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1. Introduction 

In the first half of this course, Michael Green set out the historical background 
of string theory and the basic principles of string mechanics. He described the 
various consistent string theories and displayed the spectrum of particles which 
they produce. These always include candidates for gravitons and gauge bosons; 
in the case of supersymmetric strings, one also finds candidates for approximately 
massless quarks and leptons. Thus, string theories provide a new basis for un- 
derstanding the fundamental interactions, a generalized mechanics from which 
the dynamics of gauge-invariant fields can be derived as a low-energy limit. 

- 

- 

-- ..- . - 

-.-. 

Finding the correct particle spectrum is, of course, only the first step toward 
unravelling the full structure of this grand theory. One would like to understand 
the origin of the symmetries of the theory, and to realize solutions of the theory 
which display the observed interactions of particle physics. These deeper levels 
of analysis of the string theory are still not completed; indeed, they constitute 
one of the most exciting areas of research in mathematical physics. In this set of 
lectures I will continue the elucidation of string theories, in a direction that will 
shed some light on these large issues. The main topic of these lectures will be 
the formulation of manifestly Lorentz-covariant methods of calculation for string 
scattering amplitudes. We will find, though, that this study leads us directly to 
consideration of the gauge invariances of string theory, and to some tools which 
illuminate the construction of schemes of compactification. 

The plan of these lectures is the following: In order to progress in understand- 
ing string theory, we must first retrace our steps a bit and review some elements 
of the quantum theory of massless fields in 2 dimensions. The string world 
sheet is, of course, a 2-dimensional surface, and the displacements of the string 
in space-time can well be viewed as (massless) fields on this surface. We have C 

. - _=. seen in Michael Green’s lectures that the conformal invariance of %dimensionsal 
-- --massless fields gives rise to important simplifications in the calculations of string 

amplitudes. In this second half of the course, I would like to elevate conformal 
- .e* invariance to a guiding principle for the construction of string theories. It will 

then be very useful to formulate a-dimensional massless field theories in such a 
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way that their conformal invariance is manifest. This was done in a very beau- 
PI tiful way by Belavin, Polyakov, and Zamolodchikov. In Section 2, I will review 

the formalism which these authors have presented; this formalism will provide 
the basic language for our later arguments. Our use of conformal field theory 
methods in application to string theory follows the work of Friedan, Martinet, 
and Shenker; 12’31 Our general development, and especially our treatment of the 
critical dimensions and the formalism for the scattering amplitudes of strings and 
superstrings, follows their approach closely. 

The discussion of string theory proper will begin in Section 3. Here, I will use 
conformal invariance to rederive the basic results on the embedding dimension- 
ality for bosonic and fermionic strings. Section 4 will discuss the spectrum of the 
bosonic string and the computation of scattering amplitudes. In Section 5, I will 
extend this formalism to clarify the origin of Yang-Mills gauge invariance in the 
open bosonic string theory. Section 6 will address the question of the general- 
coordinate gauge invariance of string theory, presenting two disparate points of 
view on this question. 

In Section 7, I will analyze the superstring theory from the viewpoint of 2- 
dimensional conformal invariance. I will rederive the basic results on the particle 
spectrum and present methods for the covariant calculation of superstring scat- 
tering amplitudes. In Section 8, I will discuss the l-loop amplitudes of bosonic 
and supersymmetric string theories. 

- 

- 

_.~.._ _ - 

-_-. 

The last two sections will give a brief introduction to some of the deeper 
questions of the theory, especially the question of the reduction from the idealized 
string theory in 10 extended dimensions to more realistic solutions in which all but 
4 of these dimensions are compactified. In Section 9, I will outline briefly what is 
known about the space-time supersymmetry of the superstring from the covariant 
viewpoint. I will then present a precis of the approach advanced by Candelas, 
Horowitz, Strominger, and Witten14’ for identifying possible 6-dimensional spaces 

_-which might represent the form of the compact dimensions. Section 10 will give a 
somewhat more detailed presentation of the or&fold scheme of compactification 
suggested by Dixon, Harvey, Vafa, and 151 Witten. This scheme has the advantage 
of allowing explicit calculations of many aspects of the conpactified theory, and 
we will find it illuminating to carry through a part of this analysis. 

__ 

This full course of lectures is still far from comprising a complete summary 
of knowledge on string theory? This set of lectures will certainly raise as many 
questions as it answers. I hope that you, the reader, will be intrigued to seek the 

-.- ;. 

* A different, and more extensive, selection of topics is given in the new book of Green, 
Schwars, and Witten! 
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answers to these questions, and thus to join the quest for understanding of this 
most promising and mysterious branch of fundamental theory. 

. 

2. Conformal Field Theory 

The main goal of this set of lectures will be to reconstruct the spectrum 
and interactions for bosonic and supersymmetric strings using as our primary 
tool the conformal symmetry of the dynamics on the string world sheet. It is 
therefore appropriate that we begin our discussion by setting out the formalism 
of 2-dimensional conformal invariance. Conformal symmetry is, exactly as it 
implies, the symmetry of conformal mappings of the 2-dimensional plane. One 
should then naturally expect that a conformally invariant theory will involve 
fields which are analytic functions of the %-dimensional coordinates treated as 
a complex variable. Recently, Belavin, Polyakov, and Zamolodchikov!” (BPZ), 

building on results from the early period of string [7-Q1 theories, have shown how 
to write conformally invariant theories explicitly in terms of analytic fields. In 
this section, I will review this beautiful formalism, which will provide a natural 
language for our subsequent exploration of string theory. 

2.1. CONFORMAL COORDINATES 

--..- . - 

To begin our study, we must define the basic coordinates. Throughout these 
lectures, I will describe both the string world surface and the spacetime in which 
it is embedded by their Euclidean continuations. On the string world surface, 
this continuation corresponds to 

-.-. (7 f 0) + 4 (7 f ia) . - (2-l) 

Let us then define 

w = r+icr, W = 7-b. (2.2) 

.  
,  _Tz_ The decomposition of a string state into running waves moving to the left or to 

- the right around the string becomes, after this continuation, a decomposition into 
analytic and anti-analytic functions on the 2-dimensional Euclidean surface. The - .z* 
Euclidean string covers only a finite interval of cr and therefore only a strip of the 
2-dimensional plane, shown in Fig. l(a). H owever, if we anticipate that the theory 

5 



,; 

. 
L W 

i 

27ri 

t’ u = 
t 

CT 

0 

IW 

III )- 
6728Al 3-87 (b) 

L 2 

0 0 . 
- 

Figure 1. The string world sheet considered as a region of the complex 

plane (a) in the original variables 7 and Q, (b) in the variable I = exp(r+ia). 

- 
we will construct will have complete symmetry under conformal transformations, 
we can map this region into the whole complex plane by the mapping 

L 2 = exp(r+i0) . (2.3) 

The form of this mapping is shown in Fig. l(b). Lines of constant r are mapped 
into circles on the z plane; the operation of time translation, r + r + a, becomes 
the dilatation, 

2 + eaz. (2.4 

The string coordinates Xp(r, a), separated into left- and right-moving exci- 
tations, correspond to analytic and anti-analytic fields in this complex z plane. 
We must address the question of whether a sensible Euclidean quantum theory of 
analytic fields can be defined. A part of this definition must include the identifi- . _Tz_ cation of operators which implement conformal mappings of the z plane. Within 

~- -- --the family of such oberators, we should identify the generator of dilatations (2.4) 

C 

^ .z_* with the Hamiltonian of the original string theory. Such a procedure of identify- 
ing dilatations with the Hamiltonian and circles about the origin with equal-time 
surfaces is called radial quantization. 
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Let us begin to piece together this formalism. To begin, assume that the 
z plane is a flat Euclidean space, so that its metric is gap = 6,~. In complex 

,; coordinates, 

. 1 
S%Z = - , 2 szz = gzri = 0. (2.5) 

Assume that we can at least construct a theory on this plane which is scale 
invariant. Let us work out the consequences of this statement. Since the energy- 
momentum tensor Z’,p generates local translations and a dilatation corresponds 
to a local motion x0 + xa + 6X. xa, the dilatation current should be just 

Da = T~Px’ . (2.6) 

Since the energy-momemtum tensor is conserved, the statement of scale invari- 
ance 

aaDa = 0 implies Taa = 0 . (2.7) 

- 

Up to this point, these statements are true in any dimension. In 2 dimensions, 
however, when we use complex coordinates, (2.7) takes the following form: 

- Tzz = 0 . (24 

--..- . - 
But then we can use the equation of energy-momentum conservation 

il,T,, + i3,T,, = 0 (2-g) 

to prove that 

&T,, = 0 . (2.10) 

Thus, the field T,, = T is an analytic function of z. Similarly, TTiT - T is depends 
only on z and so is an anti-analytic field. 

2.2. CONFORM&TRANSFORMATIONS _T_ 

It is not unreasonable to expect T and T, as the remnants of the energy mo- 
- .-* mentum tensor in these complex coordinates, to generate local conformal trans- 

formations. Let us try to formulate this conjecture more precisely. A natural 
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form for the operator which generates the infinitesimal conformal mapping 

,c- 
z --+ z+C(z) i (2.11) 

. 

would be J dz c*(z) T,,(z); the integral should be taken over an equal-time sur- 
face, that is, one of the circles shown in Fig. l(b). Let us, then, define 

T, = 
f 

$ 44 T(z) , (2.12) 

where the path of integration is a circle about the origin. Note that, since the 
integrand is an analytic function, we may move the integral from any such circle 
to any other by a contour deformation without changing its value; thus, Tc is 
a conserved charge. We would expect that the transformation (2.11) would be 
implemented in a quantum theory in the form of the commutators of local fields 
with (2.12). 

- 

We can easily check this conjecture for the simple case of a free massless 
scalar field. Write the action for such a field as 

- 
(2.13) 

The propagator of this field is the Green’s function for the Laplace equation 
in 2 dimensions: (X(zr)X(zz)) = -210g Izr - ~21. Split this into the pieces 
corresponding to the analytic and anti-analytic components. The propagator of 
the analytic field is then 

_ .ll- (x(zl>x(z2)> = - l%(Zl - z2) * (2.14) .- 

The analytic part of the energy-momentum tensor for this field is given by 

T == = -- ; : (a,x)2 : . (2.15) 

. Henceforth, unless a different convention is indicated explicitly, I will always 
-consider products of analytic fields at the same point to be normal-ordered. 

Now we are ready to compute the commutator of the operator (2.12) con- 
strutted from (2.15) with some local field operator O(z). X(z) is actually not 
a good first choice, since this field can have logarithmic branch cuts (as seen in 
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(2.14)), so I will choose instead to compute [T,, a,X(z)]. The contour defining T, 
may be taken to be the equal-time circle containing z. We may make use of the 

.=- analytic--properties of T(z) and a,X(z) t o evaluate this commutator by relating 
. it to expectation values on the plane. Consider, then, the correlation function 

defined by functional integration: 

PC ~,X(Z)) = f J DX e-’ Tc a,x(z) . (2.16) 

The functional integral defines the operator product by setting the operators in 
time order. We may define the equal-time commutator of two operators, then, 
as the difference of two correlation functions of the form (2.16) in which the 
operator TE has been displaced slightly forward and backward in time (that is, 
in radial distance from the origin) with respect to the point z. Thus, we write 

-- .-- . 
- 

1 =- 
z J 

DX e-’ (Z(r = 1~1 + 6) a,X(z) - T,(r = 1~1 - 6) ~,x(z)) . 

(2.17) 

(Y-J - (7-J 

- 

Figure 2. Computation of a commutator in terms of the poles of corre- 

lation functions. 
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The construction is illustrated in Fig. 2. As the figure indicates, TE is defined as 
a contour integral; since the integrand is analytic, we may deform the contour 

i ,c- except where we encounter a singularity. Thus, by the cancellation shown, the 

. commutator depends only on the singularity of the correlation function of T(z’) 
and 3,X(z) in the limit z’ + z. This is easy to work out; letting (X(z’)X(z)) 
denote the- Wick contraction (2.14), we can compute 

T(z’) &X(Z) = +Xa,X(z’) &X(Z) 

= --fa.X (a,X(z’) a,X(z)) -2 + (nonsingular) 

= a=x(z’) (z’ l + (nonsingular) . - 2j2 

Taylor-expanding the field about z’ = z produces 

T(d) &X(Z) - (z, T z)2 &X(Z) + (z, \ z) 3:X(Z) + . * * (2.19) 

(2.18) 

- 
This imples 

-- ..- . 
t [To WW] > = f z)a:x(Z) + - -1 

- 
= &E - a,x + fz - a;x . 

(2.20) 

.lu- 

Is this a sensible result? Under the transformation z + z + E(Z), we should 
-expect 

X(z) + X(z) + d,X(Z) , 

&X(Z) + &X(Z) + d,d,X(z) + E 32X(Z) . 
(2.21) 

We may explain the extra term in the second line by noting that a,X.is a tensor, 
of rank (-1). In general, a tensor transforms under reparametrizations according 
to 

(2.22) 

If we specialize this equation to conformal transformations in 2 dimensions, and 
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consider tensors with r analytic indices only, this transformation law becomes 

For an infinitesimal transformation, i = z + c(z), 

&it = --ta,E-t + E.&t; (2.24) 

(2.23) 

this properly reproduces (2.21) and (2.20) for r = -1. 

Under a dilatation k = Xz, (2.23) takes the form 

t -+ Xrt(rl~) , (2.25) 

- 

so that the rank of an analytic tensor is also its scaling dimension. Normally 
in particle physics, we quote the dimension in mass units; thus we should write 
d = -r. Assembling the pieces of our analysis, we find that the commutator 
of the generator of a conformal. transformation T, with a local tensor field of 
dimension dt should be 

-- ..- . - 
[T,, t(z)] = c& - i3,c. &t(z) + E - @(z) . (2.26) 

__ 
This commutator follows, by the manipulations described above, from the oper- 

ator product expansion 

dt 
w-4 w - (w _ 42 w + -I--- a&(z) + (nonsingular) . 

W-Z 
(2.27) 

This operator product formula encodes the conformal transformation properties 
of fields in a way which will prove very convenient for mathematical analysis. 

To gain a better understanding of the formula (2.27), it will be helpful to 
work through one more example. Consider the operator eia.X(r) formed as the 
exponential of the free field. Let us compute the operator product of the free-field 
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T(w) with this field: 

* ,c- 

. 
-i!(awk(w))’ eiaXtz) - -i((a,x(w) ia - i(z)))’ eia’X(z) 

- f - 2 a,X ((i?,X(w) ia - X(z))) eia*X(z) 

so that 

G/2 
- (w - z)2 

eia.X(z) + iasaWx eia.X(z) + ... 
w-z 

(2.A) 

-i (8,x)” eia.X(z) - ( a~1~12 eia’X(a) + 1 a, (,ia.“) + . . . 
W w-z 

(2.29) 

Thus, &X(a) is a conformal tensor of dimension a2/2. This same scaling di- 
mension can be read from the correlation function 

( eia.X(w) e-iaX(z) 
> 

= exp[-cu2 log(w - z)] = (w - z)-~’ . (2.30) 

- 

--..- . 
- 

Not all fields are tensors. Derivatives of tensors, for example, have more 
complicated transformation laws. BPZ refer to fields with the above transfor- 
mation laws as primary fields; their successive derivatives are called secondary 
fields. In general, the operator product of secondary fields with T(z) has higher 
singularities than the double pole seen in (2.27). 

-__ 

In addition to analytic fields t(z), transformed by the action of T,,, a con- 
formal field theory will have anti-analytic fields 5(z), transformed by the action 

-of Tzz. The simplest of these fields will be tensors with i; anti-analytic indices; 
these are the primary anti-analytic fields of dimension & = -r. The theory of 
these tensors and their transformations can be developed precisely in parallel to 
the discussion of analytic tensors which we have just completed. More generally, 
we should expect that some primary fields will transform with both analytic and 
anti-analytic indices; these will be characterized as tensors of dimension (dt,&). 
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2.3. THE CONFORMAL ALGEBRA 

c ,c- The-. elementary infinitesimal conformal transformations corresponding to 
E(Z) = zn+f are generated by the Fourier components of T(z) on the circle: . 

L, = 
f 

dw 
mw 

n+lT(w) . (2.31) 

From Michael Green’s lectures, you might expect that the L, are the Virasoro 
operators!l’l To verify this, let us compute their algebra: 

[~%,Lrra] = [f 2 f 2 - f 2 f 21 z”“T(z) wm+‘T(w) . (2.32) 

The change in the order of the z and w integrations represents a small displace- 
ment of the z contour outside and then inside the w contour, implementing the 
functional definition of the commutator that I have described earlier. 

The difference of integrals is nonzero only by virtue of the singularity of the 
operator product as z -+ w. In the free boson field theory, we can readily compute 
this singularity: 

- 

- 
T(z)T(w) = (-;)2 -2. ((&Xb,X))” + 

+ (-i)2 * 4 * a,X (a,Xa,X) a,X + (nonsingular) 

= ;(,,:;)2)2 + azx (z11,)2 awx + . . . _ 
- 

11 
= 5 (z - w)4 

+ (z:w)2 [-;(a-x)‘] + (z:w) aw [-;Pwy] +... 
(2.33) ; 

_ _YY. The last two terms are precisely what would be required for T to transform itself 
- . -.-as a tensor of dimension 2 under conformal transformations. (Note that the last 

term fixes the normalization of T(z).) The first term is an extra c-number- 
- .:* generated as a purely quantum mechanical effect. The form of this term is 

determined by scale transformation properties: Since T has mass dimension 2, 
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this term must be a pure power (z - w) -4. However, the overall coefficient of this 
term is not fixed and can vary from system to system. In a general conformal 

,c- field theory, then, we expect the T - T operator product to take the form 

. 

T(w) + (z 1 w> a,T + a-- (2.34) 

where c is a fixed number. 

We can now find the general form of the commutator of two L, operators by 
inserting (2.34) into (2.32), and drawing the z contour tightly about the point 
w. This gives 

[Ln,L*] = f 2 wn+l f $ zn+l . 

_ 

x ( [ 
c/2 

z - w)4 + (z2w)’ T(w) + (z 1 w) &J 1 
= 

f 
(n + l)wn -2T(w) + wn+lawT 

+ (c/2) ’ G (n + l)n(n - 1) . 1 

= (2n + ~)w~+~+‘T(w) - (m + n + ~)w”+~+‘T(w) 

__ 
-- 

This- is just 

+ 6 n(n + l)(n - l)wm+n-l 
1 

. 

(2.35) 

- 

iLn9 Lml = Jn-- m> Ln+m + k n(n + l)(n - 1) S(m + n) , (2.36) ; 
_ _T_ 

L. 

which is indeed the Virasoro algebra. The constant c is called the cent& charge 
of the the Virasoro algebra; this takes the value c = 1 for one massless scalar 
field. 



We can see from (2.34) that the constant c appears in the vacuum expectation 
value of the square of the operator T,,. It can be argued on this basis that c (i ,--- 
must be ljbsitive if the underlying Hilbert spa& has a positive metric. WI we 

. may derive this result more explicitly as follows: In the next few sections, we will 
construct a state IO), such that Ln IO) = 0 for n 2 0, and an inner product such 
that Lf, = L-n. Using these ingredients, we may write: 

;c = (01 [L2, L--2] lo) = (01 L2 L; lo) > 0 . (2.37) 

The most important of the Ln is LO, the generator of dilatations. It should 
be noted, though, that the central charge term in (2.36) actually vanishes for the 
set of three generators L-1, Lo, LI. These operators generate the infinitesimal 
transformations 

fsz = o! + pz + 7z2 (2.38) - 

From (2.36), we see that these generators form a closed subalgebra. The subgroup 
of conformal transformations generated by this algebra is the group of fractional 
linear transformations 

- 
(2.39) 

(Expanding (2.39) about a = d = 1, b = c = 0 reproduces (2.38).) 
--..- . 
- The complementary algebra of anti-analytic transformations is generated by 

a second set of Virasoro operators 

En= - 
f 

dw 
-27ri 

iT”+T(q . (2.40) 

Just analogously, these generators possess a closed subalgebra generated by 
(z-r,&,zi) with vanishing central charge. Together, the two sets of opera- 
tors generate infinitesimal transformations of the form 

6z ='a.+ pz + 7z2, fsz = Ei + pz + v2, 

acting on all of the operators of the conformal field theory. This transformation 
is the infinitesimal form of a fractional linear transformation (2.39) with general 
complex coefficients. 
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When one composes two mappings of the form (2.39), the parameters of the 
product mapping are obtained by matrix multiplication of the original param- 

,c- eters. In particular, the determinants (ad - bc):simply multiply. Since one of 
. the four parameters of (2..39) is redundant, we may fix (ad - bc) = 1. Then the 

set of mappings (2.39) with complex coefficients, considered as a group under 
composition, is isomorphic to the group of 2 x 2 matrices with unit determinant, 
SL(2, C). This subgroup of the full conformal group plays an important role in 
string theory, as we will see in Sections 4 and 5. 

The definition of the Ln may be considered as a Fourier analysis of T(z). It 
will be convenient to introduce a set of conventions for Fourier-analyzing a more 
general tensor field t(z) , of dimension dt . Let us define 

t, = 
f 

dz 
- Zn+-t(z) , 
27ri 

t(z) = E tnz-n-A . (2.42) 
n=-00 

- 

To see the utility of this definition, compute the commutator of the Fourier 
component t,, defined in this way, with LO. We find 

!Lo,tnI = [f $f y$ - f Xf $1 wT(w) zn+dt-lt(z) 

--..- . 
- 

f 
dz n+dt-1 dt 

= 
5z” (w - z)2 t(Z) + (w y z) azt I 

(2.43) 

= 
f 

$ zn++’ [dtt(z) + z&t(z)] 

= -n 
f 

dz - zn++l t(z) . 
27ri 

Thus, 

[LO,tn] = -nL ; (2.44) 

that is, t, lowers LO by n units. In string theory, we will interpret the dilatation 
generator LO as the Hamiltonian of the single-string dynamics. Fourier compo- c 

_ _P_ nents tn will be annihilation operators for n > 0 and creation operators for n < 0. 
~- - -Ladder operators of anti-analytictensors may be defined in an analogous way. 
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3. Critical Dimensions 

In order to connect the conformal field theory on the complex plane defined 
. in the previous section to the dynamics of coordinates Xp(r,o) on a string, one 

further condition must be satisfied. The program displayed in Fig. 1 requires that 
we replace functional integrals over fields on the string surface with functional 
integrals over fields on the plane. If the field theory of two-dimensional fields on 
the string is conformally invariant, it would seem that we could freely make this 
replacement. However, there is a subtlety which we must recognize and deal with. 
The usual criterion for conformal invariance is that expectation values of (scalar) 
operators are unchanged by conformal transformations. This leaves over the 
possibility that the functional integral over fields could change its normalization 
by a c-number factor when we make a conformal transformation. This factor 
would disappear when one computes a correlation function. However, in string 
theory, the string scattering amplitudes will be identified with the functional 
integrals themselves, and these possible c-number factors will appear explcitly 
as violations of conformal symmetry. We can take the transformation shown in 
Fig. 1 absolutely literally, then, only if we can identify and cancel this extra 
c-number term. In this section, I will discuss that cancellation, which, as we will 
see, implies that the string must live in a specific critical embedding dimension. 

- 

3.1. CONFORMAL TRANSFORMATIONS AND CONFORMAL GHOSTS 
- 

We should begin by reviewing the route from a geometrically invariant for- 

_-..- . c 
mulation of the string dynamics to expressions of the form of eq. 
background metric. A geometrically invariant expression of the 
string coordinate field is given by writing WI 

Z = [DXDge+, 
J 

where 

(2.13) in a fixed 
dynamics of the 

(3.1) 

(3-2) 
C 

_ 
.  _P_ and the functional integral is taken over both the fields X”(e) and the metric - 

M gap(t) on the world surface. Since the action (3.2) is reparametrization invariant, 
we are free to change coordinates to simplify the form of the metric. On the plane, _ z* 
or on a region such as the strip of Fig. 1 with the topology of a plane, we may 
use 2-dimensional reparametrizations to remove two degrees of freedom from gap 
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and convert it to the form 

The special case of (3.3) with 4(c) = 0 
in the previous section. 

is exactly the flat metric, eq. (2.5), used 

If we insert (3.3) into the action (3.2), 4(E) cancels out. This is exactly 
the statement that (3.2) is classically conformally invariant. If the metric has 
the form (3.3) in one coordinate system, a conformal transformation z + Z(z) 
carries 

so this tranformation causes simply a shift of r$(t). If d(t) is irrelevant, then, we 
can move freely between different conformally related coordinate systems. This is 
what we need to view the strip and the plane shown in Fig. 1 as being completely 
equivalent. 

- 

If indeed the integrand of (3.1) is independent of 4(E), we can treat this 
variable as a gauge parameter and fix it as the same time that we fix the 
reparametrization freedom. In this case, the functional integral of eq. (3.1) 
should more properly be written as 

- 

z= l 
VrepVconf J 

DXDg e+ , (3.5) 
-- .-- . - 

where the two prefactors represent the volumes of the reparametrization and 
conformal groups. This expression may be evaluated by using the Fadde’ev- 
Popov procedure. If we gauge-fix to the coordinate system (2.5), shifting the 

conformal factor fj( [) simply shifts the diagonal component of the metric; this 
leads to a trivial Fadde’ev-Popov determinant. The off-diagonal terms in the 
metric are induced by reparametrizations 

. _P_ 

- z* 

setting these components equal to zero as a gauge condition leads to a nontrivial 
determinant : 

A =-det(a,) .det(&) , w 

which may be represented by a functional integral over ghost fields. In all, we 

c 
~- 
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find that the gauge-fixing replaces 

where b, c, 6, F are anticommuting fields. I have assigned the ghosts c, E the 
transformation properties of reparametrizations St%, StF; the antighosts have the 
tranformation laws needed to make the action of (3.8) geometrically invariant. 

Unfortunately, the formal property that the integrand of (3.1) does not de- 
pend on 4(t) is true only classically and (generally) disappears in the quan- 
tum theory. Polyakov [“‘discovered that the regulation of the functional in- 
tegral over X”(e) breaks the conformal symmetry and leads to a multiplica- 
tive c-number dependence on 4: Under a shift from r$ = 0 to a nonzero 4(e), 
Zx = $ DXexp(- J J?) tranforms according to 

Zx 4 Zxsexp - 
i J 

& d2E(aa4(E))2 - 1 P-9) 

- 

-- .-- . - 

where D is the number of coordinate fields, or, equivalently, the dimension of the 
space-time in which the string is embedded. This violation of conformal invari- 
ance can be understood as a consequence of some considerations of the previous 
section. Since a nonzero 4(e) can be generated by a conformal transformation, 
let us look more closely at the algebra of conformal transformations derived there. 
In particular, let us apply & to eq. (2.34). Using 

(3.10) 

- 

. ._ _we find 

&Tzt(z) T,,(w) = -c . ;a; d2)(z - w) + - - - (3.11) 

Thus, the existence of the central charge implies that T,, is not completely an- 
alytic. By the logic of eq. (2.10), this implies that the system is not completely 
scale-invariant. Let us manipulate this relation further by applying a,, and using 
(2.9) to exchange T,, for Tzx. Then 

. _P_ 
~- - - T&z) TwG(w) = ‘c:. $ . i3,i3&2)(z - ti) + i s. (3.12) 

- z* 

C 

An infinitesimal shift of 4 is brings down from the exponent of the functional 
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integral the term 

c ,c- (3.13) 
. 

Thus, eq. (3.12) implies that a shift of C$ produces a multiplicative c-number 
factor of just the form of (3.9), with coefficient proportional to the central charge 
c of the Virasoro 1131 algebra. 

