [ sist .
AS; = |—4m ll)T] — ViUVjU l’], (39)
) o stst -
AT, = —4wﬂ,ﬁf—ijka AR g al, (40)
AR; = Vi(V,UV Ul z¥), (41)
R TsT
AS;; = o7 ~V.UV,U, (42)

where ¢ denote the coordinates and where, as in Eq. (37), the superscript { in
the hydrodynamical fields is used to indicate ‘densitized’ fields, i.e. multiplied by

V-

(iii) Calculate h};T:

1 5 1, e o
hit o= 5Sis — 328V (i Sk + wmx Vi (31 Sw) + i 2"2'V;V,; Sk
R R A a 5 . 1~
+3ViS)) — imkvivjsk + Zvivjs =3 ViTi = ViR,
1 .
+ Yij [ AR + P4V, Sh — klvk&} , (43)

where subindex (i) indicates symmetrization with respect to the two indices.
(iv) Calculate the modified CFC equations (5 nonlinear Poisson-like equations):

N TK;: K"
Alad) = 2rad® (ph(aW? —2)+ 5p+ T )
T
1 o .
- VY by ViU, (44)
N K Kij
A = —27¢° [ phW? — 45
s w6 (o == (45)
L . " 1o
AB" =16map*S" + 2KV, (%) — gvlvkﬁk,
with
- 1 2
Kij = 2 (v 6] + v 52 - 'Yz]vkﬁk) ¢10K1] (46)
ij Lo oy
Kij KV = WKMK 7. (47)
(v) Finally, calculate the metric componentS'
Ggij = Yij = ¢4 is + hETv (48)
goo = %’jﬂjﬂl —a® ) (49)

9oi = Di- (50)
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We note that the main limitation of both CFC and CFC+ is the fact that the
gravitational wave degrees of freedom are lost in the approximations made. As a
result, gravitational waves have to be extracted in an approximate way a posteriori
directly from the sources (e.g. resorting to the standard quadrupole formula). CFC+
has been applied to axisymmetric simulations of pulsations in rotating neutron stars
and rotational stellar core collapse to a proto-neutron star, where it was found that all
matter and metric quantities show only minute differences with respect to CFC [45].
Needless to say, in scenarios where the CFC approximation is expected to become
increasingly inaccurate, CFC+ would yield results which are closer to full general
relativity.

4.3. BSSN metric equations

The ADM 341 metric equations have been shown over the years to be intrinsically
unstable for long-term numerical simulations, especially for those dealing with black
hole spacetimes. In the last 15 years there have been diverse attempts to reformulate
those equations into forms better suited for numerical investigations (see [46, 47, 34]
and references therein). Among the various approaches proposed, the so-called BSSN
reformulation of the ADM system [46, 47] stands as very appropriate for long-term
stable numerical work.

The main idea behind this approach is to remove the mixed second order
derivatives appearing in the definition of the Ricci tensor by introducing auxiliary
variables so that the evolution equations look like wave equations for the 3-metric
and the extrinsic curvature. To achieve this the BSSN formulation makes use of a
conformal decomposition of the 3-metric, 7;; = 6_4(1’%]- and of the trace-free part of
the extrinsic curvature, A;; = K;; — 7;;K/3, with the conformal factor ¢ chosen to
satisfy e = 41/3 = det(v;;)'/3. In this formulation, as shown in [47], in addition
to the evolution equations for the conformal 3-metric 7;; and the conformal-traceless
extrinsic curvature variables A;; = e ?(K;; — v, K/3), there are evolution equations
for the conformal factor ¢, the trace of the extrinsic curvature K, and the “conformal
connection functions” T [47], defined as

f\a — ~Z]fza] — _ i;}*/a’i‘ (51)
The final set of BSSN evolution equations reads:
(8t — Eﬁ)’?ij = — 20&/12‘]', (52)
1
(O —Lp)d = — ok, (53)
» U | 1

(8t — EQ)K = — ywvivja + « |:AijAZ] + §K2 + 5 (PE + S):| ,(54)
(875 — 5/5)/117' =4 [—VZ’VJ‘O{ +« (Rij - 5; )]TF

+ « (KAZJ - 21211[145) y (55)
(0; — Lp)T? = —24Y9;a

- . 2 . o
+ 2« (r;kA’w — 3TV K =578, + 6A”6j¢)

+9; <Bl5wij = 27"V, 87 + %ﬁif’azﬁv . (56)
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where L3 stands for the Lie derivative.

