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Abstract: In this work, the dynamics of a quantum walker on glued trees is revisited to understand
the influence of the architecture of the graph on the efficiency of the transfer between the two roots.
Instead of considering regular binary trees, we focus our attention on leafier structures where each
parent node could give rise to a larger number of children. Through extensive numerical simulations,
we uncover a significant dependence of the transfer on the underlying graph architecture, particularly
influenced by the branching rate (M) relative to the root degree (N). Our study reveals that the
behavior of the walker is isomorphic to that of a particle moving on a finite-size chain. This chain
exhibits defects that originate in the specific nature of both the roots and the leaves. Therefore, the
energy spectrum of the chain showcases rich features, which lead to diverse regimes for the quantum-
state transfer. Notably, the formation of quasi-degenerate localized states due to significant disparities
between M and N triggers a localization process on the roots. Through analytical development, we
demonstrate that these states play a crucial role in facilitating almost perfect quantum beats between
the roots, thereby enhancing the transfer efficiency. Our findings offer valuable insights into the
mechanisms governing quantum-state transfer on trees, with potential applications for the transfer of
quantum information.

Keywords: quantum walk; quantum-state transfer; glued trees; complex networks

1. Introduction

Initially introduced by Farhi et al. [1], Continuous-time Quantum Walk (CTQW)
is a pivotal paradigm in the development of quantum information theory [2-5]. From
a theoretical point of view, CTQW serves as the quantum counterpart to the Classical
Random Walk (CRW), a cornerstone concept in classical information theory [6-10]. In a
CRW, a “walker” traverses the interconnected nodes of a complex network via a stochastic
process, resulting in a diffusive motion. By contrast, CTQW unfolds a scenario where the
walker behaves as a quantum entity evolving according to the Schrodinger equation. In this
context, it has been demonstrated that the quantum laws governing the walker dynamics
facilitate a coherent propagation across a complex network, leading to a novel form of
transport that typically outperform CRWs [1,11].

The remarkable potential of CTQW has garnered interest across various scientific
communities over the past decades. This concept has found diverse applications in quan-
tum information theory, spanning both software and hardware domains. On the software
side, CTQW has proven to be crucial for the development of various types of quantum
algorithms. Notably, it has demonstrated superiority over classical walks in addressing
questions such as the hitting time problem on complex graphs [1,11,12]. This superiority
was particularly highlighted in the case of glued trees networks, where a quantum walker
was shown to reach the right root from the initial left root exponentially faster than a classi-
cal walker [13,14]. Similarly, CTQW has also been instrumental in developing quantum
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computation methods for graph research [1,15-18] (analogous to Grover’s algorithm [19]),
as well as for probing element distinctness [20], matrix product verification [21], and tri-
angle finding [22], among other applications. Meanwhile, on the hardware side, CTQW
has also emerged as a valuable tool for the study of the quantum transfer of information
(or energy). In this context, the central issue is to find the keys leading to the realization
of an efficient data transfer from one node to another in a given complex network. To
tackle these investigations, many types of network topologies have been considered, includ-
ing dendrimers [23-25], Apollonian networks [26], fractal networks [27,28], sequentially
growing networks [23-25], and star graphs [29-35], among others. Such theoretical in-
vestigations were prompted by the possibility of manipulating genuine physical systems
(e.g., spins, photons, or excitons) to realize physical CTQW. Noteworthy is that quantum
experiments on either photonic or superconducting platforms were recently developed
to corroborate some theoretical predictions of CTQW for the realization of an efficient
quantum information transfer [36-39].

Prompted by the use of CTQW as a theoretical tool for hardware development, in the
present work we focus on the question of quantum-state transfer on a specific family of
networks: modular glued trees. Interestingly, several studies have already been realized
on glued trees but mainly under the so-called binary architecture, i.e., when each parent
node has only two children [13,14]. However, recent studies suggest that a change in the
branching rate of these glued trees would lead to an increase in CTQW efficiency. Indeed,
this feature has been observed experimentally in a photonic setup where heralded single
photons were used as quantum walkers and laser-written waveguide arrays to simulate
glued trees. By increasing the branching rate from two to five, it has been shown that the
CTQW exhibits improved transport superiority over the CRW [40]. Similar features have
been observed on two-fold Cayley trees with a branching rate equal to four [41]. In the
present work, the dynamics of a quantum walker in glued trees is revisited by addressing
the following question: what is the influence of the architecture of the trees on the efficiency
of the quantum transfer between the two roots? Here, one introduces a two-parameter
model (N, M) of modular s in which the degree of the roots N differs from the branching
rate, M, of the other nodes. Therefore, depending on the model parameters, various
dynamical regimes emerge due to the richness of the quantum walker’s eigenspectrum.
In particular, it will be shown that the arising of a quantum superposition between states
localized on the roots of the glued trees could favor near-perfect quantum transfer, a
fundamental task in quantum information processing [42,43].

The present paper is organized as follows. In Section 2, the modular glued trees are
described and the CTQW is defined. Next, one introduces the column subspace to map the
CTQW to that of a one-dimensional chain, followed by the corresponding Hamiltonian.
Finally, the ingredients needed to characterize the dynamics are described. The problem is
investigated numerically in Section 3, where a detailed analysis of the transfer between the
tree roots is carried out. Numerical results are finally discussed and interpreted in Section 4
based on analytical developments.

2. Theoretical Background
2.1. Glued Trees and CTQW

Throughout this paper, our attention will be directed towards modular glued trees,
distinct from typical binary structures. Traditional binary trees adhere to a hierarchical
arrangement where nodes are linked through parent—child relationships, with each parent
node having a maximum of two children. In our study, we aim to explore more flexible
structures where parent nodes can spawn a greater number of children, thus enhancing the
adaptability of the tree. The resulting glued tree forms the graph Gyp(L), illustrated in
Figure 1, with parameters N = 5 and M = 3.



Entropy 2024, 26, 490

30f20

| ww

S0
I

i
.
i
i
i
i
13
13
At
1

Figure 1. Representation of the glued tree Gyp(L) for N =5and M = 3.

