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ABSTRACT 
We consider  complex scalar fields minimal ly  coupled to an 
SO(2,1)- invar iant  Maxwell potential  in I+i de Sitter space 
and construct  an ul t raviolet-f ini te  funct ional  r ep resen ta t ion  
of the s y m m e t r y  genera tors  in the Schrodinger  picture.  We 
f ind tha t  the re  is a unique  v a c u u m  state which  is s t r ic t ly  
SO(2, I )- invariant .  

1,INTRODUCT ION 

For fields coupled to t ime d e p e n d e n t  backgrounds ,  the concept  

of an ene rgy  ground state does not  exist. However ,  w h e n  non- t r iv ia l  

Symmetr ies  are present ,  the vacua might a l t e rna t ive ly  be def ined as 

the s t a t e s  t h a t  are  i n v a r i a n t  u n d e r  t h e  c o r r e s p o n d i n g  

transformations.  The implementa t ion  of such a definit ion requi res  the 

Symmet ry  gene ra to r s  to be we l l - d e f i ned  w i t h o u t  r e f e r ence  to a n y  

Particular field state. This in turn,  can be achieved in the Schrodinger  

Picture by demanding  tha t  the funct ional  r epresen ta t ions  of the finite 

SYmmetry t ransformat ions  be free of ul t raviolet  singulari t ies[l  ]. 

Talk presented by Luc Vinet at the XVI International Colloquim on Group 
Theoretical Methods in Physics, Varna, Buigaria, June 1987, 
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We s h a l l  e x p l i c i t l y  i l l u s t r a t e  h o w  v a c u u m  s t a t e s  c a n  be  

c h a r a c t e r i z e d  in t h i s  f a s h i o n  b y  c o n s i d e r i n g  c o m p l e x  sca la r  f i e ld s  

m i n i m a l l y  c o u p l e d  to an S O ( 2 , 1 ) - i n v a r i a n t  Maxwe l l  p o t e n t i a l  in t w o -  

d i m e n s i o n a l  de Si t te r  space .  

2. SCALAR FIELDS IN S0(2,1 ) - INVARIANT BACKGROUNDS 

In  t e r m s  of the  c o n f o r m a l  t i m e  t the  de Si t te r  me t r i c s  r e a d s  [2] 

= 

h t  

w i t h  2h  2 t h e  c u r v a t u r e .  A bas is  for  t h e  Killing v e c t o r s  X F = J '~a~ of g 

is o b t a i n e d  b y  t a k i n g  t h e  t h r e e  o p e r a t o r s  a s s o c i a t e d  to  J F p  = (0,1), 

JFD = ( t , z ) ,  ~ K  = ( tZ,  i / 2 ( t 2 + z 2 ) ) .  T h e s e  v e c t o r  f i e ld s  r e s p e c t i v e l y  

g e n e r a t e  i n f i n i t e s i m a l  t r a n s l a t i o n s ,  d i l a t a t i o n s  a n d  s p e c i a l  

c o n f o r m a l  t r a n s f o r m a t i o n s  a n d  o b e y  S0(2 ,1)  c o m m u t a t i o n  ru les :  

[Xp,XD] = Xp, [Xp, XK] -- XD, [XD, XK] -- XK. 

It  can be s h o w n  [3,4] t h a t  

A = Apdx~ = (k/t)dz ke~ (2.2) 

is t h e  m o s t  g e n e r a l  Maxwe l l  p o t e n t i a l  w h i c h  is i n v a r i a n t  up  to gauge  

t r a n f o r m a t i o n s  [5] u n d e r  the  i s o m e t r i e s  of t he  de  S i t te r  space .  I n d e e d  

one  can  v e r i f y  t h a t  t h e  Lie d e r i v a t i v e  of A, LXj'A = d p ~  w i t h  P[ = PD = 

