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Abstract 2

Three out of four fundamental interactions of nature (i.e., strong, weak, and electromag-

netic) are very well explained by suitable gauge theories. These strong, weak and electro-

magnetic interactions are described by SU(3) × SU(2) × U(1) gauge group on which the

standard model of particle physics is based. Gauge theories are very well studied at the

classical level but there is a problem in quantization. BRST formulation is one of the most

intuitive theoretical approaches to quantize gauge theories of any kind. This formulation

also helps in the proof of unitary and it is very handy in the context of renormalization.

The consequences of BRST invariance (formulated as Slavnov-Taylor identities) are cen-

tral to the discussion of renormalizability, unitarity and the gauge independence of the

non-Abelian gauge theory. The attempts that offer a reformulation and simplification of the

understanding of BRST formulation have significance in the realm of particle physics.

The most important and useful generalization, known as the finite field-dependent BRST

(FFBRST) transformation, is the one where the transformation parameter is finite and field

dependent and it does not depend on the space-time explicitly. The speciality of such

transformation is that these are also symmetry of the FP effective action but the path

integral measure (in the generating functional) is not invariant under these and leads to non-

trivial Jacobian. The non-trivial Jacobian of functional measure, under such transformation,

gives rise to various interesting applications in gauge field theories. For example, these

transformations connect theories in two different gauges by choosing a particular finite field

dependent parameter

In this thesis, we would like to mention the various forms of BRST symmetry transfor-

mation and find new applications of BRST transformation in gauge field theories. We would

also analyze the BRST symmetry generalizations and its applications to different gauge field

theoretic models which are of interest in theoretical physics.

Detail contents of different chapters are as follows:

In the first chapter, we discuss the importance of gauge theories, BRST symmetry

transformations and its generalizations with applications, basic techniques of field/anti-field

formulation (BV formulation) for quantization of gauge theories, quantum gauge transfor-
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mations and its importance with applications and the superspace description of topological

field theories (particularly, CS theory and BF model)

The different mathematical techniques or Methodology of FFBRST transformation and

BV (field/anti-field) formulation in brief have been discussed in the second chapter.

In chapter three, we show the application of FFBRST transformation to 3-form gauge

theory. A 3-form gauge field theory is subject of interest as a 3-form field arises naturally

in M-theory. The 3-form field automatically appears when multiple M2-branes are used

to study M5-branes. We establish a connection between the noncovariant gauge and the

covariant gauge in 3-form gauge theory using FFBRST transformation. In order to do so,

we construct an infinitesimal but field dependent parameter and calculate the infinitesimal

change in the Jacobian. This Jacobian adds some extra pieces to the effective action of the

theory in covariant gauge which, in turn, reduces to the effective action in the noncovariant

gauge.

In chapter four, we consider a super-renormalizable theory of massless QED in (2 + 1)

dimensions and discuss its BRST symmetry. We derive the Nielsen identities by extending

the BRST transformation. Furthermore, we show that the Lowenstein-Zimmermann mass

containing Lowenstein-Zimmermann parameter, which is important in the BPHZL renor-

malization (along with the external sources coupled to the nonlinear BRST variations) can

appear naturally in the theory using the FFBRST transformations.

Chapter five is reserved for the study of quantum gauge transformations of Kalb and

Ramond theory (reducible gauge theory). We observe that under the gauge transformations,

the action of this reducible gauge theory remains form invariant but the gauge parameter

is shifted. Furthermore, we study the BRST symmetric gaugeon formalism by introducing

ghost fields and ghost of ghosts fields. After calculating BRST charge, we apply it on physical

state which removes the both the unphysical modes i.e. gauge as well as gaugeon mode.

This means that both the Gupta-Bleuler and the Kugo-Ojima type subsidiary conditions

are converted into single Kugo-Ojima type condition. At the end of this chapter, we study

the FFBRST symmetric transformations which introduce the gaugeon mode in reducible

gauge theory through the Jacobian.

Four dimensional topological BF model in the Landau gauge and its BRST transforma-
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tions are considered in chapter six. Further, we generalize the BSRT transformations by

making the transformation parameter finite and field dependent. The infinitesimal change

in the Jacobian corresponding to this field dependent parameter attributes a precious term

in the generating functional which is useful to connect the Lorentz gauge action of BF model

with the axial gauge action.

In chapter seven, we discuss the superspace description of CS theory in BV formula-

tion. We begin by extending all the fields of the theory by introducing the shift fields. The

main motivation behind this is that the anti-fields corresponding to each fields get identi-

fied. The extended action remains invariant under BRST symmetry together with the shift

symmetry. Both these symmetries together are known as the extended BRST symmetry.

This extended BRST invariant CS theory can be described in superspace using one extra

Grassmannian coordinate, while using two extra Grassmannian coordinates one can describe

both the extended BRST and extended anti-BRST invariant CS theory in superspace.

In chapter eight, we try to generalize the superspace formulation of BV action for BF

model. Particularly, we first consider BRST invariant BF model in the Landau gauge and

extend the BRST symmetry of the theory by including shift symmetry. By doing so, we find

that the anti-ghosts of shift symmetry get identified as anti-fields of the standard BV formu-

lation naturally. Further, we discuss a superspace formulation of extended BRST invariant

BF model. Here we see that one additional Grassmannian coordinate is required if action

admits only extended BRST symmetry. However, for both extended BRST and extended

anti-BRST invariant BF model, two additional Grassmannian coordinates are required for

their analysis.

In chapter nine the summary, results, conclusions and future perspectives have been

discussed.
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Chapter 1

Introduction

There are four types of fundamental interactions (i.e. Gravitational, Strong, Weak, and

Electromagnetic) that exist in nature. Out of these four fundamental interactions, only

three fundamental interactions (i.e. Strong, Weak, and Electromagnetic) are very well

explained by suitable gauge theories. These three fundamental interactions are well

described by the SU(3) × SU(2) × U(1) gauge group on which the standard model of

particle physics is based. The basic features of these gauge theories are their invariant

nature under some local transformations of gauge fields known as gauge transformations.

The gauge transformations play a crucial role in determining the structure of these

interactions. The associated group and algebra of gauge theories are called the Lie

group and Lie algebra, respectively. The Lie algebra plays an important role in defining

the representation of the gauge fields. If the generators of Lie group commute with

one-another, the associated gauge theories are known as the Abelian gauge theories.

However, if the generators do not commute among themselves then the associated gauge

theories are known as non-Abelian gauge theories. For example the U(1) gauge theory

is an Abelian gauge theory while the SU(N) gauge theory is a non-Abelian theory.

Gauge theories are very well studied at the classical level (but not at the quantum

level). For instance, when we study the gauge theories at quantum level, there are

redundancies in the gauge degree of freedom due to ill defined path integral. Also,

Green’s functions (an important ingredient in perturbative analysis of gauge theories)

are not well-defined at quantum level. Therefore, it is required to remove the redundant

degree of freedom from generating functional (path integral). In order to do so, we

need some additional gauge variant piece (commonly known as gauge-fixing term) in

the classical Lagrangian density such that the generating functional (and hence the

Green function) becomes well-defined. The resultant Lagrangian density consists of

1



2

gauge fields and arbitrary gauge parameter. In this way, we remove the problem of

over counting in generating functional. But the cost we pay is that our physical theory

turns into unphysical one which depends upon an arbitrary function of gauge field. In

order to revert it back to the physical one, the Faddeev-Popov (FP) ghost and anti-

ghost fields are introduced which do not participate in the physical Hilbert space of

the quantum gauge theory. The nomenclatures (anti-)ghost fields are justified due to

the violation of the spin and statistics relation as they are scalars satisfying the anti-

commutation property [1]. These ghost and anti-ghost fields counterbalance the effect

of arbitrary function present in the Lagrangian density and help in establishing the

unitarity of the theory. However, after introduction of these unphysical fields (ghost

and anti-ghost) in gauge-fixed Lagrangian density, the local gauge symmetry is broken

which causes difficulties in renormalization. The resulting effective Lagrangian density

is not invariant under a (local) gauge symmetry but is invariant under a new type of

symmetry transformation invented by C. Becchi, A. Rouet, R. Stora and I. V. Tyutin

independently [2, 3] which is known as BRST transformation. The so-called BRST

transformation is characterized by the fact that it is (i) infinitesimal, (ii) global (i.e.

does not depend on the space-time), and (iii) anti-commuting in nature (i.e. nilpotent

of order 2) and, hence, fermionic in nature.

The FP effective action, consisting of gauge-fixing and ghost parts, remains in-

variant under BRST transformation. The key property of this BRST transformation

is the nilpotency (of order 2). If the nilpotency of transformation is achieved by using

equations of motion of any fields then this is known as the on-shell nilpotency. However,

the off-shell nilpotency does not require any use of equations of motion. Remarkably,

one can switch from the on-shell nilpotency to the off-shell nilpotency by introducing a

Nakanishi-Lautrup type of auxiliary fields in the theory.

The BRST symmetry is prodigiously important in quantizing different gauge field

theoretic models and greatly promotes the renormalization program [2-5]. However, the

standard BRST quantization of gauge theories has found certain limitations. To improve

this situation, I. A. Batalin and G. A. Vilkovisky gave a potent technique to quantize the

wider class of gauge theories (including open or reducible gauge theories) known as BV

formulation [4-8]. According to the BV formulation, one introduces anti-fields φ? (with

opposite statistics) corresponding to each fields φ with ghost number −gh(φ)−1, where
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gh(φ) refers to the ghost number of the fields φ. This formulation is also known as the

field/anti-field formulation and BV-BRST formulation. Due to anti-fields, the effective

action gets extended and this extended action satisfies certain affluent mathematical

formula known as quantum master equation which reflects the gauge symmetry in the

zeroth-order of anti-fields and, in the first-order of anti-fields, it reflects the nilpotency

of BRST transformation. The importance of this extended quantum action can be seen

as the frame of gauge theories which are always endowed with first-class constraints

in the language of Dirac’s constraints analysis [9-12]. BV formulation is also useful in

quantizing theories with the second-class constraints by converting them into the first-

class in an extended phase space [2, 9, 11-13]. This was done first by I. A. Batalin, E. S.

Fradkin and I. V. Tyutin [14, 15] which was further applied to various models [16-20].

Furthermore, a more general technique was introduced by I. A. Batalin, E. S. Fradkin

and G. A. Vilkovisky which was completely different from earlier Dirac’s method and

known as the BFV quantization [7, 21, 22]. The main features of the BFV approach are

the following: (i) it does not require closure off-shell of the gauge algebra and therefore

does not need an auxiliary fields, (ii) this formalism relies on BRST transformation

which is independent of gauge-fixing condition, and (iii) it is also applicable to the

first-order Lagrangian density of the quantum gauge models.

To understand the BRST formalism geometrically, the well known superfield and

superspace approaches provide a better grasp of the mathematical properties associ-

ated with the nilpotent BRST and anti-BRST symmetries and their corresponding

generators (i.e. nilpotent conserved charges) [23-30]. In these formulations, BRST and

anti-BRST symmetry transformations of gauge theories are realized on equal footing.

Superspace is the extension of usual Minkowski space with extra scalar anticommuting

coordinates. BRST and anti-BRST symmetry transformations are simply realized as

translations along these anticommuting directions. Hence, the Ward-Takahasi (WT)

identities are expressed in a very simple form (in the superspace formulation) leading

to many applications in renormalization problems. A superspace description of the BV

formalism has been studied in the context of many gauge theories [31-39]. For instance,

these are studied in non-Abelian gauge theory [34], higher derivative theory [37], higher

form gauge theory [38], topological Chern-Simons theory [39], perturbative gravity [40],

FRW-model [41-43], ABJM theory [44] and in M-theory [45].
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The BRST transformation has been generalized in many different ways in the past.

For example, M. Lavelle and D. Mcmullan have found a generalized BRST symmetry for

quantum electrodynamics (QED) which is non-local and non-covariant [46]. Their mo-

tivation was to refine the characterization of physical states given by the BRST charge.

Further generalization of BRST transformation was done by Z. Tang and D. Finkelstein

in which they found a non-local but covariant BRST symmetry [47]. The drawback of

such a generalized BRST symmetry was that this was not nilpotent generally and re-

quired additional conditions (in auxiliary field formulation) to make them nilpotent.

H. S. Yang and B. H. Lee had presented a local and non-covariant generalized BRST

symmetry in the case of Abelian gauge theories [48]. The most important and useful

generalization was developed by S. D. Joglekar and B. P. Mandal in 1995 [49], known

as the finite field-dependent BRST (FFBRST) transformation, where the transforma-

tion parameter is finite and field dependent and it does not depend on the space-time

explicitly. The speciality of such transformations is that these are also symmetry of

the FP effective action but the path integral measure (in the generating functional) is

not invariant under these and leads to the non-trivial Jacobian. The non-trivial Jaco-

bian of functional measure under such transformation gives rise to various interesting

applications to gauge field theories [50-59]. For instance, FFBRST transformations

connect theories in two different gauges by choosing a particular finite field-dependent

parameter [50-59]. These were useful to connect the FP effective action from Lorentz

gauge to the (i) axial-gauge (ii) Coulomb gauge (iii) quadratic gauge. This transfor-

mation also connects two different gauge parameter of the same theory [56]. In fact,

this approach connects the extended actions corresponding to different solutions of the

quantum master equation (in field/anti-field formulation) [58-62]. For connecting two

different gauges of the theory, the choice of finite field-dependent parameter is very

important. Various applications of FFBRST transformation in the context of different

kinds of gauge theories and gauge models are reported in Refs. [50-77].

Till now, we have discussed about the gauge theory from classical gauge symmetry

perspective. In the standard quantization formalism of gauge theories, one does not

consider the quantum gauge freedom and the quantum action is defined only after

the fixing the gauge. In fact, the gauge-fixing term breaks the local (classical) gauge

invariance. In order to improve this situation, Yokoyama introduced a wider framework
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to quantize the gauge theories, known as the gaugeon formalism, by developing the

quantum gauge transformation [78-83]. The basic idea of gaugeon formalism is to

introduce the extra (quantum) fields, so-called gaugeon fields, in the Lagrangian density

describing the quantum gauge freedom. This formulation was originally proposed to

settle the problem of renormalization of gauge parameter of quantum electrodynamics

[84]. In this connection, the occurrence of the shift in gauge parameter, during the course

of renormalization [84], was addressed naturally by connecting theories in two different

gauges within the same family by a q-number gauge transformation [78]. Further, this

formalism is applied to the case of Yang-Mills theory. The gaugeon modes contain

negative-norm states that give rise to negative probability and one needs to remove this

unphysical gaugeon modes. Yokoyama implemented a Gupta-Bleuler type subsidiary

condition to remove this unnecessary modes. Due to certain limitations, this subsidiary

condition can not be applied to the case where the interaction terms are present between

the gaugeon fields. This limitation was improved substantially with the help of BRST

charge which replaces the Yokoyama subsidiary condition to a more acceptable Kugo-

Ojima type restriction [85-88]. The gaugeon formalism has been studied, so far, in

various interesting contexts [68, 69, 76, 89-97]. Due to incredible importance of the

gaugeon formalism, it was necessary to study this formalism in the case of Abelian

rank-2 antisymmetric tensor gauge fields. There are various reasons to provide the full

quantum description of the Abelian gauge rank-2 antisymmetric tensor fields.

Kalb and Ramond were first to discuss the idea of interaction of classical strings

with Abelian rank-2 antisymmetric tensor fields [98]. Applications of this interaction

can be seen in the Lorentz covariant description of the vortex motion in an irrota-

tional incompressible fluid [99] and to the dual formulation of the Abelian Higgs model

[100]. Importance of Abelian rank-2 antisymmetric tensor fields can also be found in

the supergravity multiplets [101], excited states of quantized superstring theories and

anomaly cancellation of certain superstring theory [102]. The Abelian rank-2 antisym-

metric tensor field also generates the effective mass for an Abelian vector gauge field

through a topological coupling between two fields [103]. Abelian rank-2 antisymmetric

tensor field has also been studied for U(1) gauge theory in loop space [104]. Covariant

quantization of this field was first attempted by Townsend [105] and has been studied

by many authors there after [106, 107]. This theory is also discussed in a superspace
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formulation where the Ward-Takahashi identities are derived [108].

On the other hand, the topological gauge field theories (TGFT) have some peculiar

properties. Two distinct classes of TGFT are: topological Yang-Mills theory and Chern-

Simons (CS) theory which are classified as the Witten-type and the Schwarz-type,

respectively [109]. Besides these two-types, there are another Schwarz-type TGFT

known as topological BF theory [110] which is an extension of Chern-Simons theory.

The main difference between CS theory and BF model is that the action of CS theory

exists only in odd-dimensions of space-time while BF model can be defined on the

spacetime manifolds of any dimension. In string theory and non-linear sigma model,

four dimensional BF model were introduced [111]. This model is interesting due to its

topological nature [109] and their connection with lower dimensional quantum gravity.

For example, three space-time dimensional Einstein-Hilbert action, with or without

using cosmological constant term, can be naturally formulated in terms of the BF-

models [109, 112, 113]. The coupling of an antisymmetric tensor field with the field

strength tensor of Yang-Mills theory is described by the models in Refs. [114, 115].

Topological BF theory, in the Landau gauge, has a common feature with large class of

topological models [116, 117]. However, the importance of the BF model in axial-gauge

can never be suppressed as this trivializes the ghost sector and remains comfortable

also in handling them in the Landau gauge [118]. Considering BF model in axial gauge

is rather beneficial in the higher dimensional generalization of the model.

