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The main challenge in the Standard Model calculation of the mass and width difference iu 
D0 - "15° mixing is fo estimate the size of SU(3) breaking. We prove that mixing occurs in the 
Standard Model only at second order in SU(3) violation. We calculate SU(3) breaking dnc to 
phase space effects, and find that it can naturally give rise to a width difference t.r /2r � 1 %, 
potentially reducing the sensitivity of D mixing to new physics.1•2 

1 Introduction 

It is a common assertion that the Standard Model (SM) prediction for mixing in th{� D0 -

D0 system is very small, making this process a sensitive probe of new physics. Two physical 
parameters that characterize n° - 15° mixing are 

t::..M t::..r x = r ,  y = rr ,  (1) 

where t::..M and .6.I' are the mass and width differences of the neutral n meson mass eigenstatc�s, 
and r is their average width. The n° - D0 system is unique among the neutral mesons in that 
it is the only one whose mixing proceeds via intermediate statE',a with down-type quarks, and is 
therefore very sensitive to certain classes of new physics models.3 The mixing is very slow in 
the SM, because the third generation plays a negligible role due to the smallness of IVub Vcb l and 
mb « mw, and so the GIM cancellation is very effective.4•5•6•7 

The current experimental upper bounds on x and y are of order 10-2 ,  and are expected to 
improve significantly in the coming years. To regard a future discovery of nonzero x or y as a 
signal for new physics, we would need high confidence that the SM predictions lie significantly 
below the present limits. As we will show, x and y are generated only at second order in SU(3) 
breaking in the SM, so schematically 

x ,  y � sin2 ec x [SU(3) breaking]2 ,  (2) 



where Be is the Cabibbo angle. Therefore, the SM values of x and y depend crucially on the size 
of SU(3) breaking. Although y is expected to be determined by SM processes, its value affects 
significantly the sensitivity of D mixing to new physics. 2 

At present, there are three types of experiments which measure :i: and y. Each is actually 
sensitive to a combination of x and y, rather than to either quantity directly. First, the D0 
lifetime difference to GP even and GP odd final states8•9•10•11 •12 measures, to leading order, 

f(CP even) - f(CP odd) f(D -t ir+ K-) . Am ( '' ) YCP = 
f(CP even) + f(GP odd) '.:::'. 

f(D -t K+K-) - l = y cos (/; - :i:: sm ¢ 2 '  ., 

where the D mass eigenstates are [DL,s} = p [D0} ± q jD0) ,  Am = jq/pj2 - 1 ,  and ¢ =  arg(q/p) 
is a possible GP violating phase of the mixing amplitude. The experimental results are { 0.8 ± 3.1% 

3.4 ± 1 .6% 
YCP = -1 . 1 ± 2.9% 

-0.5 ± 1 .3% 
1.4 ± 1 .2% 

E791 ,8 
FOCUS ,9 
CLE0 ,10 
BELLE ,11 
BABAR ,12 

(4) 

which yield a world average yep = 1 .0±0.7% at present. Second, the time dependence of doubly 
Cabibbo suppressed decays, such as D0 -t K+'lf-, 13 is sensitive to the three quantities 

(x cos o + y si n o) cos ¢ ,  (y cos o - x sin o) sin ¢ ,  x2 + y2 , (5) 

where o is the strong phase between the Cabibbo allowed and doubly Cabibbo suppressed 
amplitudes. A similar study for n° -t K-7f+7ro would allow the strong phase difference to be 
extracted simultaneously from the Dalitz plot analysis. t4 Third, one can search for D mixing in 
semileptonic decays, 15 which is sensitive to x2 + y2. 

In a large class of models, the best hope to discover new physics in D mixing is to observe the 
GP violating phase, ¢12 = arg(M12/f12 ) ,  which is very small in the Standard Model. However, 
if y » x, then the sensitivity of any physical observable to ¢12 is suppressed, since Am oc :i;/y 
and ¢ oc (x/y)2 , even if new physics makes a large contribution to M12 and ¢>12 .2 It is also clear 
from Eq. (5) that if y is significantly larger than x, then o must be known very precisely for 
experiments to be sensitive to new physics in the terms linear in x and y. 

