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In this paper we have obtained the exact solution of the Einstein field equations
by using global equation of state of the form p = % po, where ¢ is a function of the
scale factor R for Zeldovich fluid satisfying G = GO(F%)m. We also studied the two
variable A model, viz. A ~ (%)2 and A ~ p under the assumption that the equation of
state parameter w is time-dependent i.e. w = w(¢) in the framework of Kaluza-Klein

theory of gravitation.
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1. INTRODUCTION

Kaluza-Klein theory has a long and venerable history. However, the original
Kaluza version of this theory suffered from the assumption that the 5-dimensional
metric does not depend on the extra coordinate (the cylinder condition). Hence the
proliferation in recent years of various versions of Kaluza-Klein theory, supergravity
and superstrings. In the last years number of authors (Wesson (1992), Chatterjee
et al. (1994a), Chatterjee (1994b), Chakraborty and Roy (1999)) have considered
multi dimensional cosmological model. Kaluza-Klein achievements is shown that
five dimensional general relativity contains both Einstein’s four-dimensional theory
of gravity and Maxwell’s theory of electromagnetism.

Chatterjee and Banerjee (1993) and Banerjee et al. (1995) have studied Kaluza-
Klein inhomogeneous cosmological model with and without cosmological constants
respectively. So far there has been many cosmological solution dealing with higher
dimensional model containing a variety of matter field. However, there is a few work
in a literature where variable G and A have been consider in higher dimension.

Rom. Journ. Phys., Vol. 55, Nos. 7-8, P. 871-880, Bucharest, 2010



872 G. S. Khadekar, Vaishali Kamdi 2

Beesham (1986a, 1986b) and Abdel-Rahman (1990) used a theory of gravita-
tion using G and A as no constant coupling scalars. Its motivation was to include a
G-coupling ’constant’ of gravity as pioneered by Dirac (1937). Since the similar pa-
pers by Dirac (1938), a possible variation of GG has been investigated with no success
by several teams, through geophysical and astronomical observations, at the scale of
solar system and with binary systems (Uzan (2003)). However, it should be stressed
that we are talking here about time variations at a cosmological scale and cosmologi-
cal observations still can not put strong limits on such a variation, specially at the late
times of the evolution. In any case the strongest constraints are the presently observed
G value and observational limits of Ag. Sistero (1991) found exact solution for zero
pressure models satisfying G = GO(R%)"L. Barrow (1996) formulated and studied
the problem of varying GG in Newtonian Gravitation and Cosmology. Exact solutions
and all asymptotic cosmological behaviour are found for universe with G o< t"".

A key object in dark energy investigation is the equation of state parameter w,
which relates pressure and density through an equation of state of the form p = wp.
Due to lack of observational evidence in making a distinction between constant and
variable w, usually the equation of state parameter is considered as a constant (Kujat
et al. (2002), Bartelmann et al. (2005)) with values 0, %, —1 and +1 for dust, radia-
tion, vacuum fluid and stiff fluid dominated Universe respectively. But in general, w
is a function of time or redshift (Chevron and Zhuravlev (2000), Zhuravlev (2001),
Peebles and Ratra (2003), Das et al. (2005)). For instance, quintessence models in-
volving scalar fields give rise to time-dependent w (Ratra and Peebles (1988), Turner
and White (1997), Caldwell et al. (1998), Liddle and Scherrer (1999), Steinhardt et
al. (1999)). So, there is enough ground for considering w as time-dependent for a
better understanding of the cosmic evolution.

A number of authors have argued in favor of the dependence A ~ t~2 first
expressed by Bertolami (1986) and later by several authors (Berman (1990), Beesham
(1986b), Singh et al. (1998), Gasperini (1987), Khadekar et al. (2006)) in different
context. Motivation with the work of Ibotombi (2007) and Mukhopadhyay et al.
(arXiv:0711.4800v1, (2007)), in this work we studied 5D Kaluza-Klein type metric
with perfect fluid and variable GG and A.

We have obtained exact solution for Zeldovich fluid models satisfying G =
GO(R%)W with global equation of state of the form p = %qbp, where ¢ is a function
of scale factor R. In the second part of the paper we have also studied two variable
A model of the form A ~ (%)2 and A ~ p under the assumption that the equation
of state parameter w is a function of time. The possibility of signature flip of the
deceleration parameter g is also shown in the framework of Kaluza-Klein theory of
gravitation.
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2. FIELD EQUATIONS

We consider the 5D Robertson-Walker metric

dr?

ds* = dt?* — R*(t) | ————
i SOl Frpy

+72(d6? 4 5in*0d¢?) | + A%(t)dy?, (1)
where R(t) is the scale factor, A(t) = R" and k =0, —1 or +1 is the curvature
parameter for flat, open and closed universe, respectively. The universe is assumed
to be filled with distribution of matter represented by energy-momentum tensor of a
perfect fluid

Tij = (p+ p)uivj — pgij, (2

where, p is the energy density of the cosmic matter and p is its pressure and u; is the
five velocity vector such that u;u/ = 1.
The Einstein field equations are given by