To describe the architecture of the modular glued trees, Gyp (L), one introduces a
column index s =1,2,...,L, with L being an odd integer. Let L, = (L 4+ 1)/2 denote the
central column. The columnss = 1,2, ..., L. characterize the leftmost tree whose root is
specified by s = 1. Conversely, the columns s = L, ..., L refer to the rightmost tree whose
root is identified by s = L. The two trees share the same leaves in the glued region, leaves
which form the column s = L.. The leftmost root s = 1, whose degree is equal to d; = N,
is connected to N children, which form the column s = 2. Each child of the column s = 2
gives rise to M grandchildren,which form the column s = 3. Therefore, the degree of each
node in the column s = 2 is equal to d = M + 1. Similarly, each node of the second column
is connected to M nodes that belong to the third column. Consequently, the degree of each
node in the column s = 3 is also equal to d3 = M + 1. We continue this way until we reach
column s = L., which contains the leaves. Each leaf being shared by the two glued trees,
their degree reduces to d;, = 2. Finally, starting from the leaves, we then go up the second
tree until we reach the rightmost root s = L. The graph Gyp(L) is thus symmetric with
respect to the central column s = L, so that the degree, ds, of the nodes of the sth column is
defined as

ds = (M + 1) (1 - 55,1 - 5s,L - 5s,LC) + N(55,1 + fss,L) + 255,LC~ 1)

Each column s contains M nodes labeled by the index ¢ =1, ..., M;. The number of
nodes by column is defined as

M = (851 + 05 1) + NME27ILemsl(1 51— 5, p). )

On the glued trees Gyp(L), we consider the motion of a quantum walker whose
dynamics are described according to a standard CTQW [3,4,12,44—46]. Within this model,
one associates a local state, |/,s), to each node (¢, s). The set of states {|/,s) } provides a
complete and orthonormal local basis for the Hilbert space of the walker. To describe the
CTQW, different approaches have been introduced depending on the choice of Hamilto-
nian [47]. Here, we consider a CTQW generated by the Hamiltonian H = JA, where A is
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the Laplacian of the graph and where | denotes the hopping constant between the linked
nodes [1,16]. Within the local basis, the Laplacian matrix is defined as

—ds if (4s) = (¢'¢)
Apspg =13 1 if (¢s) and (¢'s") are linked . (3)
0 otherwise.
With these notations, the time evolution of the walker’s wavefunction on the graph’s
site, Py5(t), is governed by the Schrodinger equation:

ilpﬁs(t) = ]ZAES,Z’S/IPZ’S’ (t) 4)
s’

To analyze the CTQW on the modular glued trees shown in Figure 1, one could opt to
directly integrate the complete system of equations provided in Equation (4). However,
in the present work a different approach will be employed due to the consideration of a
specific initial condition, as explained in the following section.

2.2. Column Subspace and Restricted Hamiltonian

Our main objective here is to study the ability of the walker to traverse the network,
i.e., to reach the rightmost root s = L, assuming that it initially started from the leftmost
root s = 1. In that case, the Schrodinger equation, Equation (4), can be expressed in a
simpler way by mapping the problem onto a one-dimensional CTQW [13,14].

Indeed, readers can easily convince themselves that here the time evolution of the
wave function 17 of the leftmost root depends only on the sum of the wave functions
of the second column s = 2. In turn, the time evolution of this latter sum only depends
on both the wave function 1; and the sum of the wave functions on the third column
s = 3. Following this reasoning up to the rightmost root, it turns out that the Schrodinger
equation simplifies by introducing the “column wave functions” as

1 &
s = Ws [; Pys. )

Note that ¢; = ¢11 and ¥ = 11 correspond to the walker wave functions on the
left root and on the right root, respectively. Therefore, within this change of variables, the
CTQW is finally described by a set of L coupled differential equations

i1 = —NJp1 + VNJps

iy = —(M+1)Jr + VNJp1 + VM]3
iy = —(M +1)Jp3 + VM + VMJpy

ipr, = —2Jpr, + VML 1 + VMJ L.

ipro = —(M+1)]pr_o+ VMJpr_1+ VM]3
ipr1 = —(M+1)Jpr1+ VNJpL + VMJp 2
ipr = —=NJpr + VNJpr 1. (6)
According to Equation (6), the dynamics of the column wave functions are governed
by a Hamiltonian H, which is the restriction of the whole Hamiltonian H to the so-called

column subspace [13,14]. This subspace is entirely generated by the set of L orthogonal
column vectors |s), withs = 1,..., L, defined as

5= —— 10
s) = ,8). )
M;s o
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With these notations, the column wave function ¢s(t) is the representation of the
walker quantum state |(¢)) in the column basis, that is s (t) = (s|i(t)). The CTQW is
thus generated by the Hamiltonian H expressed as

L L-2
H= — Y dJls)is|+ Y VMJ(|s)(s + 1|+ [s +1)(s])
s=1 s=2
+ VNJ(1)@|+ [2)(1]) + VNJ(LY(L — 1| + [L — 1)(L|). 8)

As shown with Equation (8), the dynamics of the walker is isomorphic to that of a
particle moving on a finite-size chain according to a standard tight-binding model. This
chain, illustrated in Figure 2, involves the nodes s = 1, ..., L, associated with the states
|1) (the walker is on the root s = 1), |2) (the walker is uniformly delocalized over the
column s = 2), |3) (the walker is uniformly delocalized over the column s = 3), ...|L) (the
walker is on the root s = L). In a general way, the nodes of the chain are characterized by a
self-energy g = —(M + 1)], and the hopping constant between nearest neighbor nodes is
® = \/M]. Nevertheless, the chain exhibits defects that originate in the singular nature of
both the roots and the leaves of the glued trees. First, two energy defects are localized on
the nodes s = 1 and s = L, whose self-energy €,,0t = —N] is shifted from ey by an amount
Ay = (M — N +1)]. In addition, the hopping constant between s = 1 and s = 2, as well as
betweens = Land s = L — 1, is equal to ®’ = z®, with z = /N /M. Finally, an energetic
defect is located on the central node s = L., whose self-energy €., = —2] is shifted by an
amount A, = (M — 1)] when compared with €.

*—0—0—0 - - O—0—0 - - 0—0—0—0
1) . L 1) |L)
Q<. =—N @€y =—2J Q@ec=—M+1)J

Figure 2. Graphical representation of the restricted Hamiltonian H to the column subspace. This
Hamiltonian defines a tight-binding model on a finite-size chain. The nodes s = 1 and s = L refer to
the roots of the glued trees, whereas the nodes s = 2,...,L — 1 correspond to the column states.