2 SU(3) analysis of n° - 75° mixing 

In this section we prove that D0 - 75° mixing arises only at second order in SU(3) breaking 
effects. The proof is valid when SU(3) violation enters perturbatively. The quantities M12 and 
f12, which determine x and y, depend on matrix elements of the form (75°j 1-lwHw [D0} ,  where 
1-lw is the /:;.C = - 1  part of the weak Hamiltonian. Denoting by D the field operator that 
creates a n° meson and annihilates a 75°, this matrix element may be written as 

(6) 

Let us focus on the SU(3) flavor group theory properties of this expression. 
Since the operator D is of the form cu, it transforms in the fundamental represent.at.ion of 

SU(3) , which we represent with a lower index, D; (the index i = 1, 2, 3 corresponds t.o u, d, s ,  
respectively) .  The only nonzero clement is D1 = 1 .  The !;;.G = - 1  part of the weak Hamiltonian 
has the flavor structure (qic)(ijjqk), so its matrix representation is writ.ten with a fundamental 
index and two antifundamentals, H�. This operator is a sum of irreducible representations 
contained in the product 3 x 3 x 3 = 15 + 6 + 3 + 3. In the limit in which the third generation 



is neglected, H� is traceless, so only the 15 (symmetric in i and j) and 6 (antisymmetric in i 
and j) appear. That is, the AC = -1 part of 1iw may be decomposed as �( 015 + 06), where1 

015 = (sc)(ud) + (uc)(sd) + s1 (dc) (ud) + s1 (uc) (dd) 
- si (sc)(us) - si (uc) (ss) - sy(dc) (us) - si (uc) (ds) , 

06 = (sc)(ud) - (uc) (sd) + s1 (dc) (ud) - s1 (uc)(dd) 
- si (sc)(us) + si (uc) (ss) - sr(Jc) (us) + si(ilc) (ds) ' (7) 

and s1 = sin Be � 0.22. This determines the nonzero elements of the matrix representations of 
H(15)? and H(6)t We introduce SU{3) breaking through the quark mass operator M, whose 
matrix representation is Mj = diag( mu, md, ms) .  Although M is a linear combination of the 
adjoint and singlet representations, only the 8 induces SU(3) violating effects. It is convenient 
to set mu = md = 0 and let ms # 0 be the only SU(3) violating parameter. All nonzero matrix 
elements built out of Di, Hki and M} must be SU(3) singlets. 

We are now ready to prove that D0-75° mixing arises only at second order in SU(3} violation, 
by which we mean second order in m8• First, note that the pair of D operators is symmetric, 
and so D;Dj transforms as a 6 under SU(3} . Second, the pair of 1iw 's is also symmetric, and 
the product H� H�m is in one of the representations which appears in the product 

[( 15 + 6) x ( 15 + 6))8 = (15 x T5)s + (15 x 6) + (6 x 6)8 (8) 
= (60 + 24 + 15 + 151 + 6) + (42 + 24 + 15 + 6 + 3)  + (151 + 6) . 

A straightforward computation shows that only the 60, 42, and 151 representations appear in 
the decomposition of 1iw 1iw· So we have product operators of the form 

DD = V5 ,  (9) 

where the subscripts denote the representation of SU(3). 
Since there is no 6 in the decomposition of 1iw1iw, there is no SU(3) singlet which can be 

made with V6, and so there is no SU(3) invariant matrix element of the form in Eq. (6). This 
is the well-known result that D0 - n° mixing is prohibited by SU(3) symmetry. 

Now consider a single insertion of the SU(3) violating spurion M. The combination V5M 
transforms as 6 x 8 = 24 + 15 + 6 + 3. There is still no invariant to be made with 1iw 1iw· This 
proves that n° - 75° mixing is not induced at first order in SU(3) breaking. 

