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Abstract: The current developments in the theory of quantum static triplet correlations and their

associated structures (real r-space and Fourier k-space) in monatomic fluids are reviewed. The

main framework utilized is Feynman’s path integral formalism (PI), and the issues addressed cover

quantum diffraction effects and zero-spin bosonic exchange. The structures are associated with the

external weak fields that reveal their nature, and due attention is paid to the underlying pair-level

structures. Without the pair, level one cannot fully grasp the triplet extensions in the hierarchical

ladder of structures, as both the pair and the triplet structures are essential ingredients in the triplet

response functions. Three general classes of PI structures do arise: centroid, total continuous linear

response, and instantaneous. Use of functional differentiation techniques is widely made, and, as a

bonus, this leads to the identification of an exact extension of the “classical isomorphism” when the

centroid structures are considered. In this connection, the direct correlation functions, as borrowed

from classical statistical mechanics, play a key role (either exact or approximate) in the corresponding

quantum applications. Additionally, as an auxiliary framework, the traditional closure schemes for

triplets are also discussed, owing to their potential usefulness for rationalizing PI triplet results. To

illustrate some basic concepts, new numerical calculations (path integral Monte Carlo PIMC and

closures) are reported. They are focused on the purely diffraction regime and deal with supercritical

helium-3 and the quantum hard-sphere fluid.

Keywords: quantum triplets; quantum fluids; path integral Monte Carlo; triplet closures; Ornstein–

Zernike treatments

1. Introduction

The study of the correlations between the particles of a system is key to the understand-
ing of its behavior, classical or quantum. Without trying to be exhaustive, one may mention
the following main lines in which they are involved: (a) equilibrium thermodynamics [1–13];
(b) time-dependent phenomena in conventional condensed matter problems [12–22] and
in the insightful hydrodynamic quantum analogs [23–26]; (c.1) the experimental [27–35]
and/or (c.2) computational [7–13,17–19,36–50] techniques for their practical determinations;
and (d) the fundamental questions related to entanglement and separability [51–57]. Each
of these lines forms a whole body of knowledge with direct/indirect practical applications,
covering an impressive range of topics, among them being phase equilibria and stability,
the classically based macroscopic modeling of quantum behavior, and quantum networks
and information. Furthermore, all of them taken together display useful and revealing
intersection areas. In this connection, the present article will focus on statistical mechanics
issues at the intersection between lines (a) and (c.2) by selecting the somewhat forgotten
topic of the triplet correlations in equilibrium quantum monatomic fluids (in 3-D space) at
nonzero temperatures. This situation contrasts sharply with that of the classical fluid, for
which insightful theoretical and computational developments have been available in the
literature for a long time (see, for instance, References [41,42,45–49]).
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As a convention, the concept of “monatomic fluids” can imply either actual fluids
composed of atoms or model fluids composed of structureless particles (one-site). In this
work, the terms atom and particle will be used indistinctly. Also, it is convenient to stress
that, in a broad sense, the general concept of equilibrium “correlations” encompasses the
usual fluid structures gn in the real r-space and the response functions S(n) in the reciprocal
Fourier k-space (n refers to the number of particles involved in their formulations). Both
types of static structures are connected essentially through Fourier transforms, which are far
from trivial for n ≥ 3 [3,7,9,11,45]. One also notes that an extended use has assigned the
names correlation functions and structure factors to the gn and the S(n), respectively. This is
the convention followed in this article, although depending on the context, “correlations” or
“structures” will be used occasionally in the global sense.

For homogeneous and isotropic monatomic fluids, at the pair level (n = 2), one
deals with 2-D structural functions, whilst at the triplet level (n = 3), one deals with
4-D structural functions. Contrarily to the pair functions, the triplet functions cannot be
extracted from radiation scattering experiments, because the triplet contribution to the
scattering intensity is negligible when compared to the rest of the contributions that shape
the differential cross section [28]. Therefore, a comprehensive quantum fluid triplet study,
which goes beyond the time-honored closure-theory attempts [3,43,44], entails an appropri-
ately developed theoretical framework, which must be complemented by very powerful
computational means. In this way, one can perform the extensive numerical calculations
needed (the experiments here). From recent path integral Monte Carlo, plus approximate
closure works by the present author [58–64], one may feel that the time is becoming ripe to
start undertaking the triplet topic. As in the classical domain, the interest in this quantum
task does justify itself, if only because it makes statistical mechanics go beyond the usual
pair level. But for those more application-orientated, one may point out that there are
many questions which can benefit from such a development (e.g., further fluid structural
characterizations of the fluid–solid transition [6,45,65,66], phonon–phonon interactions in
superfluids [44], time-dependent phenomena [16–22,27,37,38] (see Reference [28] to infer
the possible connections), colloid suspension properties [67,68], etc.). In relation to this,
it may be motivating to mention the empirical relationships found for the maxima of the
equilateral correlations in r-space of the quantum hard-sphere (QHS) fluid along the crys-
tallization line [63], and the surprising success of closures in capturing significant quantum
fluid triplet features [63,64]. The reader should be aware, however, that the quantum fluid
complexity is far greater than that of its classical fluid counterpart, as will be discussed in
detail in this article.

The outline of this article is as follows. Section 2 is devoted to giving an introductory
global description of the context in which the quantum triplet topic is inserted, together
with its current state of development. Section 3 contains a condensed presentation of the
pair and triplet structures in classical statistical mechanics. Although there are radical
differences between the classical and the quantum domains, both share a good deal of the
general notations involved, plus a significant number of basic concepts and tools used (e.g.,
functional differentiation and closures). This excursion into the classical background is
expected to ease the way to the quantum fluid discussion. Section 4 reviews the basic theory
of Feynman’s path integrals PI in (thermal) imaginary time [4,7,9]. When complemented
with computer simulations (resembling, somehow, the classical ones), PI can be utilized for
the complete study of quantum fluid static triplets (r-space and k-space) in the diffraction
and the bosonic exchange regime (more on the exchange issues later). Section 5 focuses on
the higher complexity of the quantum fluid structures as revealed by PI, concentrating on
the quantum diffraction regime by reason of its fundamental role. Thus, one finds that the

single structural class present in the classical domain, C, composed of pairs
{

gn, S(n)
}

C
,

splits into three different structural classes, namely instantaneous ETn,
{

gn, S(n)
}

ET
, total

continuous linear response TLRn,
{

Gn, S(n)
}

TLR
, and centroids CMn,

{

gn, S(n)
}

CM
[7,9,11].

The discussion focuses on n = 3, although paying due attention to n = 2, due to its
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importance when studying triplets. The parallel extension to zero-spin particles and bosonic
fluids is deferred to an Appendix A. To illustrate some of the main points discussed, a
set of various results are included in Section 5. The studied systems are helium-3 under
supercritical conditions (T ≥ 4.2 K) and the quantum hard-sphere fluid on its crystallization
line [63]. For supercritical helium-3, which behaves as a spinless fluid for T > 1 K [69],
the results are related to the r- and k-spaces, while quantum hard spheres are on k-space.
Section 6 gives a summary description of the systems, and the methods used to facilitate
the understanding of the reported results. The methods are path integral Monte Carlo
simulations (PIMC) and a significant number of closures, such as Kirkwood superposition
(KS3) [41], Jackson–Feenberg (JF3) [44], the intermediate AV3 = (KS3 + JF3)/2 [63], Barrat–
Hansen–Pastore (BHP3) [45], and Denton–Ashcroft [70]. Section 7 contains a series of final
remarks, together with directions for future research. Finally, Appendix A discusses the
boson fluid and Appendix B is a list of acronyms and basic associated references for the
reader’s convenience.

2. Setting Quantum Fluid Triplets in Their Context

Before entering the mathematical formulations, it seems useful to give an introductory
guide for situating the triplet topic in its statistical mechanics context. This will also serve
the purpose of introducing some basic concepts and notations. Unrestricted reference to
the classical domain is made in what follows. By doing so, the fundamental quantum
departures from the common ground are expected to be fully grasped by readers not very
familiar with the structural issues.

2.1. The Tackling of the Classical and the Quantum Domains

The use of computers has given a definitive impulse to every aspect of modern research
activities. As regards condensed matter physics, the related computer applications have
been guided by the numerical implementations of two central lines of thought: approximate
theories about fluid behavior (e.g., see References [2–6]), and the powerful simulation
techniques which started from the works by Metropolis et al. (Monte Carlo MC) [71] and
Alder and Wainwright (molecular dynamics MD) [72]. In fact, all these methodologies
have made it possible to circumvent both the theoretical and experimental difficulties that
impeded further developments in statistical mechanics. In this connection, suffice it to
recall two examples directly relevant to the triplet question: (a) the practical solution to
the problem posed by the hierarchical nature of the n-particle correlation functions gn in
r-space (i.e., the exact Bogolyubov–Born–Green–Kirkwood–Yvon BBGKY hierarchy [2–6]),
enabling one to compute, via simulations, the gn independently of one another [13,46,48];
and (b) the possibilities of devising computational alternatives for remedying the lack of
experimental techniques [28] to determine structure factors S(n) in k-space (and, given
enough detail, obtain gn correlation functions in r-space) beyond the pair level n = 2.

The approximate theories in their most useful forms utilize closures, which allow one
to tackle the calculations of the gn and the S(n) functions. These two types of objects are, in
general, connected through nontrivial Fourier transforms [3,7–9,11,13,28,45]. Closures in
r-space hypothesize relationships between a correlation function of order n, gn, and the set
of lower-order correlation functions (e.g., KS3 [41], JF3 [44], or other choices [30,31,42]). To
compute the S(n), which are far more complicated objects, additional correlation functions in
r-space are introduced. The latter are the so-called direct correlation functions cn, which are
based on Ornstein–Zernike OZn concepts [1,73] (e.g., for c2 : Percus–Yevick [5,74–76], hy-
pernetted chain [6,74–76], or Baxter’s partition [77]; and for c3 : Barrat–Hansen–Pastore [45],
or Denton–Ashcroft [70]). These days, the relative importance of closures has obviously
decreased in favor of simulation, but one should not adopt a cavalier attitude towards
them. Indeed, these closure-theories may yield, at a much lower cost, excellent results
when compared to simulation or experiments for key pair quantities (e.g., classical and
quantum k-space pair structure factors S(2)) [13,50,77] and, also, insightful pictures of the
complex structural problems at the triplet level [41–45,62–64,70].
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The two basic simulation techniques, MC and MD, exploit the properties of the
statistical mechanics ensembles using a finite sample to model the real fluid behavior (e.g.,
in the canonical ensemble (NS,VS, T), NS = number of particles, VS = volume of the
simulation box, T = temperature) [2,5,6,12,13,17,76]. These applications are consistent with

the concept of thermodynamic limit, T − lim: for {NS,VS} → ∞ , such that NS
VS

= f inite ̸= 0,
and the intensive quantities are independent of the system size [5] (surface effects from a
container are not considered). MC is an elaborate stochastic Markov process that generates
particle configurations compatible with the equilibrium state of the fluid being modeled.
MD is based on the solving of the equations of motion (e.g., Newton’s) for the particles in
the modeled fluid, either in equilibrium or in nonequilibrium states. MC provides “exact”
results, since it is essentially a multi-dimensional numerical integration method, and it can
be extended to deal with quantum many-body systems at non-zero temperatures [9,13,16].
However, the MD reliability is different depending on the classical or the quantum nature
of the application. Thus, although for the time–evolution in classical fluids MD provides a
perfectly defined calculational framework [13,17], the same does not occur for quantum
fluids because of Heisenberg’s uncertainty principle. Hence, the related quantum dynamics
applications are of limited validity, this being a general issue that remains an open problem
(see the appealing formulations and results, based on the PI formalism [4], reported in
References [18,19,21,22,37,38]). It must be stated that, within the quantum domain, PI is the
theoretical framework that has led to the implementation of the most powerful simulation
techniques to date for investigating equilibrium states. The two basic techniques are path
integral Monte Carlo (PIMC) and path integral molecular dynamics (PIMD), the latter
being an equilibrium construction that bears no connection with the actual time evolution
of the system [7,9–11,39,40,50,78–102]. All these developments of Feynman’s PI owe much
to the pioneering works by Barker [78], Chandler and Wolynes [7], Berne et al. [16,79,86],
and Ceperley and Pollock [9,82,83]. It is worthwhile to mention that, in addition to the
diffraction and the bosonic exchange regimes [9,39,40,83], a further PI extension involving
Wigner’s formulation (WPIMC) has been used recently by Filinov et al. to study, in a
practical way, fermionic exchange [103,104], an issue that remained far from accurate PIMC
computations owing to the so-called “sign problem” [103,105,106].

2.2. Hamiltonians and Interparticle Potentials

Any of the foregoing computer applications must incorporate, as a key ingredient,
a model for describing the interactions between the actual particles composing the fluid.
These models are built by employing any (or all) of the following methods [13,107–123]:
geometrical arguments (e.g., hard spheres), experimental data, and quantum mechanical
reasoning/computations. In this regard, it is well-known that the Born–Oppenheimer
approximation (BOA) [124], aided again by the availability of increasing computational
resources, has been instrumental in developing the quantum study of real systems. Among
its many applications, those of interest in the structural study of fluids may be listed as
follows: interatomic/intermolecular interactions [107–114], molecular properties in con-
densed phases [114–117], properties of atomic/molecular clusters or far larger assemblies,
etc. [118–123]. Note that, for an isolated polyatomic system, BOA defines its electronic
energy (including, obviously, the nuclear repulsions) as the potential energy for the motions
of the nuclei within the overall atomic structure. Consequently, for a set of N atoms, from
the consideration of a number of geometries of the nuclei at fixed positions qj in 3-D

space, operational forms of the global potential energy V(N) can be determined quantum
mechanically as sums of n-body contributions (two-body, three-body, etc.) that depend
only on the positions qj. The point is that quantum averages are to be performed over the
electronic coordinates of the generic two-body, three-body, . . ., (isolated) subsystems, which
are taken as the significant “units” to model the N-system. This is a complex quantum
chemical task that can be achieved outside of the global N-body context, and leads to a
model of the whole polyatomic system in which the effective centers for the interactions
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are placed at the positions of the nuclei, i.e., the non-collapsing and tempered function
V(N)(q1, q2, . . . , qN) [5].

Therefore, for an isolated monatomic fluid, one can write the model Hamiltonian in
the conveniently simplified form [2,5,9]:

H
(N)
0 = K

(N)
kin + V(N) = ∑

N

j=1

p2
j

2m
+ V(N)(q1, q2, . . . , qN), (1)

where pj is the momentum of atom j and m is the atom’s mass (the pj and qj are to
be interpreted as classical dynamical functions or as quantum operators, depending on
the application; explicit spin interactions are disregarded). Among the V(N) construc-

tions, the success of the pairwise approach, V(N) = ∑j<l v
(

rjl

)

, has been fundamental.

The latter form usually contains “averaged” many-body effects in the “pair” potential

v
(

rjl

)

, rjl =
∣
∣
∣qj − ql

∣
∣
∣ [13] and has yielded a thorough understanding of fluid systems.

This is particularly true of monatomic fluids at equilibrium, regardless of their classical
or quantum behavior [9,13,17]. One also notes that the use of explicit many-body sums
for V(N) becomes necessary when the relative orientations of three [107,108,113] or more
atoms/molecules (or particles in general) play an important role, as for example at very
high densities in the solid state [120–122] or when the fixing of the n-body terms is strictly
individualized with the use of quantum chemical computations [113,119].

The final test of an interaction model is the comparison with an experiment of the
calculated properties (e.g., for fluids: the pair structures S(2)(k) and g2(r), the internal
energies E, the pressures p, etc.). In this regard, one must realize that the form Equation (1)
for the Hamiltonian is perfectly suited for comparisons of the related fluid pair structures,
fixed via computations, with those determined through radiation scattering experiments
(X-ray, neutron diffraction) [5,6,27,32–34]. In turn, from these comparisons one can improve
the predictive power of the interaction model via further fittings of its parameters [13].

Also, it is important to point out that, although the fluid particle correlations are
induced by the particle interactions (including those coming from quantum symmetries),
both concepts are generally not the same thing. Thus, the many-body correlations may
not be specifically associated with an explicit inclusion in the calculations of three-body
or higher-order potential energy contributions. Note, for example, that in a monatomic

gas described with just a pair potential v
(

rjl

)

, one can identify correlations of any order

between the atoms. Within such a context, a key fact that may guarantee the high quality of

the computed triplet structures is associated with the fluid description achieved via v
(

rjl

)

,

albeit this might not be sufficient, and evaluations with alternative interaction models,
or calculations of special fluid properties involving these structures [3,44,48], could be
necessary to settle the question.

2.3. Classical Calculations

As mentioned earlier, the classical and PI-quantum applications share several basic fea-
tures and problems (thermodynamic evaluations can be carried out alongside those of the
equilibrium structures and/or utilize the latter [9,13]). Therefore, consideration is given first
to the classical case, and the specific quantum characteristics will be discussed afterward.

The equilibrium classical developments have focused mainly on the
pair and the triplet levels, the two basic sets being:

{
g2(r); S(2)(k)

}

C
,

{
g3(r, s, u); S(3)(k1, k2, cos φ)

}

C
[13,28,45–49,125–129]. The distances r, s, and u define a

triplet configuration of three generic atoms: r = |q1 − q2|, s = |q1 − q3|, u = |q2 − q3|. The
k variables of the response Fourier functions are the wavenumbers k = |k| of the related
(elastic) momentum transfers h̄k from an external weak field to the fluid (φ is the angle

between k1 and k2 and can be used in lieu of cos φ in S(3)) [5,6,45]. Recall that, in going
from n = 2 to n = 3, the expected computational load must increase greatly, since the
dimensionality of the problem goes from 2-D to 4-D.
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The classical pair level can be solved via simulation to a high degree of accuracy.
However, the g2 calculations are more affordable and straightforward than those of S(2),
which encounter some difficulties. The latter are brought about by the necessity of:
(a) scanning wavevectors k commensurate with the simulation box, i.e., for the usual
cubic box k =

(
2π
L

)(
kx, ky, kz

)
, with kx, ky, kz integers and L the box length; and (b) the use

of equal-modulus sets of vectors {km} for a given value k = |km|. Accordingly, the S(2)

simulation task is far more expensive than that of g2 and, more critically, does not permit
the direct calculation of the k = 0 component, which is a central thermodynamic quantity:
the dimensionless isothermal compressibility, S(2)(k = 0) = ρNkBTχT , where ρN is the bulk

(number) density and χT = − 1
V
(

∂V
∂p

)

T
[13]. These features are well known by statistical

mechanics practitioners and, instead of employing extended simulation schemes looking
for reliable (and unnecessarily expensive) k → 0 extrapolations, one can utilize methods
based on the direct MC/MD simulation of g2 complemented with well-grounded closure
procedures [13,76,77,130–132]. The latter involve the OZ2 framework, which yields the
pair direct correlation function c2(r), a function that shows a very rapid decay to zero with
increasing distances. This function is decisive in circumventing the difficulties mentioned
above and provides, through its Fourier transform, a highly accurate and cost-effective
answer to the whole pair structure factor problem: that is S(2)(k) for k ≥ 0.

As regards triplets, the whole situation is not so well developed. The simulation
techniques are certainly possible in this context [45,46,48,49,125–129], albeit the abovemen-
tioned drawbacks at the pair level are clearly augmented. To diminish the cost of full 4-D
computations in both r-space and k-space, the triplet studies have concentrated mainly on
the features considered to be the most characteristic, namely the statistical properties of the
equilateral and isosceles features. The descriptions so obtained are not complete, but one
can expect them to be sufficiently informative for many practical purposes [45,125–129].
However, if more detailed triplet results are needed, they can be fixed for g3 in r-space
through affordable simulations [48], albeit for S(3) in k-space, the computational load
increases largely. At this juncture one might think of using a combination of simulation and
closures [45,125–129], as achieved at the pair level, that is, using the simulated g3 (and g2!) to
fix S(3). Nevertheless, the computations of g3(r, s, u) would have to be quite complete over
the three spatial dimensions for the Fourier transforms to be obtained accurately [125,126].
In addition, the alternative based on OZ3 direct correlation functions, i.e., Baxter’s cn hier-
archy [73], remains, in general, uncertain due to the lack of a univocal formulation that cuts
the hierarchy in a generally significant way [45,70,73,133,134]. Despite these difficulties, the
use of closures is a very useful source of information (e.g., for g3 : Kirkwood superposition
KS3 [41], Jackson–Feenberg JF3 [44], the intermediate AV3 = (KS3 + JF3)/2 [63], and/or for
c3 : Barrat et al. BHP3 [45], Denton–Ashcroft DAS3 [70]).

For the current purposes, it seems natural to characterize the structural complexity
associated with a classical monatomic fluid by the class Cn =

{
gn; S(n)

}

C
. Such a class

might be extended to include cn, thus separating the two ways to obtain S(n) (simulation
and direct correlation functions), but given the direct relationships between the cn and the
S(n), that measure does not seem necessary. By doing so, the comparison with the quantum
case is expected to be clearer by avoiding unnecessary complications to the essence of the
related discussion. Moreover, direct correlation functions in the quantum case do not have
the same general status as in the classical domain, which makes their absence from Cn a
reasonable choice.

2.4. Quantum Calculations: Path Integrals

The consideration of the structural study of quantum monatomic fluids at equilibrium
is in order now. The classical approach is an idealization in which thermal quantum
effects can be neglected at sufficiently high temperature T. However, as T is lowered, the
quantum diffraction regime becomes non-negligible, and its importance is greater with
diminishing temperatures and increasing densities. Furthermore, for sufficiently low T,
quantum exchange regimes (Bose–Einstein or Fermi–Dirac spin statistics) show up and
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must be taken into account [9,40,103,104]. All the classical simulation difficulties are also
present in this context, with the added intricacies arising from the variety of quantum
effects. In this regard, diffraction effects and zero-spin bosonic statistics can be tackled,
broadly speaking, along lines of thought that are somewhat parallel. These are the subjects
of the present article, whose interest is clear if one considers that every fluid system, under
the appropriate conditions (e.g., gaseous state), can undergo nonnegligible diffraction
effects, and also that helium-4, being composed of zero-spin particles, is a paradigm for
boson superfluids. Nevertheless, the treatment of quantum fluids with non-zero spin
statistics is far more complex, owing to the roles that can be played by: (a) the multiplicity
of spin states, (b) the intrinsic half-integer spin statistics difficulties (fermionic fluids), or
(c) the magnetic interactions with external fields. All these more general cases will not
be addressed in this work, which is focused on the current state of equilibrium triplet
structure studies.

To begin with, the quantum monatomic fluid under diffraction effects displays three
structural classes, which can be seen as arising from the particle delocalizations that pro-
duce a splitting of the classical Cn. These new classes are associated with three different
forms of linear response from the quantum fluid to an external weak field. This means
that if the structural complexity of the classical monatomic fluid is taken as a reference, the
complexity of this quantum counterpart is (at least) three times higher. These quantum
classes are revealed by the PI formalism [7,9,18,19,59,89,135] and are known as instanta-
neous (ETn), total continuous linear response (TLRn), and centroids (CMn). The general
scheme for any of them is just the same as before, correlation functions and structure
factors, but with TLRn involving self-particle correlations; such a fact makes this latter
class a distinct one. For notational convenience [11], these quantum classes will be de-

noted as: ETn =
{

gETn; S
(n)
ET

}

Q
, TLRn =

{

GTLRn; S
(n)
TLR

}

Q
, and CMn =

{

gCMn; S
(n)
CM

}

Q
.

Their connections with external weak fields are as follows: (a) as ETn is a close “analo-
gous” to Cn, then the corresponding fields are those of elastic neutron scattering or X-ray
diffraction [27,32]; (b) TLRn arises from the action of continuous fields [11]; and (c) CMn
is a particular case of the latter and corresponds to a field of constant strength [19,135]
also showing a truly deep classical-like character [59,135]. On the one hand, the first
two classes can be measured experimentally at the pair level n = 2, that is, ET2 and
TLR2; from a wider perspective, these measurements also show connections with dy-
namic quantities via sum rules [27,33,34]. On the other hand, CM2 cannot be fixed di-
rectly through experiments, although it is very useful as an auxiliary object for theoretical
developments [18,19,37,38,135–142] (beyond n = 2 recall that no structural measurement
is experimentally obtainable today).

To obtain a first feeling of the PI-origin of these classes, a simple image will suffice [4].
Under diffraction conditions at temperature T, every actual particle with mass m delocalizes
in the form of a thermal packet, its size being related to the thermal de Broglie wavelength
λB = h√

2πmkBT
. Accordingly, there are many possibilities for defining interparticle distances,

but within the current response context, three sorts of physically significant PI interparticle
distances arise [7,9,11,89,135], each associated with one of the three PI classes. Although
their exact nature will be discussed in Section 5 of this article, just for visualization purposes,
notice that the CMn class is built on the distances between the thermal packet centers, which
are termed centroids or “centers of mass”. The other two classes involve more elaborate
forms of distances between the particle thermal packets. Although the higher complexity
of the structural quantum case should be clear at this point, there is still more to this issue
that deserves consideration, as the following PI calculational facts reveal.

The quantum PI simulations in the diffraction-effects regime (PIMC, PIMD) describe
the delocalized atoms in real 3-D space through a statistical distribution of (closed) elastic
“necklaces” with P “beads” apiece (i.e., the thermal packets: one P-necklace per actual
atom) [4,7,9]. P is a positive integer, greater than 1, which is to be optimized and represents
a compromise between statistical convergence and theoretical accuracy. The latter is given
by the Trotter’s limit P → ∞ [143], in which necklaces transform into continuous closed
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paths in Euclidean (imaginary) time βℏ = ℏ/kBT, and an exact representation of the actual
atoms and the fluid is retrieved [9] (there is an alternate and equivalent PI formulation based
on the Fourier expansions of the paths [144,145], but it will not be analyzed in this work).
An actual fluid composed of N atoms is thus modeled by a set of N × P beads. Therefore, P
plays a decisive role in the simulation studies of the quantum structures (of course, using
a reduced sample NS × P) : it makes them far more expensive than those of the classical
case where P = 1. Furthermore, apart from such an increase in the computational effort
just to generate the equilibrium configurations, and of the usual N-dependences of any of
the n-th order structure calculations [2,13], to obtain the structures it is crucial to point out
that the instantaneous (ETn) calculations scale as P, the total continuous linear response
(TLRn) acts as Pn, and the centroid (CMn) acts as in the classical case.

As stressed, when diffraction effects dominate the fluid behavior, and thus exchange
interactions can be neglected, the PI necklaces are closed. However, if quantum exchange
cannot be neglected, one faces complicated mixtures of closed and open necklaces, the
latter interlinking with one another, in response to the corresponding permutations among
atoms [7,9,39,40,83]. Within the PI-description, the physically significant interparticle
distances are defined by specific inter-bead distances (ETn and TLRn) or by constructions
that use the bead positions (CMn), as will be shown in detail in Section 5 (diffraction effects)
and Appendix A (zero-spin bosonic exchange) [9,19,39,89,135,137–140].

Therefore, in practice, the quantum structural complexity extremely exceeds that of
the classical case. Even if one only wishes to perform a full structural study including up
to the triplet level, the PI computational effort appears today as a daunting task. As an
aside, one may mention the approximate frameworks arising from the exact PI formalism
(i.e., Feynman–Hibbs potentials [4,145] and their generalizations [146,147]), which can be
utilized to carry out thermodynamic and structural studies of fluids with weak quantum
behavior [11,136,148–150]. Although their applicability is certainly limited, they are far
from being computationally expensive, and they turn out to be very useful due to the
intuitive structural pictures they provide at both the pair and the triplet levels [11].

