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Zusammenfassung

Diese Dissertation basiert auf den folgenden Publikationen:

1. Collective flow at SIS energies within a hadronic transport approach: Influence
of light nuclei formation and equation of state. Justin Mohs, Martha Ege,
Hannah Elfner, Markus Mayer, Phys.Rev.C 105 (2022) 3, 034906 [1].

2. Constraints on the Equation of State of Nuclear Matter from Systematically
Comparing SMASH Calculations to HADES Data. Justin Mohs, Simon Spies,
Hannah Elfner, arXiv:2409.16927 [nucl-th] (2024) [2].

3. Flow and Equation of State of nuclear matter at Ekin/A = 0.25 − 1.5 GeV
with the SMASH transport approach. Lucia Anna Tarasovičová, Justin Mohs,
Anton Andronic, Hannah Elfner, Karl-Heinz Kampert, Eur.Phys.J.A 60 (2024)
11, 232 [3].

4. Deuteron, triton, helium-3 and hypertriton production in relativistic heavy-
ion collisions via stochastic multi-particle reactions. Martha Ege, Justin Mohs,
Jan Staudenmaier, Hannah Elfner, arXiv:2409.04209 [nucl-th] (2024) [4].

Materie, wie sie uns im täglichen Leben umgibt, is aus Atomen zusammengesetzt.
Atome bestehen wiederum aus einer Hülle von Elektronen und einem Atomkern im
Zentrum. Der Atomkern ist im Vergleich zur Hülle extrem klein, macht jedoch fast
das gesamte Gewicht des Atoms aus.

Der Atomkern beinhaltet Protonen und Neutronen, welche durch die starke
Wechselwirkung, auch Kernkraft genannt, zusammengehalten werden. Die zugrunde-
liegende Theorie der starken Wechselwirkung ist die Quantenchromodynamik. Hier
wird die Kernkraft durch die Interaktion von Quarks und Gluonen beschrieben, die
sogenannte Farbladungen tragen. Berechnungen im Rahmen der Quantenchromody-
namik sind extrem kompliziert und die Theorie kann in nur wenigen physikalischen
Situationen gelöst werden.

Kernmaterie gehört nicht dazu. Daher können die Eigenschaften der Kernma-
terie nur über effektive Theorien oder basierend auf experimentellen Befunden be-
stimmt werden. Neben Messungen an Atomkernen können auch astrophysikalische

I



Beobachtungen aufschlussreich sein, denn Kernmaterie ist auch in Neutronenster-
nen vorhanden. Messungen der Masse und des Radius von Neutronensternen erlau-
ben es, Rückschlüsse auf die Zustandsgleichung von Kernmaterie zu ziehen. Die
Zustandsgleichung stellt thermodynamische Zustandsvariablen, wie zum Beispiel
Druck, Dichte, und Temperatur in ein Verhältnis und charakterisiert dadurch die
betrachtete Materie. Der Zusammenhang zwischen möglichen Abmessungen eines
Neutronensterns und der Zustandsgleichung kann über die Tolman-Oppenheimer-
Volkoff-Gleichungen hergestellt werden. Die Messung von Gravitationswellen, die
bei der Kollision zweier Neutronensterne emittiert wurden, stellt einen Durchbruch
dar und ermöglicht weitere Rückschlüsse über die Zustandsgleichung von Kernmate-
rie. Astrophysikalische Beobachtungen sind besonders wertvoll für die Bestimmung
der Zustandsgleichung, da Kernmaterie hier in deutlich höheren Dichten vorliegt
als in Atomkernen. Dadurch kann die Zustandsgleichung in einem anderen Bereich
eingegrenzt werden.

Eine weitere Möglichkeit Kernmaterie in hohen Dichten zu untersuchen ist in
Kollisionen schwerer Atomkerne. Bei der Kollision trifft Kernmaterie aufeinander
und wird dabei komprimiert. Das führt, abhängig von der Kollisionsenergie, zu ho-
hen Dichten. Schwerionenkollisionen können unter kontrollierten Bedingungen in
großen Experimenten herbeigeführt werden und in hoher Anzahl wiederholt werden.
Dementsprechend ist es von experimenteller Seite möglich, sehr präzise Messdaten
bereitzustellen.

Für die Bestimmung der Zustandsgleichung ist jedoch eine theoretische Beschrei-
bung der Schwerionenkollision unverzichtbar, denn im Experiment können lediglich
Teilchen im Endzustand, nach der Kollision, detektiert werden. Rückschlüsse auf die
heiße und dichte Phase der Kollision sind also nur im Rahmen von Modellrechnungen
möglich. Die Schwierigkeit bei solchen Modellrechnungen ergibt sich dabei daraus,
dass es sich bei Schwerionenkollisionen um extrem dynamische Prozesse handelt,
bei denen nicht davon ausgegangen werden kann, dass ein thermisches Gleichge-
wicht vorliegt. Dementsprechend erfolgt die theoretische Beschreibung zumeist im
Rahmen von Transportmodellen, die für die Berechnung der Nichtgleichgewichtsdy-
namik anwendbar sind.

Für die Bestimmung der Zustandsgleichung werden hadronische Freiheitsgra-
de verwendet. Hadronen, wie zum Beispiel Protonen und Neutronen, interagieren
durch Stöße oder über Potenziale. Die Potenziale beschreiben die Änderung der Be-
wegungsgleichungen aufgrund der Anziehung und Abstoßung umliegender Teilchen.
Die Potenziale können über thermodynamische Betrachtungen mit der Zustandsglei-
chung in Relation gesetzt werden. Der Weg zur Bestimmung der Zustandsgleichung
führt also über ein Verständnis der Potenziale.

Das Hauptziel dieser Dissertation ist es, mithilfe von Transportrechnungen für
Schwerionenkollisionen Rückschlüsse auf die Potenziale und damit auf die Zustands-
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gleichung, zu ziehen. Dafür wird das Transportmodell SMASH verwendet. Der Kol-
lisionsterm im SMASH Transportmodell beinhaltet diverse Reaktionsmöglichkeiten.
Neben elastischen Kollisionen ist es möglich, eine Reihe von Resonanzen anzuregen.
In diesem Punkt unterscheidet sich das Modell von einigen anderen Modellen, die
in der Literatur zur Bestimmung der Zustandsgleichung herangezogen werden.

Die Potenziale in SMASH setzen sich aus verschiedenen Komponenten zusam-
men. Die Abhängigkeit von der Baryonendichte wird durch das Skyrme-Potenzial
beschrieben. Protonen und Neutronen zählen zu den Baryonen und das Skyrme-
Potenzial ist maßgeblich dafür verantwortlich, Atomkerne zu stabilisieren. Bei ge-
ringerer Dichte ist es anziehend, bei hoher Baryonendichte ist es abstoßend. In
Streuexperimenten von Protonen an Kernen hat man festgestellt, dass das Potenzi-
al ebenfalls von dem Impuls des Protons abhängt. Diese Impulsabhängigkeit wurde
im Rahmen dieser Arbeit zu dem Skyrme-Potenzial in SMASH hinzugefügt. Neben
dem Skyrme-Potenzial gibt es ein Symmetriepotenzial. Vereinfacht gesagt versucht
dieses, eine Asymmetrie zwischen Protonen und Neutronen auszugleichen. Dabei
ist es zum Beispiel attraktiv für Protonen sofern lokal mehr Neutronen als Proto-
nen vorhanden sind. Die Asymmetrie in Neutronensternen ist enorm, da diese fast
ausschließlich aus Neutronen bestehen. Daher ist das Symmetriepotenzial für astro-
physikalische Anwendungen von besonderem Interesse. Weiterhin wurde im Rahmen
dieser Arbeit das Coulomb-Potenzial implementiert. Die langreichweitige elektroma-
gnetische Wechselwirkung ist numerisch aufwendig zu berechnen, trägt jedoch zu
einer genaueren Bestimmung der Zustandsgleichung bei.

Aufgrund der starken Kompression der Kernmaterie in Schwerionenkollisionen
eignen sie sich hervorragend zur Bestimmung der Baryonendichteabhängigkeit der
Zustandsgleichung. Diese kann am besten durch die Betrachtung von eben solchen
Baryonen quantifiziert werden. Protonen wie Neutronen treten jedoch häufig gebun-
den in leichten Kernen auf. Um einen angemessenen Vergleich zu experimentellen
Messungen zu ermöglichen, muss daher auch die Bildung leichter Kerne in der theo-
retischen Beschreibung realisiert werden.

Es gibt verschiedene Herangehensweisen, die Entstehung leichter Kerne zu mo-
dellieren. Eine Möglichkeit beschränkt sich auf die Betrachtung von Protonen und
Neutronen im Endzustand der Kollision. Nukleonen, die sowohl im Ortsraum, als
auch im Impulsraum nah beieinander liegen, können als leichte Kerne interpretiert
werden. Dieses Modell heißt Koaleszenz.

Ein grundlegend anderer Ansatz ist die dynamische Formation und Desintegra-
tion leichter Kerne durch Stöße von Nukleonen. Die Formation leichter Kerne tritt
zumeist katalysiert durch ein Pion oder ein weiteres Nukleon auf. Solche Mehrteil-
chenreaktionen können direkt über stochastische Kollisionsraten oder aufgeteilt über
einen Zwischenschritt realisiert werden. Die dynamische Beschreibung erlaubt es die
Entstehung leichter Kerne zeitlich aufzulösen. Gleichzeitig ist dieser Ansatz limitiert
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in der Größe der produzierten Kerne, da alle notwendigen Reaktionen individuell
implementiert werden müssen.

Die erste Studie, die im Rahmen dieser Arbeit durchgeführt wurde, hat das Ziel,
Observablen zu bestimmen, welche robuste Rückschlüsse auf die Zustandsgleichung
ermöglichen. In Schwerionenkollisionen bildet sich basierend auf eine Asymmetrie im
Anfangszustand eine anisotrope Teilchenverteilung in der transversalen Ebene, senk-
recht zur Kollisionsachse. Diese Übersetzung vom Anfangszustand zum Endzustand
ist besonders sensitiv auf die Zustandsgleichung. Die Anisotropie in der Verteilung
der Teilchen wird durch sogenannte Flusskoeffizienten quantifiziert. Besonders die
Koeffizienten der Verteilung von Protonen sind in der Literatur als exzellente Obser-
vablen für die Studie der Zustandsgleichung bekannt. Moderne Experimente liefern
Daten mit exzellenter Statistik. Diese erlauben eine differenzielle Betrachtung der
Flusskoeffizienten, fein aufgeteilt in Bereiche des Phasenraums.

Flusskoeffizienten, wie sie am HADES-Experiment in Kollisionen von Goldatom-
kernen gemessen werden, werden mit verschiedenen Zustandsgleichungen berechnet.
Die Sensitivität der Koeffizienten auf die Zustandsgleichung wird dabei bestätigt.
Weiterhin kann ein Vergleich der zwei Modelle für die Entstehung leichter Kerne
Aufschluss darüber geben, in welchem Phasenraumbereich die Koeffizienten wenig
von der Produktion der Kerne beeinflusst werden. Basierend auf diesem Bereich
können besonders robuste Rückschlüsse auf die Zustandsgleichung gezogen werden.

Für diese Sensitivitätsstudie war die Impulsabhängigkeit der Potenziale noch
nicht im SMASH Modell implementiert. Dementsprechend wurde noch keine zu-
friedenstellende Übereinstimmung zwischen Modell und Experiment erreicht. Im
Anschluss wurde die Impulsabhängigkeit hinzugefügt und zusätzlich das Coulomb-
Potenzial implementiert. Basierend auf den zuvor identifizierten Observablen wird
eine Folgestudie, mit dem Ziel, die Zustandsgleichung quantitativ zu bestimmen,
durchgeführt. Für einen systematischen Datenvergleich wird eine bayessche Analyse
durchgeführt. Diese liefert auf kontrollierte Weise eine A-posteriori-Wahrscheinlichkeitsverteilung
für die Parameter der Potenziale, also indirekt der Zustandsgleichung. Die Wahr-
scheinlichkeitsverteilung gibt nicht nur Aufschluss über die von der Messung be-
vorzugten Parameter, sondern quantifiziert auch die statistische Unsicherheit. Die
Durchführung der bayesschen Analyse über das Markow-Chain-Monte-Carlo-Verfahren
erfordert die häufige Evaluation des Modells. Da die Berechnung von Schwerionen-
kollisionen mit genügender Statistik einen enormen numerischen Aufwand erfordert,
wird das SMASH Transportmodell hierfür mit einem Gaußschen Prozess emuliert.

Die so gewonnene Wahrscheinlichkeitsverteilung für die Potenziale offenbart eine
relativ feste Zustandsgleichung verglichen mit vorhergegangenen Abschätzungen der
Zustandsgleichung in der Literatur. Außerdem ist die statistische Unsicherheit sehr
klein, was die Aussagekraft der experimentellen Daten bestätigt. Bei der Interpre-
tation der A-posteriori-Wahrscheinlichkeitsverteilung sollte jedoch bedacht werden,
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dass diese keine Unsicherheiten der theoretischen Beschreibung beinhaltet. In der
Zukunft führt der Weg zur Zustandsgleichung also darüber, ein Verständnis der
Unterschiede zwischen den Modelle aufzubauen, und Unsicherheiten zu reduzieren.

Die oben genannten Studien sind fokussiert auf experimentelle Daten der HA-
DES Kollaboration für eine feste Kollisionsenergie. Am FOPI-Experiment wurden
Gold–Gold-Kollisionen bei einer Reihe von Kollisionsenergien vermessen. Da sich
mit der Kollisionsenergie auch die Dichte des Systems ändert, bieten diese Messun-
gen die Möglichkeit, mehr über die Dichteabhängigkeit der Zustandsgleichung zu
erfahren. Betrachtet wird weiterhin die Anisotropie der Teilchenverteilung in der
transversalen Ebene. Die Übereinstimmung von Rechnungen mit verschieden festen
Zustandsgleichungen wird hier durch die Berechnung eines χ2 quantifiziert. Beim
Vergleich zwischen weichen und festen Zustandsgleichungen scheint eine weichere
Zustandsgleichung insgesamt die Messungen besser zu beschreiben. Diese Beobach-
tung ist konsistent mit vorhergegangenen Analysen der Daten vom FOPI Experi-
ment. Betrachtet man jedoch den zweiten Flusskoeffizienten, welcher die Elliptizität
der Verteilung beschreibt, bemerkt man, dass dieser mit steigender Kollisionsenergie
nur durch eine härtere Zustandsgleichung beschrieben werden kann. Das ist wieder-
um konsistent mit den oben genannten Studien von Daten des HADES Experiments.
Eine kompliziertere Dichteabhängigkeit der Zustandsgleichung ließe sich daher ver-
muten. Die Bestimmung der Zustandsgleichung ist aber modellabhängig.

In den bisher vorgestellten Studien ist die Formation leichter Kerne eine Not-
wendigkeit für einen realistischen Datenvergleich. Die Modellierung leichter Kerne
ist jedoch nicht nur eine potenzielle Fehlerquelle, sondern kann auch maßgeblich
zum Verständnis starkwechselwirkender Materie beitragen. Aufgrund verschiedener
Beobachtungen wird davon ausgegangen, dass man in Schwerionenkollisionen am
Brookhaven National Laboratory und am CERN Materie erzeugt, in der die Quarks
und Gluonen, die Bestandteile von Protonen und Neutronen, nicht mehr gebun-
den in Hadronen auftreten. Man spricht bei Materie in diesem Zustand von einem
Quark-Gluon-Plasma. Die Existenz einer weiteren Phase legt die Frage nach dem
Charakter des Phasenübergangs nah. Verbunden mit dieser Frage ist die Suche nach
einem kritischen Punkt im Phasendiagramm. Die Erforschung des Phasendiagramms
starkwechselwirkender Materie ist eine der Kernfragen der Schwerionenphysik.

In der Nähe eines kritischen Punktes erwartet man, dass Fluktuationen verstärkt
auftreten. Insbesondere die Fluktuation der Anzahl von Baryonen ist im Fokus aktu-
eller Forschung. Leichte Atomkerne sind zusammengesetzte Objekte aus Baryonen.
Die Produktion leichter Kerne ist daher stark abhängig von der Baryonenzahl. So-
mit stellt die Produktion leichter Kerne ein exzellentes Werkzeug für die Suche nach
dem kritischen Punkt dar.

Dynamische Modelle zur Beschreibung der Kernproduktion sind unverzichtbar
um ein tieferes Verständnis zu erlangen und um Signale eines kritischen Punktes zu
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erkennen. Das Modell darf dabei nicht auf die Beschreibung hadronischer Materie
limitiert sein, daher werden oft sogenannte Hybridmodelle verwendet. Diese setzen
sich unter anderem aus einer Entwicklung der besonders heißen Phase des Systems
durch relativistische Hydrodynamik, verbunden mit einer hadronischen Transport-
beschreibung für die späte

”
afterburner“-Phase, zusammen. Für die Beschreibung

der letzten Phase ist SMASH geeignet. Durch die dynamische Produktion leichter
Kerne im Modell kann ein Beitrag zur Suche nach dem kritischen Punkt geleis-
tet werden, auch wenn der kritische Punkt nicht modelliert wird. Durch den Ver-
gleich mit experimentellen Messdaten zur Häufigkeit leichter Kerne und der Analy-
se der Reaktionsraten zu Produktion und Desintegration leichter Kerne im Modell,
wird die Notwendigkeit der

”
afterburner“-Phase offensichtlich. Des Weiteren werden

Verhältnisse der Anzahl verschiedener Kerne gebildet und mit dem Experiment ver-
glichen. Diese Verhältnisse sind so konstruiert, dass sie sensitiv zum kritischen Punkt
sind. Dementsprechend ist es nicht überraschend, dass keine Übereinstimmung mit
dem Experiment erreicht wird.
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Kapitel 1

Introduction

1.1 Standard Model and Strong Interaction

To our best understanding, there are four fundamental types of interaction: the
strong interaction, the weak interaction, the electromagnetic interaction, and gra-
vitation. Gravity, on a basic level, describes the attractive force between massive
objects. On a closer look, it can be understood in terms of general relativity [5],
where mass and energy deform space-time as formulated in Einstein’s field equati-
ons.

The strong, weak, and electromagnetic interactions can be described in a unified
theory called the Standard Model of particle physics. A grand unification of the
standard model with gravity has not been achieved so far, and it remains a big
open question for modern theoretical physics. The Standard Model is not presented
in much detail in this thesis, but a brief overview can be given by introducing the
elementary particles included in this theory. Each elementary particle corresponds
to a quantum field. An introduction to the theory of quantum fields can be found
in [6].

All particles are compiled in Figure 1.1. The figure is split into fermions on the
left and bosons on the right. Fermions and bosons differ in their spin – a quantity
often compared to intrinsic angular momentum. Interactions are modeled via the
exchange of bosons, and each boson can be attributed to one of the fundamental
forces.

The photon is a famous example of an exchange boson. It is the mediator of
the electromagnetic interaction and is associated with electromagnetic waves. Elec-
tromagnetic waves in various ranges of frequency are essential in daily life. Most
importantly, visible light, but also X-rays and radio waves are electromagnetic wa-
ves and understood as photons on a quantum field level. All particles with an electric
charge can interact via photons. The electric charge of the elementary particles is
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Abbildung 1.1: Particles of the Standard Model of particle physics. The particles
are grouped into quarks, leptons, and bosons. Taken from [7].
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depicted in Figure 1.1 in units of the elementary charge. Most prominently, the
electron couples to the photon, but also the quarks, which are constituents of the
proton.

The Z0 and the W+ and W− are the exchange bosons of the weak interaction. As
the name suggests, the weak interaction exhibits a relatively small force, which can
be explained by the large mass of the exchange particle. Due to the large mass, much
energy is required to emit an exchange boson, which makes processes of the weak
interaction unlikely. All fermions in Figure 1.1 take part in the weak interaction,
but especially the neutrinos only interact weakly. The weak interaction is unique in
the sense that it is the only interaction that can change the flavor of the quark. A
prominent example is beta minus decay (or β−-decay) where a neutron decays into
a proton, emitting an electron and an electron anti-neutrino – the anti-particle of
the electron neutrino. On the level of elementary particles, the proton is a composite
particle consisting of two up and one down quark bound by the strong interaction,
whereas the neutron contains two down quarks and an up quark. Therefore, beta
minus decay is a down quark changing flavor to an up quark by radiating a W−,
which then decays into leptons. This process and the inverse process are highly
relevant in astrophysics, for example, within neutron stars or for the synthesis of
atomic nuclei in supernovae or collisions of neutron stars.

The main focus of this work is on the strong interaction. It is the most important
interaction at small scales and is responsible for the stability of atomic nuclei. The
theory of the strong interaction is quantum chromodynamics (QCD). As the name
suggests, it describes the dynamics of the elementary particles that carry a color
charge. This includes the quarks and the gluon, which is the exchange boson of the
strong interaction. Each quark carries one of three color charges, often referred to
as red, blue, and green. Their anti-particles carry anti-color charges: anti-red, anti-
blue or anti-green. A unique feature of QCD is that the exchange bosons themselves
carry color charge. More precisely, each gluon carries a color charge and an anti-color
charge. Due to this property, gluons themselves can interact via further gluons, which
is essential for the characteristic behavior of the strong interaction that we discuss
in the following.

One consequence of the strong interaction is confinement. Confinement refers
to the finding that only color-neutral objects can be observed freely. Color-neutral
objects can be created by combining a quark and an anti-quark with matching (anti-
)colors. A state of a quark and anti-quark is called a meson. One can further create
a color-neutral objects from three quarks of different colors. This is referred to as a
baryon. Following their aforementioned quark content, the proton and the neutron
are baryons. Both mesons and baryons are subsets of hadrons, which is an umbrella
term for composite particles bound by the strong interaction.

There is no proof of confinement starting from quantum chromodynamics. Ho-
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wever, the potential of a quark and an anti-quark has been evaluated in numerical
lattice QCD [8] calculations (see [9], for example). It shows a linear rise of the po-
tential as a function of the distance, together with a ∝ r−1 term which is important
only for small radii. An interpretation of the linear form of the potential is that a
string of gluons is spanned between the quarks. The energy contained in this string
is proportional to its length. If one were to put energy into the quark-anti-quark
pair trying to separate them, the string breaks into two as a new quark and an
anti-quark are produced once sufficient energy is available. This is the underlying
picture of the Lund string model [10], which is also described in Section 2.2.4.

Confinement and the formation of such color strings are consequences of the non-
perturbative nature of QCD in soft processes. For a comprehensive description of
perturbation theory in quantum field theory, the reader is referred to [6]. On a basic
level, for each physical process, there are many microscopic possibilities to reach the
same final state. They are usually visualized in terms of Feynman diagrams, and
their contribution to the probability of a process can be derived from the diagrams.
Depending on the complexity of a diagram, the contribution is proportional to coup-
ling constants raised to a higher power for complex diagrams or a lower power for
more basic diagrams. The coupling constant of the electromagnetic interaction is
small, meaning that the simple diagrams are the most important. Neglecting com-
plex diagrams, therefore, causes only a minor error, and is referred to as perturbation
theory in this context. In general, there is also a dependence of the coupling constant
on the transfer of momentum. For the electromagnetic interaction, this dependence
is very weak but it is defining for the strong interaction, and it is known as the
running coupling. Estimates of the coupling constant αs of the strong interaction
are compiled in Figure 1.2. One can clearly see that the coupling constant is small
if the transfer of momentum is large. Processes with large momentum transfer are
considered hard. In such a setting, perturbation theory is applicable. The coupling
constant increases for low momentum transfer, and more complex diagrams are no
longer negligible. QCD calculations in this soft, non-perturbative regime are very
challenging.