According to the standard properties of the tight-binding model [48,49], we expect
the system to exhibit extended states that correspond to superpositions of forward and
backward traveling waves whose energies belong to the allowed band [ey — 2D, ¢g + 2P].
However, since the chain exhibits defects that break the symmetry of the problem, the
Hamiltonian H supports additional states whose properties strongly differ from those of
the traveling waves. We will show in the rest of the paper that such spectral richness favors
the occurrence of specific CTQW. Note that, throughout the remainder of the article, the
concept of “allowed band” will be used to underscore the deviations of our model from an
ideal, uniform system. This perspective will enable us to better understand and appreciate
the emergence of localized eigenstates that exist outside the typical energy range of an
ideal, uniform chain. At this step, it is worth mentioning that several other studies have
also focused on the impact of defects in the realization of continuous-time quantum walks
in linear chains (for illustrative examples, see Refs. [50-52]).

2.3. Quantum Dynamics

By assuming that the walker is initially on the leftmost root s = 1, its transport across
the glued trees is described by the Hamiltonian H (Equation (8)). To simulate the associated
dynamics, H is diagonalized numerically to determine the corresponding eigenvalues, {€, },
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and the associated eigenvectors, {|¢,)}, labeled by the index y = 1,..., L. Consequently,
one can compute the time evolution operator U (t) = exp(—i#t) written as

Ut) = Zexp(—ie},t)|¢y>(¢y|. )
I

From the knowledge of both the time evolution operator and the eigenstates, different
observables can be computed. Here, special attention will be paid to characterizing the
time evolution of the transfer probability Py |; (t), denoted by

Py (t) = [{Llu(1)[1) %

This probability measures the likelihood of a walker originating from the leftmost root
of the glued tree to successfully traverse and arrive at the rightmost root at time t. Unveiling
this probability provides fundamental information about the efficiency of quantum walker
transport in the interconnected framework of glued trees.

3. Numerical Results

In this section, the previous formalism is applied to the description of the CTQW
between the two roots of the glued trees. First, the spectral properties of the Hamiltonian
‘H will be studied. Then, a detailed analysis of the walker’s dynamics will be presented,
to assess its ability to traverse the graph and reach the rightmost root. Note that each
simulation is carried out by considering the hopping constant | as the reference energy unit

(e, J=1).

3.1. Spectral Properties of the Hamiltonian H

In Figure 3, we illustrate the M dependence of the energy spectrum of the Hamiltonian
H for L = 9. The degree of the roots is fixed to N = 6, whereas the branching rate of the
“child” nodes varies from M = 1 to M = 20. The allowed band is defined by the gray zone.
Figure 3 clearly shows the occurrence of specific states that lie outside the allowed band,
and three different situations arise depending on the M values. Indeed, one first observes
the existence of a unique state whose energy is equal to zero whatever M (see black curve).
This state is always located above the allowed band provided that M > 1. Note that for
M =1, the zero energy corresponds exactly to the upper boundary of the allowed band.

B e T e S S

2 4 6 8 10 12 14 16 18 20
M
Figure 3. M dependence of the energy spectrum for L = 9 and N = 6. The gray zone defines the
allowed band. Blue curves are used for eigenstates contained in the allowed band. These states
are all spatially delocalized on the effective chain. Conversely, red, magenta, and black curves

illustrate eigenstates outside the band that are spatially localized. For an illustration of the spatial
delocalization of the eigenstates, see Figure 4.
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M=3 M=6 M=15
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0.2
0.0
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0.30
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o 020
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—0.15
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010
0.05
00534 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 717 8 9
s s s

Figure 4. Eigenstates’ weights, |¢;(s) |?, on the sites, s, of the chain. The three columns respectively
represent the results obtained for three values of M = 3, 6, and 15 (with fixed parameters L = 9,
N = 6). The first row (a,c,e) illustrates the shape of the localized states detected, while the second
row (b,d,f) showcases the delocalized eigenstates (in shades of blues). Regardless of the value of
M, a zero-energy eigenstate localized at the center of the chain is always observed (see black curves
in (a,c,e)). When M = 3 in (a), two quasi-degenerate localized states are also present (shown in
solid and dashed red curves), emerging below the allowed band. When M = 15 in (e), two other
quasi-degenerate localized states are also present (shown in solid and dashed magenta curves),
emerging above the allowed band. Note that the spatial shape of the quasi-degenerate localized
eigenstates almost superimpose (see red curves in (a) and magenta curves in (e)), which makes them
hard to distinguish. Finally, the second row (a,c,e) shows that irrespective of the value of M, all
complementary eigenstates in the allowed band exhibit spatial extension throughout the chain. As
discussed in Sections 3.2 and 3.3, these extended states may or may not strongly contribute to the

dynamics, potentially leading to different quantum transport regimes.

Then, depending on the value of M, two other states can get out the allowed band. For
instance, for M = 3, in addition to the zero energy state, the spectrum supports two quasi-
degenerated energy levels that lie below the allowed band (see red lines in Figure 3). The
lower boundary of the band being equal to —7.46 ], the energies of the quasi-degenerated
states are equal to —8.00 ] and —7.97 ], respectively. In that case, the square modulus of
the wave functions |¢;(s) | on each site “s” of the effective chain is illustrated in Figure 4.
As shown in Figure 4a, the zero energy level (black curve) corresponds to a state that is
localized on the center of the chain s = L.. The weight of the state on the central node is
equal to 0.5. This state thus refers to a quite smooth localization of the walker around the
central leaves of the glued trees. In marked contrast, the two low energy levels characterize
states localized in the neighborhood of the side nodes s = 1 and s = L (red solid and dotted
lines). They thus refer to states localized on the roots of the glued trees. The weight of
the states on the side nodes is approximately equal to 0.25. Note that detailed analysis
of the wave functions reveals that these two states correspond to a symmetric and to an
anti-symmetric superposition of two states localized on each root of the graph. Moreover,
they oscillate from one node to another, indicating that the real part of their wave vector is
equal to 7t (not drawn by considering the square modulus). Finally, as displayed in blue
solid lines on Figure 4b, the remaining energy levels located inside the allowed band define
extended states. They approximately correspond to the stationary waves that are observed
in a confined environment. Note that these extended wave functions do not vanish on the
nodes s = 1 and s = L. They have almost the same weight on the sides of the chain, a
weight approximately equal to 0.08.
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As shown in both Figures 3 and 4, a different situation arises for M = 6. Of course, the
zero energy level is still above the allowed band. It corresponds now to a state that is more
strongly localized around the center of the chain (see Figure 4c), as its weight on the central
node s = L, reaches 0.71. Conversely, all the other energy levels belong to the allowed
band. Therefore, as illustrated in Figure 4d, they refer to extended stationary waves. The
weight of the wave functions on s = 1 and s = L now varies from one state to another over
one order of magnitude. It approximately extends from 0.02 to 0.2.