2.5. Quantum Calculations: Closures

As regards closure theories, their applications to quantum fluids may be carried out by
following/adapting the same methodologies as those employed for classical fluids in both the
r-space and the k-space. Actually, these adaptations have gone both ways (classical ↔ quan-
tum), which has been a normal practice throughout the years [3,41–45,64,70,73–77,130–133].
However, the related theoretical quantum grounds deserve especial consideration, which
becomes clear when applying OZn schemes.

Thus, by focusing on diffraction effects, it is very interesting that OZn turns out to be
a rigorous framework for the centroid class CMn [59], albeit OZn is only approximate for
ETn and TLRn [11]. Surprisingly, despite such mathematical observations, excellent results,
as compared to experiment and simulation, have been obtained when fixing the three

pair structure factors, S
(2)
ET (k), S

(2)
TLR(k), and S

(2)
CM(k), by OZ2-treating the corresponding PI-

simulated correlation functions [11,50,59,64,66,136,141,149,150]. The OZ2 calculations are
much less demanding than those carried out with PIMC in k-space, and the results for k > 0
obtained with PIMC and OZ2 are almost indistinguishable from one another [50]. Moreover,
the OZ2 evaluations of the k = 0 components are obtained with great accuracy as part of
the whole S(2)(k) determinations. Furthermore, according to the extended compressibility
theorem [135], the exact formulation of the isothermal compressibility χT of the fluid can be

achieved with OZ2 through the centroid component S
(2)
CM(k = 0) = ρNkBTχT . This implies

that the OZ2 applications to the CM2 correlations gCM2(R) produce, in principle, exact
values for χT (within the accuracy and precision of the calculations performed) [135,141].
For the cases ET2 and TLR2, which in rigor, must share that same centroid k = 0 value [135],
one can obtain approximate, though very valuable, χT estimates via OZ2 [50,64,66]. As
regards triplet closures, the question is open and must be settled through comparison with
exact PIMC/PIMD results. Although uncertainties larger than in the classical domain might
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be expected here, some promising results have been obtained lately [62–64], as summarized
below. In relation to bosonic exchange, even though closures were employed in the past
to deal with zero-spin/charged fluids [3,43,44,74], their use is not so straightforward, and
some consideration will be given in Appendix A.

2.6. Some Recent Quantum Triplet Facts

To close this overview, three motivating pieces of information on quantum fluid
triplets in the diffraction regime, obtained recently with PIMC and closures, may be worth
giving here.

(i) For the quantum hard-sphere fluid on the crystallization line [63], the PIMC absolute
maximum amplitudes of the instantaneous (ET) and centroid (CM) pair and equilat-
eral structures, i.e., g2(rM) and g3(rM, rM, rM), do follow empirical behaviors of the
type aγ−b, where γ = ρNλ3

B is the degeneracy parameter, and a and b are positive con-
stants. This empirical γ pattern is associated with the singular hard-sphere potential
(infinite repulsion at the classical contact and no attraction beyond). Therefore, some
transferability of this defining change-of-phase feature into fluids under quantum
diffraction effects, and ruled by interparticle potentials with weak attractions, should
be expected. In this regard, the case of liquid para-H2 could be very illustrative (one-
site particles, as studied in Reference [61]). However, further PIMC computations,
more accurate than those reported in the latter Reference for this system’s centroid
gCM3(rM, rM, rM), should be carried out in order to ascertain this point.

(ii) A preliminary PIMC triplet study of liquid para-hydrogen in k-space [62] suggests
that, on the quantum crystallization line, there might exist an almost “constancy”
(i.e., values in a relatively narrow interval) of a salient trait in the centroid triplet

structure factor (e.g., the maximum of the equilateral components S
(3)
CM(kM, kM, π

3 )
or an isosceles amplitude located nearby). If confirmed, this could be a parallel
to the quantum freezing constancy observed at the pair level of the centroid maxi-

mum amplitude S
(2)
CM(kM) for a given fluid [66] (at the pair level there is no general

quantum extension of the classical Hansen–Verlet rule [6] for the centroid maximum

amplitudes S
(2)
CM(kM)).

(iii) The applicability of closures to quantum triplets could have a broader scope than
suspected and be very helpful in providing physically significant pictures of the
different quantum triplet behaviors in cost-effective ways. Even though the avail-
able information on closure applications to quantum triplets is scarce [58–64], for
a wide range of quantum diffraction conditions (quantum hard spheres [63] and
supercritical helium-3 [64]), the intermediate triplet closure AV3 = (KS3 + JF3)/2
in r-space captures significant features of the correlation functions gET3(r, s, s) and
gCM3(r, s, s). Consequently, improvements on the AV3 closure, e.g., via adaptations of
Abe’s expansion [42], should be well worth exploring.

3. Equilibrium Classical Fluid Triplets

A homogeneous and isotropic classical monatomic fluid is considered, which will
serve as a reference for basic notations, concepts, and tools when presenting the quantum
fluid discussion. A summary description of both the pair and the triplet levels is given
because a complete study of the triplet level (n = 3) already involves the consideration
of the pair level (n = 2) [41–45]. The grand-canonical ensemble (µ,V , T) is employed in
all the derivations, with the mean number density being ρN = ⟨N⟩/V and the interatomic

distances denoted by rjl =
∣
∣
∣qj − ql

∣
∣
∣. The partition function reads as [2]:

ΞC = ∑N≥0
exp(βµN)ZN,C(N,V , T) = ∑N≥0

zN

N!

∫

drN × exp
[

−βV(N)(rN)
]

, (2)
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where µ is the chemical potential, β the inverse temperature 1
kBT , ZN,C the partition function

of the canonical ensemble (N,V , T), z the activity λ−3
B exp(βµ), and drN = dr1dr2 . . . drN is

the 3N-dimensional element of volume for N atoms. Throughout this article, the ensemble
averages are denoted by ⟨. . .⟩, which, in their definitions, contain the division by the
corresponding partition function.

3.1. r-Space Correlation Functions

The one-point density dynamical function is simply given by ∑j δ
(
rj − q1

)
, its en-

semble average being ρ
(1)
N (q1) = ρN . The pair g2 and triplet g3 correlation functions are

probability density functions (not normalized to unity) derived from the partition function
ΞC [2]. These functions can be defined with the help of Dirac’s δ as [5]:

ρ
(2)
N (q1, q2) = ρ2

N g
2(q1, q2) = ρ2

N g2(r12) =
〈

∑j ̸=l
δ
(
rj − q1

)
δ(rl − q2)

〉
= (3a)

1

ΞC
∑N≥0

zN

N!

∫

drN × exp
[

−βV(N)(rN)
]

× ∑j ̸=l
δ
(
rj − q1

)
δ(rl − q2), (3b)

ρ
(3)
N (q1, q2, q3) = ρ3

N g
3(q1, q2, q3) = ρ3

N g3(r12, r13, r23) = (4a)

〈

∑j ̸=l ̸=m ̸=j
δ
(
rj − q1

)
δ(rl − q2)δ(rm − q3)

〉
= (4b)

1

ΞC
∑N≥0

zN

N!

∫

drN × exp
[

−βV(N)(rN)
]

×∑j ̸=l ̸=m ̸=j
δ
(
rj − q1

)
δ(rl − q2)δ(rm − q3). (4c)

Note that g2 and g3 are intensive quantities which depend on ρN and T, and, essentially,
they are given by the ensemble averages of the two- and three-point density dynamical
functions (notice the avoidance of self-contributions). Their normalizations read as [2]:

ρ2
N

∫

dq1dq2g2(r12) = ⟨N(N − 1)⟩, (5)

ρ3
N

∫

dq1dq2dq3g3(r12, r13,r23) = ⟨N(N − 1)(N − 2)⟩. (6)

A powerful alternate way to formulate the foregoing correlation functions is based
on the use of the functional differentiation of ln ΞC with respect to the variations δΨ in an
external weak field Ψ, which acts on every particle as Ψ

(
rN
)
= ∑j Ψ

(
rj

)
[5,6,151–153]. The

resulting equations are somewhat involved, but they lead to the physical interpretation
of these functions as directly related to the response from the fluid to Ψ. By starting from
ΞC(Ψ) given by

ΞC(Ψ) = ∑N≥0
exp(βµN)ZN,C(Ψ) = ∑N≥0

zN

N!

∫

drN × exp
[

−β
(

V(N)(rN) + Ψ
(

rN
))]

, (7)

one obtains the following set of equations:

−kBT
δln ΞC(Ψ)

δΨ(q1)
= ρ

(1)
N (q1; Ψ) = Γ1(q1; Ψ), (8a)

(−kBT)2 δ2ln ΞC(Ψ)

δΨ(q1)δΨ(q2)
= −kBT

δΓ1(q1; Ψ)

δΨ(q2)
= Γ2(q1, q2; Ψ), (8b)

(−kBT)3 δ3ln ΞC(Ψ)

δΨ(q1)δΨ(q2)δΨ(q3)
= −kBT

δΓ2(q1, q2; Ψ)

δΨ(q3)
= Γ3(q1, q2, q3; Ψ). (8c)

The foregoing development can be easily generalized to obtain the hierarchy of func-
tionals {Γn(Ψ)}, which can be seen as the recursive definition of the properties Γn(Ψ) of
the inhomogeneous fluid in the presence of the external field Ψ. By letting Ψ → 0 , the
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Γn functionals/properties on the right-hand sides of Equations (8a)–(8c) transform into
properties of the isolated fluid

Γ1(q1; Ψ = 0) = ρ
(1)
N (q1; Ψ = 0) = ⟨∑

N

j=1
δ
(
rj − q1

)
⟩ = ρ

N
, (9a)

Γ2(q1, q2; Ψ = 0) =
〈(

∑
N

j=1
δ
(
rj − q1

)
− ρN

)(

∑
N

l=1
δ(rl − q2)− ρN

)〉
, (9b)

Γ3(q1, q2, q3; Ψ = 0) =

〈(

∑
N

j=1
δ
(
rj − q1

)
− ρN

)(

∑
N

l=1
δ(rl − q2)− ρN

)(

∑
N

m=1
δ(rm − q3)− ρN

)〉
. (9c)

which, as shown in Equations (9b)–(9c), give the two- and three-body spontaneous fluctua-
tions of the fluid density. The explicit formulas for Γ2 and Γ3 are standard knowledge in
classical statistical mechanics [45,151–153], and, for brevity, are not written here. It is easy
to see, however, that Γ3 contains contributions of the Γ2 type. Note that the pair correlation
function g2 is contained in the formula of Γ2(q1, q2; Ψ = 0) and that both correlation func-
tions g2 and g3 are in that of Γ3(q1, q2, q3; Ψ = 0). As an aside, note that, for the canonical
component ZN,C(Ψ), the following complementary identities hold:

∫

dq1dq2

δ2ln ZN,C(Ψ)

δΨ(q1)δΨ(q2)
≡ 0, (9d)

∫

dq1dq2dq3

δ3ln ZN,C(Ψ)

δΨ(q1)δΨ(q2)δΨ(q3)
≡ 0, (9e)

which is the expected behavior of these types of integrals since there are no fluctuations
in the number of particles in a canonical ensemble. The analogous integrals involving
ln ΞC(Ψ) are nonvanishing and are related to the true number fluctuations, which are
consistently defined in a grand-canonical ensemble. In this connection, given the formal
equivalence between the structural classes classical Cn and PI-centroid CMn [59,135], the
explicit Γ2 and Γ3 formulas, and many other features, are deferred to the treatment of such
PI quantum correlations. Hence, only some important facts and consequences are to be
considered in what follows.

3.2. k-Space Structure Factors

By approximating the right-hand sides of Equation (8) by the zero-field Equation (9)
and Fourier transforming, one obtains the response functions in k-space from the fluid
to the action of Ψ at the pair and the triplet levels [6,45]. These functions are the static
structure factors that read as:

S(2)(k) = S(2)(k) =
1

ρN
Γ(2)(k; Ψ = 0) =

1

⟨N⟩
〈

∣
∣
∣
∣
∣
∣
∣

N

∑
j=1

exp
(
ik·rj

)

∣
∣
∣
∣
∣
∣
∣

2

〉
− (2π)3ρNδ(k) = (10a)

1 + ρN

∫

dr exp(ik·r) (g2(r)− 1), (10b)

S(3)(k1, k2) = S(3)(k1, k2, cos(k1, k2)) =
1

ρN
Γ(3)(k1, k2; Ψ = 0) =

1

⟨N⟩
〈

N

∑
j=1

N

∑
l=1

N

∑
m=1

exp
[
i
(
k1·rj + k2·rl − (k1 + k2)·rm

)]〉
− {δ(k)− terms}. (11)

In writing Equations (10) and (11), use of the homogeneity and isotropy of the fluid is
made. The response functions S(2) and S(3) are thus related to the density–density and the
density–density–density correlation functions of the isolated fluid, respectively.
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Note that, in a broad sense, one enters a general linear response framework when one
takes Ψ = 0 on the right-hand sides of the hierarchy and carries out the Fourier transforms
on both sides of the equations. In this regime, the fluid “does not know” if what is being
undergone is due to an external field or is just the result of its own spontaneous fluctu-

ations. Therefore, each of the (variations in the) fluid properties Γ(n)(Ψ) in k-space can
be formulated in terms of its corresponding isolated fluid property Γn(Ψ = 0) in r-space
in such a way that the functional dependence on the external field is linear [5,6]. In this
connection, for clarity, it is worth writing here the well-known relationship at the pair

level [6,153]: δρ
(1)
N (k; Ψ) = δΓ(1)(k; Ψ) ≈ −βρNS(2)(k)δΨ(k), and also that at the triplet

level: δΓ(2)(k1, k2; Ψ) ≈ −βρNS(3)(k1, k2)δΨ(k1 + k2). The static structure factors, or re-
sponse functions, are thus proportionality factors between the variations in the properties
and the variations in the external field. Accordingly, the associated wavenumbers k, k1,
and k2 are the moduli of the wavevectors that define the (elastic) momentum transfers pΨ

from the field to the fluid, i.e., pΨ = h̄k. These characteristics linked to the use of the linear
response regime will be maintained when studying the quantum domain.

Some important points to be noticed are the following:

(i) S(2)(k) can be determined experimentally, while S(3)(k1, k2) cannot [28].

(ii) S(2)(k) and S(3)(k1, k2) are real-valued quantities [45].

(iii) The general form of S(3)(k1, k2) expanded in terms of the Fourier transforms of the
different contributions built with g2(r) and g3(r12, r13, r23) is quite involved and will
be given in connection with the quantum CMn discussion.

(iv) For its direct theoretical and experimental interest, note that the δ(k)−term in S(2)(k)
Equation (10a) represents the subtraction of the forward scattering of radiation (elastic
scattering). This operation is an integral part of the complete definition of this pair
structure function (note that S(2)(k) → 1 for large wavenumbers). Obviously, a
generalization of this operation also applies to the S(3) case, as will be shown later on.

Some Concomitant Problems and Their OZ Solutions

In this connection, deeper consideration is necessary. Note that the δ(k)−term sub-
traction in Equation (10a) is also linked to the theoretical asymptotic value of g2(r), i.e.,
g2(r) → 1 for r → ∞ in the grand-canonical ensemble [2], which gives full meaning to the
Fourier transform in Equation (10b). Moreover, it is customary in simulation work to omit
this δ(k)−term, as the k = 0 component is strictly unattainable due to the finite sample
size (i.e., finite NS and/or VS), which imposes commensurability with the simulation box
on the wavevectors to be scanned (clearly, this also negatively affects the calculation of
the low-k region). Such omission is acceptable when dealing with the simulation tech-
niques but neglects the key fact that the k = 0 component makes the connection with
the thermodynamics of the fluid [3,6,13], since S(2)(k = 0) = ρNkBTχT , as stressed earlier.
The previous connection yields an appealing way to determine the equation of state of
the fluid via χT integration, an operation that is formally independent of the many-body
form selected to represent the potential energy V(N) (obviously, g2(r) does need V(N) to be
calculated). However, in calculating S(2)(k) via Equation (10b), one faces the problem of
the long-ranged oscillations of g2(r) about unity [2], which forces one to have a knowledge
of the pair correlations over a sufficiently long range of interparticle distances Otherwise,
accuracy in the Fourier transform is doomed to fail [13] (e.g., unphysical estimates for χT

can result from that naïve use of the transform). In addition, as the optimal determination
of g2(r) is accomplished via simulation, this already poses a practical problem derived from
the need for more expensive computations by increasing the simulation sample sizes [13].
Furthermore, although the canonical ensemble is a very convenient calculational tool, the
necessarily finite NS combined with the intrinsically bad asymptotic behavior of g2(r)

in this ensemble, i.e., g2(r → ∞) → 1 + O
(

1
N

)

[2,3], present one with another important

drawback to be dealt with.
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The same discussion, but with augmented difficulties, applies to the computation of
S(3)(k1, k2), in which the {δ(k)− terms} in Equation (11) involve k1 and/or k2. Under
these circumstances, irrespective of the mighty computational facilities at one’s disposal, the
targets that appear to be the most desirable are the saving of electrical power, the shortening
of the time to obtain answers through more rapid calculations, and the possibility of
obtaining physical pictures of the underlying processes.

The obvious advantage of using functional techniques is that they give the physically
complete answers to the classical structural problems in one stroke, although, inevitably,
some problems stand out and others arise. Nevertheless, there is more to using functional
techniques in this context since they can be employed to build insightful solutions to these
drawbacks. In relation to this, the additional role played by the inverse functional deriva-

tives (e.g., δΨ(q2)/δρ
(1)
N (q1)) in the derivation of the Ornstein–Zernike (OZn) equations

is to be highlighted [45,70,73–77,151,152]. The OZn equations define a further type of
structural functions: the direct correlation functions c2(r), c3(r12, r13, r23), etc. By restricting
up to the triplet level for simplicity, c2 and c3 yield compact and efficient formulations of
the structure factors S(2) and S(3). The key point is that the direct correlation functions are
short-ranged (i.e., they decay to zero rapidly with increasing distances), which allows one
to very accurately fix the Fourier transforms involved.

Given that the OZn framework at the pair and the triplet levels will be considered in
detail when dealing with the isomorphic PI-centroid CMn class, for brevity, the classical
situation may be summarized here in the following basic equations [1,45,73]:

- OZ2 equation

h2(r12) = c2(r12) + ρN

∫

dr3h2(r13)c2(r23); h2(r12) = g2(r12)− 1, (12)

where the total correlation function h2(r12) is introduced and a convolution integral over
the positions of a generic third particle is included (although c2(r) may show oscillatory
tails [154], the observed behavior is that the decay c2(r) → 0 for increasing distances
occurs effectively).

- OZ2 pair structure factor

S(2)(k) = (1 − ρNc2(k))
−1, (13a)

S(2)(k = 0) = (1 − ρNc2(k = 0))−1= ρNkBTχT =

〈
N2
〉
− ⟨N⟩2

⟨N⟩ , (13b)

where c2(k) is the Fourier transform of (the short-ranged) c2(r12) (note that, even at the
critical point, c2(k = 0) remains finite, its value being ρ−1

N [5,6]).

- Baxter’s hierarchy-related results

∂c2

(
q1,q2

)

∂ρN
=
∫

dq3c3

(
q1,q2, q3

)
;T = constant, (14a)

∂c2(k1)

∂ρN
= c(3)(k1, k2 = 0);T = constant, (14b)

where c2

(
q1,q2

)
= c2(r12), c3

(
q1,q2,q3

)
= c3(r12, r13, r23), and c(3)(k1,k2) = c(3)(k1, k2, cos(k1,k2))

is the Fourier transform of c3(r12, r13, r23).

- OZ3 triplet structure factor

S(3)
(
k1, k2

)
= S(2)

(
k1)S

(2)(k2

)
S(2)(|k1 + k2|)

{
1 + ρ2

Nc(3)(k1, k2)
}

, (15)

Some further comments are in order now. First, the OZ2 equation takes a single form,
whereas one finds four different, though equivalent, versions of the OZ3 equation [75].
Second, the δ(k)−terms appearing in Equations (10a) and (11) are fully included in their
reformulations given by Equations (13) and (15). Therefore, the k = 0 incompleteness



Quantum Rep. 2024, 6 577

associated with simulation schemes appears formally OZn-circumvented. Third, note the
important role of the pair level in k-space, as shown in the triplet Equations (14) and (15),
where the pair quantities give a solution to the simulation-intractable situations at k1 = 0
and/or k2 = 0 (also k1 = −k2) and are indispensable building blocks. Fourth, however,
the OZn equations are void in themselves, and they need further approaches (closures) to be
solved. This is easy to grasp by observing the structure of the Equations (12) and (14): both
are integral equations for the unknown c2 and c3, which add new difficulties to the whole
structural question [28,30,31,41–45,49,70,73–77,126–134]. Further formal considerations
(triplet symmetries and asymptotic behavior, consistency relationships, etc.) and analyses
to fix the pending issues (e.g., closures, the vexing canonical g2(r12) long-range behavior,
etc.) are given in the Sections 3.3–3.5.

3.3. Grand-Canonical Triplet Symmetries and Asymptotic Behaviors

(i) In r-space, by renumbering the atom labels, the triplet g3 and c3 functions satisfy the
following symmetries:

g3(r12, r13, r23) = g3(r12, r23, r13) = g3(r23, r12, r13) = · · · , (16a)

c3(r12, r13, r23) = c3(r12, r23, r13) = c3(r23, r12, r13) = · · · , (16b)

or using vector notation (e.g., r12 = u, r13 = s) [45]: c

g3(u, s) = g3(s, u) = g3(−u, s − u), (16c)

c3(u, s) = c3(s, u) = c3(−u, s − u) (16d)

Also, when two particles are very close together, the triplet function g3 obviously
vanishes [155,156]. Technically, one writes

lim
|q1−q2|→0

g3(r12, r13, r23) = 0, (17a)

although, as at the pair level, the zero value is reached for interparticle distances greater
than zero. The g3 asymptotic behaviors are [2,156]:

lim
|q3|→∞

g3(r12, r13, r23) = g2(r12), (17b)

lim
|q2|, |q3| → ∞

|q2 − q3| → ∞

g3(r12, r13, r23) = 1, (17c)

(conventionally, one may take particle 1 as the origin of coordinates for the three generic
particles). For the equilateral and isosceles correlations, these conditions are usually
written as

lim
s→∞

g3(r, s, s) = g2(r), (17d)

lim
r→∞

g3(r, r, r) = 1, (17e)

The canonical ensemble Equation (17e) and its analogies at higher orders are not so
neat because of terms O( 1

N ) [2,3], but this theoretical feature is not central at this stage
(more on asymptotic properties later).

(ii) In k-space, the symmetries of interest are [45]

c(3)(k1, k2) = c(3)(k2, k1) = c(3)(k1,−k1 − k2), (18a)

S(3)(k1, k2) = S(3)(k2, k1) = S(3)(k1,−k1 − k2). (18b)

(iii) Note that for c3 in r-space, one expects a decay to zero when any of the particles
increasingly separates from the other two, because this is a reasonable physical
behavior that can be drawn from Equation (14). However, for c(3) and S(3) in k-
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space, their explicit behaviors may become involved, since they depend on the angles
between k1 and k2 (e.g., for k → ∞, S(3)(k, k, π/3) → 1 is the observed behavior).

3.4. The Interplay Between Simulation Techniques and Closures

There are well-known MC and MD simulation techniques to obtain g2, g3, S(2) and
S(3) [13,17,45–49,125–129], and they will not be described here. Rather, the interest is to be
focused on some significant facts that show the interplay and complementarity between
the simulation calculations and the approximations that can be obtained via closures.

(i) In the OZ2 case, there are highly accurate methods that yield c2(r) and

S(2)(k) [5,6,13,76,77,130–132,157]. It is useful to point out that the knowledge of
the latter functions allows one to extend the range of distances obtained for g2(r) via
simulations which, for instance, uses a cubic box limited to half the box length L/2. In
addition to Equation (13), the basic formulas are:

c(2)(k) =
4π

k

∫ ∞

0
dr r c2(r)sin kr, (19)

g2(r) = 1 +
1

2π2rρN

∫ ∞

0
dk k

(

S(2)(k)− 1
)

sin kr;r > 0. (20)

As stressed earlier, the access to the fluid equation of state via c2(k = 0) and χT is a key
OZ2 feature. Moreover, the knowledge of c(2)(k), and hence of an extended g2(r), is useful
for further studies, such as especial asymptotic decay properties of the pair correlations
(pure exponential and exponentially damped oscillatory decays) [158–160] or some triplet
correlation evaluations [3,45,161].

Among the OZ2 methods, Baxter’s partition of Equation (12) deserves especial atten-
tion [77,130], since it does not, per se, need any explicit knowledge of the underlying u(r)
interactions between the particles. The only input parameters to carry out calculations are

{g2(r), ρN} (and T to extract the actual value of χT) [50,135,141]. This contrasts sharply
with typical OZ2 approaches, such as Percus–Yevick or the hypernetted chain [5,6,76,157],
and this makes Baxter’s applicability more general and powerful. Although the latter is a
theoretical development in classical statistical mechanics, a good deal of its applications
have been performed in the context of fluids with quantum behavior. Therefore, for the
quantum purposes of this work, it is convenient at this point to give some specific details of
Baxter’s partition [77] and its practical implementation, which, involving a minimization
procedure [130] (BDH = Baxter–Dixon–Hutchinson), also needs a further analysis of its
results [50,64,66,132,136,141].

Baxter’s partition for a disordered fluid and its practical implementation (BDH) are
based on (a) c2(r) vanishes for distances greater than a cut-off distance r > RCO; (b) h2(r)
obtained via simulation is known for r ≤ RCO; (c) RCO is limited by the range of distances
set by half the simulation box length L/2, and is fixed through a minimization procedure
that preserves the continuity of h2(r) at such a cut off; (d) the minimization yields in general
a set of possible cut-off distances {RZv}v=1,2,...,v(M), which are the “zeros” of an auxiliary

function; a practical convergence of the observable property, i.e., S(2)(k), occurs within
an upper subset of these zeros; and (e) there are ways to treat the situation in which no
zeros arise [130] and, also, to extract the physically significant information from the upper
RZv zeros [50,66,141]. Clearly, the longer the L value is, the better the OZ2 results should
be. In this connection, to minimize the defects of the g2(r) fixed with a finite NS size in a
simulation (e.g., canonical ensemble calculations), an additional combination of OZ2 and
simulation is highly recommended. As a matter of fact, the iterative improvement on g2(r)
with grand-canonical corrections [131,132] leads to a better-defined S(2)(k) convergence
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along the RZv−sequence. An example of the latter iterations can be summarized in the
useful algorithm put forward by Baumketner and Hiwatari (BHw) [132]:

g
(GC)
2 (r; n + 1) = g2(r)

(
1 +

S(2)(k = 0; n)

NS

)
,n = 0, 1, 2, . . . ., (21)

where the initial conditions (n = 0) are the NS−simulated g2(r) and its associated OZ2—

S(2)(k = 0; n = 0) that yield the first correction g
(GC)
2 (r; n + 1 = 1), which in turn is OZ2

analyzed to obtain its S(2)(k = 0; n = 1), giving the second correction g
(GC)
2 (r; n + 1 = 2)

and so on, until convergence in S(2)(k = 0) is reached. When using OZ2—(BDH + BHw),
the S(2)(k = 0; n) value can be fixed at every step as the mean value of the S(2)(k = 0)
arising from the upper set associated with the resulting RZv zeros [141]. For further
applications (e.g., triplet calculations [45,59,64]) involving a specific single function as
an intermediate quantity, i.e., c2(r) or S(2)(k), the selection within the final upper RZv-
range of the convergence of one of them as a representative is sufficient to give perfectly
consistent results.