1 At
Rij = 59i R = —8nG(t) [Tz - 875(3’9”} 7 (€)

where the cosmological term A is time-dependent and ¢, the velocity of light in
vacuum is assumed to be unity.
The conservation equation for variable G and A is given by

. R G A
p+(3+n)R(p+p)=—<Gp+87TG>~ 4)

Using co-moving co-ordinates ut = (1,0,0,0,0) in (2) and with metric (1), the
Einstein field equations become

R2
R Rk
8%Gp=—(n+2)§—(n +n+1)ﬁ—ﬁ+A(7ﬁ), (6)
R R k

where dot () denotes derivative with respective to ¢. The usual conservation law
yields (i.e. T =0)

R
p+B+n)(p+p) 5 =0. ®)
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Using Eq.(8) in Eq.(4), we have
87Gp+A=0. )

Equations (5), (6) and (9) are the fundamental equations and they reduce to standard
Friedmann cosmology when GG and A are constants. Equations (5) and (6) may be
written as

. R2
3(n+2)R=—-8rGR(3p+p) — 3n?E +2AR, (10)
3(n+1)R? = 87GR* p+i —3k (11)
817G ’
Eq.(8) can also be expressed as
d d
—(pR"3) +p—(R"3) =0. 12
5 (PRYT) + o (R) (12)

Equations (5), (9) and (12) are independent and they will be used as fundamental.
Once the problem is determined, the integration constants are characterized by the
observable parameters

Ry
Hy=— 13
0= Ry’ (13)
4 Gopo
= 14
00 3 Hg ; ( )
Ry
= — , 15
q0 R0H02 ( )
0="2, (16)
Po
which must satisfy Einstein’s equations at present cosmic time ¢g:
n—+2 n?
Ao =3Hj [00(3604-1)— ( 5 )QO 2} ; (17)
k n+2 n?—2n—2
— =H} [3(1—!—60)00—( )q0+( )], (18)
R; 2 2

and the conservation Eq. (9) can be written as

AoGo+6GoH2o =0. (19)
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3. SOLUTIONS OF FIELD EQUATIONS

We find out the solutions of the field equations for two different equation of
state: (i) p = %pqﬁ and (ii) p = wp

3.1. CASE (I)

We assume the global equation of state

1
P= 309, (20)
where ¢ is a function of the scale factor R. From Eq.(12) and Eq.(20) we obtain

1d)  (n+3)¢
vaRT 3 R Q1)

where
¢ = pR". (22)

Equation (21) be the first condition to determine the problem; either ¢ or v may be
in term of arbitrary function. If ¢ is a given explicit function of R, then Eq.(20) is
determined and v follows from Eq.(21)

W=y exp {—/ <"§3) zdR] . 23)
If ¢ is given function, from Eq.(20) we get ¢ as
3 Rdy
=— ——. 24
¢ (n+3) ¢ dR @4
Substitute the value of ¢ from Eq.(22) in the Friedmann’s Eq.(5) we get
3(n+1)R* =8rGyR™ "D 4 AR? — 3k. (25)
Egs. (9) and (22) with & = (R-L) give
dG 1 i3 dA
—_— e =, 2
8w iR +¢Y R iR 0 (26)

If G(R) is given then after integrating from Eq.(26) we get A(R) and from Eq.(25)
we get R = R(t) and the problem is solved. Similarly if A(R) may be given instead
of G(R) derives from Eq.(26) we get G(R) and then from Eq. (25) we get R = R(t).
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3.1.1. Zeldovich fluid satisfying G = Go(%)m
To solve Eq.(26) for Zeldovich fluid with ¢ = 3. In this case (23) gives,

R n+3
¥ =po (RO> ~ (27)

Substituting ¥ from (27) into (26), we have

[m—2(n+3)]
A=Ag+Bp |1— (}i) Ry ™), (28)
where, 6
m
By=— " 5, H2 2
m—2(n+3)] "0 (%3)

for m # 2(n+3), By, is a parameter related to the integration constant of Eq.(26).
From Eq.(17),

Ao = 3H? [400 _(n+2) ”T . (30)
2 2
Taking into account (27-28), Friedmann’s Eq. (25) takes the form
R?=q,R™2"+2) 1 3 R (ni 0 k, (31)
where
ap = At g pldm (32)

it 1)(m—2(n13)
5, = g [<4+2mR—(n+3>> _ (n+2)q0} 33)

(n+1) (m—2(n+3) ° 2
Finally the equation for the parameter (18) reduces to

k

72 (34)

e {600_ (n+2) (n2—2n—2)]'

5 d0t 2

and (19) is also satisfied.
The case m < 2(n + 3) implies B,;, < 0 in Eq.(29) and «,, > 0 in Eq.(32) and
vice-versa; (3, < (>)0 according to m n,oq and go combine in Eq.(33); Ag < (>)0

as og < (2)(("2i2)q0 — %2) as given by Eq. (30). From Eq.(34) it is observed that for

the curvature parameter k = +1, 0,—1 we get [60g — (";2) qo+ (”2*3"’2)] <(>)0.
The models are completely characterized by the set of parameters (Hy, Go, 09, q0,m)
with m # 2(n+3).
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3.2. CASE (Il)
Let us choose the barotropic equation of state
D= wp. (35)

Here, we assume that the equation of state parameter w is time-dependent i. e.

w = w(t) such that w = (£)® — 1 where 7 is a constant having dimension of time.