Finally, for M = 15 a different situation appears, as illustrated in both Figures 3 and 4. One
still recovers the zero energy level that remains above the allowed band, even if this latter
now refers to a very strong localization on the center of the chain (black lines on Figure 4e),
as its weight on s = L. is now equal to 0.87. In addition, the spectrum exhibits two quasi-
degenerated energy levels that lie above the allowed band (solid and dotted magenta lines
in Figure 3). The upper boundary of the band being equal to —8.25 J, the energies of the
quasi-degenerated states are equal to —5.34 ] and —5.33 ], respectively. Figure 4e reveals
that these quasi-degenerate levels characterize states localized on the side nodes s = 1 and
s = L (magenta dotted lines). They thus refer to a strong localization on the roots of the
glued trees, the weight of the states on the side nodes being approximately equal to 0.46.
As for M = 3, the study of the wave functions reveals that these two states correspond to
symmetric and anti-symmetric superpositions of two states localized on each root of the
graph (not observable in Figure 3 due to squared modulus).

3.2. Time Evolution of the Transfer Probability Py, (t)

Numerical simulations have been conducted to analyze the time evolution of the transfer
probability Py (t). These simulations reveal that the transfer dynamics strongly depend on
the branching parameter M, which is intimately associated with the presence (or absence)
of localized states. As described in the previous sub-section, three main situations will also
emerge depending on the M-parameter, and these will be detailed in the following paragraphs.

The first dynamical regime emerges when M < 4, corresponding to the specific case
where two spatially localized eigenstates exist below the allowed band (highlighted in
red in Figures 3 and 4). The transfer probability observed in this regime is illustrated in
Figure 5a for M = 2 and Figure 5b for M = 3 (with fixed parameters L = 9 and N = 6).
In Figure 5, we clearly observe that the time evolution of the probability Py, (#) exhibits a
rather singular pattern: a periodic slowly varying part of sine nature influenced by high-
frequency noise. The long time period is approximately 2250 J~! and 240 ]! for M = 2
(Figure 5a) and M = 3 (Figure 5b), respectively, while the high-frequency noise evolves
on a timescale of a few J~!. Based on this observation, the transfer probability could be
roughly decomposed as a bi-partite signal:

Py (t) = Pri(t) + AP(1), (10)

where P |1 (t) represents the “smoothed probability”, corresponding to the periodic slow-
varying part of the signal and AP(t) represents the high-frequency noise. Through nu-
merical investigation, we observed that the long time period defining Py (t) follows the
formula T = 27t/ Ae, where Ae is the difference between the energies of the two quasi-
degenerate states below the allowed band. We then obtained an estimate of the smoothed
probability as:
Loc. States 2
PL\l(t) ~ Z eXP(_ieyt)<L|4’y><4’u|1> ’ (11)
H

resulting from a restriction of the time evolution operator (see Equation (9)) to only the two
localized eigenstates present below the allowed band (highlighted in red in Figures 3 and 4).
The resulting signal Py ; (t) is represented with dashed blue lines in both panels of Figure 5.
We observe that Pp|; (t) accurately describes the averaged periodic behavior of the true
signals over long time periods. However, the high-frequency noise plays a crucial role
in interpreting the emergence of high transfer probability peaks in the exact transfer
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probability. For instance, in Figure 5a the first true maximum value of P (t) is 0.95 (at
t = 990]~1), while the smooth probability yields a maximum of Ppj1(t) ~ 0.5. Similarly, in
Figure 5b the first true maximum value of the exact signal Py|;(t) is 0.81 (at t = 118 b,
while the maximum of the smooth probability is much lower, around P (f) ~ 0.28. In
this dynamic regime, the high-frequency noise plays a significant role in the emergence of
effective transfer from the left to the right root of the networks.

"

' J i

400 500

1000 2000 3000 4000 100 200 300

HJ7h) tJ7h

Figure 5. Time evolution of the transfer probability P; ; () for (@) M = 2 and (b) M = 3. The size

of the chain is L = 9 and the degree of the roots is N = 6. Blue dashed lines define the smoothed

probability P (t) extracted from numerical calculations, while orange lines correspond to the
theoretical expression given in Equation (28).

The second type of regime occurs when 4 < M < 10, and no quasi-degenerate
eigenstates extend beyond the allowed band. In this scenario, a completely different
behavior emerges compared to the previous regime, as illustrated in Figure 6 for L = 9,
N = 6,and M = 6. Here, the time evolution of the probability P;;(¢) results from the
coherent propagation of the walker, behaving like a wave packet undergoing multiple
reflections at the roots of the glued trees. Initially zero, Py, () exhibits a first peak at time
t = 2.2]! (see Figure 6a), signifying the direct propagation of the walker from the leftmost
root to the rightmost root. According to the properties of the tight-binding model, the
walker has a group velocity approximately equal to v ~ /2 [53]. With ® = \/M], the
time required to go from one root to another is T ~ (L — 1)/v ~ 2.3 ]!, in reasonable
agreement with the observations. As time progresses, the walker oscillates between the
two roots, resulting in the emergence of a series of peaks. However, the amplitude of these
peaks is not unity due to several influencing factors. First, dispersion causes the initial
wave packet to irreversibly spread out. Second, the chain possesses defects leading to
reflection/transmission processes, thereby introducing additional peaks. As depicted in
Figure 6b, over a longer time scale the probability does not converge but exhibits a series of
peaks, most of which have an amplitude smaller than or close to 0.4. Nevertheless, the figure
distinctly showcases the occurrence of intense peaks distributed almost periodically. These
peaks denote quantum recurrences that occur at specific revival times [53-58]. Typically,
seven peaks have amplitudes larger than 0.9. Notably, on the considered time scale, Py ; (t)
reaches a maximum value of 0.9973 at t = 207.55 ] ~1. At this instance, a perfect transfer of
the walker between the two roots of the glued trees becomes apparent.