With two insertions of M, it becomes possible to make an SU(3) invariant. The decompo­
sition of VMM is 

6 x (8 x 8)5' = 6 x (27 + 8 + 1) 
= (60 + 42 + 24 + 15 + 151 + 6) + (24 + 15 + 6 + 3) + 6 .  (10) 

There are three elements of the 6 x 27 part which can give invariants with 1iw 1iw· Each invariant 
yields a contribution proportional to sfm; . As promised, D0 - 75° mixing arises only at second 
order in the SU(3) violating parameter m,. 

3 Estimating the size of SU(3) breaking 

There is a vast literature on estimating x and y within and beyond the Standard Model, and the 
results span many orders of magnitudes. 16 Roughly speaking, there are two approaches, neither 
of which is very reliable, because me is in some sense intermediate between heavy and light. 

"Inclusive" approach The inclusive approach is based on the operator product expansion 
(OPE) . In the me � A limit, where A is a scale characteristic of the strong interactions, sucli as 



Table 1: The enhancement of t:.M and t:.r relative to the box diagram (i.e., the 4-quark operator) contribution 
at higher orders in the OPE. A denotes a typical hadronic scale around 1 GeV, and (30 = 11 - 2nr/3 = 9. 

ratio 4-quark 6-quark 8-quark 
b.M/b.Mbox 1 A• /msmc (A• /msrnc) ' (a.8/47r) 

.6.I'/t.M rn;f m� a,/47r /30 a8/ 47r 

mp or 4rr f tr, t.M and t.r can be expanded in terms of matrix elements of local operators.4•5• 17 
The use of the OPE relies on local quark-hadron duality, and on A/mr being small enough 
to allow a truncation of the series after the first few terms. However, the charm mass may 
not be large enough for these to be good approximations for nonleptonic D decays. While an 
observation of y of order 10-2 could be ascribed to a breakdown of the OPE or of duality, 17 
such a large value of y is not a generic prediction of OPE analysis. 

The leading contribution in the OPE comes from 4-quark operators in the It.Cl = 2 effective 
Hamiltonian, corresponding to the short distance box diagram. The result is of the form 

4Xn m� 
t.rbox rx -3- -4 , 

7r rnc 

where Xn = I VcsVddl2G1, rnnfbBn. Eq. ( 1 1 )  then yields the estimates 

Xbox "' few X 10-5 , Ybox "' few X 10-7 . 

( 11 )  

(12) 

The m� dependence of .6.I'box comes from three sources: (i) m; from an SU(3) violating mass 
insertion on each quark line in the box graph; {ii) m; from an additional mass insertion on 
each line to compensate the chirality flip from the first insertion; (iii) m; to lift the helicity 
suppression of the decay of a scalar meson into a massless fermion pair. The last factor of rn; 
is absent from t.M; this is why at leading order in the OPE, Ybox « Xbox· 

Higher order terms in the OPE are important, because the chiral suppressions can be lifted 
by quark condensates instead of mass insertions,4 allowing !:::..M and t:::..r to be suppressed by m� 
only. This is the minimal suppression required by SU(3) symmetry. The order of magnitudes 
of the resulting contributions are summarized in Table 1. The dominant contributions to x are 
from 6- and 8-quark operators, while the dominant contribution to y is from 8-quark operators. 
With some assumptions about the hadronic matrix elements, one finds 

x ,...., y ,...., 10-3 . {13) 

A generic feature of OPE based analyses is that x ;(, y. We emphasize that at the present 
time these methods are useful for understanding the order of magnitude of x and y, but not for 
obtaining reliable results. Turning these estimates into a systematic computation of x and y 
would require the calculation of many nouperturbative matrix elements. 