In many contexts, the conformal transformation law (3.9) is perfectly accept- 
able. In a few cases, it is actually physically relevant; for example, in a statistical 
mechanical system on a strip of finite width, mapping the strip to the full plane 
and applying (3.9) gives the correct dependence of the free energy on the finite 
size of the 114J151 strip. We have already remarked, however, that the standard 
formulation of string theory requires that the conformal motion be a gauge sym- 
metry of (3.1). Th e extra term in (3.9) is unacceptable. This higher criterion of 
conformal invariance imposes an additional stringent constraint on a conformal 
field theory: The central charge c of the Virasoro algebra must vanish identically. 
This criterion is made especially difficult to fulfill by two observations made in 
the previous section: First, the coordinate fields Xp each contribute one unit to 
c, for a total of c = D. Second, an additional field on the world sheet can give a 
negative, cancelling, contribution to c only if it creates states of negative metric. 

- 

- 

-- .-- . - 

Polyakov realized that this apparent dilemma has a very natural resolution. 
The reparametrization ghosts introduced in (3.8) create negative-metric states 
and must, in any case, be included in any analysis of the conformal transformation 
properties of the string functional integral. Let us, then, set up the conformal 
field theory for these ghost fields and compute their contribution to c. 

The fields cZ and b,, obey the classical equation of motion 

Quantum mechanically, the action given in (3.8) implies the propagator 

(L(z)cw(w)) = & . (3.15) 

(3.14) 

We may then treat cz and b ZZ as analytic tensor fields. Since the Fadde’ev-Popov 
procedure assigns to cZ the conformal properties of the displacement c”, this field 

_ _P_ should transform as a conformal tensor of dimension (-1). The complementary 
~-. - e antighost b,, acquires dimension 2. The ghost and antighost associated with E”, 

cZ and k, transform as anti-analytic tensors with dimensions (-1) and 2. From 
_ z* here on, I will drop the tensor indices and refer to these fields as c(z), b(z), Z(Z), 

and T;(Z). 
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c 

The energy-momentum tensor for c and b can be reconstructed from the 
requirement that it reproduce the operator product (2.27) with each of c and b, 

” assigning these field the correct dimensions. The-result is 

. T(z) = -2bi3,c - d,bc . (3.16) 

One may check that the single and double pole terms in the operator product 
of this T(z) with itself are given in accordance with (2.33). More generally, we 
might imagine a system with anticommuting analytic tensor fields 

6, dimension (j) ; c^ , dimension (1 - j) , (3.17) 

always with the propagator (3.15). This system is described by 

T(z) = -jk3,2 + (I +)a& . (3.18) 

It is not difficult to work out the central charge of the 6, c^ system for a general 
value of j. We must simply compute the c-number term in the operator product 
of (3.18) with itself: 

T(z) T(w) = j2 (h(z)a,t) (i3,tf(w)) + (j - 1)2 (a&(w)) (E(z)a,g) 

- 
+ j(j - 1) { (@)E(w)) (&~(z)~,b) + (&b(z)a,2) (c^(z)S(w)) } 

--..- . = j2 (,zIa,4) + (j-lJ2 (,,ILj4) - 
+ 2j(j - 1) [ -2 (z- w)2 ] [i&l 

-__ 
=- (6j2 - Sj+l) 

(z-w)4 * 
(3.19) 

Thus, we find for the central charge of anticommuting tensor fields: 

C = -2C.j E -2.(Sj(j-1) + 1) . (3.20) 

If i and c^ had been commuting fields, the propagator (3.15) would have implied _ . _P_ 
~- . - 

(2(z) S(w)) = --& . (3.21) 
- z* 

and the change of sign in this equation would have induced a change of sign in 

- 
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the final answer. Thus, for commuting tensor fields 

L ,c- C = +2Cj, (3.22) 

. where Cj is just as given in (3.20). 

Setting j = 2 in (3.20), we find that the system of reparametrization ghosts 
has c = -26. This cancels the contributions from Xp(z) only if the string is 
embedded in a space of 26 dimensions. In that case, however, the conformal field 
theory on the string is conformally invariant in the strong sense described at the 
beginning of this section: The complete functional integral is unchanged, even 
by overall multiplicative factors, under a conformal transformation. 

3.2. SPINORS AND GHOSTS OF THE SUPERSTRING 

From the formalism we have developed, it is not difficult to give a parallel 
discussion of the embedding dimension of the superstring. The superstring is 
obtained from the ordinary string by extending the geometrical invariance on 
the world sheet from local reparametrization invariance to local supersymmetry 
and replacing each coordinate field Xp by a supermultiplet (Xp, \kp), where Qp 
is a Majorana fermion. Let us first discuss this new matter field, then turn to 
the new ghosts. A Majorana fermion in 2 dimensions has the action 

- 

(3.23) 

-- ..- . - 
where, because of the Majorana nature of \k, $ = !l!*yO. If we introduce the 
explicit representation of Euclidean Dirac matrices 

tcI 

*= 11) ’ 0 
(3.24) 

-this takes the form 

(3.25) 

The dynamics of the field $ is almost exactly that of a 6, c^ system. We can make 
the connection explicit by combining two species of Majorana fermions to form G 

_ _P. 
~- . c-c 6 =tp+s+b2, E =$~l -iti2-. (3.26) - 

The new fields are just the positive-chirality part of a Dirac fermion and its 
complex conjugate. (The negative-chirality part of the Dirac field is anti-analytic 

22 



and may be built from gl, q2.) These fields have an action proportional to $6&Z 
‘ ,--- and thus a propagator of the form of (3.15). Since a fermion field in 2 dimensions 

has dimension i, two Majorana fermions form a 6, c^ system with j = 3 (plus the 
. corresponding anti-analytic system). This system of two Majorana fermions has 

c = 1. We might have guessed this result from the well-known property that a 
Dirac fermion in 2 dimensions can be bosonized, that is, replaced by a equivalent 
system containing one real scalar field. Bosonization will come to play a major 
role in our analysis, beginning in the next section. 

In addition to the new matter fields, we find that the superstring has new 
ghosts corresponding to the gauge-fixing of the new geometrical invariancesof this 
theory. Without unravelling the whole structure of these new transformations, 
we can easily guess that they will correspond, in conformal coordinates, to the 
transformation of the world-sheet gravitino field by a spinor parameter: 

6X% = a$-+ , (3.27) 

and the corresponding transformation with an analytic derivative. In (3.27), the 
(lowered) indices <, J denote a-dimensional spinor indices corresponding to the 
upper and lower components of (3.24). Since q is an anticommuting parameter, 
it must be replaced by a commuting ghost field 7s; this field transforms as a 
conformal tensor of dimension (-3). This field will have the action 

(3.28) 

where I have introduced an antighost Pts, also a commuting field, of dimension 
%. These two fields, which I will refer to henceforth as 7(z) and p(z), form a 
system of commuting fields with j = $. Thus, they contribute 

c = +2Cj," = 11. 
2 

(3.29) 

These fields have anti-analytic counterparts T(Z), D(F) which contribute to the 
central charge of the Virasoro operators En. 

Adding the contributions to c from all of the fields on the world sheet of 
the superstring-coordinates X p, fermions $+ (taken in pairs), anticommuting 
ghosts b, c, and commuting ghosts /3, r-we find 

_ . _T. 
~-.. e c: = D + ;.D L 26 + 11 = ;(D L 10) . (3.30) 

- I* 
The superstring is then conformally invariant in the strong sense required for 
string theory when it is embedded in a space of 10 dimensions. 
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. 

The restriction of string theories to a particular space-time dimension is a 
striking requirement, unusual in the formulation of a physical theory. Much 
effort has--been spent trying to answer the question of whether string theories 
are well-defined outside of this critical dimension, with results which are so far 
inconclusive. For the remainder of this set of lectures, I will restrict myself to 
working in the critical dimension. We will see that the peculiar choices of d = 26 
and d = 10 actually work miraculous simplifications in many aspects of the 
physics of strings. 

4. Vertex Operators and Tree Amplitudes 

Now that we have set up the dynamics of fields on the string world surface in 
terms of conformal field theory, we are ready to construct the spectrum of states 
of the string and the interactions between these states predicted by the theory. 
We will find that both of these features of string dynamics may be presented in 
a most natural way in the language of conformal field theory. - 

4.1. THE BRST CHARGE 

- 

-- ..- . - 

-__ 

Before beginning this discussion, however, we need one more piece of technical 
apparatus. In the previous section, we introduced into the string world sheet the 
ghost fields b(z), c( z , noting as we did this that these fields belong to a quantum ) 
theory with negative metric. The excitations of the ghost field will naturally 
become a part of the spectrum of states of the string. It is important, though, 
that we should not find negative metric states propagating on the world sheet 
as a result of a physical scattering process. Actually, negative metric states can 
arise not only from the ghost excitations but also also from the longitudinal 
and timelike excitations of Xp(z). These modes of excitation were explicitly 
eliminated in the light-cone gauge treatment of the string dynamics presented in 
Michael Green’s lectures, but they are still present in the covariant formalism 

-that I have been constructing. In order to disentangle these dangerous states, 
we will need some mathematical tool which will enable us to distinguish physical 
from unphysical modes of excitation. 

. . .1. 

The standard tool for identifying and controlling the unphysical states of a 
covariantly quantized field theory is the ghost charge of Becchi, Rouet, [=I Stora, 

and Tyupin 117’ (BRST). This is a nilpotent charge- _ 

iv 92 = 0 (44 

- .Z..-- 

-which is Hermitian, commutes with the Hamiltonian, raises the ghost num- 
ber by one unit, and annihilates all ghost-free, gauge invariant states. Such a 
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charge can be constructed in any covariant field theory quantized in a way which 
introduces ghosts.* 

. Once the BRST charge Q has been constructed, it can be applied in the 
following way: The relation (4.1) implies that every eigenstate of the Hamiltonian 
is acted on by Q as a member of one of the following types of multiplets: 

singlet : Q I+o> = 0 ; 

doublet : Q bbl> = I$2> Q 1742) = 0 . 
(4.2) 

Since Q is Hermitian, I&) has zero norm: ($5 ]9!9) = ($1 ]Q2]+r) = 0. The gauge- 
invariant, ghost-free states should be BRST singlets; it is necessary to check in 
detail for each theory that the only l-particle states which are BRST singlets are 
of this form, and that all such states have positive norm. Let us assume that this 
is true. Then the initial state in any scattering process will satisfy Q ]$)in) = 0. 
But then, since [Q,H] = 0, any state obtained by time-evolving this state will 
also be annihilated by Q. Thus, the final state of a scattering process must be 
linear combination of BRST singlets and zero-norm states. If we take a matrix 
element of this state to compute the S-matrix, the zero-norm pieces disappear, 
and we find 

- 

- 
(+f I ’ Ilk) = ($f,OI S I~i,O) , (4.3) 

-- ..- . 
- 

where the states on the right-hand side are projected onto BRST singlets. Thus, 
the properties of Q allow one to prove that, if S is unitary on the full Hilbert 
space, as is guarranteed by Hamiltonian evolution, it is also unitary when re- 
stricted to BRST singlets. No probability disappears into ghostly states which 
transform nontrivially under Q. 

_ . _z_ 

Now that I have discussed the use of Q, I would like to describe roughly how 
to define Q in any given theory. This discussion abstracts a general construction 
due to Fradkin and Vilkoviskii!“’ Consider a theory with gauge invariances 
generated by charges Gi. Let bi, cj represent ghost and antighost fields satisfying 
(bi, cj} = S$. Then we can begin the construction of Q by writing Q = c’Gi+. . .; 
This expression annihilates gauge-invariant states and otherwise has the form of a 
gauge transformation with gauge parameter ci. Now we need only complete this 
expression to form a nilpotent charge by adding a piece which will act nontrivially L- 

* A beautiful and detailed review of the BRST charge and its uses in field theory has been 
given by Kugo and Ojirna!“] 
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on states with ghosts. A suitable choice is given by writing 

Q = c’G; + if;jk$iibk , (4.4 

where the fij k are the structure constants of the algebra of the charges Gi. We 
may compute 

Q2 = C’c’GiGj + i fijkCjCi{bk, C’}Gl + f fijk femn{CjCibk, CmCebn} 

= iC’Cjfij*Gk + f fij ‘CjCiGk + a fijkf& mcjcicebn 

= 0 + i flij” fgjkn(CiCiCebn) s 

The remaining term vanishes by the Jacobi identity. 

(4.5) 

- 

To make this construction more concrete, one must, in any specific system, 
assign appropriate values to the charges and ghost operators given above. In 
string theory, we clearly would like to identify the Gi with the conformal gener- 
ators .Ln and the ghost operators with the Fourier components of b(z) and c(z). 
This program is complicated by. two features, the fact that the gauge algebra, 
first, is infinite-dimensional, and, second, may contain a central charge. However, 
let us overlook these issues for the moment and try to construct a Q of the form 
Q = C CnLn + a a -. A suitable completion is given by interpreting the structure 
constants which appear in (4.4) as arising from the action of Z’,, on the the ghosts 
themselves. Thus, for the bosonic string, we write 

-__ 
Q= dz 

f 27ri 

- 

. _ 

where T(*s”) is given by (3.16). Th e anti-analytic fields give a second BRST 
charge 

G,=. 
f 

g : z(z) [FX’ (z) + ;F’b’“‘(?!] 

_ . _z_ 
~_ . built using the anti-analytic components of the ghost fields. 

To check the nilpotency of this Q, we represent Q2 = i{Q, Q} as the dif- 
ference of correlation functions in which one contour lies just outside, then just 
inside, the other. This reduces the computation to the analysis of singularities 
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in the operator product of the two integrands. Using the explicit form of Z”@~“) 
and the general expansion (2.34), it is not hard to show that the anticommutator 

c ,---. vanishes if--the combined system of X, b, c has total c = 0. (An analogous argu- 
. ment implies that Q” = 6.) Here again, the choice of the critical dimensionality 

plays an important role in simplifying the formalism. 

4.2. BOSONIZATION OF THE GHOSTS 

Certain aspects of the BRST formalism for the string are made clearer if 
one introduces an alternative representation of the b, c system in terms of boson 
operators. This bosonization of fermions is a familiar feature of the physics of 

PO,211 Z-dimensional systems. It will soon be clear that the boson-fermion corre- 
spondences are clarified, and new generalizations are suggested, by the notation 
of conformal field theory. Let me now review the conventional bosonization in 
this language, and then generalize to the bosonization of the reparametrization 
ghosts. - 

In the previous section, I noted that a massless complex fermion (or two 
Majorana fermions) in 2 dimensions gave the same central charge c = 1 as a real 
boson field. I will now argue that these theories also give identical results for 
correlation functions, if we make the correspondence 

- ?p + iti - d%+ , +’ - $2 * fi,-iw . (44 

If 4 is taken to be an ordinary free boson field, (2.29) implies that both of the 
exponentials of this field written in (4.8) have dimension 3. This observation 
and the fact that the $ system has c = 1 imply that, in correlation functions 
of fermion operators with factors of T(z), the singularities as operators T(z) 
approach fermion operators or one another are matched if we replace operators 

built from $l, t+!~~ with the corresponding operator built from 4. Using (2.30), 
we can compute the singularity as two of the exponentials of 4 approach one 
another: 

&.i+) &--i+(w) - Zexp(- log(z - w)) = (z ” w) ; (4-g) 

_ . -1. this properly reproduces the singularity of the corresponding product of fermions. 
~- -- --Thus, these correlation functions are analytic functions with the same singulari- 

ties and so must be identical. The system of two fermions is therefore physically 
- I* equivalent to the bosonic theory built from r$. This is the free-field limit of the 

conventional bosonization of fermions in 2 dimensions. 

C 
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Describing the reparametrization ghost system by bosons is obviously more 
of a challenge, since this system has c = -26. I will show, however, that this 

i ,%‘ system is equivalent to a theory containing one real boson field u. If we follow 
the argument just given,-we must find elements ‘of the o theory which allow us . to match the central charge, the dimensions of b and c, and the singularity of the 
b-c propagator. Begin with the central charge. Let us choose as a trial form for 
T(z) the somewhat more general dimension 2 operator 

T(z) = -;(a.o)Z + A+, (4.10) 

where A is a constant to be determined. This gives 

T(w) T(z) - (-;)2((i3,+-)) -2 + A2 (i3;od;o) 

+ (less singular) (4.11) - 

1 1 2.3 
- jj (w - z)4 + A2 (w - z)4 + ema 

- 

Thus, we require 12A2 + 1 = -26, or A2 = -9/4. We can rectify the sign in this 
relation by changing the sign of the kinetic energy term in the Q action and in 
T(z). This gives a the wrong metric, but that is only to be expected of a field 
which describes a ghost. The 0 propagator then takes the form 

--..._ . c 
With this choice, 

w>44> = +log(z-w). (4.12) : 

T@)(z) = +;(&o)’ + ;a:, (4.13) . 
_ __ 

satisfies (2.34) with c = -26. 

By analogy to (4.8), we might seek correspondents for b and c which are 
exponentials of 6. Let us first compute 

T(w) ea+) - [i ((a,u(w) aa(z)))2 + t (aLa au(z))] ea+) + . . . 

(4.14) 
This implies that e au(t) is a conformal tensor of dimension $a((~ - 3). Thus, we 
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are motivated to identify 

i ,;‘ 

. 
b(z) f+ c-+) , 44 t+ e+) , (4.15) 

since the two exponentials have dimension 2, (-1)) respectively. These operators 
also reproduce the b-c operator product 

pw ,44 1 
- exp(- log(z - w)) = - . 

Z-W 
(4.16) 

- 

Thus, we may reproduce any correlation function of b, c, and T(*sC) by operators 
built from O. 

--..._ . 
- 

I would now like to rewrite the BRST charge in this bosonized language. 
This requires some care in the definition of operator products. Thoughout my 
discussion, I have been assuming that all products of operators at the same point 
are normal-ordered. The normal-ordering of b and c operators, however, is not 
the same as the normal-ordering of the corresponding IY operators, and so we must 
be careful when we convert complex operators from one picture to the other. Let 
me, then, give the explicit definition of the 3-ghost operator which appears in 
(4.6): 

: c(z) T(*~“)(z) : = ipw [{: c(z) : : T(b*c)(w) :} 

+ (@ _lw)zc(w) + (z aw,,ye,l * 

(4.17) 

The last two terms cancel the singular terms resulting from contraction of c(z) 
with the factors of b(w) in T(*,“); only then is the indicated limit smooth. If we 
bosonize each operator on the right-hand side of (4.17), we obtain 
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- 
--..._ 

_u 

: c(z) T*“(z) : = Jlw [d’) - (i(i3,~7)’ + ~itl:cr) 

+ qz Tw)Zer(lu) + (z - w) 2 f3weu(w))] 

= lim : eat21 - 
Z-+W [ 1 (2 Tw)’ - (z: w) dwa 

+ ;(awcT)2 + ;a;,} : 

+( (z IIu)zc.(w) + 
(z ” wj dweu(w) )I 

= lim : - 
I{ 

2 
Z---rW (z ‘wp - (z-w) awa 

- !?(awo)2 - fat0 + $4,~)~ + if3:0} fdw) : 

+ $ 1w)2eu(w) + (z ” w) aweu(w) )I 
=e “‘“‘{-(awc7)’ + a;o> 

=e u(w) { (i3,o)’ + L&.7} - i3,ot3, (e”) . 
(4.18) 

Since Q involves the integral of this expression, we may integrate the last term 
by parts; then the integral of (4.18) falls into the form 2. f dw : e”(w)T(u)(w) :. 
The factor 2 is just what we need to convert (4.6) to 

- 

- 

Q-f 
dw - 
21ri 

: eatw) TCtot)(w) : , with Ttot = T(x) + T(u) . (4.19) 

From this expression it is even more straightforward to apply the trick described 
below (4.6) and show that Q2 = 0 if Tctot) has zero central charge. 

- 
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4.3. STRING SCATTERING AMPLITUDES 

. 
We are now ready to construct the amplitude’for scattering of strings. To 

do this, we will pursue the following strategy: We will first identify asymptotic 
single-particle states of string which can represent the initial and final states of a 
scattering process. To avoid the propagation of unphysical modes, we will insist 
that these states are BRST invariant. Then we will cast these states into the 
form of excitations on the world sheet, and allow those excitations to propagate 
and eventually overlap with one another. The overlap of the time-evolved initial 
and final states defines the scattering amplitude. 

‘To define asymptotic states, we apply in a powerful way the conformal in- 
variance of the theory. Using the conformal mapping 

z - 20 = ew, (4.20) 

5728A3 3-87 

._ 

Figure 3. Identification of an asymptotic region of the closed string with 

the neighborhood of a point zo on the conformal plane. 

L 1 

@ @ 

2 2 - 

0 0 0 0 
zO zO 

according to the construction (2.3), we can map the asymptotic region of an 
infinitely extended closed-string world surface into the neighborhood of the point 
z = zo. This transformation is shown in Fig. 3. In the discussion to follow, 
I will assume for simplicity that zo = 0. This entails no loss of generality; the 
Hamiltonian evolution described in Section 2, defined by dilatations outward 
from z = 0, could equally well have been set up about any other point. 

- 
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If we put no operator at the end of the cylinder shown in Fig. 3, what 
propagates in from infinity is the ground state of the string in the sector with 

,;‘ vacuum quantum numbers. Mapping this situation conformally to the z plane, 

. the observation reads as follows: If we put no operator at z = zo, this defines a 
particular state with vacuum quantum numbers as the initial state in the time 
evolution of radial quantization. Let us refer to this state as IO). 

To define any other asymptotic state, we would apply some operator asymp- 
totically on the string, or, equivalently, at z = zo. The set of operators which 
might be used in this construction is most simply discussed in terms of the Fourier 
components of conformal fields, evaluated on a circle about zo. If we translate 
to zo = 0, the definition of the Fourier components is that given in (2.42). Let 
us look more closely at the first part of this definition. Using this equation and 
the correspondence between operators and correlation functions, we may write 

t, 10) = . . . 

( f 

25. zn++‘t z , 

2m (0 

where the contour is a small circle about z = 0. The operator ordering on the 
left-hand side gives the radial time ordering for the right-hand side; thus, if t, 
is applied directly to the vacuum on the left, there should be no other operator 
inside the contour on the right. But then, if n + dt - 1 10, we can contract this 

- contour to z = 0 and find zero. This implies 

--..._ . 
c 

t, IO) = 0 for n 2 1 - dt . (4.22) 

The moments of t(z) which do not satisfy this condition may be evaluated by 
contour integration; one finds simply t(0) and the successive derivatives of t 
evaluated at 0. We may view these as the creation operators for string excitations. 

-As an example, consider the moments of a,Xp, which are conventionally 
denoted by 

- 

CyK = +i 
f 

dz 
27ri 

z”L&XP . (4.23) 

For n > 0, CY[ is an Lo lowering operator. All of these operators, and also &, 
_ _Y_ annihilate IO). It is natural to interpret the of: as lowering operators for the 

- ._ ---string normal-mode osciallations;- Their counterparts o-E,, would be the corre- 
sponding raising operators. These operators may be equivalently represented as 

_ .:* the derivatives of a,X“ evaluated at 0; for example, o!‘r = a,X(O). We can 
confirm this identification of raising and lowering operators by computing the 
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commutator of two og, using the functional method which by now should be 
quite familiar: 

= f$ wm fs zn (z-1w)2 6P’” 

so that 

f 

dw = 
Giw 

m - (n wn-l) w, 

(4.24) 

149 o&] = n6(n + m)lSPv . (4.25) 

The Fourier component CX~ is naturally interpreted the center-of-mass mo- 
mentum operator of the string. With this interpretation, cy: annihilates IO) 
because this state has zero momentum. To obtain a state of finite momentum, 
we can inject momentum into the string by applying the operator eiP’x at zo. 
We can check all of these identifications by computing 

cyieiP’x(o) lo) = +i 
f 

dz 
%i 

znaZXP(z) eiP’x(o) 

= +i f 2 zn (( $) eip’x(o) + (nonsingular)) (4.261 

0 n>O 
= 

pp IO) n = 0 ’ 

&deed, the exponential shifts the center-of-mass momentum of the string while 
allowing all of the nonzero-frequency oscillators to remain in their ground states. 
We have now found that the state 

eiP’x(o) 10) (4.27) 

represents the asymptotic state of a ground-state string at momentum pp. Ex- 
cited state of the string are represented by composite operators 

- 

_ 
_Y_ 

“p- azXc”e’P’xCoo> , a,X~~,XYe’P’X(o) , #X~eiP’x(o) , etc. (4.28) -- 

Operators such as those shown in (4.28) which are used to define asymptotic 
states of string are called uertez operators. 
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All of the excitations shown eq. (4.28) are created by analytic derivatives of 
X!; these represent left-moving excitations on a closed string. We could equally i ,c- well have used anti-analytic derivatives of X”-&X”(O) and higher derivatives. 

. It follows from the generalization of the above argument to the anti-analytic 
sector that these operators create right-moving excitations in the asymptotic 
string states. In addition, it is straightforward to describe the analytic and anti- 
analytic ghost excitations as being created and destroyed by ladder operators, 
or, equivalently, by local vertex operators. By applying the manipulations of eq. 
(4.24), it is straightforward to show that the operator product 

(4.29) 

implies that the Fourier components satisfy the anticommutation relations of 
ladder operators: 

{ha, Cm} = 6(n+ m) . (4.30) 

According to (4.22), bn and cm annihilate IO) unless n 5 1, m 5 -2. Comparing 
with (2.42), we see that the bn, cm which do not annihilate IO) are precisely those 
which can be incorporated into vertex operators as the values of b and c and their 
successive derivatives at z = 0. 

- 

--..._ . c 

Once we have formulated a vertex operator 0 (0)) we must decide whether 
the corresponding asymptotic state is BRST invariant. The state IO) is a BRST 
invariant state, since Q is defined as a contour integral, and this contour can be 
deformed to zero if it encloses no other operators. The operation Q 0 (ZO) IO) is 
defined functionally by drawing the BRST contour about the operator 0 placed 
at zo. Let us check whether this quantity vanishes. 

__ Q O(zo) = 16 2 e”T(w) O(z0) . (4.31) 

To compute the operator product which gives the singularity of the integrand, 
assume that 0 (ze) contains no ghost operators (as is true for the operators (4.28)) 
and that O(zo) is a primary conformal field. Then (4.31) becomes 

_ _T_ Q Oh) = f 2 e" [(w d”Z,,, + (w ! zo)- h] 0 
- (4.32) 

= [do(cY,k”) - 0 + e” . a,O] (zO, . 
_ .z* 

This result apparently can never vanish. However, if do = 1, the final result is a 
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total derivative, so that 

i ,s- 

. 

- 

--..._ . 
- 

__ 

_ 
_T_ 

- 

Q/ dz O(z) = / dz &(t?O) = o . (4.33) 

The integral of a primary conformal field of dimension 1 thus gives a representa- 
tion on the complex plane of a BRST invariant asymptotic state. 

How should we properly interpret this result? Up to this point, all of the 
intuition we have used to motivate this construction has come from the consid- 
eration of closed strings. Closed strings have a local symmetry under the action 
both of the L, and the En; thus physical states should be invariant to both Q 
and &. In the closed-string theory, then, asymptotic states should be associated 
with operator insertions of the form 

/ 
dz& 0 (z, f) , (4.34) 

where 0 is primary and has dimension 1 relative to T(z) and also with respect 
to F(Z). For the simplest vertex operator 

o= eip.x(z,z) 
, (4.35) 

the restriction on the dimensionality implies that 

2 - P -2, (4.36) 

that is, the asymptotic state must be an on-shell state of a particle of mass 
m2 = -2.* This state is a tachyon, and that (unfortunately) is the correct result 
for-the ground state of the closed string. 