In this thesis, we would like to mention various forms of BRST symmetry trans-

formations and would find new applications of BRST transformations in gauge field

theories. We would also analyze the BRST symmetry generalizations and its applica-

tions to different gauge field theoretic models. FFBRST transformations have already

been found many applications in 1-form gauge theories. However, little progress has

been made so far in the context of 2-from gauge theories. But no one had shown any

progress of the application of FFBRST in 3-form gauge theory previously, hence we

have taken this opportunity to study the same. We show that the 3-form effective

action, in the non-covariant gauge, can be obtained from that of the covariant gauge

using FFBRST transformation. The 3-form gauge field theory is a subject of interest

as the 3-form field arises naturally in M-theory. The theory of multiple M2-branes has

been used to study M5-branes and a 3-form field naturally appears in the theory.



7

BRST symmetry shows a very rich structure in superspace formulation when cer-

tain shift symmetry is incorporated. It is always interesting and useful to write most

general extended BRST and extended anti-BRST symmetric action in a compact way

in superspace formulation. These extended formulations can be extended to BV for-

mulation where natural identification for the antifields is possible through equation of

motion. We generalize this idea to the BV actions of the CS theory and BF model in su-

perspace. The reason for considering the CS theory is because of its topological nature

which offers relevance in various areas of research, namely, supergravity theories, super-

string theories and condensed matter theories, etc. On the other hand, the topological

BF model describes the interaction between 1-form and 2-form gauge theory.

Further, we would like to show that we can generate the Lowenstein-Zimmermann

mass terms for QED3 using FFBRST transformation. Massless QED in (2 + 1) dimen-

sions (QED3 ) has very interesting and crucial features. It is an ultraviolet finite,

super-renormalizable and parity invariant theory leading to the subjects of interest in

frontier areas of research. The massless QED3 provides an ideal platform to tackle the

infrared divergence present in the theory. The parity anomaly has been removed for such

theories. The Lowenstein-Zimmerman scheme plays an important role in the algebraic

proof of ultraviolet and infrared finiteness and in the removal of the parity anomaly.

The QED3 also plays a crucial role in the study of high temperature superconductivity.

Moreover, the dynamical mass generation, using Hamiltonian lattice methods, is also

studied which has been found in agreement with both the strong coupling expansion

and with the Euclidean lattice simulations. The Lowenstein-Zimmermann subtraction

scheme is adopted in the algebraic proof on the ultraviolet and infrared finiteness. It

has also been used to show the absence of the parity and infrared anomalies, in the

context of massless QED3, which are based on the general theorems of perturbative

quantum field theory.

We try to develop gaugeon formalism for the reducible gauge theories. Within the

gaugeon formalism, the renormalized value of gauge parameter appears naturally. We

also would like to investigate the quantum gauge symmetry for the case of reducible

gauge theory. We also study the BRST symmetry which enables us to convert the

Gupta-Bleuler type subsidiary condition to Kugo-Ojima type subsidiary condition.

This thesis is divided into following nine Chapters. The full contents of these
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Chapters are given as follows:

In the first Chapter, we discuss the importance of gauge theories, BRST sym-

metry transformations and its generalizations with applications, basic techniques of

field/anti-field formulation (BV formulation) for quantization of gauge theories, quan-

tum gauge transformations and its importance with applications and the superspace

description of topological field theories (particularly, the CS theory and BF model).

The different mathematical techniques or methodology of FFBRST transforma-

tion and BV (field/anti-field) formulation in brief have been discussed in the second

Chapter of our present thesis.

In Chapter three, we show the application of FFBRST transformation to 3-form

gauge theory. A 3-form gauge field theory is subject of interest as a 3-form field arises

naturally in M-theory. The 3-form field automatically appears when multiple M2-branes

are used to study M5-branes. We establish a connection between the non-covariant

gauge and the covariant gauge in the context of 3-form gauge theory using FFBRST

transformation. In order to do so, we construct an infinitesimal but field dependent

parameter and calculate the infinitesimal change in the Jacobian. This Jacobian adds

some extra pieces to the effective action of the theory in the covariant gauge which, in

turn, reduces to the effective action in the non-covariant gauge.

In Chapter four, we consider a super-renormalizable theory of the massless QED

in (2 + 1) dimensions and discuss its BRST symmetry. We derive the Nielsen identities

by extending the BRST transformation. Furthermore, we show that the Lowenstein-

Zimmermann mass, containing the Lowenstein-Zimmermann parameter (which is im-

portant in the BPHZL renormalization along with the external sources coupled to the

nonlinear BRST variations) can appear naturally in the theory using the FFBRST

transformations.

Chapter five is reserved for the study of quantum gauge transformations of

Kalb and Ramond theory (reducible gauge theory). We observe that, under the gauge

transformations, the action of this reducible gauge theory remains form invariant but

the gauge parameter is shifted. Furthermore, we study the BRST symmetric gaugeon

formalism by introducing the ghost fields and ghost of ghost fields. After calculating the

BRST charge, we apply it on physical state which removes both the unphysical modes
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i.e. gauge as well as gaugeon modes. This means that both the Gupta-Bleuler and Kugo-

Ojima type subsidiary conditions are converted into a single Kugo-Ojima type condition.

At the end of this Chapter, we study the FFBRST symmetric transformations which

introduce the gaugeon mode in reducible gauge theory through the Jacobian.

Four dimensional topological BF model in the Landau gauge and its BRST trans-

formations are considered in Chapter six. Further, we generalize the BSRT trans-

formations by making the transformation parameter finite and field dependent. The

infinitesimal change in the Jacobian corresponding to this field dependent parameter

contributes a precious term in the generating functional which is useful to connect the

Lorentz gauge action of BF model with the axial gauge action.

In Chapter seven, we discuss the superspace description of the CS theory in

BV formulation. We begin by extending all the fields of the theory by introducing

the shift fields. The main motivation behind this is that the anti-fields, corresponding

to every fields, get identified. The extended action remains invariant under BRST

symmetry together with the shift symmetry. Both these symmetries together are known

as the extended BRST symmetry. This extended BRST invariant CS theory can be

described in superspace using one extra Grassmannian coordinate, while using two extra

Grassmannian coordinates, one can describe both the extended BRST and extended

anti-BRST invariant CS theory in superspace.

In Chapter eight, we try to generalize the superspace formulation of BV action

for BF model. Particularly, we first consider the BRST invariant BF model in the Lan-

dau gauge and extend the BRST symmetry of the theory by including a shift symmetry.

By doing so, we find that the anti-ghosts of the shift symmetry get identified to the

anti-fields of the standard BV formulation naturally. Further, we discuss a superspace

formulation of the extended BRST invariant BF model. Here, we see that one addi-

tional Grassmannian coordinate is required if action admits only the extended BRST

symmetry. However, for both the extended BRST and extended anti-BRST invariant

BF model, two additional Grassmannian coordinates are required for their analysis.

In Chapter nine the summary, results, conclusions and future perspective of our

thesis have been discussed.



Chapter 2

Preliminaries

The aim of this chapter is to provide the basic background and mathematical tools to

prepare the necessary theoretical inputs that are relevant to this thesis. In particular,

we briefly outline the basic ideas of the FFBRST transformation and BV formulation

in gauge theories. In the first section, we discuss the FFBRST transformation. Fur-

thermore, in second section, we outline the BV formulation.

2.1 Finite field dependent BRST (FFBRST)

transformation

We start with the basic FFBRST formulation of pure gauge theories. The usual BRST

transformation for a generic field φ of an effective action is defined, compactly, as

δbφ (x, κ) = sbφ δΛ, (2.1)

where sbφ is the Slanove variation of the field φ with infinitesimal, anti-commuting and

global parameter δΛ. This transformation (2.1) is nilpotent, i.e. s2
b = 0 and leaves the

FP effective action (Seff ) invariant. It was observed by Joglekar and Mandal in Ref.

[27] that δΛ needs neither to be infinitesimal nor to be field-independent to maintain

the symmetry of the FP effective action as long as δΛ does not depend explicitly on

space-time. The infinitesimal field dependent transformation is defined as [27]

d

dκ
φ(x, κ) = sbφ(x, κ) Θ′b[φ(x, κ)], (2.2)

10
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where Θ′b is an infinitesimal field dependent parameter. By integrating equation (2.2)

from κ = 0 to κ = 1, the FFBRST transformation is obtained as [27]

φ′ ≡ φ(x, κ = 1) = φ(x, κ = 0) + sb[φ(x)]Θ[φ(x)], (2.3)

where Θ[φ(x)] is finite field dependent parameter. This transformation is also symmetry

of the effective action but the functional measure Dφ, defined in generating functional

Z =

∫
[Dφ] eiSeff , (2.4)

is not invariant under such FFBRST transformation and leads to a non-trivial Jacobian.

Under the FFBRST transformation, the functional measure Dφ changes as

Dφ→ J [φ(κ)]Dφ(κ). (2.5)

It has been shown in [27] that, under certain condition, this non-trivial Jacobian J [φ]

can be replaced (within the functional integral) as

J [φ(κ)]→ eiS1[φ(κ)], (2.6)

where S1[φ(κ)] is some local functional of field φ(x). The condition for specifying S1 is∫
[Dφ]

[
1

J

dJ

dκ
− idS1

dκ

]
ei[Seff+S1] = 0. (2.7)

Thus, under FFBRST, the generating functional, changes as

Z

(
=

∫
[Dφ] eiSeff

)
FFBRST

−−−− −→ Z ′
(

=

∫
[Dφ] ei[Seff (φ)+S1(φ)]

)
, (2.8)

where S1[φ] depends on the finite field dependent parameter. From equation (2.8),

one can see that the generating functional corresponding to the two different effective

actions can be related through FFBRST transformation with an appropriate choice of

finite field dependent parameter. The FFBRST transformation has also been used to

solve many of the long-standing problems in quantum field theory [28-32, 45, 35-38].

For example, the gauge field propagators in non-covariant gauges contain singularities
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on the real momentum axis [30] and proper prescriptions for these singularities in gauge

field propagators have been found by using FFBRST transformation [33].

2.1.1 Evaluation of Jacobian

Due to the field dependent nature of FFBRST transformation, the Jacobian of func-

tional measure is not unity and hence leads to non-trivial contribution in an effective

action. In this subsection, we present the general method to evaluate the non-trivial

Jacobian of path integral measure corresponding to FFBRST transformation. Here, we

utilize the fact that FFBRST transformation can be written as a succession of infinites-

imal transformation given in Eq. (2.2). Now, one can write the path integral measure

as follows:

Dφ = J(κ)Dφ(κ) = J(κ+ dκ)Dφ(κ+ dκ). (2.9)

Since the transformation φ(κ) to φ(κ+ dκ) is an infinitesimal one, the above equation

leads to

J(κ)

J(κ+ dκ)
=

∫
d4x

∑
φ

±δφ(x, κ+ dκ)

δφ(x, κ)
, (2.10)

where Σφ sums over all fields in the measure. Here this plus (+) sign will be used for

the bosonic field and the negative (−) sign for fermionic field. By using the Taylor

expansion in the above equation, the infinitesimal change in Jacobian is obtained as

follows:

1

J(κ)

dJ(κ)

dκ
= −

∫
d4x

∑
φ

[
±sbφ

δΘ′b[φ(x, κ)]

δφ(x, κ)

]
. (2.11)

In the next section, we will describe the BV formalism.
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2.2 Batalin-Vilkovisky (BV) formalism

The BV formulation (also known as field/anti-field formulation) is a powerful technique

in the Lagrangian framework to deal with more general gauge theories. This method

is applicable to gauge theories with both reducible (open) as well as irreducible (close)

algebras. The basic trick of BV formulation is to introduce anti-field (φ?) for each field

(φ) of a given gauge theory.

With the introduction of anti-fields (φ?), the effective action (Seff ) gets extended

as

Seff [φ, φ
?] = I[φ] + (sbφ)φ?, (2.12)

where I[φ] is the gauge invariant action. The anti-fields (φ?) can be obtained from the

gauge-fixing fermion Ψ as

φ? =
δΨ

δφ
. (2.13)

The extended effective action can also be written in terms of Ψ as

Seff [φ] = I[φ] + sbΨ. (2.14)

The effective action (Seff ) satisfies certain mathematical relation which is known as the

quantum master equation. The latter is defined as

(Seff , Seff )− 2i∆Seff = 0, (2.15)

where the anti-bracket of effective action, (Seff , Seff ), is defined by

(Seff , Seff ) =
δrSeff
δφ

δlSeff
δφ?

− δrSeff
δφ?

δlSeff
δφ

, (2.16)

and ∆ is the Laplacian, defined with left and right differentials (δl and δr respectively),

as

∆ =
δr
δφ?

δl
δφ
. (2.17)

Usually, it is easy to construct an action which satisfies the classical master equation as

(Seff , Seff ) = 0. (2.18)
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The generating functional, given in Eq. (2.4), can also be written in a compact form as

given below

Z =

∫
[Dφ] exp [iWΨ(φ, φ?)], (2.19)

where WΨ(φ, φ?) is an extended action satisfying the following quantum master equation

:

∆eiWΨ[φ,φ?] = 0. (2.20)

The quantum master equation, in the zeroth-order of the anti-fields, gives the condition

of the gauge invariance. On the other hand, it reflects the nilpotency of BRST trans-

formation in the first order of anti-fields. We will be using this formulation within the

framework of FFBRST formulation (applied to various branches of gauge theories) in

upcoming Chapters.



Chapter 3

The noncovariant gauges in 3-form

theories

In this Chapter, we show that how can generating functional of the non-covariant

gauge of Abelian 3-form gauge theory be obtained by the generating functional in the

covariant gauge using FFBRST symmetric transformation. Further, we show the same

connection with the help of BV formulation.

3.1 Abelian 3-form gauge theory

We consider the action of Abelian 3-form gauge theory in (1 + 5) dimensions as follows,

S0 =
1

24

∫
d6x HµνηχH

µνηχ, (3.1)

where Hµνηχ is the field strength (curvature) tensor, described in terms of the totally

antisymmetric tensor gauge field Bµνη, defined as

Hµνηχ = ∂µBνηχ − ∂νBηχµ + ∂ηBχµν − ∂ξBµνη. (3.2)

The given action (3.1) is invariant under the following gauge transformation

δBµνη = ∂µλνη + ∂νληµ + ∂ηλµν , (3.3)

where λµν is an arbitrary antisymmetric transformation parameter. To quantize this

theory with BRST technique, we extend the action (3.1) by introducing the following

15
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(covariant) gauge-fixing and ghost terms:

Sgf+gh =

∫
d6x

[
∂µB

µνηBνη +
1

2
BµνB̃

µν

+ (∂µC̃νη + ∂νC̃ηµ + ∂ηC̃µν) ∂
µCνη

− (∂µβ̃ν − ∂ν β̃µ) ∂µβν −BB2

− 1

2
B2

1 + (∂µC̃
µν) fν − (∂µC

µν) F̃ν

+ ∂µC̃2∂
µC2 + f̃µf

µ − F̃µF µ

+ ∂µβ
µB2 + ∂µφ

µB1 − ∂µβ̃µB
]
, (3.4)

where Cµν and C̃µν are the ghost and anti-ghost fields, respectively, which are fermionic

in nature. The vector field (φµ), antisymmetric auxiliary fields (Bµν , B̃µν) and auxil-

iary fields (B,B1, B2) are bosonic in nature and the fields (fµ, f̃µ, Fµ, F̃µ) are auxiliary

fermionic fields. The complete effective action for the Abelian 3-form gauge theory, is

then written as

Seff = S0 + Sgf+gh. (3.5)

The effective action given in (3.5) is invariant under the following BRST symmetric

transformations:

δbBµνη = −(∂µCνη + ∂νCηµ + ∂ηCµν) δΛ,

δbCµν = (∂µβν − ∂νβµ) δΛ, δbC̃µν = Bµν δΛ,

δbB̃µν = −(∂µfν − ∂νfµ) δΛ, δbβ̃µ = −F̃µ δΛ,

δbβµ = −∂µC2 δΛ, δbFµ = −∂µB δΛ,

δbC̃2 = B2 δΛ, δbf̃µ = ∂µB1 δΛ,

δbC1 = −B δΛ, δbφµ = −fµ δΛ,

δbC̃1 = B1 δΛ, δbM = 0,

M ≡ {C2, fµ, F̃µ, B,B1, B2, Bµν}, (3.6)

where the nature of transformation parameter δΛ is infinitesimal, anticommuting and

global (i.e. it does not depend on space and time). It is easy to check that the given



3.1. Abelian 3-form gauge theory 17

gauge-fixing and ghost part of the effective action given in (3.4), is BRST exact and

hence can be written in terms of BRST variation of the gauge-fixed fermion (ΨL) as

Sgf+gh = sbΨL = sb

∫
d6x [−∂µC̃νηBµνη − 1

2
C̃2B

+
1

2
C1B2 −

1

2
C̃1B1 − Cµν∂µβ̃ν − ∂µC̃2β

µ

+
1

2
C̃µνB̃

µν − F µβ̃µ − f̃µφµ], (3.7)

where the expression of ΨL is given as

ΨL =

∫
d6x ψL =

∫
d6x[−∂µC̃νηBµνη − 1

2
C̃2B

+
1

2
C1B2 −

1

2
C̃1B1 − Cµν∂µβ̃ν − ∂µC̃2β

µ

+
1

2
C̃µνB̃

µν − F µβ̃µ − f̃µφµ]. (3.8)

In the path integral formulation, the generating functional for the 3-form gauge theory

in covariant gauge is defined as,

Zeff =

∫
Dφ eiSeff . (3.9)

Here, the expression of Seff is given by

Seff =
1

24

∫
d6x

[
HµνηχH

µνηχ + ∂µB
µνηBνη +

1

2
BµνB̃

µν

+ (∂µC̃νη + ∂νC̃ηµ + ∂ηC̃µν)∂
µCνη

− (∂µβ̃ν − ∂ν β̃µ)∂µβν −BB2

− 1

2
B2

1 + (∂µC̃
µν)fν − (∂µC

µν)F̃ν

+ ∂µC̃2∂
µC2 + f̃µf

µ − F̃µF µ

+ ∂µβ
µB2 + ∂µφ

µB1 − ∂µβ̃µB
]
. (3.10)

where Dφ indicates the path integral measure which includes all the fields φ, generically.