"Exclusive" approach A long distance analysis of D mixing is complementary to the 
OPE. Instead of assuming that the D meson is heavy enough for duality to hold between the 
partonic rate and the sum over hadronic final states, one explicitly examines certain exclusive 
decays. This is particularly interesting for studying .6.r, which depends on real final states. 
However, D decays are n'ot dominated by a small number of final states. Since there are can­
cellations between states within a given SU(3f multiplet, one needs to know the contribution of 
each state with high precision. In the absence of sufficiently precise data on many rates and on 
strong phases, one is forced to use some assumptions, While most studies find x, y � 10-3 , it 
has also been argued that SU (3) violation is of order unity and so x, y ,...., 10-2 is possible.18•19•20 

The importance of SU(3) cancellations in both the magnitudes and phases of matrix elements 
is nicely illustrated by .two-body D decays to charged pseudoscalars (rr+7!"- , 7r+ K-, K+rr- ,  
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K+ K- ) . It is known that SU(3) breaking is sizable in certain decay rates, e.g. , B(D0 -+ 
K+K- )/B(D0 -+ 7r+7r-) � 2 .8,2 1  whereas it should be unity in the SU(3) limit. Such effects 
were the ba.'lis for the claim that SU(3) is not applicable to D decays. l8 • "  In contrast, we know 
very little about the strong phase i5 between the Cabibbo allowed and doubly Cabibbo suppreHsed 
amplitudes, which vanishes in the SU(3) limit. Some model calculation give cos i5 ,<: 0.8,23 but 
it is possible to obtain much larger results for 6.19 The value of y corresponding to two-body 
decays to charged 7r's and K's is 

The experimental central values, allowing for D mixing in the doubly Cabibbo suppressed rates, 
yield Y"K � (5.76 - 5.29 cos o) x_ rn-3 .2 For small o, there is an almost perfect cancellation, 
even though the individual rates violate SU(3) significantly. In this "exclusive" approach, x is 
usually obtained from y using a dispersion relation, and one typically finds x "" y. 

At the present time, one cannot use the exclusive approach to reliably predict x or y, since 
the estimates depend very sensitively on SU(3) breaking in poorly known strong phases and 
doubly Cabibbo suppressed rates. While calculating these effects model independently is not 
tractable in general, one source of SU(3) breaking in y, from final state phase space, can be 
calculated with only minimal assumptions. We estimate these effects in the next section. 

4 SU(3) breaking from phase space 

There is a contribution to the D0 width difference from all final states common in D0 and 
I5° decay. In the SU(3) limit these contributions cancel when OI).e sums over complete SU(3) 
representations. The cancellations depend on SU(3) symmetry both in the matrix elements and 
in the final state phase space. Since model independent calculations of SU(3) violation in matrix 
elements are not available, we focus on SU(3) violation in the phase space. This depends only 
on the hadron masses in the final state, and can be computed with mild assumptions about the 
momentum dependence of the matrix elements. Below we estimate y solely from SU (3) violation 
in the phase space.b We find that this contribution to y is negligible for two-body pseudoscalar 
final states, but can be of the order of a percent for final states with mass near mo. 

Let us concentrate on final states F which transform in a single SU(3) representation R. 
Assuming GP symmetry in D decays, which in the Standard Model and in most new physics 
scenarios is an excellent approximation, relates (D01 1lw ln) to (D0 11lw ln) . Since jn) and jn) are 
in the same SU(3) multiplet, these two matrix elements are determined by a single effective 
Hamiltonian. Hence the contribution of the states n E FR to y is 

= -1:_ (IJO j tl { (F ) '°"' I ) ( l }tl jDo) = L:nEFn (D0 1 1lw ln)pn (nj1lw jD0) ( lfi) 
YF,R f w '/]GP R � n Pn n w _. f (DO -t ) 

, 
nEFn LmEFn n 

where fln is the phase space available to the state n, and '/]GP = ±1 is determined by the GP 
transformation of the final state, CPjn) = T/GP l ·n) . In the SU(3) limit, the Pn 's are the same for 
n E FR. Since Pn depend only on the known ma.�ses of the particles in the state n, incorporating 
the true values of Pn in the sum is a calculable source of SU(3) breaking. 