(ii) For OZ3 the situation involves the design of accurate closure methods for obtaining

g3(r12, r13, r23), or c3(r12, r13, r23) and S(3)(k1, k2), which still remains a non-closed
problem. For the g3 functions, key closures are:

- Kirkwood superposition (KS3) [41]:

gKS3(r12, r13, r23) = g2(r12)g2(r13)g2(r23). (22)

- Jackson–Feenberg convolution (JF3) [3,44]:

gJF3(r12, r13, r23) = gKS3(r12, r13, r23)− h2(r12)h2(r13)h2(r23)+

ρN

∫

dq4h2(r14)h2(r24)h2(r34). (23)

- The intermediate average (AV3) [63,64]:

gAV3(r12, r13, r23) =
1

2

(

gKS3(r12, r13, r23) + gJF3(r12, r13, r23)
)

. (24)

The interesting point is that KS3 and JF3 are pivotal references in general triplet
studies. In this regard, one may distinguish between triplets in r-space and triplets in
k-space: KS3 plays a central role in r-space [42–45,126,155,156], whereas JF3 plays it in
k-space because cJF3(r12, r13, r23) ≡ 0 [45,75]. The forms adopted by the KS3 and JF3 triplet
structure factors can be found in Reference [45], from which the case AV3 is a trivial mat-
ter (note that, for JF3, the S(3) formula reduces to the product of the three S(2) factors in
Equation (15)). KS3 was derived in the context of classical statistical mechanics, while
JF3 was in the context of quantum statistical mechanics. Despite these different concep-
tual frameworks, these two closures have been applied to both classical and quantum
fluids indistinctly [30,31,36,41–45,58–64,126,155,156] (in relation to this, recent results for
fluids with quantum behavior show that AV3 performs very well as compared to KS3 or
JF3 [63,64]). As regards their behaviors under limiting conditions, note that KS3 and JF3 sat-
isfy the long range Equations (17b)–(17e); KS3 also satisfies the short-range Equation (17a),
whilst JF3 fails to describe this latter situation [155,156].

Other triplet closures are orientated towards k-space [45,70,127–129,133]. Among
them, the insightful Barrat–Hansen–Pastore (BHP3) closure deals with c3(r12, r13, r23) [45].
By starting from Equation (14a), the BHP3 closure introduces an auxiliary pair function t(r)
such that:

cBHP3(r12, r13, r23) = t(r12)t(r13)t(r23), (25a)
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which is fixed through the minimization of the following nonnegative functional:

Θ[t(r)] =
∫

dr
{

∂c2(r)

∂ρN
− t(r)

∫

dst(s)t(|r − s|)
}2

; T = constant. (25b)

To initiate the iterations, t(0)(r12) = h2(r12) is the recommended choice [45]. The

convergence is assessed via the quotient
Θ[t(r)]

∥
∥
∥

(
∂c2(r)
∂ρN

)

T

∥
∥
∥

2 , which involves the value of the func-

tional being minimized and the (squared) norm of the isothermal density derivative of
the pair direct correlation function, which serves as a reference. For the pertinent formal
details of this type of minimization, the reader is referred to Reference [45] (gradients), or to
References [49,59,60] (conjugate gradients). After fixing t(r), the application of Fourier trans-

forms to obtain c
(3)
BHP(k1, k2) yields the approximation S

(3)
BHP(k1, k2) [45]. BHP3 satisfies

Equation (14) and has been applied to classical and quantum fluids [45,49,59–62,64,126–129].
Along the same k-line of thought, another example is the Denton–Ashcroft sym-

metrized approach (DAS3) [70], which can be cast as:

c
(3)
DAS(k1, k2) =

1

3

{

c
(3)
DA(k1, k2) + c

(3)
DA(k1, |k1 + k2|) + c

(3)
DA(k2, |k2 + k1|)

}

, (26a)

in which the following definitions are to be used:

c
(3)
DA(k1, k2) =

1

c(1)′

(

c(2)(k1)c
(2)′(k2) + c(2)(k2)c

(2)′(k1)
)

− c(1)
′′

(c(1)′)
2

c(2)(k1)c
(2)(k2), (26b)

c(1)′ = c(2)(k = 0), (26c)

c(1)
′′
=

(

∂c(2)(k = 0)

∂ρN

)

T

, (26d)

c(2)′(k ̸= 0) =

(

∂c(2)(k)

∂ρN

)

T

. (26e)

DAS3 satisfies the key Equation (14b) only at k1 = k2 = 0, and has been applied to
classical and quantum fluids [59,70].

(iii) The validity of the closure-based approaches is to be established by comparison with
exact simulation results. On the one hand, closures at the pair level have proven their
value, as was mentioned earlier. On the other hand, there are missing traits when
triplets are described in terms of pair properties, and one would not expect much
success in utilizing closures for triplets. Nonetheless, the triplet results reveal that clo-
sures may capture salient features in both the r-space and the k-space. Therefore, their
usefulness as interpretive tools may be greater than imagined (see References [45,127]
for the classical domain and [63,64] for the quantum domain).

3.5. Other Theoretical Features

(i) There is another functional calculus way to obtain the formulation of the pair g2

Equation (3). Using the pairwise approach for the interactions between particles in the
fluid, this alternative is based on the functional derivative of lnΞC with respect to the

variations in the interparticle potential δu
(

rjl

)

such that the first functional deriva-

tive δlnΞC/δu
(

rjl

)

leads to g2. If one iterates the procedure, the second functional

derivative δ2lnΞC/
(

δu
(
rjl

)
δu(rmn)

)

produces a highly intricate expression. Given

that no external field is considered, the usefulness of these formal manipulations
seems rather reduced. The reader is referred to Reference [6] for the derivation of g2 in
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the canonical ensemble. This issue will be reconsidered when analyzing the quantum
fluid instantaneous structures (Section 5).

(ii) An interesting relationship is obtained from the grand-canonical average of a func-
tion that depends on the particle coordinates, Φ(q1, q2, . . . , qN , . . .), (e.g., the n-point
density dynamical functions), and reads as [155,156,162]:

z

(
∂⟨Φ⟩

∂z

)

V,T

= ⟨NΦ⟩ − ⟨N⟩⟨Φ⟩, (27)

For the two-point density Φ = ∑
j ̸=l

δ
(
rj − q1

)
δ(rl − q2), one arrives at an exact connec-

tion between g2 and g3 that can be cast as [30,36,155,156]:

S(2)(k = 0)

(
∂lng2(r12)

∂ρN

)

T

=
∫

dq3

{
g3(r12, r13, r23)

g2(r12)
− 1

}

+
2

ρN

(

1 − S(2)(k = 0)
)

, (28)

where g2(r12) > 0. This relationship may be useful for checking the consistency of the
results computed for g2 and g3 or for testing approximate triplet closures. This latter issue
will also be discussed in connection with fluids with quantum behavior.

4. Basic Path Integral Concepts
4.1. PI Partition Functions

The starting point is the quantum grand-canonical partition function ΞQ, which for an
isolated quantum system composed of N identical particles, can be cast as [4,5,7]

ΞQ(µ,V , T) = ∑N≥0
exp(βµN)ZN,Q(N,V , T) = ∑N≥0

exp(βµN)Tr
{

exp
(

−βH
(N)
0

)}

, (29)

where Tr denotes the trace operation, H
(N)
0 is given by Equation (1), the mean number den-

sity is given again by ρN = ⟨N⟩/V , and the other symbols retain the meanings seen earlier.
If attention is focused on monatomic fluids at low temperatures, such that exchange

interactions can be neglected, the partition function ΞQ for diffraction effects can be written
in the coordinate representation

{
rN
}

as [5,7]:

ΞQD(µ,V , T) = ∑N≥0
exp(βµN)ZN,QD = ∑N≥0

exp(βµN)

N!

∫

drN
〈

rN
∣
∣
∣exp

(

−βH
(N)
0

)∣
∣
∣rN
〉

, (30)

where drN = dr1dr2 . . . drN stands for the volume element of the N distinguishable particles,
and

∣
∣rN
〉
= |r1, r2, . . . , rN ⟩ is the configurational state-ket. Now, with the use of the path

integral approach (PI), ΞQD can be reduced to [7,9,11,79,82–84,86,89,95]

ΞQD ≈ ΞPI,D = ∑N≥0
exp(βµN)ZPI

N,QD = ∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp
[
−βWNP(rNP)

]
, (31a)

in which every actual particle j (=1, 2, . . ., N, . . .) is transformed into a closed elastic necklace
j with P beads labeled t = 1, 2, . . . , P. Thus, one finds a PI-model system composed of N × P-
sized canonical ensembles, each ruled by an “effective potential” WNP(rNP) depending

upon all the corresponding bead coordinates
{

rt
j

}

, such that

WNP

(
rNP

)
= WNP

(
r1

1, r2
1, . . . , rP

1 , r1
2, r2

2, . . . , rP
2 , . . . , r1

N , r2
N , . . . , r

P

N ; β,ℏ, m
)
. (31b)

The parameter z is a generalized activity that reads as follows:

z = exp(βµ)

(√
P

λB

)3P

, (31c)
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which helps to identify the expression of the canonical ZPI
N,QD. A crucial step in PI work

is to give suitably operational forms to WNP(rNP) by resorting to propagator calculus. In
addition, the formal generalizations to tackle quantum exchange regimes rely heavily on
the basic development for distinguishable particles [4,7,9].

4.2. Sum over Histories and Propagators

The PI-P picture (31a) becomes exact in the limit P → ∞ (Trotter’s theoretical accu-
racy [9,143]), although one can find optimal finite p values that yield sufficiently precise and
accurate representations of the actual system. The optimal P is thus a compromise between
theoretical accuracy and statistical convergence for properties. All of this is related to the
design of (thermal) propagators that serve to build WNP [7,9,80,86–89]. A brief explanation
of how the practical image of beads-and-necklaces arises is worth giving here.

The basic idea is to split the density matrix diagonal elements
〈

rN
∣
∣
∣exp

(
−βH

(N)
0

)
∣
∣
∣rN
〉

into, in general, a number X of factors involving operators exp
(
−βH

(N)
0 /X

)
, and to employ

the completeness relationship in the coordinate representation
∫

drN
∣
∣rN
〉〈

rN
∣
∣= 1 . By

doing so, one obtains the exact convolution property [9]:

〈

rN
∣
∣exp

(
−βH

(N)
0

)∣
∣rN
〉

=
∫

drN,2 . . . drN,X
〈

rN,1
∣
∣exp

(
−βH

(N)
0 /X

)∣
∣rN,2

〉

. . .
〈

rN,X
∣
∣exp

(
−βH

(N)
0 /X

)∣
∣rN,1

〉

, (32)

which leads to the canonical partition function:

ZN,QD =
1

N!

∫

drN,1 . . . drN,X∏
X(∗)
τ=1

〈

rN,τ
∣
∣exp

(
−βH

(N)
0 /X

)∣
∣rN,τ+1

〉

, (33)

where τ = 1, 2, . . . , X, drN,τ = drτ
1 drτ

2 . . . drτ
N ,
∣
∣ rN,τ

〉
=
∣
∣ rτ

1 , rτ
2 , . . . , rτ

N

〉
,
∣
∣rN,1

〉
=
∣
∣rN
〉

and
the (*) in the product implies the cyclic property τ + 1 = X + 1 ≡ 1. The thermal propagator

is the generic nonnegative matrix element
〈

rN,τ
∣
∣exp

(
−βH

(N)
0 /X

)∣
∣rN,τ+1

〉

[9], which clearly

corresponds to dealing with a density matrix at a higher temperature than the actual.
The whole process contained in Equations (32) and (33) can be visualized in an appeal-

ing way by resorting to the image of the periodic “motion” of the system in imaginary time
(period βℏ) [4,145]. Thus, in Equation (32), the system may be viewed as if it “travelled”
from rN to rN by following every possible broken path (in configuration space) defined by
the intermediate stages that can be associated with the equally spaced τ-“instants” in imagi-
nary time. Every particle j follows then a closed path (necklace), r1

j → r2
j → . . . → rX

j → r1
j ,

marked out by the τ-“instants” (beads). In the language of continuous paths (P → ∞),
one speaks of the basic interval [0, βℏ] for the motion in imaginary time to take place, and
there is the obvious equivalence 0 ≡ βℏ, as is customary in every Fourier series analysis
(warning: this does not imply by any means that β = 0!). The partition function as given
in Equation (33) closes the situation by integrating over every possible starting point rN,1

and, in this way, the “sum over histories” in imaginary time arises. It is easy to see that
there is equivalence among all the X imaginary-time instants τ (translational invariance in
imaginary time).

To give operational forms to the propagator
〈

rN,τ
∣
∣exp

(
−βH

(N)
0 /X

)∣
∣rN,τ+1

〉

one

needs approximations to tackle the problem posed by the nonzero commutator
[
K
(N)
kin , V(N)

]
̸= 0 [7,9,86–88]. In relation to this, several possibilities are available in

the PI literature. The accuracy attainable with the approximation ZN,QD ≈ ZPI
N,QD de-

pends strongly on the propagator selected and the X value employed (ZPI
N,QD is defined in

Equation (31)). For the purposes of this work, only a few guiding lines are to be commented
on, the reader being referred to the pertinent references cited below for complete details.

In the study of quantum many-body systems three main types of constructions for the
propagator stand out, which lead to: (i) the primitive propagator (PP), for which, conven-
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tionally, the number of beads is P = X and yields an accuracy O(P−2) for ZPI
N,QD [4,7,9,65,85];

(ii) the fourth-order propagator (SCVJ), arising from the works by Suzuki [87], Chin [88],
and Voth et al. [89], for which the final number of beads P must be even (P = 2X) and
yields an accuracy O(P−4) for ZPI

N,QD; and (iii) the pair actions (PA) based on the devel-
opments put forward by Ceperley [9] and by Cao and Berne (a specific PA for quantum
hard spheres, CBHSP) [86], for which the number of beads is P = X again, and there
is no systematic recipe for their ZPI

N,QD accuracies. It is useful to recall at this point that
another version of a fourth-order propagator, the Takahasi–Imada propagator [80,81], is
not very useful for computing correlations and structures [10,11,80]. Consequently, the PI
computational effort depends on the size of the optimal P value, which depends on the
propagator effectiveness, a property that varies from type to type. One may summarize
this issue by saying that: (a) although the primitive propagator is not well-suited in general
for carrying out computations because of its slow P-convergence [84,163,164], it contains
“all the physics” [9] and can be used for theoretical reasoning; and (b) pair actions appear
as the most efficient options since they require lower optimal p values, whereas high-order
propagator expressions (restricted to differentiable potentials) can be improved, seeking
to reduce P, in a systematic way. For early hard-sphere PA constructions and applications
based on Barker’s work [78], see References [84,163,164], and also see [11] for a general
discussion of this issue.

The WNP expressions of the PP, CBHSP, and SCVJ propagators are given in what
follows. Hereafter, the p value is assumed to be the optimal, and the (final) P beads are
numbered correlatively t = 1, 2, . . . , P. The three cases can be written as

WNP = W1F + W2 + W3, (34)

where W1F is common to the three and can be cast as [4,7]

W1F(PP) = W1F(CBHSP) = W1F(SCVJ) =
mP

2β2ℏ2 ∑
N

j=1 ∑
P (∗)
t=1

(
rt

j − rt+1
j

)2
, (35)

with the (*) implying the cyclic property t + 1 = P + 1 ≡ 1. This contribution arises from
the free particle behaviors, which, within PI, take the form of harmonic couplings between
adjacent beads in every necklace.

By assuming for simplicity pairwise interactions between the actual particles and
denoting the inter-necklace bead–bead distances by rt

jl =
∣
∣rt

j − rt
l

∣
∣, t = 1, 2, . . . , P, (the equal

t label is to be noticed), the contributions W2 and W3 read as [7,9,66,86,89]:

(a) Primitive propagator

W2(PP) =
1

P∑j<l ∑
P

t=1
u(rt

jl), (36a)

W3(PP) = 0. (36b)

(b) Cao–Berne propagator for quantum hard spheres (diameter σHS)

W2(CBHSP) =
1

P∑j<l ∑
P

t=1
uHS

(

rt
jl

)

=

{

0 if rt
jl > σHS

∞ if rt
jl < σHS

, (37a)

W3(CBHSP) = − 1

β
ln∏j<l ∏

P (∗)
t=1

[

1 −
σHS

(
rt

jl + rt+1
jl − σHS

)

rt
jlr

t+1
jl

×

exp

(

− mP

2βℏ2

(
rt

jl − σHS

)(
rt+1

jl − σHS

)(
1 + cos

(
rt

jl , rt+1
jl

))
)]

. (37b)
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(c) SCVJ propagator

W2(SCVJ) =
2

3P∑j<l

{

∑odd−t
u
(
rt

jl

)
+ 2∑even−t

u
(
rt

jl

)}
, (38a)

W3(SCVJ) =
β2ℏ2

9mP3 ∑
N

j=1






α∑odd−t

(

∑j ̸=l

du(rt
jl)

drt
jl

ηt
jl

)2

+ (1 − α)∑even−t

(

∑j ̸=l

du(rt
jl)

drt
jl

ηt
jl

)2





, (38b)

where ηt
jl =

rt
jl

rt
jl

is a unit vector, and the parameter is α ∈ [0, 1], although, for a good deal of

applications, α = 1/3 is the recommended value [89] (in Equation (38) note that necessarily

u
(

rt
jl

)

̸= uHS

(

rt
jl

)

).

4.3. The Classical Isomorphism, Bead Roles, and Notational Conventions

(i) The comparison of the quantum ΞPI,D given in Equation (31) with the classical ΞC

given in Equation (2) leads to the so-called classical isomorphism [7,9,16], or more
properly, semi-classical isomorphism, due to the dependences shown in Equation (31b)
(see References [2,4,11,13,146,147] for the semiclassical approach forms). This fact
makes the PI computational study of quantum fluids amenable to using well-known
basic classical simulation techniques (MC and MD), such as path integral Monte Carlo
(PIMC) and path integral molecular dynamics (PIMD). The latter basic techniques
(and their variants) have become standard tools in modern quantum condensed mat-
ter research [9–11,18,19,21,22,37–40,58–66,78–106]. Naturally, there are unavoidable
differences between the classical and the PI developments and computations, since
the language of classical dynamical functions is radically different from that of quan-
tum operators [4,5]. However, as regards the studies of the structures of fluids with
quantum behavior, the relevance of such isomorphism runs deeper than one might
think at first sight [9,11,18,19,59,98].

(ii) The inter-necklace interactions are uniquely defined as averages involving equal
imaginary time t-bead interactions, which are connected to the diagonal character of
the potential energy operator V(N).

(iii) W3(CBHSP) contains kinetic effects between consecutive imaginary times (beads) in
different necklaces.

(iv) The singularity of the uHS potential (37a) in CBHSP prevents the numerical evaluation
of its derivative duHS/dr for a given (“frozen”) configuration of necklaces [84,141,165].

(v) An inspection of the PP, SCVJ, and CBHSP formulas indicates that, when using these
propagators, careful attention must be paid to the equivalence among the beads.
The point is that while there is full equivalence between all the N × P beads in PP
and CBHSP applications, such symmetry is broken when the use of SCVJ is made.
The SCVJ beads are classified into two groups, conventionally the odd-numbered
t = 1, 3, . . . , P − 1, and the even-numbered t = 2, 4, . . . , P. In thermodynamic calcula-
tions the general roles played by the beads are as follows: the same in PP [7,9,79,85],
the same in CBHSP [9,86,141], but different in SCVJ depending on the odd/even
group they belong to [66,89]. Moreover, for the current purposes of structural evalua-
tions, it is worth stressing that (a) in PP and CBHSP, all the beads play the same role
in the corresponding ensemble averages [9,11,84–86], whereas (b) in SCVJ, only the
odd-numbered beads are physically significant, thereby playing the same role in such
ensemble averages [11,89] (the even-numbered beads must be discarded). Technically,

these different traits arise from the use of a double-time step
(

i.e., βℏ/( P
2 )
)

when

constructing SCVJ [87–89], instead of the usual single-time step (i.e., βℏ/P) applied
in the PP and CBHSP derivations (the reader is referred to the quoted references for
full details). These structural bead features will be formalized in Section 5.
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In order not to burden the notations, the conventions for structures followed in this
article are worth summarizing now. Given the optimal number of beads P per necklace:

- The three symbols for denoting beads are t, τ, and τ∗, depending on the context.
- Label t runs over t = 1, 2, 3, . . . , P, and is associated with every necklace j.
- Label τ runs over τ = 1, 2, 3, . . . , X, and is associated with every necklace j.
- Label τ∗ runs over τ∗ = 1, 2, 3, . . . , NX, and serves the purpose of a whole renumber-

ing of all the structurally significant beads in a canonical sample, such that they are
associated with the necklaces as τ∗ = 1, 2, . . . , X

︸ ︷︷ ︸

j=1

, . . . , X(N − 1) + 1, . . . , NX
︸ ︷︷ ︸

j=N

.

Depending on the propagator, the above conventions mean:

- For the PP and CBHSP propagators, in which X = P → τ = t = 1, 2, 3, . . . , P, and
τ∗ = 1, 2, 3, . . . , NP.

- For the SCVJ propagator, in which X = P
2 → τ = 1, 2, 3 . . . , X ≡ t = 1, 3, 5, . . . , P − 1,

and τ∗ = 1, 2, 3, . . . , NX ≡ the global picking of the odd-numbered t-beads in every
necklace (note that the even-numbered beads represent intermediate stages that fit
mathematically into the whole picture of P-membered necklaces).

4.4. Quantum Exchange Interactions

The situation gets much more complex when one deals with monatomic fluids in
which quantum exchange interactions cannot be neglected. For now, it is worthwhile to
remark that bosonic exchange can be successfully tackled with PI computations, as shown
about forty years ago by Ceperley and Pollock [83] and by others later [9,39,40,96,101,102].
However, the “sign problem” [105,106] made fermionic exchange remain out of the PI reach.
However, this situation has changed for the better very recently, thanks to the appealing
approach put forward by Filinov et al. using the Wigner extension of the usual PI formalism
(WPIMC) [103,104].

The intricacies of the exchange issue can be grasped by observing the form of the
canonical partition function for the general case of N particles, which are not only identical
but also indistinguishable, and all of them in the same spin state [4,9,105]:

ZN,Qexch.(N,V , T) =
1

N!∑℘
F℘

∫

drN
〈

rN
∣
∣exp

(
−βH

(N)
0

)∣
∣℘rN

〉

, (39)

where ℘ runs over the N! permutations of the particles, F℘ = +1 for every ℘ if there is
bosonic exchange, F℘ = ±1 if there is fermionic exchange, and such that +1 holds for even
℘ and −1 holds for odd ℘, and

∣
∣℘ rN

〉
is defined as |℘r1,℘r2, . . . , ℘rN⟩ , which is meant

to denote the action of the permutation ℘ on the ordered ket |r1, r2, . . . , rN⟩ , denoting the
position states of N distinguishable particles. As seen, a pure summation of nonnegative
terms arises from the bosonic case, whereas an alternating summation does from the
fermionic case. Accordingly, feasible calculations can be carried out for bosons since a
well-defined probability density is always involved. However, given the enormous size
that N! can reach, the same does not occur for fermions, for which large uncertainties
plague, in practice, PI direct calculations (it seems out of the question that one could have
access today to unlimited computational resources that would yield the exact answer to
the whole fermionic sum). In their WPIMC works, Filinov et al. overcome the “sign
problem” by treating the fermionic exchange determinant via a positive semidefinite Gram
determinant [166].

Some observations regarding Equation (39) are in order. (a) By keeping the identity per-
mutation alone, one retrieves the pure diffraction effects ZN,QD as given in Equations (30)
and (31); this results in the non-classical Boltzmann statistics associated with ZPI

N,QD.

(b) Note that the presence of (N!)−1 guarantees the correct transition to the classical
partition function and also the access to thermal properties (free energies, entropy) [167];
this is a factor which must always be written when dealing with ZN,QD. (c) If more than one
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spin state were involved, the expression (39) would have to be generalized by including
every spin possibility [105,168].

The PI triplet structural issues of a zero-spin bosonic fluid will be addressed in Ap-
pendix A. However, this does not yet seem the time to enter a detailed discussion of the PI
fermionic fluid case, and the interested reader is referred to the following references for
basic information [103,104,169–174].

4.5. The PI-Centroid Variable

A particularly interesting PI quantity is the centroid variable RCM,j, which is
the necklace “center of mass” (all the necklaces are equivalent, and so are their
centroids) [4,18,19,145–147]. The corresponding definitions for the propagators discussed
above are the following [65,85,89,164]:

RCM,j =

{

P−1∑
P
t=1 rt

j ; (PP, CBHSP)

(P/2)−1
∑odd−t rt

j ; (SCVJ)
. (40)

This variable is of paramount importance in both the thermodynamic and the struc-
tural studies of fluids with quantum behavior. As regards equilibrium situations, one
may mention the structural relationships (OZ2!) with the equation of state [135,141], the
structural extension of the semi-classical isomorphism [11,59,135], the connections with
observable quantities and special situations [66,140,142,148–150], or the applications to deal
with quantum exchange interactions [135,137–139], as will be discussed later for the zero-
spin bosonic case in Appendix A. Furthermore, centroids are key to building interesting
approaches to quantum dynamics in condensed phases [18,19,37,38,98].

5. Theory of Equilibrium Quantum Fluid Triplet Structures Under Diffraction Effects

A homogeneous and isotropic quantum monatomic fluid is considered. Exchange in-

teractions are neglected, and the Hamiltonian H
(N)
0 Equation (1) is selected. The correlation

functions and their associated structure factors can be grouped into three classes [7,9,11,89]:
centroids (CMn), total continuous linear response (TLRn), and instantaneous (ETn). Each
class is associated with the linear response from the fluid to an external weak field Ψ. When
use of functional calculus techniques is made, a good deal of the developments for the CMn
class are parallel to that of the classical monatomic fluid, and the same may be said of the
TLRn class, though to a significantly lesser extent [7,11,59,135]. The ETn case has a different
nature; the functional techniques that can be applied to CMn and TLRn are inapplicable to
ETn, and this latter class is to be treated separately [3,6,9,89,140].

The grand-canonical partition function for the study of the CMn and TLRn classes
incorporates the action of Ψ and reads as follows [11,66]:

ΞQD(µ,V , T; Ψ) = ∑N≥0

exp(βµN)

N!

∫

drN
〈

rN
∣
∣exp

(
−βH

(N)
0 − βΨ(N)

)∣
∣rN
〉

, (41)

where the operator Ψ(N) is defined as Ψ(N) = ∑
N
j=1 Ψ(rj), and the full Hamiltonian

H
(N)
0 + Ψ(N) is assumed to possess its corresponding structure of eigenstates. The key

point here is how to deal with the exponential of the sum of two non-commutative op-

erators, i.e.,
[

H
(N)
0 , Ψ(N)

]

̸= 0, which can be accomplished in the standard way via the

Baker–Campbell–Hausdorff formula [168]. For the current purposes, the density matrix
elements in Equation (41) are split into X steps and one applies the basic approximation:

exp

(

− β

X
(H

(N)
0 + Ψ(N))

)

≈ exp

(

− β

2X
Ψ(N)

)

exp

(

− β

X
H

(N)
0

)

exp

(

− β

2X
Ψ(N)

)

, (42)

which is accurate up to O(X−3) terms (as occurs in the PP propagator derivation). This
approximation leads to the partition function:
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ΞQD(Ψ) = ∑N≥0
exp(βµN)

N!