- 

The construction in (4.33) has, however, another interpretation. We might 
recognize that (4.25), by itself, is precisely the algebra of mode creation and 
annihilation operators for the open string. This should tempt us to interpret 
the analytic sector of the system we have constructed as describing the open 
string. Mapping back- to the cylinder according to (2.3), then slicing the cylinder 
into two semicircular pieces, we can see that, in this interpretation, the real 
axis of the z plane should be identified with the boundary of the open string. 
The open string boundary condition that a,Xj‘ = 0 at the’ endpoint may be 

* In Michael Green’s conventions, this would read: m2 = -3. 
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given the following interpretation: Let left-moving excitations on the open string 
i*. be represented by analytic functions in the upper half-plane and right-moving 

excitations by analytic functions in the lower half-plane. Then the open string 
. boundary condition is simply the requirement that these functions be continuous 

across the real axis. 

This interpretation of the analytic sector of the world sheet dynamics suggests 
a new interpretation of the integral of a vertex operator: The integral s dzO(z) 
along the real axis of the z-plane represents a BRST-invariant open string asymp- 
totic state which couples to another open string at its boundary. The simplest 
such state is the one associated with the vertex operator 0 = eiP.x. The require- 
ment that do = 1 again implies p2 = 2, so this state is again a tachyon. This is, 
of course, a familiar property of the ground state of the open string. 

These two constructions lead to formulae for the, scattering amplitudes of 
open and closed strings, since the transition amplitude from a set of initial to a 
set of final string states can be computed as the joint correlation function of the 
corresponding vertex operators. 

Figure 4. Correlation functions of vertex operators which give the scat- 

tering amplitudes of the (a) open and (b) closed string theories. 

_ _Y_ 
- -- -+-The open and closed string versions of this construction are illustrated in Fig. 

4. We can then check our formalism by computing the scattering amplitude for _ .z* 
four tachyons explicitly in each theory. 

Begin with the scattering amplitude for open-string tachyons. This is given 

- 
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- 

by a correlation function of four vertex operators integrated along the real axis: 

dZldZ2dZ3dZ4 eiPl.x(~i) eiP2-X(Zs) eiP3.X(Z3) eiPd-X(Zd) 

> 
. (4.37) 

As Michael Green has discussed, open strings may be given flavor quantum num- 
bers by assigning a group theory factor (called the Chan-Paton factor) to each 
cyclic ordering of the operators. This factor gives the amplitude that the quan- 
tum numbers created on the string boundary by each vertex operator can be 
annihilated by the next operator along the line. I will ignore this factor in my 
discussion here, though I will assume that the cyclic order of the vertex operators 
is fixed. Evaluating the correlation function, we find 

A= 
/ 

dzldz2dz3dz4 n exp(pi . pi log(zi - zj)) . (4.38) 
i<j - 

The expression (4.38) is, unfortunately, not yet well defined. The problem is 
one that should be familiar already from Michael Green’s discussion of the string 
scattering amplitude: The integrand of (4.38) has a group of invariances which 
forces the integral to diverge. A part of this divergence comes from the fact 
that the integrand is translation invariant. The full symmetry is the unbounded 
three-parameter group of fractional linear transformations with real coefficients 

(4.39) 

exactly the group of eq. (2.39), p s ecialized to real coefficients-SL(2, R). This is 
in fact the group of conformal transformations which map the upper half plane 
onto itself l-to-l. It is straightforward to check that the change of variables 
(4.39) leaves the integrand unchanged as long as each pi2 = 2. A natural way to 
cure this problem is to divide (4.38) by the group volume of S&(2, R). Using the 
infinitesimal form of an SL(2, R) transformation given in (2.41), we can find the 
Jacobian for the change of variables from any three of the (real) zi to the (real) 
parameters cy, p, 7: 

(4.40) 

Making this change of variables using zr, ~2, ~4, and then cancelling the integral 
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over group parameters, we find the final result for A: 

i ,c- 

. 
A =‘- I da (~1 - z2)(z1 - z4)( Z2 - Z4) n &I (pi ’ pj lOg(Zi - Zj)) . 

i<j 

(4.41) 

This result should be independent of the choice of zr, ~2, ~4, as long as the four 
points are in the correct cyclic order. If we assign zr + 00, z2 = 1, z4 = 0, 
always using pi2 = 2 and momentum conservation, (4.41) simplifies to the form 

A= 
/ 

dz (1 - z) P2-PS zP3’P4 . (4.42) 
0 

This is the famous amplitude of Veneziano 1221 which was in fact the first result 
in string theory. 

The scattering amplitude of the closed string theory may be computed by 
following an analogous set of steps. One begins from the expression 

.A = 
(I 

d2z1d2z2d2z3d2z4 eiPl.x(Zl) eiPa.X(zz) eiPsmx(Zs) eiPd.X(z4) 

> 
, (4.43) 

- 

- 

_u 

where the integrals now run over the whole complex plane. The correlation 
function may be evaluated as in (4.38). The resulting expression is invariant 
to transformations of the form (4.39) with general complex coefficients; this is 
the full group SL(2, C). This group is in fact the group of all l-to-l conformal 
mappings of the whole z plane onto itself. The amplitude (4.43) can be made 
well-defined by dividing by the volume of this group. The Jacobian needed in 
this construction is the absolute square of (4.40). The result is 

A= 
/ 

d2z3 /(a -z2)(z1 -z4)( Z2 - Z4) I2 n exp (2pi ’ pj log IZi - Zj I) . (4.44) 
i<j 

Assigning zr, ~2, z4 to 00, 1, 0, we find 
G 

_ _T_ 
A= 

J 
dzz 11 - z/2P2.Ps Iz12Ps*P4 , (4.45) -- 

_ .:* 

the VirasoroShapiro [2%241 closed string amplitude. 
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To conclude this discussion of string scattering amplitudes, I would like to 
discuss briefly the problem of constructing BRST invariant vertex operators for 

,c- higher states of the string spectrum. The open-string vector states <“‘cufr IO) are 
. created by vertex operators 

O<(Z) = ~pdzXp(z)eiP'X(z) . (4.46) 

We must check not only that this operator has the correct dimension but also 
that it is a primary conformal field. To do this, compute its operator product 
expansion with T(z): 

w-4 W) - -i (a,Xl ip - X(z)) (i3,XP fi3,Xv) eip.x(z) - 2 

i ( (dwXp ip . X(z))) 2<vdzXv eiP’x(z) -- 

- $ilwXa (tlwXcl (“t3,Xv) eiP’x(z) - 2 + . . . 
(4.47) 

iP - s 
- (w - z)3 

eip.X(z) + p2/2 + 1 c-d,Xe +X(z) 
(w - zp 

+ . . . 

- 

--..._ . 
c 

The operator 0, has dimension i if p2 = 0, that is, if the vector particles created 
by this operator are massless. However, (4.47) informs us that we must impose an 
additional constraint in order that 0, be primary. This is the condition < -p = 0, 
the familiar physical requirement of transversality. In a similar way, we may find 
that the tensor vertex operator 

__ rjpv ~zX~c3zXveip~x (4.48) 

has dimension 1 if p2 = -2, corresponding to m2 = 2, but it is primary only if 
we satisfy as well the physical state conditions on the polarization tensor 

Pr rl jJv = 0 = ‘lpp. (4.49) 

_ _T_ In general, for string modes with spin, the requirement of BRST invariance im- 
- .- --plies not only that the particle should be on its mass -shell .but also that the 

polarization should have a physically correct orientation. This is the first hint 
_ .:* of the deep connection between BRST invariance on the world sheet and gauge 

invariance in space-time which we will explore in the next section. 

- 
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5. Gauge Invariances of the Bosonic String 
i ,c- 

In the previous section, we formulated a set of rules for computing string 
. scattering amplitudes at the tree level. The basic assumption of this construction 

was that the string scattering amplitude should involve propagation on the world 
sheet of physical (that is, BRST invariant) excitations. We found, however, that 
this condition implies that the external particles of string must also be physical 
propagating states on space-time. This correspondence between world-sheet and 
space-time properties is already remarkable in itself, but it is worth pushing the 
argument one step further. Our experience with local field theories with spin 
tells us that such theories cannot be formulated covariantly and still naturally 
project out unphysical polarizations unless they possess an underlying gauge 
invariance. We have seen also that the open string theory contains massless 
vector states; it would be most attractive if these were the gauge bosons of some 
explicit local invariance of the string theory. In this section, I will exhibit the 
local gauge invariances of the free string theory and clarify the relation between 
these invariances and the world-sheet dynamics. 

- 

5.1. MORE CONFORMAL FIELD THEORY 

- 

--..._ . c 

To carry out this analysis, we will need some additional tools from conformal 
field theory. In the previous section, I introduced the vacuum state IO), defined 
by putting no operator at the point z = 0, which forms the asymptotic past in 
radial quantization. To continue our discussion, it will be useful to define (01, 
and, more generally, a notion of operator adjoints and inner product appropriate 
to conformal field theory. All of the necessary concepts are provided in the work 
of BPZ. 

__ 

The obvious definition of (01 is to put nothing at the point z = 00 which 
forms the asymptotic future of radial quantization. Just as contour integrals 

which can be deformed to 0 represent operators which annihiliate IO), operators 
will annihilate this (01 when the corresponding contour integrals can be pushed 
to 00. Conformal invariance allows us to discuss both situations at the same 
time, because a conformal transformation 

1 z-,2=-- 
Z 

_ _T_ 
- -- -p-interchanges past and future. BPZ proposed that this conformal transformation 

could in fact be taken to be the definition of the adjoint of an operator or state. _ .z* 
This definition has the virtue that it does not interchange the analytic and anti- 
analytic sectors. We can check the definition by applying it to a general Fourier 
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component t,: 

i ,; . . _ 
t, = 

dz ~ p++‘t(*) : 
. f 27rs 

dz ~ .p+dt-1 
27rrt 

= (-l)h+” t-, . 

(5.2) 

(A factor of (-1) disappears in the second step because both the z and the 2 
contours are taken to run counterclockwise around the unit circle.) The transfor- 
mation (5.1) thus does interchange t, and t-,. We find as well the equivalence - 

t, lo) = 0 t+ (01 t-, = 0 . (5.3) 

- 

--..._ . - 

According to (4.22), th ese statements apply when n 2 1 - dt. 

The L, annihilate IO) f or n 2 (-1). Reciprocally, (01 L, = 0 for n 2 1. Thus, 
the three operators L-1, Lo, Li, and their anti-analytic counterparts Z-1, To, 
zr, annihilate both IO) and (01. This makes these operators true symmetries of 
conformal field theory: If U is a transformation generated by these operators- 
that is, if U E SL(2, C)- 

(W(a) 4+2) **a 10) = (ol(~~(~l)~-1)(~~(z2)u-1) *‘* 10) W) 

.a Thus, all conformal field theory matrix elements are invariant to SL(2, C) trans- 
formations. This is the origin of the conformal invariances of the four-tachyon 
scattering amplitudes discussed at the end of the last section. Because of this 
property, the state IO) is often referred to as the SL(2, C) invariant vacuum. 

The antighost field b(z) has th e same dimension as T(z), and therefore, in 
parallel to the above discussion, b-i, be, and bi annihilate both IO) and (01. But 
then the identity following from the commutation relation (4.30) of the ghost 4 

_ ladder operators _Y_ 
- {bn, c-;j lo) = lo) # 0 ; (5.5) -- 

implies that the three operators c-1, co, cl annihilate neither IO) nor (01. All other 
cn and b, ladder operators annihilate either IO) or (01. This set of statements 
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implies that the basic nonzero expectation value in the theory is 

,s- . . _ 
(01 c-1 COCl 10) # D * (5.6) 

Apparently, the adjoint operation of BPZ does not preserve ghost number; indeed, 
it insists that ghost number is violated by 3 units in conformal field theory 
calculations on the plane. 

To properly understand this ghost number nonconservation, it is necessary 
to develop in some detail the geometrically invariant formulation of the string 
dynamics. Since this would take us too far afield, I will simply sketch the logic 
of the required argument. The ghost number current j, = bc is the fermion num- 
ber current of a set of chiral fermions (of unconventional spin) in 2 dimensions. 
Therefore, we should expect that this current has a gravitational anomaly. Its 
conservation law is, in fact, 

&j, = -&R, (5.7) - 

where my conventions correspond to s d2zfiR = 8~ for a sphere. Considered 
for more general %dimensional manifolds, this integral is a topological invariant, 
the Euler characteristic x; its value is 

- 
$ 

/ 
d%& R = -2(g - 1) , (5.8) 

--..._ . c where g is the genus of the surface, the number of handles. For surfaces of 
the topology of a sphere, g = 0 and we expect (-3) units of ghost number 
nonconservation. Since the complex plane, including the point at infinity, has this 
topology, we thus obtain the nonconservation law displayed in (5.6). For surfaces 
with handles, ghost number 3(g - 1) should be swallowed by the conformal field 

theory matrix element. 

_ 
_ _Y_ 

- 

When one encounters fermion number nonconservation due to the coherent 
effects of anomalies, the nonconservation is normally manifested in the appear- 
ance of zero modes of the fermion field. These are modes of the fermion field 
which are localized solutions to the equations of motion. If one defines the func- 
tional integral over the fermion field by decomposing in eigenmodes of the fermion 
action 

(5.9) 

the zero modes cpo(z) are annihilated by the Dirac operator, and so the com- 
ponents $0 which multiply these solutions do not appear in the action. The 
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fermion integral over each of these components then gives 0 unless a factor of $0 
is supplied by an extra fermion operator under the functional integral: 

,s- . . _ r 
. (1) = / D$e-JmL 1 =‘O, 

(5.10) 

For the anticommuting ghosts, eq. (5.8) implies that we should find 3 zero modes 
of c(z) on the sphere, no zero modes on the torus (actually, one finds one each 
for C(Z) and b(z)), and 3(g - 1) zero modes of b on surfaces of higher genus. 

The zero modes of c responsible for the result (5.6) are actually easy to 
identify: Since the equation of motion for c is &c = 0, the zero modes are analytic 
functions regular on the plane which satisfy the correct boundary conditions at 
infinity. These boundary conditions should be the ones appropriate for treating 
the z plane as a sphere: Choose a metric which makes the plane a compact space 
of constant positive curvature: 

gzz = (1+ A&,2)2 gzz = gzz - -0. (5.11) 

(Sending A + 0 makes the neighborhood of the origin as flat as one wishes.) 
Then an eigenmode of c is normalizable if - 

11 c iI2 = / d2zJTj -ETz grzc= = / d2z (1 + A”lriz)4 lcL12 (5.12) 

--..._ . 
c is finite. There are three entire functions which satisfy this criterion: c(z) - 

1,z,z2. It is pleasing that these are exactly the coefficients of cl, cc, c-1 in the 
Fourier decomposition of c(z) given by the right-hand side of (2.42). 

__ If we normalize (5.6) to (01 _ c rcocl IO) = 1 and apply this Fourier decompo- 
-sition, we find that 

1 1 1 

(O~C(~l)C(~2)C(~3)~0) = z3 z2 21 = (zl - z2)(zl - z3)(22 - z3) . (5.13) 
2; 2; 2 f 

This formula also follows from the bosonized expression . 
_ 

-75. 

- (O(C(%l)C(Z2)C(%3){O) = (e"(z1)eu~z2~eu~z3)) , 

- .z . The result (5.13) is reminiscent of eq. (4.40). This is, in fact, the first sign of 
a general relation between the treatment of ghost zero modes and the measure 
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for the integrations involved computing in string scattering amplitudes. I will 
explain the relevance of this formula later in this section; we will discuss the 

,s- more general situation in Section 8. 

. 
5.2. GHOST CONTRIBUTIONS TO THE STRING SPECTRUM 

One of the results of the analysis just given is that the Lo lowering operator 
cl does not annihilate the SL(2,C) invariant vacuum IO). This means that there 
exists another state of the open string Hilbert space which has a lower LO than 
IO); this is 

P> = Cl 10) , (5.15) 

Since all other lowering operators annihilate IO) and (~1)~ = 0, this is actually 
the state of minimum Lo. This new vacuum satisfies 

(nlcop) = (OILlCOCllO> = 1; (5.16) 

then (nln) = 0, since this quantity has the wrong ghost number. We have found 
that the true vacuum of the open string theory is a peculiar ghostly state of zero 
norm. Nevertheless, as we will see in a moment, this observation will allow us to 
considerably refine our understanding of the spectrum of string states. 

Since In) is the true open string vacuum, we should consider rebuilding the 
spectrum of physical string excited states by applying the creation operators for 

- coordinate excitations oEn to In); this produces states of the form 

--..._ . c 

._ 

Iti> = a!L,a”&d& - - - IP) , where Ip) = eip’x IfI) . (5.17) 

We may denote such states, equally well, by I+) = c(O)V(O) IO), where V(0) is a 
vertex operator built of Xp and its derivatives. These states are not necessarily 
BRST invariant. In fact, In) itself is not BRST invariant: If we apply the contour 
integral formulae (4.6) or (4.19) to the representation 

In) = c(0) IO) = e”(0) IO) (5.18) 

and evaluate operator products, we find 

Q In> = (-1) -co In> . (5.19) 

On a state of the more general form (5.17), 

- 

---- -- e--Q I$) = f g : c(z)[T(X) + pq I?)) = 
I 

I$) , 

_ .z* (5.20) 
where the Lixx) are the Fourier components of Z’tx). Since for n > 0, cn In) = 0, 
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half of the conditions for BRST invariance implied by (5.20) are trivially satisfied. 
We see, then, that I$) will be BRST invariant if 

,; . . _ 

. LLX) IT$b) = 0 , Cl, 
(5.21) 

(LiX’ - 1) I$) = 0. 

These are exactly the physical state conditions presented, from a very different 
viewpoint, by Michael Green. The second condition states that the operator V 
which creates I$) from In) must be of dimension 1. This is exactly the mass-shell 
condition derived in the previous section. The first condition is equivalent to the 
statement that V must be a primary conformal field, since the contour integral 

LiX)V(0) p-q = f +I zn+‘T(z) V(0) IfI) , 27rrz (5.22) 

for n 2 1, will pick up any higher terms in the operator product expansion of 
T with V. We have seen that this statement requires I+) to have a physical 
polarization. 

- 
An observation equivalent to that just presented is that operators 

--...- . 
c 

c(0) V(0) = euto) V(0) , (5.23) 

._ 

where V(z) satisfies the conditions of the previous paragraph, are the BRST 
invariant vertex operators which we sought but failed to find in the previous 
section. Let us check this directly: If V is a primary conformal field built from 

-P, ._ 

Q c(O)V(O) = 
f 

* 
27ri : e”(‘) [ZdX)(z) + T(u)(z)] : : e”(O)V(O) : 

.  
_Y_ 

-- 

f 

dz = - : e”(z)+u(o) : 
27ri exp[(a(z)a(O))] [v + s-3 . 

dz - : e”(zHu(o) : * 
27ri 

dv - 1 
22 + a.*- 1 - 

,, if c . V has dimension 0. This vanishes if V has dimension 1; that is 
(5.24) 

- 
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We can apply this observation immediately to our calculation of the 4-tachyon 
scattering amplitude. The amplitude constructed in eq. (4.37) remains BRST 

,*- invariant if -we replace factors of s dzV (z) by c(g~)V (20) where zo is any fixed 
. point on the real axis. In -fact, we are required to make 3 such replacements in 

order to satisfy the law that conformal field theory amplitudes annihilate 3 units 
of ghost number. This gives the formula: 

A= 
0 

c(~l)eiPl~X(al) I[ +2)e 
iP*X(Q) . 

(5.25) 
When we evaluate this formula by using (5.14) to compute the ghost correlation 
function, we find again the result (4.41). Eq. (5.25) can be made to look more 
symmetric by replacing 

eiPJqz3) 
by 

f 
2 b(w) c(zs)eip'X(r3) 

- 

3-87 5728A5 _.~._ . 
c 

._ Figure 5. Form of the 5-tachyon scattering amplitude in a formalism in 

which the vertex operators contain ghost factors c(z). 

This gives an alternative picture of the multi-string scattering amplitude which 
is shown in Fig. 5. Because the assignment of c(z) factors serves only to fix 
the SL(2,R) symmetry, it does not matter which of the zi are surrounded by 
a b(w) contour. Giddings and Martinet 1251 have recently shown that one can 

_ -3. systematically derive a formula of this last form from a set of Feynman rules for 
- .- &he open string dynamics. L. 

- 
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5.3. GAUGE TRANSFORMATIONS OF THE STRING STATES 

,c- Let us turn now to a study of the string states which do not satisfy the first 
. of the physical state conditions (5.21). The Virasoro commutation relation (2.36) 

for [Ln, L+] implies that (unless the state has a particular exceptional value of 
of LO) any state which is not annihilated by some Lixx) can be written as a linear 
combination of states of the form 

(n > 0) . (5.27) 

It. is instructive to write out the simplest of the states (5.27) explicitly. To do 
this, rewrite 

(5.28) 

and apply this operator to states built upon Ip) = ei*.x In). Because CY~ Ip) = 0 
for n > 0, only a finite number of terms of the series (5.28) contribute; further, 
we may simplify by using o$ lp) = pp Ip). Then we find 

L-1 IP) = Q-1. Qlo IP) = P’ a-1 IP) * (5.29) 

Similarly, 
-. .- . 
c L-1 x * Q-1 lp) = p- a-1 A ‘Q-1 IP) + A* a-2 IP) 

L-2 Ip) = a-2 *p Ip) + ;u - Q-1 IP) - 
(5.30) 

__ 

If we view the states which appear on the right-hand sides of (5.29) and (5.30) 
as components of the string states ~~c$‘, Ip), q~‘va~,aE1 Ip), we see that these 
are exactly the unphysical polarization states, the timelike and trace parts of the 
polarization, which cannot be associated with propagating states. 

I would like to give this observation a deeper interpretation, as follows: Let 
me introduce a string field, a functional of the instantaneous position of the string 

_ -3. in space-time: 
- :- qxqa)] (5.31) 

The eigenstates of the single-string Hamiltonian, viewed as Schredinger wavefunc- 
tions, are functionals of Xp(a) and, in fact provide us a basis of such functionals. 

- 
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Let us expand a general functional @[Xp] in this basis. The coefficients in this 

i ,s- expansion must carry Lorentz indices to match those of the mode creation op- 
erators ‘foithe corresponding state. It is convenient to include the dependence 

. of @[Xp] on the center-of-mass position zp of the string as an sp-dependence of 
the coefficient functions. The general form of the expansion is then 

@[x’(~)] = [4(z) - iA“( - $‘v(s)d!la!Ll -iV“(z)ac2 + . . .] 1st) . 
(5.32) 

I have assigned arbitary names to the coefficient functions; the factors of i insure 
that all of these functions, and @[Xl itself, are real-valued. Notice that the 
coefficient functions take the form of local fields of increasing spin. Each particle 
in the single-string spectrum is assigned its appropriate local field. 

Now let @(1)(X], Q(2)[X] b e t wo new string fields, with coefficient fields 
4(1)(4.. - and 4(2)(z), . . ., respectively. Using the results (5.29) and (5.30), 
we may compute 

- 

- iA~ljcr!!2 + . ..I In) (5.33) 

- 
J5--2@(2)[d~)] = [- ~(-6pvf$pj)a’,orY, -if3p~~2~cxP2 + . ..I IfI) . 

r--‘- . 

c Now compare the two lines of (5.33) to (5.32) term by term. The coefficients 
of string eigenstates in (5.33), viewed as local fields, are of exactly the right 
form to be the variations of the fields of (5.32) under (Abelian) local gauge 
transformations: 

6hpv = [cY’A~~, + WAI;,,] - 6’““4(2) , (5.34) 

. _Y_ It is natural to hope that the string theory is indeed a gauge theory, with precisely 
- .- ---these transformations as its gaugeinvariances. 

The higher terms in the formulae (5.33), together with terms from the action 
of higher L-, operators on new string fields, produce possible gauge variations 
for the higher mass fields in the expansion (5.32). At first sight, this looks like 
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a frightening expansion of the gauge symmetry group. However, this enormous 
expansion of the gauge group is clearly necessary: The higher mass levels of the 

i ,*- string theory contain increasing numbers of field with spin. These high-spin fields 
must obey consistent field equations which allow them to propagate and interact . 
without producing their unphysical polarization states. It is likely that this is 
only possible if each of these fields possesses its own local gauge invariance. 

The enormous gauge symmetry suggested by this analysis can be written in 
a relatively compact form (26-281 

s@[x(a)] = L-niP(n)[X(a)] (5.35) 

by invoking gauge parameters @tn) [X] w ic are functionals of Xp(a). In ordi- h h 
nary physics, we speak of global gauge symmetries, in which the gauge parameters 
are constant, and local gauge symmetries, in which the gauge parameters are lo- 
cal functions of X. Here we have the next step in this hierarchy, chordal gauge 
transformations, in which the gauge parameters are functionals on the space of 
strings. 

- 

5.4. A GAUGE- INVARIANT ACTION 

In the last section, we have made considerable progress toward a gauge- 
invariant formulation of the open string theory. To complete this analysis, at 

- least at the level of free strings, we need only construct an action principle with 
the gauge invariance (5.35). It seems, however, that something is missing. The 
ghosts, which played so important a role in the formulation of the string spectrum, 

-. . .- . played no role at all in the considerations which we have just completed. Before c 
we attempt to construct a gauge-invariant action, then, I would like to discuss 
the ghost generalization of the string field formalism presented above. 

Let us, then, extend the string field @  to a functional of Xl(o), b(o), and c(a). 
__ The Hilbert space of string eigenmodes will then be larger, and more terms will 

appear in a normal-mode expansion such as (5.32). Explicitly, we find, through 
the second excited level: 

@[X,&c] = [t)(z) - iAp(s)afl - ib(z)b-1 - ic(z)c-1 

iv(z) . a-2 - ij;(z)b-2 - iE(s)c-2 
. _Y_ 

- - @(z)b-&L..- Eqz)c-IcycL_l - S(Z)LlC-1 + . ..I p-l) 
(5.36) 

_ .z* The new local fields appear in quite a remarkable pattern. At the first excited 
level, corresponding to m 2 = 0 states, we find the familiar vector field A“(z), 
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plus two new fields b(z), c (2). Since Q is a real-valued functional, while b-1 

i 

. 

,; and c-1 are Grassmann-valued, the coefficient fields b(z) and c(z) must be an- 
ticommuting fields. They are exactly the ghost ,‘and antighost required for the 
standard Fadde’ev-Popov quantization of Ap! At the next level, we have the 
vector and scalar gauge parameters A’;1, and 4t2) of eq. (5.34), so we expect, 
and find, vector and scalar ghosts 9‘, E and their corresponding antighosts. This 

1261 amazing phenomenon was discovered by Siegel, and it was this discovery that 
set in motion the unravelling of the string gauge invariances. 

I would like to use this extended string functional as my starting point in 
a search for a gauge-invariant action. Let us abstract the expansion (5.36) to 
the form @[X,b,c] = C&(Z) I$i). If we Fourier transform with respect to z, we 
can rewrite the string field as a sum over coefficient functions for string states of 
definite momentum: 

@ = 
/ 

idP] h(P) I?+!%(P)) 9 (5.37) 

where I+i(p)) is a string state built by applying mode creation operators to Ip). 
It is natural to look for a free-string action of the form 

s = (@II(p) = / d26P di(-P).(~i(-P)lKl~j(P)) 4j(P) , (5.38) 

- where K is an operator which acts on the single-string Hilbert space. We must 
find a K whose action on string eigenstates can reproduce the space-time La- 
grangians of the component fields. 

