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ABSTRACT

We consider complex scalar fields minimally coupled to an
S0(2,1)-invariant Maxwell potential in 1+1 de Sitter space
and construct an uliraviolet-finite functional representation
of the symmetry generators in the Schrodinger picture. We
find that there is a unique vacuum state which is strictly
S0O(2,1)-invariant.

1.INTRODUCT ION

For fields coupled to time dependent backgrounds, the concept
of an energy ground state does not exist. However, when non-trivial
Symmetries are present, the vacua might alternatively be defined as
the states that are invariant under the <corresponding
transformations. The implementation of such a definition requires the
Symmetry generators to be well-defined without reference to any
Particular field state. This in turn, can be achieved in the Schrodinger
Picture by demanding that the functional representations of the finite
Symmetry transformations be free of ultraviolet singularities[1].
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We shall explicitly illustrate how vacuum states can be
characterized in this fashion by considering complex scalar fields
minimally coupled to an SO(2,1)-invariant Maxwell potential in two-
dimensional de Sitter space.

2. SCALAR FIELDS IN SO(2,1)-INVARIANT BACKGROUNDS

In terms of the conformal time ¢ the de Sitter metrics reads [2]

g =—(af - a) (2.1)
R

with 2h2 the curvature. A basis for the Killing vectors X = #H3y of ¢
is obtained by taking the three operators associated to f¥p = (0,1),
FPp = (t,x), FPg = (tx, 1/2(t2+22)). These vector fields respectively
generate infinitesimal translations, dilatations and special
conformal transformations and obey S0(2,1) commutation rules:
[Xp,Xpl = Xp, [Xp, Xkl = Xp, [¥Xp, Xkl = Xk.

It can be shown [3,4] that

4= Apdxr = (Mt)dx AER (2.2)

is the most general Maxwell potential which is invariant up to gauge
tranfor mations [S] under the isometries of the de Sitter space. Indeed
one can verify that the Lie derivative of 4, Lx A= dps with pp=pp =
0, px= AL

Let ¢ be a complex saclar field and ¢* its conjugate. The
canonical momenta are defined by T = ¢* and 7* = ¢. (The dot
indicate differentiation with respect to ¢.) The Hamiltonian that
governs the classical dynamics of such fields in the SO(2,1)-invariant
gravitational and electromagnetic backgrounds (2.1) and (2.2) is
given by

H = f[nn* o [kz—%k +4054 m2/m?) q>] (2.3)
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In the above expression we have suppressed the integration
variables, adopted an obvious functional matrix notation and
introduced the notation
Kx,y) = 1i8(z-y) (2.4)
for the derivative of the delta function.
Apart from the electric charge
Qe = if(d*m* - om) (2.5)

three other charges (one for each Killing vector) are conserved owing
to the invariance properties of the background fields. They read

of=f{ o + ¢*[/<f°/< RO Lo mZ/h2>f0]¢
t
+{(P*kF ¥ - TF kD) — ipf(cb*ﬂ* - qm)] (2.6)
and it is not difficult to check that they indeed satisfy

dqg =2 =
dth = 6th+{0f'H} = 0 (2.7)

with { ) the Poisson bracket.
3. QUANTIZATION IN THE SCHRODINGER PICTURE AND
RENORMALIZATION OF THE SYMMETRY GENERATORS.

The implementation of the symmeiries at the quantum level
requires more care. Quantization is achieved by promoting the
dynamical variable to operators ¢,0*,m,m* —» ¢,&"I1,IT" and imposing
the equal-time canonical commutation rules

[®(x), TI(Y] = [&'(x), TT'(y)] = i8(x-Y) (3.1a)

[@(2), (] = [TI(x), Y] =[S(x), [T(y)] = O (3.1b)
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We shall work in the Schrodinger picture and use states |[d> on which
the time independent field operators ¢ and $" act by multiplication

(P> = Yd> : P(ND> = dM NP> (3.2)
<Pilde> = f@a’ﬂa* expz’[fdx alx)(d1(2) - da(2)) + ccl (3.3)

The relations (3.1) are realized by taking the momenta to act by
functional differentiation:

(x) = —i8/6¢(x) ; M(x) = —i8/6¢*(x) (3.4)

Upon effecting the substitution (§, o* ,m,17*) = (d, ¢*, ~18/8¢,
-18/6¢*) into (2.6) one arrives at symmetry generators Q o($,T)
which are ill-defined. The source of the problem resides in the fact
that the charges involve products of field operators at the same point.
To arrive at well-defined generators one proceeds like this, First, the
formal expression for Q is regulated so that no singularities occur;
Q — QR Second, one isolates and eliminates the portions of QR that
become singular when the regulators are absent. For linear theories
a c-number subtraction gR suffices. Third, the regulators are
removed from the subtracted expression leaving well-defined
generators which we denote by :Q: = lim(QR - gR).