∫

∏
X (∗)
τ=1

{

drN,τ
〈

rN,τ
∣
∣
∣exp

(

− β
X H

(N)
0

)∣
∣
∣rN,τ+1

〉}

×
exp

(

− β
X ∑

N
j=1 ∑

X
τ=1 Ψ(rτ

j )
)

.
(43)

Note that Ψ(N) is diagonal in the coordinate representation, and that, as usual in

the PI context, H
(N)
0 + Ψ(N), H

(N)
0 , and Ψ(N) are “self-adjoint operators and make sense

separately” [9], so Trotter’s limit X → ∞ property is applicable. By observing Equation (43)
one notes that the nonnegative density matrix elements may be given the final PI propa-
gator form desired or needed for PI convergence reasons. In relation to this, notice that:
(a) functional derivations involving Ψ are independent of such form, (b) the linear response
from the fluid is characterized by functions in the limit Ψ → 0, and (c) the optimal value
for X can therefore be conveniently adapted. By recalling that, regardless of the propagator
employed, the final optimal number of beads in PI calculations is conventionally taken
as P, the latter remark (c) is unimportant for PP and CBHSP (or PAs in general), since
X = P. However, it turns out to be crucial for SCVJ for which X = P/2, and the physi-
cally significant beads for structural purposes are just those contained in Equation (43):
τ = 1, 2, 3, . . . , X (note that ΞQD(Ψ) is the primary object that serves to define the structural
ensemble averages). As stressed earlier, such significant τ beads are the odd-numbered t
ones when SCVJ is fully developed and the intermediate beads completing the whole P-set
do arise, i.e., t = 1, 2, 3, . . . , P − 1, P [11,89]. Consequently, ΞQD(Ψ) can be approximated
by the general PI form [11,66]:

ΞPI,D(Ψ) = ∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp
[
−βWNP(rNP)

]
×exp

(

− β

X ∑
N

j=1 ∑
X

τ=1
Ψ(rτ

j )

)

. (44)

Now, it is worthwhile to point out that the action of the field expressed in Equation (44)
is consistent with a thermalized Ψ-interaction, but not with a “sudden” interaction, such
as that of the radiation–atom elastic collisions. On the one hand, examples of the fields in
3-D space involved in Equation (44) are static continuous fields in r-space and continuous
fields in imaginary time, such as a gravitational field or the special case of a set of neutrons
thermalized with a fluid sample composed of zero-spin particles, as is the case of fluid
helium-4 [34]. Two comments here: (a) as known from general relativity, gravity is not a
force [175], but in nonrelativistic contexts gravitational effects may be described in terms
of a force field (with all due reservations regarding the intricacies of this very sensitive
topic); and (b) for the previous example of helium-4, the interaction between the field (i.e.,
the thermally delocalized neutrons) and the particles takes place in a continuous form
in Trotter’s limit X → ∞ , which is PI treated in (44) via the finite number of beads, P or
P/2. The classes CMn and TLRn are associated with these types of continuous Ψ-fields.
On the other hand, examples of related fields not involved in Equation (44) correspond to
the elastic scattering of radiation experiments, e.g., neutrons for fluid helium-4, X-rays for
fluids helium-4, and helium-3 [6,32] (from a conceptual statistical mechanical point of view,
there is no difference between the static response functions to both radiation probes [6]).
Thus, within the framework set in Section 2.2, the inadequacy of the static picture related
to Equation (44) can be illustrated, for simplicity, by considering the interaction between a
neutron and a spinless particle, which is essentially given by the neutron–nucleus Fermi’s
potential (a Dirac-δ) [6,27]: the (elastic) collision between an incoming neutron and a ther-
mally delocalized atom localizes the atom at just a position in the sample (the “collapse” by
the position measurement); afterwards the atom must delocalize again according to the
fluid equilibrium state. “Viewed” from the foregoing PI approach, the neutron–atom colli-
sion should take place at the position of a given bead, which would imply the immediate
disappearance of the associated necklace distribution and its ensuing reappearance [11,176].
This quantum phenomenon cannot therefore be analyzed via the functional derivatives
of (44), which cannot cope with the disappearance/reappearance of the atom quantum
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thermal packet, and a full quantum time-dependent treatment is the way to understand
it [6]. Therefore, for the class ETn, which is associated with localizing Ψ-fields, Equation (44)
is not appropriate (more about this in Sections 5.3 and 5.4). In sharp contrast, under classical
conditions the radiation–atom elastic collision phenomena pose no problems to the func-
tional derivations and their static linear response interpretation [5,6,153]. Now, a detailed
discussion of the three classes of equilibrium quantum structures follows.

5.1. The PI-Centroid CMn Class

This class behaves from the structural standpoint in the classical way. This is a
remarkable result that arises from the explicit consideration of a continuous weak field ΨF

of constant strength, f =
(

fx, fy, fz

)
acting on the fluid [19,37,59,89,135]:

Ψ
(N)
F = ∑

N

j=1
ΨF

(
rj

)
= ∑

N

j=1
f·rj. (45)

The inclusion of this field leads to the general PI partition function [135]:

ΞPI,D(ΨF) = ∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp
[
−βWNP(rNP)

]
×exp

(

− β

X ∑
N

j=1 ∑
X

τ=1
f·rτ

j

)

= (46a)

∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp
[
−βWNP(rNP)

]
×exp

(

−β∑
N

j=1
ΨF

(
RCM,j

)
)

, (46b)

where use of Equation (40) is made. For clarity reasons, it is convenient to rewrite the
previous formula as:

ΞPI,D(ΨF) = ∑N≥0

zN

N!

∫

∏
P

t=1
drN,t × exp

[
−βWNP

(
rNP

)]
×

∏
N

j=1
dRjδ(Rj − RCM,j)×exp

(

−β∑
N

j=1
ΨF

(
Rj

)
)

. (47)

It is straightforward to show that the functional derivatives of ln ΞPI,D(ΨF) are for-
mally identical to those of the classical case contained in Equations (8) and (9). Thus, one
finds up to the third order [11,61,135]:

−kBT
δln ΞPI,D(ΨF)

δΨF(R1)
= ρ

(1)
N,CM(R1; ΨF) = ΓCM1(R1; ΨF), (48a)

(−kBT)2 δ2ln ΞPI,D(ΨF)

δΨF(R1)δΨF(R2)
= −kBT

δΓCM1(R1; ΨF)

δΨF(R2)
= ΓCM2(R1, R2; ΨF), (48b)

(−kBT)3 δ3ln ΞPI,D(ΨF)

δΨF(R1)δΨF(R2)δΨF(R3)
= −kBT

δΓCM2(R1, R2; ΨF)

δΨF(R3)
= ΓCM3(R1, R2, R3; ΨF), (48c)

where the inhomogeneities caused by ΨF are reflected in the fluid centroid function-
als/properties ΓCMn. The CMn hierarchy can be obtained by iterating the procedure to
higher orders. As explained earlier in the classical case, if one makes ΨF = 0 on the
right-hand sides, the isolated fluid properties arise:

ΓCM1(R1; ΨF) = ρ
(1)
N,CM(R1; ΨF) → ρ

(1)
N,CM(R1; ΨF = 0) = ρN , (49a)

ΓCM2(R1, R2; ΨF) → ΓCM2(R1, R2; ΨF = 0)= ρ2
NhCM2(R12) + ρNδ(R1 − R2), (49b)

ΓCM3(R1, R2, R3; ΨF) → ΓCM3(R1, R2, R3; ΨF = 0) =

ρ3
N [gCM3(R12, R13, R23)− hCM2(R12)− hCM2(R13)− hCM2(R23)− 1]+

ρ2
N [hCM2(R12) δ(R2 − R3) + hCM2(R13)δ(R1 − R2) + hCM2(R23)δ(R1 − R3)]+
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ρNδ(R1 − R3)δ(R2 − R3), (49c)

where Rjl =
∣
∣Rj − Rl

∣
∣, and use is made of the total pair correlation function of centroids

hCM2 = gCM2 − 1. Incidentally, note that the factor accompanying ρ3
N may be abbrevi-

ated to hCM3(R12, R13, R23) consistently with the subtraction from gCM3 of the asymptotic
behaviors. Note that Equations (49b) and (49c) can be formulated in a concise manner
with the use of the spontaneous fluctuations of the centroid density (analogous with
Equations (9b) and (9c)).

The formal expressions for the grand-canonical averages giving gCM2 and gCM3 are
identical to those of the classical case Equations (3) and (4) (Figure 1):

ρ
(2)
N,CM(R1, R2) = ρ2

N g
CM2

(R1, R2) = ρ2
N gCM2(R12) =

〈

∑j ̸=l
δ
(
RCM,j − R1

)
δ(RCM,l − R2)

〉
, (50)

ρ
(3)
N,CM(R1, R2, R3) = ρ3

N g
CM3

(R1, R2, R3) = ρ3
N gCM3(R12, R13, R23) =

〈

∑j ̸=l ̸=m ̸=j
δ
(
RCM,j − R1

)
δ(RCM,l − R2)δ(RCM,m − R3)

〉
. (51)

𝑔஼ெଷ 𝑔ா்ଷ(8.99 K Åିଷ).(𝑁ௌ × 𝑃) =  (1372 × 22) 𝑔ா்ଷ CM3൫𝑟 = 3.35 Å; 𝑔ଷ = 5.821 ±0.018൯, ET3൫𝑟 = 3.45 Å; 𝑔ଷ = 2.637 ± 0.003൯

𝛿𝜌ே,஼ெ(ଵ) (𝐤; Ψி) ≈ −𝛽𝜌ே𝛿Ψி(𝐤)𝑆஼ெ(ଶ)(𝐤),
𝑆஼ெ(ଶ)(𝐤) = ଵఘಿ Γ஼ெ(ଶ)(𝐤; Ψ = 0) = 𝟏〈ே〉 〈ห∑ exp൫𝑖𝐤 ∙ 𝐑஼ெ,௝൯ே௝ୀଵ หଶ〉 − (2𝜋)ଷ𝜌ே𝛿(𝐤) =

1 + 𝜌ே ׬ 𝑑𝐑 exp(𝑖𝐤 ∙ 𝐑) (𝑔஼ெଶ(𝑅) − 1),𝛿Γ஼ெ(ଶ)(𝐤ଵ, 𝐤ଶ; Ψி) ≈ −𝛽𝜌ே𝛿Ψி(𝐤ଵ+𝐤ଶ)𝑆஼ெ(ଷ)(𝐤ଵ, 𝐤ଶ),𝑆஼ெ(ଷ)(𝐤ଵ, 𝐤ଶ) = ଵఘಿ Γ஼ெ(ଷ)(𝐤ଵ, 𝐤ଶ; Ψி = 0) =
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Figure 1. Helium-3 equilateral centroid gCM3 and instantaneous gET3 correlations in r-

space at state point (8.99 K; 0.0228717687 Å−3). Results obtained with PIMC canonical

simulation (NS × P) = (1372 × 22), with gET3 improved with respect to Reference [64].

Representative error bars (one standard deviation) in the vicinity of the main maxima:

CM3
(

r = 3.35 Å; g3 = 5.821 ± 0.018
)

, ET3
(

r = 3.45 Å; g3 = 2.637 ± 0.003
)

.

5.1.1. PI-Centroid Linear Response

By integrating (48b) and (48c) with the substitutions (49b) and (49c) on the right-
hand sides and taking the Fourier transforms, the two- and three-body centroid response
functions arise as [11,59]:

δρ
(1)
N,CM(k; ΨF) ≈ −βρNδΨF(k)S

(2)
CM(k), (52a)

S
(2)
CM(k) =

1

ρN
Γ
(2)
CM(k; Ψ = 0) =

1

⟨N⟩
〈∣
∣∑

N

j=1
exp

(
ik·RCM,j

)∣
∣2
〉
− (2π)3ρNδ(k) = (52b)

1 + ρN

∫

dR exp(ik·R) (gCM2(R)− 1), (52c)

δΓ
(2)
CM(k1, k2; ΨF) ≈ −βρNδΨF(k1+k2)S

(3)
CM(k1, k2), (53a)

S
(3)
CM(k1, k2) =

1

ρN
Γ
(3)
CM(k1, k2; ΨF = 0) = (53b)

1

⟨N⟩
〈

∑
N

j=1 ∑
N

l=1 ∑
N

m=1
exp

[

i
(

k1·(RCM,j − RCM,m) + k2·(RCM,l − RCM,m)
)]〉

− {δ(k)− terms} = (53c)
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1

⟨N⟩
〈

∑
N

j=1 ∑
N

l=1 ∑
N

m=1
exp

[
i
(
k1·RCM,j + k2·RCM,l − (k1 + k2)·RCM,m

)]〉
− {δ(k)− terms}. (53d)

The same dependences on the moduli of the wavevectors (e.g., k = |k|), and similar
comments as those made in connection to the classical Equations (10) and (11), do apply here.

In particular, the δ(k)−terms are key to formulating completely S
(2)
CM(k) and S

(3)
CM(k1, k2),

and correspond to the especial situations (a) k = 0 and (b) k1 = 0 and/or k2 = 0, and
k1 + k2 = 0. Explicitly, the CM3 triplet structure factor can be cast as:

S
(3)
CM(k1, k2)= 1 + ρN

(

h
(2)
CM(k1) + h

(2)
CM(k2) + h

(2)
CM(|k1 + k2|)

)

+

ρ2
N

(

g
(3)
CM(k1, k2)− h

(2)

CM
(k1)(2π)3δ(k1 + k2)− h

(2)
CM(k2)(2π)3δ(k1)−

h
(2)
CM(k1)(2π)3δ(k2)− (2π)3δ(k1)(2π)3δ(k2)

)

, (54)

where g
(3)
CM(k1, k2) stands for the Fourier transform of gCM3(R12, R13, R23), h

(2)
CM(k1) stands

for that of hCM2(R), etc. Given the analogies between the structural formulations for
quantum centroids and classical monatomic particles, it would be a significant step forward
if such parallelism could be extended to also include the OZn direct correlation function
schemes for centroids. This is indeed the case, as discussed in detail below [59,135].

5.1.2. PI-Centroid Direct Correlation Functions

There is the direct axiomatic way, consisting of checking that the OZn relationships
are satisfied in the classical domain by the set {cn} (see the insightful work by Lee [75]) are
also satisfied by a set of PI-centroid functions {cCMn}, which is defined accordingly in the
same manner (see Reference [135] for OZ2). This procedure finds support in: (a) the formal
equivalence between the PI-centroid and the classical hierarchies arising from their partition
functions, and (b) the fact that the external field is switched off (ΨF = 0) when deriving
the usual OZn equations [75], which serve to analyze the structures of the isolated fluid
equilibrium states. Nonetheless, it seems useful to obtain the centroid OZn equations via a
free-energy argument closely related to the standard procedures [177–181]. The reasoning
below expands, in a more comprehensive manner, the early theoretical sketch reported
in [59], and it hinges heavily on the external field of constant force ΨF as the cause for the
PI-centroid structures to show up. Recall that the PI-centroid (a “center-of-mass” variable)
is an auxiliary mathematical object which, as such, cannot interact with external fields in
an experimentally measurable direct way. Therefore, no claim can be made regarding any
general validity of the centroid OZn (Ψ) derivations under other weak external potentials
Ψ ̸= ΨF, as is usual in the general functional OZn-context of classical fluids. The following
development is an adaptation to PI-centroids of the procedure that can be found in Haymet
et al.’s insightful works [179–181].

(i) The starting point is the differential of the fluid energy:

dE = TdS − pdV + µδN +
∫

dqρ
(1)
N (q; ΨF)δΨF(q), (55)

where S is the entropy, p is the pressure, ρ
(1)
N (q; ΨF) is the one-body number density

distribution of actual particles, and δΨF is a (constant) variation in the field acting on such
particles. The key point is that, under these conditions, Equation (55) can be rewritten in
terms of the centroids:

dE = TdS − pdV + µδN +
∫

dRρ
(1)
N,CM(R; ΨF)δΨF(R), (56)
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because it so happens that

−kBTδ lnΞPI,D(ΨF) =
∫

dqρ
(1)
N (q; ΨF)δΨF(q) =

∫

dRρ
(1)
N,CM(R; ΨF)δΨF(R). (57)

Equation (57) can be obtained directly by integrating the functional derivative
δln ΞPI,D(ΨF)

δΨF(q)
(see Equation (48a) and Section 5.2). However, at this point it seems better to consider
the role of the normalized thermal packet finh. representing a delocalized atom in the
inhomogeneous fluid. The function finh. is a probability density necessarily normalized
to unity:

∫

dq finh.(q − R; R; ΨF) = 1, (58)

where q(x, y, z) is the position vector of the atom, and R(Rx, Ry, Rz) is the position vector
of the centroid. To grasp this concept, consider the simpler example of the homoge-
neous Gaussian thermal packet provided by the semiclassical Feynman–Hibbs picture
(GFH) [4,11,145,148,149]), in which a particle of mass m in a fluid is described as a thermal
packet of width ℏ/

√
12mkBT [4]. The corresponding finh. may be visualized as a deforma-

tion of the Gaussian packet adopting the symmetry of the external field. The derivation
of Equation (57) uses the following facts: (a) the centroid is the “center of mass” of the

probability density finh.; (b) the actual atom density ρ
(1)
N (q; ΨF) is obviously related to the

centroid density ρ
(1)
N,CM(R; ΨF) through a smearing out operation involving the inhomoge-

neous finh. packet; and (c) the external force undergoes a constant variation
(
δ fx, δ fy, δ fz

)
.

The proof goes as follows (ξ = q − R):
∫

dqρ
(1)
N (q; ΨF)δΨF(q) =

∫

dq
∫

dRdξ finh.(ξ; R; ΨF)ρ
(1)
N,CM(R; ΨF)δΨF(q) δ(q − R − ξ) =

∫

dRρ
(1)
N,CM(R; ΨF)

∫

dq finh.(q − R; R; ΨF)δΨF(q) =
∫

dRρ
(1)
N,CM(R; ΨF)

∫

dq finh.(q − R; R; ΨF)(xδ fx + yδ fy + zδ fz) =

∫

dRρ
(1)
N,CM(R; ΨF)[Rxδ fx + Ryδ fy + Rz δ fz] =

∫

dRρ
(1)
N,CM(R; ΨF)δΨF(R). (59)

(ii) Following the steps in References [179–181], one defines an auxiliary energy via a
Legendre transformation:

U = E −
∫

dRρ
(1)
N,CM(R; ΨF)ΨF(R), (60)

F = U − TS = −pV +
∫

dR(µ − ΨF(R))ρ
(1)
N,CM(R; ΨF). (61)

and a Helmholtz free energy for the fluid in the form.

(iii) A discussion of the selection of reference ideal systems in classical and quantum
studies can be found in References [178–181]. This is a very important matter, for
the application of functional differentiation to the corresponding excess free en-
ergy will yield a hierarchy of direct correlation functions. The direct correlation
functions so obtained may or may not coincide with the usual for classical simple
fluids [75,151,152,177–181]. In the current case of PI-centroids, which are quantum
intermediate objects [4,11,18,19,145], given the classical-like form of the derivatives
of the grand-canonical potential, −pV = −kBTln ΞPI,D(ΨF), with respect to the field
ΨF given in Equation (48), the selection of the ideal Boltzmann system in the field ΨF

seems the appropriate choice. By doing so, a classical-like hierarchy of PI-centroid
direct correlation functions will be obtained. For the present structural purposes,
focused on the usual Ornstein–Zernike framework at ΨF = 0, this choice is going to
be rewarding. Therefore, the Boltzmann-system reference [177] yields [59]:
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Fid

(

ρ
(1)
N,CM(R; ΨF)

)

=
∫

dRρ
(1)
N,CM(R; ΨF)β−1

{

ln
(

λ3
B ρ

(1)
N,CM(R; ΨF)

)

− 1
}

, (62)

and the excess free energy Fexs reads as:

−β(F −Fid) = −βFexs

(

ρ
(1)
N,CM(R; ΨF)

)

= ln ΞPI,D(ΨF) +
∫

dRρ
(1)
N,CM(R; ΨF)×

{

−βµ + βΨF(R) + ln
(

λ3
B ρ

(1)
N,CM(R; ΨF)

)

− 1
}

, (63)

(iv) The functional differentiation of Fexs leads to the hierarchy of the PI-centroid direct
correlation functions {cCMn} which, up to the third order, reads as follows:

− δ(βFexs)

δρ
(1)
N,CM(R1; ΨF)

= −βµ + βΨF(R1) + ln
(

λ3
B ρ

(1)
N,CM(R1; ΨF)

)

= cCM1

(

R1; ρ
(1)
N,CM(R1); ΨF(R1)

)

, (64a)

− δ2(βFexs)

δρ
(1)
N,CM(R1; ΨF)δρ

(1)
N,CM(R2; ΨF)

=
δcCM1(R1; ΨF)

δρ
(1)
N,CM(R2; ΨF)

= cCM2

(

R1, R2; ρ
(1)
N,CM, ΨF

)

, (64b)

− δ3(βFexs)

δρ
(1)
N,CM(R1; ΨF)δρ

(1)
N,CM(R2; ΨF)δρ

(1)
N,CM(R3; ΨF)

=
δcCM2(R1, R2; ΨF)

δρ
(1)
N,CM(R3; ΨF)

= cCM3

(

R1, R2, R3; ρ
(1)
N,CM, ΨF

)

. (64c)

Of particular interest is the pair function cCM2, which can be developed in the conve-
nient form:

cCM2

(

R1, R2; ρ
(1)
N,CM, ΨF

)

=
δcCM1(R1; ΨF)

δρ
(1)
N,CM(R2; ΨF)

=
δ
[

−βµ + βΨF(R1) + ln
(

λ3
B ρ

(1)
N,CM(R1; ΨF)

)]

δρ
(1)
N,CM(R2; ΨF)

=

δ(βΨF(R1))

δρ
(1)
N,CM(R2; ΨF)

+
1

ρ
(1)
N,CM(R1; ΨF)

δρ
(1)
N,CM(R1; ΨF)

δρ
(1)
N,CM(R2; ΨF)

=
δ(βΨF(R1))

δρ
(1)
N,CM(R2; ΨF)

+
δ(R1 − R2)

δρ
(1)
N,CM(R1; ΨF)

, (65)

where attention should be drawn to the inverse derivative
δ(βΨF(R1))

δρ
(1)
N,CM(R2;ΨF)

, which is perfectly

consistent with the use of the grand-canonical ensemble, for density variations independent
of the external field can be made [152].

5.1.3. OZ2 and OZ3 Frameworks

The OZ2 framework for PI-centroids arises in the usual way by applying the matrix
identity [5,152]:

∫

dR3

δρ
(1)
N,CM(R1; ΨF)

δ(−βΨF(R3))

δ(−βΨF(R3))

δρ
(1)
N,CM(R2; ΨF)

= δ(R1 − R2). (66)

Inserting Equations (48b) and (65) into Equation (66), one arrives at the inhomogeneous
OZ2 equation in the field ΨF (hCM2(ΨF) = gCM2(ΨF)− 1) :

hCM2(R1, R2; ΨF) = cCM2(R1, R2; ΨF) +
∫

dR3ρ
(1)
N,CM(R3; ΨF)hCM2(R1, R3; ΨF)cCM2(R3, R2; ΨF), (67)
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which transforms into the conventional homogeneous version if the field is switched off

(ΨF = 0) :

hCM2(R12) = cCM2(R12) + ρN

∫

dR3hCM2(R13)cCM2(R23), (68)

By Fourier transforming Equation (68) and combining the result with Equation (52c),
the static pair structure factor for PI-centroids is:

S
(2)
CM(k) =

(

1 − ρNc
(2)
CM(k)

)−1
, (69)

which is formally identical to the classical form Equation (13a). It can be demonstrated that
for the quantum fluid [135]:

S
(2)
CM(k = 0) = ρNkBTχT =

〈
N2
〉
− ⟨N⟩2

⟨N⟩ , (70)

which is a result that should not be surprising, since the fluctuations in the number of
particles can be counted with the centroids. Therefore, the PI-centroid k = 0 component

fixed via c
(2)
CM(k = 0) formally provides an exact way to obtain the equation of state of a

fluid with quantum diffraction behavior. As in the classical case, cCM2(R12) is expected
to decay effectively to zero within a short range of distances, which is indeed the case
and leads to highly accurate results in k-space [50,66]. In this connection, recall that direct
correlation functions generally show a tail in their decays [154], but its importance is
negligible beyond a certain cut off (see References [135,141] and Figure 2).

ఋ൫ఉஏಷ(𝐑భ)൯ఋఘಿ,಴ಾ(భ) (𝐑మ;ஏಷ) + ଵఘಿ,಴ಾ(భ) (𝐑భ;ஏಷ) ఋఘಿ,಴ಾ(భ) (𝐑భ;ஏಷ)ఋఘಿ,಴ಾ(భ) (𝐑మ;ஏಷ) = ఋ൫ఉஏಷ(𝐑భ)൯ఋఘಿ,಴ಾ(భ) (𝐑మ;ஏಷ) + ఋ(𝐑భି𝐑మ)ఋఘಿ,಴ಾ(భ) (𝐑భ;ஏಷ),
tt ఋ൫ఉஏಷ(𝐑భ)൯ఋఘಿ,಴ಾ(భ) (𝐑మ;ஏಷ),

׬ 𝑑𝐑ଷ ఋఘಿ,಴ಾ(భ) (𝐑భ;ஏಷ)ఋ൫ିఉஏಷ(𝐑య)൯ ఋ൫ିఉஏಷ(𝐑య)൯ఋఘಿ,಴ಾ(భ) (𝐑మ;ஏಷ) =  𝛿(𝐑ଵ − 𝐑ଶ).
Ψி (ℎ஼ெଶ(Ψி) = 𝑔஼ெଶ(Ψி) − 1):ℎ஼ெଶ(𝐑ଵ, 𝐑ଶ; Ψி) = 𝑐஼ெଶ(𝐑ଵ, 𝐑ଶ; Ψி) + ׬ 𝑑𝐑ଷ 𝜌ே,஼ெ(ଵ) (𝐑ଷ; Ψி)ℎ஼ெଶ(𝐑ଵ, 𝐑ଷ; Ψி)𝑐஼ெଶ(𝐑ଷ, 𝐑ଶ; Ψி),

ff(Ψி = 0): ℎ஼ெଶ(𝑅ଵଶ) = 𝑐஼ெଶ(𝑅ଵଶ) + 𝜌ே ׬ 𝑑𝐑ଷ ℎ஼ெଶ(𝑅ଵଷ)𝑐஼ெଶ(𝑅ଶଷ),
𝑆஼ெ(ଶ)(𝐤) = ൫1 − 𝜌ே𝑐஼ெ(ଶ)(𝐤)൯ିଵ

𝑆஼ெ(ଶ)(𝑘 = 0) = 𝜌ே𝑘஻𝑇𝜒் = 〈ேమ〉ି〈ே〉మ〈ே〉 ,
𝐤 = 𝟎𝑐஼ெ(ଶ)(𝐤 = 𝟎)

ff 𝑐஼ெଶ(𝑅ଵଶ)
ff

ff

Figure 2. Quantum hard-sphere fluid basic results at state point (λ∗
B = 0.6; ρ∗N = 0.589) on

the fluid side of the crystallization line [63,142]. Use of reduced units is made: r∗ = r/σHS and

k∗ = kσHS (σHS = hard-sphere diameter). (a) Pair direct correlation functions cCM2 and cET2, for

the centroid and instantaneous correlations, obtained by OZ2-treating the PIMC gCM2 and gET2

canonical correlation functions (NS × P) = (864 × 12). Shown are representative results for centroids

CM2 along the convergence region marked by the RZ zeros (from BDH + BHw/5-iterations, there

arise a total of fourteen RZ) [63,77,130,132]. For the instantaneous case ET2, only the largest RZ result

obtained with a single application of BDH is displayed. The different widths of the centroid cCM2

functions are intended to serve as a guide to the eye, and the vertical arrows mark the corresponding

RZ positions for CM2 (reduced numerical values in the box). (b) Centroid S
(2)
CM and instantaneous

S
(2)
ET pair structure factors at selected RZ values. Note the more pronounced centroid features.