To explore the nature of the strong interaction at low momentum transfer, me-
thods are developed and applied that do not rely on a small coupling, such as the
Dyson-Schwinger equations [12], [13] or the functional renormalization group [14],
[15]. The aforementioned lattice QCD is a very prominent approach to this pro-
blem. In lattice QCD, spacetime is discretized and the theory can be solved in some
scenarios under immense numerical effort. It is restricted to a small density of net
baryons, and calculations of time-dependent quantities are extremely challenging.
For thermalized QCD matter at vanishing baryon density however, a calculation
from first principles can be obtained using lattice QCD. From such calculations we
have learned that there is a crossover transition from hadronic matter to quarks and
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Abbildung 1.2: Running coupling of the strong interaction as a function of the
momentum transfer. A compilation of experimental estimates of the coupling is
given and one can observe that the coupling decreases significantly with increasing
momentum transfer Q. Taken from [11]

.

gluons at Tc ≈ 155 MeV [16]–[18]. This new state of matter, where strongly interac-
ting matter is deconfined, is called quark-gluon plasma (QGP). Understanding the
QGP is one of the main goals of current research.

Large experimental facilities performing heavy-ion collisions (see Section 1.2)
claim to have observed the quark-gluon plasma. In the year 2000, CERN [19] stated
that this new form of matter was created [20]. Later, in the year 2005, scientists
at the Relativistic Heavy Ion Collider (RHIC)[21] concluded that they had probed
the QGP as well and that it behaves like a nearly perfect fluid [22] (see [23] for a
comprehensive explanation of how this statement is based on experimental data and
theoretical calculations).

Different phases of matter are well known in daily life from water, which we
frequently experience as ice, liquid water, or vapor. QCD matter has a complex
phase structure too and a first phase diagram was proposed by Cabibbo and Parisi
already in the seventies [24]. This version of the phase diagram had a second-order
phase transition at vanishing baryon density. From lattice QCD calculations we now
know that the transition is a smooth crossover in that region [25] which one can
imagine like the melting of butter.

A sketch of the current understanding of the phase transition is shown in Figure
1.3. The sketch includes many structures, most prominently the transition between
hadrons and the QGP. It is displayed here in terms of the baryon chemical potential
µB, which is closely related to the baryon density. A smooth transition is illustrated
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at small µB to resemble the crossover. At larger baryon densities, there might be
a first-order phase transition that ends with a critical point. The critical point is
further studied in Section 6. A color-superconducting phase is further expected at
very large µB. At low temperatures, there is a transition between the hadron gas and
nuclear matter. This transition and the QGP transition at µB ≈ 0 are relatively well
known, but especially the central region of the phase diagram is not fully settled.

Exploring the phase diagram of QCD matter is one of the main goals in the
research field. The possible phase transition and critical point are presumably located
in the phase diagram in a region where the temperature and density are extreme.
This region of the phase diagram can, in terrestrial experiments, only be probed in
heavy-ion collisions, which are introduced in the following.

1.2 Heavy-Ion Collisions

An excellent way to investigate the properties of matter on microscopic scales is to
perform scattering experiments. Prominently, the Rutherford scattering experiment
[27] was an important contribution to our current understanding of the structure of
atoms. One can further gain insight into the structure off atomic nuclei by scatte-
ring electrons of individual nucleons within the nucleus. With increasing energy, a
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scattering between a lepton and a quark within a nucleon becomes possible. This
process is called deep inelastic scattering, and it is used to study the inner structure
of nucleons (see e.g. [28]).

Scattering experiments are performed to study the properties of QCD matter
and to explore the QCD phase diagram. At the bear mountain workshop in 1974,
collisions of atomic nuclei were suggested to create a large volume in which strongly
interacting matter could be probed under extreme conditions [29]. After this work-
shop, heavy-ion collisions were performed in various experiments. This led to the
aforementioned announcements about probing the quark-gluon plasma at CERN
and BNL, and the research on QCD matter in heavy-ion collisions is still ongoing.
See [30] for a short review of the history of heavy-ion physics.

1.2.1 Scanning the Phase Diagram

A sketch of the QCD phase diagram is shown in the previous section, and, as men-
tioned before, one of the main goals of heavy-ion physics is to explore this phase
diagram. To scan the phase diagram, one needs to change the temperature and the
baryon density in the system. There are various handles to experimentally influence
which region in the phase diagram is probed. Higher temperatures can be accessed
by increasing the collision energy. Large experimental facilities are built to provi-
de enough collision energy to probe the quark-gluon plasma. The highest energy is
currently reached at the Large Hadron Collider (LHC) [31] at CERN, where the
center-of-mass energy per nucleon pair in a collision of two lead nuclei was initially√
sNN = 2.76 TeV and is currently 5.02 TeV due to upgrades. At BNL, the Relativi-

stic Heavy Ion Collider reaches the second-highest energies, with
√
sNN = 200 GeV

in collisions of gold nuclei. To cover a larger region of the phase diagram, the ener-
gy is varied in the Beam Energy Scan (BES) and Beam Energy Scan II (BES II)
programs. The sketch of the phase diagram in Figure 1.3 also includes trajectories
that roughly indicate the temperature and baryon chemical potential probed within
a heavy-ion collision at various collision energies from RHIC to LHC. With increa-
sing energy, the temperature naturally increases, but at the same time, the baryon
chemical potential decreases.

This is, at first, counterintuitive because one would think that the nuclei are
compressed more when the collision energy is large. That would lead to a large
baryon density and ultimately a large µB, which is indeed the case at sufficiently low
collision energies. The collision dynamics change, however, with increasing energy,
and the baryons from the colliding nuclei are only stopped at low collision energies,
while the nuclei become more and more transparent at higher collision energies and
deposit an enormous amount of energy, but few net-baryons. Baryon stopping is
investigated with the SMASH transport model (see Chapter 2) used in this work in
[32].
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Large baryon densities can therefore be probed at smaller collision energies.
Indeed, the HADES collaboration has shown that nuclear matter is probed un-
der similar conditions in collisions of neutron stars and in heavy-ion collisions at
Ekin = 1.23AGeV (

√
sNN ≈ 2.4 GeV) [33]. In consequence, collisions at relatively

low energies are very interesting, as they allow for interdisciplinary studies between
astrophysics and heavy-ion physics (see Section 1.3.1).

Experimentally, there are more handles to control the baryon density. One possi-
bility is by changing the collision system. Colliding smaller nuclei reduces the density
probed in the experiment. Following this line of thought, experiments are performed
with various nuclei, from large nuclei like 207Pb+ 207Pb and 197Au+ 197Au to smaller
nuclei like 108Ag + 108Ag, 96Ru + 96Ru, and 96Zr + 96Zr, 40Ar + 45Sc down to small
collision systems like 12C+ 12C, 9Be+ 9Be, d+ 197Au, p+ 207Pb, p+ 197Au, and p+p.

An overview of the various experimental facilities for heavy-ion collisions is given
in [34]. For this thesis, the most important experimental measurements are perfor-
med with the HADES [35] experiment and at the FOPI [36] experiment located at
GSI. These experiments operate at relatively low collision energies below 2AGeV
to study hadronic matter at large densities.

In Chapter 6, experimental data from the STAR [37] experiment within the
Beam Energy Scan program is considered at 7.7 GeV <

√
sNN < 19.6 GeV. This

energy region is particularly interesting for the search for a critical point in the
phase diagram of QCD matter.

Besides varying the collision system, the system size, and with it the density can
be varied by performing a centrality selection. If the colliding nuclei hit head-on, the
most energy is deposited, and higher temperatures and densities are to be expected.
However, head-on collisions are rare, and it is more likely that nuclei hit each other
with a sizable impact parameter. By selecting the events based on the activity, one
can vary the probed region in the phase diagram. Grouping collisions into centrality
classes gives a chance to focus on a restricted region of the phase diagram. Still, a
heavy-ion collision is a dynamic process in which the system evolves from a very hot
and compact system to a cooler state as it expands until the hadronic end products
eventually reach the detector. Clearly, a heavy-ion collision traverses a trajectory in
the phase diagram, as illustrated in Figure 1.3 but additionally, a heavy-ion collision
is not homogeneous. The density and temperature are not the same throughout the
created system but it is typically hotter and denser in the center. From this fact, it
becomes clear that each collision really encodes information on an entire region in the
phase diagram, and it is an extremely complex task to disentangle this information
given only the final state.
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1.2.2 Important Observables

Before iterating through the most relevant theoretical models, it is instructive to
quickly introduce the most important observables that can be compared to expe-
rimental measurements. A very basic observable is the multiplicity. It refers to the
number of particles of some category. Usually, the multiplicities of specific identified
hadron species are considered but the number of charged particles can already be
insightful.

Further, the multiplicity can be subdivided into different kinematic regions. The
kinematic regions are most commonly defined in terms of rapidity or transverse
momentum. The rapidity is a measure of the velocity in the beam direction and can
be calculated from the longitudinal component of the velocity βz as

y =
1

2
ln

(
1 + βz

1 − βz

)
=

1

2
ln

(
E + pz
E − pz

)
. (1.1)

The transverse momentum of a particle is obtained as

pT =
√

p2x + p2y (1.2)

when the coordinate system is chosen such that the x and y directions span the
transverse plane, which is perpendicular to the beam axis. Compared to the absolute
value of the momentum p =

√
p2x + p2y + p2z, the transverse momentum disregards

the contribution from the longitudinal part. In the sense that the rapidity carries
only information about the longitudinal direction, and the transverse momentum
incorporates only information in transverse direction, the two kinematic variables
are complementary.

Binning the number of identified particles (here denoted by N) into rapidity and
transverse momentum, so-called particle spectra are obtained. Assuming sufficient-
ly fine binning, the rapidity spectrum is referred to as dN/dy and the transverse
momentum spectrum is dN/dpT . The double-differential spectrum d2N/dydpT is re-
lated to the rapidity spectrum and the momentum spectrum via an integral, as the
notation suggests.

Particle spectra already contain a wealth of information about the dynamics of a
heavy-ion collision. However, the distribution of particles within the transverse plane
is not captured by just the rapidity and the transverse momentum. For this purpose,
the azimuthal angle ϕ is introduced to describe the anisotropy in the transverse
plane. To define the angle, a reference plane is required. In the simplest case, the
reaction plane is used as the reference. This plane is spanned by the beam direction
and the offset of the colliding nuclei in the transverse plane. In model calculations,
the coordinate system is often chosen such that the beam direction is in the z-
direction and the offset of the nuclei is in x-direction. In such a setup, the angle
with respect to the reaction plane is simply ϕ = arctan (py/px).
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The distribution in ϕ is always periodic, and it is possible to express the distri-
bution in terms of a Fourier expansion

dN

dϕ
∝ 1 + 2

∞∑
n=1

vn cos(nϕ) . (1.3)

In this expansion, the information is contained in the flow coefficients vn which are
referred to as directed flow (v1), elliptic flow (v2), triangular flow (v3), etc. The flow
coefficients can be evaluated as

vn = ⟨cos(nϕ)⟩ , (1.4)

where the average runs over particles. In this way, the coefficients can be determined
for each bin in transverse momentum and rapidity separately if sufficient statistics
are available.

1.2.3 Theoretical Description

It is evident that theoretical models are required to extract information about QCD
matter from the experimental observations in the detector. There are various models
for heavy-ion collisions that make conclusions about the underlying physics possible.

Statistical Hadronisation Model

The statistical hadronization model [38]–[40] can be used to predict particle yields by
assuming that they are produced in a thermal medium. A comprehensive introduc-
tion with the necessary equations can be found in [34]. The statistical hadronisation
model is also known as thermal model. Particle multiplicities are evaluated using
thermodynamics in a grandcanonical ensemble. The centerpiece of such a calcula-
tion is the partition function, which includes the Hamiltonian of the system. The
Hamiltonian encodes the microscopic information of the system that is to be de-
scribed. In this case, the Hamiltonian resembles a hadron resonance gas without
explicit interactions. To be specific, the Hamiltonian includes only the kinetic terms
for all hadron species and for hadronic resonances as well with no interaction term.
Resonances are usually related to interactions, as they are excitations of hadrons.
In the thermal model, there is just a statistical production of resonances.

An expectation value for the particle yield can be obtained for a given tem-
perature, chemical potential, and volume. For a given hadron species, there is an
additional contribution to the yield from each resonance that can decay into the
considered hadron. The particle yield must scale linearly with the volume. By con-
sidering the ratio of particles, the volume always cancels out and no information
on the form or size of the fireball is required. Since there are no net strange quarks
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present in the colliding nuclei and because the number of net strange quarks is
conserved in the strong interaction, one can enforce the net strangeness to vanish.
The thermal model then has only the temperature and baryochemical potential as
parameters. The two parameters can be fitted to the multiplicities of the various
hadronic species, and a good description is obtained.

The success of the model suggests that particles are produced thermally at the
fitted temperature and that the particle yields are, despite resonance decays, fixed
from that point on. Figure 1.3 includes this estimate of where the freeze-out takes
place in the phase diagram. Considering that the system freezes out at such a large
temperature in the model, it is surprising that even light nuclei production can be
described very well [41], [42]. Light nuclei have a small binding energy, and their
existence at extremely high temperatures is compared to ßnowballs in hell”[43]. This
interesting finding led to further studies of dynamical light nuclei production that
we discuss in Chapter 6.

The statistical hadronization model gives a good description of particle yields,
especially considering its simplicity. However, the model is based on the assumption
that a thermalized medium is the origin of all particles and resonances. This makes
it hard to access information about the early stage of a heavy-ion collision, where
the system is under even more extreme conditions.

Hybrid Models

A motivation for performing heavy-ion collisions is to study the very hot matter
that was present in the early stages of the universe. To understand the hottest stage
of a heavy-ion collision, dynamical models must be applied to make a connection
between that stage and the measurement in the final state.

Heavy-ion collisions at sufficiently large energies to create a QGP are frequently
modeled in hybrid approaches. A hybrid approach is really a combination of models,
of which each one describes a certain stage of a heavy-ion collision best, as well as
the transition between them. In the early stage, just after the nuclei collide, the
system is far from thermal equilibrium. So-called initial state models are applied
for this stage until the system is sufficiently close to thermal equilibrium so that a
hydrodynamic evolution is possible.

There are various models for the description of this stage. The Glauber model
(see [44] for a review) is commonly employed for this purpose. Based on the initial
distribution of nucleons in the colliding nuclei, the deposition of energy is calculated
considering their overlap along the collision axis. This can be done analytically, but
is more commonly performed numerically in Monte Carlo Glauber calculations. The
results presented in Chapter 6 are obtained using a hybrid model incorporating an
extension of the Monte Carlo Glauber model.

In the color glass condensate framework the nuclei are treated as sources for the
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color fields, which are described as a real scalar field that captures important features
of QCD [45]. The IP-Glasma model [46] is based on the color glass condensate and
takes into account the impact parameter of the colliding nuclei. A good agreement
with the experimentally quantified anisotropy in the azimuthal particle distribution
was found in a hybrid approach that incorporates the IP-Glasma model in the initial
state [47].

A very flexible initial state can be obtained with the TRENTo model [48]. It
provides a parametric initial state that can give a similar initial state to other
models, depending on the parameter choices. This is particularly useful for data-
driven analyses (for example [49]) where the flexibility allows to find the initial state
that leads to the best description of the experimental data and enables inferences
about properties of the initial state.

To describe the non-equilibrium dynamics in the initial state, one can apply a
transport model. The transport model SMASH is introduced in much detail in Chap-
ter 2. Transport calculations for the initial state start with atomic nuclei propagating
towards each other until they collide and eventually the switch to a hydrodynamic
evolution is performed. Most conveniently for the description of the nuclei in the
initial state, hadronic degrees of freedom are chosen for this purpose. At first the
transport calculation for the initial state may seem very similar to the Glauber mo-
del as in both cases nucleons are sampled within two colliding nuclei and collisions
between them are found in the following. The main difference is that a transport
model allows for secondary interactions. Thereby the system dynamically approa-
ches equilibrium. The applicability of a hadronic description for this early stage,
where the energy density is very large, is not obvious as the system should eventual-
ly be described in terms of quarks and gluons. One can argue that the first, highly
energetic, interactions are usually performed within a string model that create and
fragment color strings on a quark level, see Section 2.2.4. The fragmentation of the
strings in this situation is probably not wanted if one understands the formation of
the QGP as overlapping of the color fields. In the fragmentation process the energy
is however conserved and the energy density profile required for the hydrodynamic
evolution should be reasonable.

Realizations of hadronic transport for the initial state in a hybrid approach have
been developed using UrQMD [50] and SMASH [51]. A partonic transport initial
state is part of the AMPT hybrid model [52].

In the following stage of a heavy-ion collision, the system is closer to thermal
equilibrium and hadronic degrees of freedom are no longer suitable to describe the
possibly deconfined matter. A hydrodynamic evolution considers only macroscopic
degrees of freedom, such as energy density and conserved currents. Hydrodynamics
is based on the conservation laws (see e.g. [53])

∂µT
µν = 0 (1.5)
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∂µj
µ = 0 (1.6)

where T µν are the components of the energy-momentum tensor and jµ are the com-
ponents of a conserved current density.

For an ideal fluid the energy-momentum-tensor can be expressed in terms of the
Landau velocity uµ, the energy density ϵ, and the pressure P as

T µν = (ϵ + P )uµuν − Pgµν (1.7)

where the metric tensor gµν is given by diag(1,−1,−1,−1) in the Minkowski me-
tric. In the Landau rest-frame, where the energy-momentum tensor is diagonal, the
components are T µν = diag(ϵ, P, P, P ) with the energy density ϵ and the pressure
P . The current density can then be related to the charge density as jµ = ρuµ. Due
to the constraint uµu

µ = 1 for the velocity, only three independent variables in the
velocity remain. Together with the energy density, the pressure and the charge den-
sity, there are six variables to solve for. Counting the number of equations, there
are four due to the open index in Equation 1.5 plus one from Equation 1.6. One
additional equation is required to solve this system of equations. The final one is
the equation of state (EoS), which relates the pressure to the energy density and
charge density. Thereby the EoS incorporates the information about how the specific
fluid behaves under different circumstances. Microscopic information about matter
enters the calculation via the EoS. In the specific case of a heavy-ion collision, the
equation of state can include the change in degrees of freedom implicitly. The EoS
is an important subject in this thesis and it is introduced in more detail in Section
1.3.

The above example is only for ideal hydrodynamics. There are however various
extensions to this simple description. Dissipative hydrodynamics means hydrodyna-
mics that is not ideal, meaning the entropy is not conserved but it can increase due
to friction and similar effects.

Each dissipative term contains a transport coefficient that incorporates informa-
tion about how the specific medium approaches equilibrium. The transport coeffi-
cients, thereby, include further information about the microscopic properties of the
considered fluid. Information on the transport coefficients can, therefore, be obtai-
ned through microscopic calculations. The SMASH transport model is, for example,
applied to extract various transport coefficients [54]–[56].

One of the dissipative effects is shear. The intuitive picture for it is that there is
friction between two surfaces of the fluid that have a different velocities. The shear
viscosity is an important ingredient for a realistic description of a heavy-ion collision,
even though the shear-viscosity-to-entropy ratio of the QGP was estimated to be
close to the minimal possible value of 1/4π [57]. Due to this finding, the QGP is
often referred to as the most ideal fluid.
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Bulk viscosity is also needed to describe the evolution of the fireball. It actually
describes the resistance of a medium against rapid expansion or compression. The
bulk viscosity is more complicated to estimate in a transport model, but, as it
is an input to hydrodynamic calculations, inference about it can be made from
experimental data of heavy-ion collisions. This is usually done in combination with
other model parameters, including the shear viscosity (see [49], [58], for example).

The diffusion of charges is another dissipative effect. A diffusion current is in-
duced by a gradient in the density of a given charge. For example, the stopping of
baryons has been studied in relation to the diffusion caused by the gradient in the
baryon density [59]. Considering the diffusion on a microscopic level, the different
charges cannot diffuse independently. In hadronic matter, for example, many bary-
ons are also electrically charged, meaning that a gradient in one density may cause
a diffusion current of another charge. A full diffusion matrix to couple the different
charges was introduced in [60], [61] to take this effect into account.

As the system expands, it eventually becomes dilute. Once this point is rea-
ched, a hydrodynamic evolution is not suitable for this problem anymore. Instead,
a change from macroscopic degrees of freedom to individual hadrons is performed.
As the system is not homogeneous, the criterion to switch models is not satisfied
everywhere simultaneously. The criterion is usually defined by the temperature or
the energy density dropping below a certain threshold. This defines a hypersurface
in the (3+1)D evolution of the system that needs to be determined (see [62]). On a
given hypersurface, Cooper-Frye sampling [63] is performed to finalize the switch in
degrees of freedom.

Once a particle list is sampled, the evolution can continue with the hadronic
rescattering (or afterburner) using a microscopic model. Usually Boltzmann-type
transport models or QMD-type (see Section 2.1.6) models are applied for the final
stage of the evolution. SMASH is a transport model that is frequently used for
afterburner studies. One example is the study presented in Chapter 6. Details of the
model are given in Chapter 2.

At the end of the afterburner stage, the full information about all hadrons is
determined and accessible. This allows for a comparison to experimental observati-
ons for numerous measurable quantities, which is not possible with the statistical
hadronisation model.

Hadronic Transport

Transport models are applicable in the early stage of a heavy-ion collision and also in
the final stage. The necessity for a hydrodynamical evolution arises from the change
in degrees of freedom when the system is sufficiently hot and dense to form a QGP.
In heavy-ion collisions at relatively low collision energies, no QGP is expected, and
the whole evolution can be described within one continuous transport calculation.
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This approach is used for the calculations presented in Chapters 3, 4, and 5, and a
detailed description of the SMASH transport model is given in Chapter 2. As further
details on transport calculations are given in Chapter 2, this section aims to only
highlight transport simulations as an excellent tool to model heavy-ion collisions at
low collision energies.

1.3 Equation of State

One of the main goals pursued in this thesis is to understand the behavior of nuclear
matter under extreme conditions. The equation of state encodes information about
the behavior of matter by making a connection between the thermodynamic state
variables. The most prominent equation of state is the ideal gas law, which is a
relation of the pressure P to the volume V , temperature T and particle number N

PV = NkBT . (1.8)

With the units used in this thesis (see Appendix A), the Boltzmann constant kB is
set to one, so it is usually omitted in equations within this thesis.

From the ideal gas equation of state one can directly see that the pressure in-
creases linearly with the temperature and the number density. Relations like this
can be observed in daily life. When studying different forms of matter, the EoS is
clearly key to gaining an understanding of the properties of matter. Additionally,
the equation of state is related to the microscopic composition and interactions on
a microscopic level via thermodynamics. Due to this connection, knowledge of the
EoS can help in the task of understanding even microscopic aspects of matter.

As mentioned earlier, the equation of state is not only interesting in itself but
it is required for hydrodynamic calculations. Such calculations are performed to
model the dynamics of many interesting physical situations. Heavy-ion collisions, as
mentioned in the previous section, are modeled using hydrodynamics, but also astro-
physical events, such as neutron star collisions and supernovae, can be studied using
hydrodynamics. Constraints on the equation of state are therefore highly demanded
in both heavy-ion physics and astrophysics.