0,~(= hr. 
L e t  qb be  a c o m p l e x  sac l a r  f i e l d  a n d  ~b* i ts  c o n j u g a t e .  The  

c a n o n i c a l  m o m e n t a  a r e  d e f i n e d  b y  17 = qb* a n d  T~* = 6. (The  d o t  

i n d i c a t e  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  to  t.) The  H a m i l t o n i a n  t h a t  

g o v e r n s  t h e  c lass ical  d y n a m i c s  of  such  f ie lds  in t he  S0(2,1 ) - i n v a r i a n t  

g r a v i t a t i o n a l  a n d  e l e c t r o m a g n e t i c  b a c k g r o u n d s  (2.1)  a n d  (2 .2)  is 

g i v e n  by  



517 

In  the  a b o v e  e x p r e s s i o n  w e  h a v e  s u p p r e s s e d  t h e  i n t e g r a t i o n  
v a r i a b l e s ,  a d o p t e d  an o b v i o u s  f u n c t i o n a l  ma t r i x  n o t a t i o n  and  
in t roduced  the  no ta t ion  

~fix,y) =- i S ' ( x - y )  (2.4) 
for the  de r iva t ive  of the  del ta  function.  

Apar t  f rom the  electr ic  charge 

Oe = i f ( ~ * T r *  - ~Tr) (2 .5)  

t h r e e  o the r  charges  (one for each Killing vec tor )  are c o n s e r v e d  owing  

to the  inva r i ance  p rope r t i e s  of the  backg round  fields.  They  read  

o<:S ", [ ] 1TJ c 1"[ + ~*  k, jcOk - "~ (k J:'°+ J:'°k) + ..,L (X2+ ?Tt,2/lZ2)jc 0 
t t 2 

+i(c~*k,f'l"r* - 1-r,y"k¢~) -/pj.(qb*lX* - qbl-r) J (2.6) 

and it is not  difficult  to check tha t  t h e y  i n d e e d  sat isfy 

wi th  { 

O _ cq Q + ( O f , H }  = 0 (2.7) 
dt  f 3t f 

} the  Poisson bracket .  

3. QUANTIZATION IN THE SCHRODINGER PICTURE A N D  
RENORMALIZATION OF THE SYMMETRY GENERATORS. 

The i m p l e m e n t a t i o n  of the  s y m m e t r i e s  at  t he  q u a n t u m  l e v e l  
r e q u i r e s  m o r e  care.  Quan t i za t i on  is a c h i e v e d  b y  p r o m o t i n g  t h e  
d y n a m i c a l  va r i ab le  to ope ra to r s  qb,~*,~,Tr* --) +,+),FI, FI ) and impos ing  

the e q u a l - t i m e  canonical  c o m m u t a t i o n  ru les  

[+(x) ,  FI(y)l = [+ ' (x) ,  FI'(y)l = tS(:r.-y) (3.1a) 

[~ (x ) ,  ~(y)] = [l~(x), H(y)] = [<I>(x), I-It(y)] = 0 (3.1b) 
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We shal l  w o r k  in t h e  S c h r o d i n g e r  p i c tu re  and  use  s t a t e s  Id>> on w h i c h  

t h e  t i m e  i n d e p e n d e n t  f ie ld  o p e r a t o r s  @ and  ¢) act  b y  m u l t i p l i c a t i o n  

¢,(z) ld>> = <P(z)ld:,> ; ¢,'(:z)1¢,> = ¢,*(x)1¢>> ( 3 . 2 )  

< , , I , 2 >  = 1 3 3 )  

The  r e l a t i o n s  (3.1)  a re  r e a l i z e d  by  t a k i n g  t h e  m o m e n t a  to  ac t  b y  

f u n c t i o n a l  d i f f e r en t i a t i on :  

I-[(~) = -~8/8~bC ~) ; n~(~)  = -Za /8<P*(~)  (3 .4 )  