At this point, and following Reference [45], it is worth introducing a new hierarchy

{KCMn} arising from the functional derivatives of the total free energy F . As before,
the following formulas are limited to the third order, with the iteration to higher orders
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being straightforward. For brevity, detailed reference to the various dependencies of the
functionals are omitted in what follows. At first order one finds:

δ(βF )

δρ
(1)
N,CM(R1; ΨF)

= βµ − βΨF(R1) = KCM1(R1; ΨF) (71)

δKCM1(R1; ΨF)

δρ
(1)
N,CM(R2; ΨF)

=
δ(R1 − R2)

ρ
(1)
N,CM(R1; ΨF)

− cCM2

(

R1, R2; ρ
(1)
N,CM, ΨF

)

= KCM2(R1, R2; ΨF), (72)

δKCM2(R1, R2; ΨF)

δρ
(1)
N,CM(R3; ΨF)

= − δ(R1 − R2)δ(R1 − R3)
[

ρ
(1)
N,CM(R1; ΨF)

]2
−cCM3

(

R1, R2, R3; ρ
(1)
N,CM, ΨF

)

= KCM3(R1, R2, R3; ΨF). (73)

where the terms containing δ(Rj − Rl) come from the ideal system contributions. In
Equation (71), one identifies the actual chemical potential µ as the algebraic sum of the
external field and an intrinsic contribution, in agreement with the expected constancy of
the chemical potential in the presence of the external field [177,178].

The interest of the {KCMn} hierarchy lies in the fact that, together with the hierarchy

{ΓCMn}, they allow the OZn frameworks to be formulated in compact ways [45]. Thus,
OZ2 as given in Equation (67) can be cast as:

∫

dR3 KCM2(R1, R3; ΨF)ΓCM2(R2, R3; ΨF) = δ(R1 − R2), (74)

which reduces to Equation (68) in the limit Ψ → 0. Furthermore, via functional differ-
entiation of Equation (74), one obtains the OZ3 framework. One of the four equivalent
OZ3 equations can be derived by following References [45,75] closely. First, by taking the
functional derivative with respect to the one-particle density, a new identity arises:

δ

δρ
(1)
N,CM(R4; ΨF)

∫

dR3 KCM2(R1, R3; ΨF)ΓCM2(R2, R3; ΨF) =

∫

dR3
δKCM2(R1, R3; ΨF)

δρ
(1)
N,CM(R4; ΨF)

ΓCM2(R2, R3; ΨF) +
∫

dR3KCM2(R1, R3; ΨF)
δΓCM2(R2, R3; ΨF)

δρ
(1)
N,CM(R4; ΨF)

= 0, (75)

Second, with application to δΓCM2

δρ
(1)
N,CM

of intermediate differentiation with respect to δΨF,

and renumbering the particle labels, one arrives at the final form:

∫

dR3 KCM3(R1, R2, R3; ΨF)ΓCM2(R3, R4; ΨF)+

∫

dR3dR5 KCM2(R2, R3; ΨF)ΓCM3(R3, R4, R5; ΨF)KCM2(R5, R1; ΨF) = 0, (76)

which, again, reduces to the homogeneous OZ3 equation in the limit ΨF → 0.
The triplet linear response function for PI-centroids of the homogeneous quantum

fluid (ΨF = 0) arises from the Fourier transform of Equation (76) combined with the
definition given in Equation (53b). Thus, by noting that:

K
(2)
CM(k)Γ(2)

CM(k) = 1, (77a)

one finds the triplet structure factor:

ρNS
(3)
CM(k1, k2) = Γ

(3)
CM(k1, k2) = −K

(3)
CM(k1, k2)Γ

(2)
CM(|(k1 + k2)|)

K
(2)
CM(k1)K

(2)
CM(k2)

, (77b)
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S
(3)
CM(k1, k2) = S

(2)
CM(k1)S

(2)
CM(k2)S

(2)
CM(|k1 + k2|)

{

1 + ρ2
Nc

(3)
CM(k1, k2)

}

, (77c)

which is equivalent to Equation (54) but formulated in terms of direct correlation func-
tions [59], with all the advantages and problems associated with these objects commented
on earlier. In this connection, if the variations in the density are uniform, the general hierar-
chy {cCMn} sketched in Equation (64) takes the simpler and operative Baxter’s form [73].
In particular, the analogies to Equation (14) read as:

∂cCM2(R1, R2)

∂ρN
=
∫

dR3cCM3(R1,R2, R3);T = constant, (78a)

∂c
(2)
CM(k = 0)

∂ρN
= c

(3)
CM(k1, k2 = 0); T = constant. (78b)

5.1.4. Some Additional Relationships and Further Remarks

For the hierarchy {cCMn} the partition function ΞPI,D(ΨF) leads to all the relationships
that are applicable in the classical context [75]. A straightforward calculation yields:

δsln ΞPI,D(ΨF)

δρ
(1)
N,CM(R1; ΨF)δρ

(1)
N,CM(R2; ΨF) . . . δρ

(1)
N,CM(Rs; ΨF)

= −(s − 1)cCMs(R1,R2, . . . , Rs; ΨF)−

∫

dRs+1 ρ
(1)
N (Rs+1; ΨF)cCMs+1(R1,R2, . . . , Rs, Rs+1; ΨF); s ≥ 2, (79a)

which, at zero field, gives the corresponding centroid equations for the isolated quantum
fluid. Completing with the first-order derivative (s = 1), the first three of the related
equations read as:

δln ΞPI,D(ΨF)

δρ
(1)
N,CM(R1; ΨF)

∣
∣
∣
∣
∣
∣
ΨF=0

= 1 − ρN

∫

dR2cCM2(R1, R2), (79b)

δ2ln ΞPI,D(ΨF)

δρ
(1)
N,CM(R1; ΨF)δρ

(1)
N,CM(R2; ΨF)

∣
∣
∣
∣
∣
∣
ΨF=0

= −cCM2(R1, R2)− ρN

∫

dR3cCM3(R1, R2, R3), (79c)

δ3ln ΞPI,D(ΨF)

δρ
(1)
N,CM(R1; ΨF)δρ

(1)
N,CM(R2; ΨF)δρ

(1)
N,CM(R3; ΨF)

∣
∣
∣
∣
∣
∣
ΨF=0

= −2 cCM3(R1, R2, R3)−

ρN

∫

dR4 cCM4(R1, R2, R3, R4). (79d)

Moreover, note the classical-like additional identities that hold in the PI-
centroid context:

δln ΞPI,D(ΨF)

δρ
(1)
N,CM(R1; ΨF)

+
∫

dR2 ρ
(1)
N,CM(R2; ΨF)

δ(βΨF(R2))

δρ
(1)
N,CM(R1; ΨF)

≡ 0, (80a)

∫

dR1dR2

δ2ln ZPI
N,QD(ΨF)

δΨF(R1)δΨF(R2)
≡ 0; ΨF ̸= 0, (80b)

∫

dR1dR2dR3

δ3ln ZPI
N,QD(ΨF)

δΨF(R1)δΨF(R2)δΨF(R3)
≡ 0; ΨF ̸= 0, (80c)

(−kBT)2
∫

dR1dR2
δ2ln ΞPI,D(ΨF)

δΨF(R1)δΨF(R2)
=
〈

N2
〉
−
〈

N
〉2

; ΨF ̸= 0, (80d)
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(−kBT)3
∫

dR1dR2dR3
δ3ln ΞPI,D(ΨF)

δΨF(R1)δΨF(R2)δΨF(R3)
=
〈

N3
〉

− 3
〈

N2
〉

⟨N⟩+ 2⟨N⟩
3
;ΨF ̸= 0, (80e)

where ZPI
N,QD(ΨF) is the in-the-field PI canonical partition function, and the relations to

the number fluctuations are clearly displayed. These number fluctuations refer to the
in-the-field fluid; the formulas on the right-hand sides remain the same when ΨF = 0, but
obviously the meaning is not the same.

Finally, several remarks are in order. First, the quantum Hamiltonians H
(N)
0 + Ψ

(N)
F

defined by Equations (1) and (45) contain in their statistical–mechanical PI-centroid formu-
lation the conventional Ornstein–Zernike framework; this is an additional mathematical
property of this type of Hamiltonians [19]. In this connection, the formal OZn deriva-
tions applied in the classical domain and related to the bijective connection external

field↔equilibrium density [177,178,181–183] hold here for ΨF ↔ ρ
(1)
N,CM . This is guar-

anteed by the form of the quantum partition function Equation (44), which is isomorphic
to its classical counterpart Equation (2). Second, note that there is no defined interparticle
potential v(Rjl) between PI centroids (compare to the variational approximations arising
from the PI formalism [4,145–147], which yield versions of such a potential), but this is not
relevant to this discussion [177]. In this regard, nor is the fact that, under the same condi-
tions, two different densities are included in Equation (57), namely the true particle density
and the centroid density, because: (a) one is the actual and the other is an auxiliary quantity,
(b) each corresponds to a distinct object, and (c) both are intimately related (the situation is
analogous to a distribution of mass and the consideration of its center of gravity). Third,
to bring Section 5.1 to a close, note that the applicability of the classical OZn numerical
schemes to the quantum CMn class is perfectly possible and rewarding: (i) at the pair level,
OZ2 (BDH + BHw) is a powerful way to fix the equations of state of fluids with quantum
behavior [50,66,135,141,142]; and (ii) at the triplet level, OZ3 applications were reported in
References [59,60,62,64], although their relative merits have not yet been assessed.

5.2. The PI Total Continuous Linear Response TLRn Class

For this class, the fluid undergoes a general external weak field Ψ, which is continuous
either spatially or in imaginary time (no magnetic interactions are considered). The PI
partition function can be cast as [7,11,61]:

ΞPI,D(Ψ) = ∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp
[
−βWNP

(
rNP

)]
×exp

(

− β

X ∑
N

j=1 ∑
X

τ=1
Ψ(rτ

j )
)

. (81)

The functional derivatives for this model now can be cast as:

−kBTX
δlnΞPI,D(Ψ)

δΨ(q1)
= ρ

(1)
NX(q1; Ψ), (82a)

(−kBTX)2 δ2lnΞPI,D(Ψ)

δΨ(q1)δΨ(q2)
= ΓTLR2(q1, q2; Ψ) = ρ

(2)
NX(q1, q2; Ψ)− ρ

(1)
NX(q1; Ψ)ρ

(1)
NX(q2; Ψ)+

ρ
(1)
NX(q1; Ψ)δ(q1 − q2), (82b)

(−kBTX)3 δ3lnΞPI,D(Ψ)

δΨ(q1)δΨ(q2)δΨ(q3)
= ΓTLR3(q1, q2, q3; Ψ) =

ρ
(3)
NX(q1, q2, q3; Ψ)− ρ

(2)
NX(q1, q2; Ψ)ρ

(1)
NX(q3; Ψ)−

ρ
(2)
NX(q1, q3; Ψ)ρ

(1)
NX(q2; Ψ)− ρ

(2)
NX(q2, q3; Ψ)ρ

(1)
NX(q1; Ψ)+

2 ρ
(1)
NX(q1; Ψ)ρ

(1)
NX(q2; Ψ)ρ

(1)
NX(q3; Ψ)+

ρ
(2)
NX(q1, q2; Ψ)δ(q1 − q3)− ρ

(1)
NX(q1; Ψ)ρ

(1)
NX(q2; Ψ)δ(q1 − q3)+
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ρ
(2)
NX(q1, q3; Ψ)δ(q3 − q2)− ρ

(1)
NX(q1; Ψ)ρ

(1)
NX(q3; Ψ)δ(q3 − q2)+

ρ
(2)
NX(q2, q3; Ψ)δ(q2 − q1)− ρ

(1)
NX(q2; Ψ)ρ

(1)
NX(q3; Ψ)δ(q2 − q1)+

ρ
(1)
NX(q1; Ψ)δ(q1 − q3)δ(q2 − q3). (82c)

In the foregoing formulas, a vector qi stands for the position vector of a structurally
significant bead in the grand-canonical sample (i.e., qi is any of the rτ

j ).

Recall that, for structural evaluations, each canonical ensemble has NX significant
particles, and that X is held fixed throughout the grand-canonical ensemble. Therefore, by
following the standard procedures [2,11,61], one sets the definitions:

ρ
(1)
NX(q1; Ψ) = (XρN)GTLR1(q1; Ψ), (83a)

ρ
(2)
NX(q1, q2; Ψ) = (XρN)

2 GTLR2(q1, q2, ; Ψ), (83b)

ρ
(3)
NX(q1, q2, q3; Ψ) = (XρN)

3 GTLR3(q1q2, q3; Ψ). (83c)

and obtains the relationships:

∫

dq1dq2

δ2ln ZPI
N,QD(Ψ)

δΨ(q1)δΨ(q2)
≡ 0; Ψ ̸= 0, (83d)

∫

dq1dq2dq3

δ3ln ZPI
N,QD(Ψ)

δΨ(q1)δΨ(q2)δΨ(q3)
≡ 0; Ψ ̸= 0, (83e)

(−kBT)2
∫

dq1dq2

δ2ln ΞPI,D(Ψ)

δΨ(q1)δΨ(q2)
=
〈

N2
〉
−
〈

N
〉2

; Ψ ̸= 0, (83f)

(−kBT)3
∫

dq1dq2dq3

δ3ln ΞPI,D(Ψ)

δΨ(q1)δΨ(q2)δΨ(q3)
=
〈

N3
〉
− 3
〈

N2
〉〈

N
〉
+ 2
〈

N
〉3

; Ψ ̸= 0, (83g)

where the number fluctuations refer to the in-the-field fluid. The formulas on the right-hand
sides remain the same when Ψ = 0, although the meaning is therefore not the same.

The linear response cases in this case arise by making Ψ = 0 on the right-hand sides
of Equation (82). In r-space, this can be summarized in the following equations [61]:

−kBT
δlnΞPI,D(Ψ)

δΨ(q1)
≈ ρ

(1)
N (q1; Ψ = 0) = ρN , (84a)

−kBT
δρ

(1)
N (q1; Ψ)

δΨ(q2)
≈ 1

X2
ΓTLR2(q1, q2; Ψ = 0) = ρ2

N(GTLR2(q1, q2)− 1) + ρN
δ(q2 − q1)

X
, (84b)

−kBT
δΓTLR2(q1, q2; Ψ)

δΨ(q3)
≈ 1

X3
ΓTLR3(q1, q2, q3; Ψ = 0) =

ρ3
N [GTLR3(q1, q2, q3)− GTLR2(q1, q2)− GTLR2(q1, q3)− GTLR2(q2, q3) + 2]+

1

X
ρ2

N [(GTLR2(q1, q2)− 1)δ(q1 − q3) + (GTLR2(q1, q3)− 1)δ(q3 − q2)+

(GTLR2(q2, q3)− 1)δ(q2 − q1)] +
1

X2
ρNδ(q1 − q3)δ(q2 − q3), (84c)

where it is important to note the role played by X in Equation (84). Equations (84b) and (84c)
can be formulated in concise forms with Equation (82) and the spontaneous fluctuations of
the bead density at the two- and three-body levels, respectively.
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For notational simplicity, by τ∗−arranging correlatively the NX beads present in each
canonical ensemble, the pair GTLR2 and triplet GTLR3 correlation functions are defined by
the ensemble averages [61]:

ρ2
NGTLR2(q1, q2) = ρ2

NGTLR2(r12) =
1

X2

〈

∑τ∗1 ̸=τ∗2
δ(rτ∗1 − q1)δ(r

τ∗2 − q2)
〉
, (85a)

ρ3
NGTLR3(q1, q2, q3) = ρ3

NGTLR3(r12, r13, r23) =

1

X3

〈

∑τ∗1 ̸=τ∗2 ̸=τ∗3 ̸=τ∗1
δ(rτ∗1 − q1)δ(r

τ∗2 − q2)δ(r
τ∗3 − q3)

〉
. (85b)

Note that the correlations between beads include both equal and different imaginary
times. The foregoing averages (85a)–(85b) can be split into actual atom components: one-
particle, two-particle, and three-particle. In this regard, (a) for GTLR2, the bead–bead pair
correlations can correspond to beads in the same necklace (one-atom self-correlations sSC1,2)
or to beads in different necklaces (two-atom correlations gLR2) [11}:

GTLR2(q1, q2) = sSC1,2(r12) + gLR2(r12); (86a)

and (b) for GTLR3, the bead–bead–bead triplet correlations can correspond to three beads
in the same necklace (one-atom self-correlations sSC1,3), two beads in the same necklace
and the third in another necklace (mixture of one-atom self-correlations and two-atom
correlations ΣLR2,3), and the three beads in different necklaces (three-atom correlations
gLR3). At the triplet level this can be cast as [11,61]:

GTLR3(q1, q2, q3) = sSC1,3(q1, q2, q3) + ΣLR2,3(q1, q2|q3) + ΣLR2,3(q1, q3|q2)+

ΣLR2,3(q2, q3

∣
∣q1) + gLR3

(
q1, q2, q3,

)
(86b)

where, for clarity reasons, the vector notation and vertical bars to separate necklaces in the
Σ cases are used.

The pair and triplet static structure factors arise from Equations (84b) and (84c) via the
Fourier transform process explained earlier. They can be cast as [11,59–61]:

S
(2)
TLR(k) =

1

ρN
Γ
(2)
TLR(k; Ψ = 0) =

1

⟨N⟩X2

〈

∣
∣
∣
∣
∣
∣
∣

NX

∑
τ*=1

exp
(
ik·rτ*)

∣
∣
∣
∣
∣
∣
∣

2

〉
− (2π)3ρNδ(k) =

1

X
+ ρN

∫

dr exp(ik·r) (GTLR2(r)− 1), (87a)

S
(3)
TLR(k1, k2) =

1

ρN
Γ
(3)
TLR(k1, k2; Ψ = 0) =

1

⟨N⟩X3

〈

∑
NX

τ∗1 =1 ∑
NX

τ∗2 =1 ∑
NX

τ∗3 =1
exp

[

i
(

k1·rτ*
1 + k2·rτ*

2 − (k1 + k2)·rτ*
3

)]〉
− {δ(k)− terms}, (87b)

which, in expanded form, can be written as:

S
(3)
TLR(k1, k2) =

1

X2
+

ρN

X

∫

dr{exp(ik1·r) + exp (ik2·r) + exp(i(k1 + k2)·r)}(GTLR2(r)− 1)

+ρ2
N

(

s
(3)
SC1(k1, k2) + g

(3)
LR(k1, k2) + Σ

(3)
LR2(k1, k2) + Σ

(3)
LR2(k1 + k2, k1) + Σ

(3)
LR2(k2, k1 + k2)

)

−ρ2
N

(

2π)3δ(k2

)∫

dr{exp(ik1·r)}(GTLR2(r)− 1)

−ρ2
N

(

2π)3δ(k1

)∫

dr{exp(ik2·r)}(GTLR2(r)− 1)

−ρ2
N

(

2π)3δ(k1 + k2

)∫

dr{exp(ik1·r)}(GTLR2(r)− 1)
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−ρ2
N

(

2π)3δ(k1

)(

2π)3δ(k2

)

. (87c)

More information about these structural functions in the r- and the k-spaces can be
found in works by this author [11,50,58–61,66].

The fixing of the GTLR2 and GTLR3 spatial structures can be accomplished with PIMC
or PIMD simulations. Note that their computations scale as X2 and X3, respectively, which
makes GTLR3 a demanding task. To date, these calculations have focused on full evaluations
of GTLR2 [11,50,66], but only on restricted evaluations of GTLR3 covering equilateral and
isosceles features of the three-particle part gLR3 of quantum hard spheres [58]. As for

the structure factors S
(2)
TLR(k) and S

(3)
TLR(k1, k2), the PIMC/PIMD situation regarding the

X-scaling is similar but further aggravated by the necessity to scan sets of commensurate
wavevectors and, also, by the drawbacks associated with the low-k regions. Again, a

significant part of S
(2)
TLR, not very close to k = 0, can be determined with reasonable PI

simulation effort [50]. Nonetheless, the simulations of S
(3)
TLR over a significant range of

wavevectors, excluding obviously the unattainable k1 = 0 and/or k2 = 0, and k1 = −k2,
remain daunting (at least for most researchers).

OZ2 and OZ3 Frameworks

In view of the present-day PI-simulation difficulties in obtaining even restricted
descriptions of the structure factors TLR2 and (above all) TLR3, one might think of resorting
to direct correlation functions. However, the delocalization of quantum particles brings
about several complications if one tries to construct OZn frameworks by following classical-
like ways. A couple of examples will suffice to illustrate this knotty issue. Firstly, just at
the pair level, one can consider Haymet et al.’s approach [179–181]. Here, the pair part
of the TLR2 case Equation (87a), which depends only on gLR2 and is normalized to unity
for large wavevectors (see below), was the object of interest as applied to freezing in fluid
helium-4 [181]. Broadly speaking, some of the main features are (a) the ideal system was

defined as the Feynman ideal system; (b) the direct use of inverse derivatives
δΨ(r1)

δρ
(1)
N (r2)

led to

a need for effective particle masses in the ideal system to deal with the self-correlations,
though this measure could not be implemented under diminishing temperatures; and
(c) in the end, a generalized OZ2 framework was obtained, but “effective” structure factors
had to be defined, and unnatural amplifications in that pair part of TLR2 were detected for
large wavevectors k. Secondly, another generalized OZ2 framework is that put forward by
Shinoda et al. [184,185], in which the time-honored molecular approach RISM [7,76] was
adapted to tackling the PI-model of a fluid with quantum behavior, as if it were a classical
molecular fluid (RISM = reference interaction site model). This approach also focused
on the same pair part of TLR2 mentioned above, and self interactions did appear when
working the related OZ2 scheme arising from RISM (i.e., a given particle “interacts” with
itself at different imaginary times). Accordingly, further approaches to cope with this fact
of the model were to be taken.

At this juncture, the following two observations may be useful to help grasp the
difficulties in this context. (i) First, a simple exercise. By assuming that for the TLR2
unrestricted bead–bead correlations, one might define a direct correlation function in the
conventional manner [5]:

cTLR2(q1, q2; Ψ) =
δ(βX−1Ψ(q1))

δρ
(1)
NX(q2; Ψ)

+
δ(q1 − q2)

ρ
(1)
NX(q1; Ψ)

, (88)

it is straightforward to check the strange S
(2)
TLR behavior that the application of an identity

analogous to (66) would yield with increasing X. As in the two foregoing approaches, one
can rederive the classical OZ2 equation for X = 1, but the expression for the Trotter limit
X → ∞ turns out to be meaningless. (ii) Second, a mathematical fact. Note that most of
the OZ2 frameworks (e.g., Percus–Yevick, hypernetted chain, and their variants [74,76]) are
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formulated with reference to interatomic potentials u
(
rjl

)
. The point is that the potential

energy operators V(N)(r1, r2, . . . , rN) are diagonal in the coordinate representation, which
means that beads do interact via u(rjl) if and only if they belong to different necklaces
and are at the same imaginary time step (e.g., as shown in Equations (36a), (37a), and
(38)). Hence, there cannot be any particle self interactions in the PI context associated with

H
(N)
0 + Ψ(N).

The approximation proposed by the present author to deal with S
(2)
TLR consists in

separating the intra-necklace bead–bead correlations from the inter-necklace bead–bead
correlations and directly applying the classical OZ2 framework to the latter (the pair part
mentioned above) [186]. This (lucky) choice found some support in the applicability of
this procedure to the GFH picture of fluids with (weak) quantum behavior [11,148,149,186].
This approach can be summarized as follows:

S
(2)
TLR(k) =

1

X
+ ρN

∫

drsSC1,2(r)exp(ik·r) + ρN

∫

dr(gLR2 (r)− 1)exp(ik·r) = (89a)

F
(1)
LR (k) +

(

S
(2)
LR(k)− 1

)

, (89b)

where F
(1)
LR (k) is defined by the first two terms in Equation (89a), being a sort of “form

factor” for the one-particle thermal packet, and S
(2)
LR(k) adopts the well-known classical

form associated with the overall inter-necklace correlations gLR2 (r). The self-correlations
do not contribute to the isothermal compressibility of the fluid (i.e., the k = 0 component),

which can also be formulated in the usual way only with S
(2)
LR(k) [135]. Application to

gLR2 (r) of the standard OZ2 Equation (12), which defines its associated cLR2 (r), yields,
after Fourier transforming:

S
(2)
TLR(k) ≈ F

(1)
LR (k) +

ρNc
(2)
LR(k)

1 − ρNc
(2)
LR(k)

. (90a)

where one notes that F
(1)
LR (k) admits approximate analytical representations [136,186], a

very useful one being that derived within the GFH picture [136].

F
(1)
LR (k) ≈ F

(1)
GFH(k) =

6m

βℏ2k2

[

1 − exp

(
βℏ2k2

6m

)]

. (90b)

One way or another, quantum approximations that involve classical c2(r) schemes pro-
vide this context with reasonable alternatives to handle k-space difficulties [50,179,184,186],
although their corresponding ranges of validity are to be analyzed a posteriori. Surprisingly,
for the approximation given by Equation (90a), such a range turns out to exceed expecta-
tions, since even under very strong diffraction effects the comparisons with experiment
and PI-simulations are excellent. In this respect, at T = 4.2 K, for supercritical helium-3
and for normal liquid helium-4 at and near SVP (saturated vapor pressure) conditions,
the TLR2 results based on OZ2(BDH+BHw) were found to be almost indistinguishable
from those obtained via PIMC, and/or very close to experiment [34,50,176,187]. Under
diffraction effects and at the pair level, the conclusion when conducting OZ2 treatments
is clear: the intra- and inter-necklace bead–bead correlations can be separated safely for
most practical purposes. Two more observations: (a) with increasing quantum effects, the
very low-k region may be affected by the OZ2 approximations used (see Section 5.4); and
(b) when exchange interactions are not negligible, this sort of bead–bead separation cannot
be applied.

So far, to this author’s knowledge, no related OZ3 schemes have been reported for
TLR3. The intricacy of these triplet features is certainly greater than at the pair level. In
relation to this, one notes that the straightforward procedure followed in the pair linear
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response structures, Equations (86a), (89) and (90), cannot be used in the functions leading

to S
(3)
TLR, as shown in Equations (86b) and (87c). Accordingly, whether this type of OZ

idea might be fruitful when studying the triplet S
(3)
TLR remains to be investigated. The use

of approximations, extending those in Equation (90), for treating the terms displayed in
Equation (86b) will be necessary.