The equation of state of nuclear matter depends both on the baryon density ρB
and on the asymmetry δ = (ρn− ρp)/ρB between proton density ρp and the neutron
density ρn. The energy per nucleon is often expanded (see [64], for example) in the
asymmetry

E(ρB, δ) = E0(ρB) + Esym(ρB)δ2 + O(δ4) (1.9)

and the individual contributions are, again, expanded around the saturation density
ρ0

E0 = mN −B0 +
1

2
κx2 +

1

6
Qx3 + . . . (1.10)
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Esym = J + Lx + Ksymx
3 + . . . , (1.11)

where x = (ρB−ρ0)/3ρ0. The ground state where the baryon density is the saturation
density (x = 0) is energetically most stable. Therefore no linear terms in x are
present in the expansion. At the same time, there is a symmetry between protons
and neutrons, meaning the binding energy has to be symmetric around δ = 0,
which precludes odd terms in the expansion. Esym denotes the symmetry energy.
Quantifying the symmetry energy is one of the main goals when studying the EoS.
mN denotes the mass of a nucleon and the binding energy at saturation density is
called B0 here. The incompressibility of symmetric nuclear matter κ can be estimated
in heavy-ion collisions. Q is referred to as the skewness. The symmetry energy at
the saturation density is called J in this expansion and the slope of the symmetry
energy is referred to as L. Finally, the incompressibility of the symmetry energy is
denoted by Ksym.

There are various constraints on the parameters appearing in the above expan-
sion (see [64] for a review). First of all, the mass of the nucleon is known to be
mN ≈ 938 MeV and the binding energy at saturation density is B0 ≈ 16 MeV. The
saturation density is set to a relatively high value of ρ0 = 0.168 fm−3 in the transport
model SMASH (Chapter 2) but values down to ρ0 = 0.15 fm−3 are used in other
models.

The binding energy and saturation density can be obtained from the measu-
rement of masses [65] and electric charge distributions [66]–[68], extrapolating to
infinite matter.

Further insight into the EoS of nuclear matter lies in the excitations of nuclei.
The giant monopole resonance, often called the breathing mode, is a compression
mode of a nucleus [69]. As the density varies while the nucleus expands and deflates,
this mode allows one to learn about the incompressibility of nuclear matter.

To extract the incompressibility of infinite nuclear matter, a theoretical model is
required to describe the experimental findings. Depending on the model, the findings
for the incompressibility vary significantly. Relativistic mean-field models suggest a
larger incompressibility than non-relativistic models (see [70] and references therein).
Additional uncertainties in the extraction of κ due to a variation of Q in the models
are pointed out in [71].

The giant dipole resonance can be understood as an oscillation within the nucleus,
where the entirety of protons oscillates relative to the neutrons [28]. Analyses of the
giant dipole resonance constrain the symmetry energy, mainly the coefficients J and
L [72]–[74].

In scattering experiments with protons and atomic nuclei, the polarizability of
a nucleus can be measured [75]. It is estimated to be sensitive to the symmetry
energy and to the neutron skin of nuclei [76]. Based on the measurement of the
polarizability [75], analyses were performed to constrain J and L [77]–[79].
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There are various experimental approaches to determine the neutron skin thick-
ness, which is the difference in the (root mean square) radius of the neutrons and
the radius of the protons in a nucleus. The neutron skin is, again, sensitive to the
symmetry energy so there is a possibility to learn about the latter. For a summary
of the experimental methods and constraints based on the neutron skin effect, see
[64].

Studies of atomic nuclei constrain the equation of state near the saturation den-
sity. Further reliable constraints can be obtained at extremely large densities, where
perturbative QCD is applicable [80], [81]. On the other side of the spectrum, effective
field theories are applicable at low densities, where they provide another theoretical
constraint on the equation of state [82], [83].

From the equation of state, one can calculate the speed of sound. The speed at
which a sound wave propagates in a given medium is moderate in the atmosphere
of the Earth, with roughly cs ≈ 300 m/s but is comparable to the speed of light
in nuclear matter. The speed of sound can be calculated as the derivative of the
pressure with respect to the energy density ϵ

c2s =

(
∂P

∂ϵ

)
s

. (1.12)

The fact that the speed of sound can never exceed the speed of light can even help to
constrain the EoS. The constraints at low density from effective field theory and at
high densities from pQCD can be combined with the limit on the speed of sound and
further constraints from astrophysical observations (see Section 1.3.1) to restrict the
allowed region for the equation of state in the intermediate density regime [84], [85].
The same ansatz is also applied without actively taking the astrophysical constraints
into account [86]. In the following, the most important astrophysical observations,
leading to constraints on the EoS, are elaborated.

1.3.1 Equation of State in Astrophysics

Aiming to understand nuclear matter, the most obvious starting point is to study
atomic nuclei. As nuclear matter at large densities is present in astrophysical objects,
they offer an opportunity to study the EoS in a region of the phase diagram that
cannot easily be probed. It is remarkable that one of the best ways to study nuclear
matter, which is described on length scales on the order of a femtometre, is by
observing objects and events at astronomical distances.

The astrophysical constraints covered in this thesis involve neutron stars. An
important difference between nuclear matter in neutrons stars and atomic nuclei is
the composition. Matter in neutron stars mostly consists of neutrons, as it is present
in β-equilibrium. In β-equilibrium, the reaction p + e ↔ n + νe takes place and the
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baryon number and the electric charge are conserved. However, the neutrinos can
escape the neutron star freely, so that the lepton number is not conserved [87]. Due
to the Pauli principle, the electrons need to occupy states of higher energy when the
density is large. At a critical density, it is energetically favored to convert protons
and electrons to neutrons even though neutrons have a larger mass than the sum of
the proton and the electron.

Sufficient densities are reached due to gravitation. The gravitation in neutron
stars is so strong that Newtonian gravity is not applicable, and a description in
terms of general relativity is necessary. Considering a static spherically symmetric
system, where the pressure of an ideal fluid compensates the gravitation, the Einstein
equations reduce to the Tolman–Oppenheimer–Volkoff (TOV) equations [88]

dP (r)

dr
= −Gmr(r)ϵ(r)

r2

(
1 +

P (r)

ϵ(r)

)(
1 +

4πr3P (r)

mr(r)

)(
1 − 2Gmr(r)

r

)−1

, (1.13)

where m(r) is given by [87]

mr(r) = 4π

∫ r

0

dr′r′2ϵ(r′) (1.14)

and the gravitational constant is denoted by G. To solve the TOV equation, the EoS
is required to relate the pressure P and the energy density ϵ. Given an equation of
state, this ordinary differential equation (ODE) can be solved for a given pressure in
the center of the neutron star. Integrating the ODE from the center (r = 0) to the
outside, the radius R of the star is determined by vanishing pressure P (r = R) = 0.
This way, one obtains a combination of a mass M = mr(R) and the corresponding
radius for each given central pressure. The different possible stars can be compiled
in a mass-radius plot, covering all combinations of possible mass and radius for a
given EoS.

The mass-radius curves can be used to rule out equations of state that cannot
reproduce astrophysical observations. Firstly, there are observations of neutron stars
with a mass above twice the mass of the Sun [89]–[91]. Some equations of state are
not sufficiently stiff to stabilize such a heavy neutron star against the gravitational
pressure. Consequently, equations of state that do not reach two solar masses are
ruled out due to this constraint.

The next constraint comes from the NICER (Neutron Star Interior Composition
Explorer Mission) x-ray observatory, which has measured the radius of the neutron
stars PSR J0740+6620 [92], [93] and PSR J0437–4715 [94]. The combination of the
mass and a radius leads to very valuable information on the EoS. The mass-radius
curve for a given EoS needs to pass through a confidence region of the measurement.
Otherwise, the EoS is ruled out.

To conclude, a constraint based on the observation of two merging neutron stars
is covered here. As the two neutron stars approach each other in a spiraling motion,
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spacetime is heavily deformed. Resulting from the Einstein equations, the defor-
mation of spacetime propagates in the form of gravitational waves. The LIGO and
VIRGO detectors detected the gravitational waves from such a merger event in
2017 [95] and the electromagnetic counterpart [96]. From the gravitational wave si-
gnal, conclusions about the tidal deformability of the neutron stars were drawn [97].
The tidal deformability, in turn, depends on the compactness of the neutron star
C = GM/R, which is again linked to the equation of state via the TOV equations.

1.3.2 Nuclear Equation of State in Heavy-Ion Physics

The astrophysical observations alone contribute strongly to the knowledge about the
EoS of nuclear matter. Nuclear matter can additionally be probed at high density
in terrestrial experiments. The HADES collaboration has demonstrated in [33] that
heavy-ion collisions at the energies accessible at the SIS 18 accelerator probe nuclear
matter under conditions comparable to those present in neutron star mergers. One
main difference between neutron star matter and colliding atomic nuclei is the com-
position. As neutron stars are mainly consisting of neutrons, the atomic nuclei are
close to symmetric nuclear matter, meaning the number of protons and neutrons is
not far from equal. Therefore, heavy-ion collisions give valuable complementary in-
formation on the equation of state (see [98] for a review). The difficulty in extracting
the EoS from heavy-ion collisions is that only the final state of the collision can be
accessed experimentally. To obtain information about the early stage of the collision,
where the density is large, one relies on theoretical models. As a realistic description
of the system is very challenging to achieve, some uncertainty lies in the theoretical
modeling, which is usually done with transport or QMD approaches. Since model
and implementation choices affect the information extracted from heavy-ion colli-
sions, one of the main goals of the field is to understand the differences in various
models and to converge towards more consistent theory predictions. For this purpo-
se the transport model evaluation project (TMEP) [99] started. As the majority of
models relevant for the extraction of the EoS (including SMASH) participate in the
TMEP, further progress in the estimation of the EoS can be expected in the near
future.

Important for the extraction of the EoS is a set of observables that are sensitive
to it. To give an understanding of how the EoS influences the dynamics of a heavy-
ion collision, Figure 1.4 illustrates the baryon density in a semi-central heavy-ion
collision at Ekin = 1.23AGeV. Compared are the densities when employing a soft
EoS (left) and a hard EoS (right). Clearly a larger density is reached when the EoS
is soft. In this case, the kinetic energy of the accelerated nuclei is sufficient to achieve
a large compression. With a stiffer EoS, more energy is needed for the compression
so that the probed density is significantly smaller.

The difference in the density translates to various observables. An important
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Abbildung 1.4: Baryon density in a semi-central gold-gold collision at Ekin =
1.23AGeV. On the left, a simulation with a soft equation is shown in compari-
son to a stiffer equation of state on the right. The density reached with a soft EoS
is higher as it is more difficult to compress more stiffer nuclear matter.

example is the production of particles below the threshold. In this context, ”below
threshold”means that the production of the particle species would not be possible
in a proton-proton reaction at the same energy. With a chain of reactions or due
to the modification of particle properties in the medium the process can be realized
in a heavy-ion collision, however. The production rate below the threshold is, of
course, much larger when a more dense medium is created. This way, the particle
production below threshold is very sensitive to the EoS. Kaons are produced below
threshold, and are therefore a useful observable to consider for constraining the
EoS as suggested in [100]. A review of the findings from studying the production of
kaons can be found in [101]. The description of kaons is not trivial, however. First
of all, the cross sections for the production of kaons need to be known and all the
necessary channels need to be implemented. Further, there is some uncertainty about
the potentials that kaons and other strange particles should experience. Aiming to
cancel some uncertainties, the ratio of the kaon yield in gold-gold collisions to the
yield in carbon-carbon collisions is used to constrain the EoS [102], [103]. A relatively
small incompressibility of nuclear matter is extracted from kaon analyses.

Another approach to constraining the EoS is by studying the anisotropic flow of
protons and light nuclei. A stiffer EoS leads to a stronger repulsive force when matter
is contracted. As baryons are pushed to the outside, an anisotropic distribution in
the transverse plane builds up, which can be quantified with flow coefficients, as
introduced in Section 1.2.2. A study on the origin of the anisotropy is given in
[104]. The anisotropy, and with it the flow coefficients, are enhanced by a stiffer
EoS. Measurements of the flow coefficients can therefore be related to the EoS using
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transport calculations (see [105] for a review of the early works).

First conclusions on the EoS from the momentum distribution concluded that
the incompressibility of nuclear matter is large (κ ≈ 380 MeV) [106]. This conclusion
was drawn witohut a momentum-dependent part in the potential (see Section 2.1.2).
However, in the beginning, a stiff EoS was also favored, including the momentum-
dependent part in [107]. Including various collision systems and more observables,
a soft momentum-dependent EoS turned out to best describe the observables, and
an ambiguity between soft momentum-dependent and hard constant EoS was disen-
tangled [108], [109].

In BUU calculations, the influence of various model parameters was observed
[110]. Here, it was found that the conclusions drawn about the EoS strongly depend
on the resonance content of the applied model. The aforementioned works do not
include heavy resonances.

In the work by Danielewicz, Lacey, and Lynch [111], a systematic constraint is
given, including an estimated uncertainty. The allowed region for the EoS provided
in this work is often used as the input from heavy-ion collisions in interdisciplinary
works on the EoS and is sometimes referred to as ”Danielewicz constraint”.

The FOPI experiment has provided very detailed data on the anisotropic flow
[112]. Based on this data, the relatively soft EoS was confirmed in QMD calculati-
ons [113], which do not include heavy resonances. Recently, more flow measurements
from the HADES collaboration became available [114], including even higher flow
coefficients. The UrQMD model [115], [116] was applied to extract the EoS from the
flow of protons [117] and deuterons [118], concluding that a hard EoS best describes
the data. No momentum-dependence is included, but a large set of resonances can
be excited in these works. Similar findings are presented by comparing to HADES
data in Chapters 3 and 4, without and with momentum-dependent potentials respec-
tively. The PHQMD model [119] was also confronted with the aforementioned flow
data from the FOPI and HADES experiments in [120]. PHQMD includes heavier
resonances and momentum-dependent potentials. A soft momentum-dependent EoS
is reported to work best, but a stiffer momentum-dependent EoS is not compared to
data in [120]. These results suggest that a significant part of the model uncertainty
in extracting the EoS is related to the resonance content, as pointed out in [110].

As the search for the EoS is an interdisciplinary topic, combined analyses of
different constraints push our current knowledge of the EoS [121]–[124]. When in-
formation from various sources is compiled, it is extremely beneficial to have an
understanding of the uncertainty of each individual contribution. To provide a sys-
tematic estimate of the constraint, including statistical uncertainties, Bayesian ana-
lyses are performed [125], [126]. Chapter 4 presents work where Bayesian inference
is applied to determine the EoS using the SMASH transport model.
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1.4 Structure of the Thesis

Meaningful conclusions can only be drawn from calculations and experimental in-
put when the capabilities, assumptions, and limitations of the model are kept in
mind. To achieve this, a detailed description of the transport model SMASH, that
is used for all calculations presented here, is given in Chapter 2. Firstly the app-
lied mean-field potentials are described in detail with some emphasis on the newly
implemented momentum-dependent term. Afterwards the collision term is descri-
bed, giving a comprehensive description of each possible interaction. The model
description concludes with an explanation of the light nuclei formation, which can
be modeled via scatterings or final state coalescence.

Results of different studies are presented in the following chapters, beginning
with a sensitivity study in Chapter 3. Calculations of flow coefficients are compared
for different methods of modeling the formation of light nuclei and varying nuclear
potentials. The influence of light nuclei treatment and the EoS on flow observables
is explored to understand which observables are best suited to constrain the EoS
using HADES data. This chapter is based on [1].

In the subsequent study presented in Chapter 4, the understanding of the ob-
servables is applied to provide a systematic constraint on the EoS using Bayesi-
an inference. For this analysis, the nuclear potentials are upgraded to include a
momentum-dependent term and the Coulomb potential is included. This chapter is
based on [2].

To continue, Chapter 5 compares the agreement of different equations of state
with data from the FOPI experiment which covers a range of collision energies.
Scanning the energy range, it appears that a stiffer EoS is required for the higher
energies than for lower energies. This chapter is based on [3].

The final study included in this thesis is presented in Chapter 6. Here, the fo-
cus lies on the production of light nuclei, which can give insights into the phase
diagram of QCD matter. The formation of light nuclei, specifically deuteron triton,
helium-3 and hypertriton, is modeled in multiparticle reactions and compared with
measurements from the STAR collaboration. This chapter is based on [4].

The thesis concludes with a summary of the findings in Chapter 7.
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Kapitel 2

Model Description

Many facets of heavy-ion collisions are discussed in this thesis with the aim to ob-
tain information on the equation of state and the structure of the phase diagram of
QCD. Heavy-ion collisions provide one of the few possibilities to investigate stron-
gly interacting matter at large temperatures and densities. At the same time, it is
difficult to obtain information directly from a heavy-ion collision. Experimentally,
only particles in the final state can be observed, meaning that the time evolution of
a heavy-ion collision can only be accessed in theoretical calculations.

Such calculations must be applicable in a non-equilibrium system, as the early
stage of a collision, just after the impact of the nuclei, is far from thermal equilibrium.
Additionally, at a later stage, after rapid expansion, the system is not equilibrated.
The problem can be described within transport theory, which revolves around the
relativistic Boltzmann equation

pµ
∂fi
∂xµ

+ mi
∂(Kµfi)

∂pµ
= Ci . (2.1)

It is an equation for the phase-space distributions fi(r,p, t) for different species i,
that are related to the number of particles by

dNi =
gi

(2π)3
d3rd3pfi(r,p, t) (2.2)

with the spin degeneracy factor gi. The force acting on particles is denoted by Kµ =
dpµ

dτ
, and the collision term on the right hand side is abbreviated by Ci. It describes

the interactions via scattering between particles. The interactions implemented in
the model are described in Section 2.2.

The first term of the relativistic Boltzmann equation is related to the propa-
gation of particles, and the second term on the left-hand side takes into account
the influence of the force. Forces in the model originate from mean-field potentials,
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which are described in detail in Section 2.1. The equation of state enters a trans-
port calculation via nuclear potentials, meaning that transport calculations are well
suited to obtain information on the equation of state. This is the main goal of this
thesis.

Before going into details on the interactions via potentials and scatterings, some
key information about the transport model SMASH, which is applied throughout
this work, is given. Further, a calculation of a heavy-ion collision within SMASH is
illustrated to give the reader a basic picture of the model.

The degrees of freedom of a model define a range of applicability. In the SMASH
model, the degrees of freedom are mainly hadrons. This means that SMASH can
only be applied in a system where the active degrees of freedom are hadronic. A
system in which quarks and gluons are not confined in hadrons can therefore not
be described. SMASH is therefore restricted to the region in the phase diagram
below the transition to a quark-gluon-plasma. Hadrons and resonances, included
as active degrees of freedom, are taken from the Particle Data Group [127]. More
details on the treatment of resonances in the model are given in 2.2.2. A list of
all hadrons and resonances present in the calculation is provided in [128], but the
resonance properties are always subject to small changes within the uncertainties
provided by the Particle Data Group. An up-to-date version of the particle list can
always be obtained together with the code base, that is publicly available [129]. The
full list is not quoted here because many resonance properties will be modified in
the near future, as they are tuned to experimental cross sections using a genetic
algorithm [130]. To give a rough idea about the degrees of freedom, there are over
200 hadrons and resonances, plus their different isospin states included in SMASH.
Additionally, photons and some leptons can be propagated, and light nuclei can be
treated as active degrees of freedom or as a set of nucleons interacting via potentials,
as described in Section 2.3.

Screenshots of a heavy-ion collision, as it is described in the model, are given
in Figure 2.1. The distribution function is represented by a large number of test
particles (see Section 2.1). The momenta and positions of the test particles are
known at all times, which makes such a visualization possible and is essential for
studying the time evolution of the system. In the beginning, the initial state needs
to be created. The system, in this case, is a gold-gold collision for which the nuclei
are sampled according to a Woods-Saxon distribution [131]. The nuclei are then
boosted according to the collision energy and are thereby Lorentz-contracted.

Test particles then propagate according to the equations of motion in the pre-
sence of nuclear potentials, for which details can be found in Section 2.1. They
propagate until they partake in an interaction, which is found using the collision
criterion, as described in Section 2.2.6. In these interactions, new particles are pro-
duced. At this stage, the medium is compressed to high densities. This is where the
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Abbildung 2.1: Illustration of a heavy-ion collision. The test particles are represented
by small spheres and three different points in time are presented. The first screenshot
is taken 2.5 fm before the nuclei touch. The second one is taken 12.5 fm after the
nuclei touch, and the last one at t = 20 fm. Blue particles are light and heavier
particles are colored in red.

nuclear potentials are most important, and information about the equation of state
at high densities can be extracted.

Later, the number of interactions decreases as the system becomes more dilute
due to its expansion. One can see the beginning of the expansion in the final pic-
ture of Figure 2.1. During this time, unstable particles decay, and stable particles
eventually propagate freely. At this point one can extrapolate from the momenta
of the particles to determine where they hit the detector, and predictions for an
experimental outcome can be made. We note that this description is fully based on
hadrons and resonances. Clearly, it can only be applied if no QGP is created. For a
description of a system at higher energies, a switch can be made to a hydrodynamic
evolution for the very hot and dense phase where a QGP is expected. Since the
hydrodynamic evolution requires the system to be close to equilibrium, it cannot
be applied to all phases of a heavy-ion collision. A switch to the hadronic transport
model is required for the final stage. The final stage is referred to as the afterburner.
A framework for such a hybrid approach is created with a hydrodynamic evolution,
implemented in the vHLLE code [132], and SMASH used in both the initial stage
and the afterburner [51]. SMASH is further available as a module for the afterburner
stage in X-SCAPE and JETSCAPE [133], that are frameworks combining several
models for the description of heavy-ion collisions in a hybrid approach.

Screenshots of a heavy-ion collision are shown in Figure 2.2. Here, we observe
that the colliding nuclei are much more contracted. This is because the collision
energy, and therefore the velocity of the nuclei, is higher. In the next step, the
description of the hot and dense matter switches to a hydrodynamic evolution. As
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Abbildung 2.2: Screenshots of a central gold-gold collision at
√
sNN = 17.3 GeV

[134]. The first image shows the initially sampled and Lorentz-contracted nuclei,
followed by a pre-equilibrium stage modeled using the hadronic transport model.
The next screenshot illustrates the hydrodynamic evolution of the system, and in
the subsequent frame, the system is partially described by hadronic transport as it
cools down. In the final image, the system has cooled to a point where it can be
fully modeled using hadronic transport.

the system expands, the medium cools down, and the description changes back tp
transport in the afterburner stage, based on the temperature or energy density.

In Chapter 6, results are presented for an afterburner calculation coupled to a
hydrodynamic evolution within the MUSIC code [53], [59], [135], [136]

This quick illustration of the model in two different scenarios should give a basic
picture of the model. Let us proceed with detailed information on the most important
ingredients of a transport calculation. We start with a description of the potentials,
followed by the collision term. Since light nuclei formation in SMASH is essential
for some of the results in the later chapters, it is introduced in Section 2.3.

2.1 Potentials

Potentials are the handle to modify the equation of state in a transport calculation.
This makes them the most interesting feature of the model for this project. In
this Section we iterate through the potentials available in SMASH We start with
the Skyrme potential, and continue in Section 2.1.2 with the momentum-dependent
term, that was implemented in this work. The equations of motion are needed for
the implementation, and they are provided before the connection to the equation
of state is made. Further, the constraints used to fix the parameters are given, and
a comparison to the optical model is presented. The section about the momentum-
dependent part of the potential concludes with the cold nuclear matter assumption,
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which is made to reduce numerical cost, being put to test. The symmetry potential
is introduced in Section 2.1.3. Finally, the Coulomb potential is described, followed
by details on the density.

2.1.1 Skyrme Potential

The Skyrme [137] potential is widely used in many transport models, but also for
various applications in astrophysics. It is based on an expansion of the effective
nucleon-nucleon interaction in terms of relative momentum for a phenomenological
description of nuclear matter properties. Parameters of the expansion are fitted to
various observables and many parametrizations, including different expansion terms,
are available. In [123] 240 different Skyrme parametrizations are tested against cons-
traints from different fields.