The last observable dynamical regime arises when M > 10, corresponding to the scenario
where two spatially localized eigenstates emerge at the top of the allowed band (depicted
in magenta in Figures 3 and 4). The time evolution of the probability P;;(t) is depicted
in Figure 7 for M = 15 and 16 (with L = 9, N = 6). Here, we observe that Py, (t) can be
decomposed as a bi-partite signal following Equation (10), such as the behavior observed when
M < 4 (refer to Figure 5). Specifically, Py, (t) follows a slowly varying smoothed probability
Py (t) that evolves almost periodically with time, as indicated by the blue dashed lines (note
that Pp | (t) is numerically constructed from the two localized eigenstates at the top of the
allowed band). The corresponding period is approximately T = 890! and T = 1250~ for
M = 15and M = 16, respectively. Py |;(t) exhibits a high-frequency modulation varying over
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a timescale of a few J~!. However, in contrast to the regime when M < 4 (see Figure 5), the
amplitude of this modulation is relatively small. Consequently, the main characteristics of the
probability are very well captured by the behavior of the smoothed probability. Indeed, in
contrast to the two previous regimes observed, the transfer probability remains significant over
a wide timescale. For instance, between t = 400! and = 500 ]!, the smoothed probability,
representing the averaged signal, is 0.84. This extended duration of significant probability
values could be particularly advantageous for generating efficient quantum transfer between
the two tree roots, enabling better measurement control over a large time window. Similar
characteristics emerge when M = 16, as depicted in Figure 7b. Here, the maximum of Py ;(t)
reaches 0.87 at around t = 640 ]~ 1.

() ‘ (b)
RICTAAREA. L

Figure 6. Time evolution of the transfer probability Py|;(t) for L =9 and N = M = 6 over a timescale
equal to (a) 50 J~1and (b) 400 1.

1.0

0 500 1600 1500 2000 0 1000 2000 3000 4000
tJ7h tJ7h

Figure 7. Time evolution of the transfer probability Py, (t) for (a) M = 15, (b) M = 16. The size

of the chain is L = 9 and the degree of the roots is N = 6. Blue dashed lines define the smoothed

probability Py ; () extracted from numerical calculations. Orange lines correspond to the theoretical

expression given in Equation (28).

3.3. Spectral Decomposition of the Initial Walker's State

To understand the three distinct CTQW regimes previously identified, we have ex-
amined how the walker’s initial state decomposes onto the eigenstates in each scenario.
The results, depicted in Figure 8, show the decomposition for M = 3 (localized degenerate
eigenstates below the allowed band) in black, M = 6 (no localized degenerate eigenstates)
in blue, and M = 15 (localized degenerate eigenstates above the allowed band) in red.

Starting with M = 3, Figure 8 shows that the initial state primarily decomposes
onto the two low-lying eigenstates indexed as 4 = 1 and y = 2, with a weight of 0.26,
followed by a nearly uniform distribution across the remaining eigenstates (excluding the
zero-energy state u = 9). This aligns with our observations regarding the first dynamical
regime, where the significant portion of the transfer probability signal is carried by the two
eigenstates localized on the network’s roots, as indicated by the smoothed probability (see
Equation (10)). However, all other eigenstates also contribute significantly to the transfer,
explaining the larger fluctuations observed around the corresponding smoothed probability,
as evidenced in Figure 5.
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[(1],) [

Figure 8. Spectral decomposition of the walker’s initial state for the three different dynamical regimes
observed with M = 3 (black curve), M = 6 (blue curve), and M = 15 (red curve). The parameters are
L=9and N =6.

Moving to M = 6, where no degenerate eigenstates extend beyond the allowed band,
Figure 8 demonstrates that the eigenstates contributing most to the transfer are localized
in the middle of the band. Six eigenstates exhibit the highest weights, all falling within
the interval [0.1,0.25]. Unlike the previous regime, here the dynamics are supported by a
greater number of eigenstates playing similar roles. These characteristics elucidate why the
transfer probability evolves erratically over time and cannot be decomposed into slow and
fast-varying components in this case, as seen in Figure 6.

Finally, considering the last dynamical regime at M = 15 where two eigenstates localized
on the roots emerge above the allowed band (as illustrated in Figure 7), we observe that these
two eigenstates, indexed as y = 7 and p = 8§, carry the highest weights, nearly 0.5, implying
that the initial state predominantly decomposes onto them. The remaining eigenstates play
a very minor role, as indicated by their weights consistently below 0.03. Consequently, the
walker’s dynamics reflect those of a two-level system, explaining the near-perfect quantum
beats observed between the two roots of the networks in Figure 7.

3.4. Characterization of the Smoothed Probability and Optimization of the Transfer

The previous observations, conducted for fixed values of L and N, suggest that the
emergence of localized eigenstates could facilitate the realization of more efficient and
controlled quantum transfer across the network. More precisely, it appears that when
localized eigenstates arise above the allowed band, they lead to a more robust transfer that
exhibits a very high amplitude of smoothed probability. This is in contrast with the case
where the dominant eigenstates are below the allowed band, resulting in a lower amplitude
of smoothed probability. These features were evidenced for fixed values of N and L, and
we will now demonstrate that they persist when varying these parameters.

To highlight this feature, Figure 9 showcases the M dependence of the maximum
value of the smoothed probability P,y (first row) and the associated time T}y (second
row) for which this maximum arises. The left and right columns respectively show the
results obtained for two different values of N = 6 and N = 12 (with a fixed size of the
graph L = 9). Black circles correspond to numerical calculations, whereas orange curves
refer to theoretical estimates (introduced later on in Equation (28)).

As evidenced in Figure 9, the localized quasi-degenerated eigenstates below and
above the allowed band present different behaviors (see, respectively, at left or right of
the gray zone). First, whatever the value of N, we observe that the smoothed probability
for eigenstates emerging at the top of the band (right side of the gray zone) generally
present higher amplitudes than for eigenstates below the allowed band (left side of the
gray zone). This is evidenced for N = 6, where we see that Py, lives in the interval
[0.3,0.65] for states below the band, which is smaller than for the state above the band for
which Pyax € [0.65,0.9]. These intervals tend to slightly change when N = 12 to become,
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respectively, [0.2,0.8] and [0.5,0.9] on the left and right hand of the gray zone. Second,
focusing now on the transfer time Ty;4x (second row in Figure 9), we clearly see that the
latter is generally lower for eigenstates emerging at the top of the band (right side of the
gray zone) than for the other ones (left side of the gray zone). Indeed, if we consider two
distinct M values that give rise to two quite similar P4y values, it turns out that the time
Tnax associated with the larger M value is always significantly shorter than the time T},
associated with the smaller M value. For instance, in Figure 9d, for both values M = 6 and
M = 18, the amplitude P,y is approximately equal to 0.55. However, Ty, = 64 ]! for
M = 18, whereas it reaches Tyax = 566 ]! for M = 6. This effect becomes increasingly
important the further one moves away from the allowed band.
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Figure 9. First row (a,b): illustration of the M dependence of the smoothed probability P. Second
row (c,d): illustration of the associated period Ty. Left and right columns respectively display
the results for N = 6 (a,c) and N = 12 (b,d). Black symbols correspond to numerical calculations,
whereas orange symbols refer to theoretical estimates (as given in Equation (28)). The size of the
graph is L = 9. Gray areas correspond to the parameter-space where no states are localized outside
the allowed band, except for the zero-energy state.