5.3. The PI Instantaneous ETn Class

This last class is not amenable to being treated with functional derivatives involving
an external weak field because of the collapse of the thermal packet under an instantaneous
localization process. To obtain the definitions of the related pair correlation function

gQ,ET2(r) and its associated structure factor S
(2)
Q,ET(k), which are in many ways analogues

to their classical counterparts, the standard quantum reasoning is based on the study of
(a) neutron scattering, with the time-dependent treatment using Born’s approximation
and Fermi’s potential, plus the elastic sum rule applied to the dynamic structure factor

S
dyn
Q (k, ω) [6,27,33]; or (b) the elastic scattering of X-rays, plus the consideration only of the

pair coherent part associated with the nuclei (i.e., the single-atom actual form factor due to
the electrons is dealt with separately) [6,32]. For the diffraction quantum effects the final
expressions are [3,6,9,11]:

S
(2)
Q,ET(k) =

1

⟨N⟩
〈

N

∑
j=1

N

∑
l=1

exp
(
ik·(rj − rl)

)〉
− (2π)3ρNδ(k) =

1 + ρN

∫

dr exp(ik·r)
(

gQ,ET2(r)− 1
)
, (91)

ρ2
N gQ,ET2(r) =

〈

∑j ̸=l
δ(rj − q1)δ(rl − q2)

〉
, (92)

where the ensemble averages refer to ΞQ Equation (29), both being formally equivalent
to the classical definitions (r = |q1 − q2|). The latter remark implies that both quantum
averages reduce to the usual formulas in the classical limit. Explicitly, the pair correlations
are defined via the ensemble average:

ρ2
N gQ,ET2(r) =

1

ΞQ
∑N≥0

eβµNTr
{

exp(−βH
(N)
0 )× ∑j ̸=l

δ(rj − q1)δ(rl − q2)
}

, (93)

and the PI approach gives:

ρ2
N gQ,ET2(r) ≈ ρ2

N gET2(r) =
1

ΞPI,D
∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp(−βWNP)×

(
1

X ∑j ̸=l ∑
X

τ=1
δ(rτ

j − q1) δ(rτ
l − q2)) , (94)

or, in compact form

ρ2
N gET2(r) =

〈 1

X ∑j ̸=l ∑
X

τ=1
δ(rτ

j − q1)δ(r
τ
l − q2)

〉
, (95a)

where the selection of the structurally significant (and equivalent) equal τ-time beads is
to be highlighted; this is the distinctive trait of the ETn class. Likewise, the instantaneous
structure factor can be calculated within PI as [9,11]:

S
(2)
Q,ET(k) ≈ S

(2)
ET (k) =

1

⟨N⟩X

〈
N

∑
j=1

N

∑
l=1

X

∑
τ=1

exp
(

ik·
(
rτ

j − rτ
l

))〉
− (2π)3ρNδ(k) =
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1 + ρN

∫

dr exp(ik·r)(gET2(r)− 1) (95b)

It is a simple matter to extend the formulation for the instantaneous triplets in r-space,
the PI average being (Figure 3):

ρ3
N gET3(r12, r13, r23) =

〈 1

X ∑j ̸=l ̸=m ̸=j ∑
X

τ=1
δ(rτ

j − q1)δ(r
τ
l − q2δ(rτ

m − q3))
〉
. (96)

𝑔ா்௡ (4.21 K Åିଷ)(𝑁ௌ × 𝑃) = (1372 × 66). 𝑔ா்ଶ𝑔ா்ଷ, ET3൫𝑟 = 3.95 Å; 𝑔ଷ =2.705 ± 0.021൯ ET2൫𝑟 = 3.95 Å; 𝑔ଶ = 1.394 ± 0.002൯ tt1.396. 𝑔ா்ଷ 𝑂(ଵே) ff

Ξொ஽
Γொ,ா்ଶ(𝐪ଵ, 𝐪ଶ; Ψ = 0) = 〈൫∑ 𝛿൫𝐫௝ − 𝐪ଵ൯ − 𝜌ேே௝ୀଵ ൯(∑ 𝛿(𝐫௟ − 𝐪ଶ) − 𝜌ேே௟ୀଵ )〉,Γொ,ா்ଷ(𝐪ଵ, 𝐪ଶ, 𝐪ଷ; Ψ = 0) =〈൫∑ 𝛿൫𝐫௝ − 𝐪ଵ൯ − 𝜌ேே௝ୀଵ ൯(∑ 𝛿(𝐫௟ − 𝐪ଶ) − 𝜌ேே௟ୀଵ )(∑ 𝛿(𝐫௠ − 𝐪ଷ) − 𝜌ேே௠ୀଵ )〉.

tt𝑆ொ,ா்(ଶ) (𝑘) = ଵఘಿ Γொ,ா்(ଶ) (𝐤; Ψ = 0) ௉ூ→≈ 𝑆ா்(ଶ)(𝑘) = ଵఘಿ Γா்(ଶ)(𝐤; Ψ = 0)
𝑆ொ,ா்(ଷ) (𝐤ଵ, 𝐤ଶ) = ଵఘಿ Γொ,ா்(ଷ) (𝐤ଵ, 𝐤ଶ; Ψ = 0) ௉ூ→≈ 𝑆ா்(ଷ)(𝐤ଵ, 𝐤ଶ) = ଵఘಿ Γா்(ଷ)(𝐤ଵ, 𝐤ଶ; Ψ = 0).

ff

Γா்ଷ(𝐪ଵ, 𝐪ଶ, 𝐪ଷ; Ψ = 0) =〈 ଵ௑ ∑ ൛൫∑ 𝛿൫𝐫௝ఛ − 𝐪ଵ൯ − 𝜌ேே௝ୀଵ ൯(∑ 𝛿(𝐫௟ఛ − 𝐪ଶ) − 𝜌ேே௟ୀଵ )(∑ 𝛿(𝐫௠ఛ − 𝐪ଷ) − 𝜌ேே௠ୀଵ )ൟ ௑ఛୀଵ 〉,
𝑆ா்(ଷ)(𝐤ଵ, 𝐤ଶ) = ଵ〈ே〉௑ 〈∑ ∑ ∑ ∑ exp ቀ𝑖൫𝐤ଵ ∙ 𝐫௝ఛ + 𝐤ଶ ∙ 𝐫௟ఛ − (𝐤ଵ + 𝐤ଶ) ∙ 𝐫௠ఛ ൯ቁ௑ఛୀଵே௠ୀଵே௟ୀଵே௝ୀଵ 〉 − ሼ𝛿(𝐤) − termsሽ

𝑋 = 1), 𝑋ଷ,

Figure 3. Helium-3 instantaneous correlation function gETn at state point (4.21 K; 0.0025 Å−3)

obtained through PIMC canonical simulations (NS × P) = (1372 × 66). (a) Pair gET2 and equi-

lateral gET3, arising from PIMC plus OZ2 (BDH+BHw/5-iterations) [50,77,130,132] and only

PIMC, respectively. Notice that the long-range behaviors tend towards unity with increasing r.

Representative PIMC errors bars (one standard deviation) in the vicinity of the main maxima:

ET3
(

r = 3.95 Å; g3 = 2.705 ± 0.021
)

and ET2
(

r = 3.95 Å; g2 = 1.394 ± 0.002
)

, the OZ2 corrected re-

sult for the latter height being 1.396. (b) Isosceles gET3 at selected r-slices. Notice that the long-range

behaviors tend towards the pair values at each r value with increasing s (recall the canonical O( 1
N )

effect on the structures).

The spontaneous fluctuations in the density at the pair and the triplet levels
can be expressed by formulas involving ΞQD Equation (30), analogous to the classical
Equations (9b)–(9c):

ΓQ,ET2(q1, q2; Ψ = 0) =
〈(

∑
N

j=1
δ
(
rj − q1

)
− ρN

)(

∑
N

l=1
δ(rl − q2)− ρN

)〉
, (97a)

ΓQ,ET3(q1, q2, q3; Ψ = 0) =

〈(

∑
N

j=1
δ
(
rj − q1

)
− ρN

)(

∑
N

l=1
δ(rl − q2)− ρN

)(

∑
N

m=1
δ(rm − q3)− ρN

)〉
. (97b)

and, therefore, the actual and PI definitions of the pair and triplet instantaneous
structure factors can be written as:

S
(2)
Q,ET(k) =

1

ρN
Γ
(2)
Q,ET(k; Ψ = 0) →

PI
≈ S

(2)
ET(k) =

1

ρN
Γ
(2)
ET(k; Ψ = 0), (98a)

S
(3)
Q,ET(k1, k2) =

1

ρN
Γ
(3)
Q,ET(k1, k2; Ψ = 0) →

PI
≈ S

(3)
ET (k1, k2) =

1

ρN
Γ
(3)
ET(k1, k2; Ψ = 0). (98b)

Once again, this definition of the triplet structure factor is very convenient since it
reduces to the classical formulation when neglecting quantum effects [3]. For completeness,
note that within PI one finds the explicit triplet formulas [59]:

ΓET3(q1, q2, q3; Ψ = 0) =

〈 1

X ∑
X

τ=1

{(

∑
N

j=1
δ
(
rτ

j − q1

)
− ρN

)(

∑
N

l=1
δ
(
rτ

l − q2

)
− ρN

)(

∑
N

m=1
δ
(
rτ

m − q3

)
− ρN

)} 〉
, (99)
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S
(3)
ET (k1, k2) =

1

⟨N⟩X

〈

∑
N

j=1 ∑
N

l=1 ∑
N

m=1 ∑
X

τ=1
exp

(

i
(
k1·rτ

j + k2·rτ
l − (k1 + k2)·rτ

m

))〉
− {δ(k)− terms} (100)

Some related remarks are the following. (a) From the simulation standpoint: note
that the ETn structural computations scale as X, which makes them more expensive than
those of the classical case (X = 1), but far less expensive than those of TLRn, which scale
as X3, as shown in Equation (87b). (b) The development of Equation (100) is formally the
same as that of the classical case or, equivalently, that of the PI centroids given in Equation
(54), where one only has to substitute the CMn quantities for the ETn ones. (c) As stressed
earlier, there is a full formal equivalence among the Cn, CMn, and ETn basic formulations
of the isolated fluid quantities in r-space and k-space {gn, Sn}.

5.3.1. OZ2 and OZ3 Frameworks

At this stage of the presentation, it is clear that no exact OZn frameworks are avail-
able for analyzing the structural functions of the ETn class. However, as occurred in the
TLRn class, the adoption of classical schemes/ideas, either such as [3] or modified [74],
seems unavoidable if one tries to use the device of direct correlation functions. In this
regard, and again based on the applicability of the classical-OZn to the PI-based variational
pictures [11,148–150,186], there was nothing to lose by trying the direct use of the classical
OZ2 and OZ3 schemes. It goes without saying that the OZ2(BDH+BHw) results were be-
yond expectations. Thus, under very strong quantum diffraction effects (e.g., helium-4 and
helium-3 fluids at T ≈ 4.2 K), the overall agreement with experiment and PI simulation was
excellent [32,33,50,59,176,187], the very low-k region being the most sensitive to this approx-
imation (see Section 5.4). As regards OZ3, applications of the classical scheme have been
made to helium-3 [59,64], the quantum hard sphere fluid (bare of Yukawa attractions) [60],
and liquid parahydrogen [61,62], but no full tests of validity have been conducted.

The two basic equations here are the adaptations of the classical Equations (13) and
(15), i.e., formally the same as in CMn, although now they are approximations:

S
(2)
ET (k) ≈

(

1 − ρNc
(2)
ET(k)

)−1
, (101a)

S
(3)
ET (k1, k2) ≈ S

(2)
ET (k1)S

(2)
ET (k2)S

(2)
ET (|k1 + k2|)

{

1 + ρ2
Nc

(3)
ET(k1, k2)

}

, (101b)

where the direct correlation functions c
(2)
ET and c

(3)
ET are introduced as arising from the

standard OZ2 and OZ3 classical procedures (Figures 4 and 5).

ሼ𝑔௡, 𝑆௡ሽ.

ff ff𝑇 ≈ 4.2 K

𝑆ா்(ଶ)(𝐤) ≈ ൫1 − 𝜌ே𝑐ா்(ଶ)(𝐤)൯ିଵ
𝑆ா்(ଷ)(𝐤ଵ, 𝐤ଶ) ≈ 𝑆ா்(ଶ)(𝐤ଵ)𝑆ா்(ଶ)(𝐤ଶ)𝑆ா்(ଶ)(|𝐤ଵ + 𝐤ଶ|)ቄ1 + 𝜌ேଶ 𝑐ா்(ଷ)(𝐤ଵ, 𝐤ଶ)ቅ,𝑐ா்(ଶ) 𝑐ா்(ଷ)

𝑐ா்௡ (4.2 KÅିଷ) (𝑁ௌ × 𝑃) = (1024 × 66) 𝑔ா்ଶ −𝑐ா்ଶ 𝑐ா்ଷ,𝑐ா்ଷ

Figure 4. Helium-3 instantaneous direct correlation function cETn at state point (4.2 K; 0.02286713 Å−3)

obtained with OZ2 and OZ3 procedures applied to PIMC (NS × P) = (1024× 66) gET2−canonical

data. (a) Pair cET2 and equilateral cET3, arising from OZ2(BDH+BHw/5-iterations) [50,77,130,132]

and OZ3(BHP3) [45,64], respectively. Notice the more rapid evolution of triplets towards zero with

increasing r. (b) Isosceles cET3 at selected r-slices.
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𝑆ா்(ଷ) (4.2 K Åିଷ).(𝑁ௌ × 𝑃) = (128 × 66) 𝑘 ≲ 1Åିଵ;−0.021 ቀ𝑘 = 2.00 Åିଵ; 𝑆ா்(ଷ) = 1.938 ±0.034ቁ (𝑁ௌ × 𝑃) = (128 × 66)
(𝑘 ≲ 0.3 Åିଵ) −0.021

𝛿Ξ௉ூ,஽𝛿𝑢൫𝑟௝௟௧൯, 𝑔ா்ଶ

Ξ௉ூ,஽(PP) = ∑ 𝔷ேಿ!ேஹ଴ ׬ ∏ ∏ 𝑑𝐫௝௧௉௧ୀଵே௝ୀଵ × exp ቂ−𝛽𝑊ଵி − ఉ௉ ∑ ∑ 𝑢(𝑟௝௟௧௉௧ୀଵ )௝ழ௟ ቃ
−𝑘஻𝑇 ఋ ୪୬ ஆು಺,ವ(௉௉)ఋ௨(௥భమ) = 𝒱ଶ 𝜌ே,ா்(ଶ) (𝐪ଵ, 𝐪ଶ) = 𝒱ଶ 𝜌ேଶ 𝑔ா்ଶ(𝑟ଵଶ), (𝑟ଵଶ ≡ 𝑟ଵଶ௧

𝛿ଶΞ௉ூ,஽(PP)ଵஆು಺,ವ(୔୔) 𝛿ଶΞ௉ூ,஽(PP) = ଵஆು಺,ವ(୔୔) ∑ 𝔷ேಿ! ׬ ∏ ∏ 𝑑𝐫௝௧௉௧ୀଵே௝ୀଵேஹ଴ × exp(−𝛽𝑊ே௉) ×
ቀ− ఉ௉ቁଶ ൛∑ ∑ ∑ ∑ 𝛿𝑢(𝑟௝௟௧ )𝛿𝑢(𝑟௠௡௧ᇲ )௉௧ᇲୀଵ௉௧ୀଵ௠ழ௡௝ழ௟ ൟ,

Figure 5. Helium-3 equilateral components of several determinations of the instantaneous triplet

structure factor S
(3)
ET at state point (4.2 K; 0.02286713 Å−3). Density-dependent intermediate data

calculated in connection with Reference [50] (such sets of numerical data were not reported).

(a) Results obtained with PIMC (NS × P) = (128 × 66) in the canonical ensemble and

OZ3(BHP3) [45,64]. To be remarked: the PIMC and BHP3 negative values for k ≲ 1Å−1;

the double-zero component −0.021 fixed via the (classical) sum rule Equation (14b); and the

small PIMC error bars (one standard deviation), the greater being near the main amplitude
(

k = 2.00 Å−1; S
(3)
ET = 1.938 ± 0.034

)

. (b) Results obtained with PIMC (NS × P) = (128 × 66) and

closures JF3 [45,64] and DAS3 [70]. Notice the positiveness of the whole behavior of JF3 and the very

reduced negative behavior of DAS3 near the origin (k ≲ 0.3 Å−1), at which it is also −0.021.

5.3.2. An ETn Functional Digression

Before going any further, it is worthwhile to remark that there is a functional approach
to the ET2 correlation function [6,140]. The point is that, by focusing on the variations of
the partition function δΞPI,D with respect to the variations in the interparticle potential
δu
(
rt

jl

)
, one obtains an expression in which the correlation function gET2 shows up. The

general usefulness of this development seems scarce because there is no response from the
fluid to an external field. However, for completeness, it is noticeable that one can obtain
useful relations at the pair level involving both the ET2 and the CM2 structures [140]. To
simplify the following discussion, only the PP propagator is used in what follows.

The PP grand-canonical partition function for the homogeneous and isotropic fluid
can be cast as [7,95]:

ΞPI,D(PP) = ∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp
[
−βW1F −

β

P∑j<l ∑
P

t=1
u(rt

jl)
]
, (102)

A straightforward calculation yields the related first functional derivative:

−kBT
δln ΞPI,D(PP)

δu(r12)
=

V
2

ρ
(2)
N,ET(q1, q2) =

V
2

ρ2
N gET2(r12), (r12 ≡ rt

12 equal-time distance), (103)

which is formally identical to the classical or to the PI-ET2 counterpart in the canonical
ensembles that can be found in [6] and [140], respectively.

As regards the extensions to higher orders, the situation is rather inconclusive. To
obtain a feeling of the drawbacks posed by this type of formulation, it seems instructive to
consider the development of δ2ΞPI,D(PP):

1

ΞPI,D(PP)
δ2ΞPI,D(PP) =

1

ΞPI,D(PP)∑N≥0

zN

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × exp(−βWNP)×

(

− β

P

)2
{

∑j<l ∑m<n ∑
P

t=1 ∑
P

t′=1
δu(rt

jl)δu(rt′
mn)
}

, (104)

the main problem being that different imaginary times are mixed. One might even think
of extracting artificially equal imaginary time quantities by “tinkering” with the t-sums,
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but these manipulations are of no interest to ET correlations. Furthermore, beyond the
pair level expressed in Equation (103), these derivatives become increasingly entangled.
Although the latter might be related to spontaneous effects within the quantum fluid, they
seem to be of no use for the current study of static quantum fluid structures.

5.4. A Joint Consideration of CMn, TLRn, and ETn

(i) Apart from the general consideration that the three quantum classes of linear response
functions are directly related to different forms of density-correlation functions in the
isolated fluid (as in the classical case), there are some properties exactly shared by
the three classes. These properties obviously belong to the isolated quantum fluid
and can be identified at zero-field, Ψ = ΨF = 0. A most interesting case arises for the
structure factors at zero momentum transfer(s) (k = 0), because the distinct response
functions of the (isolated) fluid must take the same value regardless of the pair, or the
triplet, structure considered.
At the pair level, there is the extended compressibility theorem [135] that states:

S
(2)
CM(k = 0) = S

(2)
ET (k = 0) = S

(2)
TLR(k = 0) = S

(2)
LR(k = 0) = ρNkBTχT =

〈
N2
〉
− ⟨N⟩2

⟨N⟩ = S(2)(0), (105)

It is worth remarking that the foregoing exact result can be distorted when classical-
like OZ2 calculations with ET2 and LR2 are carried out. On the one hand, the discrep-
ancies from the OZ2-CM2 exact χT estimate remain, in general, controlled and do not
alter the overall representation of the k-space structures determined. On the other hand,
the importance of the disagreement may be a matter when analyzing in certain cases
(e.g., near changes of phase), as both the density and the temperature play roles in this
issue [50,66,135,141,142,186].

The generalization of Equation (105) to the triplet level, involving the double-zero
momentum transfer, reads as [61]:

S
(3)
CM(k1 = 0, k2 = 0) = S

(3)
ET (k1 = 0, k2 = 0) = S

(3)
TLR(k1 = 0, k2 = 0) = S(3)(0, 0), (106)

By taking advantage of the OZn formulation for centroids, Equation (106) can be
written in terms of S(2)(0). Using Equations (69), (77c), and (78b), one finds

c
(3)
CM(k1 = 0, k2 = 0) =

∂c
(2)
CM(k = 0)

∂ρN
= − 1

ρ2
N

+
1

ρ2
NS

(2)
CM(k = 0)

+
1

ρN

[

S
(2)
CM(k = 0)

]2

∂S
(2)
CM(k = 0)

∂ρN
; T = constant, (107)

This, in view of Equations (105) and (106), leads to the following result, valid irrespective
of the response class [61]:

S(3)(0, 0) = S(2)(0)

{

S(2)(0) + ρN
∂S(2)(0)

∂ρN

}

; T = constant; CM, ET, TLR. (108a)

The quantity S(3)(0, 0) is a quantum fluid property related to higher-order fluctuations
in the number of the atoms (particles), and it is a simple matter to prove that:

S(3)(0, 0) =

〈
N3
〉

⟨N⟩ − 3
〈

N2
〉
+ 2⟨N⟩2; T = constant; CM, ET, TLR, (108b)

The trivial connections of the zero-field Equations (105) and (108b) with the functional
Equations (80d)–(80e) and (83f)–(83g), at zero field, are to be noticed (ET and CM are
completely parallel in this regard).
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Also, for the single-zero momentum transfer, one finds the exact CM relationship [61]:

S
(3)
CM(k, 0) = S

(2)
CM(0)

{

S
(2)
CM(k) + ρN

∂S
(2)
CM(k)

∂ρN

}

; k ≥ 0, T = constant, (109)

whilst, for ET, an analogous equation can also be written, but owing to the OZn properties
utilized, it is an approximation:

S
(3)
ET (k, 0) ≈ S

(2)
ET (0)

{

S
(2)
ET (k) + ρN

∂S
(2)
ET (k)

∂ρN

}

; k > 0, T = constant. (110)

A further remark is in order here. As seen above, the extended compressibility theorem
at the pair level, Equation (105), and its generalization to the triplet level, Equation (106),
allow one to assess the related number fluctuation properties of the isolated quantum fluid.
These relationships anticipate the formulations at even higher orders that must hold for
the n-th order quantity S(n)(k1 = 0, k2 = 0, . . . , kn = 0), which must also be independent
of the structural class considered, thereby leading to an explicitly constructive scheme for
defining the moments ⟨Nn⟩.

In addition, it seems worthwhile to explore, in future work, the possibility of obtaining

an equation for S
(3)
ET (k, 0) based on the connection between the instantaneous g

(2)
ET and

centroid g
(2)
CM pair correlation functions [140]. If successful, this could help to solve the ET

problems for low-k wavenumbers, generalizing in this way the exact result connecting the
properties of the centroid and the delocalized particle within the GFH picture [136,186]. So
far, no further formulas based on direct correlation functions for TLR3 have been derived.

(ii) The symmetry properties in r-space and in k-space of the structures CMn, TLRn, and
ETn, are translations of the classical ones seen in Section 3.3. CMn and ETn behave
in the classical way regarding the limits of increasing/decreasing distances between
atoms and, also, in the limit of increasing wavenumbers (see also Figures 1, 2b and 3).
However, the class TLRn (unrestricted bead–bead–. . . correlations) presents some
striking differences. In relation to this, suffice it to mention that, for the TLR2 functions
one finds in r-space, (a) GTLR2(r) at r = 0 increases with the P discretization, because of
its one-atom component sSC1,2, and it tends to unity for long distances due to the two-
atom component gLR2; (b) sSC1,2 → 0 for long distances, and gLR2 does not necessarily
vanish when two atoms come close together (it may even be nonzero at r = 0!);

(c) S
(2)
TLR(k) → 0 for large wavenumbers. The magnitudes of these discrepancies from

the standard classical behaviors depend on the intensity of the quantum effects, and
the reader is referred to [50,58,59,66,176,186] for related results. Consequently, one
may expect an interesting variety of patterns when studying TLR3 functions.

(iii) Another set of exact PI relationships can be obtained [58] by following the classical
developments [30,155,156,162] given in Equations (27) and (28). It is easy to establish
that, for the two-point densities (referring to actual two-particle correlations) given by:

ΦCM2 = ∑j ̸=l
δ
(
RCM,j − R1

)
δ(RCM,l − R2), (111a)

ΦET2 = X−1∑
X

τ=1 ∑j ̸=l
δ
(
rτ

j − q1

)
δ(rτ

l − q2), (111b)

ΦLR2 = X−2∑
X

τ=1 ∑
X

τ′=1 ∑j ̸=l
δ
(
rτ

j − q1

)
δ
(
rτ′

l − q2

)
, (111c)

one obtains the classical-like relationships:

z

(
∂⟨Φ⟩

∂z

)

T

= ⟨NΦ⟩ − ⟨N⟩⟨Φ⟩; CM2, ET2, LR2. (112)
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The latter formula leads to the classical-like equations:

ρNS(2)(0)

(
∂⟨Φ⟩
∂ρN

)

T

=ρ3
N

∫

dq3{ϕ3(q1, q2, q3)− ϕ2(q1, q2)}+ 2ρ2
N ϕ2(q1, q2), (113a)

S(2)(0)

(
∂lnϕ2(r12)

∂ρN

)

T

=
∫

dq3

{
ϕ3(q1, q2, q3)

ϕ2(q1, q2)
− 1

}

+
2

ρN

(

1 − S(2)(0)
)

; ϕ2(r12) > 0, (113b)

where the functions {ϕ2, ϕ3} stand for:

{ϕ2, ϕ3} = {gCM2, gCM3}, {gET2, gET3}, {gLR2, gLR3}, (113c)

and, for consistency, S(2)(0) corresponds to its associated pair structure ϕ2 (recall that, in
practice, the S(2)(0) values may show deviations from the exact Equation (105)).

Note that the total continuous linear response TLR is not contained in the LR relation-
ships, since the self-correlations do not fit into this scheme. Equation (113a,b) arise only
from the pure actual two- and three-atom correlations.

For the purposes of this work, it is also worthwhile to remark that Equation (113b) can
be transformed and split into two parts [155,156] as (ϕ2(r) > 0):

∼
Λexact(r12) ≡ Λ(r12|ϕ3);if ϕ3 = exact triplet f unction, (113d)

where

∼
Λexact(r12) = S(2)(0)

(
∂lnϕ2(r12)

∂ρN

)

T

−
∫

dq3(ϕ2(r13)− 1)(ϕ2(r23)− 1), (113e)

Λ(r12|ϕ3) =
∫

dq3

{
ϕ3(r12, r13, r23)

ϕ2(r12)
− ϕ2(r13)ϕ2(r23)

}

. (113f)

Given that
∼
Λexact(r12) is just a pair quantity that can be fixed with high accuracy, whilst

Λ(r12|ϕ3) is a quantity that depends explicitly on ϕ3, the use of these two quantities yields
consistency tests of possible closures for ϕ3. In this connection, one uses KS3 as a reference
by expressing the triplet closure in the form:

[ϕ3(r12, r13, r23)]clos. = ϕKS3 ×

𝑆(ଶ)(0) ቀడ୪୬ఝమ(௥భమ)డఘಿ ቁ் = ׬ 𝑑𝐪ଷ ቄఝయ(𝐪భ,𝐪మ,𝐪య)ఝమ(𝐪భ,𝐪మ) − 1ቅ + ଶఘಿ ቀ1 − 𝑆(ଶ)(0)ቁ ; 𝜑ଶ(𝑟ଵଶ) >0,ሼ𝜑ଶ, 𝜑ଷሽሼ𝜑ଶ, 𝜑ଷሽ = ሼ𝑔஼ெଶ, 𝑔஼ெଷሽ, ሼ𝑔ா்ଶ, 𝑔ா்ଷሽ, ሼ𝑔௅ோଶ, 𝑔௅ோଷሽ,𝑆(ଶ)(0) 𝜑ଶ𝑆(ଶ)(0)
(𝜑ଶ(𝑟) > 0)𝛬ሚ௘௫௔௖௧(𝑟ଵଶ) ≡ Λ(𝑟ଵଶ|𝜑ଷ); 𝜑ଷ = 𝑒𝑥𝑎𝑐𝑡 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,

𝛬ሚ௘௫௔௖௧(𝑟ଵଶ) = 𝑆(ଶ)(0) ቀడ୪୬ఝమ(௥భమ)డఘಿ ቁ் − ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1),
Λ(𝑟ଵଶ|𝜑ଷ) = ׬ 𝑑𝐪ଷ ቄఝయ(௥భమ,௥భయ,௥మయ)ఝమ(௥భమ) − 𝜑ଶ(𝑟ଵଷ)𝜑ଶ(𝑟ଶଷ)ቅ.𝛬ሚ௘௫௔௖௧(𝑟ଵଶ)Λ(𝑟ଵଶ|𝜑ଷ) 𝜑ଷ,𝜑ଷ

ሾ𝜑ଷ(𝑟ଵଶ, 𝑟ଵଷ, 𝑟ଶଷ)ሿ௖௟௢௦. = 𝜑௄ௌଷ × 𝜑ധଷ(𝐪ଵ, 𝐪ଶ, 𝐪ଷ) = 𝜑ଶ(𝑟ଵଶ)𝜑ଶ(𝑟ଵଷ)𝜑ଶ(𝑟ଶଷ) × 𝜑ധଷ(𝐪ଵ, 𝐪ଶ, 𝐪ଷ).
𝛬ሚ௘௫௔௖௧(𝑟ଵଶ) Λ(𝑟ଵଶ|𝜑ଷ)(𝜕𝜑ଶ 𝜕𝜌ே⁄ )்

 Λ(𝑟ଵଶ|𝜑௄ௌଷ) ≡ 0, (𝜕𝜑ଶ(𝑟ଵଶ) 𝜕𝜌ே⁄ )்,௄ௌଷ = ൫𝜑ଶ/𝑆(ଶ)(0)൯ ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1).
 Λ൫𝑟ଵଶ|𝜑௃ிଷ൯ = ቀௌ(మ)(଴)ఝమ − 1ቁ ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1), 

(𝜕𝜑ଶ(𝑟ଵଶ) 𝜕𝜌ே⁄ )்,௃ிଷ = න 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1).
 Λ(𝑟ଵଶ|𝜑஺௏ଷ) = ଵଶ ቀௌ(మ)(଴)ఝమ − 1ቁ ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1),

(𝜕𝜑ଶ(𝑟ଵଶ) 𝜕𝜌ே⁄ )்,஺௏ଷ = 12 ൫1 + 𝜑ଶ/𝑆(ଶ)(0)൯ න 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1).