I . . - . - Since [4(p)) includes the ghost vacuum contribution and, possibly also, ghost 
excitations, it is most naturally constructed as a state in conformal field theory. 
Let us, in fact, reinterpret the matrix element which appears in (5.38) as a 
conformal field theory expectation value involving the vertex operators which 

__ create I$i) and IT&) and a third operator which represents K. We can write 
fhese elements concretely for the case in which both external states are tachyons: 

The state I+j(p)) = IP) is represented by the vertex operator c(0)ei*‘X(o). The 
state (+j(P) I = (PI is represented by the adjoint of this operator, that is, its 
conformal transform under z -+ -l/a. We might regularize this operation by 
setting the original vertex operator at .z = C; then the adjoint operation, carried 
out according to the transformation law (2.23), yields 

.  
_Y_ 

- 44 e ip.X(c) --+ (,),‘2-1 . c (-.A) ei*:X(-l/r) . (5.39) 

- 

Each of the two vertex operators has ghost number 1. In order to satisfy 
the ghost number conservation law of conformal field theory matrix elements, 

50 



the operator we choose for K must also have ghost number 1. The “obvious” 
candidate is the BRST charge Q. Indeed, using (5.20) we may compute 

,; 

. 

(--PI Q CP) = 
g-1 

c(-i)e- ip.X(-l/c) . Q . c(O) eiP*X(O) 

1 p-1 

= (( ) z 
c(- 1) e-iP.X(-l/c) . 

6 
co ($ -1) c 1 eiP.X(0) 

> 

= (-$)“(c-1 (i)2.cecr) exp[-p210g(i)] . (c-1)) 

the complicated dependence on c cancels completely, and what remains is 
(5.40) 

(-PIQIP) = ;(p2 - 2) . (5.41) 

Since the tachyon has mass m2 = -2, this gives exactly the correct free La- 
grangian for the tachyon field: 

--..._ . 
c 

s= 
/ $(-P) f (p2 + m2) $(P) + . . . . (5.42) 

__ 

We shall now check the form of the Lagrangian at higher mass levels. Let 
us concentrate for the moment on the terms involving string states with physical 
polarizations. These states are created by vertex operators which are primary 
conformal fields. For such states, eq. (5.20) implies 

(+i(-P)I Q k(P)) = (h(-p)I co(Lix) - 1) f+j(p)) . (5.43) 

If the state I+j(p)) contains n units of oscillator excitation, then, acting on this 
state, 

.  
_T_ 

- 

‘ii’-- 1 = % + n - 1 = icp2 + m2) . 
L 

(5.44) 

- 

The factor of cc in (5.43) is needed to make the diagonal matrix element in In) 
nonzero. We have thus shown that action (5.38) with the choice K = Q gives the 
correct free-field action for all physical components of the various string fields. 
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This analysis makes it very plausible that the correct action for the open 
string free field theory is [29--311 

i ,c- 

. S = (@IQl@) . (5.45) 

To complete a demonstration that this is indeed the correct action, it is only 
necessary to show that this expression has a group of gauge invariances sufficiently 
large that we can remove all unphysical field components. Actually, it is very 
easy to identify the gauge invariances; since Q2 = 0, any transformation of the 
form 

W) = QIE) 3 (5.46) 

where IE) is a new string functional, leaves (5.45) invariant. A subset of these 
transformations is obtained by specializing 

I@ = L@(n)) * (5.47) - 

Acting on this with Q, we find Sl@) = Lnl@ln)); thus our proposal above for the 
gauge group of the free string theory is contained as a subgroup of the transfor- 
mations represented in (5.46). Since all physical states have the ghost number of 
I-n), and the gauge invariances (5.35) 1 a so correspond to definite ghost number, 
we can simplify the theory by restricting I@) to states of ghost number 1. Since 
Q raises the ghost number by 1 unit, IE) will then be restricted to ghost number 
0. For this theory of definite ghost number, a careful analysis (321 shows that the 
number of gauge invariances is precisely correct to allow all unphysical string 
states to be eliminated. 

__ 

It should be noted, however, that the restriction to definite ghost number 
1 allows certain states to remain in the classical string theory which cannot be 
written as excitations of the coordinate oscillators. The first of these states 
appears at the second mass level, it is visible in (5.36)as the component field s(z) 
in the term 

9 = [* - - + S(S)LlC-1 + -1 p> . (5.48) 

. _Y_ 

This field can be gauged away, but it does participate in the gauge algebra of the 
m2 = 2 states. We will see a more important example of such a ghostly classical 
field in the next section. 

- The covariant, quantization of this system is not entirely straightforward. 
The gauge invariances we have defined have their own gauge-invariances: 6l.E) = 

- :* Q(G), where (G) is a new functional of ghost number (-1)) leaves the transfor- 
mation law of I @) unchanged. This means that the Faddeev-Popov action for the 

9G 

-- 
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ghosts will have a gauge invariance, requiring ghosts of ghosts. Following this 
logic, one finds ghosts of ghosts of ghosts, etc.; each successive ghost involves 

i ,c-. states of ghost number 1 unit lower. The corresponding antighosts cover the 
set of positive ghost numbers. The final result of this procedure is a covariantly 

. quantized theory containing all possible ghost number sectors: This theory in- 
cludes the-full content of the functional @[z(a), b(a), c(a)]. The gauge-fixed string 
field theory is thus exactly the field theory of the gauge-fixed string! 

It is possible to supplement the free field action I have described with a gauge- 
invariant interaction. Many authors have offered proposals for this interaction; 
two of the most completely realized are those of Witten [29,33,34] and Hata, Itoh, 

1351 Kugo, Kunitomo, and Ogawa. Unfortunately, I do not have space here to 
review this work, which still seems to require a good deal of further clarification. 

6. Gravity from String Theory 

- 

Now that we have seen how the gauge invariances of the open string theory 
arise, let us explore how these ideas generalize to the closed string. Michael 
Green explained that the graviton arises as a particular state of the closed string; 
thus the formulation of a gauge-invariant closed string action should lead us 
directly to general coordinate invariance and Einstein’s equations. Unfortunately, 
many of the connections along this chain are not yet well understood. In this 
section, I will give three sets of arguments which give partial information about 
the nature of gravity in string theory; I leave it to you to formulate a more unified 
understanding of the connection between strings and gravity. 

- 

*-.~._ . 6.1. SCATTERING OF GRAVITONS c 

__ 

First, let us generalize the formalism for string scattering amplitudes pre- 
sented in the previous section to the closed string. To do this, we need only 
bring back into our discussion the anti-analytic section of the Hilbert space and 

construct vertex operators which create both analytic and antianalytic modes 
excitations. 

Let us denote the ladder operators of the anti-analytic sector (corresponding 
to right-moving excitation on the closed string) by &K; these obey the same 
algebra as their counterparts in the analytic sector. Denote the new ghost ladder 
operators by 8, and z,,,. The vacuum of the theory is given by 

. _Y_ In) = Cli51 lo) . (6.1) 4- 
- 

This state is not HRST-invarianty’but the states of nonzero momentum 

Ip) = eipsx(0) cl’E1 IO) (6.2) 
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are annihilated by Q and Q if p2 = 2. Michael Green identified the graviton 

i ,s-. with the massless tensor state acr~‘Y_ I r p). This state is created by the vertex 
operator-. *. 

. 
(6.3) 

(or simply by the coordinate part of this operator, integrated over d2z). The 
operator (6.3) is annihilated by both Q and Q if p2 = 0 and if p%,+v = vpvpv = 0. 

Notice that the graviton state satisfies the condition LO = &; it has equal 
amounts of excitation in the left- and right-moving sectors. Michael Green argued 
that this condition must be satisfied for all physical closed-string states. Let me 
explain how this condition arises from the conformal field theory viewpoint. If 
I ignore the problem of fixing the SL(2,C) invariance (which contributes, in 
any event, only an infinite redundancy), a scattering amplitude is computed by 
integrating vertex operators over all points of the z plane. 

f 
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Figure 6. Typical configurations of vertex operators which contribute to 

a scattering amplitude for closed strings. 

.  
_Y_ The contribution in which a particular vertex operator is located at zc involves an 

-- -integral over the locations of all other vertex operators; in particular, it includes 
an integral over rotations of the other vertex operators about the point zo, as 
shown in Fig. 6. Translate so to 0. As we have seen from the discussion of 
SL(2, C) in section 2, the two operators Lo and zo generate linear combinations 
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of dilatations and rotations. Explicitly, 

‘. 
‘=- (Lo+Zc)c generates z-,z+6Xz, ZGZ++AZ, 

. (6-4 
(Lo - Eo) generates z+z+icTaz, Z--+f-ic5af. 

Since we integrate over all possible rotated configurations of sources, only states 
created at ze which are rotationally invariant will give a nonzero contribution 
to the amplitude. These are the states annihilated by (LO - zo). The other 
possible states of the closed string theory simply disappear. This phenomenon, 
that states which are not invariant to geometrical transformations on the world 
sheet disappear from all transition amplitudes, is a novel and extremely important 
aspect of string theory. It will play a major role in our discussion in Sections 8. 

- 
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Figure 7. The graviton Ward identity for on-shell external states. 

The vertex operator formalism allows us to check the on-shell graviton Ward 
identity shown in Fig. 7: Contracting the graviton vertex with pp should cause 
the graviton scattering amplitude to vanish. Indeed, we can see directly 

_ . ..-- 
-.- ace--- PcL 

/ 
dfz azX~a~X”eip’x = -i 

/ 
d2z a, [&XV eip.x] , (64 1. 

which integrates to 0. In principle, one might worry that nonzero contact con- 
tributions might appear due to singularities as z approaches the location z; of 
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some other vertex operator. However, all such contact terms are multiplied by 
factors ]z - zi]‘P’Pi, evaluated as z + z;. This factor is properly defined by 

* ,z- analytic- continuation from the region p . pi > 9; hence, the contact terms are 
zero. This subtlety aside; the Ward identity for gravitons arises in a very nat- . 
ural way. This is easy to understand, because the graviton couples to the local 
energy-momentum density of the world sheet. 

6.2. GAUGE INVARIANCES OF THE CLOSED STRING THEORY 

Let us turn now to the generalization of the construction of gauge invariances 
and the gauge invariant action to the closed string. My discussion of these is- 
sues will be somewhat more pedestrian than that given in the previous section; 
hopefully, it will clarify the physical content of the construction presented there. 

Begin with a closed string field, a functional @[Xp(a)] of the location of 
a closed string in space-time. The mode expansion of this field, restricted to 
components satisfying LO = Eo, is - 

(6.6) 
We have been concentrating on the graviton, a symmetric tensor, but actually 
the field Vu is a tensor of arbitrary symmetry. It is useful to decompose it into 
its symmetric and antisymmetric parts: 

- 

.._.v. _ * 

P”(z) = h”“(z) + b”“(z) . (6.7) 

The generalization of the gauge transformation law (5.35) to this system reads: 

6@ = L-,a?(,) +z-,9(K) . (6.8) 

If we define the expansion coefficients 
-- 

then (6.8) implies the gauge transformation laws 

(6.10) ; 

If hpv is interpreted as the linearized gravitational field, the first line of (6.10) is 
just a linearized local coordinate transformation. 
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It is not difficult to write an action for hpLy and bpv which is invariant to 
(6.10) even if one works in the restricted Hilbert space without ghost excitations. 

,z- Note that ,-since [ L1, L- 11 = 2L0, the operator P,= (1- L-~(~Lo)-‘L~) satisfies 
. 

- 

.,_.v. _  

r 

_a 

_ 

, _T. 

- - 

- _  

P L-@(l) = L-1 -L-1 - L2_1 l 
2(Lo + 1) 

Ll Q(l) 1 - L:,L19~q , (6.11) 

which has overlap only with states with two units of excitation in the ana- 
lytic sector. This object thus acts on t~v~~lZr In) as a projector onto gauge- 
invariant components. This suggests that we write the action for Q in the form 
S = (@lK(lQ), where 

K = [(Lo - 1) + (Z- l)] PP + . . . , (6.12) 

and the additional terms annihilate the states of the graviton mass level. Using 
this ansatz, we can evaluate the matrix element of K explicitly and find 

.s = . . . + l&t’” [-a2 [6’*-T] [6y=-q]] tXu + .-. ; (6.13) 

I have used the fact that (LO - 1) = ip2 = -ia2 on this mass level. 

The piece of the action (6.13) which is antisymmetric in the indices of t is 

S= 
/ 

dx bC”” (-d2&S’” + i3WXG”” + 8’d”G“X) bxv 

1 =- 
3 / 

dx [dpbXv - $bP” - a”bAP]2 . 

(6.14) 

In this expression, bp” appears as an antisymmetric tensor gauge field with field 
-strength HpVX = 8[pb”‘]; the action takes the gauge invariant form S - s H2. 

The part of (6.13) h h w ic is symmetric in the tensor indices is more problem- 
matical. This piece can be rearranged, by adding and subtracting a convenient 
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. 

term, to form 

,L- 

+ ,,,(,PV-T) (p-!g=) (6.15) 

_ ,,.(,W’+3 (@L!?&)} hx”. 

The first two lines of this expression are the terms quadratic in hp’” which appear 
when one expands the Einstein action 

/ 
dx &R (6.16) - 

- 

according to G,, = ~5~~ + h,,. In this same expansion, the curvature scalar is 
given by 

R = 6W’h,, - d2hp P, (6.17) 

so the last term is the linearization of s dx(-2) R (-a2)-l R. This interaction 
is nonlocal in space-time. To render it local, we must add to the theory a new 
scalar field c$( ) h’ h x w rc couples to curvature. The action 

.._.v. . 
* s= 

/ 4~3~4 - 24R (6.18) 

__ 

is a local expression which reproduces the last term of (6.15) when 4 is integrated 
out. This new field 4(x) is called the dilaton field. 

-- -If we had begun in a formalism which included the ghost states of the closed 
string Hilbert space and which insures gauge invariance from the beginning by 
virtue of the identities Q2 = Q” = 0, we would have found the action appearing 
directly in the form (6.18), with the extra field 4 identified as the coefficient of a 
ghostly state in the decomposition of the string field: 

Q = [...- 4(x) (b-lE-l + c-&~) + .+ln) . (6.19) 4 
_ -2. 

-.._ -Note that the kinetic-energy termfor r$ in (6.18) has the wrong sign; this is a sig- 
nal of the field’s ghostly origin. In general, the system of gravitational and dilaton 
fields contains one propagating scalar particle, which is a linear combination of 
4 and hp’,. 
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6.3. CONFORMAL CONSISTENCY CONDITIONS 

i ,z- In the discussion just completed, we took a straightforward approach to the 
. derivation of Einstein’s equations, constructing the gauge-invariant action for the 

string gravitational field. We did in fact succeed in obtaining the correct equa- 
tions, though only at the linearized level. Now I would like to present a second, 
more indirect approach to the derivation of the field equations, by considering 
the dynamics of strings moving in macroscopic background gravitational fields. 

At the beginning of this section, I discussed the coupling of single gravitons 
and antisymmetric tensor particles to closed strings. This coupling was described 
by the insertion of vertex operators 

/ 
DXe+ d2z (W’(p) + bpv(p)) &XWzXYeiP’X 1 . 

Since the insertion is of the same basic structure as the world sheet action 

(6.20) 

- 
it is natural to view (6.20) as the first term in the linearization of the geometrically 
invariant expression 

-I”-: _ DX P -G d2z {G,,(X)&Xp&Xu + B,,(X)&X“&X”} ex [ l / 
I 

(6.22) 

__ 
about the flat background metric which appears in (6.21). The coefficients 

+(X), Bpu(X) in (6.22) are functions of the string coordinate Xp(z); thus, 
the-world-sheet dynamics described by (6.22) is nonlinear. In fact, (6.22) is pre- 
cisely the action of a %dimensional nonlinear sigma model, in which the target 
space on which the nonlinear sigma model variables live has been identified with 
space-time. The B,, term, which is antisymmetric in world-sheet indices, may 

1361 be interpreted as a Wess-Zumino term. 

At first sight, there seems to be no difficulty in quantizing the string in any 
_ . ’ _T. general background geometry. However, we must recall that the quantization 

__ -of the string depends crucially onconformal invariance,_or, equivalently, on the 
existence of a BRST charge satisfying Q2 = 0. We will see in a moment that this 

- - implies very stringent restrictions on the background geometry. These restric- 
tions were first derived by Lovelace, 13” Fradkin and Tseytlin,[3*’ Callan, Friedan, 
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l391 Martinet, and Perry, and Sen 14’1 by studying the /3 functions of the nonlinear 

c ,c- sigma model. In my discussion, I will follow Banks, Nemeschansky, and Sen [411 

(BNS) in approaching the problem from the viewpoint of the ghost dynamics and 
. the BRST charge. 

Before beginning this analysis, we must identify one piece which is missing 
from (6.22). This expression couples the string to background G,, and B,, fields 
but does not yet include the dilaton. Since this field has, after all, a ghostly origin, 
BNS propose to include it as a nonlinear coupling to the world-sheet ghosts 

G,,(X)&XWZX” + B,,(X)i3zXWzX” 

(6.23) 

+ b,,&c” + ; bzzcY&b(X) 

This action is cZassicuZZy BRST invariant, with 

Q= f 
dz e(4/3Mx) 
27ri 

c(z) [-&3,X’a~X’ - b&c] . (6.24) 

One can remove the factor e4/3$(x) by the transformation 

c -b ev413+c , b + e+4/3+b. (6.25) 

Unfortunately, this transformation is generated by the ghost number current 
jz = bc, which we already know may possess anomalies. In fact, the derivative 
of q5(X) couples to this chiral current like an external gauge field. We therefore 

expect to find an anomaly in the transformation (6.25); this generates a new term 
in Q proportional to 334(X). Th e t ransformation (6.25) then leaves us with the 
BRST charge 

Q= f 2 c(z) [F(x) + pcq ) (6.26) 

where 

_T_ T”(x)- = -;G,,(X) &Xp”Bzx” + fa;$(x) . (6.27) - 
L- 

From the discussion of the BRST charge in Section 4, we know that (6.26) 
will satisfy Q 2 = 0 if the operator product of 2’ -lx) with itself takes the standard 

60 



form 

. 
(w2*)2 

F’xqz) + -!- a,iF(x) + . . . , 
W-Z 

(6.28) 
with c = 26. This result, however, is no longer so simple to obtain, because the 
operator product must be computed in a field theory with complicated nonlinear 
interactions. BNS expand the nonlinear sigma model about a flat target space 
metric by the standard technique of parametrizing the space in terms of Riemann 
normal coordinates: [421 

G,,(X) = G,,(so) - + Rp,,p6X”(z)6X~(z) + . . . (6.29) 

Integrating over the field fluctations GXa(z) defines a perturbation theory in pow- 
ers of the background curvature. Computing to l-loop order in this expansion, 
they find 

r”(x)(w) F’x’(z) = (6.28) + m - ’ . 
(w - 2)s 

- 

(6.30) 

- . 

The new singular structure appears because the interactions couple the analytic 
and anti-analytic sectors. (The brackets indicate the symmetric and antisym- 
metric parts of this tensor.) In addition, one finds a shift of the central charge 

c = b + 6a’{ -V24 + (V,4)2 - :R + f (gw~)~ II i (6.31) 

--*p ;. 

where the string slope parameter ar’ absorbs the dimensions. To insure Q2 = 0, - - 
the two terms in brackets in (6.30) must be set to zero, and c must be kept equal 
to 26. 
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The second of the two conditions generated by (6.30) is the equation 

,z- . . _ 
VxH,d = 2(Vxq5)H~ux , (6.32) 

which is a -Maxwell equation for the Bpv field. The first condition can be rear- 
ranged into an equation of the form 

R :G w - 2 PV R= . . . . (6.33) 

this is Einstein’s equation for the background gravitational field. These two 
conditions are equivalent to the vanishing of the p functions for the nonlinear 
sigma model. The Bianchi identities can be used to show that, if these two 
conditions are satisfied, the quantity displayed in (6.31) satisfies V,c = 0; thus 
all that remains is to adjust the overall constant value of this quantity. The three 
conditions all follow consistently from the following variational principle: - 

6 R + (V&)” - (6.34) 

- 

.._.-. _ - 

__ 

It is worth comparing this action principle with the results of our explicit ana- 
ysis of the gauge-invariant string field action. The free-field Lagrangians (6.14), 
(6.16), and (6.18), taken together, give exactly the linearization of (6.34). Pre- 
sumably, this is no accident; the equations (6.30) and (6.31) are consistency 
conditions that should be automatically satisfied it the theory is properly for- 
mulated. However, the generalization of our earlier analysis to the full nonlinear 
theory has not yet been done, and the precise relation between these two ap- 
proaches is not at all understood. I can only recommend this as a problem for 

-your attention. 

How do we solve the conformal consistency conditions? I will discuss only 
the simplest solutions here. The equations we have derived correspond to the 
results of leading-order perturbation theory in powers of the curvature; in higher 
orders, they receive corrections proportional to higher powers of curvature and 
field strength. To this order, however, they are solved by setting 4(z) to a con- 
stant value, H =~ 0,~ and R,, = 0. This last condition does not necessarily 

-r. imply Rpvxa = 0; among the additional allowed configurations are the Calabi- 

-.-- R* Yau manifolds which we will-discuss briefly in Section 9. Several authors [43,441 

have proposed solutions corresponding to group manifolds on which both of the Ic 
symmetric tensors appearing in (6.30)and (6.31)-Rpy and HpxQ HvAu-take val- 
ues proportional to G,,. When the condition (6.30) is satisfied, Hpx,, acts as a 
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parallelizing torsion. From the nonlinear sigma model viewpoint, this solution 
is just the fixed point found by Polyakov and Wiegman WI and Witten by 
the addition to the nonlinear sigma model of a,rWess-Zumino term. However, 
the condition (6.31) cannot be satisfied at the same time unless one shifts the 
value of Q away from its free-field value of 26. This is perfectly acceptable for 
the bosonic string, but in the case of the fermionic string such a shift may do 
violence to space-time supersymmetry. We will take up this issue, and other 
issues related to the compactification of space-time dimensions, again in Section 
9, 

7. The Covariant Superstring 

In order to introduce fermions into string theory, and to formulate consis- 
tent and possibly realistic string models, one must generalize the simple bosonic 
string to a system with supersymmetric world-sheet dynamics. Michael Green 
has described to you the general outline of this method, and his own elegant 
light-cone formulation of the supersymmetric string. In this lecture, I will de- 
velop this theory once again from a viewpoint which allows Lorentz-covariant 
calculations of string scattering amplitudes. As in earlier sections, my primary 
tool will be the use of conformal field theory. We will see that the calculational 
methods of conformal field theory work together naturally with the constraints 
of BRST invariance to clarify the structure of this extension of the formalism of 
strings. 

7.1. SUPERCONFORMAL FIELD THEORY -._.- _ 
- 

__ 

As a first step in developing the theory of the supersymmetric string, I would 
like to introduce the supersymmetric extension of the formulation of conformally- 
invariant field theory given in Section WA81 2. This extension is surprisingly 

-straightforward; all of the technical apparatus we require is already in place. 

In principle, I should begin from a locally supersymmetric 2 dimensional 
action, coupled to the supermultiplets (Xp,\Ep) which we described at the end 
of Section 3.f However, following the logic of Section 2, I will assume directly 
that we have chosen the metric to be of the form (2.5), and, further, that the 
corresponding gravitino field vanishes. In this flat background, we can set up a 
superspace with bosonic coordinates z, 2. For N = 1 (or (1,l)) supersymmetry 

_ _T_ in 2 dimensions, the supersymmetry generators form a 2-component spinor which 
--- we can-represent in the basis .of eq. (3.24). The supersp.ace thus should have two 

fermionic coordinates; we may represent these as Grassmann variables 8,s which 

c 

* A clear derivation of the string dynamica from this starting point can be found ref. 49. 
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transform as analytic and anti-analytic objects of conformal dimension -$. A 
scalar superfield on this space has the general structure 

;- . . _ 
. X(&i, e,ig = x + thj + ‘i@ + ei?F . (7.1) 

We can see that this field indeed contains the analytic supermultiplet (X(z), $(z)) 
and its anti-analytic counterpart, as well as an auxiliary field F. For the rest of 
my discussion, I will attach a Lorentz index to X and treat it as the string 
coordinate superfield. 

The two supersymmetry generators can be represented as derivatives with 
respect to the anticommuting coordinates: 

corresponding to the supersymmetry algebra 
- 

{Q, Q) = -23,) {Q,&} = -aa,. (7.3) 

Covariant derivatives which anticommute with Q and Q are given by 

- D= ae + ea, , D = a3 + ii& (7.4) :. _ 

A natural guess for the free-field Lagranpian of Xp is: L: = DXPDXP. Indeed, 
if we compute the derivatives of Xj‘ explicitly 

DXp = +p + Bt3,X~ - &3~3,~~ -t 

-- Dxr” = iJ” + eazxr + e&y - 

and define s d28 30 = 1, we can assemble 

(7.5) 

-._.- _ 
- 

__ 

- $“a,$” + F’} . : 

(7.6) 
This is indeed the supersymmetric action of massless free fields. The equations 
of motion which follow from this action imply that $JP is an analytic field while 
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. 

- 

- ._ .- . 
- 

_ 
’ .n. 

3;” is anti-analytic and F p = 0. This allows us to simplify (7.5) to 

,L- . . _ 
DX” = ?y + ea,xp ) Bp ,-z qp + &gp . (7-V 

Let us now explore the symmmetries of the analytic sector. The coordinate 
differences 

212 = 21 - 22 - e1e2 e12 = 81 - 82 (7.8) 

are supersymmetric, in the sense that they are annihilated by (Qr - Q2). It is 
useful to note that 

D1z12 = 02212 = 012 , and D2 = t3 1 z1 , D; = a,, . (7.9) 

The invariance of 212 suggests that the propagators for the component fields 
of X“(z, 6)) can be written in a unified way as a superspace propagator 

(X%, ~1)XY(~2, 02)) = -bc”” log(zr2) . (7.10) 

It is easy to check this by Taylor-expanding the left- and right-hand sides of 
(7.10) in powers of 61, 82. The two nonvanishing terms do indeed give the correct 
component-field propagators: 

-- - 

(x+l)x”(z2)) = -4Pv log(z1 - 22) 

- . 
-e1e2 (Ty(z~)~v(z2)) = -4Pv l 

[ 
- 

21 - z2 1 
(7.11) 

The energy-momentum tensor of the (X”,$J~) supermultiplet can also be 
written in superfield form. A natural expression is 

T = -+?W2X~. (7.12) 

This object is actually fermionic in character, and of dimension i. Its components 
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in a expansion in 6 have the form 

i ,L- . . _ 
T = TF + 6Tg,:. (7.13) 

. 

TB is a bosonic tensor of dimension 2; this should be identified with the energy- 
momentum tensor of the component description. Indeed, for the choice (7.12), 

TB = -g3,xq2 + ~~Wz~' ; (7.14) 

this is exactly the energy-momentum tensor of the component fields Xp, +p. The 
fermionic component TF has the form 

TF = (7.15) 

- 

- 

this is the generator of local supersymmetry transformations. 

Apparently, the local conformal and supersymmetry motions come together 
into a unified algebra. Using our functional representation of commutators, we 
can work out the algebra if we know the operator products of the components 
of T(z, 6) with one another. Since TB is the conformal generator introduced in 
Section 2, and TF is a conformal tensor of dimension $, we can immediately write 
two of these relations: 

TB(~) TB(~) - (w3$4 + 
(w ": 2)2 

TB(~) + (w yz) ~ZTB 3 

TBtw) TF(z) - tw35p TF(~) + 

In the first line, I have defined Z = $c, so that a scalar superfield X(2,6) will 
have c = 1. The two lines of eq. (7.16), may be recognized as components of the 
superfield relation 

+ - - T(z2,f12) “z “z:: 

(7.17) ; 
L-1 1 

+5212 
e12 

DT(a, 6,) + -z &T(dh) . 