Field equations (5-7) can also be expressed as

3k
3(n+1)H?* + T3 = 87Gp+ A1), (36)
2 . 3nk
3(n+1)H*+3(n+1)H = —87G[(n+1)p+p] — 2 +nA(t). (37)
From Eq. (35), for flat universe (k = 0), we get
3(n+1)H? —A(t
Bt DI A )

8rG
Using Eq. (37) and Eq.(38) in Eq. (36) we get the differential equation

dH  (1+w)A o2
=gl w22, (39)

To solve Eq. (39) we assume two variable A model: A = 3aH? and A = 87Gp.

3.2.1. Case (i): A = 3aH?

For this case Eq. (39) reduces to

dH  [(n+a+1)t*

After solving equation (40) we get,

B (a+1)1¢
H= [(n+3)(a+1)tTe — (n+ a+ 1)tletD)’ 1

writing H = % in Eq. (41) and integrating it further we get the solution set as

R(t) = Oy [(n+3)(a+ 1)~ — (n+a+1)] 70 (42)

_ 2. 2a _
o) = 2 a+8172g+1) ! [(n+3)(a+1)7“t—(n+a+1)t(a+1)} Y43
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2. 2a
1= 3a(a+1)°T N (44)
[(n+3)(a+1)7% — (n+a+1)tatD)]

where C5 is an integration constant. If @ = 0 then w = 0 and 7 = 1 but Eq. (42)
indicates that a can not be equal to zero for physical validity.
Again, using Eqgs. (38) and (41) we get

(n+1)

=1-Q, =, (45)

where, in absence of any curvature, matter density {2,,, and dark energy density {25
are related by the equation

Qy+Qp =1. (46)

3.2.2. Case (ii): A =871Gyp

For this case Eq. (39) can be written as

dH 1+29Y\ [\ 9
—=|l—) (- 1)— H=. 4
[ ER e P
After solving Eq. (47) we get,
o (1+7y)(a+1)7 48)

[(n+3)(1+7)(a+1)79% — (1 +27)(n+1)tet1]’

Using H = % in eq.(48) and integrating we get
_ 1
R(t) =Cs[(n+3)1+)(a+ D)7 = (1+2y)(n+1)] =07, (49)

3(n+1) (1+7)(a+1)%7%
871G [(n+3)(1+7)(a+1)7o — (1+27)(n+ 1)t(+D]?’

p(t) = (50)

3(n+1)y(1+7)(a+1)*72
[(n+3)(1+7)(a+1)79t — (1+27)(n+1)t@+D]*’

A(t) = (51)
where C' is an integration constant. Eq. (49) shows that for physical validity a # 0.
Again from the field equation we can easily find that v is related to 2, and 25
through the relation
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4. CONCLUSION

In this paper by considering the gravity with G' and A a coupling constant of
Einstein field equations with usual conservation laws (T =0), we obtained the exact
solution of the field equations. It is shown that the ﬁeld equations for perfect fluid
cosmology are identical to Einstein equations for G and A including Eq. (12). It is
also observed that, the additional conservation Eq. (9) gives the coupling of scalar
field with matter.

In the case (I) by introducing the general method of solving the cosmological
field equations using a global equation of state of the form p = % po, without loss of
generality, we find the exact solutions for Zeldovich matter distribution. It is observed
that from Eq. (29) By, < 0 for the case m < 2(n+3) and Ay < (>) 0 as
o0 < (>) ((n;%) qo — 7). Similarly [600 - (n+ Lgo+ (n? —gn 2)] (>) 0 depends
on the value of curvature parameter k.

In the case (II), by using equation of state of the form p = wp, we again find
out the exact solutions of the field equations for two different cases: A = 3aH? and
A = 87rGyp. By selecting a simple power law expression of ¢ for the equation of
state parameter w, equivalence of model A ~ ( )2 and A ~ p has been established in
the frame work of Kaluza-Klein theory of gravitation. With the help of Egs. (45) and
(52) it is easy to show that Egs. (42) and (49) are differ by constant while Eqgs. (43)
and (44) become identical with the Egs. (50) and (51) respectively. This implies that
A~ (%)2 and A ~ p are equivalent for five dimensional space time. Using Eq. (41)
and Eq. (45), we obtain

t a
o[- foro-weve-an ()] e
Eq. (53) shows that g is time dependent and hence may be change its sign during
cosmic evolution. It has also been possible to show that the sought for signature

flipping of deceleration parameter ¢ can be obtained by a suitable choice of a.
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