ϕ3(q1, q2, q3) = ϕ2(r12)ϕ2(r13)ϕ2(r23)×

𝑆(ଶ)(0) ቀడ୪୬ఝమ(௥భమ)డఘಿ ቁ் = ׬ 𝑑𝐪ଷ ቄఝయ(𝐪భ,𝐪మ,𝐪య)ఝమ(𝐪భ,𝐪మ) − 1ቅ + ଶఘಿ ቀ1 − 𝑆(ଶ)(0)ቁ ; 𝜑ଶ(𝑟ଵଶ) >0,ሼ𝜑ଶ, 𝜑ଷሽሼ𝜑ଶ, 𝜑ଷሽ = ሼ𝑔஼ெଶ, 𝑔஼ெଷሽ, ሼ𝑔ா்ଶ, 𝑔ா்ଷሽ, ሼ𝑔௅ோଶ, 𝑔௅ோଷሽ,𝑆(ଶ)(0) 𝜑ଶ𝑆(ଶ)(0)
(𝜑ଶ(𝑟) > 0)𝛬ሚ௘௫௔௖௧(𝑟ଵଶ) ≡ Λ(𝑟ଵଶ|𝜑ଷ); 𝜑ଷ = 𝑒𝑥𝑎𝑐𝑡 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,

𝛬ሚ௘௫௔௖௧(𝑟ଵଶ) = 𝑆(ଶ)(0) ቀడ୪୬ఝమ(௥భమ)డఘಿ ቁ் − ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1),
Λ(𝑟ଵଶ|𝜑ଷ) = ׬ 𝑑𝐪ଷ ቄఝయ(௥భమ,௥భయ,௥మయ)ఝమ(௥భమ) − 𝜑ଶ(𝑟ଵଷ)𝜑ଶ(𝑟ଶଷ)ቅ.𝛬ሚ௘௫௔௖௧(𝑟ଵଶ)Λ(𝑟ଵଶ|𝜑ଷ) 𝜑ଷ,𝜑ଷ

ሾ𝜑ଷ(𝑟ଵଶ, 𝑟ଵଷ, 𝑟ଶଷ)ሿ௖௟௢௦. = 𝜑௄ௌଷ × 𝜑ധଷ(𝐪ଵ, 𝐪ଶ, 𝐪ଷ) = 𝜑ଶ(𝑟ଵଶ)𝜑ଶ(𝑟ଵଷ)𝜑ଶ(𝑟ଶଷ) × 𝜑ധଷ(𝐪ଵ, 𝐪ଶ, 𝐪ଷ).
𝛬ሚ௘௫௔௖௧(𝑟ଵଶ) Λ(𝑟ଵଶ|𝜑ଷ)(𝜕𝜑ଶ 𝜕𝜌ே⁄ )்

 Λ(𝑟ଵଶ|𝜑௄ௌଷ) ≡ 0, (𝜕𝜑ଶ(𝑟ଵଶ) 𝜕𝜌ே⁄ )்,௄ௌଷ = ൫𝜑ଶ/𝑆(ଶ)(0)൯ ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1).
 Λ൫𝑟ଵଶ|𝜑௃ிଷ൯ = ቀௌ(మ)(଴)ఝమ − 1ቁ ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1), 

(𝜕𝜑ଶ(𝑟ଵଶ) 𝜕𝜌ே⁄ )்,௃ிଷ = න 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1).
 Λ(𝑟ଵଶ|𝜑஺௏ଷ) = ଵଶ ቀௌ(మ)(଴)ఝమ − 1ቁ ׬ 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1),

(𝜕𝜑ଶ(𝑟ଵଶ) 𝜕𝜌ே⁄ )்,஺௏ଷ = 12 ൫1 + 𝜑ଶ/𝑆(ଶ)(0)൯ න 𝑑𝐪ଷ (𝜑ଶ(𝑟ଵଷ) − 1)(𝜑ଶ(𝑟ଶଷ) − 1).

ϕ3(q1, q2, q3). (113g)

By substituting a closure to be tested in Equation (113f), two comparison tests are be-

tween (a)
∼
Λexact(r12) and Λ(r12|ϕ3), and (b) the values of the density derivative (∂ϕ2/∂ρN)T

determined with the computed pair results and the corresponding estimates arising from
the closure.

In relation to this, for completeness, the three basic closures, KS3 Equation (22), JF3
Equation (23), and AV3 Equation (24), lead to the following expressions for their quantities
in Equation (113d) (Figure 6):

- KS3:

Λ(r12|ϕKS3) ≡ 0, (113h)

(∂ϕ2(r12)/∂ρN)T,KS3 =
(

ϕ2/S(2)(0)
)∫

dq3(ϕ2(r13)− 1)(ϕ2(r23)− 1). (113i)

- JF3:

Λ
(
r12

∣
∣ϕJF3

)
=

(

S(2)(0)

ϕ2
− 1

)
∫

dq3(ϕ2(r13)− 1)(ϕ2(r23)− 1), (113j)
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(∂ϕ2(r12)/∂ρN)T,JF3 =
∫

dq3(ϕ2(r13)− 1)(ϕ2(r23)− 1). (113k)

- AV3:

Λ(r12|ϕAV3) =
1

2

(

S(2)(0)

ϕ2
− 1

)
∫

dq3(ϕ2(r13)− 1)(ϕ2(r23)− 1), (113l)

(∂ϕ2(r12)/∂ρN)T,AV3 =
1

2

(

1 + ϕ2/S(2)(0)
)∫

dq3(ϕ2(r13)− 1)(ϕ2(r23)− 1). (113m)

𝑔ா்ଷ (4.2 K Åିଷ). 𝑔ா்ଶ.
Λா்ଶ

 

tt

tt

ffi

Figure 6. Helium-3 closure consistency calculations (Equation (113)) for the instantaneous triplet

correlation function gET3 at state point (4.2 K; 0.02286713 Å−3). Density-dependent intermediate

data calculated in connection with Reference [50] (such sets of numerical data were not reported).

(a) Density derivative at constant temperature of the pair radial correlation function gET2. Closures

KS3 [41], JF3 [44], and their average AV3 [63], are compared to the numerical result (“exact”) fixed

with Richardson extrapolation (four-point estimate [188]). Notice the greater closeness between

AV3 and the “exact” values. (b) Functional ΛET2 at constant temperature fixed with Richardson

extrapolation (four-point estimate) compared with its closure approximations arising from KS3, JF3,

and AV3. Notice the greater closeness between AV3 and the “exact” values past the region where JF3

behaves wrongly.

(iv) Furthermore, as regards OZn schemes, application of the classical and quantum
reasonings [42–45,63,64,77,130–132] is a possible and rewarding way to obtain in-
formation on the quantum triplet CM3 and ET3 structures. Recall that the CM2
calculations have, in the end, an exact OZ2 framework, but that under any other
circumstances, approximations are involved. Despite the latter remark, the usual
PIMC/PIMD (“raw”) pair radial structures CM2, ET2, LR2, arising from the canonical
simulations, can be (a) utilized to carry out OZ2 studies of the asymptotic decay
properties [189,190] and (b) improved using OZ2-based treatments and corrections
(e.g., the BDH+BHw analysis considered in Section 3.4). By doing so, grand-canonical
approximations for these pair functions can be determined, which may be viewed
as better intermediate quantities for an intensive use of direct correlation functions
in triplet calculations via closures. In this connection, although for r-space triplets
the PI simulations in the canonical ensemble are sufficient to give very useful infor-
mation, note that for k-space triplets there are no complete OZ3 tests regarding the
(density–temperature) ranges of validity. The huge PI computational load involved,
covering significant ranges of the two wavevectors and physical conditions, and
the variety of closures for triplets are reasons for explaining this lack of knowledge
(Figures 4, 5 and 7).
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(𝜆஻∗ = 0.6; 𝜌ே∗ = 0.589)𝑘∗ = 𝑘𝜎ுௌ 𝜎ுௌ = (𝑁ௌ × 𝑃) = (250 × 12)(𝑘∗ = 5.912; 𝑆஼ெ(ଷ) = 10.716 ± 0.519)(−8.5 × 10ିସ, (𝑘∗ = 2.365; 𝑆஼ெ(ଷ) = −0.006 ±0.001) 𝑘∗ ≲ 1.2(𝑘∗ = 5.912; 𝑆ா்(ଷ) = 8.559 ± 0.342)(−4.2 × 10ିସ, (𝑘∗ = 2.365; 𝑆஼ெ(ଷ) =−0.006 ± 0.001)𝑘∗ ≲ 1
 𝑆ொௗ௬௡(𝐤, 𝜔), ff𝑆ா்(ଶ)(𝐤) 𝑆்௅ோ(ଶ) (𝐤):𝑆ொ,ா்(ଶ) (𝐤) = ׬ 𝑑𝜔 𝑆ொௗ௬௡(𝐤, 𝜔)ஶିஶ ௉ூ→ 𝑆ா்(ଶ)(𝐤)

𝑆ொ,்௅ோ(ଶ) (𝐤) = 2 ׬ 𝑑𝜔 ଵିୣ୶୮(ିఉℏఠ)ఉℏఠ  𝑆ொௗ௬௡(𝐤, 𝜔) ௉ூ→ 𝑆்௅ோ(ଶ) (𝐤)ஶ଴ ,𝜔 𝑆ொ,்௅ோ(ଶ) (𝐤)
tt

(𝑁, 𝒱, 𝑇), tt (𝑁 × 𝑃, 𝒱, 𝑇)),𝑁ௌ × 𝑃 (10ଷ𝑁ௌ × 𝑃) tt10ଷ

Figure 7. Quantum hard-sphere fluid equilateral components of triplet structure factors at state

point (λ∗
B = 0.6; ρ∗N = 0.589) on the fluid side of the crystallization line [63,66,142]. Use of reduced

units is made: k∗ = kσHS (σHS = hard-sphere diameter). (a) Centroid triplet structure factors CM3

obtained with PIMC canonical simulation (NS × P) = (250 × 12) and the closures JF3 [45] and

DAS3 [70]. Notice the PIMC largest error bars (one standard deviation) at the main amplitude, which

is near (k∗ = 5.912; S
(3)
CM = 10.716 ± 0.519), and the negative values at the double-zero component

(−8.5 × 10−4, fixed with the classical Equation (14b)) and at (k∗ = 2.365; S
(3)
CM = −0.006 ± 0.001).

Also, JF3 results are always positive, while DAS3 results (obtained via Stirling two-point derivatives)

remain below zero for k∗ ≲ 1.2. (b) Instantaneous triplet structure factors ET3 obtained with the

same methods as above. Notice the PIMC largest error bars (one standard deviation) at the main

amplitude, which is near (k∗ = 5.912; S
(3)
ET = 8.559 ± 0.342), and the negative values at the double-

zero component (−4.2× 10−4, fixed with Equation (14b)) and at (k∗ = 2.365; S
(3)
CM = −0.006± 0.001).

Also, JF3 results are always positive, while DAS3 results remain below zero for k∗ ≲ 1.

(v) Finally, it is worthwhile to write the connections (“sum rules”) of the dynamic struc-

ture factor S
dyn
Q (k, ω), which can be obtained through inelastic neutron diffraction

experiments [27], with the PI quantities S
(2)
ET (k) and S

(2)
TLR(k) :

S
(2)
Q,ET(k) =

∫ ∞

−∞
dω S

dyn
Q (k, ω) → PIS

(2)
ET (k) (114a)

S
(2)
Q,TLR(k) = 2

∫ ∞

0
dω

1 − exp(−βℏω)

βℏω
S

dyn
Q (k, ω) → PIS

(2)
TLR(k) , (114b)

where ω stands for the angular frequencies of the neutron radiation. S
(2)
Q,TLR(k) arises as a

density–density relaxation function [27] (Equation (87a)). The latter expressions have been
utilized in fluid helium-4 studies (e.g., see References [33,34,176,184]).

6. Systems Studied in This Work, Computational Details and Related Observations

The main structural concepts reviewed in the previous Sections 3–5 are illustrated
in this work with further numerical applications to supercritical helium-3 and the QHS
fluid on the crystallization line, thus expanding the scope of previous works on these key
systems [58–60,63,64]. For helium-3, the focus is on pair and triplet structures in r-space
and triplet structures in k-space, whereas for quantum hard spheres is on triplets in k-space.
The computational techniques employed are PIMC simulations in the canonical ensemble

(N,V , T), (or better (N × P,V , T)), complemented with OZ2 and OZ3 treatments, by using
the closures and relationships addressed in this work. The simulations utilize sample sizes
NS × P inside a central cubic box of side L, with the usual periodic boundary conditions,
and the Metropolis sampling scheme involving the normal-mode algorithm (acceptance
ratio 50%) [79,150]. One PIMC kpass is defined as

(
103NS × P

)
attempted bead moves,

and one PIMC Mpass is 103 kpasses. The computed structural classes are the centroid
(CMn) and the instantaneous (ETn) at the pair and triplet levels, the latter being focused
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on some equilateral and isosceles features. Representative results are contained in the
Supplementary Materials.

The state points studied are listed below:

(i) For helium-3: (T = 4.21 K; ρN = 0.0025 Å−3), (T = 4.2 K; ρN = 0.02286713 Å−3),

(T = 8.99 K; ρN = 0.0228717687 Å−3). The pair interatomic potential selected is
Janzen–Aziz’s SAPT2 [111], and PIMC calculations involve the SCVJ propagator with
α = 1/3 [89]. Information obtained in Reference [50] on auxiliary state points about
the state point at 4.2 K: ∆ρN = ±0.002 Å−3, ±0.004 Å−3 is also employed.

(ii) For the QHS fluid [63,66,142], only k-space results for one state point are reported,
(
λ∗

B; ρ∗N
)
= (0.6; 0.589). Complementary structures for two state points about the

latter, by varying ρ∗N at constant λ∗
B, are also obtained in the present work; these

variations are: ∆ρ∗N = ±0.01715, which for a system with σHS = 3.5 Å, amount to
±0.0004 Å−3 (other pilot applications, along the crystallization line, at
λ∗

B = 0.2, 0.8, 1.2543, 1.9832 [66,84,142], have also been carried out and will be com-
mented on later). PIMC calculations involve the CBHSP propagator [86]. Recall that
there is a unique way to characterize a state point in the QHS system by using reduced

units [63,66]: i.e., the length unit is the hard-sphere diameter, ρ∗N = ρNσ3
HS, λ∗

B = λB
σHS

.

PIMC canonical simulations focus on the instantaneous and centroid pair g2(r) and/or
triplet g3(r, s, s) correlation functions. The sample sizes (NS × P) employed are as follows:
(a) for g2 and g3 in helium-3, (1372 × 66) at T = 4.21 K, (1372 × 22) at T = 8.99 K, and

(1024 × 66) at T = 4.2 K [50]; (b) for g2 in the QHS fluid, (864 × 12) at the auxiliary state
points analyzed, and the same at the target state point

(
λ∗

B; ρ∗N
)
= (0.6; 0.589) taking its

pair information from calculations in Reference [63].
The pair structures in r-space are computed in the usual way, utilizing histograms [13],

with the width of the bins being ∆ = 0.1 Å. Most of the “raw” pair canonical structures are
subsequently OZ2-analyzed and improved in the form already described [50,141]: applica-
tion of the OZ2 Baxter–Dixon–Hutchinson’s (BDH) procedure [77,130] plus Baumketner–
Hiwatari (BHw) corrections [132]. By doing so, access to every k-space-related property at
the pair level is obtained with high accuracy (Figure 2).

As regards the MC/MD calculations of g3 triplets, they present a number of non-
trivial subtleties, as discussed by Tanaka and Fukui [46], Baranyai and Evans [48], and
Barrat et al. [45]. In the current PIMC applications, the method followed in r-space is
based on References [46,48], which, for the study of quantum fluids, was firstly used in
Reference [58]. The interested reader should refer to the latter reference for specific details.
To facilitate the understanding of the reported results, however, suffice it to say that triplet
correlations are determined via:

g3(R, S, U) =
(∆nT)

Nρ2
N(∆V)RSU

; CM3, ET3, (115)

where (∆nT) is the number of times that mutual distance triplets lie within the ranges
R − ∆ ≤ r ≤ R, S − ∆ ≤ s ≤ S, and U − ∆ ≤ u ≤ U (again: ∆ = 0.1 Å); the previous
notation should be obvious: R = r12, S = r13, U = r23. In addition, to avoid redundancies
in the counting, the conservative (and less time-consuming) condition r, s, u < L/4 is
imposed [46]. The run lengths of the PIMC computations for helium-3 in r-space are
as follows: in between 1233 and 1300 kpasses for fixing the pair structures gCM2(r) and
gET2(r), gathering statistics every 8000–12,500 accepted configurations; and in between
2470 and 2560 kpasses for fixing the triplet structures gCM3(r, s, s) and gET3(r, s, s), where
r = s is included, gathering statistics every 8000–10,000 accepted configurations. Statistical
errors (one standard deviation) are fixed with block subaverages and remain very small: at
the main peaks, they are below 0.8% (see main details in Figures 1 and 3).

The calculations of the triplet structures in k-space turn out to be much more involved,
and a few remarks are to be made. The PIMC simulations involve the sample sizes (NS × P)
(a) (128 × 66) for helium-3 at T = 4.2 K(Figure 5) and (b) (250 × 12) at the QHS fluid state
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point
(
λ∗

B; ρ∗N
)
= (0.6; 0.589) (Figure 7). These calculations are focused only on the equilat-

eral components S(3)
(
k, k, π

3

)
: instantaneous for helium-3, and instantaneous and centroid

for the QHS state point. Twelve sets of {k1, k2}i vectors commensurate with the simulation
box are scanned; each set is composed of 8 pairs such that: |k1| = |k2| = ki, the vectors be-
ing at an angle of π/3, and with the constraint 2 ≤ k2

x + k2
y + k2

z ≤ 200 [62]. This implies that,

for helium-3 at T = 4.2 K, the resulting moduli (wavenumbers) are in 0.5 ≲ ki/Å−1 ≲ 5,
whilst for the QHS fluid state point, the moduli are in 2.3 ≲ k∗i ≤ 11.8

(
k∗i = kiσHS

)
. Also,

the sampling is more focused on the low-k wavenumbers and the regions of the main
peaks. PIMC run lengths are as follows: for helium-3 in between 30 and 120 Mpasses,
gathering statistics every 5000 accepted configurations; and for the QHS fluid state point
in between 6.5 and 60 Mpasses, gathering statistics every 8000 accepted configurations.
Statistical errors (one standard deviation) are fixed with block subaverages and remain
controlled: at the main amplitudes they are 1.8% for the instantaneous case in helium-3;
4.8% for the centroid case; and 4% for the instantaneous case in the QHS fluid (see main
details in Figures 5 and 7)). As a complementary result, the (mean) imaginary components,
which must be identically zero [45], at the main amplitudes turn out to be 0.0045 ± 0.0114
for the instantaneous case at the helium-3 state point; −0.0218 ± 0.4219 for the centroid
case; and 0.0485 ± 0.2518 for the instantaneous case at the QHS fluid state point. Clearly,
although the QHS sampling is highly informative, it must be improved. In addition, all
these results give an idea of the slowness of this sort of calculations when dealing with
fluids with quantum behavior. This drawback becomes more acute if the fluid state point
investigated belongs to the actual crystallization line of the potential model selected to
describe the fluid. In this case, the NS sample size cannot be small (i.e., about one hundred
particles, as the used in helium-3); the “flipping” back and forth in the simulation between
the fluid and solid branches [13] must be avoided. This is the case in the current QHS fluid
application. After monitoring such an effect, it has not been observed with NS = 250, but it
is rather conspicuous with NS = 128. This monitoring has involved the configurational
centroid CM2 structure factor (k ̸= 0) defined as normalized to unity at its crystal-structure
maxima [142]. For the current QHS study with NS = 250, the latter configurational quantity
remains below the maximal fluid value estimate 0.2 [65].

Closure calculations reported here for triplets (instantaneous and centroid) in r-space
are carried out utilizing KS3, JF3 and AV3, whereas in k-space they are carried out utilizing
BHP3 [45,59,60] and DAS3 [70]. These calculations necessitate the corresponding pair
structures, g2(r) and S(2)(k). Detailed descriptions of the related procedures can be found
in works by this author [58–64], although, for the reader to better grasp the reported results,
it may be worthwhile to mention the following facts.

(i) JF3 and BHP3 share a common type of integral [44,45,161], which, in each case, is
utilized in this work as follows:

- JF3 (r-space) [58]:

I(r12, r13, r23) =
∫

dq4 h2(r14)h2(r24)h2(r34) ≈

π∑
νmax

ν=0
(2ν + 1)Pν(cos θ[r13, r23])

∫ ∞

0
dy y2h2(y) fν(y, r13) fν(y, r23), (116a)

fν(y1, y2) =
∫ +1

−1
dxPν(x)h2

(√

y2
1 + y2

2 − 2xy1y2

)

, (116b)

- BHP3 (k-space) [59]:

c
(3)
BHP(k1, k2, θ[k1, k2]) =

1

(2π)3

∫

dk3 t(k3)t(k3 − k1)t(k3 + k2) ≈

1

(2π)2 ∑
νmax

ν=0
(ν +

1

2
)Pν(cos θ[k1, k2])

∫ ∞

0
dk k2t(k) fν(k1, k) fν(k2, k), (117a)
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fν(ka, k) =
∫ +1

−1
dwPν(w) t

(√

k2
a + k2 − 2wkak

)

, (117b)

where the Pν stand for the standard Legendre polynomials, and the upper limit νmax = 30
is utilized (in the limit νmax → ∞ , the ν-expansions are exact [45,161]).

(ii) For the closure analyses at constant temperature, the numerical density-derivatives of
the pair g2(r) and the direct correlation functions, c2(r) and c2(k), are evaluated with
the centered algorithms: Stirling’s (two-point) and Richardson’s (four-point) [188]
(Figures 5–7). By denoting a generic radial pair function by f2(r; ρN), the previous
algorithms can be written as:

(
∂f2(r; ρN)

∂ρN

)Stirl.

T

≈D1(∆ρN) =
f2(r; ρN + ∆ρN)− f2(r; ρN − ∆ρN)

2∆ρN
, (118a)

(
∂f2(r; ρN)

∂ρN

)Rich.

T

≈D2(∆ρN ; 2∆ρN) =
4D1(∆ρN)− D1(2∆ρN)

3
. (118b)

(iii) As regards JF3 and AV3, the following observations are worth making. Comparison
with PIMC results for the equilateral components of the helium-3 triplet structure

factors S
(3)
ET (k, k, π

3 ) indicate that (Figure 5 and Table 1) (a) JF3 cannot capture the
negative behavior within the low-k region and its usefulness reduces to the large-k
wavenumbers, since it gives the asymptotic behavior of the structure factor; and (b)
AV3 as reported in [64] yields lower values for both the negative depth in the low-k
region and the height of the main amplitude. In view of the results in Figure 6, it
is highly likely that AV3 can be improved using Abe’s developments [42], thereby
yielding better triplet results in both r-space and k-space.

Table 1. Detail of the instantaneous S
(3)
ET (k, k, π

3 ) results for helium-3 (T = 4.2 K;

ρN = 0.02286713 Å−3). AV3 and BHP3 data taken from [64].

Instantaneous—S
(3)
ET (k,k, π

3 )

k/Å
−1 PIMC JF3 AV3 BHP3 DAS3

0 ------ 0.001 0.020 −0.021 −0.021

0.5 −0.008 ± 0.001 0.003 −0.053 −0.011 0.013

1 −0.028 ± 0.002 0.047 −0.140 −0.005 0.061

2 1.938 ± 0.034 1.893 1.891 1.759 1.910

2.1 ------ 1.999 2.000 1.904 2.009

5 1.006 ± 0.001 1.005 1.005 1.005 1.005

(iv) BHP3 minimizations for ET3 helium-3 at the state point at T = 4.2 K were re-
ported in [64], where use of conjugate gradients [191] was made, as explained
elsewhere [59,60]. Discretizations of the t(r) functions into 7001 points covered the

distance interval
[
0 ≤ r/Å ≤ 70

]
. Convergence as assessed via

Θ[t(r)]
∥
∥
∥

(
∂c2(r)
∂ρN

)

T

∥
∥
∥

2 was rapid

and without any problems, the latter quotient reaching values ∼ 10−9 in a few hun-

dred iterations. The explored ranges of wavenumbers for S
(3)
ET (k, k, π

3 ) have been

extended, k > 5Å−1, for checking the properties in k-space as k increases: JF3 ap-
pears as the limit with increasing k wavenumbers, and the results are consistent.
Figures 4 and 5 and Table 1 collect representative results for this system. As seen, for
the equilateral components, BHP3 [64] gives a nice representation of the PIMC values,

particularly in capturing the negative behavior for k ≲ 1 Å
−1

.
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Nevertheless, some pilot BHP3 minimizations for the QHS fluid (CM3 and ET3) along
the crystallization line [84,142] have turned out to be affected by convergence problems.
These latter results are therefore far from conclusive from a physical standpoint, and only a
brief comment follows. The key observation is that the convergence in this case (tested with
both gradients and conjugate gradients) appears to be strongly dependent on the value of

the norms ∥(∂c2/∂ρN)T∥
2, in such a way that the larger this value is, the slower and more

physically doubtful the convergence path turns out to be. These norm values are clearly
associated with the depths at the origin of the pair direct correlation function c2(r = 0).
To obtain a better feeling of this situation, some data related to the pair direct correlation
functions analyzed in this work are worth quoting here:

(a) For helium-3 at (4.2 K; 0.02286713 Å−3), the five instantaneous values cET2(r = 0), corre-
sponding to the five state points involved, are in −9.196 ≲ cET2(r = 0) ≲ −5.051 [50,64],
and no BHP3 problems with the convergence were observed.

(b) For the QHS fluid at (λ∗
B = 0.6; ρ∗N = 0.589), the three instantaneous values

involved (∆ρ∗N = ±0.01715) at the origin of the interparticle distances are in
−36.764 ≲ cET2(r

∗ = 0) ≲ −30.916, while the three centroid values are in
−58.720 ≲ cCM2(r

∗ = 0) ≲ −46.598.