The leading component of eq. (7.17) gives the last of the three operator product 
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expressions: 

i ,L- . . - 

. TF(w) TF(z) - (-Y;J~ + ; ‘iw: z) TB(~) - (7.18) 

If we now define conformal and superconformal generators by 

L, = 
f 

dz 
7 P+‘TB(z) , 2m 

Gk = 2 
f 

% z~+~TF(z) , 2m 

(7.19) 

we can apply the contour integral methods of Section 2 to compute their com- 
mutation relations. The result is - 

[L, La] = (n - m)Ln+m + ; n(n2 - l)S(n + m) 

[Ln,Gk] = (5 - k) &+k (7.20) 

{Gk,Gp) = =k+, + ; (k2 - i)b(k + p) . 

__ 

This is the superconformal, or Neveu-Schwarz-Ramond, algebra. It is a graded 
extension of the Virasoro algebra incorporating local supersymmetry. This al- 
gebra will be the world-sheet gauge symmetry algebra of the supersymmetric 

-string. 

7.2. VERTEX OPERATORS FOR THE NEVEU-SCHWARZ SECTOR 

The Hilbert space of states defined by the superconformal field theory of 
X~(Z, 6) should contain just the spectrum of states found in the open superstring 
theory, in its covariant (Neveu-Schwarz-Ramond) formulation. Let us work out 
that spectrum, and see what correspondence appears. - 4 

_ ._ 2. 
- ~- - - It is most straightforward tobreak up the superfield Xp into its component 

fields Xp(z), @p(z). Xp(z) h as exactly the action that I have already described 
in Section 3: Its Fourier components c& act as ladder operators to create the 
excited oscillator modes of the string. The new information comes from $+((z). 
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Since this field is a conformal tensor of dimension 3, its Fourier expansion should 
be- written 

c ,L- -. _ 
. 

(7.21) 
k=-m 

As we have seen in (2.44), this convention for the Fourier components implies 
that $i lowers Lo by k units. In our previous examples, k took integeral values; 
however, we see from (7.21) that +p( z can be a single-valued function on the ) 
complex plane only if, in this equation, k takes half-integer values. Since, (4.22) 
implies that 

(7.22) 

the components with k > 0 act as fermion annihilation operators, and the com- 
ponents with k < 0 act as creation operators. The full Hilbert space is the space 
of states created from IO) by the action of c&, with n an integer, and $Ek, 
with k a half-integer. Comparing this result to Michael Green’s development of 
the covariant superstring, we see that this reproduces exactly the Neveu-Schwarz 
sector of the theory. 

- 

- 
At first sight, this result seems paradoxical: The Neveu-Schwarz sector of 

the string was defined by anti-periodic boundary conditions, while in the above 
discussion, I have insisted on the regularity of $+(z) and therefore on the pe- 
riodicity of @ ‘ around equal-time circles. This paradox dissolves when we look 

- . ..- . back to the transformation (2.3) which gives the relation between the original - string variables 7, B and z. If we write w = r + ia and carry out this conformal 
mapping of a tensor of dimension f, we find 

__ 

( > 
L 

$(w) -+ 2 2 q+(w)) = e”/2$+(w)) . (7.23) 

Going once around the string sends 0 -+ Q + 2r, or w + w + 27rri. This produces 
a factor eiX = (-1) on the right-hand side of (7.23). Hence, in order for ?,P‘ to 
be single-valued on the z plane, it must have been anti-periodic (@‘(a + 27r) = 
-@‘L(,)) on the original string. The result of this argument is that the states of 

_ the Neveu-Schwarz sector are very simply described on the z plane. The states G 
--- of the Hamond sector require a-more sophisticated construction, which will be 

presented later in this section. -. 
- >- 

It is not difficult to construct the vertex operators which create the asymp- 
totic states of the Neveu-Schwarz sector. It is important to note, however, that 

68 



because the reparametrization gauge group is larger for the superstring, the con- 
straints of BRST invariance are stronger. To determine the new conditions, let 

,L- us- work out the BRST charge. This appears naturally in the superspace for- 
. mulation just presented. ~If we group the reparametrization and superconformal 

ghosts into supermultiplets 

c = c+e7, B = p--Mb, (7.24) 

we can obtain the actions of the (b, c) system and of the (p, 7) system from the 
expression 

S = & d2z d26 BDC . 
/ / 

(7.25) 

Using as ingredients the superfields B and C and the supersymmetric covariant 
derivative D, it is not difficult to construct an energy-momentum superfield whose 
bosonic component reproduces the energy-momentum tensors of the component 
ghost systems, given by (3.18) with j = 2 for (b, c) and j = i for (P,7). The 
result is: 

T = -D~B.C + ~DBDC - ~BD~C. (7.26) 

- 

_._._ . - 

The fermionic component TF of (7.26) may be though of as the generator of local 
supersymmtry on the ghost fields. 

It is naturally suggested that the BRST charge for the superstring theory 
should be constructed as a superspace contour integral of a ghost field with this 
energy-momentum superfield. More concretely, this prescription gives 

- tj = - f 2 / d6 : C(zJ) - (Ttx) + ;T(B9C)) : 

= c(z) - (TAX”) + 3bd%7)) - 7(4.(T$x") 1 (b,B,7) 
+ sTF 

. 

(7.27) 
Indeed it is straightforward to verify that this quantity satisfies Q2 = 0 as long as 

_ , _Yz_ Ttx) satisfies the operator product relation (7.17) with c^ = 10. This insures that 
- ._ - the full-energy-momentum tensor (Ttx) + TtBsC)) satisfies the Neveu-Schwarz- 

Ramond algebra with zero central charge. If the background space-time is flat, - >- this condition is just the requirement derived in Section 3 that this background 
be lo-dimensional. 
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It is reasonable to expect that vertex operators for the Neveu-Schwarz states 
will have the general form: 

,L- . . _ 

(7.28) 

Let us apply (7.27) to this structure and see what conditions result. For this, it 
is useful to rewrite the BRST charge in the form 

: cn Lyy - &G-k : + (3 ghost terms) (7.29) 
--oo 

-._._ . 
- 

The cn annihilate (0) only for n > 1, so all of the L, for n 2 (-1) must give 
zero when applied to (7.28). Since (7.28) is translation-invariant, it is indeed 
annihilated by L-1. The conditions associated with L,, n 2 0, are just are those 
written in (5.21), with each Lix) replaced by the total Virasoro operator for 
the combined system of Xp and ?,P. The 7k annihilate IO) only for k > f, so 
Gk for k 2 -3 must also give zero acting on (7.28). G-4 may be identified as 
the global supersymmetry generator: Using the definition (7.19) together with 
(7.15), and representing an infinitesimal supersymmetry parameter by E, one can 
readily compute the commutators 

[Ci, =‘(%)I = 4”(z) > [cG,i, @ ‘(z)] = &X’(z) . 
2 

(7.30) 

This is indeed a global supersymmetry transformation 

__ 

- 

(7.31) - 

If (7.28) is annhilated by G-3 and by all of the L, for n 2 0, the second relation 
of (7.20) implies that all of the Gk for k > 0 also annhilate this operator. Thus, 
for vertex operators of the form (7.28), the one new condition arising from the 
superconformal algebra is that the vertex operator be globally supersymmetric. 

_ . It should be noted that (7.28) is not the most general form for a vertex operator 
~- - - in the Neveu-Schwarz theory. I will present some more general operators, which 

involve the superconformal ghosts in a nontrivial way, later in this section. 

Continuing, however, with the operators of the simple form (7.28), let us 
write down the simplest operators satisfying the requirements of the previous 
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paragraph. The most straightforward way to insure that V[Xp, $@] will be su- 
persymmetric is to write it as a superspace integral: 

i ,z- . . -_ 
. / dz v(xy $“I = / dz / dB’V [X”(%, e)] . (7.32) 

The simplest choice is 

h(k) = I 
de cikWz,~) = ik . $(%) cik.X(s) . (7.33) 

This operator is automatically primary. It has dimension 1 if k2/2 = 3. This 
operator thus creates a scalar particle with m2 = -1; this value is negative, 
but half the normal quantum. The corresponding particle is the tachyon of the 
Neveu-Schwarz theory. The next simplest choice for V is 

c - V,,(k) = / de c~DX~ eik’X(z,e) = cp (a,X“ + ik . qh+bj‘) eik.X(z) . (7.34) 

- 

This is primary if c . k = 0 and dimension 1 if k2 = 0. This vertex thus creates 
the massless vector particle of the Neveu-Schwarz theory. The generalization to 
higher levels should be clear. One feature of this analysis seems strange, however. 
In the discussion of the Neveu-Schwarz spectrum given below eq. (7.22), the 
tachyon and vector states appeared as 

--_.- 

__ 

IV 3 ftc, If-9 * (7.35) 

The vertex operators which create these states seem to contain an extra fermion 
field. In fact, these two arguments treat the same states in two different repre- 
sentations. I will reconcile these two pictures at the end of this section. 

- 
-In either of the pictures, it is unambiguous that the tachyon and vector 

particles are created by operators with opposite Grassmann properties. This 
looks very dangerous for the formulations of a string field theory describing the 
Neveu-Schwarz states. If we insist that the Neveu-Schwarz string field is bosonic, 
then the expansion analogous to (5.37), 

ww4,V(6)]’ = / dlop (gtp)vt[P) + Ap(~)Kt‘(p) -+ . . .} IO) , (7.36) 
- ._ - 

implies that the coefficient A,(p)-is a c-number while 4(p) is a Grassmann num- 
ber. The latter result is inconsistent with the spin-statistics theorem. To formu- 
late a consistent theory, we must remove all terms with Grassmann coefficients. 
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This projection eliminates all states at half-integer mass levels. This is precisely 
1501 ;- the projection of Gliozzi, Scherk, and Olive, (GSO), which was motivated from 

another -viewpoint in Michael Green’s lectures. Note that this projection turns 
. the Neveu-Schwarz string into a theory which is free of tachyons. 

7.3. SPIN OPERATORS 

Let us now turn our attention to the Ramond sector. We must understand 
how to express the Ramond states in conformal field theory, or, equivalently, 
how to create these states by vertex operators. As we have already discussed, 
the states of the Ramond theory are states in which the fermions @ ‘(z) are 
antiperiodic on circles around the origin (or, more generally, circles around the 
point ~0 to which the asymptotic string is mapped). , 

- 

--_.- . 
- 

__ 
- 

Figure 8. Analytic structure of the fermion field $+(z) for Ramond sector 

states. 

_ 

- - “Iff we view the field @ ‘( z as an analytic function, we would say that it has a ) 
- I..-- square-root branch point at ~0. This structure is illustrated in Fig. 8. The vertex 

operators which create the Ramond states must, then, be operators which create 
- _ this branch cut structure. I will refer to such operators as spin operators. 
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It is not difficult to build operators of this type by bosonizing the fermions 
is. @w- 1 would now like to describe that construction. This formalism is inter- 

t esting from a more general point of view, because it provides a relatively simple 
. example of the conformal- field theory representation of a Kac-Moody algebra (a 

local current algebra). I will therefore feel free to generalize my discussion a bit 
from the analysis of lo-dimensional fermions to discuss a 2N-dimensional vector 
field $JP transforming under an O(2N) current algebra. 

We begin, then, with a system of 2N fermions with the operator products 

V(4 v+J) = 
Let us relabel the fermions into pairs 

(7.38) 

- 

- etc. Then (7.37) becomes 

- . . - . 

c T)=(Z) +“(w) = daE &- a,b= 1,2 ,... N. (7.39) 

This system of fermion fields has c = N. It is thus natural that it can be 
bosonized by replacing the $“, ticI” by N boson fields according to the scheme 

(7.40) 

where oai = 6,’ is a unit vector. For each pair $“, tiZ;, taken separately, this 
construction reproduces (4.8) and thus will lead to identical correlation functions 

. _Y_ for the fermionic and bosonic theories. However, the operator assigned to $J” by 
- (7.40) does not anticommute with the operator assigned to $!’ if a # b. We may 

remedy this by assigning to the product of exponentials eiQa.# eiab*4 a canonical _ s* 
order, or by introducing extra operators c(a) (which are independent of z) to 
provide the correct signs when the order of these exponentials is changed. For 
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this problem, we need operators which obey the algebra 

. . _ c(a) c(b) = -c(b) c(a) , ,c”(u) = 1 . (7.41) 
. 

These z-independent operators are called cocycles. A more general discussion of 
their significance may be found in Ref. 51. Assembling these pieces, we have 

f/~“(z) = it(a) eiaa’+(z) (7.42) 

as the complete form of the bosonization relation. 

It happens that the vector cya’ ’ is also the weight vector which characterizes 
an element of the vector representation of 0(2N).* This is not a coincidence. We 
can make the connection between bosonization and representation theory more 
explicit by constructing the generators of O(2N) in their bosonized form. 

The generators of O(2N) are antisymmetric tensors Mp” satisfying the alge- 
bra 

[WV, MAUI = Mk’“&juX - MP’x(jU“ _ M”“@  + j@(jW’ . (7.43) 

We can represent this algebra in terms of fermions by 

Mp’” = f 2 j”“(z) , j”“(2) = - : @5/Y: . 
*  . . - . 

c The operator product (7.37) implies 

- 

- +P (2 - 4 j”“(w) - (j.;) p - (CL t, 4 

(z-w)2 ’ 
(7.45) ; 

. _T_ and it is easily checked from this relation that Mp” defined by (7.44) indeed 
- - -- - satisfies (7.43). The double poles in (7.45) drop out of the .calculation of the 

* A brief but very clear explanation of the representation theory of Lie groups may be found 
in the book of Cahn!s21 
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commutators of charges M pV. They have an effect, though, on the current alge- 
bra: In equal-time commutators [j’“(a),jpX (a’)] of operators local in the string ii ” coordinate-a, they contribute Schwinger terms, cnumber terms proportional to 

. qa - 0’). 

It is now straightforward to convert the indices CL, u of (7.44) to a,~ and to 
bosonize this operator. For a # b, this procedure gives 

For jaE, we must be somewhat more careful: 

-aE _ 3 - ,llw eia n4+) ,-k%+4 _ ( singular terms)} 

= lim -t 
: ,w~w-4(41 : 

(zlw) 
- (singular terms) 

E--*W 1 

(7.46) 

(7.47) - 

The N generators Mair, which generate rotations in N orthogonal planes, 
provide a Curtan subalgebra of.O(ZN), a maximal set of mutually commuting 
generators. The representation theory of 0(2N), and, more generally, of any Lie 
algebra, involves in an essential way the eigenvalues of these generators acting 
on an element Q of an irreducible representation: 

[APE, q = wa a . (7.48) 

The set of eigenvalues wi is called the weight vector of a. The representation 
-(7.47) allows us to compute the weight vector of any operator which is the expo- 

nential of a boson field: The operator product 

(7.49) 

which follows immediately from the form of jaE(z), integrates to the commutator 
_z_ 

-.- [Maa, eiaJ4tw)] = aIa eiar+(W)_ . (7.50) 

c 

Thus, the weight vector for this operator is exactly culi. The remaining generators 
of O(2N) may be seen from (7.46) to raise and lower the weights of fields of the 
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exponential form by translating the weight vector CY/ by cr,bi or CY&, the weights 
of the adjoint representation. This is exactly in accord with the representation 

y - theory of Q(2iV). 
. Let us now return to the question that motivated this whole analysis: How 

do we construct spin operators which create branch cuts for the 9”(z)? Notice 
that if we assign to an exponential of boson fields the weight vector 

- 

a*’ = +k;,*; )...) , 
we have the operator product 

(7.51) 

V(z) e i%++(w) rv ;+) ,i$“(z) ek4*+(w) 
(7.52) 

- (z- wy; : qa) ei(aa+aA)Nw) : . 

The singular term apparent in the second line is always (z - w)*&, so the op- 
erator with weight CYAN induces exactly the desired singularity in $J”(z). The 
group-theoretic apparatus that we have developed allows us to see the remark- 
able interpretation of this construction: CYAN is the weight vector for a representa- 
tion on which the angular momentum generators take half-integer eigenvalues-a 
spinor representation. The spin operators on the world sheet, and the Ramond 
theory states which these operators create, transform as spinors in l@dimensional 
space-time. 

--_.- . 
- 

._ 

It is instructive to pursue the operator product relation between tia(z) and 
the spin operator a bit further. To do this, it will be convenient to choose a 
convenient representation of the O(2N) Dirac algebra {7p,rV} = -2&p”. The 
O(2N) Dirac matrices are 2N x 2N matrices, which may be thought of as acting 
on products of N 2-component spinors. In this basis, we may represent their 

-algebra by writing 

7 1,2 = ;&2 6312@12@... , 
(7.53) 

7 3,4 - - a3 @  idg2 @  12 8.. . ) 

etc., where al, cr2, a3 are the Pauli sigma matrices and 12 is the 2 x 2 unit matrix. 
In the ra, 7” basis, this representation takes the form - . , _Yz_ 

- ._ - 
l = -& 

;. 
7 io+ & @  18 . . . 7 ‘Z&i ia-@l&%.. 

- A- (7.54) 

7 2 = as@&ia+@l@... 7 f = CT3 gl fi ia- @  18 . * . 
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The generalization of r6 to this algebra is 

,z- . . . r = e7172.. . 72N = a3 @ (f3 @ fJ3 @ . . . (7.55) 
. 

A spinor state has I’ = fl according to whether the number of entries (-3) in 
its weight vector CXA~ is even or odd. 

Let us now define the spin operator corresponding to the spin-9 representa- 
tion of O(2N) a bit more carefully. Write 

sA(z) = c(A) eiQA-4(z) , (7.56) 

c(A) is a cocycle defined by applying factors c(a) to the cocycle c(b) associated 
with the highest-weight state ~~~ = 
as its b, c, d, . . . 

(3, i, i, . . .). If CHAT has components (- f) 
entries, for b < c < d < . . ., I will define 

c(A) = c(b)c(c)c(d) a- - c(i) . (7.57) 

- 

With these definitions, one can show by explicit computation using the bosonized 
form (7.42) that the singular term in the operator product of T+P with SA is given 
by 

+“(z) sA(w) - -?- fi (z -lw)i (7aLlBs~(w) ’ (7.58) 

with the Dirac matrices in the representation (7.54). From this relation, we can 
build up 

iab(+A(w) - 
- . (z: w) (~L7a,7”l),, w4 * 

This equation implies that the action of Mab on SB is exactly that of iDab = 
i[7a,7b], just as the spinor transformation properties of SB require. 
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7.4. VERTEX OPERATORS FOR THE RAMOND SECTOR 

It is tempting to say that the spin operators SA(Z) are all that we require 
to create states of the Ramond sector. However, there is still something wrong 
with this choice. The operator SA(Z) has dimension ]cYA~~/Z = N/8; for a lO- 
dimensional string theory, this equals 5/8. Thus, SA(Z) alone cannot satisfy 
the requirement on a BRST-invariant vertex operator that its dimension should 
be 1. The resolution of this problem was discovered by Friedan, Martinet, and 
Shenker 1531 and Knizhnik1541 * m the dynamics of the superconformal ghost sys- 
tem. It is inconsistent with local supersymmetry to choose antiperiodic boundary 
conditions for @ ‘(z) unless we also choose antiperiodic boundary conditions for 
P(z) and 7(s). Th us, the operators which create the Ramond states must also 
include spin operators which create branch cuts for these ghost fields. This op- 
erator provides the last ingredient needed to assemble BRST-invariant operators 
for the Ramond sector. 

Just as we did for the coordinate fermions, we can construct the spin oper- 
ators for the superconformal ghosts by bosonization. Let me, then, present the 
bosonization formulae for the superconformal ghost system. Since the logic of 
this development follows exactly that of the bosonization of the reparametrization 
ghosts in Section 4, and the techniques necessary to follow this analysis should 
also be familiar to you, my discussion here will be brief. 

One comes very close to bosonizing the (/3,7) system by defining a new scalar 
field 4(z) (not t o b e confused with the fields b’(s) which enter the bosonization 
of $+) with energy-momentum tensor 

- 

‘J-(4) = -+#J)’ - a;+. (7.60) 

This produces a system with c = 13; exponentials of the field 4(z) have dimen- 
sions given by: 

do = -$(u+ 2) , for o= . ,a+(4 (7.61) 

This system differs from the (P,7) system, however, in three important ways: 
First, the value of the-central charge is wrong, since the (p, 7) system has c = 11. 

_e. Second, the operators e -4, e4 which we would like to associate with p and 7 
-- -- have the wrong dimensions. Third, these operators anticommute, whereas we 

would like to find a representation for p and 7 as commuting fields. This last a - problem may be expressed as the statement that, while we have much experience 
bosonizing fermions, we need here a bosonization of bosons. 
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All of these problems are solved by adding a system of fermions ([, ‘7) with 
dimensions (0,l) and energy-momentum tensor 

This system has c = -2, so it is exactly what we need to combine with the C$ 
system to give c = 11. In addition, we might note that evaluating (7.61) for 
a = fl gives values differing by 1 unit from the dimensions we require for p and 
7. This difference can be made up by adding dimension 1 operators from the 
(c, q) system. The combinations 

p(z) -+ &t(z) e-+(z) , 7(z) + q(z) e4(E) (7.63) 

have the correct dimensions and the correct operator product with one another 
to reproduce the correlation functions of p(z) and 7(z) with themselves and with 
T(z)* 

This bosonization of the superconformal ghosts can be introduced into the 
- 

BRST charge in the same way that we introduced the bosonized form of the 
reparametrization ghosts in Section 4. Let us, then, modify the formula for Q 
given in (7.27) by making the replacements (7.63) as well as (4.15). The energy- 
momentum tensor of the ghosts is replaced according to 

(7.64) 

_._._ . - 
and the TF of the ghosts undergoes a similar (and somewhat more transparent) 
rearrangement. Inserting these new structures into (7.27) and taking care, as we 
did in (4.18), to correct the definition of normal-ordering appropriately, we find 
at last 

- . 
Q=f 2 (Qo + Ql + 42) , (7.65) - 

where 

qo = : e”(TcX) + T($) + TcQ) + T(4) + T(t,v)) : 

(7.66) 
-- 

Now at last we have all of the equipment we need to construct the vertex 
operator for states of the Ramond theory. The simplest candidate for a spin 
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operator for the superconformal ghosts is the exponential 

;- . . _ ,-+w . : (7.67) 

From eq. (7.61), we see that this operator has dimension 3/8, exactly what is 
needed to bring the coordinate spin operator SA(Z) up to dimension 1. Adding 
also a reparametrization ghost factor c(z) = eQtz), we can assemble a complete 
vertex operator with spinor quantum numbers: 

v-$(z) = EA(k) sA(z) eik’X(z) eucz) e-3g(z) , (7.68) 

where E is a c-number polarization spinor. This operator has total dimension 
Ic2/2. This must equal 0 for BRST invariance. In addition, BRST invariance 
requires that the field be primary. This implies that that Jcu(rC) = 0. V+(z) given 
by (7.68) thus creates a massless fermion with proper on-shell spin orientation. 
This is exactly the lowest-lying state in the Ramond sector. 

We now have a start on the formalism for covariant calculation of fermion 
emission amplitudes in superstring theories. However, we have left many unan- 
swered questions along the way. Among these is the question of the relation of the 
Neveu-Schwarz vertex operators (7.33) and (7.34) to the corresponding states of 

- .- . - the spectrum. Further puzzles come from the new ghost sector: The replacement 
of the (/?,7) system by a boson plus a fermion pair has apparently led to some 
multiplication of the number of states. We would like to know whether (7.68) is 
the unique choice for a massless fermion vertex operator, or, if not, what other 
choices we are allowed. 

- . ._ 

7.5. PICTURES 

A peculiar property of the bosonization of the superconformal ghosts which I 
have just described is that the final system contains two ghost number currents. 
The first of these is obtained by generalizing the bosonization relation j(blc) = 
a,a(z) to the 4 system; this gives the current j(4) = a,4 which assigns the charge 
n to exponentials en+(z). In add-t’ 1 ion, there is a fermion number for c and q. The 
ghost number of the fields ,f?,7 is a particular linear combination of these two 
charges. The orthogonal linear combination corresponds to-a degree of freedom 

_ . , _Y_ which was not at all obvious in the notation of p and 7. 
- ._ da---- 

Friedan, Martinet, Shenker 16” (FMS) interpret this new degree of freedom 
- A- by relating it to a pathology of the original superconformal ghost action (3.28). 

This action is first order in derivatives while involving boson rather than fermion 
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fields. Any such action leads to a spectrum which is not bounded below. In fact, 
it is not difficult to construct states of the (/?,7) theory of arbitrarily negative 

< ;- LO, From (4.22), we see that 7+ IO) # 0. B ecause 73 is a bosonic operator, we ,. 
. can apply it arbitrarily many times to IO), lowering Lo by 3 unit at each step. 

A more sensible vacuum state would be annihilated by 7;. To see how to 
construct this state, compute 

f 

(7.69) 
dz = ~ zk-$z-n : q(z) ,4(z) en4(0) : . 
27ra 

This vanishes only if (Ic - 9 - n) 2 0. The unique state of the class en+(o) IO) 
which is annihilated by all 7k and Pk for k > 0 is the state given by n = -1. The 
state annihilated by all Lo-lowering ghost operators is, then, 

IA) = c(0) e-+(O) IO) . (7.70) 

- 

According to (7.61), the exponential has dimension i, so that the state Ifi) 
has LO = -i. This is just the position of the tachyon in the Neveu-Schwarz 
sector. We may identify (7.70) as the vacuum of the Neveu-Schwarz theory 
which properly includes all ghost contributions. 

_--.- . - 

-__ 

The transformation from IO) to Ifi) cannot be achieved by applying any finite 
number of 7k and Pk operators to the sL(2, C)- invariant vacuum. The two states 
live in disjoint Hilbert spaces, within each of which the 7k and Pk operators act. 
FMS visualize this by imagining that the states of (3.28) contain a condensate 
of bosonic ghosts with indefinite P,7 number-the Bose seu. They interpret the 

+ charge as the filling level of this Bose sea. 

There is no conceptual problem in working within a given Bose sea level. 
We can, in fact, describe processes with an arbitrary number of external Neveu- 
Schwarz particles without changing the Bose sea level by using vertex operators 
of the form (7.33), (7.34), etc. However, two features of the formalism force us 
to study the relation of the various Bose sea levels. The first of these is the fact 
that the fermion vertex operator (7.68), and, more generally, any spin field for 

_ the superconformal ghosts, necessarily changes the Bose sea level. The second is 
~- - -the fact that for the superconformal ghosts, as for the reparametrization ghosts, 

conformal field theory matrix elements on the plane violate ghost number by a - A- fixed amount. We derived in Section 5 the result that the ghost number of b 
and c is violated by 3 units in string tree diagram calculations, and that this 
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*._.... 

To solve this problem, we need to find alternative forms of the fermion vertex 
operator, equivalent to (7.68), which change the Bose sea charge by a different 
number of units. This can be done, in an effective but very counterintuitive 
way, as follows: Because of the second relation of (7.72), the z-independent 
Fourier component &, corresponds to a zero mode; thus, every nonvanishing 
matrix element of vertex operators must contain a factor &, to saturate this 
zero mode. This zero mode does not appear anywhere else in our formalism; in 
particular, the bosonization formulae (7.63) depend only on a,(. Taking this 
into account, let us consider the transforming the fermion vertex operator (7.68) 

according to 
-__ 

_ 

observation plays an important role in determining the structure of scattering 
amplitudes. The basic statement of this nonconservation was the expectation 

;- vahre (01 c,rcocr IO) = 1, or, in bosonized form, I 

(01 e+3u(o) IO) = 1 . (7.71) 

This statement has a twofold generalization to the bosonized superconformal 
ghosts: Both ghost number currents are anomalous. FMS argued that the deficits 
are (-2) and 1 unit for the 4 and (q, 0 systems, respectively, corresponding to 
2 and 1 normalizable zero modes. Explicitly, 

(01 e-24(o) IO) = 1 , and (01 c(O) IO) = 1 . (7.72) 

These statements couple different Bose sea levels. Further, they rule out the 
use of vertex operators with predetermined exponentials of 4 to describe arbi- 
trary scattering processes. For example, except for processes involving exactly 4 
fermions, the changes in Bose sea level by (-i) unit produced by the insertion 
of successive vertex operators (7.68) will not add up properly to fulfill the first 
relation of (7.72). 