As the simplest example, consider D decays to states F = PP consisting of a pair of 
pseudoscalar mesons such as 7r, K, rJ. We neglect T/ - TJ1 mixing, but checked that this has a 

"The SU(3) breaking in the matrix elements may be modest, even though the ratio of the measured rates 
appears to be very far from the SU(3) limit.22 

bThe phase space difference alone can explain the large SU(3) breaking between the measured D -t K' fiJ and 
D -t pliJ rates, assuming no SU(3) breaking in the form factors.24 Recently it was shown that the lifetime ratio 
of the D, and D0 mesons may also be explained this way.25 
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Table 2: Values of YF,R for two-body final states. This represents the value which y would take if elements of Fn 
were the only channel open for D0 decay. 

Final state representation YF,R/sy YF,R (%) 
pp 8 -0.0038 -0.018 

27 -0.00071 -0.0034 
PV Bs 0.031 0.15 

BA 0.032 0.15 
10 0.020 0. 10 
10 0.016 0.08 
27 0.040 0.19 

(VV)s-wave 8 -0.081 -0.39 
27 -0.061 -0.30 

(VV)p-wave 8 -0.10 -0.48 
27 -0.14 -0.70 

(V V)d-wave 8 0.51 2.5 
27 0.57 2.8 

negligible effect on our numerical results. Since PP is symmetric in the two mesons, it must 
transform as an element of (8 x 8)s = 27 + 8 + 1. It is straightforward to construct the SU(3) 
invariants, and compute YPP,R from them. For example, for the PP in an 8, there are invariants 
with 1iw in a 15, Afl(PPs)f Hf!nj, and with 1iw in a 6, Ag(PPs)fHf! nj . In this particular case, 
the product Hf! nj with (ij) symmetric (the IO) is proportional to H�j ni with (ij) antisymmetric 
(the 6), and the linear combination As = if - A� is the only one which appears. We find 

(16) 

where <I>(P1 ,  P2) is the phase space for n° --t P1P2 decay. In the SU(3) limit. all <I>'s are equal, 
and YPP,B vanishes as m;. In a two-body decay <I>(P1 , P2) is proportional to lffl2e+l ,  where p 
and f. are the spatial momentum and orbital angular momentum of the final state particles. For 
n° --t PP, the decay is into an s-wave, and it is straightforward to compute the phase space 
factors from the pseudoscalar masses. The results are not larger than one finds in the inclusive 
analysis (see Table 2), since as in the parton picture, the final states are far frQm threshold. 

Next we turn to final states consisting of a pseudoscalar and a vector meson, F = PV. In 
this case there is no symmetry between the mesons, so all representations in the combination 
8 x 8 = 27 + 10 + 10 + Bs + BA + 1 can appear. For simplicity, we take the quark content of 
the ¢ and w to be ss and (uu + dd)/.../2 respectively, and consider only the combination which 
appears in the SU(3) octet. Reasonable variations of the ¢ - w mixing angle have a negligible 
effect on our results. Both because the vector mesons a.re more massive, and because the decay 
is now into a p-wa.ve, the phase space effects a.re larger than for the PP final state (see Table 2) . 
Stil� for all representation, YPV are less than a percent. Note that three-body final states 3P 
can resonate through PV, and so are partially included here. 

For the VV final state, decays into s-, p- and d-wa.ves a.re all possible. Bose symmetry and 
the restriction to zero total angular momentum together imply that only the symmetric SU(3) 
combinations appear. Because some VV final states, such as if;K* , lie near the n threshold, 
the vector meson widths are very important. We model the resonance limJ shapes with Lorentz 
invariant Breit-Wigner distributions, m2 r�/[(m2 - m�)2 + m2 rJ.t] , where mn and rn are the 
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Table 3: Values of YF.R for some three- and four-body final states. 