BSSN (or slight modifications thereof) is currently the standard 3+1 formulation
in Numerical Relativity [34]. Long-term stable applications include strongly
gravitating systems such as neutron stars (both, isolated [48, 49] and binaries [50])
and single and binary black holes. Such binary black hole evolutions, possibly the
grandest challenge of Numerical Relativity since the very beginning of the field, have
only been possible very recently (see [33] and references therein).

5. Numerical methods for conservation laws

As we have discussed in Sections 2 and 3, the GRHD/GRMHD equations constitute
nonlinear hyperbolic systems of conservation laws, just as their classical (Newtonian)
counterparts. A distinctive feature of such hyperbolic systems is that their wave
structure has finite propagation speeds given by the eigenvalues of the Jacobian
matrices of the systems. Therefore, characteristic curves may cross during an evolution
even for initially smooth initial data, and discontinuities may in turn develop along
the course of such evolutions. As a consequence, standard finite difference schemes
may show important deficiencies when dealing with nonlinear hyperbolic systems.
Typically, first order accurate schemes are much too dissipative across discontinuities,
while second order (or higher order) schemes produce spurious oscillations near
discontinuities. High-resolution methods are all based on modified high-order finite-
difference methods with the appropriate amount of numerical dissipation in the vicinity
of a discontinuity to smooth out unphysical oscillations.

Finite difference (and finite volume) schemes [5, 6] provide numerical solutions
of the discretised version of the partial differential equations (PDEs). Therefore,
convergence properties under grid refinement must be enforced on such schemes to
guarantee the validity of the numerical result (see [51] and references therein). As
stated by the Lax-Wendroff theorem for hyperbolic systems of conservation laws,
schemes written in conservation form converge to one of the so-called weak solutions
of the PDEs (i.e. C'! solutions in smooth parts of the flow and with a finite number of
discontinuities). However, since there is no uniqueness for the initial value problem,
the numerical scheme must guarantee convergence to the physically admissible solution
among all weak solutions, a property whose mathematical characterisation was given
by Lax for hyperbolic systems of conservation laws.

A conservative scheme for the hyperbolic system (10) can be easily formulated
by using the corresponding integral form of the system of equations:

/LaﬁUdeL/ Lﬂm:/ SdQ, (57)
ov—g 02° ov—g Oz Q

where () is a region of the 4-dimensional manifold enclosed within a 3-dimensional
surface 02 which is bounded by two spacelike surfaces 3,0, ¥,0, a0 and two timelike
surfaces Y i, Y iy api. For numerical purposes the above relation can be written as:

Ugopnz0 — Ugpo = — ( \/—gﬁ‘ldxodedxg — \/—gf‘ldxodﬁdmg)

Ew1+Am1 Ezl

—( \/—gf‘zdmodxldxs— \/—gf‘zdxodxldmg)

2312+Az2 212
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_ (/1/_gﬁ‘3d;p0dx1dq:2 — \/—g]?‘?’dxodl'ldIEQ)
P

x3+Ax3 2:03

4 /Q S, (58)

where

_ 1 2+ Azt p2?+Az? prd+ A3
U=+ / 1 / 2 / ) VAUdztda?dx® (59)

and

2+ Azt rx?4Az? pxdAZd
AV = / / / VAydztde?da’. (60)
! 2 3

The main advantage of this procedure is that those variables which obey a conservation
law are conserved during the evolution, as long as the balance between the fluxes at the
boundaries of the computational domain and the source terms is zero. The numerical
fluzes appearing in Eq. (58), indicated by a hat symbol not to be confused with the
same symbol indicating flat spacetime operators, are calculated at cell interfaces where
the flow conditions can be discontinuous. Those numerical fluxes are approximations
to the time-averaged fluxes across an interface, i.e.