Next, following the technique discussed in Chapter two, we will generalize the BRST

transformation given in (3.6).
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3.2 Generalized BRST formulation of Abelian

3-form gauge theory

We first, generalize the BRST transformation by making the transformation parameter

finite and field dependent as following:

δbBµνη = −(∂µCνη + ∂νCηµ + ∂ηCµν) Θ[φ],

δbCµν = (∂µβν − ∂νβµ) Θ[φ],

δbC̃µν = Bµν Θ[φ],

δbβ̃µ = −F̃µ Θ[φ],

δbB̃µν = −(∂µfν − ∂νfµ) Θ[φ],

δbβµ = −∂µC2 Θ[φ],

δbFµ = −∂µB Θ[φ],

δbC̃2 = B2 Θ[φ],

δbf̃µ = ∂µB1 Θ[φ],

δbC1 = −B Θ[φ],

δbφµ = −fµ Θ[φ],

δbC̃1 = B1 Θ[φ],

δb$ = 0,

$ ≡ [C2, fµ, F̃µ, B,B1, B2, Bµν ]. (3.11)

This BRST transformation with finite field-dependent parameter Θ[φ] is also symmetry

of the effective action (3.5). However, the path integral measure defined in Eq. (3.9),

is not invariant under such transformation as the BRST parameter is finite and field

dependent in nature. Now, we will compute the Jacobian of the path integral measure

under the BRST transformation (3.11), which helps in obtaining the gauge-fixed action

in non-covariant gauge.



3.3. 3-form gauge theory in non-covariant gauge 19

3.3 3-form gauge theory in non-covariant gauge

In order to obtain the generating functional for 3-form gauge theory in non-covariant

gauge, we choose the infinitesimal field-dependent parameter as follows

Θ′ = iγ

∫
d6y[−C̃νη∂µBµνη + C̃νηηµB

µνη

+ Cµν∂
µβ̃ν − Cµνηµβ̃ν − C̃2∂µβ

µ

+ C̃2ηµβ
µ], (3.12)

where γ is an arbitrary constant parameter. The infinitesimal change in the Jacobian

of functional integral is calculated as

1

J

dJ

dκ
= −iγ

∫
d6y [Bνη∂µB

µνη −BνηηµB
µνη

+ ∂µ(∂µCνη + ∂νCηµ + ∂ηCµν)C̃
νη

− ηµ(∂µCνη + ∂νCηµ + ∂ηCµν)C̃
νη

− (∂µβ̃ν − ∂ν β̃µ)∂µβν + Cµν∂
µF̃ ν

+ (ηµβ̃ν − ην β̃µ)∂µβν − CµνηµF̃ ν

+ B2∂µβ
µ −B2ηµβ

µ − C̃2∂µ∂
µC2 + C̃2ηµ∂

µC2

]
. (3.13)

One can replace the Jacobian J by eiS1 , if S1 satisfies condition (2.7). Now, we make

the following ansatz for functional S1:

S1 =

∫
d6x [ξ1(κ) Bνη∂µB

µνη + ξ2(κ) BνηηµB
µνη

+ ξ3(κ) ∂µ(∂µCνη + ∂νCηµ + ∂ηCµν) C̃
νη

+ ξ4(κ) ηµ(∂µCνη + ∂νCηµ + ∂ηCµν) C̃
νη

+ ξ5(κ) (∂µβ̃ν − ∂ν β̃µ) ∂µβν

+ ξ6(κ) (ηµβ̃ν − ην β̃µ) ∂µβν

+ ξ7(κ) Cµν∂
µF̃ ν + ξ8(κ) Cµνη

µF̃ ν

+ ξ9(κ) B2 ∂µβ
µ + ξ10(κ) B2 ηµβ

µ

+ ξ11(κ) C̃2 ∂µ∂
µ C2 + ξ12(κ) C̃2 ηµ∂

µ C2], (3.14)
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where ξ1, ξ2, ............ξ12 are arbitrary κ dependent constants. This functional S1 together

with the expressions (3.13) and (2.7) leads to∫
Dφ(x) [(ξ′1 + γ)Bνη∂µB

µνη

+ (ξ′2 − γ)BνηηµB
µνη

+ (ξ′3 + γ)∂µ(∂µCνη + ∂νCηµ + ∂ηCµν)C̃
νη

+ (ξ′4 − γ)ηµ(∂µCνη + ∂νCηµ + ∂ηCµν)C̃
νη

+ (ξ′5 − γ)(∂µβ̃ν − ∂ν β̃µ)∂µβν

+ (ξ′6 + γ)(ηµβ̃ν − ην β̃µ)∂µβν

+ (ξ′7 + γ)Cµν∂
µF̃ ν + (ξ′8 − γ)Cµνη

µF̃ ν

+ (ξ′9 + γ)B2∂µβ
µ + (ξ′10 − γ)B2ηµβ

µ

+ (ξ′11 − γ)C̃2∂µ∂
µC2 + (ξ′12 + γ)C̃2ηµ∂

µC2

− βνη∂µ(∂µCνη + ∂νCηµ + ∂ηCµν)Θ′(ξ1 − ξ3)

− βνηηµ(∂µCνη + ∂νCηµ + ∂ηCµν)Θ′(ξ2 − ξ4)

− (∂µF̃ν − ∂νF̃µ)∂µβνΘ′(ξ5 + ξ7)

− (ηµF̃ν − ηνF̃µ)∂µβνΘ′(ξ6 + ξ8)

− B2∂µ∂
µC2Θ′(ξ9 + ξ11)

− B2ηµ∂
µC2Θ′(ξ10 + ξ12)] = 0. (3.15)

Here, all the nonlocal (Θ′ dependent) terms will vanish, if the following conditions are

satisfied:

ξ1 − ξ3 = ξ2 − ξ4 = ξ5 + ξ7 = 0,

ξ6 + ξ8 = ξ9 + ξ11 = ξ10 + ξ12 = 0. (3.16)
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Equating the L.H.S. and R.H.S. of the coefficients of local terms of the Eq. (3.15), we

get the following differential equations:

ξ′1 + γ = 0, ξ′2 − γ = 0,

ξ′3 + γ = 0, ξ′4 − γ = 0,

ξ′5 − γ = 0, ξ′6 + γ = 0,

ξ′7 + γ = 0, ξ′8 − γ = 0,

ξ′9 + γ = 0, ξ′10 − γ = 0,

ξ′11 − γ = 0, ξ′12 + γ = 0. (3.17)

The solution of the above differential equations, satisfying the initial conditions [ ξi(κ =

0) = 0 (i = 1, 2, ..., 12)], are

ξ1 = −γκ, ξ2 = γκ, ξ3 = −γκ,

ξ4 = γκ, ξ5 = γκ, ξ6 = −γκ,

ξ7 = −γκ, ξ8 = γκ, ξ9 = −γκ,

ξ10 = γκ, ξ11 = γκ, ξ12 = −γκ. (3.18)

Putting these values of ξ’s in Eq. (3.14), the specific expression of S1 becomes

S1 =

∫
d6x [−γ κ Bνη∂µB

µνη + γ κ BνηηµB
µνη

− γ κ ∂µ(∂µCνη + ∂νCηµ + ∂ηCµν) C̃
νη

+ γ κ ηµ(∂µCνη + ∂νCηµ + ∂ηCµν) C̃
νη

+ γ κ (∂µβ̃ν − ∂ν β̃µ) ∂µβν

− γ κ (ηµβ̃ν − ην β̃µ) ∂µβν

− γ κ Cµν∂
µF̃ ν + γ κ Cµνη

µF̃ ν

− γ κ B2 ∂µβ
µ + γ κ B2 ηµβ

µ

+ γ κ C̃2 ∂µ∂
µ C2 − γ κ C̃2 ηµ∂

µ C2]. (3.19)
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At κ = 1, the above expression becomes

S1 =

∫
d6x [−γ Bνη∂µB

µνη + γ BνηηµB
µνη

− γ ∂µ(∂µCνη + ∂νCηµ + ∂ηCµν) C̃
νη

+ γ ηµ(∂µCνη + ∂νCηµ + ∂ηCµν) c̃
νη

+ γ (∂µβ̃ν − ∂ν β̃µ) ∂µβν

− γ (ηµβ̃ν − ην β̃µ) ∂µβν

− γ Cµν∂
µF̃ ν + γ Cµνη

µF̃ ν

− γ B2 ∂µβ
µ + γ B2 ηµβ

µ

+ γ C̃2 ∂µ∂
µ C2 − γ C̃2 ηµ∂

µ C2]. (3.20)

Without any loss of generality, we set the arbitrary constant γ = 1 in the above ex-

pression and by adding the expression (3.20) at γ = 1 to the effective action for 3-form

gauge theory in covariant-gauge, we get

Seff + S1(κ = 1) =

∫
d6x

[
1

24
HµνηχH

µνηχ

+ ηµB
µνηBνη +

1

2
BµνB̃

µν

+ (∂µC̃νη + ∂νC̃ηµ + ∂ηC̃µν)η
µCνη

− (ηµβ̃ν − ην β̃µ)∂µβν −BB2

− 1

2
B2

1 + (∂µC̃
µν)fν + Cµνη

µF̃ ν

− C̃2ηµ∂
µC2 + f̃µf

µ − F̃µF µ

+ ηµβ
µB2 + ∂µφ

µB1 − ∂µβ̃µB
]
, (3.21)

which is nothing but the 3-form effective action in a non-covariant gauge. We end this

section by stating that the non-covariant gauge formulation of the 3-form gauge theory

is obtained from the covariant gauge formulation through a FFBRST transformation

with an appropriate finite field dependent parameter. Even though, we have shown

the connection between Lorentz-(covariant)-gauge and axial-(non-covariant)-gauge, our

formulation is valid for the connection between any covariant and non-covariant gauges.
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3.4 Mapping of covariant and non-covariant gauges

in the 3-form gauge theory: BV formulation

We consider the BV formulation for the Abelian 3-form gauge theory to re-establish the

results of the previous section. For this purpose, we express the generating functional

(3.9) in field/anti-field formulation by introducing the anti-field φ? corresponding to

each generic field φ with opposite statistics, as follows

Zeff =

∫
Dφ exp

[
i

∫
d6x

{
1

24
HµνηχH

µνηχ

− B?
µνη(∂

µCνη + ∂νcηµ + ∂ηCµν)

+ C?
µν(∂

µβν − ∂νβµ) + C̃?
µνB

µν

− B̃?
µν(∂

µf ν − ∂νfµ)− β?µ∂µ C2 − β̃?µF̃ µ

− F ?
µ∂

µ B + f̃ ?µ∂
µ B1 + C̃?

2 B2 + C̃?
1 B1

− C?
1 B − φ?µfµ

}]
. (3.22)

The above generating functional can further be written in compact form as

Zeff =

∫
Dφ eiWΨL

(φ,φ?), (3.23)

where WΨL
(φ, φ?) is an extended action for the Abelian 3-form gauge theory in the

covariant gauge corresponding to the gauge-fixed fermion ΨL given in (Eq. (3.8)) with

Grassmann parity 1 and ghost number −1. The generating functional Zeff does not de-

pend on the choice of gauge-fixed fermion. This extended quantum action, WΨL
(φ, φ?),

satisfies rich mathematical relation, which is so-called quantum master equation, given

by

∆eiWΨL
[φ,φ?] = 0, ∆ ≡ ∂r

∂φ

∂r
∂φ?

(−1)ε+1. (3.24)
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The anti-field φ?(= dψL

dφ
) corresponding to the each generic field φ for this particular

theory is obtained from the gauge-fixed fermion (3.8) as

B?
µνη = −∂µC̃νη, C?

µν = −∂µβ̃ν , B̃?
µν =

1

2
C̃µν ,

C̃?
µν =

1

2
B̃µν + ∂ηBµνη, β?µ = −∂µC̃2,

β̃?µ = −Fµ + ∂νCνµ, Fµ? = −β̃µ, f̃ ?µ = −φµ,

C̃?
2 = −1

2
B + ∂µβ

µ, C?
1 =

1

2
B2, C̃?

1 = −1

2
B1,

φ?µ = −f̃µ, B? = −1

2
C̃2, B?

1 = −1

2
C̃1,

B?
2 =

1

2
C1, {B?

µν , F̃
?
µ , f

?
µ, C

?
2} = 0. (3.25)

Now, we construct the infinitesimal field-dependent parameter written in field/anti-field

formulation as

Θ′ = iγ

∫
d6y
[
−B?

µνηB
µνη + B̄?

µνηB
µνη

− C?
µνC

µν + C̄?
µνC

µν − β?µβµ + β̄?µβ
µ
]
, (3.26)

where fields with star (?) are the anti-fields corresponding to the fields satisfying ax-

ial (non-covariant) gauge-fixing condition. Under the FFBRST transformation, corre-

sponding to (3.26), the path integral measure is not invariant and gives rise to a factor

eiS1 , in the functional integral. The expression for functional S1 is calculated with the
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help of eqs. (2.7), (3.13) and (3.26) as

S1 =

∫
d6x [κ B?

µνη(∂
µCνη + ∂νCηµ + ∂ηCµν)

− κ B̄?
µνη(∂

µCνη + ∂νCηµ + ∂ηCµν)

− κ C?
µν(∂

µβν − ∂νβµ) + κ C̄?
µν(∂

µβν

− ∂νβµ)− κ C̃?
µνB

µν + κ ¯̃C?
µνB

µν

+ κ B̃?
µν(∂

µf ν − ∂νfµ)− κ ¯̃B?
µν(∂

µf ν

− ∂νfµ) + κ β?µ∂
µ C2 − κ β̄?µ∂µ C2 + κ β̃?µF̃

µ

− κ ¯̃β?µF̃
µ + κ F ?

µ∂
µB − κ F̄ ?

µ∂
µB

− κ f̃ ?µ∂
µB1 + κ ¯̃f ?µ∂

µB1 − κ C̃?
2 B2

+ κ ¯̃C?
2B2 − κ C̃?

1B1 + κ ¯̃C?
1B1 + κ C?

1B

− κ C̄?
1B + κ φ?µf

µ − κ φ̄?µfµ]. (3.27)

At κ = 1, the above equation reduces to

S1 =

∫
d6x [B?

µνη(∂
µCνη + ∂νCηµ + ∂ηCµν)

− B̄?
µνη(∂

µCνη + ∂νCηµ + ∂ηCµν)

− C?
µν(∂

µβν − ∂νβµ) + C̄?
µν(∂

µβν

− ∂νβµ)− C̃?
µνB

µν + ¯̃C?
µνB

µν

+ B̃?
µν(∂

µf ν − ∂νfµ)− ¯̃B?
µν(∂

µf ν

− ∂νfµ) + β?µ∂
µ C2 − β̄?µ∂µ C2 + β̃?µF̃

µ

− ¯̃β?µF̃
µ + F ?

µ∂
µ B − F̄ ?

µ∂
µ B

− f̃ ?µ∂
µ B1 + ¯̃f ?µ∂

µ B1 − C̃?
2 B2

+ ¯̃C?
2 B2 − C̃?

1 B1 + ¯̃C?
1 B1 + C?

1 B

− C̄?
1 B + φ?µf

µ − φ̄?µfµ]. (3.28)
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The resulting generating functional in the BV formulation is given by

Z ′eff =

∫
Dφ ei{WΨL

+S1(κ=1)},

≡
∫
Dφ eiWΨA , (3.29)

where Z ′eff is the generating functional for the Abelian 3-form gauge theory in the

axial-gauge with gauge-fixing fermion

ΨA =

∫
d6x

[
−ηµC̃νηBµνη − 1

2
C̃2B +

1

2
C1B2

− 1

2
C̃1B1 − Cµνηµβ̃ν − ηµC̃2β

µ +
1

2
C̃µνB̃

µν

− F µβ̃µ − f̃µφµ
]
. (3.30)

The extended action WΨA
for the 3-form gauge theory in axial-gauge also satisfies the

quantum master equation (3.24). Such connection of generating functionals can be

established for any covariant and non-covariant gauges in BV formulation.

3.5 Conclusions

The 3-form gauge theory in non-covariant gauge has been developed with the help of the

finite field dependent BRST transformation. Usual BRST transformations have been

generalized for the Abelian 3-form gauge theory in the covariant gauge. The generating

functional in covariant gauge is connected to that of the non-covariant (axial) gauge

through FFBRST transformation. We established this connection by constructing an

appropriate finite field dependent BRST parameter. However, various non-covariant

gauges like the Coulomb gauge, the light-cone gauge, the planer gauge and the temporal

gauge can also be connected with such formulation. Thus, our formulation enables one

to study the 3-form gauge theory in the non-covariant gauges. We, further, extend our

study in the context of BV formulation.