These previous results suggest that to optimize the quantum transfer between the two
roots, it would be wise to design the architecture of the modular glued trees to favor the
occurrence of localized states above the allowed band. However, in this case a fundamental
question remains: what is the influence of the graph size on the efficiency of the transfer?
To address this question, the L dependence of both Pz and Ty is displayed in Figure 10.
The calculations are carried out for N = 3, a value for which the spectrum exhibits
high-energy localized states above the allowed band, provided that M > 7. According to
Figure 10a, the amplitude P, becomes less and less sensitive to the size of the graph as
M increases. For M = 8, it slightly decreases with L, ranging from 0.84 for L = 5 to 0.752
for L = 21. By contrast, for M = 12, Py;4y is almost L independent since it varies from 0.91
for L = 510 0.92 for L = 21. In a marked contrast, Figure 10b reveals that Ty, behaves in
a completely different way. Indeed, Tj;qy exhibits an exponential growth with the size of
the graph, a behavior that can be enhanced by increasing M. Indeed, for L = 5 a quite fast
transfer occurs since Tyuqy varies from 9! for M = 8to 15] ! for M = 12. When L = 11, the
exponential growth of T,y drastically affects the efficiency of the transfer since it varies from
441 ]! for M = 8 to 5205 J~! for M = 12. This effect becomes dramatic for longer graphs.
When L = 21, Tjux varies from 1.36 x 10° ]~ for M = 8 to 7.3 x 107 ]! for M = 12.
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Figure 10. L dependence (a) of the maximum value of the smoothed probability Py, and (b) of the
time Tjyqx for which the maximum arises. The degree of the roots is N = 3, and three branching rates
have been considered, namely M = 8, M = 10, and M = 12.

4. Interpretation and Discussion

The numerical results reveal that the transfer of a quantum walker between the roots
of a modular glued tree strongly depends on the architecture of the graph. As a result,
three different regimes were identified, depending on the value of the branching rate, M,
versus the degree of the roots, N. Indeed, as explained in Section 2.2, the behavior of the
walker is isomorphic to that of a particle moving on a finite-size chain. This chain exhibits
defects that originate in the specific nature of both the roots and the leaves of the glued
trees (see Figure 2). The energy spectrum of the chain is particularly rich and three kinds of
eigenstates have been identified, giving rise to three different dynamical regimes.

Basically, when M is about N, the walker exhibits extended states that correspond to
superpositions of forward and backward traveling waves whose energies belong to the
so-called allowed band. The dynamics is therefore governed by the back-and-forth motion
of the initial wave packet between the two roots so that an efficient transfer can take place
via quantum recurrences. Such recurrences occur at very precise revival times that may be
difficult to detect in an experimental protocol.

Conversely, if M strongly differs from N, the energy spectrum supports two quasi-
degenerated localized states that lie below (if M < N) or above (if M >> N) the allowed
band. These states refer to a localization process on the roots of the glued trees. Conse-
quently, when the walker is initially on the leftmost root, its state preferentially decomposes
on these two localized states. The dynamics becomes isomorphic to that of a two-level
system, resulting in the occurrence of quantum beats between the two roots. In other
words, an almost perfect energy transfer is mediated by these specific localized states.
Nevertheless, two distinct regimes arise depending on whether the states emerge below or
above the allowed band. Our numerical results suggest that high energy localized states
yield a more efficient transfer. In this case, the probability of observing the CTQW on
the rightmost root can be very high over a wide time scale, facilitating the experimental
detection of the walker.

4.1. Eigenstates and Mode Equations

To discuss and interpret the numerical results, let us study the restricted Hamiltonian
‘H that describes the dynamics of the walker in the column subspace. As mentioned above,
this Hamiltonian defines a tight-binding model on the finite-size chain depicted on Figure 2.
The associated states are thus given by the walker time-independent Schrodinger equation,
written as

L
2 Hss"P(S/) = €(P(S). (12)

s'=1
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According to the standard properties of finite-size tight-binding models [48,49], the
solutions of Equation (12) are superpositions of forward and backward traveling waves
with wave vector g as

A if s=1
APeits 1 A(F)e=ias if 1 < 5 < L,
p(s)=4 C if s=1L, . (13)
B(H)etss + B(=)e=i5  §f L. <s< L
B if s=1L.

By inserting this solution into Equation (12) far from the defects, it turns out that
eigenenergies satisfy the dispersion relation of the infinite chain €; = €y + 2® cos(g). How-
ever, the value of the wave vector g is still unknown at this stage. To determine the allowed
wave vector, one proceeds as follows. First, because the chain is symmetric with respect to
the central node, the wave function is either symmetric (A = B, AE) = B C #£0)or
anti-symmetric (A = —B, A®) = —B(#), C = 0), and it is characterized by 4 amplitudes.
Second, by studying the Schrodinger equation fors =1,s =2,s = L, — 1, and s = L, one
obtains a system of 4 equations for the unknown amplitudes for each symmetry. These
two systems exhibit non-trivial solutions if and only if their determinant vanishes. After
algebraic manipulations, this condition gives rise to the so-called mode equations, i.e., the
equations whose solutions specify the allowed g values for each symmetry. The mode
equation for symmetric states is defined as

(%r _ efi”’ + (22 - 1)el:‘7> (éc + eiq’— e‘l:ﬂ) — i(L=1) (14)
Ay —ell+ (22 = 1) ) \ Ac + =11 — ¢

whereas the mode equation for anti-symmetric states is expressed as

Ay —e 4 (22 —1)ell _ o9(L=1) (15)
Ay — e+ (22 —1)e— 14 ’

withA, = A, /®=(M—-N+1)/VM,Ac =A;/® = (M—1)/vVM,and z = vVN/M.