In SMASH, a simple expression for the single-particle energy is used. The po-
tential is given in terms of the baryon density ρB

USkyrme = A

(
ρB
ρ0

)
+ B

(
ρB
ρ0

)τ

. (2.3)

A, B, and τ are parameters. Equation 2.3 is expressed in terms of the nuclear ground
state density ρ0, but the parameters of the potential need to be chosen such that the
binding energy is largest for that density. We will discuss the parameter estimation
in Section 2.1.2.

For the dynamical description within a transport model, we consider the Skyrme
potential to be the zeroth component of a vector potential in the local rest-frame
V µ = (USkyrme, 0, 0, 0)T . The rest-frame is defined to be the frame where the spa-
tial components of the baryon current vanish. For details on the calculation of the
current, see Section 2.1.5. We note that this prescription is inconsistent as the ex-
pression for the Skyrme potential transforms like a Lorentz scalar and not like the
zeroth component of a vector, since ρB refers to the baryon density in the local
rest-frame. Even though a fully relativistic description is not obtained this way,
we proceed in a similarly to the Walecka model. The Walecka model includes a
scalar and a vector potential in the Lagrangian density [138]. The Euler-Lagrange
equations yield a Dirac equation, from which one obtains the dispersion relation
(pµ − V µ)(pµ − Vµ) − (m + S)2 = 0. This can be expressed as ΠµΠµ − (m∗)2 = 0 by
introducing the kinetic momentum Πµ = pµ−V µ and the effective mass m∗ = m+S.

Using E = p0 =
√

Π2 + (m∗)2 + V 0, one can rewrite the transport equation

[∂t + ∇pE · ∇r −∇rE · ∇p] f(r,p) = C(r,p) (2.4)

in terms of the kinetic momentum which leads to [139]–[141]

1

Π0

[
Πµ∂µ − (ΠµF

µa −m∗∂am∗)
∂

∂Πa

]
f̃(r,Π) = C(r,p) , (2.5)
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where F µν = ∂µV ν − ∂νV µ. The sum over a includes only the spatial components.
Let us now derive the equations of motion for test particles using the transport

equation, specifically for the case of the Skyrme potential. For this purpose, we
disregard the collision term, as we are interested in the propagation in the presence
of the potential. The collision integral, expressed in terms of the kinetic momenta,
can be found in [140].

For this purpose, we first examine the term ΠµF
µa in our special case. Treating

the Skyrme potential such that it is taken as a zero component of a vector field in
the local rest frame, we can obtain the vector potential in an arbitrary frame by
performing a Lorentz-boost

V µ = (Λ−1)µνV
′ν = (Λ−1)µ0V

′0 , (2.6)

where V ′µ = (USkyrme(ρB), 0, 0, 0) is the vector potential in the local rest frame,
and (Λ−1)µν denotes the Lorentz-transformation from the local rest frame to the
arbitrary calculation frame. The components of the boost can be expressed in terms
of the velocity of the rest-frame in the calculation frame considering that the inverse
boost is a boost with negative velocity

(Λ−1)00 = u0 = γ (2.7)

(Λ−1)i0 = −ui = −γβi , (2.8)

where β is the velocity of the rest frame in the calculation frame and γ = 1/
√

1 − β2.
Expanding the sum, one obtains

ΠµF
µa = Π0∂

0V a − Π0∂
aV 0 + Πi∂

iV a − Πi∂
aV i . (2.9)

Using the expressions from Equations 2.7 and 2.8, we obtain V 0 = γUSkyrme and
V i = −γβiUSkyrme. Applying the chain rule for the derivatives ∂µUSkyrme(ρB) =
U ′
Skyrme(ρB)∂µρB we obtain

ΠµF
µa = Π0∂USkyrme

∂ρB

[
−βaγ∂tρB − γ∂aρB − γβa Πi

Π0
∂iρB + γβaΠa

Π0
∂aρB

]
, (2.10)

where we can identify the baryon current jµB = ρBu
µ so that the above expression

becomes

Π0∂USkyrme

∂ρB

[
−∂tj

a
B − ∂aj0B − Πi

Π0
∂ijaB +

Πa

Π0
∂ajaB

]
. (2.11)

Using the Grassmann identity, we can identify the cross product in the two rightmost
terms and switch to a vectorial formulation

Π0∂USkyrme

∂ρB

[
−(∇rj

0
B + ∂tjB) +

Π

Π0
× (∇r × jB)

]
≡ Π0F . (2.12)
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Here, we have defined a vector F, which reminds of the Lorentz-force and, indeed, we
will show in the following using the test particle ansatz, that it is the time derivative
of the kinetic momentum of a test particle, and that Π/Π0 is the velocity.

With the previous result, considering that the effective mass is just the rest mass
in the absence of a scalar potential and disregarding the collision term, Equation
2.5 becomes, [

∂t +
Π

Π0
· ∇r − F · ∇Π

]
f̃(r,Π) = 0 (2.13)

The test particle ansatz, first used in a similar context in [142], is applied directly
for the distribution function in terms of the kinetic momentum. The ansatz reads

f̃(r,Π) =
(2π)3

gNtest

NNtest∑
i=1

δ3(Π−Πi)δ
3(r− ri) , (2.14)

where Ntest is the number of test particles per real particle and N is the number
of particles. We note that the ansatz can only describe the distribution function
in the limit of Ntest going to infinity. The steps to derive the equations of motion
are outlined for a similar problem in [143]. Inserting the ansatz into equation 2.13,
one requires the derivatives of the delta functions. Using the chain rule, one can
formulate the time derivative as

∂tf̃(r,Π) =
(2π)3

gNtest

NNtest∑
i=1

[
δ3(Π−Πi)∇r−riδ

3(r− ri) ·
∂(r− ri)

∂t

+ δ3(r− ri)∇Π−Πi
δ3(Π−Πi) ·

∂(Π−Πi)

∂t

]
.

(2.15)

With ∂t(r − ri) = −∂tri and ∂t(Π −Πi) = ∂tΠi we can substitute the ansatz into
Equation 2.13. Ordering the terms in a convenient way, one obtains

0 =
(2π)3

gNtest

NNtest∑
i=1

[
Π

Π0
− ∂ri

∂t

]
δ3(Π−Πi)∇Πδ

3(r− ri)

+
(2π)3

gNtest

NNtest∑
i=1

[
F− ∂Πi

∂t

]
δ3(r− ri)∇rδ

3(Π−Πi) .

(2.16)

A solution of this equation is obtained only if both square brackets vanish. Taking
the δ-distributions into account, we obtain the equations of motion

ṙi =
Πi

Π0
i

(2.17)

Π̇i =
∂USkyrme

∂ρB

[
−(∇rj

0
B + ∂tjB) +

Πi

Π0
i

× (∇r × jB)

]
. (2.18)
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For clarity, Equation 2.18 omits explicit mention of the dependencies of the potential
and current, and where they are evaluated. ∂USkyrme/∂ρB depends on the rest-frame
density ρB, which, like the current, depends on the position. Both are evaluated at
the position ri of the test particle under consideration.

The equations of motion are solved in SMASH using the Euler method. It is based
on short time steps of size ∆t and at each time step, the momenta and positions are
updated according to

ri(t + ∆t) = ri(t) + ṙi(t)∆t (2.19)

Πi(t + ∆t) = Πi(t) + Π̇i(t)∆t . (2.20)

2.1.2 Momentum-Dependence

We have so far discussed the Skyrme potential which is widely used in many trans-
port models. By itself it depends, in the local rest-frame, only on the baryon density.
Scattering experiments between protons and nuclei have been performed and using
the optical model, the potential was extracted for different collision energies in [144],
[145]. The potential extracted from this experimental measurement depends on the
kinetic energy, and hence on the momentum, of the particle. To incorporate this fin-
ding in the transport models, a momentum-dependent term is added to the Skyrme
potential such that the optical potential is reproduced at saturation density. Adding
a momentum-dependent term does not fully follow the idea of the Skyrme potential
which originates from an expansion of the interaction in terms of momenta. But
this prescription is widely used in the field and yields a decent phenomenological
description of the potential. Calculations including a momentum-dependent term
have already been performed in the 1980s in a Boltzmann-type calculation [146] and
in quantum molecular dynamics [107].

In the Walecka model the momentum-dependence arises from the inclusion of a
scalar potential. A momentum-independent scalar potential cannot describe the opti-
cal potential however (see further below in this section). An extension to momentum-
dependent scalar and vector potential is presented in [147].

For this work, the momentum-dependent term as suggested by Welke et al. [148]
is implemented. The momentum-dependent term of the single-particle potential is
written as

UMD =
2C

ρ0
g

∫
d3p′

(2π)3
f(r,p′)

1 +
(
p−p′

Λ

)2 . (2.21)

Here, C and Λ are parameters that are tuned to the optical potential at saturation
density, as described later in this section. The integral can be evaluated using the
test particle ansatz, but this approach is computationally expensive when dealing
with many test particles. Therefore, we follow the implementation in GiBUU [141]
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Abbildung 2.3: Single-particle potential as a function of the momentum of the par-
ticle under consideration for different baryon densities for a soft (left) and a hard
(right) equation of state. The dashed lines represent the single particle potential
for a Skyrme potential without the momentum-dependent part but with the same
incompressibility as for the full lines. The incompressibility is κ = 215 MeV for the
soft EoS and κ = 380 MeV for the hard EoS.

by assuming cold nuclear matter for the distribution function

f(r,p) = Θ(p− pF (ρB(r))) , (2.22)

where pF = (6π2ρB/g)1/3 denotes the Fermi momentum. Consistent with the cold
nuclear assumption the degeneracy factor g is four due to the spin and isospin dege-
neracy of nucleons. Using this assumption, the integral in the potential can be solved
analytically such that the single-particle potential can be obtained with minimal nu-
merical effort. The difference in potential between a realistic distribution function
and this assumption is investigated towards the end of this section. The solution to
the integral is given in [148] and the expression is quoted here for completeness

2C

ρ0
g

∫
d3p′

(2π)3
Θ(pF − p′)

1 +
(
p−p′

Λ

)2 =
2C

ρ0

gπΛ3

(2π)3

[
p2F + Λ2 − p2

2pΛ
ln

(p + pF )2 + Λ2

(p− pF )2 + Λ2

+
2pF
Λ

− 2

(
arctan

p + pF
Λ

− arctan
p− pF

Λ

)]
.

(2.23)

The single-particle energy determines the dynamics of test particles in a cal-
culation and some valuable insights can be obtained from a visualisation and a
comparison to the pure Skyrme potential. A simple plot of the single particle po-
tential as a function of momentum is shown for different densities in Figure 2.3
for a soft and a more stiff equation of state. In comparison to the potential with
momentum-dependence, the dashed curves show the potential when including only
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Abbildung 2.4: Single-particle potential as a function of the baryon density and the
momentum of the particle of interest. It is shown exemplarily for a medium-stiff
equation of state with an incompressibility of κ = 290 MeV.

the Skyrme part, but with the same stiffness of the equation of state at saturation
density (the quantification of the stiffness is described further below). In general,
one can observe that the momentum-dependent potential is reduced at lower mo-
menta and enhanced at higher momenta as compared to the pure Skyrme potential.
The large values of the potential at high momenta indicate that high-momentum
particles experience a stronger influence from the potential as compared to from the
Skyrme part.

A clearer picture of the influence of the momentum-dependence can be obtained
by examining the potential as a function of both density and momentum, as shown,
for a medium-stiff EoS, in Figure 2.4. As in Figure 2.3, one observes that the potential
becomes very large for high densities and momenta and in the low momentum region
the potential grows only very slowly, even for large densities. Considering a test
particle propagating through matter at rest with a given momentum, it experiences
an attractive force if the single-particle energy decreases with increasing density. In
Figure 2.4, it is evident that the potential above saturation density is more repulsive
for test particles with higher momenta than for those with low momenta.

To make it more evident, the derivative of the potential with respect to density
is shown in Figure 2.5. In this picture, a particle with momentum p experiences an
attractive force in the blue region and a repulsive force in the red region. It ca be
seen that test particles with low momenta experience an attractive force even above
saturation density whereas test particles with a higher momentum are deflected
even if the density is below saturation density. This behaviour is important for
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Abbildung 2.5: Derivative of the single-particle potential with respect to the baryon
density as a function of the baryon density and the momentum of a particle of
interest. Consistent with Figure 2.4, the stiffness is set to be κ = 290 MeV.

understanding how the particle production is influenced in heavy-ion collisions when
including this potential.

Equations of Motion

To obtain the equations of motion, we start from the Boltzmann equation in the
same form as for the Skyrme potential (Eq. 2.4)

[∂t + ∇pE · ∇r −∇rE · ∇p] f(r,p) = C(r,p) . (2.24)

Here, the single-particle energy is written as E =
√

p2 + m2 + U(ρB,p), where U
is the sum of the Skyrme part and the momentum-dependent term. The potential
is incorporated as a zero component of a vector potential within the relativistic
kinematics of the model. A full relativistic description is not obtained this way, as
the potential does not behave this way under Lorentz-transformation.

In this case, the propagation is not performed, like in the case for the pure Skyrme
potential, in terms of the kinetic momentum. Instead, the test particle ansatz is
applied directly in terms of the momenta

f(r,p) =
(2π)3

gNtest

NNtest∑
i=1

δ3(r− ri)δ
3(p− pi) . (2.25)
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The equations of motion follow in the same way as for the Skyrme potential by
inserting this expression into the Boltzmann equation. One obtains

ṗi = −∇rEi (2.26)

ṙi =
pi√

p2i + m2
+ ∇pU . (2.27)

Since the potential is not written in a covariant form, it is evaluated in the local
rest frame and boosted to the calculation frame for the evaluation of the gradient
in Equation 2.26. The boost of the single-particle energy is not trivial. With the
assumed transformation behaviour, the energy and momentum in the calculation
frame and the local rest frame (LRF) are related as

E2 − p2 = E2
LRF − p2LRF . (2.28)

The momentum in the local rest frame is obtained by boosting and thus depends on
p and E. The energy ELRF is then obtained from pLRF using the expressions for the
Skyrme potential and the simplified form (Eq. 2.23) of the momentum-dependent
term. Hence, the energy in the local rest frame implicitly depends on the energy
in the calculation frame, and thus a numerical root-finding algorithm needs to be
applied to find the calculation frame energy, such that Equation 2.28 is satisfied. A
bisection method is applied to find the root of E2−p2− (E2

LRF−p2LRF), because this
method always finds the root, if there is exactly one in a given interval. Technically,
we start with a small interval around the kinetic energy of the test particle and
increase the width in case no root exists in that interval.

This way, the energy is evaluated for six points around the position of the test
particle, so that the energy gradient for Equation 2.26 can be obtained using finite
difference. The second term in equation 2.27 is neglected. The difficulty in including
this term is not in its evaluation, which could be done using finite difference like
for the spatial gradient, as it is done in the GiBUU transport model. However, the
relation β = p/E between velocity and momentum is widely explicitly and implicitly
used in the code base, making a modification rather involved.

To quickly recap the implemented features, the momentum-dependence, in the
form as suggested in [148], is implemented. The potential is not written in a covariant
form and the treatment is not fully relativistic. We evaluate the potential in the local
rest frame, in which the cold nuclear matter assumption for the distribution function
is made. Finally, the term ∇pU for the propagation is neglected but it can be added
in future work.

Binding Energy and Equation of State

The main goal of this thesis is to acquire knowledge about the equation of state of
nuclear matter. In a transport calculation, the equation of state enters via potentials,
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and we discuss how the connection is made in the following. Further, the binding
energy is introduced, which is an important quantity for fixing the parameters to
nuclear matter constraints.

For both the equation of state and the binding energy, the energy density of a
system is required. An important ingredient for the energy density is the potential
energy density v. It is related to the single particle potential by U = δv/δρB, and
the existence of such a potential is important for the conservation of energy. For the
Skyrme potential with the momentum-dependent term, the potential energy density
is given by

v(r) =
A

2

ρ2B
ρ0

+
B

ρτ+1

ρτ+1
B

ρτ0
+

C

ρ0

∫
gd3p

(2π)3

∫
gd3p′

(2π)3
f(r,p)f(r,p′)

1 +
(
p−p′

Λ

)2 . (2.29)

The first two terms generate the Skyrme potential whereas the final term is related
to the momentum-dependent part. Considering cold nuclear matter, the form of the
distribution function is f(r,p) = Θ(pF −p). For this case, the integral can be solved
analytically, and we quote the solution that is given in [148]∫

d3p

∫
d3p′

Θ(pF − p)Θ(pF − p′)

1 +
(
p−p′

Λ

)2 =

32π2

3
p4FΛ2

[
3

8
− Λ

2pF
arctan

(
2pF
Λ

)
− Λ2

16p2F

+

(
3

16

Λ2

p2F
+

1

64

Λ4

p4F

)
ln

(
1 +

4p2F
Λ2

)]
.

(2.30)

An additional contribution to the energy density is the kinetic part that contains
essentially a sum of the kinetic energies of free test particles

ϵfree =

∫
gd3p

(2π)3

√
m2 + p2f(r,p) . (2.31)

This expression can also be solved analytically for cold nuclear matter and one finds

ϵfree =
g

16π2

[√
p2F + m2(2p3F + m2pF ) −m4 arcsin

(pF
m

)]
(2.32)

when substituting the Heavyside function for the distribution function. In total, the
energy density is the sum ϵ = ϵfree + v of the two contributions. The binding energy
per nucleon is then obtained by dividing the energy density by the baryon density
and subtracting the mass

EB

A
=

ϵ

ρB
−m. (2.33)
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Abbildung 2.6: Binding energy per nucleon as a function of the baryon density
at zero temperature. The binding energies are shown for the Skyrme potential,
with and without the momentum-dependent (MD) part, for an incompressibility
of κ = 215 MeV (soft) and κ = 380 MeV (hard).

The binding energy per nucleon is obtained this way for symmetric nuclear matter
at zero temperature. It is visualized for a soft and a hard equation of state with
and without momentum-dependence in Figure 2.6. At saturation density, all curves
show a minimum at EB/A = −16 MeV. This is enforced by nuclear matter cons-
traints and the parameters are tuned to fulfil the constraint as described later in
this section. One can observe in Figure 2.6 that more energy is required to deviate
the density from saturation density for the hard EoS. Finally a comparison between
the potentials with and without the momentum-dependent part can be made. In
general, the difference between the binding energies is subtle compared to the in-
fluence of varying the stiffness. One finds a slightly larger energy per nucleon at
higher densities when including the momentum-dependent term. A statement that
the momentum-dependence effectively only makes a soft equation of state hard is
not supported by this plot as the soft momentum-dependent equation of state is
far below the hard EoS at ρB = 4ρ0 in terms of energy. Figure 2.6 does, however,
only give information on the binding energy at vanishing temperature and such a
statement may be more realistic for a hot medium such as a heavy-ion collision.

The equation of state itself is most commonly given as the pressure as a function
of the baryon density. The pressure can be calculated from the energy density by
taking the derivative with respect to the baryon density

P (ρB) = ρ2B
∂(ϵ/ρB)

∂ρB
. (2.34)
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Abbildung 2.7: Pressure for symmetric nuclear matter at zero temperature as a
function of the baryon density. The pressure is shown for varying stiffness, and with
and without the inclusion of the momentum-dependent term.

The pressure is given for varying stiffness with and without the momentum-dependent
term in Figure 2.7 as a function of the baryon density. Including the momentum de-
pendent term, a very similar equation of state is obtained, but one observes, same
as for the binding energy, a difference at higher densities. This is due to the fact
that the momentum-dependent potentials are setup such that they have the same
stiffness as the pure Skyrme potential at saturation density, but the behaviour at
higher densities can differ. At all densities, the difference between soft and hard is
far more prominent than the inclusion of the momentum-dependence. The fact that
the equation of state at vanishing temperature is almost unchanged by the inclusion
of the momentum-dependent part is interesting, especially since it will become evi-
dent in the results section that the impact on the dynamics in a heavy-ion collision
is strong. One should note, that the potentials with the momentum-dependent part
differ from the ones without the momentum-dependent part not just by adding the
additional term, but additionally, the parameters need to be readjusted to physical
constraints as described in the following.

Parameter Estimation

The potentials described in this chapter have the five parameters A, B, C, τ , and Λ
including the Skyrme part. The nuclear ground state density ρ0 also appears in the
potential, but is fixed in the present work to a value of 0.168 fm−3. Other transport
models use slightly different nuclear ground state densities, and it would be very

37



interesting to test the sensitivity to that number.
The five parameters are not free in the sense that the nuclear matter constraints

are formulated in four equations, such that only a single parameter is free after taking
them into account. The nuclear binding energy is introduced above, and already in
Figure 2.6, the observation was made that each curve has a minimum at the nuclear
ground state density, with a value of EB/A = −16 MeV. This is enforced, as the
parameters are chosen to match exactly the two conditions(

EB

A

)
ρB=ρ0

= −16 MeV (2.35)

(
∂(EB/A)

∂ρB

)
ρB=ρ0

= 0 (2.36)

The constraint on the value of the binding energy at saturation density (Eq. 2.35)
can be related to the volume term in the Bethe-Weizsäcker mass formula [149], [150],
that is also known as the liquid drop model. An estimation of the parameters of the
liquid drop model is performed in [151], and the coefficient of the volume term is
estimated to be roughly 16 MeV.

The second constraint (Eq. 2.36) is more of the definition of the nuclear ground
state energy than an experimental constraint (even though the value of the ground
state density needs to be determined experimentally). Equation 2.36 expresses that
the nuclear ground state density is energetically the most favorable density.

To find a value for the five parameters of the potential, three more equations
are required in addition to Equations 2.35 and 2.36. Two of them are used to fix
the momentum-dependent part of the potential so that the aforementioned opti-
cal potential is reproduced. The optical model is used to extract the momentum-
dependence from scattering experiments in [144], [145]. The so-called Schrödinger
equivalent potential USEP is provided by the optical model and can be compared to
the potential that is applied in this work. The Schrödinger equivalent potential can
be calculated as [139]

USEP = US + U0 +
1

2m
(U2

s − U2
0 ) +

U0

m
Ekin , (2.37)

where the kinetic energy is Ekin =
√

p2 + m2 − m. The Schrödinger equivalent
potential is plotted as a function of the kinetic energy in Figure 2.8. The figure
contains values from [145] that were extracted from proton-lead scattering. Further,
various Skyrme potentials with and without momentum-dependence are presented.
The Skyrme potentials are treated like the zero component of the vector potential
U0 with no scalar potential. Naturally, the Schrödinger equivalent potential is linear
without explicit momentum-dependence, as only the last term in Equation 2.37

38



0.0 0.2 0.4 0.6 0.8 1.0
Ekin[GeV]

0.100

0.075

0.050

0.025

0.000

0.025

0.050

U
SE

P[G
eV

]

Soft EoS
Hard EoS
Soft EoS with MD
Med EoS with MD
Hard EoS with MD
Walecka
Optical Potential Pb
Tuning points

Abbildung 2.8: Schrödinger equivalent potential as a function of kinetic energy.
The soft and hard Skyrme potentials without the momentum-dependent term are
shown. These two curves overlap but exhibit an incorrect trend. A parameter set
for the Walecka model is also displayed. It follows the trend but does not match
the measurements. Finally, the Skyrme potentials with momentum dependence also
overlap and correctly describe the experimental data from [145].

yields a dependence on the kinetic energy. For the pure Skyrme potential, the energy
dependence is completely different from the optical model estimation. The Walecka
model includes a scalar and a vector potential, but they are not dependent on the
momentum. Hence, only a linear energy dependence is obtained, which can be tuned
to roughly reproduce the optical potential. The form that we use in this work with
the momentum-dependence does describe the optical model estimate very well. The
parameters are, for this potential, only tuned to the two orange points in Figure 2.8,
which were suggested already in [148], and are given in terms of the single-particle
potential at a given momentum as

U(ρ0, p = 0) = −75 MeV (2.38)

U(ρ0, p = 800 MeV) = 0 MeV . (2.39)

Since, for the soft, the medium-stiff and the hard equation of state, all points of the
optical model estimate are reproduced when they are tuned to only Equations 2.38
and 2.39, the two points are sufficient for the parameter estimation.