U p o n  e f f e c t i n g  t h e  s u b s t i t u t i o n  (<b, ¢* ,Tr ,17") =-) (d), ~b*, -~8/8d),  

-~8/8~b*) i n to  (2 .6)  o n e  a r r i v e s  at  s y m m e t r y  g e n e r a t o r s  Qj . (¢ , IE)  

w h i c h  a re  i l l=def ined .  The  sou rce  of t he  p r o b l e m  r e s i d e s  in  t h e  fac t  

t h a t  t he  c h a r g e s  i n v o l v e  p r o d u c t s  of f ie ld  o p e r a t o r s  at  t he  s a m e  point .  

To a r r i v e  at  w e l l = d e f i n e d  g e n e r a t o r s  one  p r o c e e d s  l ike this .  First,  t he  

f o r m a l  e x p r e s s i o n  for  Q is r e g u l a t e d  so t h a t  no  s i n g u l a r i t i e s  occur:  
Q --) O R. Second ,  one  i so la tes  and  e l i m i n a t e s  t he  p o r t i o n s  of QR t h a t  

b e c o m e  s ingu la r  w h e n  t h e  r e g u l a t o r s  are  absen t .  For l inear  t h e o r i e s  

a c = n u m b e r  s u b t r a c t i o n  qR suf f i ces .  T h i r d ,  t h e  r e g u l a t o r s  a re  

r e m o v e d  f r o m  t h e  s u b t r a c t e d  e x p r e s s i o n  Leaving w e l l - d e f i n e d  

g e n e r a t o r s  w h i c h  w e  d e n o t e  by  :Q: ~ l im(Q R-  qR). 

T h e  r e n o r m a l i z i n g  s u b t r a c t i o n  w i l l  be  d e t e r m i n e d  as 

foLLows[1 ]. Cons ider  the  mat r ix  e l e m e n t s  of f in i t e  t r a n s f o r m a t i o n s  

UR( ~b 1, d:>2;'T) = <¢,11e " 1¢2> (3.5) 

T h e y  sa t i s fy  a f u n c t i o n a l  S c h r o d i n g e r - l i k e  e q u a t i o n  

~O/81-U R = QRUR , UR(d~I, dP2; "r)l.r, 0 = 8(d>I - dP2) (3.6) 

Since Q R can  be  r e n o r m a L i z e d  b y  a s u b t r a c t i o n ,  t h e  i n f i n i t i e s  in  U R 

wi l l  be  c o n f i n e d  to  a phase .  This  i n f in i t e  p h a s e  wi l l  be i d e n t i f i e d  by  

a n a l y z i n g  e q .  ( 3 . 6 ) .  W e  s h a l l  t h e n  d e f i n e  qR so t h a t  

exp(~'rqR)UR(~bl,d>2;T) = <~bilexp(-~'r(QR-qR))lcp2> has  a w e l l - d e f i n e d  
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local l imit .  Let  us see h o w  this  r e n o r m a t i z a t i o n  p re sc r ip t i on  app ly  to 

the  case  at  hand .  
We  f i r s t  o b s e r v e  t h a t  t h e  m o m e n t u m  Qp r e q u i r e s  no  

sub t rac t ion .  The s ame  is also t r ue  of the  con fo rma l  g e n e r a t o r  QK since 

specia l  c o n f o r m a l  t r a n s f o r m a t i o n s  c o r r e s p o n d  t o  t r a n s l a t i o n s  in the  
i n v e r t e d  c o o r d i n a t e  sys t em.  Only QD, the  d i l a ta t ion  g e n e r a t o r  (S°=t, 
d '1=x)  t h e r e f o r e  n e e d s  r e n o r m a l i z a t i o n .  Since QD is q u a d r a t i c  in the  

c a n o n i c a l  v a r i a b l e s  and  c o m m u t e s  w i t h  t he  g e n e r a t o r  of p h a s e  
t r a n s f o r m a t i o n s ,  an a p p r o p r i a t e  Ansa tz  for  Up(e l ,  ¢ 2 ;  "r) = <qbll exp 