By studying the mode equations, it turns out that the chain supports extended states
characterized by a real wave vector q. These states define traveling waves whose eigenener-
gies belong to the energy band €, € [ey — 2P, €g + 2®]. From a physical point of view, they
describe states uniformly delocalized over the columns of the glued trees and which are
able to propagate between the two roots so that a stationary regime takes place. However,
since the chain exhibits defects that break the symmetry of the problem, the Hamiltonian
supports additional eigenstates whose properties strongly differ from those of the traveling
waves. These states correspond to wave functions that are localized in the neighborhood of
the defects and whose energies lie outside the allowed band. These are thus characterized
by a complex wave vector q = ik (for states lying above the band) or g = 77 + ix (for states
lying below the band), with ¥ > 0. In that context, to solve the mode equations for the
localized states, it is wise to introduce the real variable x = ¢~ that satisfies |x| > 1. With
this notation, the energy of a localized state is defined as € = €y + ®(x + x~!) and the
mode equations are rewritten as

16
F(x) = x*(L’l)F(x’l) for anti-symmetric states, (16)

{ F(x)G(x) = x"L=DF(x 1)G(x!) for symmetric states
with F(x) = A, — x+ (22 — 1)x ! and G(x) = A, + x — x~ L. In the finite-size chain, the
mode equations cannot be solved analytically. Nevertheless, they can be used to introduce
relevant approximations and consequently to understand the numerical observations, as
will be shown in the following. To proceed, the main idea consists of a two-step approach
in which one first treats the localization in the limit L — oco. In doing so, it will be shown
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that each side of the chain exhibits degenerated localized states and that a third localized
state arises on the central node of the chain. The second step consists of considering finite
L values for which a coupling occurs between the different localized states.

4.2. Localization in the Limit L — oo

In the limit L — oo, the right-hand side of the mode equation, Equation (16), vanishes
for |x| > 1. Consequently, localized states in the neighborhood of the roots are characterized
by the mode equation F(x) = 0, that is

x> —Ax+1-22=0. (17)

Equation (17) holds whatever the symmetry of the states since in the limit L — oo
the two roots are independent. It thus refers to two independent localization processes
that arise either on the left root s = 1 or on the right root s = L. In that case, since M is a
positive integer, Equation (17) exhibits only one physically acceptable solution, defined as

M—-N
xrziﬁ.

Note that the second solution is equal to 1/ VM, a very important detail that will
make two situations arise, depending on the value of the parameters. Indeed, if M >
(V1/4+N+1/ 2)2, then x, > 1, indicating that the localized states are characterized by
a wave vector g = ik. They thus correspond to two degenerated energy levels located
above the allowed band. Conversely, if M < (v/1/4+ N — 1/2)2, then x, < —1. The
localized states are now characterized by a wave vector q = 7 + ix so that they refer to two
degenerated energy levels that lie below the allowed band. Whatever the situation, the
expression of the energy remains the same and is defined as

(18)

M
M—-N

e&=—(N+1)J+ J. (19)

One state, characterized by the wave function ¢ (s), is exponentially localized near
the leftmost root s = 1. The second state, whose wave function is denoted ¢ (s), describes
a localization near the rightmost root s = L. These wave functions are defined as

x2—1 \? —(s—
¢c(s) = (x%—l—i—zz) (661 +2(1 = 61))x, 7V
2_1 2 (L—s
Ir(s) = (xz"_HZz) (051 +2(1 = ), 7. (20)

As previously, since the right-hand side of Equation (16) vanishes in the limit L — oo,
the localized state in the neighborhood of the central node s = L. is characterized by the
mode equation G(x) = 0, that is

x> —Ax—1=0. (21)

Equation (21) exhibits only one physically acceptable solution defined as x, = /M.
Therefore, provided that M > 1, the chain exhibits a state characterized by a wave vector
g = ix, whose energy lies above the allowed band. This energy is strictly equal to zero, i.e.,
€. = 0. This state is exponentially localized around the central node and its wave function
¢c(s) is defined as

N—

pels) = (¥ 1) x (22)

At this step, let us mention that, for N = 6, the previous calculations reveal that states
localized on the roots lie above the allowed band for M > 9 and below the allowed band
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for M < 4. For M = 3, the energy of the localized states is equal to €, = —8 ], whereas for
M = 15 it reaches e, = —5.33 J. Moreover, whatever M, the energy of the state localized on
the central node is equal to e = 0. All these results are in very good agreement with the
numerical observations reported in Section 3 and displayed in Figure 3.

4.3. Localized State-Mediated Quantum Transfer

In a finite-size chain, the localized states are no longer independent and they interact
through the overlap of their wave functions. However, since €, is larger than e, the
preferential interaction is between the states ¢ and ¢, which are localized on the leftmost
root and on the rightmost root, respectively. Since these two states enter into resonance,
the latter combine and a quantum superposition arises, giving rise to the occurrence of a
symmetric state ¢s &~ (¢, + ¢r)/+/2 and of an anti-symmetric state ¢, ~ (¢ — PR )/ V2.
The formation of these states is accompanied by the rise of degeneracy due to the so-called
avoided crossing phenomena. The states ¢s and ¢, are thus characterized by two distinct
energies, €; and €;, which can be calculated from the solutions of the mode equations,
Equation (16). However, these mode equations reveal a very important feature. Indeed, for
the anti-symmetric state ¢,, the mode equation depends on A, and z only. This would imply
that the formation of ¢, only results from the quantum superposition between ¢, and ¢r.
It does not involves the coupling with the state ¢ localized on the central node. Conversely,
for the symmetric state, the mode equation involves A,, A, and z. This feature reveals
that the origin of ¢ is in fact twofold. First, as mentioned previously, ¢s originates in the
quantum superposition between ¢, and ¢ . However, a remaining coupling arises with
¢.. This coupling is responsible for an additional energy shift that affects the symmetric
state, but not the anti-symmetric state. In this context, when states localized on the roots are
present, the dynamics of the CTQW can be interpreted as follows. If the walker is initially
located on the leftmost root s = 1, its behavior is mainly governed by these localized states.
The quantum dynamics is thus isomorphic to that of a two-level system formed by the
symmetric state ¢s and the anti-symmetric state ¢,. Therefore, as a first approximation, the
evolution operator U (t) defined in Equation (9) can be expressed in a simpler way, as

U(t) ~ exp(—iest)|ds)(ps| + exp(—i€at)|¢pa)(¢al- (23)

The probability for observing the walker on the rightmost root at time ¢ given that it
occupies the leftmost root at t = 0 is thus defined as