Chapter 4

Emergence of

Lowenstein-Zimmermann mass

terms for QED3

In this Chapter, we consider the super-renormalizable theory of massless QED in 2+1

dimensions and also discuss its BRST symmetry. Further, we show that the Lowenstein-

Zimmermann mass containing the Lowenstein-Zimmermann parameter (which is im-

portant in the BPHZL renormalization along with the external sources coupled to the

non-linear BRST variations) appear naturally in the theory using FFBRST transfor-

mations.

4.1 The massless QED3

In this section, we reiterate the massless QED3 with and without Lowenstein-

Zimmermann mass terms. The expression of the massless action for QED3, which

is gauge invariant, is given by

S0 =

∫
d3x

[
−1

4
FµνF

µν + iψ̄ γµDµ ψ

]
, (4.1)

where Dµ refers to the covariant derivative defined by Dµ = ∂µ + i e Aµ and e is a

coupling constant. For quantization of the above gauge invariant QED3, we introduce

the following gauge-fixing and corresponding ghost terms:

27
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Sgf+gh =

∫
d3x

[
B ∂µAµ +

ξ

2
B2 + C̄ ∂µ∂

µ C

]
, (4.2)

where B is a Nakanishi-Lautrup auxiliary field, C and C̄ are the ghost and anti-ghost

fields, respectively. Now, the total effective action is given by

Seff = S0 + Sgf+gh. (4.3)

The effective action (4.3) remains invariant under the following BRST transformations:

δb Aµ =
1

e
∂µC δΛ,

δb ψ = iC ψ δΛ,

δb ψ̄ = −iC ψ̄ δΛ,

δb C = 0,

δb C̄ =
1

e
B δΛ,

δb B = 0, (4.4)

where δΛ is an infinitesimal and anticommuting parameter.

Now, we define the gauge invariant Lowenstein-Zimmermann mass term for mass-

less QED3 as follows,

Sm =

∫
d3x

[µ
2

(s− 1) εµνρAµ∂νAρ +m(s− 1) ψ̄ψ
]
. (4.5)

Here, 0 ≤ s ≤ 1 is the Lowenstein-Zimmermann parameter which plays an important

role in BPHZL renormalization program. Now, including this Lowenstein-Zimmermann

mass term, the effective action for QED3 becomes

Smeff = Seff + Sm. (4.6)

The external source terms for the theory is written by
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Sext =

∫
d3x

[
Ω̄ sbψ − sbψ̄ Ω

]
, (4.7)

where Ω and Ω̄ are the sources. The importance of this source term can be seen in

demonstrating the Slavnov-Taylor identity which guarantees the renormalizability of

the theory. The complete action including source term is

ST = Seff + Sm + Sext. (4.8)

This complete action (ST ) is invariant under the same set of BRST transformation as

given in (4.4)

4.2 Emergence of Lowenstein-Zimmermann mass

terms using FFBRST transformation

In this section, we explicitly show how does the Lowenstein-Zimmermann mass term

for the massless QED3 theory emerges using FFBRST formulation. For doing so, we

construct the FFBRST transformation by making the transformation parameter finite

and field-dependent as following:

δb Aµ =
1

e
∂µC Θ[φ],

δb ψ = iC ψ Θ[φ],

δb ψ̄ = −iC ψ̄ Θ[φ],

δb C = 0,

δb C̄ =
1

e
B Θ[φ],

δb B = 0, (4.9)
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where Θ[φ] is an arbitrary field-dependent transformation parameter. We choose a

particular infinitesimal field-dependent parameter Θ′[φ] given as

Θ′ = i

∫
d3x

C̄B

B2

[µ
2

(s− 1) εµνρAµ∂νAρ +m(s− 1) ψ̄ψ
]
. (4.10)

With the help of expression (2.11), we calculate the change in Jacobian under FFBRST

transformation with above parameter as follows,

d

dκ
ln J(κ) =

∫
d3x

[µ
2

(s− 1) εµνρAµ∂νAρ +m(s− 1) ψ̄ψ
]
. (4.11)

In order to replace the Jacobian J → eiS1 , we make an ansatz for the local functional

S1 as following:

S1[φ(x, κ), κ] =

∫
d3x

[
ξ1(κ) εµνρAµ∂νAρ + ξ2(κ) ψ̄ψ

]
, (4.12)

where ξ1(κ) and ξ2(κ) are explicit κ-dependent constant parameters. However, all the

fields depend on κ implicitly. Making use of relation (2.2), we calculate the change in

S1 with respect to κ as follows

dS1[φ(x, κ)]

dκ
=

∫
d3x

[
ξ′1 ε

µνρAµ∂νAρ + ξ′2 ψ̄ψ
]
, (4.13)

where prime denotes the differentiation with respect to κ. The existence of the func-

tional (4.12) is valid when it satisfies the essential requirement given in (2.7) along with

(4.11). This leads to the following condition:

∫
d3x

[(
ξ′1 −

µ

2
(s− 1)

)
εµνρAµ∂νAρ + (ξ′2 −m(s− 1))

]
ψ̄ψ = 0. (4.14)
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Equating each local terms to zero, we get the following differential equations

ξ′1 −
µ

2
(s− 1) = 0,

ξ′2 −m(s− 1) = 0. (4.15)

The solutions of the above equations satisfying the initial condition ξ1(κ = 0) = ξ2(κ =

0) = 0 are

ξ1 =
µ

2
(s− 1)κ, ξ2 = m(s− 1)κ. (4.16)

Plugging in these values of ξ’s back into (4.12), we get the following identification of S1

S1 [φ(x, κ), κ] = κ

∫
d3x

[µ
2

(s− 1) εµνρAµ∂νAρ +m(s− 1) ψ̄ψ
]
. (4.17)

The exact expression of S1 under the FFBRST transformation (i.e. S1|κ=1) is

S1 [φ(x, κ = 1), κ = 1] =

∫
d3x

[µ
2

(s− 1) εµνρAµ∂νAρ + e(s− 1) ψ̄ψ
]
. (4.18)

This S1 extends the effective action of the theory as follows:

Seff + S1(κ = 1) =

∫
d3x

[
−1

4
FµνF

µν + iψ̄Dψ +B ∂µAµ +
ξ

2
B2 + C̄ ∂µ∂

µ C

+
µ

2
(s− 1) εµνρAµ∂νAρ +m(s− 1) ψ̄ψ

]
, (4.19)

which exactly coincides with the effective action given in (4.8). Hence, this justified

our claim of emergence of the Lowenstein-Zimmermann mass term naturally under

celebrated FFBRST technique.

We would like to show how can FFBRST formulation be useful in the renormal-

ization of such theory. To show that, we further apply FFBRST transformation on the

generating functional by choosing the following infinitesimal field-dependent parameter
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Θ′ [φ] = i

∫
d3x [ψ Ω̄− ψ̄ Ω], (4.20)

where Ω̄ and Ω are the external sources corresponding to the non-linear BRST trans-

formation. Following standard FFBRST technique mentioned earlier, we calculate the

infinitesimal change in the Jacobian as follows

d

dκ
ln J(κ) = −

∫
d3x [−sbψ Ω̄ + sbψ̄ Ω]. (4.21)

An ansatz for S1 to write the Jacobian as an exponent is given by

S1[φ(x, κ), κ] =

∫
d3x [ξ3(κ) Ω̄ sbψ + ξ4(κ) sbψ̄ Ω], (4.22)

where ξ3 and ξ4 are arbitrary κ dependent constant. The essential condition given in

(2.7) together with (4.21) and (4.22) yields the following linear differential equations :

ξ′3 − 1 = 0, ξ′4 + 1 = 0. (4.23)

The solutions of above equations satisfying initial boundary conditions are

ξ3 = κ, ξ4 = −κ. (4.24)

With these identification of ξ’s, the expression of S1 at κ = 1 is given by

S1[φ(x, 1), 1] =

∫
d3x [Ω̄ sbψ − sbψ̄ Ω] = Sext. (4.25)

It means that under the FFBRST transformation with parameter (4.20), the effective
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action (within functional integral) changes to

Seff + Sm + S1[φ(x, 1), 1] = ST . (4.26)

Hence, the whole mechanism is, precisely, given by

∫
Dφ eiSeff

FFBRST
−−−− −→

∫
Dφ ei(Seff+Sm) FFBRST

−−−− −→
∫
Dφ ei(Seff+Sm+Sext),(4.27)

where the generic path integral measure (Dφ) is explicitly given by Dφ =

DAµDBDCDC̄DψDψ̄. Therefore, the Lowenstein-Zimmermann mass term and the

external source term are generated by calculating the Jacobian of the path integral

measure under the generalized BRST transformations with appropriate transformation

parameter.

4.3 Conclusions

In this Chapter, we have studied the BRST symmetry for the ultraviolet finite, su-

perrenormalizable theory of massless QED3. Further, we have generalized the BRST

symmetry of the given theory by making the transformation parameter finite and field

dependent. The fascinating feature of FFBRST transformation is that, under change

of variables, it leads to a non-trivial Jacobian for the path integral measure of the gen-

erating functional. This Jacobian, written as eiS1 for some local functional of fields S1,

depends on the choice of finite field-dependent parameter. We have computed the Ja-

cobian for FFBRST transformation with appropriate finite field-dependent parameter.

Remarkably, we have found that the Lowenstein-Zimmermann mass term together with

the external sources for massless QED3 emerge naturally within the functional integral

through the Jacobian of a single FFBRST transformation. The remarkable feature of

FFBRST symmetry is that, any gauge invariant (BRST exact) quantity, can be gener-

ated through the FFBRST symmetry. Although these Lowenstein-Zimmermann terms

are mass terms but are gauge invariant also. Thus, we have seen that the extra physical
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degrees of freedom emerges due to the nonlinear BRST transformations where the pa-

rameter exhibits the extra physical degrees of freedom due to the mass terms. Though,

we have illustrated our results for QED3 only, but certainly these are not limited to a

particular theory. It is a general result and can be applied to any gauge theory to get

gauge invariant mass terms incorporating their dynamics.



Chapter 5

Quantum gauge symmetry of

reducible gauge theory

In this Chapter, we study the quantum gauge symmetry of the reducible (2-form)

gauge theory. Using generalized BRST (FFBRST) symmetry, we show the appearance

of the gaugeon fields in the context of a reducible gauge theory.

5.1 Abelian rank-2 tensor field theory: A

reducible gauge theory

We start with the kinetic part of the Lagrangian density of the Abelian gauge theory

for rank-2 antisymmetric tensor field Bµν , defined by

L0 =
1

12
FµνρF

µνρ, (5.1)

where the field strength tensor is defined as Fµνρ ≡ ∂µBνρ + ∂νBρµ + ∂ρBµν . This

Lagrangian density is invariant under the gauge transformation δBµν = ∂µζν − ∂νζµ.

where ζµ(x) is a vector gauge parameter.

In order to quantize this theory using the BRST transformation, it is necessary to

introduce the following ghost and auxiliary fields: anticommuting vector fields ρµ and

ρ̃µ, a commuting vector field βµ, anticommuting scalar fields χ and χ̃, and commuting

scalar fields σ, ϕ, and σ̃. The BRST transformation for Bµν is defined by replacing ζµ

of the gauge transformation by the ghost field ρµ.

The complete effective Lagrangian density for this theory, in the covariant gauge,

35
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using the Faddeev-Popov method, is given by

LLeff = L0 + Lgf + Lgh, (5.2)

where the gauge-fixing and ghost terms are as follows

Lgf + Lgh = −i∂µρ̃ν(∂µρν − ∂νρµ) + ∂µσ̃∂
µσ + βν(∂µB

µν + λ1β
ν − ∂νϕ)

− iχ̃∂µρ
µ − iχ(∂µρ̃

µ − λ2χ̃). (5.3)

Here λ1 and λ2 are the Lagrangian multiplier fields. The effective Lagrangian density

(5.2) is invariant under the following BRST and anti-BRST transformations (i.e. sb and

sab).

sbBµν = (∂µρν − ∂νρµ),

sbρµ = −i∂µσ, sbσ = 0,

sbρ̃µ = iβµ, sbβµ = 0,

sbσ̃ = χ̃, sbχ̃ = 0,

sbϕ = χ, sbχ = 0, (5.4)

sabBµν = (∂µρ̃ν − ∂ν ρ̃µ),

sabρ̃µ = −i∂µσ̃, sabσ̃ = 0,

sabρµ = −iβµ, sabβµ = 0,

sabσ = χ, sabχ = 0,

sabϕ = −χ̃, sabχ̃ = 0. (5.5)

Here we note that the anti-BRST transformations (sab) are similar to the BRST trans-

formations (sb), where the role of ghost and anti-ghost fields are interchanged with some

modification in the coefficients.
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5.2 Abelian rank-2 tensor field theory in gaugeon

formalism

In this section, we study the Yokoyama gaugeon formalism to analyse the quantum

gauge freedom for the Abelian rank-2 tensor field theory. To analyse the gaugeon

formalism for the Abelian rank-2 tensor field theory, let us start by writting the effective

Lagrangian density for the (3+1) dimensional theory in Landau-gauge

LY =
1

12
FµνρF

µνρ − i∂µρ̃ν(∂µρν − ∂νρµ) + ∂µσ̃∂
µσ + βν(∂µB

µν − ∂νϕ)

+ ε(Y ?
ν + αβν)

2 − (∂µY
?
ν − ∂νY ?

µ )∂µY ν − iχ̃∂µρµ − iχ(∂µρ̃
µ − λ2χ̃), (5.6)

where Yν and Y ?
ν are the gaugeon fields, respectively. The above Lagrangian density

(5.6) is invariant under the following BRST transformations:

δbBµν = (∂µρν − ∂νρµ) δλ,

δbρµ = −i∂µσ δλ,

δbσ = 0,

δbρ̃µ = iβµ δλ,

δbβµ = 0,

δbσ̃ = χ̃ δλ,

δbχ̃ = 0,

δbϕ = χ δλ,

δbχ = 0,

δbYµ = 0,

δbY
?
µ = 0. (5.7)
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Now, we construct the following quantum gauge transformation under which the given

Lagrangian density (5.6) remains form-invariant :

Bµν −→ B̂µν = Bµν + τ(∂µYν − ∂νYµ),

ρµ −→ ρ̂µ = ρµ,

σ −→ σ̂ = σ,

ρ̃µ −→ ˆ̃ρµ = ρ̃µ,

βµ −→ β̂µ = βµ,

σ̃ −→ ˆ̃σ = σ̃,

χ̃ −→ ˆ̃χ = χ̃,

ϕ −→ ϕ̂ = ϕ,

χ −→ χ̂ = χ,

Yν −→ Ŷν = Yν ,

Y ?
ν −→ Ŷ ?

ν = Y ?
ν − τβν , (5.8)

where τ is an infinitesimal commuting transformation parameter. The form-invariance

of the Lagrangian density (5.6), under the quantum gauge transformation (5.8), reflects

the following shift in parameter:

α −→ α̂ = α + τα. (5.9)

Furthermore, following the Yokoyama approach to remove the unphysical gauge and

gaugeon modes of the theory and to define physical states, we impose two subsidiary

conditions (the Kugo-Ojima type and Gupta-Bleuler type) as follows

Qb|phys〉 = 0,

(Y ?
ν + αBν)

(+)|phys〉 = 0, (5.10)

where Qb is the BRST charge. The expression for the BRST charge using Noether’s

theorem is calculated as
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Qb =

∫
d3x

[
−2F 0νρ(∂0ρν − ∂νρ0) + βν(∂

0ρν − ∂νρ0)− ∂νσ(∂0ρ̃ν − ∂ν ρ̃0)

+ χ̃∂0σ − χB0
]
. (5.11)

The Kugo-Ojima type subsidiary condition is essential to remove the unphysical modes

corresponding to gauge field from the total Fock space. However, the Gupta-Bleuler

type condition is used to remove the unphysical gaugeon modes from the physical states.

The second subsidiary condition is valid when the combination (Y ?
ν + αB) satisfies the

following free equation:

∂µ∂
µ(Y ?

ν ) = 0, (5.12)

which we have derived using equations of motion. The free equation (5.12) guarantees

the decomposition of (Y ?
ν +αB) in positive and negative frequency parts. Consequently,

the subsidiary conditions (5.10) warrant the positivity of the semi-definite metric of our

physical state-vector space

〈phys|phys〉 ≥ 0, (5.13)

and, hence, we have a desirable physical subspace on which our unitary physical S-

matrix exists in the quantum Hilbert space.

5.3 BRST symmetric gaugeon formalism

In this section, we discuss the BRST symmetric gaugeon formalism for the Abelian

2-form gauge theory. For this purpose, we first define the Lagrangian density of such a

model as follows:

LY =
1

12
FµνρF

µνρ − i∂µρ̃ν(∂µρν − ∂νρµ) + ∂µσ̃∂
µσ + βν(∂µB

µν − ∂νϕ)

+ ε(Y ?
ν + αβν)

2 − (∂µY
?
ν − ∂νY ?

µ )∂µY ν − iχ̃∂µρµ − iχ(∂µρ̃
µ − λ2χ̃)

− i∂µK
?
ν (∂µKν − ∂νKµ) + ∂µZ

?∂µZ, (5.14)
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where Kν , K
?
ν and Z,Z? are the ghost fields and ghost of ghost fields corresponding to

the gaugeon fields, respectively. The gaugeon fields and respective ghost and ghost of

ghost fields transform, under the BRST transformation, as:

δbYν = Kν δΛ,

δbKν = 0,

δbK
?
ν = iY ?