Final state representation YF,R /sf YF,R (%) 
(3P)s-wave 8 -0.48 -2.3 

27 -0. 1 1  -0.54 
(3P)p-wave 8 - 1 . 13 -5.5 

27 -0.07 -0.36 
(3P)form-factor 8 -0.44 - 2 . 1  

27 -0.13 -0.64 
4P 8 3.3 16 

27 2.2 11 
27' 1 .9 9 .2 

mass and width of the vector meson, and m2 is  the square of its four-momentum in the decay. 
The results for s-, p-, and d-wave decays are shown in Table 2. With these heavier final states 
and with the higher partial waves, effects at the level of a percent are quite generic. If the 
vector meson widths were neglected, the results in the p- and d-wave channels would be larger 
by approximately a factor of three. The finite widths soften the SU(3) breaking which would 
otherwise be induced by a sharp phase space boundary. Again, 4P and P PV final states can 
resonate through VV, so they are partially included here. 

As we go to final states with more particles, the combinatoric possibilities begin to proliferate. 
We will only consider the final states 3P and 4P, and require that the pseudoscalars are in a 
totally symmetric 8 or 27 representation of SU(3). This assumption is convenient, because 
the phase space integration is much simpler if it can be performed symmetrically. We have no 
reason to believe that this choice selects final state multiplets for which phase space effects are 
particularly enhanced or suppressed. The results for y3p and y4p are shown in Table 3. 

In contrast to the two-body decays, for three-body final states the momentum dependence 
of the matrix elements is no longer fixed by angular momentum conservation. The simplest 
assumption is to take a momentum independent matrix element, with all three final state par­
ticles in an s-wave. We have also considered other matrix elements; for example, if one of the 
mesons has angular momentum f. = 1 in the n° rest frame (balanced by the combination of 
the other two mesons) .  One could also imag;ine introducing a mild "form factor suppression," 
with a weight such as TI;;tj (l - m[j/Q2)- t ,  where mlj = (V; + Vj)2 , and Q = 2 GeV is a typical 
resonance mass. The resulting YF,R values are show iri Table 3. 

Finally, we studied 4P final states with the mesons in fully symmetric 8 or 27. The results 
for momentum independent matrix elements are summarized in Table 3. (Note that the last two 
entries in the last column were mixed up in our paper.1  ) .  There are actually two symmetric 27's; 
we call 27 and 27' the representations of the form R� = [M;nMf' M�Mt + symmetric - traces] 
and R� = [M:,,M;:' M'i: Mf + symmetric - traces], respectively. Here the partial contributions to 
y are very large, of the order of 10%. This is not surprising, since 4P final states containing more 
than one strange particle are close to n threshold, and the ones with no pions are kinematically 
inaccessible. So there is no reason for SU(3) cancellations to persist effectively. 

Formally, one can construct y from the individual YF,R by weighting them by their n° 
branching ratios, 

(17) 

However, the data on n decays are neither abundant nor precise enough to disentangle the 
decays to the various SU(3) multiplets, especially for the three- and four-body final states. 
Nor have we computed YF,R for all or even most of the available representations. Thus, we 
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Table 4: Total D0 branching fractions to classes of final states, rounded to the nearest 53.21 

Final state PP 
Branching fraction 53 

PV (VV)s-wave 
103 53 53 

e 3P 4P 
53 103 

can only estimate y by assuming that the representations for which we know YF,R are typical 
for final states with a given multiplicity, and scale to the branching ratio of those final states. 
Table 4 summarizes the n° branching ratios to two-, three- and four-body final states, rnunded 
to the nearest 53, to emphasize the uncertainties in the data.21 Almost half of the n° width is 
accounted for. Based on data in the K0• p0 channel, the VV final state is dominantly GP even, 
consistent with an equal distribution of s- and d-wave decays. Taking the product of the typical 
YF,R with the approximate branching ratios in Table 4, we can estimate the contribution to y 
from a given type of final state. While in most cases the contributions are small, of the order of 
10-3 or less, n° decays to nonresonant 4P states naturally contribute to y at the percent level. 
The reason for so large SU(3) violating effects in y is that a sizable fraction of n° decays are to 
final states for which the complete SU(3) multiplets are not kinematically accessible. 