A 1 e R

Fiy = /( b UGt (61)
where the flux integral depends on the solution at the numerical interfaces,
U(w;41/2,t), during the time step.

Godunov first proposed to calculate U(z;, 1 /2,1‘0) by exactly solving Riemann
problems (initial value problems with discontinuous data) at every cell interface to
obtain U(z;41/2, 2%) = U(0; U?, U7, ,), which denotes the Riemann solution for the
(left and right) states U?, U?,; along the ray z/2° = 0. This was a procedure of
far-reaching consequences, as it was incorporated in the design of numerical schemes
for solving Euler’s equations of classical gas dynamics in the presence of shock waves,
which led to major advances in the field. The derivation of the exact solution of the
Riemann problem involves the computation of the full wave speeds to find where they
lie in state space. This is a computationally expensive procedure, particularly for
complex EOS and in multidimensions. Furthermore, for relativistic multidimensional
flows, the coupling of all velocity components through the Lorentz factor results in
the increase in the number of algebraic Rankine-Hugoniot conditions to consider in
the case of shock waves and in solving a system of ODEs for the so-called rarefaction
waves. In spite of this, the exact solution of the Riemann problem in special relativistic
hydrodynamics has been derived [52, 53] (see also [3] for downloading a numerical code
which implements the exact solution). Nevertheless, the computational inefficiency
involved in the use of the exact solver in long-term numerical simulations motivated the
gradual development of approrimate Riemann solvers. These, being computationally
much cheaper than the exact solver yield equally accurate results. They are based in
the exact solution of Riemann problems corresponding to a new system of equations
obtained by a suitable linearization of the original one. The spectral decomposition
of the Jacobian matrices is on the basis of all such solvers, which extended ideas used
for linear hyperbolic systems. This is the approach followed by an important subset
of shock-capturing schemes, the so-called Godunov-type methods [54, 55].
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The spatial accuracy of the numerical solution can be increased by reconstructing
the primitive variables at the cell interfaces before the actual computation of the
numerical fluxes. Diverse cell-reconstruction procedures are available in the literature
(see references in [5, 6]) and have all been straightforwardly applied in relativistic
hydrodynamics. Correspondingly, the temporal accuracy of the scheme can be
improved by advancing in time the equations in integral form using the method of
lines in tandem with a high-order, conservative Runge-Kutta method (see e.g. [3, 4]).

The main approaches extended from computational fluid dynamics to build HRSC
schemes in relativistic hydrodynamics can be divided in the following broad categories
(see [3] for further details on such classification):

(i) HRSC schemes based on Riemann solvers (upwind methods): Developments
include both, solvers relying on the exact solution of the Riemann problem:
[52, 53|, relativistic PPM [56], Glimm’s random choice method [57], and two-
shock approximation [58, 59], as well as linearized solvers based on local
linearizations of the Jacobian matrices of the flux-vector Jacobians, e.g. Roe-
type Riemann solvers (Roe-Eulderink: [10]; Local Characteristic Approach:
[13, 60, 9]), primitive-variable formulation: [61], and Marquina Flux Formula:
[62].

(ii) HRSC schemes sidestepping the use of characteristic information (symmetric
schemes with nonlinear numerical dissipation): Various approaches have
been undertaken recently, including those by [63] (Lax-Wendroff scheme with
conservative TVD dissipation terms), [64] (Lax-Friedrichs or HLL schemes
with third-order ENO reconstruction algorithms), [65] (non-oscillatory central
differencing), and [66, 67] (semidiscrete central scheme of Kurganov-Tadmor [68]).

Other approaches worth mentioning include:

(i) Schemes based on artificial viscosity, both for nonconservative and conservative
formulations of the GRHD equations [14, 65].

(ii) Flux-corrected transport scheme [69], a flux-limiter scheme where the
numerical flux is obtained from a high-order flux (e.g. Lax-Wendroff) in the
smooth regions and from a low order flux (e.g. the flux from some monotone
method) near discontinuities.