The Equations 2.35, 2.36, 2.38, and 2.39 are the constraints from nuclear matter
that are taken into account for the parameter estimation. As there are five parame-
ters and so far only four equations to constrain them, there is still one free parameter
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remaining. In order to give a physical meaning to the final parameter, the incompres-
sibility at saturation density is widely used to quantify the stiffness of the equation
of state. The incompressibility κ will serve in our case as the last free parameter. It
can be obtained as the second derivative of the binding energy with respect to the
density as

κ = 9ρ2
∂2

∂ρ2B

(
Eb

A

)
ρB=ρ0

. (2.40)

As it is essentially the second derivative of the binding energy, it controls the cur-
vature in Figure 2.6 such that a larger change in the energy with increasing density
is generated with a stiffer equation of state (or a larger incompressibility).

For a given value of κ, the five equations can be solved numerically to obtain the
five parameters of the Skyrme potential, including the momentum-dependent term.
When the momentum-dependent term is neglected, the three remaining parameters
A, B, and τ can be obtained without the constraints from the optical model, so that
the parameters are fixed using Equations 2.35, 2.36, and 2.40.

Cold Nuclear Matter Assumption

The momentum-dependent term of the potential contains an integral over the dis-
tribution function. In a transport model, the distribution function can be accessed
at all times. It is represented by test particles in the aforementioned test particle
ansatz (see Eq. 2.25). As the integral over the distribution function is simplified in
dynamic calculations within SMASH, it is instructive to write down the form of the
potential without this assumption and compare.

We begin by recalling the momentum-dependent term of the potential, to which
we will in this case apply the test particle ansatz

UMD =
2C

ρ0
g

∫
d3p′

(2π)3
f(r,p′)

1 +
(
p−p′

Λ

)2 . (2.41)

In a consistent description, the distribution function would not take the form f(r,p) =
Θ(pF − p), but would instead be expressed as a sum of δ-functions

f(r,p) =
(2π)3

g

1

Ntest

NNtest∑
i=1

δ(p− pi)δ(r− ri) . (2.42)

This form of the distribution function is at first glance convenient as the integral
over the momentum can be analytically solved with little effort

UMD =
2C

ρ0

1

Ntest

NNtest∑
i=1

δ(r− ri)

1 +
(
p−pi

Λ

)2 . (2.43)
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Abbildung 2.9: Distribution of test particles in momentum space at different times
during a head-on gold-gold collision at Ekin = 1.23AGeV. The distribution is calcu-
lated for a central cell in configuration space, and is integrated over py.

However, the integral is in this case replaced by a sum that is numerically expensive
to evaluate when many test particles are involved. It is important to note that the
single-particle potential needs to be evaluated for each test particle at each time
step and each time the sum over all surrounding particles needs to be calculated.

In this section, we will examine the differences in the single-particle potential
between the cold nuclear matter assumption and the evaluation of the full sum. The
comparison is done in a scenario similar to the early stage of a heavy-ion collision.
It was suggested by Welke et al. (see Figure 6 in [148]) to consider a situation where
two nuclei overlap in configuration space, but the nucleons from the two nuclei are
distributed in distinct spheres in momentum space. This is the case in a very early
stage of the heavy-ion collision, before the interactions take place, with the system
far from equilibrium. The spheres in momentum-space are due to Fermi momentum,
and they are shifted because of the velocity of the entire nuclei.

Before investigating the consequences of this form for the distribution function,
this picture is verified by looking at the momentum distribution at different times
during a central gold–gold collision at SIS-18 energy, as shown in Figure 2.9. The
time is defined such that the surfaces of the nuclei touch at t = 0 fm. At this
time, two distinct regions in momentum space can be clearly identified. Figure 2.9
further illustrates the situation at t = 5 fm. At t = 5 fm, the nuclei overlap in
configuration space. Until this stage of the evolution, the situation in momentum-
space has not changed much. Equilibrium is certainly not reached, and distinct
spheres in momentum space are still clearly visible. By t = 10 fm most of the test
particles have undergone a sufficient number of interactions and the momentum
distribution is more concentrated on the central region.

Since the scenario proposed by Welke et al. is realistic in the early stages of a
heavy-ion collision, we compare the cold nuclear matter ansatz with the full sum,
given in Equation 2.43. To reduce numerical costs, only a single point in time is
considered, and no full transport calculation is performed. For this purpose, test
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Abbildung 2.10: Longitudinal momentum distribution of nucleons in a gold-gold col-
lision at Ekin = 1.23AGeV on the left side. The distribution is created by sampling
two Fermi spheres and boosting them according to the collision energy. The single
particle potential in the same situation is calculated by evaluating the full sum in
the line depicted by ”two spheres”, and in comparison with the cold nuclear mat-
ter assumption. The contribution to these curves from the momentum-independent
terms of the Skyrme potential is given in black.

particles are sampled according to the distribution function, and the sum is evalua-
ted. In practice, Fermi spheres are sampled for each nucleus and boosted according
to the collision energy. The momentum distribution obtained this way is presen-
ted along with the corresponding single-particle potential in Figure 2.10. On the
left-hand side, a typical distribution of the initial state of a heavy-ion collision is
displayed, which can serve as a sanity check. Using the sampled test particles, the
single-particle energy is evaluated by calculating the full sum and by applying the
cold nuclear matter assumption. For comparison, the contribution from only the
momentum-independent terms of the Skyrme potential to the single-particle poten-
tial is given by the black curve. With this curve as a baseline, one can clearly see
that the contribution from the momentum-dependent part is changed significantly
due to the cold nuclear matter assumption in this scenario. This difference calls for
further investigation of the influence of the assumption, and the assumption should
be dropped if possible.

2.1.3 Symmetry Potential

For a System of protons and neutrons, it is energetically favorable to have an equal
number of protons and neutrons, when the electromagnetic interaction is disregar-
ded. This is reflected in the binding energy of nuclei and is encapsulated in the
symmetry term of the phenomenological Bethe-Weizsäcker formula [149], [150]. A
large excess of neutrons is often present in astronomical objects, especially neutron
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stars. The symmetry energy describes on how the energy depends on the asym-
metry of protons and neutrons. Give the large asymmetry in many astrophysical
applications, the symmetry energy is a research topic of great interest.

This thesis focuses on heavy-ion collisions, where the probed matter is more
symmetric. However, due to the electromagnetic contribution to the binding energy,
large stable nuclei exhibit an excess of neutrons compared to protons. Gold nuclei,
for example, consist of 79 protons and 118 neutrons, which is nearly 50% more
neutrons than protons. The asymmetry from the nuclei is also present in heavy-ion
collisions. On one hand, this necessitates the inclusion of the symmetry potential
in the calculation, but on the other hand, it provides and opportunity to study the
symmetry energy in heavy-ion collisions.

Considering only protons and neutrons for the symmetry potential is not suffi-
cient for dynamic calculations within the SMASH model, as many resonances and
other hadrons are produced, which carry the asymmetry, at least temporarily.

To apply the symmetry potential to the extensive list of particles in SMASH,
it is expressed in terms of the density corresponding to the third component of the
isospin More precisely the density corresponding to the relative isospin I3/I is used,
which we define here as ρI3 . The third component of the isospin is +1/2 for up-
quarks and −1/2 for down quarks. Other quarks do not carry any isospin charge.
For hadrons, the third component of the isospin is the sum of the isospin of the
valence quarks. Therefore, it can be calculated easily from the number of up and
down quarks nu and nd

I3 =
1

2
(nu − nd) . (2.44)

The total isospin is I = 1/2 for both protons and neutrons. Compared to other
formulations of the symmetry potential that express it in terms of the density of
the I3 charge instead of the relative isospin I3/I, this introduces a factor of two in
some cases, which must be taken into account when comparing with other models
and results.

The symmetry potential is implemented in SMASH following the description
given in [99], where it is expressed in terms of δ = (ρn − ρp)/ρB as

Usym = ±2Spot

(
ρB
ρ0

)
δ . (2.45)

In this expression, the positive sign is for neutrons and the negative sign is for
protons. In SMASH the δ is generalized in terms of the density of the relative
isospin ρI3 = −δρB, so that the symmetry potential is written as

Usym = ±Spot

(
ρI3
ρ0

)
. (2.46)
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Note that now the positive sign applies to protons and the negative sign to neutrons.
To avoid the confusion about the sign, a more accurate description of the potential
would omit the sign, as it enters from the charge of the particle of interest

Usym = Spot

(
ρI3
ρ0

)
. (2.47)

The contribution from the symmetry potential to the single-particle energy of a par-
ticle with given relative isospin is then UI3/I which is consistent with the description
of the Skyrme potential, where anti-baryons experience the force with opposite sign
compared to baryons. In the current version of SMASH, the potential acts only on
baryons. For the symmetry potential, this is not consistent because mesons such as
π+ and π− contribute to the isospin density and should consistently experience the
symmetry potential as well.

The propagation of test particles in the presence of the symmetry potential
follows the same equations of motion as for the Skyrme potential Following the
same prescription, the time derivative of the kinetic momentum of a test particle is
given by

Π̇i =
I3
I

∂Usym

∂ρI3

[
−(∇rj

0
I3

+ ∂tjI3) +
Πi

Π0
i

× (∇r × jI3)

]
. (2.48)

This equation assumes that the symmetry potential is the zeroth component of a
vector potential in the local rest-frame. However, this is not fully consistent with
the expression for Usym, which transforms as a scalar, since ρI3 refers to the density
in the local rest-frame. Another caveat is that both the Skyrme and the symmetry
potential are evaluated in the local rest-frame and then boosted to the calculation
frame for the equations of motion. However, these rest frames are different, as they
correspond to different charges. For a consistent description, the potentials must be
evaluated in the same frame.

There is room to extend the symmetry potential. In a study aimed at extracting
the symmetry energy from pion yields and ratios from the SπRIT experiment [152],
an additional term was introduced to account for a non-trivial dependence on the
baryon density

S(ρB)

(
ρI3
ρB

)2

, (2.49)

where the function S(ρB) is given by

S(ρB) = 12.3 MeV ×
(
ρB
ρ0

)2/3

+ 20 MeV ×
(
ρB
ρ0

)γ

. (2.50)

Here, γ is a free parameter that controls the strength of the baryon density depen-
dence of the symmetry potential. The additional term is not applied in the results
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presented in this thesis, but the influence of this term can be studied in further
work.

In this work, the symmetry potential is considered to be independent of the mo-
mentum. However, introducing a momentum dependence to the symmetry potential
is an interesting extension of the model. It can be included in a BUU calculation in
the form that is suggested in [153].

2.1.4 Electromagnetic Potentials

Heavy-ion collisions are performed with the intent to study the strong interaction
under extreme conditions. The electromagnetic interaction is, in this endeavor, not
the main interest and plays a weaker role in the dynamics of a heavy-ion collision
than the strong interaction. However, at relatively low collision energies, Coulomb
repulsion has a significant impact on various observables. In Section 4.1, a calculation
of the elliptic flow coefficient including the Coulomb potential is compared to one
in which it is neglected.

The electromagnetic interaction has a longer range compared to the strong inter-
action. This long range makes it more challenging to treat numerically in transport
calculations, as the equations of motion cannot be formulated solely in terms of
the local density, current, and their derivatives, as is done for the other potentials
described above.

The electromagnetic potentials implemented in SMASH do not fully account for
electrodynamics, but rather incorporate only its basic features. A rigorous descrip-
tion of electrodynamics would certainly be beneficial, but a simplified version is
justified, because the strong interaction remains the most important driver for the
dynamics of the system.

The force experienced by test particles due to electrodynamics is given by the
Lorentz force. To evaluate this force, the electric and magnetic fields must be compu-
ted. The calculation of the fields is simplified in the model by assuming all currents
to be stationary. Under this assumption, the electric field is obtained from the Pois-
son law in integral form and the magnetic field is computed using the Biot-Savart
law

E(r) = −∇ϕ(r) = −∇
∫

dV ′ ρ(r′)

|r− r′|
=

∫
dV ′ρ(r′)(r− r′)

|r− r′|3

B(r) = ∇×A(r) = ∇×
∫

dV ′ j(r′)

|r− r′|
=

∫
dV ′j(r′) × r− r′

|r− r′|3
.

(2.51)

The current and density is given on a rectangular lattice with cell centers ri. See
Section 2.1.5 for details on the density calculation. The strategy is to evaluate the
electric and magnetic fields on the lattice points, and to interpolate the fields to the
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position of each test particle of interest. Currently, only a zeroth order interpolation
is performed, but an extension to higher orders is possible. The electric and magnetic
fields are computed by expressing the integrals as sums over the discretized volume,
where the current and density are assumed to be uniform within each small lattice
cell. The integrals then simplify to

E(rj) =
∑
i ̸=j

ρ(ri)(rj − ri)

|rj − ri|3
∆V

B(rj) =
∑
i ̸=j

j(ri) ×
rj − ri
|rj − ri|3

∆V ,

(2.52)

where the sum excludes the contribution from the lattice cell where the field is to be
calculated. The contribution from this cell vanishes due to symmetry, as we assume
uniform current and density within the cell.

Evaluating the sum for electric and magnetic field for each lattice point is nume-
rically expensive because it requires iterating all lattice points for each cell in which
the fields are calculated. To reduce computational cost, the sum can be restricted
to a subset of the lattice points that are within a defined proximity to the point of
interest. A user-defined size determines a rectangular sublattice, limiting the itera-
tion to nearby points. One needs to verify the stability of results when cutting the
integral however, because, even though the integrands decrease with distance, the
contribution from larger distances can still be significant due to the large number
of contributing cells. In practice, the contribution from distant points is typically
small, as the density in a heavy-ion collision vanishes at large distances in the finite
system.

Finally, the Lorentz force can be evaluated and taken into account for the pro-
pagation

F = q(E + v ×B) . (2.53)

Figure 2.11 illustrates the electric and magnetic fields in the initial state of
a heavy-ion collision, before the nuclei touch. The electric field is represented by
blue arrows, while the magnetic field is shown by red arrows. The basic features of
the fields are correctly captured: the electric field points away from the positively
charged nuclei, and the magnetic field forms closed circular loops around the nuclei,
as expected for a stationary current. However, there are noticeable shortcomings
in this simplified version of the Coulomb potential. Specifically, the transformation
behavior with respect to the boost is incorrect. The field should be stronger in the
transverse direction, but in this case, it is enhanced in the longitudinal direction due
to the contraction of the nuclei.
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Abbildung 2.11: Illustration of the electric and magnetic fields in the initial state
of a heavy-ion collision. The electric field is represented by blue arrows, and the
magnetic field by red arrows. The fields are scaled differently for better visibility,
and the calculation uses only a single test particle per real particle, as high precision
is not required for this visualization [134]..
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2.1.5 Density Calculation

All potentials discussed in the previous sections are expressed in terms of particle
densities. Consequently, it is crucial for the model to have a stable calculation of
these densities. Let us recall the test particle ansatz (see Eq. 2.25), that is used to
connect the Boltzmann equation with the equations of motion of test particles

fj(r,p, t) =
1

Ntest

∑
i

δ(r− ri(t))
(2π)3

g
δ(p− pi(t)) . (2.54)

Here, g is the degenracy factor for a given particle species j. This ansatz leads to
a solution of the Boltzmann equation in the limit of infinitely many test particles.
Since the number of test particles can, in practice, never be infinite, the density
given by

∫
d3pg
(2π)3

f(r,p) = 1
Ntest

∑
i δ(r− ri) is zero everywhere except at the finite set

of positions where test particles are located. At these positions the density becomes
singular. To obtain smooth, well-defined densities suitable for numerical simulations,
a modification is necessary. In the SMASH model, this is achieved by applying a
smearing kernel K(r) to replace the Dirac delta function δ(r− ri)

f(r,p, t)j =
1

Ntest

∑
i

K(r− ri(t))
(2π)3

g
δ(p− pi(t)) . (2.55)

Different forms for the smearing kernel are possible provided it is normalized such
that

∫
d3rK(r) = 1. The smearing kernel used throughout this work is a Lorentz-

contracted Gaussian, as described in [154]

K(r) =
γ

√
2πσ2

3 exp

(
−r2 + (r · u)2

2σ2

)
, (2.56)

where u denotes the spatial components of the four-velocity. The width σ of the
Gaussian is a technical parameter, and determining its optimal value is not straight-
forward. For smaller values of σ, the smearing kernel approaches a δ-distribution,
meaning that a smaller width brings the kernel closer to the original ansatz. Ho-
wever, a larger width results in more test particles contributing to the density at a
given position, yielding a smoother distribution. Another important consideration
when choosing σ is that large gradients may not be accurately represented with
too wide a Gaussian. Two examples are shown in Figure 2.12, where slices of a
gold nucleus at rest are depicted for the cases of 100 and 1000 test particles. We
compare a Gaussian smearing width of σ = 1 fm to σ = 0.5 fm. In the case with
100 test particles, the orange curve for σ = 1 fm is more stable whereas the blue
curve, representing the calculation with σ = 0.5 fm, fluctuates more. Compared to
the Woods-Saxon distribution from which the test particles are sampled, the density
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Abbildung 2.12: Baryon density in a slice through a gold nucleus at rest. The density
is calculated using covariant Gaussian smearing with different widths and discrete
smearing with varying cell sizes and weightings. On the left, a calculation using 100
test particles is shown, while on the right, 1000 test particles are used. The Woods-
Saxon distribution is the distribution originally used to sample the nucleons.

close to the center of the nucleus is well reproduced for the larger width. Towards
the edges of the nucleus, we observe that the σ = 1 fm curve falls off slower, as
the gradient at the edge of the nucleus cannot be reproduced by a sum of wider
Gaussian distributions. For σ = 0.5 fm, the gradient is better reproduced, but the
curve still exhibits fluctuations in this region..

For 1000 test particles, the σ = 1 fm curve barely changes compared to the case
with 100 test particles. While the σ = 0.5 fm curve improves with more test particles,
visible fluctuations remain. It is important to note that 1000 test particles per real
particle is a large number, making it computationally very expensive for dynamic
simulations.

Figure 2.12 also includes curves calculated using discrete smearing. In this ap-
proach, test particles are binned into a spatial grid with cell length a. A more general
version of this method is also available for density calculations in SMASH. Typi-
cally, the contribution to the density is assigned entirely to the cell containing the
test particle. However, an alternative approach allows a fraction of the charge to be
distributed to neighboring cells. This distribution is controlled by a weight factor,
w, which defines how much charge is allocated to the cell of the test particle. The
remaining charge is then evenly distributed among the 6 adjacent cells. With w = 1,
conventional binning is recovered. Figure 2.12 shows curves for both w = 1 and
w = 0.3. For the conventional curve with w = 1 we observe that the curves fluctuate
tremendously for 100 test particles. Reducing the weight, and, in the process, distri-
buting the charge over multiple cells, we observe smaller fluctuations in the density
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as expected.
For the calculations with 1000 test particles, we observe a similar behavior to

the case with the Gaussian smearing kernel at larger widths. The density profile
is relatively smooth when using w = 0.3, but the gradient at the nucleus edge
is insufficient to accurately reproduce the Woods-Saxon distribution. In the right
hand plot of Figure 2.12, a calculation with a smaller cell size of a = 0.75 fm is
additionally presented. This curve illustrates that even with 1000 test particles,
a reasonable density profile cannot be obtained with smaller cell sizes, while the
Gaussian smearing with a smaller width provides a better description of the Woods-
Saxon distribution. The default form for K(r) in SMASH is the Gaussian smearing
with width of σ = 1 fm, and this value will be used for all calculations in this work
unless otherwise specified.

The Eckart current density for a given charge can be obtained by summing the
distribution function across all contributing particle species

jµ =
∑
j

gj

∫
d3p

(2π)3
pµ

p0
qjfj(r,p, t) , (2.57)

where qj is the charge carried by a particle of species j. By applying the test par-
ticle ansatz, the integral over momentum space can be evaluated, simplifying the
expression to

jµ =
1

Ntest

∑
i

qi
pµ

p0
K(r− ri) (2.58)

where we have implicitly changed the numbering of the test particles such that the
sum runs over all test particles from all particle species, and qi is the charge of the
species to which test particle i belongs.

Gradients and time derivatives of the density can then be obtained using finite
difference, or, in the case of Gaussian smearing directly by summing over the gradient
of the smearing kernel. In many situations, the density in the local rest-frame, defined
by vanishing currents ji = 0, is required. As jµ are components of a Lorentz-vector,
it can be calculated in any frame using ρ2 = jµj

µ. A complication arises, however,
when positive and negative charges predominantly flow in opposite direction. In such
case, the spacial components add up whereas the zero-component of the current
cancels. This can lead to jµ becoming a spacelike vector, making it impossible to
evaluate the density using the relation ρ =

√
(j0)2 − j2. The issue arises because the

Eckart rest-frame is not well-defined in this scenario. In the model, the density is
instead split in positive and negative contributions of which the rest-frame densities
ρpos and ρneg can individually be evaluated, and the density is finally calculated via
ρ = ρpos−ρneg. This approach allows for a real-valued density, but the rest frames for
positive and negative charges may differ significantly, meaning that simply adding
the rest-frame densities is not a complete solution. Fortunately, this issue typically
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does not arise in practice, as test particles usually move collectively, ensuring that
the current remains timelike.

2.1.6 Brief Comparison to Quantum Molecular Dynamics

SMASH is a BUU-type model, and the implementation of nuclear potentials along
with the resulting equations of motion from the test particle ansatz have been discus-
sed in detail above. An alternative approach for modeling off-equilibrium dynamics
in heavy-ion collisions is Quantum Molecular Dynamics (QMD) [155]. While QMD
is not used in this thesis, it is widely employed in studies of the equation of state
(EoS), and thus, a brief description of the model is provided here.

An overview of various implementations of Quantum Molecular Dynamics can
be found in [156]. Unlike the test particle approach used in BUU, QMD assumes
that the Wigner density — a quantum generalization of the distribution function —
of each individual particle is represented by a Gaussian wave packet

fi(r,p, t) =
1

π3
exp

[
− 2

L
(r− ri)

2

]
exp

[
−L

2
(p− pi)

2

]
. (2.59)

Here, L defines the width of the wave packet, with its center in configuration space
given by ri and in momentum space by pi. This form is constructed to satisfy the
uncertainty principle. A generalized version of the Ritz variational principle is then
used to derive the equations of motion for the centroids ri and pi [155]. Based on
the assumption for the Wigner density, the centroids propagate according to the
classical equations of motion

ṙi =
∂⟨H⟩
∂pi

(2.60)

ṗi = −∂⟨H⟩
∂ri

. (2.61)

The expectation value of the Hamiltonian ⟨H⟩ is written in terms of the two-particle
potential V (ri, rj,pi,pj) as

⟨H⟩ =
∑
i

p2
i

2mi

+
∑
i

∑
j>i

∫
d3p d3p′ d3r d3r′ fi(r,p, t)fj(r

′,p′, t)V (r, r′,p,p′) .