ν δΛ,

δbY
?
ν = 0,

δbZ
? = 0,

δbZ = 0. (5.15)

Therefore, the gaugeon Lagrangian density (5.14) remains intact under the application

of the combined BRST transformations (5.4) and (5.15). The BRST charge, corre-

sponding to the symmetry transformations (5.4) and (5.15), is given by

Qb =

∫
d3x

[
−2F 0νρ(∂0ρν − ∂νρ0) + βν(∂

0ρν − ∂νρ0)− ∂νσ(∂0ρ̃ν − ∂ν ρ̃0)

+ χ̃∂0σ − χB0 −Kν(∂
0Y ?ν − ∂νY ?0) + Y ?

ν (∂0Kν − ∂νK0)
]
. (5.16)

This BRST chargeQb annihilates the physical subspace of the Vphys of the total quantum

Hilbert space as given below

Qb|phys〉 = 0. (5.17)

This single subsidiary condition of Kugo-Ojima type removes both the unphysical gauge

modes as well as the unphysical gaugeon modes.

The gaugeon Lagrangian density (5.14) also admits the following quantum gauge



5.3. BRST symmetric gaugeon formalism 41

transformations:

Bµν −→ B̂µν = Bµν + τ(∂µYν − ∂νYµ),

ρµ −→ ρ̂µ = ρµ + τKµ,

σ −→ σ̂ = σ,

ρ̃µ −→ ˆ̃ρµ = ρ̃µ,

βµ −→ β̂µ = βµ,

σ̃ −→ ˆ̃σ = σ̃,

χ̃ −→ ˆ̃χ = χ̃,

ϕ −→ ϕ̂ = ϕ,

χ −→ χ̂ = χ,

Yν −→ Ŷν = Yν ,

Y ?
ν −→ Ŷ ?

ν = Y ?
ν − τβν ,

K?
ν −→ K̂?

ν = K?
ν − τ ρ̃µ,

Kν −→ K̂ν = Kν ,

Z −→ Ẑ = Z,

Z? −→ Ẑ? = Z. (5.18)

Under the quantum gauge transformation (5.18), the Lagrangian density (5.14) is form-

invariant. In other words, we have the following

L(φA, α) = L(φ̂A, α̂), (5.19)

where

α̂ = α + τα. (5.20)

Here we observe that the quantum gauge transformations (5.18) commute with the

BRST transformations mentioned in (5.15). It confirms that the quantum Hilbert

space, spanned by the physical states (that are annihilated by BRST charge), is also
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invariant under the quantum gauge transformations, i.e.,

Q̂b = Qb (5.21)

Hence, the physical subspace V̂phys is also invariant under the quantum gauge transfor-

mation.

5.4 FFBRST symmetric Gaugeon formalism

In order to obtain the gaugeon formalism for Abelian 2-form gauge theory, we con-

struct FFBRST transformations, corresponding to the BRST transformations (5.18)

and (5.15) using the technique, discussed in Chapter two. The infinitesimal field

dependent transformation parameter is chosen by

Θ′ =

∫
d3x[−ρ̄µ

βµ
β2
µ

(Y ?
ν )2 − εα2ρ̄µ

βµ
β2
µ

(βν)
2 − ερ̄µ

βµ
β2
µ

(Y ?
µ β

µ)

− ρ̄µ
βµ
β2
µ

(∂µY
?
ν − ∂νY ?

µ )∂µY ν ]. (5.22)

where Θ′[φ] is infinitesimal field-dependent parameter.

We calculate the infinitesimal change in the Jacobian of functional integral as

1

J

dJ

dκ
= i[(Y ?

ν )2 + εα2(βν)
2 + 2εα(Y ∗µ β

µ)− (∂µY
∗
ν − ∂νY ∗µ )∂µY ν ]. (5.23)

We make the following ansatz for functional S1 in this case:

S1[φ(x, κ), κ] = [ξ1(κ)Y ∗ν
2 + ξ2(κ)β2

ν + ξ3(κ)Y ∗µ β
µ + ξ4(κ)∂µY

∗
ν ∂

µY ν

+ ξ5(κ)∂νY
∗
µ ∂

µY ν ]. (5.24)

The Jacobian J can be written as eiS1 when the condition (idS1

dκ
− 1

J
dJ
dκ

) = 0 is
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satisfied. Here

i
dS1

dκ
− 1

J

dJ

dκ
= [ξ′1(κ)− 1]Y 2

ν + [ξ′2(κ)− εα2]β2
µ + [ξ′3(κ)− 2εα]Y ∗µ β

µ

+ [ξ′4(κ) + 1]∂µY
∗
ν ∂

µY ν + [ξ′5(κ)− 1]∂νY
?
µ ∂

µY ν = 0. (5.25)

Equating the coefficient of each local term to zero, we obtain

ξ′1(κ)− 1 = 0,

ξ′2(κ)− εα2 = 0,

ξ′3(κ)− 2εα = 0,

ξ′4(κ) + 1 = 0,

ξ′5(κ)− 1 = 0. (5.26)

The solutions of the above differential equations are

ξ1(κ) = κ,

ξ2(κ) = εα2κ,

ξ3(κ) = 2εακ,

ξ4(κ) = −κ,

ξ5(κ) = κ. (5.27)

After plugging in the values of ξ1(κ), ξ2(κ), ξ3(κ), ξ4(κ) and ξ5(κ) into equation (5.24),

we obtain the following

S1[φ(x, κ), κ] = Y ∗ν
2κ+ εα2(βν)

2κ+ 2εα(Y ∗µ β
µ)κ− (∂µY

∗
ν − ∂νY ∗µ )∂µY νκ. (5.28)

At κ = 1, it reduces to the following
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S1[φ(x, 1), 1] = Y ∗ν
2 + εα2(βν)

2 + 2εα(Y ∗µ β
µ)− (∂µY

∗
ν − ∂νY ∗µ )∂µY ν . (5.29)

After adding this S1 (at κ = 1) in the effective action of the Abelian 2-form gauge

theory, we obtain

S1[φ(x, 1), 1] + Seff = SYeff , (5.30)

where SYeff is the effective action of gaugeon formalism for the Abelian 2-form gauge

theory.

5.5 Conclusions

Starting from the most general gauge-fixing Lagrangian density (including the gaugeon

fields), we have presented a general form of the BRST symmetric gaugeon formalism for

the reducible gauge theory. This most general gauge-fixing Lagrangian density possesses

the quantum gauge symmetry under which the Lagrangian remains form-invariant. The

theory contains two gauge parameters from which one gets shifted by the quantum

gauge transformation. By introducing the FP ghosts and ghosts of ghosts (correspond-

ing to the gaugeon fields), we have provided a BRST symmetric gaugeon formalism

for the Abelian 2-form gauge theory. The BRST symmetry enables us to improve the

Yokoyama subsidiary conditions by replacing these to a single Kugo-Ojima type sub-

sidiary condition. We have found that the quantum gauge transformation commutes

with the BRST transformation. As a result, the BRST charge is invariant, and thus,

the physical subspace is also gauge invariant. Finally, using FFBRST transformation,

we have shown that we can generate gaugeon fields in the reducible gauge theory.



Chapter 6

BF models in different gauges

In this Chapter, we consider the BRST symmetric four dimensional BF theory, a topo-

logical theory, containing antisymmetric tensor fields. Further, we generalize the BRST

transformation into finite field-depend transformation by making the transformation

parameter finite and field-dependent. Applying the resulting generalized BRST trans-

formation on the generating functional, we get an extra piece which changes the BRST

exact part of the action due to the Jacobian of functional measure. For an specific choice

of finite field- dependent parameter, the generalized BRST transformation connect the

Landau-gauge to axial-gauge for BF model. In the last section of this Chapter, we

show that the gaugeon fields can be incorporated into the Lagrangian density of the BF

model using FFBRST formulation.

6.1 BRST symmetric four dimensional BF theory

We consider the BF model described by the classical action

Sinv = −1

4

∫
d4x εµνρσ F a

µν B
a
ρσ. (6.1)

This action describes the interaction between a two form field Ba
µν and a gauge field

Aaµ. The field strength tensor is defined as

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAaµA

a
ν . (6.2)

For quantization of the BF theory, one needs a gauge-fixing term and induced ghost

terms in the Landau-gauge as follows

45
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Sgf+gh =

∫
d4x

[
(Ba∂µAaµ + C̄a∂µ(DµC)a + haν(∂µBa

µν) + wa∂µξaµ + haµ(∂µea)

+ waλa + (∂µξ̄aµ)λa − (∂µφ̄a)[(Dµφ)a + fabcCbξcµ]

− (∂µξ̄aν)[(Dµξν)
a − (Dνξµ)a + fabcBb

µνC
c]

+
1

2
fabcεµνρσ(∂µξ̄

a
ν )(∂ρξ̄

b
σ)φc)

]
. (6.3)

The complete effective action for the BF theory in the Landau-(covariant)-gauge, is

given by

Seff =

∫
d4x

[
− 1

4
(εµνρσF a

µνB
a
ρσ) + (Ba∂µAaµ)

+ C̄a∂µ(DµC)a + haν(∂µBa
µν) + wa∂µξaµ + haµ(∂µea)

+ waλa + (∂µξ̄aµ)λa − (∂µφ̄a)[(Dµφ)a + fabcCbξcµ]

− (∂µξ̄aν)[(Dµξν)
a − (Dνξµ)a + fabcBb

µνC
c]

+
1

2
fabcεµνρσ(∂µξ̄

a
ν )(∂ρξ̄

b
σ)φc)

]
. (6.4)

The above effective action (6.4) is invariant under the following BRST symmetric trans-

formations

δbA
a
µ = −(DµC)a δΛ,

δbC
a =

1

2
fabcCbcc δΛ,

δbξ
a
µ = (Dµφ)a + fabcCbξcµ δΛ,

δbφ
a = fabcCbφc δΛ,

δbB
a
µν = −(Dµξν −Dνξµ)a − fabcBb

µνC
c + fabcεµνρσ(∂ρξ̄bσ)φc δΛ,

δbξ̄
a
µ = haµ δΛ,

δbC̄
a = Ba δΛ,
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δbφ̄
a = ωa δΛ,

δbe
a = λa δΛ,

δbh
a
µ = 0,

δbB
a = 0,

δbω
a = 0,

δbλ
a = 0, (6.5)

where the nature of transformation parameter δΛ is infinitesimal, anti-commuting and

global (i.e. it does not depend on space and time). In the path integral formulation, the

generating functional for the effective action (6.4) of the the BF model in the Landau

gauge is defined as

ZL
eff =

∫
Dφ eiSeff , (6.6)

where Dφ indicates the path integral measure which includes all the fields φ, generically.

Next, we will generalize the BRST transformation (6.5) by following the technique

discussed in Chapter two.

6.2 FFBRST formulation of BF model

In this section, we generalize the BRST transformations (6.5) by making the transfor-

mation parameter finite and field-dependent. Hence, the finite field-dependent BRST

transformations for the BF model is constructed as
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δbA
a
µ = −(DµC)a Θ[φ],

δbC
a =

1

2
fabcCbcc Θ[φ],

δbξ
a
µ = (Dµφ)a + fabcCbξcµ Θ[φ],

δbφ
a = fabcCbφc Θ[φ],

δbB
a
µν = −(Dµξν −Dνξµ)a − fabcBb

µνC
c + fabcεµνρσ(∂ρξ̄bσ)φc Θ[φ],

δbξ̄
a
µ = haµ Θ[φ],

δbC̄
a = Ba Θ[φ],

δbφ̄
a = ωa Θ[φ],

δbe
a = λa Θ[φ],

δbh
a
µ = 0,

δbB
a = 0,

δbω
a = 0,

δbλ
a = 0. (6.7)

This BRST transformation with finite field-dependent parameter Θ[φ] is also symmetry

of the effective action (6.4). However, the path integral measure, defined in Eq. (6.6),

is not invariant under such transformation as the BRST parameter is finite and field-

dependent in nature. Now, we will compute the Jacobian of the path integral measure

under the generalized BRST transformation (6.7) which helps to connect the effective

action of the BF model from Landau-gauge to axial-gauge.

6.3 An application of FFBRST transformation to

connect from Landau-gauge to axial-gauge

In order to obtain the generating functional for the BF model in axial-gauge, we choose

the following infinitesimal field-dependent parameter
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Θ[φ] =

∫ 1

0

dκ′ Θ′[φ(κ′)] = −i
∫ 1

0

dκ

∫
d4x [C̄a(∂µAaµ − ηµAaµ)− φ̄a(∂µξaµ − ηµξaµ)

+ ξ̄aν(∂µBa
µν − ηµBa

µν) + ξ̄aµ(∂µe
a − ηµea) + φ̄aλa]. (6.8)

We calculate the Jacobian J [φ] for the above Θ′ exploiting following the relation as

given in Ref. [73]

J = exp i

∫
d4x

∑
φ

±sbφ(x)
δ

δφ(x)
[Θ′[φ]]

= exp i

∫
d4x
[
[(−DµC

a)∂µC̄a − ηµC̄a)−Ba(∂µC̄a − ηµC̄a − wa(∂µξaµ − ηµξaµ)]

− [(Dµφ)a + fabcCbξcµ][∂µφ̄a + ηµφ̄a])− hµa(∂νBa
µν − ηνBa

µν)

+ [−(Dµξν −Dνξµ)a − fabcBb
µνC

c + fabcεµνρσ∂
ρ
µξ̄

σbµφc](∂µξ̄νa − ηµξ̄νa)

− hµa(∂µe
a − ηµea) + λa(∂µξ̄

µa − ηµξ̄µa)− waλa
]
. (6.9)

Therefore, under the FFBRST transformation, given in Chapter two, the generating

functional changes as

ZL =

∫
Dφ′ eiSext[φ′] =

∫
J(φ)Dφ eiSext[φ]

=

∫
Dφ exp

(
i

∫
d4x

[
Lext + (−DµC

a)(∂µC̄a − ηµC̄a)−Ba(∂µC̄a − ηµc̄a)

− ωa(∂µξaµ − ηµξaµ)− [(Dµφ)a + fabcCbξcµ][∂µφ̄a + ηµφ̄a]− hµa[(∂νBa
µν)

− (ηνBa
µν)] + [−(Dµξν −Dνξµ)a − fabcBb

µνC
c

+ fabcεµνρσ∂
ρ · ξ̄σbφc](∂µξ̄νa − ηµξ̄νa)− hµa(∂µea − ηµea)

+ λa(∂µξ̄
µa − ηµξ̄µa)− ωaλa

)]
=

∫
Dφ eiS′

ext[φ] = ZA, (6.10)

where ZA is the generating functional for the axial-gauge. Here, in the intermediate

steps, we have utilized the relation which we have used in Chapter two. This is nothing

but the generating functional of the BF model in the axial-gauge condition. This shows

that the field-dependent BRST transformation changes generating functional from one

gauge to another.
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6.4 An application of FFBRST transformation to

generate gaugeon modes in the BF model

In this section, we study the Yokoyama gaugeon formalism to analyse the quantum

gauge freedom for the BF model. To analyse the gaugeon formalism for the BF model,

let us start with the effective Lagrangian density for (3+1) dimensional theory in the

Landau-gauge

LY = −1

4

∫
d4x[εµνρσF a

µνB
a
ρσ − (Ba∂µAaµ + C̄a∂µ(DµC)a + haν(∂µBa

µν)

+ wa∂µξaµ + haµ(∂µea) + waλa + (∂µξ̄aµ)λa − (∂µφ̄a)[(Dµφ)a + fabcCbξcµ]

− (∂µξ̄aν)[(Dµξν)
a − (Dνξµ)a + fabcBb

µνC
c]

+
1

2
fabcεµνρσ(∂µξ̄

a
ν )(∂ρξ̄

b
σ)φc)∂νρµa) + ε(Y ?a

ν + αahaν)
2

− (∂µY
?a
ν − ∂νY ?a

µ )∂µY aν − ∂µY ?a∂µY a +
ε

2
(Y ?a + αaBa)2], (6.11)

where Y a
ν and Y ?a

ν are the gaugeon fields, respectively. For introducing gaugeon fields

in the BF model, we choose Θ′ as

Θ′ =

∫
d4x[−ξ̄aµ

haµ
(hbσ)2

(Y ∗ν)
2 − ε(αa)2ξ̄aµ

haµ
(hbσ)2

(haν)
2 − εξ̄aµ

haµ
(hbσ)2

(Y ∗ν h
ν)

− ξ̄aµ
haµ

(hbσ)2
(∂αY

?a
ν − ∂νY ?a

α )∂αY νa + ξ̄aµ
haµ

(hbσ)2
(∂νY

?a∂νY a)

+
ε

2
(Y ?a + αaBa)2]. (6.12)

Using this Θ′, the expression of the Jacobian J , is given as

J = exp i

∫
d4x[(∂µY

?a
ν − ∂νY ?a

µ )∂µY νa +
ε

2
(Y ?a

ν + αahaν)
2

− ∂µY
?a∂µY a +

ε

2
(Y ?a + αaBa)2]. (6.13)

After using the condition (2.6), (2.7) and (2.8), given in Chapter two, we get∫
Dφ eiSeff+S1[φ(x,1),1] =

∫
Dφ eSY

eff , (6.14)
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where SYeff is the effective action of the gaugeon formalism for the BF model.

6.5 Conclusions

In this Chapter, we have discussed the BRST quantization of BF model in the Landau-

gauge. Further, to analyse the quantum gauge freedom for the BF model, we have

introduced the gaugeon modes into the Lagrangian density. Remarkably, the resulting

Lagrangian density admits the quantum gauge transformation under which a natural

shift occurs for gauge parameter. We have removed these unphysical modes by intro-

ducing two subsidiary conditions. Furthermore, we have investigated the generalized

BRST transformation by making the transformation parameter finite and field depen-

dent. Such generalized transformations are not symmetry of the functional measure.