(iii) Smoothed particle hydrodynamics [70, 71] for many body systems. In
these two references the relativistic hydrodynamics equations are formulated
in conservation form, a feature from which [71] profited to devise a consistent
artificial viscosity treatment. Furthermore, in [70] dissipation terms were
constructed in analogy to terms in Riemann-solver-based methods.

As mentioned above the interested reader is addressed to the review article by [3]
for a complete list of references on this topic as well as for an in-depth comparison of
the performance of the various numerical approaches avilable.

Concerning the GRMHD equations the numerical advantage of using Eq. (58) for
the conserved variables is not entirely apparent for the magnetic field components, as
there is no guarantee that such a procedure conserves the divergence of the magnetic
field during a numerical evolution. The main physical implication of the divergence
constraint is that the magnetic flux through a closed surface A enclosing a volume Vis
zero. This flux can be calculated as a surface integral of the “densitized” magnetic field
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(i.e. B = \/4B*, with 4 = v/4, 4 denoting the flat spacetime metric determinant) as

@T:f BT-dA:/VBTdV:o, (62)
A=oV 1%

after applying Gauss theorem and the magnetic field divergence-free constraint. This
equation implies that no source of magnetic flux exists inside the volume V and,

therefore, the magnetic flux is a conserved quantity as 83? =

In addition, if one considers a generic surface A (without the restriction of having
to enclose a volume), the time variation of the magnetic flux through this surface is

9o 9 ) )
: M. dA = .
= at/B LA = / VX (v xB)} dA 7{:~3AE dl, (63)

where we have used the induction equation (19) and Stokes theorem to transform the
surface integral into a line integral along the curve C' enclosing A, and the equality
Ef = vi x Bf. The previous two properties allow to design a numerical algorithm to
solve the induction equation and the divergence constraint in a way that ensures the
conservation of the magnetic flux. A common choice among the methods for doing so is
the so-called constrained transport method [72, 73], and its fluz-constrained transport
extension [30]. The interested reader is addressed to [23, 74| for further details.

The current approaches to solve the RMHD equations within HRSC schemes also
fall within the categories mentioned above, yet the degree of development achieved thus
far is somewhat more limited here than in the purely hydrodynamical case. Methods
based on Riemann solvers have been initiated in special relativity by [28], who provided
eigenvector sets for degenerate states, [30], whose most distinct feature is that the
cell reconstruction is not done on primitive variables, [75], which provide right- and
left-eigenvectors in covariant variables, but restricted to the one-dimensional case,
and [23, 31], who derived a complete set of right- and left-eigenvectors in conserved
variables, valid even for degenerate states, as well as in general relativity by [76, 23].
On the other hand symmetric schemes (namely, the HLL scheme and the method
devised by Kurganov-Tadmor [68]) are being currently employed by a growing number
of groups in GRMHD [63, 19, 21, 22, 23]. It is worth to emphasize that all references
listed here use conservative formulations of the GRMHD equations. Artificial viscosity
approaches are advocated by [77, 17].

To close this section we note that a distinctive feature of the numerical solution of
the GRHD/GRMHD equations - not existing in the Newtonian case - is that while the
numerical algorithm updates the vector of conserved quantities, the numerical code
makes extensive use of the primitive variables throughout. Those appear repeatedly in
the solution procedure, e.g. in the characteristic fields, in the solution of the Riemann
problem, and in the computation of the numerical fluxes.

For spacelike foliations of the spacetime (3+1) the relation between the two sets
of variables is implicit. Hence, iterative (root-finding) algorithms are required. Those
have been developed for all existing formulations [10, 9, 11]. For practical purposes this
procedure may lead to accuracy losses in regions of low density and small velocities,
apart from being computationally inefficient. We note, however, that for null foliations
of the spacetime, the procedure of connecting primitive and conserved variables is
explicit for the GRHD case for a perfect fluid EOS, a direct consequence of the
particular form of the Bondi-Sachs metric (see [11]). Finally, the recovery of primitive
variables in the GRMHD case is quite more involved than in the GRHD case, due to
the augmented complexity of the equations for the former system. Diverse procedures
are reported in [28, 23, 78|
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t=0.0500 s Torus mass: 0.128Mg,n