We have not considered all possible final states which may give large contributions to y. For 
example, B(n° -t K-af) = (7.3 ± 1 .1 )3,21 although the available phase space is very small. 
Unfortunately, the identities of the SU(3) partners of the a1 ( 1260) ,  which has JPC = 1 ++ ,  are 
not well established. While it is natural to identify the Ki ( 1400) and Ji { 1285) as the analogues of 
the K* and w, respectively, there is no natural candidate for the ss analogue of the ¢. The value 
of ypv• is also sensitive to the poorly known width of the a1 .  If we take the ss state to be the 
fi (1420), and I'{a1) = 400 MeV, we find YPV' ,Bs = 1 .83. If instead we take the fi ( l510), we find 
YPV',Bs = 1 .73. With r(a1) == 250 MeV, these numbers become 2.53 and 2.43, respectively. 
Although percent level contributions to y are clearly possible from this channel, the data are 
still too poor to draw firm conclusions. 

From our analysis, in particular as applied to the 4P final state, we conclude that y of 
the order of a percent appears completely natural. An order of magnitude smaller result would 
require significant cancellations which would only be expected if they were enforced by the OPE. 
The hypothesis underlying the present analysis is that this is not the case. 

5 Conclusions 

The motivation most often cited in searches for n° - 75° mixing is the possibility of observing a 
signal from new physics which may dominate over the Standard Model contribution. But to look 
for new physics in this way, one must be confident that the Standard Model prediction does not 
already saturate the experimental bound. Previous. analyses based on short distance expansion.'! 
have consistently found x, y "' 10-3 ,  while naive estimates based on known SU(3) breaking in 
charm decays allow an effect an order of magnitude larger. Since current experimental sensitivity 
is at the level of a few percent, the difference is quite important. 

We proved that if SU(3) violation can be treated perturbativ1ly, then D0 - 75° mixing in 
the Standard Model is generated only at second order in SU(3) breaking effects. Within the 
exclusive approach, we identified an SU(3) breaking effect, SU(3) violation in final state phase 
space, whose contribution to y can be calculated with small model dependence. We found that 
phase space effects in n decays to final states near threshold can induce y "' 10-2 .  

The implication of  our results for the Standard Model prediction for :r: i s  less apparent. 
While analyses based on the "inclusive" approach generally yield x ;c, y, it is not clear what the 
"exclusive" approach predicts. If x > y is found experimentally, it may still be an indication 
of a new physics contribution to x, even if y is also large. On the other hand, if y > x then 
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it will be hard to find signals of new physics, even if such contributions dominate t::.M. The 
linear sensitivity to new physics in the analysis of the time dependence of D0 -t K+?r- is from 
x1 = x cos o + y sin o and y1 

= y cos o - x sin o instead of x and y. Ii y > x, then o would have to 
be known precisely for these terms to be sensitive to new physics in x. 

There remain large uncertainties in the Standard Model predictions of x and y, and values 
near the current experimental bounds cannot be ruled out. Therefore, it will be difficult to find 
a clear indication of physics beyond the Standard Model in D0 - D0 mixing measurements. We 
believe that at this stage the only robust potential signal of new physics in D0 - D0 mixing is 
GP violation, for which the Standard Model prediction is very small. Unfortunately, if y > x, 
then the observable GP. violation in D0 - 75° mixing is necessarily small, even if new physics 
dominates x. Thus, to disentangle new physics from Standard Model contributions, it will be 
crucial to (i) improve th,e measurements of both x and y; (ii) extract the relevant strong phase 
in the time dependence of doubly Cabibbo suppressed decays; and (iii) look for GP violation, 
which remains a potentially robust signal of new physics. 
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