We have calculated the explicit form of the Jacobian of functional measure under the

generalized BRST transformation. For an specific choice of finite field-dependent pa-

rameter, it connects the Landau-gauge to the axial-gauge. Further, we have also shown

that, for an appropriate choice of the infinitesimal field-dependent parameter, gaugeon

modes appear from the Jacobian under the generalized BRST transformation.



Chapter 7

A superspace description of

Chern-Simons theory in BV

formulation

In this Chapter, we study the superspace formulation of Chern-Simons theory in

field/anti-field formulation.

7.1 Chern-Simons effective theory

We start this section by considering the Lagrangian density of the CS theory in (2 +

1) flat space-time dimensions, given as

LCS = −Tr

[
k

4π
εµνρ

(
Aµ∂νAρ −

2i

3
AµAνAρ

)]
, (7.1)

where k is the inverse of the coupling constant and Aµ is a gauge field in the Lie-

algebraic space. The Lagrangian density (7.1) is gauge invariant under the following

gauge transformation

δAµ = Dµθ = ∂µλ+ i[λ,Aµ]. (7.2)

Here λ is a Lie algebra-valued local parameter. It is well known that there are gauge

redundancy due to gauge symmetry. In order to fix the redundancy of gauge freedom

52



7.1. Chern-Simons effective theory 53

in the CS theory, we adopt here the axial-gauge.

ηµAµ = 0, (7.3)

where nµ is an arbitrary constant vector. To implement this gauge condition (7.3) into

the CS theory, we add the following expressions for gauge-fixing and corresponding

ghost terms to the classical Lagrangian density:

Lgf = Tr (B ηµAµ) ,

Lgh = −Tr
(
C̄ ηµDµC

)
, (7.4)

where C and C̄ are the FP ghost and anti-ghost fields respectively. Now, the effective

Lagrangian density for CS theory, in axial gauge, is given by

L = LCS + Lgf + Lgh, (7.5)

which remains invariant under the following nilpotent BRST transformations:

δbAµ = DµC = ∂µC + i[C,Aµ],

δbC = iC2,

δbC̄ = B,

δbB = 0. (7.6)

Here we have followed the adjoint representation where the notation C2 is defined as

C2 ≡ ifabcCbCc.

The combination of the gauge-fixing and ghost terms are BRST exact and hence, can

be written in terms of the BRST variation of gauge-fixing fermion, Ψ =
(
ηµνC̄nµAν

)
,

as follows

Lgf + Lgh = Tr[s
(
ηµνC̄nµAν

)
], (7.7)
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where ηµν is the Minkowski metric of the 3-dimensional flat space-time. For the Landau

(covariant) gauge choice, the expression of gauge-fixing and ghost terms respectively are:

L′gf = Tr (B∂µAµ) ,

L′gh = −Tr
(
C̄∂µDµC

)
. (7.8)

Now, adding the above gauge-fixing and ghost terms in the Lagrangian density of the

kinetic part of CS theory, the total Lagrangian density in the Landau gauge becomes

L′ = LCS + L′gf + L′gh = LCS + Tr[s
(
ηµνC̄∂µAν

)
], (7.9)

which also remains invariant under the same set of BRST transformation (7.6).

7.2 Extended BRST invariant Lagrangian density

In this section, we analyse the extended BRST transformations for the CS theory in

BV formulation by extending all the fields from its original value by tilde fields. The

advantage of doing so is that the anti-fields get identifications naturally. We start the

analysis by shifting all the fields from their original values as

Aµ −→ Aµ − Ãµ C −→ C − C̃ C̄ −→ C̄ − ˜̄C B −→ B − B̃. (7.10)

Under such shifting of fields, the Lagrangian density (7.5) and (7.9), respectively, also

get shifted as follows:

L̃ = L(Aµ − Ãµ, C − C̃, C̄ − C̄, B − B̃), (7.11)

L̃′ = L′(Aµ − Ãµ, C − C̃, C̄ − C̄, B − B̃). (7.12)
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This shifted Lagrangian density remains invariant under the BRST transformation

in tandem with shift symmetry transformation, commonly known as extended BRST

transformation. The extended BRST symmetry transformations of Lagrangian density

(7.2) admit the following extended BRST symmetry transformations

sbAµ = ψµ,

sbÃµ = ψµ −Dµ(C − C̃),

sbC = ε,

sbC̃ = ε− i(C − C̃)2,

sbC̄ = ε̄,

sb
˜̄C = ε̄− (B − B̃),

sbB = ρ,

sbB̃ = ρ, (7.13)

where ψµ, ε, ε̄ and ρ are the ghost fields associated with the shift symmetry for Aµ, C, C̃

and B, respectively. To preserve the nilpotency of extended BRST symmetry (7.13),

the ghost fields are required to have the following BRST transformation:

sbψ = 0,

sbε = 0,

sbε̄ = 0,

sbρ = 0. (7.14)

To make our theory ghost-free, we are required to introduce the anti-fields corresponding

to each fields A?µ, C
?, C̄? and B? of the theory. The BRST symmetric transformations

of the anti-fields are given by
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sbA
?
µ = −ζµ,

sbC
? = −σ,

sbC̄
? = −σ̄,

sbB
? = −ῡ, (7.15)

where ζµ, σ, σ̄ and ῡ are the Nakanishi-Lautrup type auxiliary fields corresponding to the

shifted fields Ãµ, C̃,
˜̄C and B̃, which have the following BRST symmetry transformation:

sbζµ = 0,

sbσ = 0,

sbσ̄ = 0,

sbῡ = 0. (7.16)

Now, our original theory can be recovered by adding a gauge-fixing term corresponding

to the shift symmetry in such a way that all the tilde fields vanish. In order to do so,

we add the following gauge-fixed Lagrangian density in the shifted Lagrangian density

(7.2):

L̃gf+gh = Tr
[
−ζµÃµ − A?µ[ψµ −Dµ(C − C̃)]− σ ˜̄C + C?[ε̄− (B − B̃)]

− σ̄C̃ + C̄?[ε− i(C − C̃)2]− ῡB̃ −B?ρ
]
. (7.17)

The gauge-fixed Lagrangian density L̃gf+gh, given in (7.17), is also invariant under the

extended BRST symmetry transformation (7.13). By performing equations of motion

of auxiliary fields in the above expression, we obtain

L̃gf+gh = Tr
[
−A?µ(ψµ −DµC) + C?(ε̄−B) + C̄?(ε− iC2)−B?ρ

]
. (7.18)
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Since the gauge-fixing and ghost terms of the Lagrangian density (7.18) are BRST

exact, these can be expressed in terms of a general gauge-fixing fermion Ψ as

Tr(sbΨ) = Tr

[
sbAµ

δΨ

δAµ
+ sbC

δΨ

δC
+ sbC̄

δΨ

δC̄
+ sbB

δΨ

δB

]
,

= Tr

[
− δΨ

δAµ
ψµ +

δΨ

δC
ε+

δΨ

δC̄
ε̄− δΨ

δB
ρ

]
. (7.19)

After adding equations (??), (7.18) and (7.19) together, we get the complete effective

Lagrangian density for the CS theory in the axial-gauge which respects the extended

BRST symmetry. This complete Lagrangian density is

Leff = L̃+ Lgf + Lgh + L̃gf+gh,

= L̃+ Tr

[(
−A?µ −

δΨ

δAµ

)
ψµ +

(
C̄? +

δΨ

δC

)
ε+

(
C? +

δΨ

δC̄

)
ε̄

+

(
−B? − δΨ

δB

)
ρ+ A?µD

µC − C?B − iC̄?C2

]
. (7.20)

We can obtain the anti-fields by using equation of motion of the ghost fields correspond-

ing to the shift symmetry as follows:

A?µ =
δΨ

δAµ
,

C̄? = −δΨ
δC

,

C? = −δΨ
δC̄

,

B? =
δΨ

δB
. (7.21)

The anti-fields, which we have obtained from the gauge-fixing fermions Ψ (corresponding

to axial-gauge (given in 7.7)), have the following explicit expressions:
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A?µ = ηµνC̄n
ν ,

C̄? = 0,

C? = ηµνnµAν ,

B? = 0. (7.22)

Plugging these values of the anti-ghost fields into (7.20), we recover the Lagrangian

density of our original CS theory in axial-gauge. The expressions of the anti-fields for

the gauge-fixing fermion corresponding to the Landau gauge (given in 7.9), are given

by

A?µ = −ηµν∂νC̄,

C̄? = 0,

C? = ηµν∂µAν ,

B? = 0. (7.23)

From these values of the anti-fields (7.23), we can recover the Lagrangian density of the

CS theory in the Landau gauge.

7.3 Extended BRST invariant superspace

description

In this section, we study the extended BRST invariant CS theory in a superspace

labelled by the coordinates (x, θ) where θ is Grassmannian in nature and xµ is usual

space-time in (2+1) dimensions. A superspace description for the extended BRST

invariant theory is obtained by defining the superfields of the form:
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Aµ(x, θ) = Aµ + θψµ,

Ãµ(x, θ) = Ãµ + θ[ψµ −Dµ(C − C̃)],

χ(x, θ) = C + θε,

χ̃(x, θ) = C̃ + θ[ε− i(C − C̃)2],

χ̄(x, θ) = C̄ + θε̄,

˜̄χ(x, θ) = ˜̄C + θ[ε̄− (B − B̃),

B(x, θ) = B + θρ,

B̃(x, θ) = B̃ + θρ. (7.24)

The expressions of the super-anti-fields, using the extended BRST transformation, cor-

responding to the anti-fields are defined by

Ã?µ(x, θ) = A?µ − θζµ,

χ̃?(x, θ) = C? − θσ,
˜̄χ?(x, θ) = C̄? − θσ̄,

B̃?(x, θ) = B? − θῡ. (7.25)

We calculate the following expressions by utilizing the above superfields and super-anti-

fields:

δ(Ã?µÃ
µ)

δθ
= −A?µ[ψµ −Dµ(C − C̃)]− ζµÃµ,

δ( ˜̄χ?χ̃)

δθ
= C̄?[ε− i(C − C̃)2]− σ̄C̃,

δ( ˜̄χχ̃?)

δθ
= −σ ˜̄C + C?[ε̄− (B − B̃)],

δ(B̃?B̃)

δθ
= −B?ρ− ῡB̃. (7.26)
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By combining all the equations of above expressions (7.26), we get

Tr

[
δ

δθ
(Ã?µÃ

µ + ˜̄χ?χ̃+ ˜̄χχ̃? + B̃?B̃)

]
= Tr

[
−A?µ[ψµ −Dµ(C − C̃)]− ζµÃµ

+ C̄?[ε− i(C − C̃)2]− σ̄C̃ − σ ˜̄C

+ C?[ε̄− (B − B̃)]−B?ρ− ῡB̃
]
, (7.27)

which is nothing but the shifted gauge-fixed Lagrangian density L̃gf+gh (7.17). Now, we

can define the general super-gauge-fixing fermion in superspace formulation as follows,

Φ(x, θ) = Ψ(x) + θ(sΨ). (7.28)

Further, the above equation can be expressed in the following way:

Φ(x, θ) = Ψ(x) + θ

(
− δΨ

δAµ
Ψµ +

δΨ

δC
ε+

δΨ

δC̄
ε̄− δΨ

δB
ρ

)
. (7.29)

Hence, the original gauge-fixed Lagrangian density in the superspace can be defined as

the left derivative of the super-gauge-fixing fermion with respect to θ, i.e. Tr
[
δΦ(x,θ)
δθ

]
.

We write the effective Lagrangian density for the CS theory in the superspace as follows

Lgen = L̃+ Tr

[
δ

δθ
(Ã?µÃ

µ + ˜̄χ?χ̃+ ˜̄χχ̃? + B̃?B̃ + Φ)

]
. (7.30)

This compact expression indicates the BV Lagrangian density of the extended CS theory

in superspace which is invariant under the extended BRST transformations.



7.4. Extended anti-BRST Lagrangian density 61

7.4 Extended anti-BRST Lagrangian density

In this section, we construct the expression of the extended anti-BRST transformation

under which the extended Lagrangian density remains invariant. This is given by

s̄bAµ = A?µ +Dµ(C̄ − ˜̄C),

s̄bÃµ = A?µ,

s̄bC = C? + (B − B̃),

s̄bC̃ = C?,

s̄bC̄ = (C̄? − ˜̄C?) + i(C̄ − ˜̄C)2,

s̄bB̃ = B?,

s̄B = B?. (7.31)

Under the extended anti-BRST symmetry transformations, the expression of ghost fields

associated with the shift symmetry transform as

sabψµ = ζµ,

sabε = σ,

sabε̄ = σ̄,

sabρ = ῡ. (7.32)
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The BRST transformations of the anti-fields of the auxiliary fields associated with the

shift symmetry, are given by

sabζµ = 0,

sabA
?
µ = 0,

sabσ = 0,

sabC
? = 0,

sabσ̄ = 0,

sabC̄
? = 0,

sabῡ = 0,

sabB
? = 0. (7.33)

In axial-gauge as well as Landau-gauge of the CS theory, the anti-gauge-fixing fermions

are defined respectively as

Ψ̄ = ηµνCnµAν ,

Ψ̄′ = ηµνC∂µAν . (7.34)

The anti-BRST variations of these gauge-fixing fermions give the corresponding gauge-

fixing and ghost parts of the complete Lagrangian density.

7.5 Extended BRST and anti-BRST invariant

superspace

In this section, we write the extended BRST and anti-BRST invariant Lagrangian

density in the superspace with the help of two Grassmannian coordinates θ and θ̄.

Requiring the field strength to vanish along the unphysical directions θ and θ̄, we

determine the superfields in the following forms:
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Aµ(x, θ, θ̄) = Aµ(x) + θψµ + θ̄[A?µ +DµC̄] + θθ̄[ζµ + ∂µε̄],

Ãµ(x, θ, θ̄) = Ãµ(x) + θ[ψµ −Dµ(C − C̃)] + θ̄A?µ + θθ̄ζµ,

χ(x, θ, θ̄) = C(x) + θε+ θ̄[C? + (B − B̃)] + θθ̄σ,

χ̃(x, θ, θ̄) = C̃(x) + θ[ε− iCC] + θ̄C? + θθ̄σ,

χ̄(x, θ, θ̄) = C̄(x) + θε̄+ θ̄[C̄? + iC̄C̄] + θθ̄σ̄,

˜̄χ(x, θ, θ̄) = ˜̄C(x) + θ[ε̄−B] + θ̄C̄? + θθ̄σ̄,

B(x, θ, θ̄) = B(x) + θρ+ θ̄B? + θθ̄ῡ,

B̃(x, θ, θ̄) = B̃(x) + θρ+ θ̄B? + θθ̄ῡ. (7.35)

Using above expressions of superfields, we calculate the following relation:

−1

2
Tr

[
∂

∂θ̄

∂

∂θ
(ÃµÃ

µ + χ̃ ˜̄χ+ B̃B̃)

]
= Tr

[
−ζµÃµ − A?µ[ψµ −Dµ(C − C̃)]− σ ˜̄C

+ C?[ε̄− (B − B̃)]− σ̄C̃ + C̄?[ε− i(C − C̃)2]

− ῡB̃ −B?ρ
]
,

= L̃gf+gh, (7.36)

which is nothing but the shifted gauge-fixed Lagrangian density. It is obvious that the

above gauge-fixed Lagrangian density is invariant under both the extended BRST as

well as the anti-BRST transformations. Now, we define the general super-gauge-fixing

fermion for the extended BRST and the anti-BRST invariant theory as follows

Φ(x, θ, θ̄) = Ψ(x) + θ(sbΨ) + θ̄(sabΨ) + θθ̄(sbsabΨ). (7.37)

This yields the original gauge-fixing and ghost part of the effective Lagrangian density as

Tr
[
∂
∂θ

[
sb(θ̄)Φ(x, θ, θ̄)

]]
. Hence, in the general gauge, the complete Lagrangian density

for the extended BRST and anti-BRST invariant CS theory, can now be given by
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Lgen = = L̃ − 1

2
Tr

[
∂

∂θ̄

∂

∂θ
(ÃµÃ

µ + χ̃ ˜̄χ+ B̃B̃)

]
+ Tr

[
∂

∂θ

[
sb(θ̄)Φ(x, θ, θ̄)

]
.

]
.(7.38)

We can remove all the shifted fields from the above expression by using equations of

motion for the auxiliary fields and also we can obtain the exact expressions of the

anti-fields by integrating out the ghost fields for the shift symmetry.

7.6 Conclusions

The (2+1) dimensional CS theory is subject of interest because of its some intriguing as

well as interacting properties. For example, the Green function for the model in axial-

gauge shows the unique and exact solution of the Ward identities without reference to

any action principle. In this Chapter, we have considered the (2 + 1) dimensional CS

theory, in both the axial-gague and the Landau-gauge and have attempted to describe

the extended BRST and anti-BRST invariant (including shift symmetry) CS theory

in the BV formulation. We have shown that the anti-fields arise naturally in such

formulation. We have further provided the superspace and superfield description of this

CS theory. We have shown that the BV Lagrangian density for such CS theory can

be written in a manifestly extended BRST invariant manner in a superspace with one

fermionic coordinate (θ). However, a superspace with two Grassmannian coordinates

(θ) and (θ̄) are required for a manifestly covariant formulation of the extended BRST

and extended anti-BRST invariant BV Lagrangian density for the CS theory in any

arbitrary gauge.