Figure 1. Ultrarelativistic outflow from the remnant of the merger of a binary
neutron star system. The figure shows the gamma-ray burst model BO1 from [79]
corresponding to a time ¢ = 50 ms after the start of the energy deposition, at a
rate of 2 x 10°1 erg/s. The (r,6) grid resolution in this axisymmetric simulation
is 1000 x 200. The outflow in the white-coloured regions in the left panel (closer
to the black hole), magnified in the right panel, achieves Lorentz factors of ~ 100,
with terminal values of about 1000. See [79] for further details.

6. Some examples in numerical astrophysics

Both, hydrodynamical and MHD numerical simulations are nowadays an essential
tool in theoretical astrophysics, to model either classical or relativistic sources. These
simulations strongly rely on the accuracy of the underlying numerical codes, which is
calibrated through stringent convergence tests (see [51]) and, when possible, through
comparisons of the numerical solutions with analytic results. Typical testbeds to assess
numerical codes include shock tube tests (Riemann problems), shock reflection tests,
or stationary, spherically-symmetric perfect fluid accretion on to both Schwarzschild
and Kerr black holes.

In recent years, the morphology and dynamics of most scenarios present in the
arena of relativistic astrophysics have been already investigated to varying degrees of
sophistication. The examples are numerous, much too abundant to be covered here
with a minimum detail: Heavy ion collisions, dynamics and stability of relativistic jets
both at pc and Kpc scales (the latter two situations are amenable to investigations
in the special relativistic limit), gamma-ray burst models, gravitational collapse to
neutron stars and black holes, accretion on to black holes, jet formation, pulsations
and instabilities of rotating relativistic stars, and binary neutron star mergers. In
the remaining of the paper we give a glimpse of the state-of-the-art achieved in the
modelling of some of these scenarios, providing pointers for further reading.

Relativistic outflows from mergers of compact objects. Relativistic thick
discs (or tori) orbiting around black holes may form after the gravitational collapse
of the core of a rotating massive star (M > 25Mg) or after a neutron star binary
merger. Such accreting torus plus black hole system is the most likely candidate to be
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Figure 2. Gravitational radiation from the collapse of a neutron star to a rotating
black hole [49]. The figure shows a snapshot in the evolution of the system once
the black hole has been formed and the gravitational waves are being emitted in
large amounts. See [49] for further details.

the mechanism powering gamma-ray bursts. Part of the large amounts of the energy
released by accretion is deposited in the low-density region along the rotation axis,
where the heated gas expands in a jet-like fireball.

Figure 1 shows a snapshot at time ¢ = 0.05 s of a GRHD axisymmetric simulation
of the launch and evolution of a relativistic outflow driven by energy deposition by
neutrino-antineutrino annihilation in the vicinity of a black hole plus accretion torus
system (model Bl of [79]). The left panel displays the logarithm of the Lorentz
factor in the entire computational domain, while the right panel focuses on the
innermost regions closer to the central black hole, depicting the logarithm of the
rest-mass density. Since in this simulation the system is the remnant of a binary
neutron star merger, it naturally provides a baryon-free channel along the rotation
axis through which the outflow can reach ultrarelativistic velocities. Indeed, terminal
Lorentz factors of about 1000 are attained for initial energy deposition rates of some
1048 erg/s per stereoradian. As shown in Fig. 1 the outflow is strongly collimated due
to the presence of the accretion torus, which, in turn, makes the gamma-ray emission
very weak outside of the polar cones. The calculations reported by [79] predict that
about one out of a hundred neutron star mergers produces a detectable gamma-ray
burst, as its ultrarelativistic jet happens to be sent along the line of sighti.

Gravitational collapse and black hole formation. Most numerical investiga-
tions in general relativistic rotational collapse have been (and still are) concerned with
the question of black hole formation. One of the milestones in the field of Numerical
Relativity were the axisymmetric simulations by Stark and Piran [80], who studied
the collapse of rotating relativistic polytropes to black holes and first computed the
associated gravitational radiation.