- 

Q(z) = 19, t(z) V-+(z)] . (7.73) 

The commutator is defined, as usual, by taking the contour in the definition of 
Q to encircle the point z at which the vertex operator is inserted. If V-g is 
BRST-invariant, as is guaranteed by the on-shell conditions, the BRST contour 

2. passes through V -4 and acts on e(z), eliminating the redundant factor &, that 
--- -could potentially appear. The result is a new vertex operator which is BRST- 

invariant by virtue of the relation Q2 = 0. Technically, (7.73) is the second 
member of a BRST doublet. However, this is somewhat obscure, because the 
first member of the doublet contains (0, which is, in some sense, outside our 
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formalism. Evaluating (7.73) explicitly, we find 

;- 

{ 

. 
V+(z) .. =- CA(k) e412(d,XP + ik. $tiP)7zBSj3 + e34/2rjbSA . c - eikeX . 

. 
(7.74) 

This is a sensible-looking vertex operator which creates a spin-i fermion state. 
If V-3 is BRST invariant, this object is also. (It is not hard to check directly, 
using (7.61), that (7.74) has dimension 0 if k2 = 0.) Thus, (7.74) is a second 
vertex operator for the massless fermion state of the Ramond sector, differing 
from (7.68) in that it raises the Bose sea charge by f unit. 

FMS refer to the transformation on vertex operators defined in the previous 
paragraph as the picture-changing operation: 

x{ WI} = IQ, 6(z)V(z)] . (7.75) 

They emphasize that X works quite generally as a method of transforming BRST- 
invariant vertex operators to new operators carrying the same space-time quan- 
tum numbers but different Bose sea charge. Let me present two more examples 
of this relation: 

- 

[Q, (. {ikP$,e’k’XeQe-2~}] = eik’x . e”e-4 

[Q, (. {(p(azXp + ik . y!$j‘)eik’xeue-24}] = $Pq!Peik’x. e”em4 . 
(7.76) 

_._._ . - The operators (7.33) and (7.34) may thus be recognized as picture-changed ver- 
sions of the vertex operators which create the most natural forms of the low-lying 
states of the Neveu-Schwarz theory: 

- . eik’X Ifi) , q!Preik’X Ifi) . 
2 

(7.77) 

To complete our discussion of the picture-changing operator, I would like to 
argue that picture-changed versions of the same vertex operator are equivalent 
for the purpose of computing scattering amplitudes. To understand how to make 
this argument, let us recall the transformation 

_ ._ =. 
--- +>w + ;. f 2 b(w) +)V(z) - (7.78) 

- 

which we introduced in eq. (5.26) to define the bosonic string scattering ampli- 
tudes. This transformation, involving the contour integral of a ghost operator, is 
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- 
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- 

Figure 9. How to move the picture-changing operator from one on-shell 

vertex operator to another. 

*--.- . - 
similar in structure to the picture-changing operation. In our discussion of (5.26)) 
we saw that the b contours could be freely moved from one vertex operator to 
any other vertex operator in the same correlation function. If the same is true of 
the picture-changing contour, we can move this contour onto or off of any given 
operator without changing the value of the scattering amplitude. 

The .argument that we can move the picture-changing operator from a given ver- 
tex operator V(zl) to a  second operator V(z2) is illustrated in Fig. 9. To begin, 
note that the amplitude, to be nonzero, must contain a factor to. Since (0 is z- 
independent, we can consider this operator to come from the Fourier expansion of 
c(z) placed at any d esired point, say, ~2. Now deform the BRST contour so that 
it winds around c(zz)V(zz). Th’ 1s contour passes through all BRST-invariant 
vertex operators, but it sticks on the factor [(zz). Finally, replace the newly 

_ ._ Tz isolated [(zr) by (0. This argument proves that picture-changed versions of the 
~_ _ dame vertex operator are equivalent for the computation of on-shell scattering 

amplitudes. 
- Ia-- 

In our discussion of the reparametrization ghosts, we saw that the structure 
of the BRST charge and the ghost Hilbert space fixed the structure of the theory 
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even off-shell, since these elements gave directly the form of the gauge-invariant 
action. This construction generalizes directly to allow one to contruct a gauge- 

* ;- invariant action for the Neveu-Schwarzsector in the picture with Bose sea charge 
(-1) which contains the state Ifi). For the Ramond theory, Witten [551 has shown . 
how to combine these elements with the picture-changing operation to construct 
a gauge-invariant action for the Ramond theory in the picture with Bose sea 
charge (-i). The role of states with other values of the Bose sea charge in the 
off-shell formalism remains obscure, and, more generally, the full structure of the 
gauge-invariant interacting theory is much in need of further investigation. 

8. One-Loop Amplitudes for Strings 

At several points in our argument, we have found that the string theory is 
naturally projected onto a subspace of the full Hilbert space of states on the 
world sheet. The projection onto the ghost-free subspace is expected in any 
gauge-invariant theory, but two other projections which we made-the projection 
onto states with LO = %J in the closed string theory and the GSO projection in 
the superstring theory-have no natural analogue in conventional field theory. It 
would be useful to explore these operations further. 

The origin of these physical state projections, and their relation to other 
intrinisically stringy aspects of the formalism, is made most clear through their 
role in the formulation of loop corrections to the string scattering amplitudes. In 
this section, I would like to illustrate this by computing the one-loop amplitudes 
for bosonic and fermionic strings. This computation is interesting in its own right 
because it reveals that the ultraviolet divergences of the string theory, even in a 
space-time of very high dimension, are much less severe than the divergences of 
a local field theory. But it will be most illuminating because of the role played in 
this analysis by the invariances of the world-sheet geometry. For various reasons, 
the analysis of loop amplitudes is simpler for closed strings, so I will consider 

only that case. I will also restrict my discussion to the O-point amplitude, the 
vacuum energy shift or cosmological constant renormalization. 

8.1. MODULI 

Let us begin with the bosonic closed string theory. Tree-level amplitudes in 
this theory correspond to integrals over conformally invariant fields on a plane, or, 

_ , ._-. equivalently, on a sphere. At the one-loop level, we must include a virtual closed 
__ -string breaking off from the sphere and then reattaching. This gives the world 

sheet the topology of a torus. Using local conformal invariance, we may consider 
- I.+-- the world sheet to be precisely a torus. Our problem, then, is to functionally 

integrate over the coordinate fields Xp((z) on a base space which is a torus, 
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- taking proper account of the geometrical invariances of the string theory. This 

i ,%- calculation was first done, in the formalism of dual models, by Shapiro; I561 a 
. . -. 

. very clear and complete modern treatment has been given by Polchinski. [“I My 
discussion of this problem will clarify most of the issues of physics, but I will 
refer you to ref. 57 for a proper treatment of the reparametrization ghosts. 

For the bosonic string theory at tree level, the O-point amplitude is trivial. At 
the one-loop level, however, a complication arises which gives even this amplitude 
an interesting structure. Although any surface with the topology of a torus can 
be converted to a flat torus by making a conformal transformation, it is not true 
that any flat torus can be conformally tranformed into any other. 

3-87 5728Ai0 

Figure 10. A torus, viewed as a parallelogram with opposite sides iden- 

tified. 

-._ 
- . 

We may visualize a a-dimensional torus as a parallelogram with opposite sides 
identified (Fig. 10). By conformal transformations, we can convert the metric 
on the space to the form gap = 6,~ and scale the length of the bottom edge to 
1. But this construction leaves the length and orientation of the left-hand edge 
undetermined. These two parameters may be summarized as a complex number 

r parametrizes classes of tori which are conformally inequivalent. The conformal- 
ly-invariant functional integral over Xp(z) should then depend on r, and the full 
one-loop correction should contain an integral over all inequivalent values of this 
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parameter. In higher loops, where the base space is a surface of higher genus, 
one finds more degrees of freedom in the world-sheet geometry which cannot be 

;- removed by conformal transformations. The parameters of conformal equivalence 
classes of 2-dimensional surfaces are called mod&. . 

The existence of moduli forces us to reconsider the procedure described in Sec- 
tion 3 for replacing the integral over all metrics on the world-sheet by a Fadde’ev- 
Popov integral over reparametrization ghosts. The result of that discussion must 
be changed to allow for the fact that those degrees of freedom in gap which do not 
correspond to gauge transformations of the theory-reparametrizations and con- 
formal transformations-should not be eliminated by the Fadde’ev-Popov proce- 
dure but should remain in the final answer. This means that eq. (3.8) should be 
replaced by 

vre,~con, / Dg = / Db Dc e--f@efl+68z’) - / v d2r” . det(.7[rk]) , (8.2) 

- 

where the rk are the moduli, J is an appropriate Jacobian, and, to be precise, the 
ghosts b(z) should be integrated only over their nonzero modes. It can be shown 
that the zero modes of b are in one-to-one correspondence with the moduli. This 
relation, combined with our discussion of the zero modes of b from eqs. (5.7) 

moduli will appear in the and (5.8) in Section 5, tells us that 3(g - 1) ( complex) 
expression for the g-loop amplitudes.* 

*-_.- . - 
For the case of a torus, it is not hard to derive the Jacobian J explicitly. It 

is most convenient to begin by mapping the general torus shown in Fig. 10 into 
a fixed square: 0 5 (1 2 1, 0 2 (2 5 1. In these coordinates, the line element 
becomes 

._ 
- ds2 = Id& + rdE2j2 = gapdc”d(fl , (8.3) 

where 

gab = (:1 rf=,) - (8.4 

_ The Jacobian J is obtained by differentiating with respect to rr and 72 the modes - 
_ _ -of goa orthogonal to reparametrizations and conformal transformations. A plau- 

W31 * The formula (8.2) has been derived and analyzed with exemplary clarity by Alvarez. 
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sible, properly invariant, formula for JT J is 

(8.5) 

Evaluating this expression, and taking the square root of its determinant, gives 

det J = 2h/~i . (8.6) 

The result (8.6) can actually be obtained from more general considerations, 
which also illuminate somewhat more the nature of the moduli. In our discussion 
of the origin of r, we considered only the possible equivalence of tori under 
infinitesimal reparametrizations and conformal transformations. However, the 
torus shown in Fig. 10 can be transformed into tori with different values of r 
by making discrete reparametrizations. For example, by rotating and scaling 
the right-hand edge of Fig. 10 onto the interval (0, l), we transform r -+ -l/7. 
By taking the upper right-hand corner instead of the upper left-hand corner to 
define r, we transform r + r+l. These two transformations generate the modular 
group, the group of fractional linear transformations 

- 

- 
ar + b 

r+- 
cr+d’ 

for which a, b, c, d are integers satisfying ad - bc = 1. 

(8.7) 

__ 

The integrand of (8.2) should depend only on the intrinsic geometry of the 
world sheet, so it should be invariant to modular transformations. This is auto- 

matically true for the functional integral over the Xp, as we will see in a moment. 
The Jacobian J must convert the integral d2r into a modular-invariant measure. 
For the value of J we have obtained in (8.6), th is works out just right; it is easy 
to check that 

_ ._ =. is explicitly invariant to (8.7). 
--- 

- I..-- 
Since the integrand of (8.2) *‘- IS modular-invariant, the integral over r which 

is indicated in this equation overcounts unless this integral includes only values 
r which are not equivalent by modular transformations. A suitable integration 
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Figure 11. The fundamental domain for integration of modular-invariant 

- quantities. 

region can be found as follows: Of the two transformations which generate the 
- .- . - modular group 

the first carries the strip of the complex r plane -f 5 Rer < i into an adjacent 
strip, and the second carries the exterior of the unit circle in the r plane into the 
interior. 

The overlap of these two regions, shown in Fig. 11, is the largest region which 
contains no pairs of points carried one into another by either of these transfor- 
mations. It is not hard to see that this conclusion still holds when more general 
modular transformations are considered. This region thus gives the correct do- 

_ main for the d2T integration in the l-loop amplitude. 

~- - - 
- I..-- 

This whole discussion generaliies to the treatment of the moduli of higher- 
genus surfaces. In our discussion earlier in this section, we stated that (8.2) 
must be integrated over a parameter space of 3(g - 1) complex dimensions. If 
we consider all values of the parameters corresponding to surfaces inequivalent 

- 
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with respect to infinitesimal reparametrizations and conformal transformations, 
we find an unbounded parameter space called Teichmtiller space. In general, 

I ,c- though, this space must be divided up according to the action of the group of 
discrete. reparametrizations, the mapping class @roup. The maximal subspace 

. of Teichmiiller space which contains only points inequivalent under this group 
represents-the space of moduli. Like the region of Fig. 11 for the case of tori, 
taken with the measure (8.8), the moduli space of any higher genus is compact 
in its natural invariant measure.* 

8.2. CLOSED BOSONIC STRING 

Having now clarified the role of the moduli, let us return to the calculation 
of the one-loop bosonic string amplitude. The function of r which must be 
integrated over (8.8) is given by the functional integral over coordinate and ghost 
fields on the torus. I will compute the integral over coordinate fields Xp explicitly; 
however, I will treat the ghosts only by assuming that they precisely cancel the 
contribution of two coordinate degrees of freedom, which one might imagine to 
be the longitudinal and timelike modes of oscillation. This result is justified in 
the paper of Polchinski, ref. 57. With this replacement, the one-loop amplitude 
of the bosonic string takes the form 

- 

- A = / !g 
[A 1 
x2*, 

*._._ . where 

Ax = 
/ 

DX e-+ s da, x(--B’)x . (8.11) 

__ -I have resealed the field Xp from my previous convention for convenience in this 
context. 

We can evaluate the integral Ax by making use of the connection between 
Euclidean functional integrals and Hamiltonian evolution. Write the variable on 
the plane of Fig. 10 as z = zr + iz2. Then x2 is a Euclidean time with periodicity 
72. If rr = 0, this situation of a periodic Euclidean time gives precisely the 
functional representation of tr [exp(-r2H)], where H is a.Hamiltonian defined 4 

_ on a ring. To reintroduce 71, we define an operator 7 (71) which twists the ring 
--- ;. 

- I.+-- * The theory of higher-loop string amplitudes and higher-genus surfaces has recently been 
reviewed by Alvarez-Gaume’ and PQI Nelson. 
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Figure 12. Evaluation of the one-loop string amplitude by relating it to 

a quantum partition function. 

through an angle 27~1. Then 

- 
Ax = tr [7(7r) eSrSH] . (8.12) 

._ 

The relation between the geometry of the torus and the Hamiltonian interpreta- 
tion of Ax is illustrated in Fig. 12. 

To see what Hamiltonian to use in evaluating (8.12), let us Fourier decompose 
X’-‘(xl) at fixed x2: 

X(x1) = X0 + C Xnearinzl . 
n#O 

(8.13) 

Introducing (8.13) into the exponent of (8.11), we find 
_ 

-- s = ;/x(-ai)x = [2,X-n -+ (2kn)2XnX-n] . 1 
- I..-- (8.14) 

This is just a set of harmonic oscillators, one for each normal mode on the. ring. 
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Let us separate out the zero mode part of the dynamics by writing 

;- . . _ H = HI + H2 tr (8.15) 
. 

where HI -= $Pz and H2 is a sum of Hamiltonians for harmonic oscillators of 
frequency w, = 2mz. 

The portion of the expression (8.12) involving the zero modes is readily eval- 
uated by using simple quantum mechanics: 

tr e-r2 p,2/2 - - d& (Xole- rap:i2 1x0) = (8.16) 

The contribution of the nonzero modes is the product of terms assoicated with 
the left- and right-moving normal modes. At 71 = 0, this factor is 

tr [e--rzHa ] = Itr exp [-rz . C(2xnakan + 
n>O 

- 

_._._ 
- 

-2AT2Z 2 
= e e-rs.2rnk 

n>O k=O 

41 I2 

= e -2rraZ. 
IX 

1_ e-2rnra -l 2 . 

n>O 
) I 

(8.17) 

In this equation, 2 is the sum of the zero-point energies of the oscillators. We 
may regularize this sum using the Riemann zeta function: 

- 

2 = C in = ((-1) = -A. (8.18) 
n>O 

Reintroducing rr adds to each term a factor 

T(r1) = e2riK , 
;. 

(8.19) - 

where K is the momentum around the ring, equal to (+n) for each quantum of 
excitation of a left-moving mode and (-n) for each quantum of excitation of a 
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right-moving mode. This changes the second line of (8.17) according to 

. . _ e--72s2mak --) e2rirl.nk e-ra.2vrnk = e2rrir.nk . 
9 (8.20) 

this modification, in turn, changes (irz) to r throughout the rest of the analysis. 
Assembling all the pieces (and ignoring the overall normalization), we find 

Ax = 
/ 

dXo- 

Finally, inserting this answer into (8.10), we find 

(8.21) 

-48 

. (8.22) 
- 

If we have computed correctly, this expression should be modular-invariant. 
To check this, we need only check the invariance of the integrand to the two 
transformations (8.9) which generate the modular group. The invariance under 
r + r + 1 is obvious. The invariance under r -+ -l/r is not clear to the unaided 
eye. However, someone familiar with the theory of Jacobi theta functions will 
recognize immediately that (8.22) contains the Dedekind q-function 

(8.23) 
. 

This function has a very polite transformation law under modular transforma- 
-a tions: - 

tj(T + 1) = f++2?+) , r](-l/r) = (-+j(r) (8.24) 

These relations are, in fact, just what we need to prove the invariance of (8.22). 
The factor 1fi;1-48 g enerated by the second transformation above is cancelled 
exactly by the modular transformation of the prefactor (r2)-12. 

As this example makes clear, a student of string theory will find it indispen- 
_ sible to have some acqaintance with the Jacobi theta functions. I would therefore 

; 

like to digress and present some of the main properties of these functions. These - 
- - properties and other are discussed very clearly in the textbook of Whittaker and 

- I..-- Watson!“] (Pl ease note, though, that my conventions differ slightly from those 
of Whittaker and Watson in order to follow the modern string literature.) 
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The Jacobi theta functions are a canonical set of natural analytic functions 
on the torus. Whittaker and Watson define four basic functions, of which the 

;- simplest is 

(8.25) 
n=-03 

This function is analytic on the whole z plane. If z is translated by a period of 
the torus, 9s(~)r) transforms according to 

t93(z + l(r) = 93(ZlT) , t93(z+ T(T) = e -ir+e-2*ia~3(ZIT) . (8.26) 

Thus, Qs is periodic in z with period 1, but it is only quasi-periodic with period 
T. If this function had been periodic under z + z + T, it would have been an 
analytic function without singularities on the torus and therefore a constant; 
thus, 29s is as close as anything can come to being a nontrivial analytic function 
on the torus. The periodicity relations (8.26) can be used to count the number 
of zeros Nz of Qs: Taking the contour around the boundary of the parallelogram 
in Fig. 10, we may compute 

- 

- Nz = & 
f 

dz u44 = 1 
93(zl7) * 

(8.27) 

_._._ . 
- It is not hard to see that the zero is located at the center of the parallelogram, 

z=++;. 

._ 
The other three theta functions are essentially translations of Qs with zeros 

at the other three half-periods. They may be characterized by 
- 

&(OlT) = 0 , S2($4 = 0 , 

(93(i + fir) = 0, S,(3) = 0. 

(8.28) 

_ ._ =. Series representation for the four 29i(zl ) T are given in the appendix to this section. 
- L. 

Modular transformations such as those shown in (8.9) relabel r and thus 
- 2- interchange the labels of the four half-periods. Thus, modular transformations 

interchange the various r9i. The transformations at z = 0 are especially useful; 
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let me, then, record them as follows: 

i ,L- loi(Olr A- 1) = ei”/4rPi(01r) , sgol - :, = (-i+s;(olT) . 

. t92(017 + 1) = eim/492(01r) , t92(0[ - :, = (-iT)h94(0~7) . 

93(017 + 1) = ~4(Ol~) , 93(01 - :) = (-i,)Bt93(0~*) . 

t94(017 + 1) = 93(W) 9 t94(0/ - 5> = (-iT)b,(OlT) . 
(8.29) 

Since t9r vanishes at z = 0, I have quoted the result for its first derivative. 

In addition to series representations of the form of (8.25), all four theta 
functions possess infinite product representations, which are derived in Whittaker 
and Watson. For example, 

o1 (zlT) = 2ei”r/4 sin rz . fi (1 - e2rinr) (1 - e2*inre2*ig) (1 - e2*inre--2riz) . 
n=l 

(8.30) - 
The product representations for all four tii(zIr) are given in the appendix to this 
section. Eq. (8.30) implies immediately that 

t9;(olT) = 27rq3(r) . (8.31) 

- The modular transformation formulae for q(r) quoted in (8.24) follow from (8.29) 
through this connection. 

_._._ . - 

._ 

Let us now return to the bosonic string one-loop amplitude (8.22) and note 
three important properties of this expression. First, once we have regulated 
the zero-point energy by the prescription of eq. (8.18), this expression has no 
further ultraviolet divergences. In the case of the bosonic string, this subtraction 
is made on an ad hoc basis (though it is in fact necessary to maintain world- 
sheet conformal invariance), but for the superstring the corresponding zero-point 

-energy term is automatically finite as the result of a cancellation between the 
bosonic and fermionic degrees of freedom on the world sheet. The expression 
(8.22) does contain a divergent integral, however, because the integrand blows 
up exponentially as 72 -+ 00. To understand this divergence, let us look more 
closely at the form of the integrand in that limit. Setting r = 27~2, we find 

(8.32) c, 

with m2 = -2. The integrand of (8.22) is just the asymptotic form of the 
propagator of a Klein-Gordon particle in 26 dimensions. The mass which appears 
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is tachyonic precisely because the state of lowest mass in the spectrum of the 
bosonic string is a tachyon. We might have suspected from the beginning that 

i ;- the presence of a tachyon in the spectrum would lead to inconsistencies in the 
theory. It is now clear that this leads to an infrared divergence in the one-loop . 
amplitude. In fact, this term and a similar, weaker singularity due to the dilaton 
are the only divergences in this quantity. 

A second feature of (8.22) ’ f 1s ound in its general structure. The complicated 
part of the expression is the absolute square of an analytic function of the modulus 
r. This form arises for a simple reason: The string dynamics treats the left- and 
right-moving modes separately, and the functional integrals over these modes 
are respectively analytic and anti-analytic in r, except for the factors explicitly 
a&ociated with the zero modes X0. Belavin and Knizhnik 1611 have shown that 
this decomposition continues to higher loops; the bosonic string amplitude at all 
higher loops has the form 

A= 
/ 

d2Tk ,u(T~,T~) IF( , (8.33) - 

where the rk are the moduli and P(~~,T~) is a trivial nonanalytic factor which can 
be determined directly. This observation has become the basis of a calculational 
method for higher-loop amplitudes. This set of developments is reviewed in ref. 
59. 

- 

_-_.- . - 

Finally, let us note the significance of the dependence of the integrand of 
(8.22) on 71. This dependence comes only from exponentials of r or f. If we 
expand the integrand of (8.22) in powers of ezrir (an expansion clearly valid for 
72 large), a typical term has the form 

rI 
ck e2rink,r 

R 
>( 

rI 
Es e-2rGiE,+ 

km ? (8.34) 
n>O A>0 

-where kn, Icn are integers and ck,, ck,, are numerical constants. Setting r = 27~72 
as above, this takes the form 

/ 
dr e-r(x nk, i-c&) . 

/ 
dT1 e2rirl.(z nk, -cii;kn) . (8.35) 

The first exponent is the contribution of mode excitations to-Lo+&, and thereby 
_ ̂ Tz. to the mass of the string state. The second exponent contains LO - ZO. The 

- ._ w integral over rr is exactly the projector into LO - EC, = 0. The projection which 
we found in Section 6 from the geometry of operator insertions in the world sheet 

- L- is thus also imposed on all virtual particles that can appear in loop amplitudes. It 
appears precisely because we must sum over all possible world-sheet geometries. 
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8.3. CLOSED SUPERSTRING 

i ,a-. Letus.now generalize this calculation to the superstring. The computation 
. of the O-point one-loop amplitude can be found as the product of two terms. The 

first of these is the integral over coordinate fields Xp and anticommuting ghosts 
on the torus. Except for a change in the number of total space-time dimensions, 
this factor is calculated exactly as in the previous section. The new ingredient is 
the functional integral over fermions and commuting ghosts. It is useful to group 
the fermions @ ‘ in pairs; the contribution of the commuting ghosts cancels that 
of one of these pairs. The superstring one-loop amplitude then takes the form 

where Ax is given by (8.11) and 

(8.36) 

- 

---.- . - 

Notice that the exponent of (8.37) is the action of an analytic fermion field. We 
must square this quantity, as is indicated in (8.36), to account for both left- and 
right-moving fermion modes. 

Just as we did for Ax, we can calculate A+ by rewriting it in Hamiltonian 
form: 

A+ = tr [7(7r) e-r2H] . (8.38) 

._ Alvarez-Gaume, Moore, and Vafa1621 have noted that it involves no extra trouble 
to assign to the fermions arbitrarily twisted periodic boundary conditions: 

$1 (Z + 1) = -e-2*ie$r(z) , $h(Z + 7) = -e-2*id$l(z) , 

tcIz(Z + 1) = -e+2*ie$2(z) , +2(z + 7) = -e-2*i4+2(z) . 
(8.39) 

- 

(8.37) 

_ ._ Tz These boundary conditions are the most general consistent with the requirement 
- ._ - that the action in (8.37) be periodic. The factor (-1) in the boundary condi- 

tions in time appears automatically from the operator expression tr [e-flH], as in 
- A- finite-temperature perturbation theory. The corresponding minus sign in the 8 

boundary condition is included for convenience. 
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. 

- 

*--.- 
- 

._ 

The Hamiltonian corresponding to (8.37) is a sum of fermionic oscillators 
(that is, two-level systems) corresponding to the Fourier components of $r(zr), 

;- $]2(zr)... The Fourier components of $1 have wavenumber 27r(n - 6 + i); they 
are creation or annihilation operators for the fermionic oscillators according to 
whether this quantity is negative or positive. The corresponding annihilation or 
creation operators are the Fourier components of $2. The excitation energy for 
each oscillator is In - 8 + iI. With this information, we may easily evaluate A$ 
for 71 = 0, 4 = 0: 

R~((71 = 0,~) = 0) = tr [eeha] 

00 

=e 
-2sr22(0) 

n( 
1+ e-2*r2(n+B-i) 

>( 

1+ e2rr2(n--8+$) 

> 
. 

n=l 
(8.40) 

The sums run over the ground state and the one excited state of each fermion 
oscillator. The quantity 2 (6) is the B-dependent zero-point energy, which is given 
by 

- 

-1 z(e) = c $a-e+ ;) . 
n=O 

(8.41) 

With a suitable regularization, this should satisfy the functional relation Z(6) = 
2(8+1)+ f(3 +e) and should reduce to the result 2 of eq. (8.18) for 8 = 9. 
The unique function satisfying these properties is 

z(e) = $(A) + a(; - 6”) = f(& - ;q . (8.42) 

Now 71 may be reintroduced by the prescription of eq. (8.19). The phase 4 
associated with a timelike circuit of the torus has a similar effect: It requires 

-each state created by a component of $1 to be rotated by e-2ri+, and each state 
created by a component of & to suffer the opposite rotation. Assembling the 
pieces, we find at last 

- L- 

- _ 

00 

e2air[B2/2-l/24J 
n( 

1 + e2rir(n+B--3)e2*if$ 

n=l 
>( 

I+ e2Air(n--B++)e-2*i+ 
> 

. 