(c) The reference values given by the squared norms ∥(∂c2/∂ρN)T∥
2 turn out to be

as follows:

- For helium-3, using the Richardson four-point derivative
(

∆ρN

Å−3 = ±0.002, ±0.004
)

,

the instantaneous reference is ∥(∂cET2/∂ρN)T∥
2 ≈ 0.4845 × 107 Å9.

- For the QHS fluid along the crystallization line [84,142], covering the

conditions mentioned above compatible with 0.2 ≤ λ∗
B ≤ 1.9832

(

σHS = 3.5 Å
)

,

and using Richardson four-point derivative (∆ρ∗N = ±0.0042875,± 0.008575),
one finds values for the instantaneous reference in

0.3050 × 109 Å
9
≲ ∥(∂cET2/∂ρN)T∥

2
≲ 0.2598 × 1010 Å

9
, and for the centroid

reference in 0.2881 × 1010 Å9 ≲ ∥(∂cCM2/∂ρN)T∥
2
≲ 0.2094 × 1011Å9.

As seen, there is a significant BHP3 difference between the foregoing results for helium-
3 and the QHS fluid. Note that the comparison is better made using the actual values in Å
for distances, since the modeling via hard spheres for helium-3 is not consistent [59] for
the current structural purposes. In relation to this, the distinct features of the interparticle
potentials u(r) involved are to be remarked: for helium-3, continuous for r > 0 and
weakly attractive at the minimum (≈ −11 K) [111], whilst for QHS, there is an infinite
discontinuity at r = σHS+. These potentials are obviously connected to the shapes of the
pair direct correlation functions, and hence to their density derivatives. Consequently,
although applications of BHP3 are clearly dependent on the latter derivatives by reason of
their construction Equation (25b), in intricate regions such as the freezing transition, this
dependence becomes extremely sensitive to the quality of the numerical derivatives (recall

the basic density increments ∆ρN(Å
−3

) about the target state points: 0.002 Å−3 for helium-3,
and 0.0004 Å−3 for QHS). Therefore, a very careful fixing of the QHS intermediate cET2 and
cCM2, by diminishing ∆ρN for increasing the accuracy in the density derivative calculations,
could fix this BHP3 situation. However, apart from the computational overload, possibly
including an augmented precision in the calculations, one can still foresee some difficulties.
Firstly, the slow minimization of a large quantity Θ[t(r)] which, together with the fine
details of the density derivatives of the pair direct correlation function involved, might
misdirect the convergence path and lead to unphysical solutions. Secondly, although
OZ2 for centroids is formally exact, OZ2 is an approximation for the instantaneous case,
which means, for the latter, that extra problems can be encountered in the freezing region
when applying simple corrections such as BHw. Furthermore, there is the question of the
complete calculation of the triplet structure factors by including its general components.
Obviously, detailed work to clarify the ranges of applicability of BHP3 is needed.
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(v) On the contrary, the current DAS3 calculations of S(3)(k, k, π
3 ) are directly worked

out in k-space and, once the necessary pair information c2(k) is available, they are
straightforward. Apart from the numerical derivative problems, no intrinsic proce-
dural problems appear. As shown in Figures 5 and 7 and Table 1, DAS3 also gives
good representations of the equilateral PIMC results, albeit apparently not so good
as BHP3 in the instantaneous low-k region. These applications use the two-point
derivative Equation (118a) for the QHS-fluid CM3 and ET3 evaluations, and the four-
point derivative Equation (118b) for the helium-3 ET3 evaluations. For this closure,
the underlying OZ2 problems with the instantaneous class also exist, and the basic
assumptions in Equation (26) remain to be fully tested. Again, detailed work to clarify
the ranges of applicability of DAS3 is needed.

7. Final Remarks and Future Directions

The investigation of the static triplet structures in quantum condensed matter (fluids
and solids) via path integrals is a promising and challenging avenue. Although it may
be said that an initial background to this topic is already established, key theoretical and
computational aspects in both the real (r-space) and the reciprocal Fourier (k-space) remain
to be explored and understood. The theoretical issues should focus on (a) expanding further
the limits set by the usual pair-level approach (solid phases [63]), and (b) the treatment
of systems composed of nonzero-spin particles, particularly fermionic systems. The com-
putational issues should mainly address the questions of cost-effectiveness posed by the
required accuracy when determining the variety of different quantum triplet structures (di-
mensionality ≥ 4-D), with a view to increasing the simulation NS sample size and, also, the
possible integration of proper two- and three-body potentials (e.g., [112,113]) in the struc-
ture computational schemes. In this regard, exascale computations, when widely available,
could alleviate the effort to be made (just as a high hope, if quantum computers became a
reality in practice some day, on their own or integrated into hybrid arrays, the quantum
triplet problems might provide an excellent test bed). All these developments can provide
very useful guidance for materials research and future higher-order structural studies.

Some specific theoretical goals within the path integral framework can be the fol-
lowing. (i) The consideration of general external fields, including magnetic interactions
and/or situations involving more than one spin state in monatomic fluids; the latter can
give rise to a special set of treatments for fermionic fluids when studied with the in-
sightful Wigner path integral schemes [103,104]. (ii) A formulation of the actual triplet
structures in molecular fluids (e.g., hydrogen fluids) that, going beyond the overall one-site
picture [61,62], gives full meaning to the direct atom–atom constructions [11] or yields
more global molecular approaches.

As regards the specific computational goals, one can mention the following pending
path integral tasks in homogeneous and isotropic monatomic fluids (4-D problems). In the
diffraction regime, (iii) the determination of the total continuous linear response functions
TLR3, which remain virtually untouched [58], and (iv) the completion of the ET3 and CM3
structures by fixing their behaviors over significant ranges of the three significant variables
that characterize them (i.e., three independent interparticle distances, or two wavenumbers
and an angle). In the quantum exchange regimes, there is nothing yet related to calculations
of triplet structures that has been undertaken and work on this should be welcome.

As complements to the exact path integral calculations of triplets, one may try a
variety of closures. These closures are not as efficient and clear-cut as those at the pair level.
Despite this remark, there are some results indicating that, when studying the instantaneous
and centroid g3 and S(3) functions within the quantum diffraction regime, closures may
be a great source of information. Triplets g3 in r-space have been discussed at length
elsewhere [58–61,63,64], and suffice it to say that the results obtained through the AV3
closure Equation (24) [63,64] point to the possibility of achieving significant improvements
based on Abe’s expansion [42]. In this regard, it is expected that the negative effects of
increasing densities on the long-range isosceles correlations could be fixed to a significant
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extent, which may reflect in better k-space results. Nonetheless, closure S(3) results for
quantum triplets in k-space remain comparatively an unknown issue. For the time being,
the closures BHP3 Equation (25) and DAS3 Equation (26) give results (S(3) equilateral
components) that make them worth exploring in depth. They may capture traits of the
sensitive low-k (negative) region of the equilateral ET3 and/or CM3 structure factors and,
also, the behavior of the important main amplitude region. In connection with the low-k
region, BHP3 seems better adapted than DAS3. However, and based on pilot calculations,
BHP3 variational calculations seem less appropriate for investigating intricate regions, such
as the quantum hard-sphere crystallization line, whereas DAS3 calculations appear here
as a more robust option for both ET3 and CM3. For large-k wavenumbers, the basic JF3

closure (Equation (15) with c
(3)
JF (k1, k2) = 0), which is part of both closures, dominates the

triplet S(3) behavior.
The k-space closure results obtained so far are just a beginning (e.g., [62,64] and

Figures 5 and 7 herein), and more work is needed to substantiate their relevance, particularly
regarding the non-equilateral components. Searching for the limits of applicability of
closures, even for qualitative purposes related to the CM3 and ET3 cases in the diffraction
regime, seems a rewarding task. The case TLR3 does not seem amenable to closure studies
because of self-correlations, although there is nothing against trying closure treatments of
the pure triplet-atom part ([58] and Equation (113)).

Finally, some conjectures. One recalls that not even the pair CM2 functions can be
measured directly through experiments since centroids as such cannot couple with external
fields. However, this unavailability does not impair research on quantum fluids, at least
not much more than does the experimental unavailability of ETn and TLRn functions for
n ≥ 3. Fortunately, numerical experiments (PIMC, PIMD, closures, generalized convolu-
tions [11,140,148–150]) may help to bridge the gaps successfully, so long as access to reliable
potential energy forms V(N) is possible. At this juncture, it is tempting to speculate on what
might be extracted from the connections, within a nonrelativistic context, between TLRn
and gravity fields (CMn is a particular case of TLRn) by setting/considering local external

mass variations in the vicinity of a quantum fluid sample (H
(N)
0 is defined in the absence

of an ever-present gravity background, and of the interparticle gravitational forces which
are negligible in comparison to their electromagnetic counterparts). All of this “quantum-
Cavendish setup” might sound “great”, owing to the many issues involving gravity and
quantum concepts [192]. Nevertheless, gravitation is a subtle space-time subject [175], and
arguments from general relativity (with a change in the conceptual framework) together
with the unavoidable questions concerning what to observe, how and where to perform
the experiments, the interpretive approximations to be made, the precision of the measure-
ments, etc., would have to be addressed to undertake this task. Also, and just in another
vein, focusing, for example, on quantum hard spheres, which are particles that repel each
other before classical contact can happen [78,84,86,163,164], could hydrodynamic quantum
analogs [23–26] be proposed to provide insights into the experimental side of the structure
problems discussed in this article?
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Appendix A A Formal Analysis of Zero-Spin Bosonic Exchange Structures

Within the PI approach, the derivation of the physically significant structures of a
homogeneous and isotropic zero-spin bosonic fluid can be carried out along essentially
the same ideas reviewed in the main text of this article. The key point is that the parti-
tion function can be expressed as containing a weighting function, which is nonnegative
everywhere in configuration space, thereby being a proper probability density. The three
classes of structures, ETn, TLRn, and CMn, can be studied by generalizing the pair-level
treatments [7,9,39,40,83,135,138,139]. In what follows, to illustrate the main features of the
bosonic triplets, use of the PP propagator is made [135].

The Hamiltonian for N atoms to be dealt with in the linear response regime is now
taken of the global form:

H(N) = H
(N)
0 + Ψ(N); Ψ(N) =







0; ETn

Ψ(N) ̸= 0; TLRn

Ψ
(N)
F ̸= 0; CMn

, (A1)

where H
(N)
0 is the Hamiltonian operator for the isolated N-atom system given in Equation (1),

and Ψ(N) ̸= 0 stands for the action of an external (continuous or non-localizing) weak

field: Ψ(N) = ∑j Ψ(qj), which, in the case of CMn, is a constant-strength field ΨF (the
requirements for the foregoing operators remain the same as those stated in Section 5). The
Bose–Einstein (BE) grand-canonical partition function for zero-spin atoms can be written
as [7,9]:

ΞBE(Ψ) = ∑N≥0

exp(βµN)

N! ∑℘N

∫

drN
〈

rN
∣
∣
∣exp(−βH(N))

∣
∣
∣℘NrN

〉

, (A2)

where ℘N runs over the N! permutations of the N atom labels, and
∣
∣℘NrN

〉
= |℘N(r1, r2, . . . , rN)⟩ = |℘Nr1,℘Nr2, . . . ,℘NrN⟩, with ℘Nrj denoting the specific

action of a given permutation on label j. Application of the PP propagator using P beads
(the optimal discretization) leads to the PI approximation [7,9,135]:

ΞBE
PI,PP(Ψ) = ∑N≥0

exp(βµN)

N! ∑℘N

∫

∏
N

j=1 ∏
P

t=1
drt

j × CN,℘N
×

exp

[

− mP

2βℏ2 ∑
N

j=1

{(

rP
j − ℘Nr1

j

)2
+ ∑

P−1

t=1

(

rt
j − rt+1

j

)2
}

− β

P∑j<l ∑
P

t=1
u(rt

jl)

]

×

exp

[

− β

P∑
N

j=1 ∑
P

t=1
Ψ(rt

j)

]

(A3)

In Equation (A3), several features are to be remarked. (a) CN,℘N
are positive constants.

(b) ℘Nr1
j leads to r1

j if ℘N leaves j invariant, or to an r1
l otherwise (j ̸= l). (c) There is

complete symmetry in the treatment of the corresponding N × P beads in each canonical
ensemble, owing to the mathematical group property of the N! permutations. Two con-
sequences of (c) are: (c.1) translational invariance in imaginary time holds, and (c.2) the
effect of the external field can be factored out of the weighting function for each canonical
ensemble. Therefore, note that Equation (A3) can be compacted as [135]:

ΞBE
PI,PP(Ψ) = ∑N≥0

exp(βµN)

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × ΩBE
N

(

r1
1, . . . , rP

1 , . . . , r1
N , . . . , rP

N

)

× exp

[

− β

P ∑
N

j=1 ∑
P

t=1
Ψ
(

rt
j

)]

(A4a)
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where ΩBE
N is the Bose–Einstein weighting function, nonnegative everywhere and including

all the permutational effects:

ΩBE
N = ∑℘N

CN,℘N
× exp(−βWNP(℘N)) ≥ 0 (A4b)

Although the form shown in (A3) is well-known [7,9], it may be worthwhile to re-
call that, for permutations different from the identity, there appear P-membered “open-
necklaces”. In a P-open-necklace, there is no harmonic coupling between, conventionally,
its beads t = 1 (head) and t = P (tail). Thus, any of such permutations is represented within
PI by a mixture of P-membered necklaces and/or P-open-necklaces. The latter necklaces
interlink with each other harmonically in a head–tail fashion, thus building nP−membered
(closed) necklaces (i.e., 2 ≤ n ≤ N; n = 1 is the identity permutation). A brief description
of what arises from PI follows.

(i) The identity permutation reduces to the picture of distinguishable particles dealt
with in the main part of this article, which gives N individual necklaces with P
beads apiece. (ii) For the permutation in which only the exchange 1↔ 2 occurs, i.e.,
(1, 2, 3, 4, . . . , N) → (2, 1, 3, 4, . . .,N), one finds N − 2 individual necklaces with P
beads apiece (particles 3, 4, . . ., N) and one 2P-membered necklace corresponding
to that permutation and built in a head–tail fashion from the open-necklaces 1 and
2: bead t = 1 in open-necklace j = 1 links with bead t = P in open-necklace j = 2,
and bead t = P in open-necklace j = 1 links with bead t = 1 in open-necklace j = 2,
the rest of beads being linked in the normal way found in the identity permutation.
(iii) For the permutation in which there is only a triple exchange cycle 1 → 2 → 3 → 1,
i.e., (1, 2, 3, 4, . . . , N) → (2, 3, 1, 4, . . .,N), one finds N − 3 individual necklaces with
P beads apiece (particles 4, . . ., N) and one 3P-membered necklace corresponding to
that permutation and built in a head-tail fashion: bead t = 1 in open-necklace j = 1
links with bead t = P in open-necklace j = 2, bead t = 1 in open-necklace j = 2 links
with bead t = P in open-necklace j = 3, and bead t = 1 in open-necklace j = 3 links
with bead t = P in the open-necklace j = 1, the rest of the beads being linked in the
normal way found for the identity permutation. (iv) The process continues, mixtures
of nP−membered necklace configurations arise, and so on.

As a result, for a given permutation one finds, in the end, a mixture of nP-membered
necklaces such that N = ∑n Nnn, where some of the Nn can be zero (n = 1, 2, . . . , N).
Also, the potential energy contributions are invariant under the group of permutations
and, therefore, the final expression in terms of bead interactions is the same regardless
of the permutation and coincides with the form obtained for the identity permutation
(illustrative graphs of mixtures of necklaces can be seen in References [9,11]). The beads
are equivalent, and when entering an nP−membered necklace, lose their appurtenance to
an initial P-necklace (translational invariance), although for keeping track of the particle
positions and correlations, an ordering must be retained, which can be updated consistently
throughout the simulation, etc. [9,39]. Although the latter are crucial matters from the
simulator’s practical point of view, in any case, the correctly formulated ensemble averages
imply integrations over the bead configurational space with a weighting function that
already contains these symmetry characteristics. The practical importance of the bosonic full
symmetry to the fluid structural study is to be highlighted. Most of the basic derivations
carried out in the case of distinguishable particles can be applied in this further context.

Firstly, for the instantaneous pair (ET2) and triplet (ET3) cases in r-space, one must
give form to the standard quantum averages:

ρ2
N gBE

Q,ET2(r) =
1

ΞBE(Ψ = 0)
∑N≥0

exp(βµN)Tr
{

∑j ̸=l
δ(rj − q1)δ(rl − q2)× exp(−βH

(N)
0 )

}

BE
, (A5a)

ρ3
N gBE

Q,ET3(r12, r13, r23) =
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1

ΞBE(Ψ = 0)
∑N≥0

exp(βµN)Tr
{

∑j ̸=l ̸=m ̸=j
δ(rj − q1)δ(rl − q2)δ(rm − q3)× exp(−βH

(N)
0 )

}

BE
, (A5b)

The PI partition function for dealing with the instantaneous class ETn is

ΞBE
PI,PP(ET) = ∑

N≥0

exp(βµN)

N! ∑
℘N

∫
N

∏
j=1

P

∏
t=1

drt
j × CN,℘N

×

exp




− mP

2βℏ2

N

∑
j=1







(

rP
j − ℘Nr1

j

)2
+

P−1

∑
t=1

(

rt
j − rt+1

j

)2







− β

P∑
j<l

P

∑
t=1

u(rt
jl)




 =

∑N≥0

exp(βµN)

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × ΩBE
N

(

r1
1, . . . , rP

1 , . . . , r1
N , . . . , rP

N

)

(A5c)

At this point, it may be useful to renumber the N × P beads consecutively, as per-

formed earlier by using
{

rτ∗
}

, the labels being:

τ∗ = 1, 2, . . . , P, P + 1, P + 2, . . . , 2P, . . . , P(N − 1) + 1, P(N − 1) + 2, . . . , NP. (A5d)

By using the indices j, l, m, t, as counting devices, Equations (A5a) [9] and (A5b) are
approximated by the PI equal-time averages:

ρ2
N gBE

ET2,PP(r) =
1

ΞBE
PI,PP(ET)

∑
N≥0

exp(βµN)

N!

∫
NP

∏
τ∗=1

drτ∗ × ΩBE
N ×

1

P∑
P

t=1







∑
N

j=1 ∑
N

l=1
︸ ︷︷ ︸

j ̸=l

δ(rP(j−1)+t − q1)δ(r
P(l−1)+t − q2)







, (A5e)

ρ3
N gBE

ET3,PP(r12, r13, r23) =
1

ΞBE
PI,PP(ET)

∑
N≥0

exp(βµN)

N!

∫
NP

∏
τ∗=1

drτ∗ × ΩBE
N ×

1

P∑
P

t=1







∑
N

j=1 ∑
N

l=1 ∑
N

m=1
︸ ︷︷ ︸

j ̸=l ̸=m ̸=j

δ(rP(j−1)+t − q1)δ(r
P(l−1)+t − q2)δ(r

P(m−1)+t − q3)







. (A5f)

It is also straightforward to derive the associated instantaneous pair structure factors:

S
BE(2)
Q,ET (k) ≈ S

BE(2)
ET,PP(k) =

1

⟨N⟩P

〈

∑
P

t=1 ∑
N

j=1 ∑
N

l=1
exp

(

ik·
(
rP(j−1)+t − rP(l−1)+t

))〉

BE
− (2π)3ρNδ(k) =

1 + ρN

∫

dr exp(ik·r)
(

gBE
ET2,PP(r)− 1

)

(A5g)

S
BE(3)
Q,ET (k1, k2, cos(k1, k2)) ≈ S

BE(3)
ET,PP(k1, k2, cos(k1, k2)) =

1

⟨N⟩P

〈

∑
P

t=1 ∑
N

j=1 ∑
N

l=1 ∑
N

m=1
exp

(

i
(
k1·rP(j−1)+t + k2·rP(l−1)+t − (k1 + k2)·rP(m−1)+t

))〉

BE
−
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{δ(k)− terms} (A5h)

The expanded form of Equation (A5h) is analogous to Equation (54). As seen, transla-
tional invariance in imaginary time holds true for every ET equation written above.

Secondly, the class PI-TLRn can be worked out in the manner shown earlier. By taking
the functional derivatives with respect to the external field Ψ of:

ΞBE
PI,PP(TLR) = ∑N≥0

exp(βµN)

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j×

ΩBE
N

(

r1
1, r2

1, . . . , rP
1 , . . . , r1

N , . . . , rP
N

)

× exp

[

− β

P∑
N

j=1 ∑
P

t=1
Ψ
(

rt
j

)]

, (A6a)

the results are somewhat analogous to those of TLR in Section 5 since separations of the
forms displayed in Equations (86a) and (86b) do not make sense in the BE context and
cannot be employed here. Accordingly, by renumbering the N × P beads as before (A5d),
the TLR2 and TLR3 levels can be summarized in the response functions (they are defined
by ΩBE

N at zero field Ψ = 0) [135]:

S
BE(2)
Q,TLR(k) ≈ S

BE(2)
TLR,PP(k) =

1

⟨N⟩P2

〈
NP

∑
τ⋆1 =1

NP

∑
τ⋆2 =1

exp
(

ik·
(
rτ⋆1 − rτ⋆2

))〉

BE
− (2π)3ρNδ(k) =

P−1 + ρN

∫

dr exp(ik·r)
(

GBE
TLR2,PP(r)− 1

)

(A6b)

where GBE
TLR2,PP is the overall bead–bead correlation function under BE statistics, and:

S
BE(3)
Q,TLR(k1, k2, cos(k1, k2)) ≈ S

BE(3)
TLR,PP(k1, k2, cos(k1, k2)) =

1

⟨N⟩P3

〈
NP

∑
τ⋆1 =1

NP

∑
τ⋆2 =1

NP

∑
τ⋆3 =1

exp
(

i
(
k1·rτ⋆1 + k2·rτ⋆2 − (k1 + k2)·rτ⋆3

))〉

BE
− {δ(k)− terms} (A6c)

which involves both the pair GBE
TLR2,PP and the triplet GBE

TLR3,PP overall bead–bead and
bead–bead–bead correlation functions under BE statistics, respectively (in relation to the
separation comment made above, compare for instance Equation (A6b) with Equations (87a)
and (89a)). Again, translational invariance in imaginary time holds true for every PI-TLR
equation written above.

Thirdly, the class CMn is somewhat especial. The introduction of a constant-strength
field, ΨF = f·r, leads formally to a partition function in which conventional centroids do
appear [135]:

ΞBE
PI,PP(CM) = ∑N≥0

exp(βµN)

N!

∫

∏
N

j=1 ∏
P

t=1
drt

j × ΩBE
N

(

r1
1, . . . , rP

1 , . . . , r1
N , . . . , rP

N

)

× exp

[

− β

P ∑
N

j=1 ∑
P

t=1
ΨF

(

rt
j

)]

, (A7a)

which, using Equation (40), is:

ΞBE
PI,PP(CM) = ∑

N≥0

exp(βµN)

N!

∫
N

∏
j=1

dRjδ(Rj − RCM,j)×







∫

∏
j=1,...,N
t=1,...,P

drt
j × ΩBE

N × exp




−β

N

∑
j=1

ΨF

(
Rj

)












. (A7b)

In this regard, it is worth insisting on the fact that the centroids are defined as if they
were associated with the original closed P-necklaces of the N distinguishable particles,
although now one must include the possibility of dealing with P-open-necklaces. The
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centroid still is a “center of mass”, either of a closed P necklace or of a broken P line, which
agrees with Voth et al.’s proposal [138]. However, this definition presents the problem of
violating the invariance under imaginary-time translations [139], a feature that must hold
under bosonic exchange. Such inconsistency is resolved by the integration over the centroid
coordinates Rj [138,139] all over the configuration space. Nevertheless, this forces one to
have a detailed description of the function inside the integral at fixed centroid positions,
which does not seem very efficient from, in theory, a practical point of view. Therefore, from
a purely formal perspective, for the centroids so defined, their usual role in the counting of
number fluctuations [135] can also be identified under bosonic exchange. The functional
derivatives with respect to ΨF that can be obtained from Equation (A7b) are analogous to

those given in Equation (48). Consequently, the linear response functions S
(2)
CM and S

(3)
CM

arising at ΨF = 0 can be formally written in the same manner as Equations (52)–(54).
The bosonic pair and triplet structure factors discussed above must share the same

values at zero-momentum transfer [135], as in Equations (105) and (106). This extended
compressibility theorem for boson fluids obviously excludes the pure two-body case LR2
considered for distinguishable particles. Recall that closures were used in the past to study
bosonic fluids in an approximate way [3,43,44,74]). Therefore, one might also think of postu-
lating classical-like OZ2 and OZ3 frameworks for the current centroid correlations, but the
situation seems far from promising in practice, if only for the necessity of obtaining accurate
pair centroid correlation functions derived from the constrained Equation (A7b) at zero
field. Moreover, theoretical questions regarding whether a hierarchy for direct correlation
functions in this centroid context can be defined should also be cleared up. Furthermore,
classical-like OZ applications to the bosonic ET and TLR correlations, incorporating or not
quantum corrections, would be approximations whose final reliability could only be tested
a posteriori. Note that the present centroid discussion is not intended to go any further
than the number fluctuation questions, since there is a one-to-one correspondence between
the number of particles and the number of centroids which, by construction, respects the
features of bosonic exchange in the development of this CM framework. For discussions
covering a more rigorous centroid definition and related dynamical schemes, the reader is
referred to References [138,139].

Finally, the formulations given in this Appendix A could also be developed using
propagators more efficient than PP, but apart from a more complicated notation when
writing the partition function, they would be formally similar to the present ones. Also, as
regards PI actual computations, it is out of the question that the PP propagator is not the tool;
for bosonic exchange, options and algorithms are discussed in References [9,39,40,96,193].

Appendix B List of Main Acronyms and Their Basic References

AV3 Intermediate closure for triplet structures [63,64].

BE Bose–Einstein statistics [9,39,40,83].

BDH OZ2 Baxter–Dixon–Hutchinson variational procedure [77,130,141].

BHw OZ2 Baumketner–Hiwatari grand-canonical corrections [132].

BHP3 OZ3 Barrat–Hansen–Pastore variational procedure [45].

BOA Born–Oppenheimer approximation [124].

CBHSP Cao–Berne hard-sphere propagator for quantum hard spheres [86].

CMn Path integral centroid class of structures at the n-th level [18,19,59,135].

DAS3 Denton–Ashcroft symmetrized closure for triplet structures [70].

ETn Path integral instantaneous class of structures at the n-th level [9,11,39,89].

GFH Gaussian Feynman–Hibbs picture [4,145,186].

JF3 Jackson–Feenberg closure for triplet structures [3,44].

kpass 103NS × P attempted bead moves in a PIMC simulation.

KS3 Kirkwood superposition closure for triplet structures [41].

MC Monte Carlo simulation method [13,17,71].
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MD Molecular dynamics simulation method [13,17,72].

Mpass 106NS × P attempted bead moves in a PIMC simulation.

OZn Classical Ornstein–Zernike framework at the n-th level [1,6,45,73,75].

OZ2 Classical Ornstein–Zernike framework at the pair level.

OZ3 Classical Ornstein–Zernike framework at the triplet level.

PAs Pair actions for path integral simulations [9,86].

PI Path integral formalism [4,145].

PIMC Path integral Monte Carlo computational scheme [7,9,16,39].

PIMD Path integral molecular dynamics computational scheme [10,94,99].

PP Primitive propagator [7,9,85].

RISM OZ2 reference interaction site model [7,76,184,185].

QHS Quantum hard spheres [66,84,86,141].

SAPT2 Janzen–Aziz pair potential between two helium atoms [111].

SCVJ Suzuki–Chin–Voth–Jang–Jang fourth order propagator [87–89].

SVP Saturated vapor pressure conditions.

TLRn
Path integral total continuous linear response class of structures at the n-th

level [7,11,61,66].

WPIMC Wigner path integral Monte Carlo [103,104,174].
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