This problem has been revisited in recent years by a number of groups, employing
more suitable formulations of Einstein’s equations such as BSSN and more advanced

1 The interested reader is addressed to www.mpa—garching.mpg.de/mpa/research/current, esearch/h12004—
9/h12004 — 9 — en.html for animations of representative simulations of such relativistic outflows.
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numerical methodology [81, 82, 83, 48, 84, 49]. In particular, in [48] the gravitational
collapse of uniformly rotating neutron stars to Kerr black holes was studied in
three dimensions using the cactus/whisky code for Numerical Relativity. Long-
term simulations were possible by excising the region of the computational domain
which includes the curvature singularity when the black hole forms and lies within
the apparent horizon. It was found that for sufficiently high angular velocities,
the collapse can lead to the formation of a differentially rotating unstable disk.
Gravitational waveforms from such simulations were reported in [84]. Despite
good qualitative agreement was found with the waveforms reported in previous
axisymmetric simulations [80], the new-computed amplitudes were about an order of
magnitude smaller due to the more realistic rotation rates of the collapse progenitors.

Very recently, [49] have suceeded in computing the gravitational waveforms from
the gravitational collapse of a neutron star to a rotating black hole well beyond what
had so far been possible, even providing information on the ringdown signal through
which the formed black hole relaxes to its asymptotic, stationary state. These new
three-dimensional computations, contrary to most approaches, did not excise the
region inside the apparent horizon once the black hole forms, so as to remove the
curvature singularity and improve, in principle, the numerical stability. Instead, they
were performed without excision, which, combined with suitable singularity-avoiding
gauge conditions and the use of minute (artificial) Kreiss-Oliger type numerical
dissipation in the spacetime evolution and gauge equations, improved dramatically
their long-term stability. An example of this remarkable result is provided by Fig. 2
which shows a snapshot during the evolution of one of the collapse models of [49]§. The
figure displays the gravitational waveform train extracted by matching the numerical
spacetime with non-spherical perturbations of a Schwarzschild black hole described
in terms of gauge-invariant odd- and even-parity metric perturbations, namely the
lowest order odd-parity multipole Q9. Also in the central parts of the figure is visible
the collapse of the lapse function and the formation of a rotating black hole. The
study of [49] shows that (stellar mass) black hole formation events would produce
gravitational radiation potentially detectable by the present detectors (LIGO/Virgo)
in the case the events took place at Galactic distances.

Magneto-rotational stellar core collapse. Stars with initial masses larger than
~ 9Ms end their thermonuclear evolution developing a core composed of iron
group nuclei, which is dynamically unstable against gravitational collapse. The
core collapses to a neutron star releasing gravitational binding energy of the order
~ 3x10% erg (M/Mg)?(R/10 km) !, sufficient to power a (Type 1I/Ib/Ic) supernova
explosion. The current knowledge of the underlying physics in supernova explosions
has gradually accumulated through advanced simulations in (post-)Newtonian gravity
and hydrodynamics. These show how sensible the explosion mechanism is to the
details of the post-bounce evolution: gravity, the nuclear EOS and the properties of
the nascent neutron star, the treatment of the neutrino transport, and the neutrino-
matter interaction.

The first axisymmetric simulations of rotational core collapse to neutron stars
which incorporated a relativistic treatment of gravity were performed by [85, 39, 86, 37,
45]. These simulations employed simplified models to account for the thermodynamics
of the process, in the form of a polytropic EOS conveniently modified to account for

§ Animations of this evolution are available at http : //numrel.aei.mpg.de
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Figure 3. Magneto-rotational instability in magneto-rotational collapse at the
end of one of the simulations performed by [74, 93]. Color coded is the logarithm
of the timescale of the fastest growing unstable mode of the magneto-rotational
instability, in ms. Arrows indicate the velocity field and the isocontours the rest-
mass density. The axes are in km.