Chapter 8

The quantum description of BF

model in superspace

In this Chapter, we attempt to provide a superspace version of the BF model in

the BV formulation. For this purpose, we first consider the BRST invariant BF model in

the Landau gauge. Further, we extend the BRST symmetry of the theory by including

the shift symmetry. The advantage of making such analysis is that the anti-fields get

their own identifications naturally. Further, we describe the extended BRST invariant

BF model in the superspace using only one Grassmannian coordinate together with

(3 + 1) space-time coordinates. However, for both the extended BRST and extended

anti-BRST invariant BF model, we require two Grassmannian coordinates.

8.1 BRST invariant BF model

In this section, we discuss the preliminaries of the BF model with its BRST invariance.

In this view, the BF model in (3+1) flat space-time dimensions is given by the following

gauge invariant Lagrangian density

L0 = −1

4
εµνρσF a

µνB
a
ρσ (8.1)

where Ba
ρσ and F a

µν are the two-form field and field strength tensor for the vector field,

respectively. In order to remove the discrepancy due to gauge symmetry, the gauge-
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fixing and ghost terms are given by

Lgf+gh = +(Ba∂µAaµ + C̄a∂µ(DµC)a + haν(∂µBa
µν) + ωa∂µξaµ + haµ(∂µea)

+ ωaλa + (∂µξ̄aµ)λa − (∂µφ̄a)[(Dµφ)a + fabcCbξcµ]

− (∂µξ̄aν)[(Dµξν)
a − (Dνξµ)a + fabcBb

µνC
c]

+
1

2
fabcεµνρσ(∂µξ̄

a
ν )(∂ρξ̄

b
σ)φc), (8.2)

where fields (Ca, ξaµ), (C̄bξ̄cµ) and (Ba, haµ) are the ghosts, antighost and the multipliers

fields, respectively, while the fields φa, φ̄a and ωa are taken into account to remove

further degeneracy due to the existence of zero modes in the transformations. The

effective Lagrangian density (L0 + Lgf+gh) for the BF model is given by the following

expression

Leff = −1

4
εµνρσF a

µνB
a
ρσ + (Ba∂µAaµ + C̄a∂µ(Dµc)

a + haν(∂µBa
µν) + ωa∂µξaµ + haµ(∂µea)

+ ωaλa + (∂µξ̄aµ)λa − (∂µφ̄a)[(Dµφ)a + fabcCbξcµ]

− (∂µξ̄aν)[(Dµξν)
a − (Dνξµ)a + fabcBb

µνC
c]

+
1

2
fabcεµνρσ(∂µξ̄

a
ν )(∂ρξ̄

b
σ)φc) (8.3)

The Lagrangian density (with gauge-fixing and ghost term) of the BF model possesses

following BRST symmetry

sbA
a
µ = −(DµC)a

sbC
a =

1

2
fabcCbCc

sbξ
a
µ = (Dµφ)a + fabcCbξcµ

sbφ
a = fabcCbφc

sbB
a
µν = −(Dµξν −Dνξµ)a − fabcBb

µνC
c + fabcεµνρσ(∂ρξ̄bσ)φc

sbξ̄
a
µ = haµ

sbC̄
a = Ba

sbφ̄
a = ωa

sbe
a = λa

sb(h
a
µ, B

a, ωa, λa) = 0. (8.4)
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The Lagrangian density of the gauge-fixing and ghost terms of this model is BRST exact

and, hence, can be written in terms of the BRST variation of the generic gauge-fixing

fermionic field

Ψ =
(
C̄a∂µAaµ + ξ̄aµ∂νBa

µν + φ̄a∂µξaµ + eaωa + ea∂µξ̄aµ
)
, (8.5)

as follows

Lgf+gh = sb
(
C̄a∂µAaµ + ξ̄aν∂µBa

µν + φ̄a∂µξaµ + eaωa + ea∂µξ̄aµ
)
, (8.6)

where sb is the BRST symmetry transformations (8.4).

8.2 Extended BRST invariant Lagrangian density

In this section, we analyze the extended BRST transformations for the BF model in

BV formulation. The advantage of doing so is that the anti-fields get identification

naturally. We start the analysis by shifting all the fields from their original value as

follows

Ba
µν −→ Ba

µν − B̃a
µν , Aaµ −→ Aaµ − Ãaµ, Ca −→ Ca − C̃a,

C̄a −→ C̄a − ˜̄Ca, Ba −→ Ba − B̃a, ξaµ −→ ξaµ − ξ̃aµ,

ξ̄aµ −→ ξ̄aµ − ˜̄ξaµ, φa −→ φa − φ̃a, φ̄a −→ φ̄a − ˜̄φa,

haµ −→ haµ − h̃aµ, ea −→ ea − ẽa, ωa −→ ωa − ω̃a,

λa −→ λa − λ̃a. (8.7)

The Lagrangian density of the BF model also gets shifted under such shifting of the

fields, respectively, and is given by:
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L̃ = L(Aaµ − Ãaµ, Ca − C̃a, C̄a − ˜̄Ca, Ba − B̃a,

ξaµ − ξ̃aµ, ξ̄aµ − ˜̄ξaµ, φa − φ̃a, φ̄a − ˜̄φa,

haµ − h̃aµ, ea − ẽa, ωa − ω̃a, λa − λ̃a). (8.8)

The shifted Lagrangian density (8.8) remains invariant under the following extended

BRST symmetry transformations

sAaµ = ψaµ,

sÃaµ = ψaµ −Dµ(C − C̃)a,

sCa = εa,

sC̃a = εa − 1

2
fabcCbξaµ,

sC̄a = ε̄a,

s ˜̄Ca = ε̄a − (B − B̃)a,

sBa = χa,

sB̃a = χa,

sφa = Ma,

sφ̃a = Ma − fabcCbφc,

sφ̄a = M̄a,

s ˜̄φa = Ma − ωa,

sea = Na,

sẽa = Na − λa,

sξaµ = Laµ,

sξ̃aµ = Laµ − [(Dµφ)a + fabcCbξcµ],

sξ̄aµ = L̄aµ,

s ˜̄ξaµ = Laµ − haµ, (8.9)

where ψaµ, ε
a, ε̄a, χa,Ma, M̄a, Na, Laµ, and L̄aµ are the ghost fields corresponding to the

shift symmetry for Aaµ, C
a, C̄a, Ba, φa, φ̄a, ea, ξaµ and ξ̄aµ, respectively. The nilpotency of
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the extended BRST symmetry (8.9), leads to the BRST transformation for the ghost

field as:

sψaµ = 0,

sεa = 0,

sε̄a = 0,

sχa = 0,

sMa = 0,

sM̄a = 0,

sNa = 0,

sLaµ = 0,

sL̄aµ = 0. (8.10)

In order to make the present BRST-invariant theory ghost-free, we introduce the

anti-fields A?aµ , C
?a, C̄?a, B?a, ξ?aµ , ξ̄

?a
µ , φ

?a, φ̄?a, and e?a corresponding to the ghost fields

ψaµ, ε
a, ε̄a, χa,Ma, M̄a, Na, Laµ and L̄aµ, respectively. The BRST transformations of these

anti-fields are

sA?aµ = −ζaµ,

sC?a = −σa,

sC̄?a = −σ̄a,

sB?a = −$a,

sφ?a = −υa,

sφ̄?a = −ῡa,

se?a = −τa,

sξ?aµ = −κaµ,

sξ̄?aµ = −κ̄aµ,

(8.11)
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where ζaµ, σ
a, σ̄a and ῡa are the Nakanishi-Lautrup type auxiliary fields corresponding

to the shifted fields A?aµ , C
?a, C̄?a, B?a, φ?a, φ̄?a, e?a, ξ?aµ , and ξ̄?aµ , respectively. These

auxiliary fields possesses the following BRST transformations

sζaµ = 0,

sσa = 0,

sσ̄a = 0,

s$a = 0,

sυa = 0,

sῡa = 0,

sτa = 0,

sκaµ = 0,

sκ̄aµ = 0. (8.12)

We can recover our original Lagrangian density for the BF model by adding the gauge-

fixing Lagrangian density corresponding to the shift symmetry in such a way such that

all the tilde fields vanish. We achieve this by adding the following gauge-fixed term in

the shifted Lagrangian density (8.8):

L̃gf+gh =

[
−ζµaÃaµ − A?aµ [ψµa −Dµ(C − C̃)a]− σaC̃a + C?a[εa − 1

2
fabcCbξcµ]

− σ̄a ˜̄Ca + C̄?a[ε̄a − (Ba − B̃a)]− υaφ̃a − φ?a(Ma − fabcCbφcµ)− ῡa ˜̄φa

− φ̄?a(Ma − ωa)− τaẽa + e?a(Na − λa)−$aB̃a +B?aξa − κaµξ̃aµ
+ ξ?aµ(Laµ − [Dµφ+ fabcCbξcµ])− κ̄aµ ˜̄ξaµ + ξ̄?aµ(L̄aµ − haµ)

]
. (8.13)

The Lagrangian density L̃gf+gh given, in the above equation (8.13), is also invariant un-

der the extended BRST symmetry transformations. If we perform equations of motion

of auxiliary fields in the above expression, we obtain
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L̃gf+gh =

[
−A?aµ [ψµa −Dµ(C − C̃)a]−+C?a[εa − 1

2
fabcCbξcµ]

− C̄?a[ε̄a − (Ba − B̃a)]− φ?a(Ma − fabcCbφcµ)

− φ̄?a(Ma − ωa) + e?a(Na − λa) +B?aξa

+ ξ?aµ(Laµ − [Dµφ
a + fabcCbξcµ]) + ξ̄?aµ(L̄aµ − haµ)

]
. (8.14)

The gauge-fixing and FP-ghost terms of the Lagrangian density are BRST exact and it

can be expressed in terms of a general gauge-fixing fermion Ψ as

(sbΨ) =

[
sbA

a
µ

δΨ

δAaµ
+ sbC

a δΨ

δCa
+ sbC̄

a δΨ

δC̄a
+ sbB

a δΨ

δBa
+ sbξ

a
µ

δΨ

δξaµ
+ sbξ̄aµ

δΨ

δξ̄aµ

+ sbφ
a δΨ

δφa
+ sbφ̄a

δΨ

δφ̄a
+ sbe

a δΨ

δea

]
,

=

[
− δΨ

δAaµ
ψaµ +

δΨ

δCa
εa +

δΨ

δC̄a
ε̄a − δΨ

δBa
χa − δΨ

δξaµ
Laµ −

δΨ

δξ̄aµ
L̄aµ

− δΨ

δφa
Ma − δΨ

δφ̄a
M̄a − δΨ

δea
Na

]
, (8.15)

After integrating out the auxiliary fields which set the tilde fields to zero, we have the

following effective Lagrangian density for the BF model in the Landau-gauge

Leff = L̃+ Lgf+gh + L̃gf+gh,

= L̃+

[(
−A?aµ −

δΨ

δAµa

)
ψµa +

(
C̄?a +

δΨ

δCa

)
εa +

(
C?a +

δΨ

δC̄a

)
ε̄a

+

(
B?a +

δΨ

δBa

)
χ̄a +

(
ξ?aµ +

δΨ

δξaµ

)
Laµ +

(
ξ̄?aµ +

δΨ

δξ̄aµ

)
L̄aµ

+

(
φ?a +

δΨ

δφa

)
Ma +

(
φ̄?a +

δΨ

δφ̄a

)
M̄a +

(
−e?a − δΨ

δea

)
Na

+ A?aµ D
µCa − C?a

2
fabcCbξcµ + C?aBa + ξ?aµ [(Dµφ)a + fabcCbξcµ]

+ φ?afabcCbξcµ
]
, (8.16)
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where Ψ refers the gauge-fixing fermion corresponding to the Landau-gauge. Integrating

out the ghost fields associated with shift symmetry, we obtain

Aa?µ =
δΨ

δAµa
,

C̄?a = − δΨ

δCa
,

C?a = − δΨ

δC̄a
,

B?a =
δΨ

δBa
,

ξ?aµ =
δΨ

δξ?aµ
,

ξ̄?aµ =
δΨ

δξ̄?aµ
,

φ?a =
δΨ

δφa
,

φ̄?a =
δΨ

δφ̄a
,

e?a =
δΨ

δea
. (8.17)

For a particular choice of the gauge-fixing fermion Ψ, corresponding to the Landau-

gauge given in (8.5), the expression of anti-ghost fields yield

A?aµ = ∂µC̄
a,

C̄?a = ∂µA
µa,

C?a = 0

B?a = 0,

ξ?aµ = ∂µφ̄
a,

ξ̄?aµ = −∂νBa
µν − ∂muea,

φ?a = 0,

φ̄?a = −∂µξaµ,

e?a = ωa + ∂µξaµ. (8.18)
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Plugging these expressions of the anti-ghost fields in (8.16), we recover the Lagrangian

density of our original BF model in the Landau-gauge.

8.3 Extended BRST invariant superspace

description

In this section, the Lagrangian density of the BF model, which is invariant under the

extended BRST transformation, is described in a superspace by including one extra

Grassmannian coordinates θ in the (3+1) space-time dimensions. In order to give super-

space description for the extended BRST invariant theory, we fist define the superfields
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of the form:

Aaµ(x, θ) = Aaµ + θψaµ,

Ãaµ(x, θ) = Ãaµ + θ[ψµ −Dµ(C − C̃)]a,

χa(x, θ) = Ca + θεa,

χ̃a(x, θ) = C̃a + θ[εa − 1

2
fabcCbξcµ],

χ̄a(x, θ) = C̄a + θε̄a,

˜̄χa(x, θ) = ˜̄Ca + θ[ε̄a − (B − B̃)a],

Ba(x, θ) = Ba + θχa,

B̃a(x, θ) = B̃a + θχa,

ξaµ(x, θ) = ξaµ + θLaµ,

ξ̃aµ(x, θ) = ξ̃aµ + θ[Laµ − (Dµφ
a + fabcCbξcµ)],

ξ̄aµ(x, θ) = ξ̄aµ + θL̄aµ,

˜̄ξaµ(x, θ) = ˜̄ξaµ + θ(L̄aµ − haµ),

φa(x, θ) = φa + θMa,

φ̃a(x, θ) = φ̃a + θ(Ma − fabcCbφc),

φ̄a(x, θ) = φ̄a + θM̄a,

˜̄φa(x, θ) = ˜̄φa + θ(M̄a − ωa),

ea(x, θ) = ea + θNa,

ẽa(x, θ) = ẽa + θ(Na − λa). (8.19)
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The super anti-fields in superspace are given as follows

Ã?aµ (x, θ) = Ã?aµ − θζaµ,

χ̃?a(x, θ) = C̃?a − θσa,
˜̄χ?a(x, θ) = ˜̄C?a − θσ̄a,

B̃?a(x, θ) = B̃?a − θ$a,

ξ̃?aµ (x, θ) = ξ̃?aµ − θκaµ,
˜̄ξ?aµ (x, θ) = ˜̄ξ?aµ − κ̄aµ,

φ̃?a(x, θ) = φ̃?a − θυa,
˜̄φ?a(x, θ) = ˜̄φ?a − θῡa,

ẽ?a(x, θ) = ẽ?a − θτa. (8.20)

We obtain the following expressions with the help of these superfields and super-anti-

fields

δ(Ã?aµ Ã
µa)

δθ
= −A?aµ [ψµa −Dµ(C − C̃)a]− ζaµÃµa,

δ( ˜̄χ?aχ̃a)

δθ
= C?a[εa − 1

2
fabcCbξcµ]− σaC̃a,

δ( ˜̄χaχ̃?a)

δθ
= −σ̄a ˜̄Ca + C̄?a[ε̄a − (B − B̃)a],

δ(B̃?aB̃a)

δθ
= −B?aχa −$aB̃a,

δ( ˜ξa?µ χ̃
µa)

δθ
= +ξ?aµ [Laµ − (Dµφa + fabcCbξcµ)]− κµaξ̃aµ,

δ( ˜̄ξ?aµ
˜̄ξµa)

δθ
= −ξ̄a?µ [Lµa − Lµa]− κ̄aµ ˜̄ξµa,

δ(φ̃?aφ̃a)

δθ
= −φ̃aυa + φ?a(Ma − fabcCbφc),

δ( ˜̄φ?a ˜̄φa

δθ
= − ˜̄φaῡa + φ̄?a(Ma − ωa),

δ(ẽ?aẽa)

δθ
= e?a[Na − λa]− ẽaτa. (8.21)
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Combining all the equation given in (8.21), we find that

δ

δθ
(Ãa?µ Ã

aµ + ˜̄χa?χ̃a + ˜̄χaχ̃a? + B̃a?B̃a + ξ̃a?µ ξ̃
aµ + ˜̄ξa?µ

˜̄ξaµ + φ̃a?φ̃a + ˜̄φa? ˜̄φa + ẽa?ẽa)

= −ζaµÃaµ − Aa?µ [ψaµ − (Dµ − D̃µ)(C − C̃)a]− σ̄aC̃a − σa ˜̄Ca − υaφ̃a

+ C̄a?[εa − 1

2
fabc(Cb − C̃b)(ξaµ − ξ̃aµ)] + Ca?[ε̄a − (Ba − B̃a)]− τaẽa

− φ?a
[
Ma − fabc(Cb − C̃b)(φc − φ̃c)

]
− ῡa ˜̄φa − φ̄?a(M̄a − ωa + ω̃a)

− e?a[Na − λa + λ̃a]−$aB̃a −B?aχa − κaµξ̃aµ − κ̄aµ ˜̄ξaµ + ξ̄?aµ
[
L̄aµ − (haµ − h̃aµ)

]
+ ξ?aµ

(
Laµ −

[
(Dµ − D̃µ)(φ− φ̃)a + fabc(Cb − C̃b)(ξcµ − ξ̃cµ)

])
, (8.22)

which is nothing but the shifted gauge-fixed Lagrangian density L̃gf+gh given in (8.13).