(-zq- QD)I¢2> is 

Up(C1, ¢2; "r) = N e x p { - f [ ¢ t * A ¢ l  - dPl*B¢2 - dP2*C¢l + ¢2"D•2])  (3.7) 
I n s e r t i o n  in the  S c h r o d i n g e r - l i k e  e q u a t i o n  (3.6) g ives  the  f o l l o w i n g  

d i f f e ren t i a l  e q u a t i o n  for A and N (X(z,~/) = xS(x -y ) ) :  

-~ -~  LT~I = tTrA (3.8a) 
0q- 

(3.8b) ?:-'~" A = tA 2 - t k  2 + 2Xk  _=,I. (X 2 + ??t2/h 2) _ A X k  - kXA 

The e q u a t i o n  for B, C and  D wil l  no t  be of a n y  c o n c e r n  he re .  Morever ,  

r e g u l a t o r s  wi l l  no t  p lay  a n y  s igni f icant  role  in the  d i scuss ion  and  wil l  

t h e r e f o r e  be omi t t ed .  (See Ref.[3] for details .)  

The inf in i t ies  in U D are  all con ta ined  in N in the  fo rm of a phase  

e-~Tq D. From (3.8a) w e e  see t ha t  the  d i v e r g e n t  pa r t  of InN w h i c h  is 

l inear  in T is tO be go t ten  f rom the  " r - i n d e p e n d e n t  d i v e r g e n t  pa r t  

of TrA. Once (3.8b)  has  b e e n  so lved  for  A, this  s ingu la r  q u a n t i t y  

can  be o b t a i n e d  b y  c o m p u t i n g  the  u l t r a v i o l e t  d i v e r g e n c e  t h a t  
occurs  in A(x, y; q-) as z -e y a f te r  q- h a s  b e e n  c o n t i n u e d  to 

The solut ion of (3.8b) w h i c h  t akes  care  of the  ini t ia l  cond i t ion  

U D ( ¢  I, ¢ 2 ; 0  )= 8(qb t-qb 2) is g iven  by 

A(x,y; "l-) = , f "-d-'P-- e-'P(x-y)p[O~'(tP) 

_@/ ]] 
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Here Ox,)~(tp) is the  phase  of the  Whi t t ake r  func t ion  W-~×,)~(-2~tp): 

/-ox,~(tP) 
W_~x, (-2~$ p) = W[x, (2/.t; p) - Mx,v(tp)e (3.10a) 

2, (tp)O/x, (tp) -TrXstgn(tp) 
M = e (3 .10b)  

and D = [i/4 - (~k 2 + T/Z2/]22)] I/2. A p r i m e  d e n o t e s  d i f f e r e n t i a t i o n  

wi th  r e spec t  to the  a rgumen t .  The asympto t ic  behav io r  of Ok,)x(tp) 
for large Itpl is 

"-" t p - X Z n 2 l t p ]  + p _ h ( l - v )  + 0 ( - - ~  ) (3 .11)  
2tp 4t2p 2 t ~ f  

w i t h  v =  )x2+X2- I/4. Using this  r e su l t  w e  f ind  tha t  the  s y m m e t r i c  
par t  As of A b e h a v e s  l ike 

[ 'I 2lpt, h 
for x N y ;  th i s  is t h u s  t he  r e n o r m a l i z i n g  s u b t r a c t i o n .  The  

r en o r ma l i z e d  gene ra to r s  can now be w r i t t e n  as 

Q j, = Q j , -  T r f  co (3.13) 

1/2 
" f ; + (3.14) w (z,~]) = e_~; (z_y ) 2 rE ] 