(2.62)
Here, mi is the mass of particle i. Without providing further details in this thesis,
the integral is usually written by introducing an interaction density. By expressing
the Hamiltonian in terms of the two-particle potential, information on correlations
between individual particles can be studied within QMD calculations. This can be
of interest, especially for studying light nuclei formation.
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Since the equations of motion in a BUU model also follow classical equations of
motions (disregarding relativistic terms), the question arises, what the main diffe-
rences in the technical realization of the models are. The most important difference
is between test particles in BUU and wave packets in QMD. The wave packet in
a QMD calculation corresponds to a real particle, while the test particle in BUU
technically represents the continuous distribution function that is evolved. BUU cal-
culations require a large number of test particles, and the interactions are expressed
in terms of densities, as discussed earlier. In contrast, QMD calculations consider
the interaction between individual particles, which can be seen in the sum for the
potential part of the Hamiltonian.

2.2 Collision Term

Up to this point, we have primarily focused on nuclear potentials, which play a key
role in transport calculations. We emphasize their importance in this work, as they
provide essential information about the equation of state, which is incorporated into
the model through these potentials. However, the collision term also plays a crucial
role in the Boltzmann equation, as it accounts for all scatterings between particles.
In many applications, transport models are employed in cascade mode, where the
potential interactions are neglected, and particles propagate freely between scatte-
rings. In this regime, the dynamics are governed solely by collisions.

We will present some calculations performed in cascade mode in Chapter 6, but
also the investigations aiming to learn about the nuclear potentials heavily rely
on the collision term. Before iterating through the different interaction types and
discussing how they are realized in the model, let us have a look at how frequently
they occur in central heavy-ion collisions.

Figure 2.13 illustrates the contribution of different reaction types to the total
number of interactions at two distinct collision energies. At lower collision energies,
we observe that elastic binary scatterings are by far the most frequent reactions,
and, therefore, play an important role for the dynamics of the system. Resonance
formation in inelastic 2 → 1 and 2 → 2 processes with subsequent resonance decays
are most important for the particle production in this case, but are slightly less
frequent. The heavy-ion collisions at the higher energy, shown on the right side of
Figure 2.13, correspond to those studied in the Beam Energy Scan program at RHIC

As expected, at higher collision energies, we observe a larger number of inelastic
interactions compared to elastic scatterings. An key difference to lower energies is the
onset of string excitations, that are discussed in detail in Section 2.2.4. Although
the reaction rate for string excitations is relatively low, they make a significant
contribution to particle production.

Having discussed the relevance of various interaction types in different collision
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Abbildung 2.13: Contribution of different reaction types to the total number of
interactions in head-on gold-gold collisions at Ekin = 1.23AGeV (left) and at√
sNN = 19.6 GeV (right) in percent. Shown are (from left to right) elastic binary

scatterings, two-to-one resonance formations, inelastic two-to-two scatterings, reso-
nance decays, and string excitations. The calculation was performed using SMASH
version 3.1.

systems, we now turn to a more detailed examination of the individual mechanisms,
beginning with elastic scatterings.”

2.2.1 Elastic Scattering

Binary elastic scattering involves two incoming particles that collide and exchange
momentum. In this process, the species and masses of the particles remain unchan-
ged. To begin, we will discuss the kinematics of elastic scattering before addressing
the cross section. Let us consider two particle, A and B. The kinematics are most ea-
sily described in the two-particle center-of-mass frame, where the spatial components
of the incoming momentum four-vectors are pA = p and pB = −p. Considering mo-
mentum conservation, we find that the total momentum also vanishes in the final
state p′

A = p′ = −p′
B. The center of mass energy is also conserved, which yields

another equation√
m2

A + p2 +
√

m2
B + p2 =

√
m2

A + p′2 +
√

m2
B + p′2 , (2.63)

which can only be satisfied if p2 = p′2. Hence, the absolute value of the momen-
tum in the center of mass frame before and after the scattering is equal, but the
orientation may differ. The direction of the outgoing momenta can, in principle, be
determined using angular momentum conservation. But since the contribution from
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spin to the angular momentum is not kept track of throughout the calculation, an-
gular momentum conservation cannot be achieved in individual interactions in the
model. Nevertheless, global angular momentum is conserved on average, provided
the number of test particles is sufficiently large [157].

Since the remaining degrees of freedom cannot be determined through angular
momentum conservation, we use a phenomenological parametrization of the angular
distribution [158]. This parametrization is applied to determine the polar angle,
while the azimuthal angle is sampled from a uniform distribution, reflecting the
rotational invariance of the system around the p-axis.

Angular distributions are provided only for nucleon-nucleon interactions and for
low momenta in [158]. For momenta exceeding 2,GeV, we switch to a parametrizati-
on based on STAR data [159]. Since elastic collisions can occur between all particle
species, this parametrization is applied to all elastic interactions.

After evaluating the final momenta in the center of mass frame, a Lorentz-
transformation to the frame in which the rest of the calculation is carried out is ne-
cessary. The velocity of the center of mass frame is obtained from the four-momenta
pµA and pµB of the incoming particles as

vicm =
picm
p0cm

with pµcm = pµA + pµB , (2.64)

where the above quantities are expressed in the calculation frame, and vcm is the
velocity of the two-particle center-of-mass frame. A boost from the two-particle
center-of-mass frame to the calculation frame is carried out with the velocity −vcm.

The final ingredient for elastic interactions is the cross section. It is important
to note that not all processes in which the ingoing and outgoing particle species are
identical are treated using this mechanism. As will be discussed in more detail in
Section 2.2.2, a resonance X can be formed from the incoming particles A and B,
which then decays back into exactly A and B

A + B → X → A + B . (2.65)

Such a process would be considered elastic in the experiment, as only the final state
particles can be observed. Therefore, elastic cross sections from experimental measu-
rements are therefore not directly implemented in the model. Instead, the resonance
contribution to the elastic cross section is subtracted first. In this way parametrized
cross sections are implemented for p + p, n + p, p + p̄, with the parametrization for
the latter taken from [115]. Additional parametrizations are available for p+π+ and
p+π−. These are also applied to the π0, for which the cross section is assumed to be
the average of π+ and π−. Cross sections are also available for p + K+ and p + K−,
where the parametrizations are adopted from [141]. Assuming isospin symmetry, the
cross sections for K+ are also applied for the K0, and the K− cross sections applied
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for the K̄0. Additionally, parametrizations based on experimental data are used for
deuteron-nucleon scattering and deuteron-pion scattering.

Elastic cross sections for all other processes are calculated using the additive
quark model (AQM) as described in [115]. For processes where experimental data
is unavailable, the cross sections are mapped to known processes. Specifically, all
baryon-baryon scatterings are mapped to proton-proton scatterings, and meson-
baryon interactions are mapped to π+ +p scatterings. Meson-meson interactions are
similarly mapped to p+ π+ scatterings, with an additional factor of 2/3 introduced
to account for the smaller number of quarks in a meson compared to a proton.
The cross section for more exotic processes is then given by the base cross section,
multiplied by a factor of (1 − 0.4xs

1)(1 − 0.4xs
2), where xs

1 and xs
2 represent the

fractions of strange quarks in the two colliding hadrons, respectively.
At low center-of-mass energies, most hadronic cross sections exhibit non-trivial

resonance structures. These structures are specific to the interacting hadron pairs
and are not desirable in the AQM cross sections for other species. Therefore, a
parametrization is used that captures the general trend of the base cross section
while excluding the fine resonant structures.

2.2.2 Resonance Formation and Decay

Resonance formation and subsequent decay is the main source for particle production
at low collision energies, as we have already seen in Figure 2.2.2. In this section, we
will focus on the details of 2 → 1 resonance formation, the properties of resonances,
and their decay processes. For baryon-dominated systems, resonance formation in
2 → 2 scatterings plays a crucial role and will be discussed in Section 2.2.3.

We begin with the spectral function, where we assume a vacuum Breit-Wigner
distribution with a mass-dependent width for all resonances

A(m) =
2N
π

m2Γ(m)

(m2 −M2
0 )

2
+ m2Γ(m)2

. (2.66)

Here, N is a normalization factor, m is the mass of the resonance, and M0 is the mass
at the resonance pole. The total decay width, Γ(m), is mass-dependent. Together
with M0, the width at the pole, Γ(M0), is taken from the Particle Data Group [127].
The total decay width of a resonance R is given by the sum of the partial widths
for the different reaction channels

Γ(m) =
∑
a,b

ΓR→ab(m) . (2.67)

As indicated by the mass dependence in the function argument, the partial widths
ΓR→ab(m) are functions of the resonance mass, following the prescription provided
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in [160]. The calculation of the mass-dependent width requires the partial width of
the resonance at the pole Γ0

R→ab, which is the total width multiplied by the partial
width at the pole. Given this value as an input parameter, the mass-dependent
partial width for the decay channel R → ab is

ΓR→ab = Γ0
R→ab

ρab(m)

ρab(M0)
, (2.68)

where

ρab(m) =

∫
dmadmbAa(ma)Ab(mb)

pf
m

B2
L(pfR)F2

ab(m) (2.69)

incorporates more detailed information on the specific decay process. The integration
is performed over the spectral functions Aa and Ab of the decay products, as the
mass of the decay products determines the amount of kinetic energy that the decay
products obtain as momentum in the final state pf = pf (m,ma,mb) (see Eq. 2.72).
The factor pf increases the decay width when a larger phase space is available for
decay products. BL(pfR) are the Blatt-Weisskopf functions [161] that incorporate
information on the angular momentum L of the decay and Fab is a form factor that
is applied for unstable decay products. More detailed information on the spectral
function in the SMASH model can be found in the main SMASH publication [128].

For a resonance with a given decay width, one can compute the lifetime as the
inverse

τ =
1

Γ
. (2.70)

The time evolution in SMASH is based on time steps. In the beginning of each
time step, every resonance is assigned a decay time, which is sampled from the
exponential decay law P (τdecay) ∝ exp(−Γτdecay) in the resonance rest frame, and
boosted back to the frame in which the propagation is performed. Once the decay
time is found, the specific channel is chosen based on the partial widths such that
each decay channel has the probability ΓR→ab/Γ.

Decays are performed in the rest-frame of the resonance. With masses ma and mb

of the decay products sampled from their spectral functions, one can obtain the mo-
mentum pf of the daughter particles, as mentioned above, from energy conservation.
Starting from

m =
√
s =

√
m2

a + p2f +
√

m2
b + p2f , (2.71)

which can be solved for pf , leading to

p2f =
[m2 − (ma + mb)

2][m2 − (ma −mb)
2]

4m2
. (2.72)

In the rest frame of the resonance, the direction of pf must be determined but, since
there is no preferred axis in the system (as spin degrees of freedom are not kept track
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of in the model), an angle has to be chosen isotropically. Note that the angle is not
isotropic in the calculation frame since angles are modified by a Lorentz boost. In
the calculation frame, daughter particles from the decay of a faster resonance tend
to become more collimated.

Resonance formation in 2 → 1 processes plays an important role for the dynamics
in collisions at all collision energies as we have observed in Figure 2.13.

Like other processes, resonance formation is most conveniently described in the
two-particle center-of-mass frame, which is the rest frame of the resonance in the
final state, due to momentum conservation. In this frame, the incoming particles each
have a given absolute momentum pi with opposite directions (it can be calculated
easily using Equation 2.72 replacing m with

√
s). The partial cross section for a

process is then, based on [141], written as

σab→R(s) =
2JR + 1

(2Ja + 1)(2Jb + 1)
Sab

2π2

p2i (s)
Γab→R(

√
s)AR(

√
s) , (2.73)

where JR, Ja and Jb are the spins of the resonance and the incoming particles,
respectively. Sab is a symmetry factor, which takes the value 2 if a and b are of the
same particle species and 1 otherwise. AR is the spectral function of the resonance
to be formed and Γab→R is the in-width. The in-width is similar to the resonance
decay width (Eq. 2.68), but it differs in that, for unstable incoming particles a or b,
their mass is fixed, and no integration over their spectral functions is necessary.

Γab→R(
√
s) = Γ0

R→ab

piB
2
L(piR)Fab(

√
s)√

sρab(M0)
. (2.74)

The partial cross sections of all possible resonance formations are calculated and
contribute to the total cross section (see Section 2.2.5).

Performing a resonance formation, the mass of the created resonance is directly
given by the center of mass energy of the incoming particles and, as mentioned above,
the resonance is at rest in the center of mass frame. The same boost as for elastic
collisions is applied to determine the momentum of the resonance in the calculation
frame.

2.2.3 Inelastic Binary Scattering

Inelastic binary scattering plays a crucial role in particle production in heavy-ion
collisions, where only baryons are present in the initial state, as 2 → 1 processes are
forbidden by baryon number conservation. We consider here the two cases ab → Rc
and ac → R1R2, so either a single or two resonances in the final state. The particles
a and b in the initial state may also be unstable in both cases. Starting with the
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case containing a single resonance in the final state, the cross section is given by

σab→Rc(s) =
(2JR + 1)(2Jc + 1)

spi

∑
I

(
CI

abC
I
Rc

)2 |M|2ab→Rc(s, I)

16π

∫ √
s−mc

mmin
R

dmAR(m)pf

(2.75)
where pi and pf are the momenta of the incoming and outgoing particles in the center
of mass frame respectively. JR and Jc are the spins of the outgoing particles and
CI

ab and CI
Rc are Clebsch-Gordan coefficients, which encode how the states couple

to the total isospin I. Since the mass of the resonance is not fully determined by
the energy in the initial state, we integrate over all kinematically allowed masses.
The minimum is the lowest mass, where the spectral function is non-zero, defined
by the masses of the lightest decay products (see Section 2.2.2). The maximum is
given by total available energy in the collision minus the mass of particle c, which
is the minimum energy particle c can have. An important ingredient to the cross
section is the matrix element Mab↔Rc, for which we apply simple parametrizations.
For the, at low energies very important, process NN → N∆, the parametrization
is reproducing a one-boson-exchange model [162]. A simpler, energy independent
matrix element is used for all other implemented processes, which are NN → NN∗,
NN → N∆∗, NN → ∆∆, NN → ∆N∗, and NN → ∆∆∗. The values for the
matrix element of each process can be found in [128].

For performing a the process, one first requires the mass of the outgoing reso-
nance. Consistently with the contribution of different resonance masses to the cross
section (see last factor in Eq. 2.75), the mass of the resonance is sampled in the
range (mmin

R ,
√
s − mc) weighted by AR(m)pf . Once the mass of the resonance is

determined, the momentum of the outgoing particles, pf , is fixed. The remaining
degrees of freedom are in the direction of the outgoing momenta, which must be
sampled. As in the elastic case, the azimuthal angle is sampled from a uniform dis-
tribution due to symmetry. The polar angle, however, is sampled from an anisotropic
angular distribution. Following [158] for the process NN → N∆, the same angular
distribution as for elastic nucleon-nucleon scattering is applied. For the processes
NN → NN∗ and NN → N∆∗, a different parametrization is used. The parameters
are in this case tuned to data from the HADES experiment [163]. All other inelastic
2 → 2 processes are performed isotropically.

Extending the cross section to account for two unstable particles in the final
state, an integral over the spectral function of both final-state resonances needs to
be evaluated

σab→R1R2(s) =
(2JR1 + 1)(2JR2 + 1)

spi

∑
I

(
CI

abC
I
R1R2

)2 |M|2ab↔R1R2
(s, I)

16π

×
∫ √

s−mmin
2

mmin
1

dm1A1(m1)

∫ √
s−mmin

1

mmin
2

dm2A2(m2)pf (
√
s,m1,m2) .

(2.76)

58



The resonance masses are, also in this case, weighted with the spectral functions
times the corresponding outgoing momentum. Consistently, the masses m1 and m2

of the resonances R1 and R2 are sampled together, using rejection sampling, from
the distribution

P (m1,m2) ∝ A1(m1)A2(m2)pf (
√
s,m1,m2) . (2.77)

With fixed masses, the rest of the calculation is exactly the same as in the case with
a single resonance in the final state.

In addition to the previously discussed inelastic binary interactions, the model
also includes cross sections for strange particles. These processes describe interacti-
ons between nucleons and kaons, ∆-resonances and kaons, as well as hyperons and
pions. In these cases, the angular distributions are isotropic, and the matrix elements
can be found in [164], [165].

2.2.4 String Excitation and Fragmentation

Since there are no resonances with masses greater than m ≈ 2,GeV in the model, the
cross section for resonance formation diminishes as the center-of-mass energy of the
interacting hadrons increases. This behavior is illustrated in the proton-pion cross
section shown in Figure 2.14, which already includes contributions from a string
model. The string model was introduced in SMASH to study baryon stopping in
reference [32], on which this section is based.

In this context, ’strings’ refer to color strings that form when a color-neutral ob-
ject becomes highly excited. Due to confinement, the constituents of a color-neutral
object cannot be separated. Instead, a color string is formed, connecting the quarks.
As more energy is added to the system, the color string can store enough energy
to create new quark-antiquark pairs. These pairs can then combine to form new
color-neutral objects. This process, known as string fragmentation, is responsible
for the creation of new hadrons from the color fields. Models of string fragmentation
have been developed and are known to be highly successful in describing elementary
processes, such as e+e− collisions, as well as small collision systems like p + p.

The calculation for the string excitation is split into hard and soft processes. The
hard string processes are relevant for very high energetic binary interactions, as can
be seen in figure 2.14, where perturbative QCD is applicable. For the description of
the pQCD scatterings, the string excitation, and the string fragmentation, Pythia
[10], [166] is used. The hard string process, where pQCD interactions are involved, is
based on the pT -ordered multiparton interaction (MPI) framework with initial and
final state radiations [167]. Given that pQCD is not applicable at low momentum
scale, the lower pT threshold of those partonic interactions is chosen to be 1.5 GeV,
and the pQCD cross section is computed accordingly. The hard string routine is
described in more detail further below.
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Abbildung 2.14: Cross section for a proton interacting with a negatively charged pion
as a function of the center-of-mass energy of the colliding hadrons within SMASH.
The total cross section is broken down into contributions from elastic collisions, re-
sonance formations, soft string excitations, and hard string excitations via Pythia.
Taken from [32].

In the transition region where the energy is too large to have cross sections via
resonances, but too low to apply pQCD, a phenomenological model for the excitation
of strings is implemented. In single diffractive, double diffractive, and non-diffractive
processes, strings are excited in hadronic interactions. Using the calculated mass
and momentum of the string as well as the flavor of the leading quarks, Pythia is
employed only for the fragmentation of the string. Details of the string excitation
at intermediate energies are given after a discussion of the cross section.

Cross Sections for String Processes

The total σtot and the elastic σel cross sections, which are shown for the example of
p-π− collisions in Figure 2.14, are parameterized to fit experimental data and are
taken from [127] and [141], [168] respectively. The inelastic cross section σinel is the
difference between the two

σinel = σtot − σel . (2.78)

No other inelastic processes are implemented for high energies, so σinel is the sum of
the string cross sections. For the process selection, cross sections for both the single
σSD and double diffractive σDD processes are necessary. They are estimated in [169]
and implemented in Pythia. From σSD and σDD, the non-diffractive cross section
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σND is derived
σND = σinel − σSD − σDD . (2.79)

The non-diffractive cross section includes the hard and soft non-diffractive processes.
The cross section for hard non-diffractive processes is based on the pQCD cross
section σhard from partonic interactions. It is given by

σhard =
∑
i,j,k

∫
dx1

∫
dx2fi(x1)fj(x2)σ

k
i,j|p̂T,min

, (2.80)

where σk
i,j|p̂T,min

is the cross section for a subprocess k between two partonic flavors
i and j with minimum transverse momentum transfer p̂T,min, which is chosen to
be 1.5 GeV. The parton distribution function fi(x) provides the average number of
flavor i carrying the momentum fraction x of the incoming hadron. The NNPDF
2.3 parton distribution function with QED correction [170] is used for this purpose.
The sum takes each possible combination of partons from each ingoing hadron into
account.

This pQCD cross section can be larger than σND, incorporating the information
of multi-parton scattering. We take the multi-partion interaction (MPI) picture [171]
and interpret the ratio σhard/σND to be the average number of partonic interactions
involved in a hadronic interaction, rather than the probability to have a single hard
non-diffractive interaction. In addition, the number of parton interactions is assumed
to follow a Poisson distribution. The probability of having no hard interaction is
calculated according to the Poissonian distribution as

P (0) = exp

(
−σhard

σND

)
. (2.81)

In this case of no hard partonic scattering, the process is assumed to be soft non-
diffractive, leading to a soft non-diffractive cross section of

σND,soft = σND exp

(
−σhard

σND

)
. (2.82)

Finally, the cross section σND,hard for the hard string process follows as

σND,hard = σND − σND,soft . (2.83)

Since the pQCD cross sections can only be applied at sufficiently large energies,
there is no contribution from hard non-diffractive processes below collision energies
of 10 GeV. If the energy is smaller, all non-diffractive processes will be soft.

Due to the fact that Pythia 8 accepts only (anti-)nucleons and pions as in-
coming hadrons, it is necessary to extrapolate these processes to handle arbitrary
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pairs of incoming hadrons. This is done by mapping hadronic species onto pions
and nucleons and then rescaling cross sections based on the AQM. The cross section
is then obtained in the same way as for elastic collisions but, of course, based on
parametrizations of inelastic cross sections in this case.

Hard String Routine

Hard non-diffractive string excitations dominate the hadronic cross section at large
center of mass energies. As mentioned in section 2.2.4, Pythia 8 accepts only a
limited number of species as incoming hadrons, and it is necessary to extrapolate
hard non-diffractive scattering handled by Pythia 8 to all other hadronic species.
This is particularly crucial in high-energy heavy-ion collisions, where plenty of ha-
drons other than (anti-)nucleons and pions are produced in primary nucleon-nucleon
collisions. To do this extrapolation, we rely on the assumption that the structure
functions (or parton distribution functions) of all mesons and (anti-)baryons look
similar to respectively those of pions and (anti-)nucleons once we swap the valence
quark flavors.

Technically, this is achieved by mapping different hadron species to (anti-)nucleons
and pions, where the quantum numbers of the original and mapped particle are as
similar as possible. Before the produced strings are fragmented within the Pythia
calculation, light (anti-)quarks are exchanged with quarks of the original flavor. The
momenta of all particles are rescaled in order to conserve the energy of the system,
since the constituent masses are affected by the flavor exchange. Due to annihilation
processes, it is not always possible to find a quark with the flavor of the mapped
quark. In this case, a gluon is split into a quark-antiquark pair with the flavor of
the mapped quark or anti-quark.

Soft String Routine

Soft string excitations are the most abundant processes in the intermediate energy
range, as can be seen in figure 2.14. As in UrQMD [115], [116], the excitation of
a soft string can be performed according to one of three subprocesses, the single
diffractive, the double diffractive, and the non-diffractive case, which is the most
common case. All soft string processes rely on Pythia for the fragmentation of the
strings into final-state hadrons.

Single Diffractive

Let us start with the single diffractive process, which describes the interaction bet-
ween two hadrons, where exactly one of the two colliding hadrons A and B is excited

62



to form a string X

A + B → A + X or A + B → X + B . (2.84)

The differential cross section as a function of the string mass MX is given by [172]

dσSD

dM2
X

∝ 1

M2
X

. (2.85)

Once the string mass is sampled, the three-momentum pf of the string in the center-
of-mass frame can be evaluated in the same way as for the previous reaction types,
treating the string like a single particle. Following the UrQMD approach, the trans-
verse momentum transfer p⊥ between the incoming hadrons is assumed to follow a
Gaussian distribution

dσSD

d2p⊥
∝ exp

(
−p2⊥
σ2
T

)
, (2.86)

where σT is a free parameter that is tuned to exprimental data from proton-proton
collisions. To completely determine the kinematics of the string-hadron system, we
sample the transverse momentum transfer p⊥ with a maximum of p⊥,max = pf . The

string has a longitudinal momentum p∥ =
(
p2f − p2⊥

)1/2
. Knowing the mass and the

momenta of the reaction products, one can calculate the velocity of the string in
order to boost into its rest frame, where the fragmentation machinery from Pythia
is employed to obtain the particles in the final state of the interaction.