L. (8.43) 

Let us now apply this calculation to the superstring one-loop amplitude. To 
treat the Neveu-Schwarz and Ramond sections, we must take B = 0 and 0 = i, 
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respectively. It is clearly inconsistent with the geometrical invariances of the 
problem, however, to allow periodic or antiperiodic boundary conditions around 

c ;- one cycle of the torus without allowing the same choice of boundary conditions 
around the other cycle. The operation of summin’g over periodic and antiperiodic . 
boundary conditions in time, however, has a very direct physical interpretation: 

A$ = tr [(l+ (-l)F)T(~l) e-r2H] , (8.44) 

where F is the total number of fermions in the state. This is exactly the GSO 
projection. Once we have insisted that our string theory contain both bosons 
and fermions (that is, both Neveu-Schwarz and Ramond particles), the GSO 
projection follows from the sum over all possible world-sheet geometries. 

To define the superstring amplitude, then, we must sum over 6 = 0,; and 
independently over C$ = 0 , i. It is possible, and, as we will see, enlightening, to 
sum coherently over these sectors separately for the left- and right-moving degrees 
of freedom. To write the amplitude explicitly, we need compact expressions for 
k&W) at th e re uired values of its arguments. Fortunately, evaluating (8.43) at q 
these four points produces exactly the product representations of the four theta 
functions: 

1 94 (W 
JhP,~) = t1(7) - 

(8.45) 

*--.- . 
- The analytic part of the fermion contribution to (8.36) then takes the form 

- 
[ [“;yy4+ [“;;I’)]‘- [“;(od] ‘1 , (8.46) 

where I have supplied the relative signs so that the form of the expression is 
preserved as the theta functions transform under modular transformations ac- 
cording to (8.29). Multiplying in the remaining pieces of (8.36), we find as our 
final expression: 

(8.47) 
Using (8.24) and (8.29), it is straightforward to show that (8.47) is modular 
invariant. Notice that an expression of this form could not possibly have been 
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modular invariant if we had not included both sectors with 4 = 0 and sectors 
with 4 = $. 

c ;- Two properties of this expression are worth noting. First, let us consider the 
. behavior of the integrand as rz + 00. Just as in the bosonic string, the factors 

of the q function in the denominator lead to a divergence in this limit: 

IOI 

-24 
fir - e+2*r . (8.48) 

To compare to eq. (8.32), we again set r = 27r7, then this factor is associated 
with the appearance of a particle of mass m2 = -1, the Neveu-Schware tachyon. 
However, tpz vanishes as 72 ---) 00 and 193 and 04 tend to the same value. Thus, 
the tachyon contribution to (8.36), and its associated divergence, cancels. This is 
of course the result of the GSO projection; alternatively, this cancellation follows 
directly from modular invariance. . 

Actually, the formula (8.47) contains stronger cancellations. Among the theta 
function identities proved in Whittaker and Watson is the following remarkable 
result of Jacobi (“aequatio identica satis abstrusa”): 

- 

l9:(017) + st(olr) - Stj(Olr) = 0 ! (8.49) 

- The entire expression vanishes. The vacuum energy of the superstring is not 
renormalized. This is clearly a sign of an underlying space-time supersymmetry 
in the theory, which requires all of the possible periodic and antiperiodic sectors 

*--.- . for its implementation. I will display this supersymmetry more explicitly in the 
- next section. 

8.4. HETEROTIC STRING 

_ ._ 
- -Since we have now derived all of the technology for computing one-loop am- 

plitudes, I would like to complete my discussion by extending this analysis to the 
case of the heterotic string. This string is obtained by combining the right-moving 
degrees of freedom of the superstring with the left-moving degrees of freedom of 
the bosonic string. The spectrum of this theory has been discussed with some 
care by Michael Green. The massless states are those of lO-dimensional super- 
gravity, together with the gauge bosons and gauginos of an Es x Es or 0(32) 
gauge theory. 

rt 
_ 

_?z_ 

- ._ - The heterotic string theory contains 10 right-moving coordinate degrees of 
freedom Xp(z) but 26 left-moving coordinates X~(Z). It is easiest to understand 

- A.--- how to deal with the 16 left-moving coordinates with no right-moving partners 
by fermionizing them. This gives a string with 10 ordinary coordinate fields 
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plus 32 left-moving fermions (in addition to the 10 right-moving fermions of the 
superstring and their associated commuting ghosts). The Es x Es version of the 

c ;“ heter0ti.c string theory is obtained by GSO projecting these 32 fermions in groups 
of 16. Using the expressions (8.45) for the fermion functional integrals, we can . 
immediately evaluate the required integrals over each set of 8 pairs of fermions 
and sum these coherently. Multiplying together these two contributions and 
including the contributions of the remaining coordinates and the right-moving 
fermions, we find for the value of the one-loop amplitude of the heterotic string 

- 

This expression is indeed modular-invariant. Another modular-invariant expres- 
sion can be obtained from the same ingredients by GSO-projecting all 16 pairs 
of fermions together; this gives the one-loop amplitude of the 0(32) heterotic 
string. In either case, the amplitude vanishes by virtue of (8.49), that is, by 
virtue of the space-time supersymmetry of the theory. 

It is instructive to obtain the result (8.50) in a different way, by treating the 
16 purely left-moving coordinates as bosonic coordinates compactified on a self- 
dual lattice. It is easy to functionally integrate over such bosons by extending the 
results of our previous analysis.. All that we need to do is to extend the Fourier 
decomposition (8.13) t o allow for configurations of Xp which are periodic in zr 

- 

--_.- . - 
only up to translation by a lattice vector -e’: 

(8.51) 

.  
,  _T_ 

- ._ 

n#o 
The nonzero modes give exactly the same result as before. The zero modes 

-contribution, however, is replaced by a factor which sums the contributions to 

ems from each p ossible value of 7. This gives for the full one-loop amplitude 

A- = / #OX0 / !$ & (me?---) . [ 9i(01r) + ;!;; - sd(o’r)] , 
(8.52) 

where 

- F ‘I 
E 

ei*,7,2r . (8.53) 
e 

The symmetry group Es x Es is obtained by taking each group of 8 left-moving 
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--_.- . 
r 

._ 

_ 
, ._-. 

- Ia-- 

- _ 

coordinates to be compactified on the lattice generated by the root vectors of Es. 

This lattice, which gives the possible values for 7, is: 
;- . . - 

-j+= 

1 

( n2,n2,..., n8) , c in; = even integer 
(8.54) 

(nl++,n2+$,...,nE++), xi ni = even integer 

The condition that the components ni sum to an even integer can be implemented 
by summing over all values of the ni with the weight (1 + eir c "i). If we use 
this trick, we can write the contribution to F from the vectors in the first line of 
(8.54) as 

][I C eirnzr - (1 + n eirni) = Si(OlT) + 29:(017); (8.55) 
i ni i 

I have recognized each term as the series representation of a theta function. 
Similarly, the vectors in the second line of (8.54) give the contribution 

n c eis(ni+$)r. 1 + 
( n 

eir(ni+i) 
1 

= ~~(()I~) + flt(olr) . (8.56) 

i ni i 

Inserting (8.55) and (8.56) into (8.52), we find again the result (8.50). This nicely 
checks the equivalence of the fermionic and bosonic forms of the theory. 

8.5. APPENDIX: REPRESEN.TATIONS OF JACOBI THETA FUNCTIONS 

In this appendix, I list for your reference the series and product represen- 
tations of the four Jacobi theta functions which appear in the analysis of this 
section. These relations are all derived in the textbook of Whittaker and Wat- 
son!601 The series representations are: 

- h(+) = fy 
eir(n++)2re27ri(n+$)(z-&) 

n=-co 

92(47) = g 
ei*(n+&)2re29ri(n++)z 

n=--a3 

n=--oo 
.._ *-- ;-. 

00 
g4(zlr) = C eirn2re2rin(Z++) . 

- 

(8.57) 
4 

n=-00 
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- 
The product representations are: 

. 
fll(ZITj L zeiTr/4 sinxZ . fj (1 _ e2rinr) (1 _ e2*inre2ri.) (1 _ e2rinre-2riz) 

n=l 

Q2 (zlr) = 2eiar14 cos rz . fi (1 - earinr) (1 + e2rinre2rriz) (1 + e2*inre-2*iz) 

n=l 

93(zlr) = fi (1 _ e2rrir) (1 + e2rri(n-i)re2rriz) (1 + e2ri(n-+)re-2riz) 

n=l 

g4(Z~T~ = fi (1 _ e2*inr) (1 _ e2ri(n-$)re2*iz) (1 _ e2ri(n-+)re-2riz) . 

n=l 
(8.58) 

Many properties of the theta functions can be checked directly from these rela- 
tions. For example, it is easy to see that r9 ( I ) 1 z r is odd in z, while the other three 
functions are even. One can also check the relations 

t93(217) = ‘eirr/4eiazt91(z + f + 51~) (8.59) 

_--.-. . 
- 84(zj7) = -;eirrri4eirztpl(z + fir) 

-.-. 
which interconnect the four theta functions and imply the locations for their 
zeros given in (8.28). 

- 

C 
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9. Three Grand Questions 

i ,=- I would now like to pause from my development of the formalism of super- 
string theories to discuss- three deep issues which are important to the physical . 
interpretation of the theory. The first two of these concern the properties of the 
theory in the idealized setting of a flat lo-dimensional background space. We 
would like to know whether the space-time supersymmetry of which we saw a 
hint in the previous section is manifested in scattering amplitudes and whether 
this supersymmetry implies the finiteness of the theory to all orders of loops. The 
third issue concerns the transition from this idealized setting to a more realistic 
one, via the compactification of six of these spatial dimensions. 

The first of these three questions has a well-defined answer, but one which 
still leaves many puzzles. What we know about the second and third issues are 
mostly guesses. The problem of compactification is a very deep one, however, so 
even our present very tentative knowledge has fueled the development, by Witten 
and others, of a very beautiful mathematical theory. To present this theory in 
detail would require another full course, so I will content myself here with a brief 
description of the simplest scenario. The reader seeking an introduction to the 
mathematics needed to analyze compactification schemes will find an accessible 
and quite elaborate presentation in the second volume of the book of Green, 
Schwarz, and Witten!” 

- 9.1. SUPERSYMMETRY AND FINITENESS 

_-_- . - 
Let us first discuss the supersymmetry of the superstring theory, in the co- 

variant formulation that we have studied in Section 7. To verify supersymmetry, 
we must identify a conserved charge which interchanges space-time bosons and 
fermions and satisfies the supersymmetry algebra, at least on shell. Once we 
have identified this object, I will use it to make some intuitive statements about 

-._ the finiteness of the superstring theory. 
- . 

Since the supersymmetry charge changes bosons into fermions and vice versa, 
it must carry the space-time spinor character and the branch cut on the world 
sheet characteristic of a vertex operator for a state in the Ramond sector. Like a 
vertex operator, the supersymmetry charge must be BRST invariant. The sim- 
plest way to construct a supersymmetry charge is, then, to start with a Ramond 
vertex operator at zero momentum. Taking (7.68) as a starting point, we would 
guess : 

QA = 
f (94 

It is not difficult to check directly (taking c to be a constant spinor supersymmetry 
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parameter) that 

,=- . . - [EQ, Vk(k, z)] = ~7%(k) (a,X” + ik - ~+!+j‘) eikeX 
2 , (94 

. 
and that c.ommutation of FQ with V-i gives a picture-changed version of this 
relation. The right-hand side of (9.2) is just the vertex operator Vi(k) of eq. 
(7.34). Commuting one step further, 

[zQ, s * Vv(k,z)] = ;(a[~ - 7, k - 7])B SB eik’X . P-3) 

The result is just V-+(k). Th e commutation relations (9.2), (9.3) have exactly 
the structure of the supersymmetry which links the massless gaugino and vector 
states of lo-dimensional Yang-Mills theory, except that the double commutation 
returns a picture-changed version of the original fermion vertex operator rather 
than that operator itself. 

The charge QA defined in the previous paragraph apparently is not a true 
supersymmetry except on shell, where we can identify picture-changed represen- 
tations of the same state. The algebra of QA with itself has the same unsatis- 
factory feature. To display this algebra most clearly, relabel QA as Q-i A, and 
define its picture-changed counterpart Q 3 A from V+(k). Then, we can compute 

_-_.- 

L 

2 L(k=O,z) , +j$ V++(k = 0,~‘) 1 
-._ (9.4 

-0n shell, where we can identify Q-i and Qi, this is precisely the supersymmetry 
algebra 

[zQ, z’Q] = ~7% - Pp . (9.5) 

The restriction to mass shell, and thus to physical scattering amplitudes, is an 
awkward feature of this formalism. In scattering amplitudes, however., either Qi 
or any of its picture-changed variants do implement correctly the constraints of 

. _T. supersymmetry. 
--.- n?r-- 

The fact that’the supersymmetry charge of the string theory appears as 
- w a contour integral on the world sheet suggests a general method for proving 

nonrenormalization theorems following from supersymmetry. 
- _ 

- 
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Figure 13. Method for proving supersymmetry nonrenomalization theo- 

rems. 

The technique is illustrated in Fig. 13. Let VB(Z) be the vertex operator for 
some particular boson in the theory. If VB(Z) can be written as a supersymmetry 
variation of a  fermion vertex operator, we can write 

v&) = [QA, b(z)] = f 2 qAtw) vdz) - w-9 

If we are computing a- loop amplitude, the contour of w is a  closed path on a 
. _T. compact a-dimensional surface. If we can push this contour to the opposite side 

~- -- -=-of the surface and contract it to zero, the expectation value of VB will vanish. 
Thus, we can potentially prove to all orders in string perturbation theory the - z* vanishing of the tadpole diagram for the particle created by VB, as well as the 
vertex of this particle with any other particles whose vertex operators commute 
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with QA. Martinet - P3’ has argued in this way that the tadpole of the dilaton, 
and, thus, the cosmological constant, vanishes to all orders in any background 

,=-- that preserves a space-time supersymmetry. ,: 

The subtlety in this argument is made clear in the figure: As we pull the 
operator qA(w) to the back side of the surface, this operator carries its branch 
cut with it. Thus, the boundary conditions are changed from periodic to an- 
tiperiodic (or vice versa) around any closed loop through which qA(w) is moved. 
In the discussion of the one-loop superstring amplitude given in the previous 
section, we found supersymmetry and vanishing cosmological constant only if 
we summed coherently over all possible sets of boundary conditions, indepen- 
dently for the analytic and anti-analytic degrees of freedom. Speaking loosely, 
the geometry of Fig. 13 makes clear that the same prescription is necessary to 
guarantee that supersymmetry of higher-loop amplitudes. This is already quite 
an interesting conclusion. However, the exact prescription for the relative phases 
and normalizations of the various sectors, and the invariance of the resulting sum 
of amplitudes under the higher-loop generalization of the modular group, has not 
yet been checked in detail.* 

_--.-. _ - 

It is not difficult to imagine that the vanishing of the O-point function might 
be checked directly by a similar analysis, diagrammed in Fig. 14. Represent 
one propagator in the diagram as a sum over states in the theory. We know 
that-on shell-these states form boson-fermion pairs. If the same relation held 
off-shell, one could represent the fermion states as supersymmetry commutators 
with bosons, distort the contours as shown, relabel the boundary conditions, and 
show the explicit cancellation of bosonic and fermionic contributions. I would 
very much like to know whether this argument is merely a heuristic, or whether 
it can be made into a rigorous proof of the nonrenormalization of the vacuum 
energy. 

9.2. A PHILOSOPHICAL DIGRESSION -._ - . 
After so much formal analysis, it may seem overdue that I begin at last to 

discuss the relevance of string theories to the observed world of particle phenom- 
ena. -If you think that this unseemly delay betrays my personal position on string 
theory, you are right. I ask you, the reader, for your indulgence as I digress to 
state that position in some detail. 

_ . 
Over the past two years, string theory has been hailed as the solution to 

all fundamental problems in physics and damned as “recreational mathemat- 
- lcsn. These extreme positions highlight a situation of great uncertainty about 

- _ * A part of this analysis has been presented recently by Atick and Sen. P341 
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Figure 14. Method for directly proving the vanishing of the O-point func- 

tion at higher loops in a supersymmetric string theory, following Ref. 63. 

-._ the eventual position of strings in fundamental theory. I believe that the situa- 
tion in the recent history of particle physics which is most precisely analogous is 
that of Yang-Mills theory in the early 1960’s. At that time, Yang-Mills theory 
was known to be a profound generalization of Quantum Electrodynamics. Some 
mathematical methods were known for computing in this theory, but they were 
quite incomplete. At the same time, the beauty of the theory was already unmis- 
takable, and connections to the observed forces were strongly suggested. Glashow 
used the Yang-Mills Lagrangian to build a weak-interaction theory which was cor- 
rect except for the embarrassment of having massless vector bosons. Sakurai used 

~- - The Yang-Mills Lagrangian as a model for the strong interactions, and postulated 
- z--- the vector mesons p, w, 4. In both cases, the phenomenological application of the 

theory led to significant physical insight. But, on the other hand, the precise and 
- _ eventually correct application of the principles of non-Abelian gauge symmetry 
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required another ten years and the development of further crucial mathematical 
methods-the Higgs mechanism, the Fadde’ev-Popov procedure, and the renor- 
malization. group. 

String theory has now been developing for almost twenty years, but we still 
seem to be quite far from having a complete mathematical grasp on its formal- 
ism. Because our calculational methods are incomplete, it is difficult to assess 
how precisely strings will finally appear in our understanding of the fundamental 
forces. Considerably more work must be done to develop the foundations of the 
theory and to improve its calculational methods. In particular, we desperately 
need some methods for performing nonperturbative string computations, since 
many interesting properties of string theories are apparently determined only at 
the nonperturbative level. At the same time, it will certainly be useful to try 
to apply our present, incomplete, understanding of string theory to the major 
phenomenological questions of the day, the problem of the vanishing of the cos- 
mological constant and the origin of quark and lepton generations and their mass 
spectra. In exploring the relevance of string theory for these problems, however, 
we should be aware that we might learn more about the mathematics of string 
theory than (directly) about how these problems are solved. I would therefore 
favor approaches which involve string computations which are as explicit as pos- 
sible, even if the phenomenological scenario does not seem sufficiently plausible 
in itself to justify such detailed analyses. 

At the moment, the cosmological constant problem looks as difficult to solve 
- 

---.-. . - 

-.u. 

in string theory as it has in any supergravity model. However, the most direct 
physical interpretations of the string theory have provided some interesting new 
approaches to the problem of quark and lepton generations. In the remainder of 
these lectures, I would like to concentrate on approaches to this question which 
use the string theory in an essential way. I do not know whether the analysis I will 
present is more important for what it teaches us about quark8 and leptons or for 
what it teaches us about strings; in any event, I hope that these material somehow 
leads us nearer the goal of finding the role of strings in a unified understanding 

-of Nature. 

9.3. CALABI-YAU IDEOLOGY 

The case that the compatification of lo-dimensional string theory might pro- 
duce the quarks and leptons directly as string eigenstates was made forcibly just 
after the discovery of consistent Es x Es string theories,- in a remarkable pa- 
per of Candelas, Horowitz, Strominger, and Witten14’(CHSW). These authors 

~- _ -“* proposed an interpretation of string theory of great mathematical beauty which 
gives nontrivial answers to many of the basic questions of phenomenology. No 

- - 

- _ 

discussion of the physical interpretation of strings could be complete without a 
discussion of this program, so I will review it briefly here. However, because this 
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program allows relatively few explicit computations, and because it is reviewed 
in great detail in the book of Green, Schwarz, and Witten, lslI will limit myself to 
an~outline of its contents. 

. In Section 6, we derived conformal consistency equations for background 
gravitational fields which might interact with a bosonic string. To leading order 
in a perturbation theory in the curvature of the background geometry, we found 
as a criterion for this consistency that the Ricci tensor of the background space 
should vanish. If one applies this method of analysis to the heterotic string, one 
finds the same result at first order, but, in the next order of perturbation theory, 
there appears also a contribution from background Yang-Mills fields!38-401 For 
example, one finds 

c = (d-26) + 6a’{+ + . . .} + ((Y’)~ { f tr(&v)2 - (R,,A~)~} - (9.7) 

- 

CHSW suggested that one look for a solution to this condition and the other 
consistency equations with H,,,,x = 0, t$ = 0, and vanishing Ricci tensor. For 
obvious reasons, they wanted to find a solution in which 6 dimension8 were com- 
pactified and 4 dimensions were left extended. They also wanted to insure that 
the compactified theory maintained a 4-dimensional supersymmetry which might 
survive to energies well below the compactification scale. This requirement is - satisfied if the compactified 6dimensional space possesses a covariantly constant 
spinor VA(Y); then the subgroup of lO-dimensional local supersymmetry gener- 
ated by the K&dimensional spinor built up as a product of this object with a . . . ..- . - 4-dimensional constant spinor 

remains a symmetry of the compactified theory. 

All of these requirements fit together neatly. The equation for the covariant 
constancy of VA(~) can be manipulated as follows: Begin with 

v/&rj = 0 =+ [V,,V”]rl = R,,,AC% = 0, (9.9) G 

_ . 

- 

where CPx = f[7;,7’ -- ] is the generator of rotations of spinors. Now contract 
- - this equation with rV and break up the resulting object into pieces symmetric 

and antisymmetric between u and p or X. The completely antisymmetric piece - _ 
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vanishes because of the Bianchi identity R,[,,xl = 0. The remaining pieces 
involve contractions of indices. Thus (9.9) implies 

. . . . 

. R,,7P~ = 0. (9.10) 

This equation has a nontrivial solution only if R,, = 0. Once we have a covari- 
antly constant spinor, this spinor may be viewed as a preferred direction in the 
tangent space of the 6-dimensional manifold. On any curved manifold, tangent 
vectors parallel-transported around closed loops suffer rotations from their orig- 
inal orientations. The group of such rotations is called the tangent-space group 
oi the holonomy group. For a general 6-dimensional manifold, we would expect 
that these rotations would fill out the whole of SO(6). Let us recall, though, 
that SO(6) is isomorphic to SU(4), with the spinor of SO(6) identified with the 
4 of SU(4) and the vector of SO(6) with the antisymmetric tensor (6) of SU(4). 
Thus, a covariantly constant spinor may be though of as a preferred orientation in 
this SU(4) which is not changed by parallel translation. The holonomy group of 
the manifolds we seek should then be SU(3). Under the decomposition 4 + 1+3, 
the antisymmetic combination of two 4’s decomposes as 6 + 3 +% This implies 
that the 6-dimensional coordinate y may be represented as complex conjugate 
triplets (y’, g’), i = 1,2,3; that is, the manifold has a natural complex structure. 
This geometry of the curvature may be linked naturally to the geometry of gauge 
fields by identifying the SU(3) holonomy group with an SU(3) subgroup of the 
gauge group and setting up gauge fields equal to the spin connection w,,x~ of the 
manifold: 

- 

(9.11) 

. 

This identification causes the last term in (9.7) to vanish and also solves the re- 
maining constraints on the appearance of a low-energy supersymmetry. Actually, 
it is now known that a manifold of the form chosen by CHSW does not satisfy the 
conformal consistency conditions at the fourth order in perturbation theory; k351 

however, a small deformation of such a manifold is known to give a solution to 
@,'371 any finite order. 

The problem of’finding compactification spaces for the h&erotic string is thus 
reduced to that of :constructing 6-dimensional complex manifolds with holonomy 

-group SU(3). Th e existence of such manifolds is guarranteed by a general theo- 
- - WI rem conjectured by Calabr “” and proved by Yau. Let M be a 6dimensional 

complex manifold satisfying the additional condition that its metric is (locally) 
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the derivative of a potential 

(9.12) 

Such a manifold is called a Kcihler manifold. A 6dimensional complex manifold 
naturally has U(3) h o onomy. 1 We may view the spin connection on M as a gauge 
field of U(3) = SU(3) x U(1). Let the U(1) part of this gauge field have trivial 
topology, in the sense that the associated field strength, the projection onto 
this U(1) of iRpv~o Cxu, has zero flux through closed surfaces. The theorem 
then states that the metric on M may be continuously deformed into a metric 
with SU(3) h o onomy. 1 It should be noted that this result falls far short of an 
actual construction of the metric for a space of SU(3) holonomy, even when the 
geometry of the original manifold M is understood in detail. Manifolds of SU(3) 
holonomy generally have no isometries, and, in fact, no metrics for such manifolds 
are known explicitly. 

However, the geometry of the original manifold M in the argument of Calabi 

- 

- 

_--.-. . - 

and Yau can be used to compute the topological invariants of the manifold with 
SU(3) holonomy, and these give a certain amount of definite information about 
the effective theory resulting from compactification. If the fundamental theory 
contains chiral fermions in a complex representation of the gauge SU(3), a.n 
index theorem will relate the number of fermion zero modes to the topology of 
this gauge field, and so, after the identification of eq. (9.11), to the topology of the 
manifold itself. Let us take the fundamental theory to be the E8 x Es heterotic 
string theory and identify the SU(3) gauge field as that of a factor of the maximal 
subgroup E6 x SU(3) f o one Es. Decomposing the adjoint representation of Es 
onto E6 x SU(3), we find 

-- 
- . 248 + (78,l) + (27,3) + (273) + (13) - (9.13) 

Then for each zero mode of a 3 of SU(3), we find a 27 of Eg surviving to low 
energies. Evaluating the indices, one finds that the number of 27's and the 
number of 27’s are determined topologically; I41 the net number of generations is 
given by the remarkable formula 

(9.14) 

where x is the Euler characteristic of the 6-dimensional compact space. 
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As an example, CHSW considered the submanifold of CP4 specified as the 
solution to 

(9.15) 

_ 

- 

_--.- . - 

This space satisfies Calabi’s condition and so can be deformed into a manifold 
with SU(3) holonomy. This manifold has x = -200. However, the manifold 
has an isometry group Z5 x 2 5; identifying points carried into one another by 
this group gives a multiply-connected manifold with x = -8. Compactification 
on this manifold produces 4 generations of quarks and leptons at low energy. 
Qne could envision breaking the grand unification symmetry Es to a smaller 
group by adding to the multiply-connected manifold E6 gauge fields with zero 
field strength but nonzero values for the Bohm-Aharonov loop integrals s dz . A. 
Note that we can decrease the rank of the original Es only by identifying the 
generators of the two 25’s with two mutually noncommuting values of the loop 
integral. Thus, this class of models generally leads to low-energy gauge groups 
of rank 5 or 6, that is, with at least an extra U(1) gauge boson in addition to 
the standard model SU(3) x SU(2) x U(1). 

A noteworthy, and disturbing, property of the CHSW scheme, is that the 
solution to the consistency equations exists independently of the value of the 
radius of the compactified space. This radius is one of a number of parameters of 
the compactification scheme which are apparently not determined at all by the 
consistency equations. A second such parameter is the expectation value of the 
dilaton field d(z). This apparently obscure field has great physical importance: 
Because the dilaton field appears in an overall prefactor in the effective action 
kg., eq. (6.34)) 

- 

S eff = 
/ 

dx& e-24 {R + . . .} , (9.16) 

-.-. 