Pu(t) ~ 219c(1)Plgr(L) (1 - cos(aet)). @4

with Ae = €5 —€,. At this step, the energy difference Ae still remains unknown. Its
calculation requires one to solve the mode equations, Equation (16), for finite L values,
a task that cannot be achieved analytically. To overcome this problem, we propose to
use an approximate procedure based on an expansion of the mode equations around the
solutions in the limit L — oo. To proceed, let us first consider the mode equation for the
anti-symmetric state ¢,. This equation, defined as F(x) = x~ (LD F(x~1), gives rise to the
solution x,, which allows us to obtain the corresponding energy €, = €9 + ®(x; + x;1).
Given that the solution is x; in the limit L — oo (Equation (18)), one seeks a solution
Xa = Xy + 6x,. By expanding the mode equation around x;, one obtains, to the lowest order,

(- oF\ !
5xa ~ x; V(D) (8x> (25)

Xr
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For ¢s, the mode equation is defined as F(x)G(x) = x~(E=DF(x~1)G(x~1). Its solu-
tion x; yields the corresponding energy €; = €g + ®(xs + x; ). As previously, by seeking a
solution x; = x, + dx,, one obtains, to the lowest order,

D F(xY)G(xY) foF\
Oxs oy, (LD M Ay ) (97 2
o G(xr) ox /), (26)
Therefore, after some algebraic calculations we are able to determine the expression of
both dx,; and dxs, and to obtain the energy difference Ae, written as

_ 2Je* =D /M — (M —N)??
AGNM(M—N)z( (M—N)Z—1 > @7

with ¥ = In |x,|. At this step, let us mention that the energy of the symmetric state localized
on the central node is equal to zero whatever L. Indeed, x, = VM is a solution of the
mode equation F(x)G(x) = x~(E=DF(x~1)G(x~) since G(x) = 0 (see Equation (21)) and
F(xZ1') = 0 (see the note after Equation (18)). Finally, by combining Equations (20), (24),
and (27), one obtains an approximate expression for the probability of observing the walker
on the rightmost root, as

Tmax

Prj(t) = %Pmax {1 - cos( it )}, (28)

with Ty, = 71/ A€ and

Pun = (14 7)) - (e N))z' )

In a qualitative agreement with the numerical observations, Equation (28) shows that
the probability Py, (#) is a periodic function whose period is equal to T = 2Ty Initially
equal to zero, it increases to reach its first maximum value Py, at time Tyay. As shown
in Figures 5 and 7, Equation (28) provides a good estimate of the time evolution of the
smoothed probability (orange lines) when the main part of the dynamics is governed by
the states localized on the roots. In addition, as illustrated in Figure 9, it allows us to
qualitatively understand the behavior of the maximum value Py,,y, as well as the behavior
of the time T};;;x (orange symbols).

Equation (28) clearly shows the key role played by the localized states for the efficiency
of the transfer between the two roots of the graph. Indeed, the stronger the localization, the
more efficient the transfer. This feature originates in the weight of the initial state on both
¢q and ¢s. This weight increases as |x,| moves away from unity, which favors the increases
of the maximum probability P;.y, which tends to unity. Unfortunately, this optimization
of Puax has a cost since the stronger the localization, the longer the time T;;,y. Indeed,
Tmax increases exponentially as the localization is enhanced. Nevertheless, as observed in
Section 3, such a negative effect can be softened by using localized states above the allowed
band to mediate the transfer. The main reason for this can be understood as follows. When
they lie below the allowed band, the creation of ¢, and ¢s mainly results from the quantum
superposition between states localized on each root through the overlap of their wave
functions. The influence of the state ¢ localized on the central node is negligible. By
contrast, when they lie above the allowed band, the mechanism is slightly different. The
energy difference with ¢, is reduced so that the coupling between the symmetric states ¢
and ¢, is no longer negligible. This coupling is responsible for an additional contribution
of the energy difference, Ae, leading to the shortening of T,y.

5. Conclusions

In this paper, a CTQW based on the Laplacian of a modular glued-tree graph is used
for studying the ability of a quantum walker to propagate between the roots of the trees.
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Instead of considering traditional binary trees, we focused our attention here on leafier
structures in which the degree of the roots, N, differs from the branching rate, M, of the
other nodes. Therefore, by mapping the problem onto a one-dimensional CTQW, we have
shown that the walker behaves as a particle moving on a finite-size chain that exhibits
defects. These defects, that result from the specific nature of both the roots and the leaves of
the glued trees, yield a rich energy spectrum. Depending on the architecture of the graph,
different kinds of eigenstates have been identified, i.e., extended states and states localized
either on the roots or on the leaves, giving rise to different dynamical regimes.

Basically, when M is about N, the energy spectrum exhibits extended states and one state
localized on the leaves. Therefore, the walker dynamics are governed by the back-and-forth
motion of the initial wave packet between the two roots. An efficient transfer between the two
roots can take place via quantum recurrences that occur at very precise revival times, which
may be difficult to detect in an experimental protocol. By contrast, when M strongly differs
from N, the energy spectrum supports two additional quasi-degenerated states outside the
allowed band that refer to a localization process on the roots. When the walker is initially on
the leftmost root, its state preferentially decomposes on these two localized states so that the
dynamics become isomorphic to that of a two level-system. Quantum beats occur between the
two roots, resulting in an almost perfect transfer mediated by these specific localized states.
Nevertheless, we have shown that a more efficient transfer arises when the localized states lie
above the allowed band. In this case, the states localized on the roots interact with the states
localized on the leaves. This interaction enhances the rise of the quasi-degeneracy, resulting in
the shortening of the transfer time. Therefore, the probability of observing the CTQW on the
target rightmost root can be very high over a wide time scale, facilitating the experimental
detection of the walker.

Our work evidenced that localized state-mediated almost perfect quantum-state trans-
fer between the roots of two glued trees could be achieved with an appropriate design of
the graph architecture. These results naturally motivate new questions that could represent
interesting starting points for future developments. First it could be wise to investigate
what happens in more realistic networks. In that case, the walker does not propagate freely
but interacts with the remaining degrees of freedom of the structures. These interactions
could favor decoherence processes that may drastically affect the efficiency of the transfer.
Second, it would be interesting to see if the realistic implementations of the CTQW will be
able to maintain an almost perfect transfer when the inherent presence of disorder favors
the stopping of the propagation of the walker due to the so-called Anderson localization.
Finally, in the present situation the defects are not independent from each other since they
depend on the branching rate, M. Therefore, it could be interesting to see what happens in
a one dimensional structure with three independent defects located on both the edges and
the center of the network. By tuning the central defect judiciously, it could be possible to
optimize the transfer between the two edges of the chain owing to the interaction between
states localized on the edges and a state localized on the center of the chain.
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