Double Diffractive

The double diffractive subprocess is a collision in which the two incoming hadrons
A and B are both excited to strings

A + B → X + X . (2.87)

The dynamics of the interaction are determined in the center-of-mass frame of the
incoming hadrons. The collision axis is defined to be the longitudinal direction.
Kinematics of the double-diffractive excitation ar modeled via pomeron exchange,
which can be viewed as a double gluon exchange [173]. Each exchanged gluon carries
light-cone momenta p± = (E ± p∥)/

√
2, where the fraction this gluon carries is

sampled from a parton distribution function of the form

PDF ∝ 1

x
(1 − x)β+1 . (2.88)

Here, β is set to be 0.5 and α is treated as a free parameter. The light cone momenta
of the exchanged gluons are calculated as q+A = xp+A and q−B = xp−B respectively. Note
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that the collision axis is defined as the direction in which the hadron A is moving.
The distribution for the transverse momentum transfer p⊥ between gluons is taken
to be Gaussian, whose width is the same as in the single-diffractive case (see equation
(2.86)). The light cone momenta q−A and q+B are obtained, based on the requirement
that the gluons are on-shell, remembering that q+q− = (E2 − p2)/2.

2
(
x+
Ap

+
A

)
q−A − p2⊥ = 0 , (2.89)

2
(
x−
Bp

−
B

)
q+B − p2⊥ = 0 . (2.90)

The light cone momentum Q± transferred from the hadron B to A is then obtained
by solving the above equations for the gluon light cone momenta

Q+ = −q+B = − p2⊥
2x−

Bp
−
B

, (2.91)

Q− = q−A =
p2⊥

2x+
Ap

+
A

. (2.92)

The transferred energy ∆E and longitudinal momentum ∆p∥ are then

∆E =
Q+ + Q−

√
2

, ∆p∥ =
Q+ −Q−

√
2

. (2.93)

The mass of both excited strings can be calculated individually using the energy-
momentum relation. Each string is further fragmented in its rest frame, again, using
the implementation of the fragmentation within Pythia.

Non-Diffractive

The non-diffractive string excitation is the most probable soft process, and therefore
has the largest impact on the dynamics of the produced particles in the intermediate
energy region. During the interaction, each hadron emits one valence quark, which
is adopted by the other hadron. The exchanged valence quark carries a fraction
of the longitudinal momentum of the hadron it is emitted from. The light cone
momentum fraction carried by the exchanged quark is sampled according to the
parton distribution function for quarks, which is assumed to have the functional
form

PDF ∝ xα−1(1 − x)β−1 . (2.94)

Here, α and β are free parameters. They are adjusted such that the measured dyna-
mics in proton-proton collisions are reproduced as well as possible, while supporting
the physical picture of a valence quark exchange.

The momentum transfer in the transverse direction is sampled according to the
same Gaussian as in the single diffractive and double diffractive case, using equation
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2.86. With the light cone momentum fraction each exchanged quark carries and the
transferred transverse momentum, the light cone momentum transfer is written as

Q+ = −x+
Ap

+
A +

p2T
2x−

Bp
−
B

(2.95)

Q− = x−
Bp

−
B − p2T

2x+
Ap

+
A

., (2.96)

where xA and xB are the light cone momentum fractions for the exchanged quarks, p±A
and p±B are the light cone momenta of the colliding hadrons before the collision and
pT is the transferred transverse momentum. The exchanged energy and longitudinal
momentum can, again, be calculated using equation 2.93. The masses of the strings
are obtained using the relativistic energy-momentum relation and each string is
fragmented individually in the rest frame of the string using Pythia.

String Fragmentation

Once the mass of the excited string and the flavor of the quarks spanning the string
is determined, the string is fragmented into hadrons by employing Pythia. Within
Pythia, the species of the fragmented hadron follows from the flavor of the quark-
antiquark or diquark-antidiquark pair that is produced. While the light quarks have
the same probability to be produced, there are empirical suppression factors for
producing heavier quarks and diquarks.

The transverse momentum of each string fragment is sampled from a Gaussian
distribution with a width of σT,string which is a free parameter that is tuned to
kaon production in proton-proton reactions measured at the NA61 experiment at
the Super Proton Synchrotron (SPS) at CERN [174]. The longitudinal momentum
of each string fragment is determined using the fragmentation function. Pythia is
based on the symmetric Lund fragmentation function [10], which has the following
shape

f(z) ∝ 1

z
(1 − z)a exp

(
−b

m2
T

z

)
. (2.97)

mT is the transverse mass of the string fragment while a and b are free model pa-
rameters. For the fragmentation of leading baryons produced in soft non-diffractive
processes, the parameters a and b are chosen differently from Pythia. Note that
both the different string excitation in the soft case and the mentioned modification
to the string fragmentation necessitate retuning the parameters for the fragmentati-
on and the available tunes for Pythia are not necessarily compatible. The process
of finding a new tune is described detail in [32].
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Abbildung 2.15: Sketch of a string fragmenting within the yoyo model. Taken from
[32].

Particle Formation

A string fragments into hadrons by producing quark-antiquark pairs. In a dynami-
cal picture, the pair production does not happen simultaneously but at different
points in time. Figure 2.15 illustrates how a string fragments in coordinate space
within the yoyo model. The straight lines indicate the trajectories of (anti)quarks
or (anti)diquarks. While the pair production occurs at different points in time, the
time when they recombine to hadrons fluctuates around a constant proper time. In
principle, the formation time and position of all string fragments can be calculated
using the yoyo model and the momenta of the fragments obtained from Pythia.
For simplicity, the fluctuations in the formation time are neglected so that all string
fragments form at a constant proper time in SMASH. The effect of changing the
formation time on baryon stopping and hadron production in heavy-ion collisions is
investigated in [32].

In practice, all particles in SMASH are immediately produced once the colliding
hadrons reach their point of closest approach. Until the formation time has passed,
the cross section of the string fragments are multiplied by a cross section scaling
factor fσ. For most string fragments, this factor is initially 0. However, since the
leading string fragments contain quarks that do not originate from a pair production
but from the initially colliding hadrons, the initial cross section scaling factor is not
zero for leading string fragments. The initial cross section scaling factor for each
string fragment is set to be the number of quarks from the initially colliding hadrons
contained in the fragment divided by the total number of quarks of that fragment.
For example, a leading baryon that contains a diquark from the initially colliding
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Abbildung 2.16: Cross-section scaling factor fσ as a function of time for different
powers α with which the cross section grows over time. In this example, the initial
cross-section scaling factor is set to fσ(tprod) = 0. Taken from [32].

hadrons is assigned a scaling factor of fσ = 2/3 and a meson at the other end of the
string that contains another quark from the initially colliding hadrons is assigned a
scaling factor of fσ = 1/2.

Instead of having a constant cross section scaling factor until the time of for-
mation, where the particle suddenly is allowed to interact, it is possible to mimic
a continuous formation process by increasing the cross section scaling factor with
time. Timely increasing cross sections have been studied in a similar fashion within
the GiBUU model [175]. To realize a continuous formation, the cross section scaling
factor becomes a function of time fσ = fσ(t). This function needs to have the initial-
ly assigned scaling factor f0 as described above at the time tprod when the particle is
produced and fσ(tform) = 1 at the formation time tform. Between the two points, the
cross section scaling factor grows with a given power α in order to have a simple but
flexible functional shape. Using the three conditions, the function fσ(t) is written as
follows

fσ(t) = (1 − f0)

(
t− tprod

tform − tprod

)α

+ f0 . (2.98)

This function is only used for tprod < t < tform, since it has no meaning before the
particle is produced and the scaling factor is fσ(t) = 1 for t > tform, when the particle
is fully formed. The cross section scaling factor as a function of time for different
values of α is shown in figure 2.16. The initial cross section scaling factor is set to
f0 = 0 in this figure. In the limit of α going to infinity, one recovers a step function,
while for small positive values of α, the particles form immediately. In [32], the effect
of the details of the particle formation on particle spectra in heavy-ion collisions is
investigated.
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2.2.5 Total Cross Section and Workflow

In the previous sections, we have discussed the most important interactions and
their corresponding cross sections. An essential component of the model is the total
cross section, which is obtained by combining the partial cross sections from the
earlier discussions. Here, we explain how the total cross section is evaluated, how it
is applied in the model, and how the interaction channel is selected.

In the dynamic calculation of a system within the SMASH model, scatterings
and decays are handled differently. Both processes evolve in discrete time steps. As
described in Section 2.2.2, decay times are determined at the start of each time step.
Similarly, potential scatterings are identified based on the collision criteria (see Sec-
tion 2.2.6) at the beginning of each time step. However, the key difference is that the
scattering cross section accounts for all possible scattering processes, and a specific
interaction channel is selected based on the partial cross sections when the interac-
tion occurs. Whether a decay or a scattering takes place is, in contrast, determined
by the interaction time. All processes are executed chronologically, meaning that
potential interactions at later times are invalidated if the involved particles have
already participated in a previous interaction. Therefore, a decay can only happen
if it occurs before other interactions. Importantly, this does not imply that only one
interaction per particle is allowed per time step. This common limitation in trans-
port models is overcome in SMASH by finding new interactions between outgoing
particles and all surrounding particles after each interaction. This procedure leads
to very stable collision rates, independent of the time step size as shown in [176].

When a scattering takes place, the channel is chosen based on the partial cross
sections σi such that the probability for a channel Pi is given by

Pi =
σi∑
j σj

. (2.99)

The sum of partial cross sections in the denominator is the total cross section, which
is required for collision finding as described in Section 2.2.6.

Constructing the total cross section in a bottom-up manner from individual
cross sections does not always guarantee that experimentally measured total cross
sections will be reproduced. In some cases, a rescaling of the cross sections is applied.
However, this approach is not without issues, as it can disrupt detailed balance, a key
requirement for a transport model to ensure that the correct equilibrium distribution
is reached. Detailed balance is also necessary for proving the H-theorem, which
asserts that entropy never decreases.

A modification of the cross sections occurs in the center of mass energy region,
where resonance contributions gradually fade out and a transition to string excita-
tion takes place. Since backward reactions are not implemented for string excitation
and fragmentation processes, detailed balance is already broken in this region. As
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the resonance cross section decreases and the string cross section increases to match
the measured total cross section, a discontinuity would arise. To avoid this, a transi-
tion region is introduced where the resonance cross section is smoothly scaled down
while the string cross section increases with energy. A linear scaling function is used
to modify the cross sections, ensuring that the sum of the scaling factors always
equals 1.

This approach guarantees a smooth transition. However, a dip in the cross section
may occur if the resonance cross section is already too small in the transition region.
To address this, a method similar to the prescription used in UrQMD [115], [116]
is applied to enhance the resonance cross section. The deficit in the cross section
within the transition region is compensated by scaling up the resonance formation
cross section. Specifically, the cross section of the resonance whose pole mass is
closest to the center of mass energy is scaled to completely fill the missing inelastic
cross section.

Another adjustment to the cross sections is made in the lower energy region,
where the inelastic cross section is determined by resonance formation. In this regi-
on, the cross section depends on the masses, widths, and decay probabilities of the
resonances. Finding resonance properties that reproduce the most important cross
sections in a bottom-up approach is a complex task. Although a set of resonance
properties has been found that describes most available data very well, and is dis-
tributed with the source code, it is often desirable to add or remove resonances.
Since modifying resonance properties can lead to poor reproduction of measured
total cross sections, an option (enabled by default) is available to rescale the total
cross sections to match the measured values when experimental data is available. In
this procedure, all partial cross sections are scaled by the same factor. However, it
is important to note that this rescaling option breaks detailed balance and should
not be used in studies that rely on an accurate equilibrium distribution, such as the
evaluation of transport coefficients [55], [56], [177].

2.2.6 Collision Criteria

To conclude the discussion on the collision term, we now explain how the model
determines whether a scattering event occurs and when it takes place. In the SMASH
model, there are two geometric collision criteria and a stochastic collision criterion.
In the geometric interpretation, the cross section is treated as an area orthogonal to
the collision axis. This area is used to determine if an interaction occurs. The area
is assumed to be circular, so that an interaction happens if the transverse distance
between the incoming particles is smaller than the radius of a circle with an area
equal to σ

dtrans ≤
√

σ

π
. (2.100)
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The geometric collision criteria in the SMASH model primarily differ in how the
transverse distance is calculated and how the collision time is determined. The first
geometric criterion, adapted from [115], is not formulated in a covariant manner, and
thus relies on evaluating the transverse distance in the two-particle center-of-mass
frame. Before presenting the expression for the transverse distance, we first discuss
the determination of the collision time, which is evaluated in the calculation frame.
For two particles with positions ra and rb, and velocities va and vb, respectively, the
time of closest approach can be derived by assuming that the particles propagate
along straight lines within a given time step. For this purpose, we try to find a
minimum of the squared distance (ra(t + ∆t) − rb(t + ∆t))2, where ra/b(t + ∆t) =
ra/b(t) + va/b∆t. We find the time until the collision ∆t by requiring the derivative
of the squared distance with respect to ∆t to vanish

d

d∆t
[ra(t + ∆t) − rb(t + ∆t)]2 = 2[ra(t) + va∆t− rb(t) − vb∆t] · (va − vb) = 0 .

(2.101)
This equation is easily solved, provided the velocities are not parallel, yielding

∆t = − [ra(t) − rb(t)] · (va − vb)

(va − vb)2
. (2.102)

Lorentz invariance is not satisfied, as this equation is not written in a covariant
form and is evaluated in a fixed frame. It is important to emphasize that a potential
collision occurs at the point of closest approach in this case. An analogy with finite-
sized balls, where a collision happens when the surfaces (as defined by the cross
section) touch, is not accurate in this context.

The transverse distance can be calculated based on the collision time and the
trajectories of the particles. It is given by

d2trans = (ra − rb)
2 − [(ra − rb) · (va − vb)]

2

(va − vb)2
, (2.103)

where the time argument was dropped for clarity, but the positions are required at
time t in this equation. This equation is evaluated in the two-particle center-of-mass
frame within the model, ensuring that the decision of whether a collision occurs is
independent of the chosen calculation frame.

Since the interaction occurs instantaneously over a finite distance, a fully relativi-
stic description cannot be achieved. However, a method to reduce frame dependence
has been proposed by Kodama and collaborators [178]. In this approach, the trans-
verse distance is generalized to a Lorentz-invariant expression, and collision times
are evaluated in the rest frame of each incoming particle. The prescription from
[178] ensures that interactions are forbidden if they directly violate causality. Spe-
cifically, an interaction between particles a and b is permitted only if it is their first
interaction in their both respective rest frames.
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The calculation of the collision time for each incoming particle in its rest frame is
performed in a covariant manner as described in [179]. However, it is still not possible
to achieve a fully covariant description of the problem. This becomes evident when
the collision time in the calculation frame is needed. Boosting the two collision
times back to the calculation frame results in two different times, introducing some
ambiguity. In the SMASH model, the collision is performed at the average of these
two times after applying the covariant expressions from [179].

The stochastic collision criterion offers a fundamentally different approach to
the problem. Rather than modeling finite-distance interactions, space is divided in-
to small cells, where the interaction probability can be calculated. A decision on
whether an interaction occurs is then made based on this probability. A key ad-
vantage of this approach, compared to the geometric criteria, is that it is not limi-
ted to binary interactions. This makes it particularly useful for problems involving
multi-particle reactions, such as light nuclei formation in catalysis reactions [180],
baryon-antibaryon annihilation with corresponding backward reactions [181], and
interactions between three gluons in a parton-based transport model [182]. The sto-
chastic collision criterion was recently implemented in the SMASH transport model
[183] and has been applied to deuteron production in catalysis reactions [184] as
well as baryon-antibaryon interactions [185].

We will briefly discuss the equations required to apply the stochastic collision
criterion and refer the reader to the thesis of Jan Staudenmaier for more details
[183]. To illustrate the concept, we begin with the probability for a 2 → n reaction,
which is given by

P2→m =
∆t

∆3x
vrelσ2→n . (2.104)

This expression defines the probability for an interaction between two particles wi-
thin a small cell of volume ∆3x during a time interval ∆t. Here, vrel represents the
relative velocity of the incoming particles, and σ2→n is the corresponding cross secti-
on. The basic idea is that the two particles are located somewhere within the volume
∆x, with no further positional information. Naturally, the probability of interaction
increases when considering a longer time interval, while a larger volume (indicating
greater separation between the particles) decreases the likelihood of interaction. The
combination of vrel and the cross section can be interpreted as a volume swept by one
particle per time interval, assuming the other particle is at rest. In this framework,
an interaction occurs if the second particle is located within this volume. Therefore,
the probability for an interaction to occur during a time step is given by the ratio
of the covered volume to the total cell volume. This probability must be evaluated
for all possible pairs of test particles. For more detailed expressions, including those
for multiple incoming and outgoing particles, we refer the reader to [183].

For a stable calculation, both the cell size and time interval must be sufficiently
small to ensure that the particles are evenly distributed within the cell and that
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this distribution remains roughly constant during the time step. At the same time,
each cell must contain a sufficiently large number of particles. Given these technical
constraints, using a large number of test particles per real particle is ideal for a cal-
culation employing the stochastic collision criterion. However, since the probability
must be evaluated for all possible particle combinations within a cell, the combina-
torics grow rapidly, especially for multi-particle reactions. Therefore, the calculation
depends critically on a careful selection of technical parameters, considering all of
the factors discussed above. To verify that the chosen parameters are reasonable, one
can check if the results are, within a certain range, independent of these technical
settings. In this work, we rely on the parameter setup that was tested in [183].

2.3 Light Nuclei Formation

Matter, as we know it, is composed of atoms. Atomic nuclei, which contain nearly
all of the atom’s mass, are themselves fascinating objects of study. In the context
of heavy-ion collisions, light nuclei are of particular interest due to their nature
as composite objects made up of protons, neutrons, and occasionally more exotic
baryons, such as the hypertriton (3ΛH), which consists of a proton, a neutron, and
a Λ-baryon. Since nuclei are formed by multiple nucleons, the production of light
nuclei is highly sensitive to the number of baryons present in the system. As such,
their production provides crucial insight into the baryon number and its fluctuations,
which are expected to increase near the critical point of the system.

Another key aspect that makes the formation of light nuclei a significant area of
current research is their relatively low binding energy, especially when compared to
the average kinetic energy of particles in a hot fireball. This raises the question of
how such loosely bound objects can form in a heavy-ion collision. The challenge of
understanding these ’snowballs in hell’ requires a dynamical modeling approach, as
discussed in Section 1.2.

Even if the formation of light nuclei is not the primary focus of a study, it is
unavoidable to consider their formation in heavy-ion collisions at lower energies.
This is because a significant fraction of the protons in the final state are not free,
but instead are bound in light nuclei, as shown in [186].

In this thesis, two models for the formation of light nuclei are employed. One of
them is final-state coalescence and the other one is the creation of light nuclei in
collisions. Both models are explained in detail in the following.

Binding light nuclei with potentials is not possible in a BUU-type approach,
because only the single-particle distribution function is evolved. In a QMD-type
model, potentials can bind light nuclei, but it is very challenging to create nuclei
that are stable over a long time.

72



2.3.1 Coalescence

The coalescence picture considers the distribution of protons and neutrons in the
final state of a heavy-ion collision and draws conclusions about the formation of
light nuclei based on the overlap of the two.

As only the final state is taken into account, the model cannot be considered
dynamic. However, by evolving the heavy-ion collision in a dynamical simulation,
the production of light nuclei based on the final state can provide valuable insights
into the mechanisms of light nucleus formation.

In this thesis, coalescence is performed based on a final state created with the
SMASH transport model, either after a pure SMASH run in Chapters 3 and 4 or
after using SMASH as an afterburner in Chapter 6.

Coalescence can be performed in various ways. One important aspect is whether
the distribution in configuration space is considered or only the information in mo-
mentum space is taken into account. The information about the final state momenta
is, of course, essential, because light nuclei, which have a small binding energy, can
only form if the constituents have a relatively small relative momentum. However,
even though they are extended objects in configuration space, light nuclei can only
form if the constituents are sufficiently close.

Therefore, the positions of nucleons are explicitly included in our coalescence
model. However, this introduces additional technical challenges that must be ad-
dressed. As discussed earlier, nuclei are not bound by the mean-field potentials used
in the model. As a result, the distances between nucleons continue to increase over
time until the calculation is stopped. The stopping time is a technical parameter
and should not affect the physical outcomes. Clearly, with a naive approach based
solely on final positions, stable results cannot be obtained

To address this issue, we adopt the approach from [187], where the coalescence
criterion is applied at a time determined by the scatterings that have occurred. For
each pair of particles, the relevant time is defined as the latest moment at which one
of the particles participated in an interaction.

To express the criterion in a Lorentz-invariant manner, the frame is chosen as the
two-particle center-of-mass frame of the candidates for coalescence. After boosting
to this frame, coalescence occurs if both the spatial distance between the particles
is below a threshold of 3 fm and the momentum difference is less than 300 MeV.

The coalescence approach applied in Chapter 3 was in an early stage and could
only distinguish between nucleons that fulfill such a criterion and nucleons that do
not. As a consequence, light nuclei are not really created but only filtered out to
obtain free protons.

Results presented in the Chapters 4 and 6 are based on a more involved im-
plementation that is capable of identifying various light nuclei. For this purpose, a
bottom-up procedure is performed. In a first step, all pairs of protons and neutrons
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are checked and the closest ones in phase space are combined to deuterons. Further
iterations are performed, where all existing nucleons and nuclei are considered and
combined to larger nuclei. Only nuclei with a lifetime of at least 100 fm are allowed
in this stage. Combining two electrically charged nuclei is more difficult due to the
repulsion. This can be seen by the reduced number of 3He compared to 3H (triton)
in heavy-ion collisions. The repulsion is taken into account by introducing a penalty
in the momentum-difference of 20 MeV. This value was tuned to the helium-3 and
triton abundances as observed in gold-gold collisions at the HADES experiment.
The thresholds in distance and momentum-difference are also estimated based on
the abundances of nuclei in this collision system. The distance criterion is consistent
with the width of the deuteron wave function, which is reassuring.

Nuclei are combined this way until no more stable nuclei can be created. At this
point the coalescence is completed.

2.3.2 Deuteron Formation via Intermediate State

A fully dynamic evolution of light nuclei in a heavy-ion collision can be obtained
by treating them as an active degrees of freedom in the calculation. The formation
of light nuclei is then considered in the collision term of the model. This way, light
nuclei are created and destroyed according to microscopic cross sections, and one can
study the time evolution of their abundances and the production and destruction
rates.

The formation of light nuclei is not trivial to include in the collision term, as
the most important processes for this endeavor have multiple particles in the initial
state. Deuterons are formed in the reactions

NN ↔ dπ (2.105)

pnX ↔ dX , (2.106)

where the X stands for a catalyst that can be a pion or nucleon in the current
implementation. N stands for either proton or neutron in this case and the isospin
state of the pion in the final state is such that the electric charge is conserved in
this interaction. The cross section for the catalysis reactions is much larger than the
2 → 2 process for the formation of the deuteron.