__ 

it can be absorbed into the effective gauge and gravitational couplings. Thus, 
% is the dilaton vacuum expectation value which determines dynamically the 

values of these couplings. Unfortunately, Dine and Seiberg 1701 have argued that, 
if these two parameters are not determined at the string tree level, they are 
not determined to any finite order in string perturbation theory. Even more 
unfortunately, the failure of our present calculational methods to determine these 
parameters seems to apply not only to this particular scheme of compactification 
but to more general schemes as well. Apparently, though some consequences 
of string compactification are readily computed, others will be understood only 

- -with a major improvement of our’mathematical methods. 
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10. Orbifolds 

- 

In the previous section, we discussed the scheme of Candelas, Horowitz, Stro- 
minger, and Witten for compactifying string theory from 10 to 4 dimensions. I 
sketched the elegant mathematical arguments offered by these authors, which led 
to the suggestion that the compact spatial dimensions form a Calabi-Yau mani- 
fold, a complex manifold with SU(3) holonomy. However, this conclusion was in 
some sense disappointing. The geometries of the Calabi-Yau manifolds are not 
known explicitly, and the problem of solving a nonlinear sigma model with one 
of these manifolds as the target space seems extremely difficult, even if the exact 
conformal invariance of the system allows some simplifications. How could we 
improve this situation? 

One response is to start from the other extreme position by exploring com- 
pactification schemes which are known to be tractable and adding complication 
until they become as realistic as possible. The simplest compactification which 
is not completely trivial is given by taking the compact space to be a torus. As 
we saw in the discussion of the heterotic string, the problem of a string moving 
on a torus is not appreciably more difficult than that of a string in extended 
space. The nonzero frequency modes of the string have the same spectrum in 
these two cases. The center-of-mass coordinate is modified in two ways: First, 
the momentum is quantized in the compactified directions. Second, the string 
may have additional soliton states which wind around the torus, corresponding 
to the boundary conditions 

- 

x(0=0) = x0, x(a = 1) = x0 + 7 , (10.1) 
.._.v. _ * 

where 7 is a displacement by periods of the torus which is identified with 0. The 

set of displacements 2 identified with 0 in this compactification forms a lattice 
- 

L: = {Cni7i, n;EZ), (10.2) i 
and we may alternatively describe the torus as the coset space of Euclidean 
space divided by this lattice: Td = Rd/L. This scheme of compactification is 
excessively simple; in particular, it cannot break the original gauge symmetry, _ -2. since all of the zero-mass bosons of the uncompactified theory are still present as - ._ bp- 
states in the 7 = 

;. 
0 sector. Worse, the solition sectors can sometimes contribute 

additional zero-mass particles. This is, after all, the way most of the Es x E8 
bosons arise in the heterotic string theory. 
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In order to break Es x Es, and in order to break lO-dimensional supersym- 
metry down to 4-dimensional supersymmetry, we must deform the torus in a 

;- way that will eliminate some of these massless states. Dixon, Harvey, Vafa, and 
Wittenr5’ (DHVW) introduced an elegant method for accomplishing this: They . 
proposed that one identify points on the torus which are taken into one another 
by a group I’ of discrete symmetries of the lattice fZ. The resulting space may 
be though of as the coset space Td/I’, or, equivalently, the quotient of Rd by the 
crystallographic group of translations by elements of Z plus rotations and reflec- 
tions in I. In general, some points of the torus will be fixed under the action 
of I’. The identifications will then tie up the neighborhoods of these points into 
complicated singularities. Thus, this space is not a manifold; DHVW refer to it 
as an orbijold. 

DHVW show, quite remarkably, that the singularities of the orbifold can 
simulate many aspects of string propagation in curved background spaces while 
retaining most of the simplifying features of string dynamics on a torus. In this 
sense, compactification on an orbifold represents an ideal compromise between 
calculability and realism. These compactification schemes are therefore worthy 
of our close attention. In this section, I would like to present a simple example 
of an orbifold and to compute the low-energy modes of local fields and of strings 
arising from this compactification. 

10.1. ORBIFOLD GEOMETRY 

_...._ _ - 

To compactify the heterotic string, we need a 6-dimensional orbifold? Let me 
begin, however, by discussing the geometry of a simple a-dimensional orbifold. 
By taking 3 copies of this space, we will find a 6dimensional space which will 
serve as my main illustrative example. 

Begin, then, with the torus obtained by identifying points in the plane con- 
nected by the translations of a 2-dimensional triangular lattice. This torus may 

be pictured as the space obtained by identifying opposite edges of the equilateral 
parallelogram, with internal angles 60” and 120°, as shown in Fig. 15. Now re- 
duce this space by making a further identification of points related by the group 
I’ of-120” rotations about the origin. This prescription identifies, for example, the 
left-hand edge and the bottom edge of the parallelogram, as shown. The origin 
is a fixed point under the rotation. As a consequence of this, the origin becomes 
a conical singu1arit.y of the orbifold, since lines through the-origin at 120” to one 

_ -7. another are glued together by the identification. 
- ._ it- L 

* More general schemes of which share the advantages of orbifold compactification have 
recently been presented in refs. 71-74. 
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1-86 5639A12 

Figure 15. A simple 2-dimensional orbifold. 
- 

--_.-. . 
- 

l-86 5639A13 

._ Figure 16. Three fixed points of the orbifold of Fig. 15. 
- 

Fig. 16 shows that the points 

x1 +is2 = $.&, x1+ix2 = $4 (10.3) 

_ , _Y_ on the long diagonal are also fixed under the combined action of rotations and 
- ._ bttice translations, These two points also become conical singularities of the 

orbifold. 
- =..v- 

It is not difficult to solve the field equations of scalar fields on the torus subject 
to the identification of points connected by the group I’. The treatment of local 
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fields with spin, however, is more subtle, since the identification subjects such 

;- fields to nontrivial boundary conditions. When we identify the left and bottom 
edges of-the parallelogram in Fig. 15, we also identify the vectors tangent to 

. these edges. Thus, at a point P on the bottom edge identified with a point P’ 

on the left edge, a vector field T(z) must obey the boundary condition 

T(P’) = !R(120°) - T(P) , (10.4) 

where X(120’) denotes a rotation through 120°. Spinor fields, and field of more 
general spin, obey a similar boundary condition with the rotation matrix in the 
appropriate representation of the rotation group. 

In string theory, the situation becomes even more involved. 

- 

_._._ . 
- 

( b) 
._ 

- 

(cl 

_ , _Y_ l-96 
-- - 6639Al6 :- L 

Figure 17. Three possible configurations for closed strings on an orbifold: 

(a) trivial; (b) winding; (c) twisted. 
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A closed string may describe a configuration of any of the three types shown in 
Fig. 17. The first two cases appear already in the dynamics of strings on a torus. 

,?- The third case is new: A closed string may run from one point on the torus to 
a second point identified- with the first under I?: Strings of this last type are 

. called twisted states. In general, the boundary conditions of twisted strings may 
be represented as a rotation about one of the fixed points. For the configuration 
shown in Fig. 17(c), if we represent the 2-dimensional variable as x = z1 + iz2 
and call the fixed point zc, the boundary condition is 

(x(c7 = 1) -50) = e2ri/3 (x(0 = 0) - 50) . 

This condition implies the Fourier decomposition 

(10.5) 

X(O) = X0 + C xqe2’riqo , 
q=n++ 

(10.6) 

- 

_._._ _ - 

where n is an integer. The twisted states thus differs from states of the other 
two types in having fractional-integer quantization of their nonzero modes. 

DHVW describe an orbifold as the singular limit of a manifold. However, it 
is worth noting some circumstances where is correspondence does not literally 
hold. First of all, a manifold with highly concentrated curvature would have 
very large curvature tensor, and (in any reasonable coordinates) a singularity in 
its metric, at the point of concentration. This would produce a large nonlinear 
term in the sigma model constructed with the manifold as its target space. The 
orbifold string theory does not include this nonlinear term, and cannot, because 
this term would ruin the exact solubility of the model. This prescription seems 
to be a perfectly consistent one. 

- 

The second subtlety comes in describing the topology of the orbifold. It is of- 
ten straightforward to compute the Euler characteristic x of the smooth manifold 
which the orbifold appproximates. For the example of Fig. 15, that computation 

goes as follows: One must recall from (5.8) that a torus has Euler characteristic 0 
and that (for an appropriate definition of the boundary contribution) a disc, be- 
ing half a sphere, has Euler characteristic 1. Beginning from the torus of Fig. 15, 
remove disks about each of the fixed points, indentify triples of points under I, 
and then restore disks at the fixed points which smooth the conical singularities. 
The Euler characteristic of the final surface is 

_ 
_T.  

- ._ b*^ 

x = ijo-3) + 3 = 2; (10.7) - 

that is, the smoothed orbifold is topologically a sphere. Given this value of the 
Euler characteristic, one might be tempted to use an index theorem to predict 
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the number of zero modes of a massless fermion field on the orbifold. However, it 
is possible that some of these zero modes might shrink to zero size and disappear 

;- in the singular orbifold limit. We will see an example of the disappearance and 
reappearance of zero modes later in this section. ‘. 

10.2. FIELDS ON THE Z-ORBIFOLD 

To understand more concretely the mechanics of fields on orbifolds, let us 
solve explicitly, in a specific example, for the modes of local fields which corre- 
spond to massless particles after compactification. A simple example to choose 
is a 6dimensional space called by DHVW the Z-orbijoid. It is built from the 
direct product of three of the equilateral tori shown in Fig. 15. Call the complex 
coordinates on these three spaces (xi, x2, x3). Identify points connected by the 
simultaneous rotation of all three tori: 

(x1, x2, x3) --+ (e2ri/3x1, e2*i13x2, e2ri/3x3) . (10.8) - 

- 

Consider first the dynamics of a local field $J with no gauge charges. Massless 
particles after compactification will correspond to solutions of the field equations 
which can consistently have zero momentum in the extended directions; these will 
be zero-mode solutions of the wave equation for that field on the 6-dimensional 
surface. Since the 6-dimensional space is a product of flat spaces, a zero mode 
solution will, quite generally for any spin, be a solution to 

&4 = 0, or &#J = 0 (10.9) 

which is normalizable on the compact space. The only solution to these equations 
-is given by taking 4 to be constant. 

If c$ represents a scalar field, the constant mode of 4 is a perfectly acceptable 
zero mode. However, if 4 has spin, we must impose the nontrivial boundary 
condition which arises from identifying tangent vectors as be identify points. For 
the case at hand, the boundary condition on 4 may be represented quite generally 
as 

_ f$(P~‘) = !JI~(120°)~~2(1200)~~3(1200)~ 4(P) , (10.10) &- -7. 
- ._ w L.. 

where the three rotations are made in the planes of the three tori. This boundary 
- L- condition is compatible with r$ being constant only if 921 - R2 - 8s = 1. This 

condition has very few nontrivial solutions. Consider, for example, the case in 
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which 4 is a XI-dimensional vector field. Decompose qjM as follows, chasing 
complex components for the compactified dimensions: 

z ,?.- aMy = (q$P, 45+it, 45--i6, $7+i8, 47-i8,,:4O+ilO, 40-ilo) . (10.11) 

The components q5p, p = 1,. . . ,4, coorresponding to vector components which 
point into the uncompactified directions, are scalars with respect to the rotations 
RI, !Rz,!J23. Thus each of these components will have a zero mode, and these four 
zero modes form a Lorentz 4-vector after compactification. On the other hand, 
the component q55+is picks up a nontrivial phase !IRr = e2ri/3, while 922 = ?J?a = 1 
on this component. Thus, this field has no zero mode. A similar conclusion holds 
for the remaining components of (10.11). 

A similar analysis may be carried through for a HI-dimensional spinor field. 
To do that, it will be useful to digress briefly and set up a bit of formalism for 
spinors in 10 dimensions. Let us choose a representation of the lO-dimensional 
(Minkowski) Dirac matrices similar to that displayed in (7.54): 

7(10) 5fi6 - _ r5 c3 &7* @  18 1 

r;l,f,;* = r5 c3 a3 c3 &iio* @  1 
(10.12) 

- 
7(10) OfilO - - r5 63 a3 63 u3 63 &uf ) 

_-_.- . - where 7rd, are 4-dimensional Dirac matrices and r5 is the usual 4-dimensional 
chirality. The lO-dimensional chirality is given by 

r = 7172...710 = 75~~3~~3~~3 E r4r6. (10.13) 

In this basis, the U&dimensional charge conjugation operator, which implements 
C(y”)C-l = -(7”)T, is 

c = 70r2 @a2 @ma2 @DO2 . (10.14) 

Charge conjugation of a spinor is the operation 

_ . _T. 
~- . - e-+ wT; ;. C-1 (10.15) 

- 

- z-.-- this preserves I’, so in 10 dimensions it is possible to define spinors which are 
simultaneously Majorana (self-charge-conjugate) and Weyl (I’ = + 1). Note, 

- _ 
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- 
however, that (10.15) flips the parity of both I’4 and I’e. Thus, a lO-dimensional 
Majorana-Weyl spinor has the structure: 

i . . - 

. 

where the components q!~ are chirality-projected. This whole object is determined 
by its I4 = re = +l part. Th us, the modes of \k which correspond to massless 
fermions in the extended &dimensional space may be built by attaching a con- 
stant &dimension positive-chirality spinor to a Dirac zero mode with I’s = +l 
on the compact &dimensional space to form the object rl, in (10.16). 

Let us now search for these Dirac zero modes on the orbifold specified by 
(10.8). In the basis we have chosen for the Dirac matrices, the three rotation 
operators in (10.10) take the form 

Xl = 1 @I eiKasi3 123 18 1 

!J12 = 18 18 eira9i3 @I 1 

- 

(10.17) 

!R3 = 18 l@ 18 eiua9i3 . 

- 
The boundary condition which must be satisfied is 

_-_.- . $ = (fl)!R~*R~2*8I3-?+!J, - (10.18) 

-._ 

where the factor (fl) reflects the usual ambiguity that we may choose periodic 
or antiperiodic boundary conditions for fermions. I would like to choose the sign 
(-1)) for reasons that will be made clear in a moment. There are four possible 

-choices for I’s = +l spinors: 

((~3)1,(~3)2,(43)3) = (+1,+1,+1) R~?Jl2X3 = -1 

= (+1, -1, -1) = e-ir/3 

(10.19) 
= (-1, -1, +1) -ir/3 rL 

= e 
. . _P. 

--.- w = (-1, +1,-1) --ir/3. =e . 

Only the first of these satisfies the boundary condition (10.18). 
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The zero mode that we have just identified is a covariantly constant spinor 
on the orbifold. Thus we should expect that, if we started with a supersym- 

,=-. metric theory in 10 dimensions, compactification on this space should yield a 
4-dimension effective theory with supersymmetry. To check this in the present . 
example, begin with a N-dimensional matter supermultiplet consisting of a vector 
and a Majorana- Weyl spinor (A M, X4?). We have seen that compactification on this 
orbifold produces, as massless modes after compacitification, one 4-dimensional 
vector and one 4-dimensional Majorana spinor. This is exactly the content of a 
4-dimensional supermultiplet consisting of a gauge boson and a gaugino. 

Let us now alter this construction to mimic more features of the Calabi-Yau 
compactification discussed in the previous section. In particular, I would like to 
add to the space an SU(3) gauge field equal to the spin connection. The only 
aspect of the spin connection on the orbifold which is actually visible is its integral 
around a closed curve, the nontrivial rotation (10.10) which connects identified 
points. We may introduce a nontrivial gauge field by introducing a gauge rotation 
around the same closed curve. Let us assume that a 3 of SU(3) carried between 

identified points picks up a the Bohm-Aharonov phase e i.fdz-A = e-2ri/3s Then 

a field in a general representation of SU(3) will acquire the phase 

(j = (ee-2ri/3)t , (10.20) 

where t is the triality of the representation (t = 1 for 3, t = -1 for 3, t = 0 for 
1, 8). With this addition, the boundary conditions (lO.lO), (10.18) should be 
generalized to 

- - - - -  .  

L 

-._ 

In this equation, the rotation matrices depend on the spin of the particle, the 
factor $ depends on the SU(3) properties, and F = 1 for a spinor field. It is 

actually this enhanced space that DHVW define to be the Z-orbifold. 

For fields in the 1 or 8 of SU(3), the analysis of zero modes we carried out 
earlier goes through unchanged. However, for fields in the 3 or 5, there are inter- 
esting modifications. Consider first the case of spinor fields. Adding the phase 
3 to the results of (l&19), we see that the constant spinor solutions of the types 
(+--), (-+-), and (--+),f or s inor fields in the 3-but not the. S-satisfy p 
(10.21) and thus give massless particles of the compactified.theory. In addition, 

. _P. the components of a U&dimensional vector qS5+i6, $7+i8, 4Q+i10 corresponding to 
~_. Lelds in the 3 now satisfy (10.21);. These give massless scalar Gelds in 4 dimen- 

sions. Zero modes for the 3 can be built from the remaining vector components 
- - and from negative-chirality spinors; these form the antiparticles of the scalars 

and spinors from the 3’s. Thus, a N-dimensional supermultiplet (AM, Q?) in the 
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- 3 of SU(3) produces 3 4-dimensional supermultiplets, each of which contains a 
chiral spinor and a complex scalar (and their antiparticles). 

i ,=- 
If we use the Z-orbifold to compactify a lGdimensiona1 local field theory 

. with Es x Es gauge symmetry, according to the program outlined in the pre- 
vious section, we find chiral fermion generations and accompanying & gauge 
fields. According to the decomposition (9.13) of the adjoint representation of 
Es, fermions in the 3 of the embedded SU(3) are 27’s of the accompanying & 
group. The zero modes we have identified correspond to a set of massless parti- 
cles arising from compactification which contain one supermultiplet each of gauge 
bosons and gauginos for the 78 of Es and the 8 of SU(3), plus 3 supermultiplets 
of spinors and scalars in the representation (27,3) of E6 x SU(3). These latter 
multiplets give 9 generations of quarks and leptons. 

- 

It is worth inquiring how this number compares to the Euler characteristic of 
the orbifold. Candelas, Horowitz, Strominger, and Witten [41 computed the Euler 
characteristic x of the corresponding smooth manifold in the following way: The 
original product of tori has x = 0. The Z-orbifold has 3 x 3 x 3 = 27 fixed points. 
Remove a small sphere about each of these fixed points; this gives an object 
of x = -27. Divide by 23, and then repair each hole by inserting an object 
with x = 3. The final surface has x = 72, by the analysis of CHSW, it should 
produce 36 generations. Unfortunately, we have only found 9 of these. The others 
must disappear from local field theory in the limit in which the smooth manifold 
becomes a singular orbifold. 

10.3. STRINGS ON THE Z-ORBIFOLD 
--_.- . 
- 

-._ 

The analysis of zero modes which I have presented for local fields on the Z- 
orbifold can be repeated for strings on the Z-orbifold in the topologically trivial 
sector of Fig. 17. The same set of zero-mass states is reproduced. However, 
in string theory, we have available also the nontrivial sectors shown in Fig. 17. 

These can give rise to additional zero modes which have no simple interpretation 
in local field theory. Particularly interesting are the twisted sectors, whose exis- 
tence is unique to orbifold compactifications. As a final exercise for this course, 
then, I would like to explore the spectrum of the twisted sectors of string theory 
on the Z-orbifold, in order to identify any further massless states which arise 
there. 

For simplicity, I will perform this analysis in the light-cone gauge. The po- 
. _T. sition of the ground state will be determined by the zero-point energy of the 

--.. -system of oscillators. The excited-states will be raised above this ground state 
by ladder operators; as we have seen in eq. (10.6), these operators should have 

- AL.-- a fractional offset in their quantization. A crucial ingredient in this analysis will 
be the formula for the zero point energy of a set of such shifted oscillators given 

- 
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by (8.42). We may rewrite this result as: 

= $ - $(a- $2) = (-&+ +3(1-o)) . ( 
(10.22) 

The second term in the second line displays the shift of the zero-point energy from 
the situation of periodic boundary conditions on the string. The first term in this 
line displays the shift of the zeropoint energy from the situation of antiperiodic 
boundary conditions. 

As a first step, let us recall the way in which the Es x Es quantum numbers 
of the lO-dimensional heterotic string arise from a fermionic representation of 
the left-moving degrees of freedom. This analysis will give the massless states 
represented in the partition function of eq. (8.50). In a light-cone quantization, 
the left-moving sector of this string contains 8 bosonic and 32 fermionic fields. 
The fermions should be divided into two groups of 16 fields, each of which will 
produce the quantum numbers of one Es. Let us refer to the two Es groups 
as Ei and E& to indicate the groups which will be broken and unbroken after 
compactification. I will also label the corresponding fermions as (#‘)‘, ($J”)‘. 

- 

--_.- . - 

-._ 

In the uncompactified string theory, these fermions may have simple periodic 
or antiperiodic boundary conditions around the string. Taking each choice of 
boundary condition for each set of fermions, we find 4 sectors. The zero-point 
energy of each sector can be computed by summing values of Z(o) given in 
(10.22). (We must recall that fermionic oscillators give a negative contribution.) 
For example, in the sector in which the $* fermions have Neveu-Schwarz (here, 
antiperiodic) boundary conditions and the $I” fermions have Ramond (periodic) 
boundary conditions, the total zero-point energy of 8 bosons and two sets of 16 
fermions is: - . 

8.(-k) + 16.(+&) + 16.(-A) = 0. (10.23) 

The-zeropoint energies of the four sectors are: 

(NS)b @  (N -S)U + 2 = -1 

_ . (R)* 63 (Aq” + _T. z=o - 
--.- e 

(NS)* 8 (R)U 2. z=o - 
- - 

(10.24) 

(R)* @ (V + 2 = +1 
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The last sector produces only massive states. The middle two sectors pro- 
duce spectra which begin at the massless level. The ground states are spinors 

,=- of the O(l6) associated with the spin operator construction using the 16 pairs 
of fermions with Ramond-boundary conditions. After the GSO projection, these 
become chiral spinors. These two sectors then contribute massless states in the 
representation (128,1)+(1,128) of 0(16) x0(16). The first sector of (10.24)pro- 
duces a spectrum which begins at a tachyonic level. (There are no tachyons in 
the spectrum of the complete string because there are no tachyonic states in the 
right-moving sector to satisfy the condition Lo = &.) The massless states in 
this sector are of the states 

(10.25) 

- 

--_.- . - 

-._ 

The states ($~~)i_+($~)<~ In) are removed by the separate GSO projections for b 
and u. The states20f (10.;5) f orm a (120,1)+(1,120) of 0(16) x0(16). Each 120 
assembles with the corresponding 128 to form the 248, the adjoint represetation, 
of an Es. The right-moving sector endows these states with the space-time 
quantum numbers of a lo-dimensional matter supermultiplet (AM, XI!). 

Now we can easily describe the generalization of this construction to a twisted 
sector of the heterotic string compactified on the Z-orbifold. We have already 
noted in eq. (10.6) that, in a twisted state on this orbifold, the bosonic oscillators 
corresponding to compactified dimensions have their quantization shifted by 5 
or 2 unit. We might describe this by saying that the 8 transverse coordinates 
X’,3which form an 8 of the transverse rotational symmetry O(8), break up into 
the representation (2,1) + (1,3) + (1, q of the new transverse tangent-space 
group O(2) x SU(3). W e can represent the identification of the gauge connection 
with the spin connection by assigning 6 of the fermions ($b)’ also to transform 
as a (3 + q under SU(3), and to be similarly offset in their quantization by 
i unit. This assignment breaks the fermionic interchange symmetry 0(16) to 

-e(lO) x SU(3). 

Let us now recompute the zero point energies of the four sectors. The result 
will differ from (10.24) only because of the shifts of the contributions from oscil- 
lators with fractional offset. These can be read from eq. (10.22). For example, in 
the sector with Neveu-Schwarz boundary conditions for both b and u, the shift 
due to replacing 6 (Y = 0 bosons by CY = 6,: bosons and replacing 6 CY = f 
fermions by a! = f , i fermions is given by 

~-.. e 
AZ i-6.; + 6.&, - (10.26) 

_ EC 

so that the total zero-point energy is now ( -4). For the four possible sectors, we 
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find 

,=-- (NS)b -. tgt. (Iv-S)U + 2 =,r-+ 
. 

(lqb c3! (Nsp + z=o 
(10.27) 

(NS)b @ w + z=g 
Wb @ w + z = +1 

The two sectors with 2 > 0 contain no massless states. The second sector 
listed has a spectrum which begins at zero mass; the massless states form a spinor 
of O(lO), the 16. The first sector has states at the zero-mass level of the form 

Wb)k, IQ 9 k = 1,. . . ,lO 
2 

Wb)Ei Wb)b_,(tib)"L In> , 
(10.28) 

a,b,c = 1,2,3 ; 6 

- 

- 

these form a (10 + 1) of O(10). Th ese three representations assemble into a 27 
of Eg. The left-moving sector supplies for this multiplet the space-time quantum 
numbers of a 4-dimensional supermultiplet consisting of a spinor plus a scalar. 
Each twisted sector of the Z-orbifold compactification contains another Eg gen- 
eration of quarks and leptons. 

---.- . - 

-._ 

Since there are 27 fixed points on the Z-orbifold, we find 27 new generations. 
It is worth noting that this accounts precisely for the difference noted earlier 
between the topological estimate of the number of quark and lepton generations 
and the number of such generations found as zero modes in the local field theory 
limit. Apparently, the elements of topology which shrink to points and become 

invisible as the manifold collapses to an orbifold are still visible to strings prop- 
agating on the surface. DHVW argue that this correlation between the Euler 
characteristic of the smoothed manifold and the counting of generations in the 
string theory on the orbifold holds under quite general conditions. 

Let me conclude with a few comments about the 3-point couplings of the 
massless particles we have constructed by compactifying strings on orbifolds. 
These couplings have a direct importance for phenomenology, since, if we can 

_P. identify two of the massless scalars as the Higgs bosons and a set of the mass- 
--- - ---less fermions as the known quarks and leptons, these couplings are exactly the 

Yukawa couplings of the low-energy theory which are responsible for generating 
- the fermion masses. In orbifold compactifications, it is possible to compute these 

couplings explicitly, at least as a perturbation expansion in string loops. 
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The analysis of these Yukawa couplings has been worked out in some detail 
for the case of the Z-orbifold!7s-771 The couplings of the 9 multiplets in the 
trivial sector can be found directly from the coriesponding local field theory, by 
inserting the explicit form of the zero-mode solutions into the standard gauge 
coupling 

/ 
bf+(lO) = 

/ 
d”x 3 &j . (10.29) 

The couplings of multiplets in the twisted sector have no direct interpretation 
in terms of local fields, but they can be computed as the amplitude for a world- 
sheet process in which three twisted strings join and disappear into the vacuum. 
Dixon, Friedan, Martinet, and Shenker 1771have developed methods for evaluating 
these amplitudes explicitly by generalizing the technology used for computing 
expectation values of spin operators. . 

Fig. 18 shows two qualitatively different processes which give rise to these 3- 
point couplings. In Fig. 18(a), three twisted strings at the same fixed point 
join and contract in a classically allowed process which obviously has a large 
amplitude. In Fig. 18(b), th ree twisted strings at different fixed points join 
in a process which involves virtual string propagation across the orbifold. This 
process involves intermediate string configurations with a,X - R, where R is the 
physical size of the orbifold. Thus, the coupling arising from this process should 
be suppressed by a semiclassical factor [76,771 

--...- . - 

-._ 

,-S - e-cR2/d . (10.30) 

This result is noteworthy for two reasons. First, we have seen in Section 6 that 
a’/R2 is effectively the coupling constant of the 2-dimensional nonlinear sigma 
model which represents the string world-sheet dynamics. Apparently, orbifold 
calculations can represent effects nonperturbative in this coupling constant, and 

such effect may be qualitatively important to the string physics. Second, and 
much more importantly, this effect offers a plausible mechanical interpretation 
for the magnitudes of Yukawa couplings. If R is at all large compared to the 
natural string scale, we find that these couplings form a natural hierarchy. 

What an unusual and bizarre, but also rich and wonderful, picture of the 
quark and lepton generations emerges from string compactification!. Surely we 
have much to learn from our further exploration of this theory. 
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- 

(b) 

3-87 
5728A18 

Figure 18. Two world-sheet processes which give rise to 3-point couplings 

of twisted states in an orbifold compactification. 
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