The renormalizing subtraction will be determined as
follows[1]. Consider the matrix elements of finite transformations

-iTQ
U, 0,T) = <dle 1o (3.5)

They satisfy a functional Schrodinger-like equation

i8/8TUR = QRUR UR(dy, &2 Tl = 8(d1 - d2)  (3.6)

Since QR can be renormalized by a subtraction, the infinities in UR
will be confined to a phase. This infinite phase will be identified by
analyzing eq. (3.6). We shall then define gqR so that
exp(iTqRIUR(D1,d5T) = <O gexp(-iT(QR-qR))Id2> has a well-defined
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local limit. Let us see how this renormalization prescription apply to
the case at hand.
We first observe that the momentum Qp requires no

subtraction. The same is also true of the conformal generator Qg since
special conformal transformations correspond to translations in the
inverted coordinate system. Only Qp, the dilatation generator (f9=t,
Fl=2x) therefore needs renormalization. Since Qp is quadratic in the
canonical variables and commutes with the generator of phase
transformations, an appropriate Ansatz for Up(¢1, do; T) = <oyl exp
(—-iT Qplldodis

Up(®1, 02 T) = Nexp{- [Td1*Ad; - ¢1*Bd2 - ¢2"Coy + d2*De2]) (3.7)
Insertion in the Schrédinger-like equation (3.6) gives the following
differential equation for A and N (X(x,y) = x8(z-y)):

-2 = (TrA
6’rlnN r (3.82)

i‘aé:rA = AZ-tC + Nk _% 0%+ M) ~ AXK - XA (3.8D)

The equation for B, C and D will not be of any concern here. Morever,
regulators will not play any significant role in the discussion and will
therefore be omitted. (See Ref.[3] for details.)

The infinities in Up are all contained in N in the form of a phase
e~1Tdp, From (3.8a) wee see that the divergent part of InN which is
linear in T is to be gotten from the T-independent divergent part
of TrA. Once (3.8b) has been solved for A, this singular quantity
can be obtained by computing the ultraviolet divergence that
occurs in A(x, y; T) as x = Yy after T has been continued to

The solution of (3.8b) which takes care of the initial condition
Up(¢1,42:0)=8(¢1-d2) is given by

: o’ (tp)
Alry, 1) = z‘f@ e—lp(x-y)p [—-,M—— (3.9)
2m o, (tp)
M
/ -
—@Ml(tp) cat[em(tp} - @Ml (tpe )]]
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Here O, u(tp) is the phase of the Whittaker function W-g u(-2itp):

(tp)

A
M)\’p(tp)e (3.10a)

w ”t)\’p(-Zif,p) = W i}\,p(21'tp)

—TAstgnitp) (3.10b)

2 / =
Mx'p(tp)ﬁx’p(tp) = e
and L = [1/4 — (A2 + m2/h2)12 A prime denotes differentiation
with respect to the argument. The asymptotic behavior of Oy p(tp)
for large Itpl is

o, (tp) ~ tp-nn2|tp| + = - AU +o( ) (3.11)
M 2tp 4tp

with v= 2+X\2-1/4. Using this result we find that the symmetric
part Ag of A behaves like

2| plén®

2
-iplx—
Ay 1)~ [T y)[lpl+—m--- (3.12)
for x~y; this is thus the renormalizing subtraction. The
renormalized generators can now be written as

~ g m
Qf = Qf— Trf w (3.13)

/2

1
w"(zy) = fﬁ% e y)[ P ﬁz‘] (3.14)

Observe that wm™ differs only by finite terms from the expression
on the r.h.s. of (3.12). At this point the finite part of the

subtraction is arbitrary, it will be fixed by conservation
requirements as we shall soon see. Finally note that (3.13) can be

used for the translation and conformal generators as well since the
subtraction actually vanishes in these cases.
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4. THE VACUUM STATE

As stated in the Introduction, the vacua should here be
defined as the states whose wave functionals are Gaussian
solutions to the time-dependent Schrodinger equation and in
addition invariant under the symmetry transformations of the
theory. Since no reference to any preselected state has been made
in defining the SO(2,1) generators, the characterization of these
vacuum states can be carried out for the scalar field system that
we have been studying. This was done in Ref.[3] and here is a

We have found that there exists a unique SO(2,1)-invariant
solution of the form W(d,0*; t) = Nexp(-fq>*§2¢) to the Schrodinger
equation 18/8t¥=H¥ with H the Hamiltonian corresponding to (2.3).
The covariance Q=Qr=1Qj is given explicitely by

Q = lklom(tk) (4.1a)
4 / 0. (tk) -

o =1k = @3\‘“(%) - St 0,0 - (4.1b)
ew(tk) 1+tan2[ @w(t/c) - x]

and N is fixed by the normalization condition f@@*ﬂ)cblp* W=1. The
remaining arbitrary real constant X which occurs in the above
expression just accounts for the arbitrariness in the choice of the
time origin. In obtaining these results, we observe that the
renormalized charges of Section 3 are not conserved. (Recall that at
the time, we did not want to invoke any dynamics,) This problem
is easily remedied by redefining the generators as follows:
o /
Q. =Q =Ty l/clew(t/c) (4.2)

Such a redefinition amounts to a finite renormalization as is seen
by comparing (4.2) with the expression (3.13) for Q.
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