Now, we define the general super-gauge-fixing fermion written in superspace formulation

as follows

Φ(x, θ) = Ψ(x) + θ(sΨ), (8.23)

which can further be expressed as:

Φ(x, θ) = Ψ(x) + θ

[
− δΨ

δAaµ
ψaµ +

δΨ

δCa
εa +

δΨ

δC̄a
ε̄a − δΨ

δBa
χa − δΨ

δξaµ
Laµ

− δΨ

δξ̄aµ
L̄aµ −

δΨ

δφa
Ma − δΨ

δφ̄a
M̄a − δΨ

δea
Na

]
. (8.24)

So, the original gauge-fixed Lagrangian density in the superspace can be defined as the

left derivative of the super-gauge-fixing fermion with respect to θ as
[
δΦ(x,θ)
δθ

]
. Hence,

the effective Lagrangian density for the BF model, in general gauge in the superspace,

is now given by

Lgen = L̃+

[
δ

δθ
(Ã?aµ Ã

µa + ˜̄χ?aχ̃a + ˜̄χaχ̃?a + B̃?aB̃a + χ̃?aµ χ̃
µa + ˜̄χ?aµ ˜̄χµa

+ φ̃?aφ̃a + ˜̄φ?a ˜̄φa + ẽ?aẽa) + Φ)
]
. (8.25)
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This compact expression indicates that the BV action of the extended BF model, in

superspace, is invariant under the extended BRST transformation.

8.4 Extended anti-BRST Lagrangian density

In this section, we construct the extended anti-BRST transformation under which the

extended Lagrangian density remains invariant as follows

sabA
a
µ = A?aµ +Dµ(C̄ − ˜̄C)a,

sabÃ
a
µ = A?aµ ,

sabC
a = C?a − 1

2
fabcCbξcµ,

sabC̃
a = C?a,

sabC̄
a = C̄?a − (B − B̃)a,

sab
˜̄Ca = C̄?a,

sabB̃
a = B?a,

sabB
a = B?a + χa

sabξ
a
µ = χ?aµ − [Dµφ

a + fabcCbξcµ],

sabξ̃
a
µ = ξ?aµ ,

sabξ̄
a
µ = ξ̄?aµ − haµ,

sab
˜̄ξaµ = ξ̄?aµ ,

sabφ
a = φ?a − fabcCbφc,

sabφ̃
a = φ?a,

sabφ̄
a = φ̄?a − ωa,

sab
˜̄φa = φ̄?a,

sabe
a = e?a − λa,

sabẽ
a = e?a. (8.26)

The ghost fields associated with the shift symmetry, under the extended anti-BRST

symmetry, transforms as
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s̄ψaµ = ζaµ,

s̄εa = σa,

s̄ε̄a = σ̄a,

s̄χa = $a,

s̄Laµ = κaµ,

s̄L̄aµ = κ̄aµ,

s̄Ma = υa,

s̄M̄a = ῡa,

s̄Na = τa.

(8.27)

The nilpotency of above transformations demands the auxiliary and anti-ghost fields

associated with the shift symmetry transform as

s̄ζaµ = 0, s̄A?aµ = 0,

s̄σa = 0, s̄C?a = 0,

s̄σ̄a = 0, s̄C̄?a = 0,

s̄$a = 0, s̄B?a = 0,

s̄κaµ = 0, s̄ξ?aµ = 0,

s̄κ̄aµ = 0, s̄ξ̄?aµ = 0,

s̄υa = 0, s̄φ?a = 0,

s̄ῡa = 0, s̄φ̄?a = 0,

s̄τa = 0, s̄e?a = 0. (8.28)

The anti-gauge-fixing fermions for the BF model in the Landau-gauge (Ψ̄) is defined by
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Ψ̄ = ηµνCnµAν .

(8.29)

The anti-BRST variation of the gauge-fixing fermion gives the corresponding gauge-

fixing and ghost parts of the effective Lagrangian density.

8.5 Extended BRST and anti-BRST invariant

superspace

The extended BRST and anti-BRST invariant Lagrangian density can be written in

superspace with the help of two Grassmannian coordinates θ and θ̄. Requiring the field

strength to vanish along the unphysical direction θ and θ̄. We have the super expansions

along (θ, θ̄) directions of the following superfields

Aaµ(x, θ, θ̄) = Aaµ(x) + θψaµ + θ̄[A?aµ +DµC̄]a + θθ̄[ζaµ + ∂µε
a],

Ãaµ(x, θ, θ̄) = Ãaµ(x) + θ[ψaµ −Dµ(C − C̃)a] + θ̄Aa?µ + θθ̄ζaµ,

Ca(x, θ, θ̄) = Ca(x) + θεa + θ̄[C?a − 1

2
fabcCbξcµ] + θθ̄σa,

C̃a(x, θ, θ̄) = C̃a(x) + θ[εa − 1

2
fabcCbξcµ] + θ̄C?a + θθ̄σa,

χ̄a(x, θ, θ̄) = C̄a(x) + θε̄a + θ̄[C̄?a − (B − B̃)a] + θθ̄σ̄a,

˜̄χa(x, θ, θ̄) = ˜̄Ca(x) + θ[ε̄a − (B − B̃)a] + θ̄C̄?a + θθ̄σ̄a,

Ba(x, θ, θ̄) = Ba(x) + θχa + θ̄(B?a + χa) + θθ̄$a,

B̃a(x, θ, θ̄) = B̃a(x) + θχa + θ̄B?a + θθ̄$a,

ξaµ(x, θ, θ̄) = ξaµ(x) + θLaµ + θ̄[ξ?aµ − (Dµφ+ fabcCbξcµ)] + θθ̄ξ?aµ ,

ξ̃aµ(x, θ, θ̄) = ξ̃aµ(x) + θ[ξ?aµ − (Dµφ+ fabcCbξcµ)] + θ̄ξ?µ + θθ̄κaµ,

ξ̄aµ(x, θ, θ̄) = ξ̄aµ(x) + θL̄aµ + θ̄(ξ̄?aµ − haµ) + θθ̄κ̄aµ,

˜̄ξaµ(x, θ, θ̄) = ˜̄ξaµ(x) + θ(L̄aµ − haµ) + θ̄ξ̄?aµ + θθ̄κ̄aµ,
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φa(x, θ, θ̄) = φa(x) + θMa + θ̄(φ?a − fabcCbφc) + θθ̄υa,

φ̃a(x, θ, θ̄) = φ̃a(x) + θ(Ma − fabcCbφc) + θ̄φ?a + θθ̄υa,

φ̄a(x, θ, θ̄) = φ̄a(x) + θM̄a + θ̄(φ̄?a − ωa) + θθ̄ῡa,

˜̄φa(x, θ, θ̄) = ˜̄φa(x) + θ(M̄a − ωa) + θ̄φ̄?a + θθ̄ῡa,

ea(x, θ, θ̄) = ea(x) + θNa + θ̄(e?a − λa) + θθ̄τ,

ẽa(x, θ, θ̄) = ẽa(x) + θ(Na − λa) + θ̄e?a + θθ̄τa.

(8.30)

With the help of above expression (8.30) of superfields, we are able to establish the

following relation

− 1

2

[
∂

∂θ̄

∂

∂θ
(ÃaµÃ

µa + χ̃a ˜̄χa + B̃aB̃a + ξ̃aµξ̃
µa + ˜̄ξaµ

˜̄ξµa + φ̃aφ̃a + ˜̄φa ˜̄φa + ẽaẽa
]

=

[
−ζµaÃaµ − A?aµ [ψµa −Dµ(C − C̃)a]− σaC̃a + C?a[εa − 1

2
fabcCbξcµ]

− σ̄a ˜̄Ca + C̄?a[ε̄− (Ba − B̃a)]− υaφ̃a − φ?a(Ma − fabcCbφcµ)− ῡa ˜̄φa

− φ̄?a(Ma − ωa)− τaẽa + e?a(Na − λa)−$aB̃a +B?aξa − κaµξ̃aµ
+ ξ?aµ(Laµ − [Dµφ

a + fabcCbξcµ])− κ̄aµ ˜̄ξaµ + ξ̄?aµ(L̄aµ − haµ)
]
. (8.31)

which is nothing but the shifted gauge-fixed Lagrangian density. Being the θθ̄ compo-

nent of a super field, this gauge-fixed Lagrangian density is manifestly invariant under

the extended BRST and anti-BRST transformation. Now, we define the general super-

gauge-fixing fermion for the extended BRST (and the anti-BRST invariant) theory as

follows

Φ(x, θ, θ̄) = Ψ(x) + θ(sbΨ) + θ̄(s̄bΨ) + θθ̄(sbs̄bΨ), (8.32)

which yields the original gauge-fixing and ghost part of the effective Lagrangian density

as Tr
[
∂
∂θ

[
sb(θ̄)Φ(x, θ, θ̄)

]]
. Therefore, the complete Lagrangian density for the extended

BRST and anti-BRST invariant BF model in the general gauge can now be given by
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Lgen = = −1

2

[
∂

∂θ̄

∂

∂θ
(ÃaµÃ

µa + C̃aC̃a + ˜̄Ca ˜̄Ca + B̃aB̃a + ξ̃aµξ̃
µa + ˜̄ξaµ

˜̄ξµa
]

+

[
φ̃aφ̃a + ˜̄φa ˜̄φa + ẽaẽa +

∂

∂θ

[
s(θ̄)Φ(x, θ, θ̄)

]]
. (8.33)

Performing equations of motion of auxiliary fields, the shift fields can be removed from

the above expression and by integrating out the ghost fields for the shift symmetry, we

obtain the exact expressions for the anti-fields.

8.6 Conclusions

The (3 + 1) dimensional BF model is subject of great interest due to its topological

nature and its intriguing properties.

In the present Chapter, we have considered (3 + 1) dimensional BF model in the

Landau-gauge and then we have extended the BRST and anti-BRST invariant (includ-

ing the shift symmetry) BF model in the BV formulation. The anti-fields corresponding

to each field naturally arise. Further, we have provided the superfield description of

the BF model in the superspace where we show that the BV Lagrangian density for

the BF model can be expressed in a manifestly extended BRST invariant manner in a

superspace by considering one additional Grassmannian (fermionic) coordinate. How-

ever, we need two additional Grassmannian coordinate to express both the extended

BRST and extended anti-BRST invariant BV Lagrangian density of the BF model in

superspace.



Chapter 9

Conclusions

In this thesis, we have studied the fundamentals of gauge theories. We have

studied the generalization of BRST symmetry by making the transformation param-

eter finite and field-dependent which is known as the FFBRST transformation. We

have discussed the applications of FFBRST transformation in different models. We

have emphasized the quantum gauge transformation and the superspace description of

gauge theories also. We have started this thesis with the brief introduction about the

fundamentals of gauge theories, BRST formulation and its importance in gauge theories

and we have build-up the whole thesis (total chapters 9) based on these central theme.

In introduction Chapter, we have mentioned various generalizations of the BRST

transformation. In these generalizations the FFBRST transformation has been found

most important and interesting. The interesting feature of the FFBRST transformation

is that this is also the symmetry of the effective action and is nilpotent. However, under

this transformation, the path integral measure of the generating functional of a given

theory is not invariant due to finiteness of the parameter. The Jacobian of the path

integral measure is not unity under such transformation and leads to a factor ( eiS1) in

the generating functional where S1 is local functional of the fields. This Jacobian ( eiS1)

extends the effective action of the theory. In this way, the FFBRST transformation is

extremely useful in connecting various different effective actions in different gauges.

In Chapter two, we have provided the basic formulations of the gauge theories

which are the building blocks of this thesis. Specifically, we have outlined the method-

ology of the FFBRST transformation by making the transformation parameter finite

and field dependent. Further, we have presented a method to evaluate the Jacobian

of functional measure under the FFBRST transformation. We have also discussed the

basic idea of field/anti-field (BV) formulation within this Chapter.
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In Chapter three, we have shown that the 3-form Abelian gauge theory, in non-

covariant gauge, can be obtained from the same theory in covariant gauge with the help

of the FFBRST transformation. Usual BRST transformations have been generalized to

the case of Abelian 3-form gauge theory in covariant gauge. The generating functional

for this theory is shown to be connected to that of the non-covariant-(axial) gauge

through FFBRST transformation. We have established this connection by constructing

an appropriate FFBRST parameter. However, the various non-covariant gauges like

Coulomb-gauge, light-cone-gauge, planer-gauge and temporal-gauge can also be ob-

tained under such formulation. Thus, such investigations enable us to study the 3-form

Abelian gauge theory in the non-covariant gauge. We have further demonstrated that

these results, within the framework of the BV formulation and established these results

at the quantum level, too.

In Chapter four, we have shown that one can generate the Lowenstein-

Zimmermann mass term for QED3 using FFBRST transformation. Here, we have

studied the BRST symmetry for the ultraviolet finite, superrenormalizable theory of

massless QED3. Further, we have generalized the BRST symmetry of the theory by

making the transformation parameter finite and field-dependent. The fascinating fea-

ture of FFBRST transformation is that, under the change of variables, it leads to a

non-trivial Jacobian for the path integral measure of generating functional. We have

computed the Jacobian for the FFBRST transformation with appropriate finite field-

dependent parameter. Remarkably, we have found that the Lowenstein Zimmermann

mass term, together with the external sources for massless QED3, emerge naturally

within the functional integral through the Jacobian of a single FFBRST transforma-

tion. The notable feature of FFBRST symmetry is that, any gauge invariant (BRST

exact) quantity, can be generated through the FFBRST symmetry. Although these

Lowenstein-Zimmermann terms are mass terms but are gauge invariant, too. Thus,

we have seen that the extra physical degrees of freedom emerge due to the non-linear

BRST transformation (where the parameter exhibits the extra physical degrees of free-

dom due to the mass terms). Though, we have illustrated our results for QED3 theory

only, these certainly are not limited to a particular theory. In fact, it is a more general

result and can be applied to any gauge theory to obtain gauge invariant mass terms

and their dynamics in a useful manner.
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On the other hand, quantum gauge symmetry has been discussed in Chapter

five. Starting from the most general gauge-fixing Lagrangian density (including the

gaugeon fields), we have presented a general form of the BRST symmetric gaugeon

formalism for the reducible gauge theory. This most general gauge-fixing Lagrangian

possesses the quantum gauge symmetry under which the Lagrangian density remains

form invariant. The theory contains two gauge parameters in which one gets shifted

by the quantum gauge transformation. By introducing the FP ghost and ghost for the

ghost terms corresponding to the gaugeon fields, we have given a BRST symmetric

gaugeon formalism for the Abelian 2-form gauge theory. The BRST symmetry enables

us to improve the Yokoyama’s subsidiary conditions by replacing these to a single Kugo-

Ojima type subsidiary condition. The quantum gauge transformation commutes with

the BRST transformation. As a result, the BRST charge is invariant and thus the

physical subspace is also gauge invariant. We have studied FFBRST formulation in the

context of gaugeon, too. Finally, using FFBRST, we have shown that the gaugeon fields

can be generated in the reducible gauge theory (i.e. Abelian 2-form gauge theory).

In Chapter six we have discussed the BRST quantization of BF model in Landau-

gauge. Furthermore, we have investigated the FFBRST transformation by making the

transformation parameter finite and field dependent. Such generalized transformations

are not the symmetry transformation for the functional measure. We have calculated

the explicit form of the Jacobian of functional under generalized BRST transforma-

tion. For an specific choice of infinitesimal field-dependent parameter, it connects the

Landau-gauge to axial-gauge. The connection of gauges are very important for the

computational purposes.

In Chapter seven, we have constructed the BV Lagrangian density of CS theory

in superspace. We have considered (2+1) dimensional CS theory in both the axial-

gauge and the Landau-gauge and have attempted to describe the extended BRST and

anti-BRST invariant (including shift symmetry) CS theory in the BV formulation. We

have shown that the anti-fields arise naturally in such formulation. We have further

provided a superspace and the superfield description of CS theory. We have shown

that the BV Lagrangian density for this CS theory can be written in a manifestly

extended BRST invariant manner in a superspace with one Grassmannian (fermionic)

coordinate. However, a superspace with two Grassmannian coordinates are required



for a manifestly covariant formulation of the extended BRST and extended anti-BRST

invariant BV Lagrangian density for the CS theory in any arbitrary gauge.

The quantum description of BF model in superspace has been discussed in Chap-

ter eight, where we have considered (3+1) dimensional BF model in the Landau-gauge

and then we have shifted the Lagrangian density by shifting all the fields to obtain

the extended BRST and anti-BRST invariant BF model in the BV formulation. The

anti-fields corresponding to each field naturally arise. Further, we have provided the

superfield description of the BF model in superspace where we have shown that the BV

Lagrangian density for the BF model can be written in a manifestly extended BRST

invariant manner in a superspace by considering one additional Grassmannian coordi-

nate. However, we need two Grassmannian coordinates to express both the extended

BRST and extended anti-BRST invariant BV Lagrangian density of the BF model in

the superspace formulation.

In this thesis, we have made an attempt to extend the FFBRST formulation by

incorporating it in different field theoretic models. We believe that this formulation

will find many more new applications in future. In particular, it might be helpful in

removing the discrepancy of the anomalous dimension calculation for the gauge invariant

operators. Exploring this formulation in the context of different field theoretic models

(having spontaneous symmetry breaking) will also be very exciting.
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