the stiffening of the matter once nuclear matter density is reached. The inclusion
of relativistic effects results primarily in the possibility to achieve deeper effective
potentials. Moreover, higher densities than in Newtonian models are reached during
bounce, and the resulting proto-neutron star is more compact. On the other hand,
relativistic simulations of microphysically detailed core collapse beyond spherical
symmetry are just beginning to be available [87, 88]. These simulations employ
both the CFC and BSSN formulations of Einstein’s equations, and have been carried
out using state-of-the-art numerical codes, both in spherical polar coordinates (the
CoCoNut code of [40]) and in Cartesian coordinates (the cactus/carpet/whisky codes;
see [89, 90, 48, 87] and references therein). The simulations reported by [87, 88] allow
for a direct comparison with models with simple (polytropic) EOS and same rotation
parameters as those of [86, 45, 37]. This sheds light on the influence of rotation
and of the EOS on the gravitational waveforms. This comparison shows that for
microphysical EOS the influence of rotation on the collapse dynamics and waveforms
is somewhat less pronounced than in the case of simple EOS. In particular, the most
important result of these investigations is the supression of core collapse with multiple
centrifugal bounces and its associated Type II gravitational waveforms. As a result,
the improved simulations of [88, 87| reveal an enhanced uniformity on the gravitational
wave signal from core bounce.

On the other hand, neutron stars have intense magnetic fields (~ 1012 — 103 G),
which renders mandatory their inclusion in core collapse simulations. In recent years,
an increasing number of authors have performed axisymmetric magneto-rotational
simulations (within the so-called ideal MHD limit) employing Newtonian treatments
of the magneto-hydrodynamics, the gravity, and of the microphysics (see [91] and
references therein). The weakest point of all existing simulations to date is the
fact that the strength and distribution of the initial magnetic field in the core are
essentially unknown. The available simulations show that for realistic weak initial
fields, < 10'! G, there are no major differences in the collapse dynamics nor in
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the resulting gravitational wave signal, when comparing with purely hydrodynamical
simulations. However, strong initial fields (> 10! G) manage to slow down the core
efficiently, leading even to retrograde rotation in the proto-neutron star, which causes
qualitatively different dynamics and gravitational wave signals.

Very recently, the first magneto-rotational core collapse axisymmetric simulations
in full general relativity have been reported [92, 74, 93], based upon both, the BSSN
and CFC formulations of Einstein’s equations and for polytropic and microphysical
EOS with deleptonization and neutrino pressure. In particular, the most recent
results by [93] show that for the case of core collapse models with microphysics and
realistic values for the magnetic fields of the collapse progenitors, the saturation of
the magnetic field cannot be reached within dynamical time scales by winding up the
poloidal magnetic field into a toroidal one, at least in axisymmetry. Comparing with
models with simplified EOS, microphysical collapse models are found to lead to a more
complex structure of the poloidal magnetic field due to convective motions surrounding
the inner region of the proto-neutron star, and exhibit a wind-up of the magnetic field
(through the 2-dynamo mechanism) that is more efficient than for simplified models
for comparable rotation rates, an effect due to the larger compression of the poloidal
component during the collapse.

Figure 3 shows a snapshot of a magneto-rotational collapse simulation at the end
of the evolution, for a particular model of the sample analyzed by [74, 93]. Depicted
in white in this figure are the regions where the condition for the ocurrence of the so-
called magneto-rotational instability (MRI hereafter; see [94] and references therein
for details) is not fulfilled or the timescale of the fastest growing mode exceeds 1 s. It
is found that a significant fraction of the newly-formed proto-neutron star, as well as
the region behind the shock at the moment of its formation, are affected by the MRI.
We note that the presence of convectively unstable regions in microphysical collapse
models enhances the appearance of the instability just outside the inner region of the
proto-neutron star as compared to simplified models. In principle, thus, MRI could
cause the exponential growth of the magnetic field on dynamical timescales, reaching
saturation in those regions, becoming important for the dynamics. However, it is
worth stressing that the value of the magnetic field at which saturation appears is
still unknown. This is, indeed, the key issue in order to establish the actual effects of
the MRI on the collapse dynamics and on the gravitational waveforms emitted in the
process, an issue which future GRMHD simulations have to address.