2Tr 

Observe  t h a t  t0 za di f fers  only by f ini te  t e r m s  f rom the  exp re s s ion  

on t he  r.h.s, of (3.12).  At th is  po in t  t he  f i n i t e  p a r t  of t he  

s u b t r a c t i o n  is a r b i t r a r y ,  i t  w i l l  be  f i xed  by  c o n s e r v a t i o n  

r e q u i r e m e n t s  as w e  shall  soon see. Finally note  t ha t  (3.13) can be 

used for the  t rans la t ion  and conformal  gene ra to r s  as wel l  since the  

sub t rac t ion  actual ly v a n i s h e s  in these  cases. 
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4. THE VACUUM STATE 

As s t a t e d  in  t h e  I n t r o d u c t i o n ,  t h e  v a c u a  s h o u l d  h e r e  be  

d e f i n e d  as t h e  s t a t e s  w h o s e  w a v e  f u n c t i o n a l s  a re  G a u s s i a n  

s o l u t i o n s  to  t h e  t i m e - d e p e n d e n t  S c h r o d i n g e r  e q u a t i o n  a n d  in  

a d d i t i o n  i n v a r i a n t  u n d e r  t h e  s y m m e t r y  t r a n s f o r m a t i o n s  of  t h e  

t h e o r y .  Since no  r e f e r e n c e  to  a n y  p r e s e l e c t e d  s ta te  has  b e e n  m a d e  

in d e f i n i n g  t h e  SO(2,1) g e n e r a t o r s ,  t h e  c h a r a c t e r i z a t i o n  of t h e s e  

v a c u u m  s t a t e s  can  be  c a r r i e d  o u t  for  t h e  scalar  f i e ld  s y s t e m  t h a t  

w e  h a v e  b e e n  s t u d y i n g .  This  w a s  d o n e  in Ref.[3] a n d  h e r e  is a 

We h a v e  f o u n d  t h a t  t h e r e  ex is t s  a u n i q u e  S O ( 2 , 1 ) - i n v a r i a n t  

so lu t ion  of t h e  f o r m  ~ ( ¢ , ¢ * ;  ~) = N e x p ( - j ' ¢ * ~ ¢ )  to t he  S c h r o d i n g e r  

e q u a t i o n  ~0/at~=HW w i t h  H t h e  H a m i l t o n i a n  c o r r e s p o n d i n g  to (2.3). 

The c o v a r i a n c e  ~=~R=~I  is g i v e n  exp l i c i t e ly  b y  

D R = I k l o  / ( tk) (4.1a) 
X,I~ 

2 e '  (tk) + - x] (4.1b) 
X,~ 

and  N is f i xed  b y  the  n o r m a l i z a t i o n  c o n d i t i o n  ,[D¢*D¢"I-r'~'~=I. The  

r e m a i n i n g  a r b i t r a r y  r ea l  c o n s t a n t  X w h i c h  o c c u r s  in t h e  a b o v e  

e x p r e s s i o n  jus t  a c c o u n t s  for  t h e  a r b i t r a r i n e s s  in t h e  choice  of t he  

t i m e  o r ig in .  In  o b t a i n i n g  t h e s e  r e s u l t s ,  w e  o b s e r v e  t h a t  t h e  

r e n o r m a l i z e d  c h a r g e s  of Sec t ion  3 are  n o t  c o n s e r v e d .  (Recall t h a t  at  

the  t i m e ,  w e  d id  n o t  w a n t  to  i n v o k e  a n y  d y n a m i c s . )  This  p r o b l e m  

is eas i ly  r e m e d i e d  by  r e d e f i n i n g  the  g e n e r a t o r s  as fol lows:  

:Of"  = Qj ,  - TrF°]kl@ / (Uc) (4 .2)  

Such  a r e d e f i n i t i o n  a m o u n t s  to  a f in i t e  r e n o r m a l i z a t i o n  as is s e e n  

by  com pa r ing  (4.2) w i t h  t h e  e x p r e s s i o n  (3.13)  for  Oj'. 
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