Binary neutron star coalescence. Many current efforts in numerical relativistic
astrophysics aim at simulating binary neutron star coalescence. Neutron star binaries
are among the most promising sources of high-frequency gravitational radiation to
be detected by the various ground-based interferometers worldwide and, in addition,
such mergers are behind the accepted mechanism to explain short-duration GRBs.
The gravitational waveform during the plunge and merge of two compact stars
cannot be computed using post-Newtonian methods but requires the whole machinery
of GRHD/GRMHD and Numerical Relativity. Its accurate simulation is a major
challenge as the scenario involves strong gravitational fields, ultrarelativistic flows,
and the formation of curvature singularities. The most advanced simulations in full
general relativity are those performed by Shibata and coworkers (see [50] and references
therein). Their numerical code allows to carry out long-term simulations for both
irrotational and corotational binaries of equal or unequal masses, from the innermost
stable circular orbit up to the formation and ringdown of the final collapsed object
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Figure 4. Isodensity contours in the equatorial plane for the merger of a 1.35M -
1.35M© neutron star binary. Vectors indicate the local velocity field (v*,vY).
The image corresponds to the final snapshot of the evolution, t = 10.36 ms. The
outcome of the merger is the delayed formation of a black hole, as signalled by the
collapse of the lapse function shown in the lower panel of the image. Simulation
performed by [50].

(either a black hole or a stable neutron star), and for perfect fluid EOS or realistic
(nuclear) EOS. The code also includes apparent horizon finders and can extract the
gravitational waveforms emitted in the collisions. The parameter-space survey carried
out by Shibata et al. [50] has shown how sensitive the final outcome of the merger is
to the initial compactness of the neutron stars before the plunge.

A representative example of the dynamics of an equal mass (1.35M-1.35M)
binary neutron star merger is shown in Fig. 4 (see [50] for further details). The main
panel of this figure displays a snapshot of the velocity field and rest-mass isodensity
contours in the equatorial plane at the final time of the evolution, ¢ = 10.36 ms. The
lower panel shows the topology of the lapse function at the same final time of the
evolution. The end product of this particular merger is the delayed formation of a
rotating black hole]|.

7. Summary

Formulations of the equations of (inviscid) general relativistic hydrodynamics and
(ideal) magneto-hydrodynamics have been discussed, along with methods for their
numerical solution. We have shown that both systems can be cast as first-order,
hyperbolic systems of conservation laws, following the explicit choice of an Eulerian
observer and suitable fluid and magnetic field variables, which allows to design
numerical strategies especific to such hyperbolic systems. During the last fifteen years,
the so-called (upwind) high-resolution shock-capturing schemes based on Riemann

|| Animations of such simulations are available at www.esa.c.u-tokyo.ac.jp/shibata/index.html
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solvers have been successfully extended from classical to relativistic fluid dynamics,
both special and general. The article has also presented a brief overview of such
numerical techniques for hyperbolic systems of conservation laws, providing a handful
of state-of-the-art examples of their applicability to general relativistic fluids and
magneto-fluids in characteristic scenarios of relativistic astrophysics.

Nowadays, general relativistic hydrodynamical simulations in relativistic
astrophysics are routinely performed by a growing number of groups.  This
is particularly true within the test-fluid approximation but also for dynamical
spacetimes. Indeed, for the latter case, it is worth mentioning the long-
term, numerically stable formulations of Einstein’s equations (or accurate enough
approximations) that have been proposed by several Numerical Relativity groups
worldwide in recent years. Some of these have also been briefly discussed here. The
paradigm which the numerical relativist is currently confronted with has suddenly
changed for the best. Accurate and long-term stable, coupled evolutions of the
GRHD/GRMHD equations and Einstein’s equations are just becoming possible in
three-dimensions (benefited from the steady increase in computing power), allowing
for the study of interesting relativistic astrophysics scenarios for the first time, such
as gravitational collapse, accretion onto black holes, and binary neutron star mergers.
While major recent advances have also been achieved for the MHD equations, the
astrophysical applications investigated so far are still limited. However, there can be
little doubts that this field is bound to witness significant developments in the near
future.
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