The geometric collision criterion only considers two incoming particles and can,
therefore, not directly be applied to the catalysis reaction. Before the stochastic
collision criterion was available in SMASH, a workaround for this challenge was
introduced in [188]. The 3 ↔ 2 process is, in the geometric implementation, split
into a 2 ↔ 1 and subsequent 2 ↔ 2 process as follows

pn ↔ d′ (2.107)
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d′X ↔ dX , (2.108)

where the d′ is a fictional dibaryon resonance with a lifetime of 1 fm to mimic the
overlapping proton and neutron. This method is used to study the flow of deuterons
as presented in Chapter 3.

2.3.3 Nuclei Formation via Stochastic Rates

The production of light nuclei with the geometric collision criterion is limited to
deuterons as only the dibaryon resonance is implemented. An additional shortcoming
of the splitting of the multiparticle reaction into two steps is that the equilibration
process is expected to be faster when multiparticle reactions are taking place [182].

Multiparticle reactions can be performed in a transport calculation using the sto-
chastic collision criterion, as introduced in Section 2.2.6. The formation of deuterons
with the stochastic collision criterion was studied in SMASH in [184] and previously
in [180].

The probability for the production of deuterons is given in Equation 6 in [184],
and it is based on the cross section for the reverse process which is parametrized in
[188].

The limitation to only deuteron production is not present anymore when swit-
ching to the stochastic collision criterion, because the interaction probability can be
written for any n → 2 process as long as the cross section for the inverse process is
available. An extension to nuclei with mass number 3 is implemented in the SMASH
model and is presented in [4] and in Chapter 6. The considered nuclei are triton,
helium-3 and hypertriton. To produce these nuclei, the relevant processes are

nnpX ↔ tX (2.109)

nppX ↔ 3HeX (2.110)

npΛX ↔ 3
ΛHX , (2.111)

where the X, again, stands for either a nucleon or a pion.
The cross section for the 2 → 4 process is obtained by an extrapolation of

the proton-deuteron and pion-deuteron cross sections. For this purpose, the cross
sections between the deuteron and the catalysts are expressed in terms of the kinetic
energy

T =
(s−mA + mcat)

2

2mA

. (2.112)

The mass of the nucleus and the mass of the catalyst are denoted by mA and mcat.
In a simple picture, we consider only the number of constituents of the nuclei, such
that the cross section of an A = 3 nucleus is equal to 3/2 times the cross section of
a deuteron at the same kinetic energy.
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To summarize, the cross section for all A = 3 nuclei with a given catalyst X is

σAX→NNNX(T ) =
A

2
σdX→pnX(T ) . (2.113)

The cross sections are given in terms of
√
s in Figure 2.17 for both nucleon and pion

catalysis reactions. The difference between the cross sections for different nuclei
emerge from the different masses, as the kinetic energy at a given center of mass
energy is smaller for heavier particles. Since the triton and 3He nuclei have very
similar masses, the curves overlap in Figure 2.17.
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Abbildung 2.17: Interaction cross sections for 2 → 3 and 2 → 4 light-nuclei catalysis
reactions as a function of center-of-mass energy in SMASH. Solid lines represent cross
sections for interactions with pions, while dashed lines correspond to interactions
with nucleons. Taken from [4].

The angular distributions are treated isotropically. One should emphasize that
the large cross sections do not imply an interaction over a large distance in the
transport description, since collision finding is based on small cells as described in
Section 2.2.6. Even though light nuclei are large sized objects, they are represented
as point-like particles in the test particle picture, just like all other particles in
SMASH.
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Kapitel 3

Anisotropic Flow Study without
Momentum Dependence

This chapter presents a study of anisotropic flow, which is published in [1]. The
aim of the study is to assess the sensitivity of the flow signal to both the formation
of light nuclei and the equation of state. Anisotropic flow of protons has proven
to be an well-suited probe for the stiffness of the equation of state, as discussed in
Section 1.3.2. Experimental efforts have lead to excellent statistics that allow for very
differential studies of flow coefficients with small uncertainties. The sensitivity study
presented in the following explores which kinematic regions are most suitable for a
clean extraction of the equation of state, while minimizing the impact of technical
choices in the implementation of the transport model.

Modeling the formation of light nuclei in heavy-ion collisions becomes more com-
plex at lower collision energies. As the abundances of light nuclei increase, their for-
mation cannot be neglected, even when only protons are considered (see [186]). This
study compares two methods for light nuclei formation, identifying regions where
the models agree and where differences arise due to the inclusion of light nuclei for-
mation. By focusing on the kinematic regions where the models are in agreement, we
can reduce model dependence in future studies aimed at constraining the equation
of state using improved potentials.

At this stage, the comparison to data is motivated purely by curiosity. The lite-
rature suggests that a momentum-dependent term must be included in the nuclear
potentials to accurately describe the measurements (see Section 1.3.2). Additionally,
scattering data from protons on nuclei can only be reproduced when the potentials
explicitly depend on momentum, as discussed in Section 2.1.2. The momentum-
dependence was now yet available for this study. Therefore, experimental data is
not well described.
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3.1 Technical Setup

In the following, we present results for the flow coefficients of protons and deuterons
and compare them to experimental data [114], [189]. To ensure consistency with the
measurements, the flow coefficients are evaluated with respect to the reaction plane,
which is spanned by the beam axis and the impact parameter. In our calculation
setup, the reaction plane is fixed to the x-z plane. For details on the estimation of
flow coefficients, the reader is referred to Section 1.2.2. The centrality of the events
is determined by constraining the impact parameter to a specific range. We focus
on the 20% to 30% most central gold-gold collisions, which correspond to an impact
parameter range of 6.6, fm < b < 8.1, fm, as estimated using the Glauber model in
[190].

The collision energy considered in this study is Ekin/A = 1.23 GeV, and all cal-
culations are performed in the center-of-mass frame. For the calculations presented
in this chapter, only the basic Skyrme potential (described in Section 2.1.1) and the
symmetry potential (described in Section 2.1.3) are applied. Since, at the time of this
study, the momentum-dependent part of the potential and the Coulomb potential
had not yet been implemented in the model. The study focuses on estimating the
difference between a ’hard’ and a ’default’ equation of state. They are defined by the
incompressibility κ at saturation density. The hard EoS has an incompressibility of
κ = 380 MeV and the default EoS has an incompressibility of 240 MeV. Calculation
for the ßoftËoS (κ = 215 MeV) are not presented in this study as the flow signal
would be very weak compared to the data because no momentum-dependence is
implemented in this study.

The density calculation required for the propagation of the test particles in the
mean-field is obtained using the covariant Gaussian smearing kernel as described
in Section 2.1.5. The smearing kernel has the width σ as a technical parameter.
Throughout this thesis the value of it is set to σ = 1 fm except in Section 3.5.2,
where the sensitivity of our results to a variation in σ is studied.

The density calculation relies on a significant number of test particles, as descri-
bed in Section 2.1.5. In this chapter, the number of test particles per real particle is
set to 20. Section 3.5.1 demonstrates that the results remain unchanged when the
number of test particles is doubled. However, by using parallel ensembles, impro-
ved statistics can be achieved, so that a much larger number of parallel ensembles
is employed in the following chapters. The propagation relies on small time steps.
Calculations presented here are performed with a time step of ∆t = 0.1 fm.

In this chapter, a relatively simple coalescence model (see Section 2.3) is app-
lied, which only selects the nucleons that are considered bound. While an improved
model, used in the following chapters, may lead to slight changes in the results, the
coalescence model employed here is a reasonable choice and is well-suited for the
sensitivity studies performed in this chapter.
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We compare calculations using the coalescence model with a dynamic approach
to light nuclei formation. In the dynamic model, deuterons are formed through
catalysis reactions, which are divided into two steps involving the fictional dibaryon
resonance d′ (see Section 2.3 for details).

3.2 Directed flow of protons and deuterons

We begin by calculating the first-order flow coefficients of protons and deuterons in
gold-gold collisions at Ekin = 1.23AGeV. Calculations are performed for different
bins in rapidity and transverse momentum to explore the sensitivity of the equation
of state (EoS) and light nuclei formation across a broad phase-space region.

Figure 3.1a shows the directed flow of protons as a function of rapidity for diffe-
rent bins in transverse momentum. While the shape of the flow is in good agreement
with experimental measurements, only the calculation using the hard equation of
state (EoS) captures the correct magnitude. Two calculations consider the forma-
tion of light nuclei by clustering in the final state, with varying stiffness of the
EoS. Additionally, a third calculation is presented, where clustering is not perfor-
med. Instead, deuterons are explicitly treated as degrees of freedom and are created
through catalysis reactions in two steps using the geometric collision criterion. For
this calculation, the hard equation of state is used. A slight difference can be ob-
served between the solid lines (representing clustering) and the dash-dotted lines
(representing dynamic deuteron formation). This difference is more pronounced in
the lower of the two transverse momentum intervals considered.

Figure 3.1b shows the directed flow as a function of transverse momentum for
different rapidity bins. Of course also as a function of pT , the hard equation of
state best describes the experimental data. The difference between the two options
to account for nuclei formation is clearly visible at low transverse momentum but
vanishes at larger pT . The significance of clustering in the low-momentum region
can be attributed to the higher phase-space density, which makes the formation of
nuclei more likely. Compared to the data, clustering gives the best description, but
produces a small kink in the low pT region, The dynamic deuteron formation gives
a reasonable description of the data and the curve is more smooth, but does not
follow the data as closely.

The dotted lines represent the same calculation as the solid lines with the hard
equation of state and clustering, but with the exclusion of spectators, defined as par-
ticles that have not collided. We observe almost no difference, because the spectators
are expected more forward in rapidity.

From the calculation where deuterons are explicitly propagated, the directed
flow of deuterons themselves is extracted. The results shown in Figure 3.2 compare
the deuteron flow with the hard and the default equations of state. Considering
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(a) Directed flow of protons as a function
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(b) Directed flow of protons as a function
of transverse momentum.

Abbildung 3.1: Directed flow of protons in 20%-30% central gold-gold collisions at
Ekin = 1.23AGeV, compared to experimental data points from [189]. Solid lines are
obtained with a hard equation of state, while dashed lines use the default equation
of state. The curve labeled ”Dynamic deuteronsäccounts for the formation of light
nuclei by explicitly producing deuterons during the collision, as described in Section
2.3. Taken from [1].

that the model for the light nuclei formation was originally designed for high-energy
collisions [188], where the composition of the system is very different and nuclear
potentials are negligible, it is not obvious that the directed flow of deuterons can be
described. A reasonable agreement with the experimental data is observed, except
in the forward region, where the pT -dependence does not follow the data. This may
be related to the fact that only deuterons can be formed in this calculation. In the
forward region, one would expect a significant yield of nuclei larger than deuterons.
The model may incorrectly identify these nuclei as multiple deuterons, which could
enhance the directed flow signal.

To conclude the findings from the comparison to the measured v1, the hard
equation of state is clearly favored in this setup without momentum-dependence.
Overall a reasonable agreement with the data is observed, but the clustering setup
follows a bit closer the transverse momentum dependent v1 of nucleons. The deuteron
flow is matched reasonably well in the calculation with explicit deuteron formation.
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Abbildung 3.2: Directed flow of deuterons as a function of transverse momentum
in 20%-30% central gold-gold collisions at Ekin = 1.23AGeV, for different rapidity
bins, compared to experimental data points from [189]. Deuterons are dynamically
treated as particles in this calculation. Taken from [1].

3.3 Elliptic flow of protons and deuterons

Continuing with the second order flow harmonic, Figure 3.3a shows the elliptic flow
as a function of rapidity in semi central gold-gold collisions. Again, two calculations
with different equations of state are compared. Here, coalescence is used to form
light nuclei. Additionally a calculation with dynamic deuterons employing a hard
equation of state is provided. Naturally, the second-order flow coefficient is more
difficult to describe than the first-order one. In general, the magnitude of v2 is
too small at large transverse momenta. The missing momentum-dependence in the
potentials is the reason for the insufficient elliptic flow signal at large momenta.
The repulsion due to the mean-field for high-pT particles will be enhanced by the
momentum-dependent term as described in Section 2.1.2.

Same as for v1, the hard equation of state produces a stronger flow signal and is
thus preferred by the data in the presented setup. Additionally, the magnitude of v2
is larger when deuterons are explicitly treated in the calculation This approach yields
the best agreement with the data As with v1, in the low pT region (specifically, the
0.4 GeV < pT < 0.45 GeV bin), the results are highly sensitive to how the formation
of light nuclei is modeled.

The elliptic flow of nucleons as a function of the transverse momentum is shown in
Figure 3.3b. Also here, it is clearly visible, that the elliptic flow is not well described,
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(a) Elliptic flow of protons as a function of
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Abbildung 3.3: Elliptic flow of protons in 20%-30% central gold-gold collisions at
Ekin = 1.23AGeV, compared to experimental data points from [189]. Solid lines are
obtained with a hard equation of state, while dashed lines use the default equation
of state. The curve labeled ”Dynamic deuteronsäccounts for the formation of light
nuclei by explicitly producing deuterons during the collision, as described in Section
2.3. Taken from [1].

especially in the high pT region. In the low pT region, the clustering performs better,
while the calculation with explicit deuteron production works better at intermediate
transverse momentum. The difficulties in describing the v2 at high pT arise from the
lack of momentum-dependence in the potentials as mentioned above. The differences
between the calculation with clustering and the one with explicit deuteron formation
vanish at high transverse momentum. This finding suggests that information on the
equation of state can be extracted more cleanly in the large pT interval. Because of
this observation, the equation of state is constrained based on flow observables in
the 1 GeV < pT < 1.5 GeV region in the following Chapter.

The elliptic flow of deuterons can additionally be calculated when the deuterons
are treated as active degrees of freedom. The results are shown, as a function of rapi-
dity, in Figure 3.4a. For the hard equation of state, the flow signal is overestimated,
while the default equation of state is in agreement with the data. Examining the
pT -dependence of the elliptic flow of deuterons in Figure 3.4b, we observe that the
agreement with experimental data is good only for the default equation of state. It
is possible that all flow data could be consistently described with more sophisticated
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Abbildung 3.4: Elliptic flow of deuterons in 20%-30% central gold-gold collisions
at Ekin = 1.23AGeV, compared to experimental data points from [189]. A hard
equation of state was used, and deuterons were dynamically treated as particles in
this calculation. Taken from [1].

potentials. This is studied in Chapter 4. On one hand, achieving a consistent des-
cription of both proton and deuteron flow in a dynamic calculation is a challenging
task. On the other hand, once a realistic prescription is developed, the deuteron flow
could provide valuable insights into the equation of state.

To conclude this section, the elliptic flow is observed to be highly sensitive to how
the light nuclei formation is taken into account, which leads to some uncertainty in
the extraction of the EoS. The elliptic flow of nucleons at large transverse momenta
is underestimated in the SMASH calculations without momentum-dependence, but
the best agreement is found with a hard equation of state. The results of this section
suggest that this kinematic region is best suited to study the equation of state.

3.4 Evolution of Flow Coefficients

In this section we focus on the temporal evolution of flow coefficients to identify when
the anisotropy is developed and which stages are most important. The timing when
the flow signal builds up encodes the information at which densities the EoS is probed
when studying flow coefficients. We concentrate on the setting that worked best in
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comparison to experimental data, namely, the calculation with explicit deuteron
formation and a hard equation of state.

The first two panels of Figure 3.5 show the multiplicity of nucleons and deu-
terons as a function of time, respectively. The initially present nucleons from the
two gold nuclei begin interacting, forming resonances and deuterons, which causes
their number to decrease. Meanwhile, the number of deuterons steadily increases
throughout the evolution of the heavy-ion collision.

The third panel illustrates the slope of the directed flow at mid-rapidity as a
proxy for the magnitude of v1 for both nucleons and deuterons. To evaluate this
slope, the v1(y) is fit at each time step using the function v1(y) = ay + by3, where
the cubic term accounts for the curvature observed in Figure 3.1a. The fitting is
performed using Bayesian parameter estimation with Markov chain Monte Carlo
sampling. The inner band represents the 68% credible interval, and the outer band
corresponds to the 95% credible interval.

At early times, the uncertainty is large because not enough particles have in-
teracted yet, and deuterons have not yet been produced. As time progresses, the
flow signal starts building from zero, reaching a maximum around ≈ 15 fm, which
corresponds to the time it takes for the nuclei to pass through each other. After this
point, the flow signal for both nucleons and deuterons slightly weakens, before the
deuteron flow increases again and eventually reaches a higher plateau.

The final panel of Figure 3.5 compares the elliptic flow at mid-rapidity between
nucleons and deuterons. Once enough particles have been produced and are located
in the relevant kinematic region, the elliptic flow of nucleons and deuterons becomes
nearly identical, with the only difference being that the deuteron flow continues to
increase at later times. This is not intuitively clear since no mass number scaling is
applied here.

A closer look at the evolution of v2 reveals that a positive elliptic flow signal
initially builds up, but shortly afterward, v2 drops below zero and remains negative
throughout the rest of the evolution. Positive elliptic flow is typically linked to
pressure gradients in the initial state. However, at low collision energies, a competing
effect known as ßqueeze-out”leads to a negative v2 signal, as the slow spectator nuclei
block the path and push particles out of the reaction plane [191]. Both of these effects
contribute to the observed elliptic flow.

It is interesting to note that, particularly for nucleons, the v2 exhibits a signifi-
cantly different time evolution compared to v1. The challenges in describing both the
elliptic and directed flow using the same set of parameters may stem from the fact
that these flow coefficients are sensitive to different stages of the collision dynamics.
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of particles refers to the total multiplicity. Taken from [1].
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3.5 Validation

Before summarizing the conclusions from this work in the following section, one
should show that the results presented in the previous sections are not altered when
technical parameters are varied in a reasonable range. This is not only aiming to
verify the conclusions drawn so far but also to establish a set of technical parameters
that can be used in future work. Relevant for calculations with nuclear potentials are
the number of test particles and the smearing width. The sensitivity of the results
on both of them are studied in the following.

3.5.1 Dependence on Test Particle Number

As mentioned in Section 2.1, the mean fields are expressed in terms of densities
and their derivatives and hence rely on the density to be smooth and statistical
fluctuations to be under control. A sufficient number of test particles is a tool to ob-
tain the smooth density profile necessary for a reliable calculation. Test particle are,
however, not only applied to obtain sufficient statistics for the density calculation.
Taking the test particle ansatz seriously, the distribution function is expressed as a
sum of delta distributions. This only works if the number of test particles is infinite
or, in practice, large.

In the following we investigate the dependence on the number of test particles
Ntest used in the calculation to represent a physical particle by repeating the previous
calculations for directed and elliptic flow. The result for the directed and elliptic flow
of nucleons in the calculation, where deuterons are explicitly propagated is shown
in Figure 3.6a and 3.6b respectively. The results for one and five test particles
are basically identical. However, increasing the number of test particles to twenty, a
significant difference can be observed for both v1 and v2. Compared to the calculation
with twenty test particles, doubling the number of test particles does not lead to
a difference in the flow coefficients. For completeness, the same consistency check
has been performed for the directed and elliptic flow of deuterons, where the same
dependence on the number of test particles was found so the plots are omitted here.
We conclude that representing each particle by twenty test particles is sufficient for
the setup presented here.

Since the introduction of parallel ensembles in the SMASH transport model,
one can with feasible numerical effort obtain much better statistics. For the work
presented in the following chapters, the twenty test particles are therefore replaced
by a larger number of parallel ensembles (300 in Chapter 5 and 1000 in Chapter 4).
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(a) Directed flow of nucleons.
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Abbildung 3.6: Flow of nucleons as a function of transverse momentum in 20%-30%
central gold-gold collisions at Ekin = 1.23AGeV for different rapidity bins, compared
to experimental data points from [189]. The calculations compare cases where each
particle is represented by a different number of test particles, Ntest. Taken from [1].

3.5.2 Dependence on Smearing Width

For the results presented in this work a smearing kernel is applied to each test
particle for calculating the densities required for the evaluation of the potentials.
The specific form of the covariant Gaussian smearing that was used is introduced in
[154]. Applying the Gaussian smearing one can efficiently calculate the density with
a moderate number of test particles as described in the previous section. However,
the smearing introduces a free parameter to the model that is the smearing width σ
of the Gaussian. The smearing parameter is set to σ = 1.0 fm for all results presented
in this thesis.

In Figures 3.7a and 3.7b the results for v1 and v2 for nucleons obtained with
σ = 1.0 fm are compared to σ = 0.75 fm and σ = 0.25 fm. One can see a significant
dependence on the smearing width. However, the difference between σ = 1.0 fm
and σ = 0.75 fm is small enough so that the conclusions from this work would still
hold for σ = 0.75 fm. For σ = 0.25 fm the difference is large. The reason for this
difference is that the width is in this case too small and no smooth density profile
can be obtained with only 20 test particles. For a more clear comparison the number
of test particles is kept equal throughout this plot but a better agreement between
the calculations is expected with a larger number of test particles.
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Abbildung 3.7: Flow of nucleons as a function of transverse momentum in 20%-
30% central gold-gold collisions at Ekin = 1.23AGeV for different rapidity bins,
comparing three calculations with varying smearing widths. Taken from [1].

3.6 Conclusions

In this study, the double-differential directed and elliptic flow of protons and deu-
terons is compared to experimental flow measurements from Au+Au collisions at
Ekin = 1.23A,GeV, as provided by the HADES collaboration. Different parameter
sets for the Skyrme potential, each corresponding to a distinct equation of state, are
employed.

With the currently implemented potentials, the elliptic flow of nucleons and
deuterons cannot be accurately described. Therefore, more sophisticated potentials,
including momentum dependence, are necessary to extract the equation of state
from flow measurements. Such potentials will be applied in the following chapters.

The main focus of this work is the formation of light nuclei in low-energy heavy-
ion collisions, which cannot be neglected even when considering only the flow of
nucleons. Two different approaches for accounting for deuteron formation are im-
plemented. By comparing these methods, we identify kinematic regions where the
extraction of the equation of state is cleaner, as the observables are less sensitive
to the light nuclei formation mechanism. Flow coefficients in the high-momentum
region are found to be particularly well-suited for a systematic study of the EoS.

In the setup with dynamic deuteron formation, the evolution of the multiplicity
and flow of nucleons and deuterons over time is studied. The flow of nucleons and
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deuterons shows very similar time dependence, although the directed and elliptic
flow coefficients are sensitive to different stages of the evolution. The directed flow
develops from the outset due to the bounce-off effect, while the time-dependence of
the elliptic flow is more complex. For elliptic flow, pressure gradients initially lead
to a positive flow signal, which later becomes negative due to interactions with the
remnants of the colliding nuclei.
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Kapitel 4

Bayesian Constraints on the
Equation of State based on
HADES Data

The primary goal of this thesis is to constrain the equation of state of nuclear matter.
In this chapter, we present work that builds on the sensitivity study from Chapter 3.
This work focuses on comparing theoretical results to experimental flow data from
the HADES collaboration and makes use of the previous finding that the EoS is most
effectively studied by comparing flow data at relatively high transverse momentum.

Compared to the previous study, several key upgrades have been implemented in
the model. The momentum-dependent component of the potential is now available,
which is crucial for making meaningful statements about the equation of state, as
discussed in Section 4.1. Additionally, electromagnetic potentials have been incor-
porated into SMASH (see Section 2.1.4), and their influence is considered in the
calculations performed in this chapter (see Section 4.1). Moreover, the coalescence
model has been improved to explicitly form light nuclei, enabling us to study their
flow as well (for details on clustering, see Section 2.3).

With the improvements to various facets of the model, a good agreement to the
experimental data is achieved, as presented in Section 6.3. This calls for a more
sophisticated extraction of the EoS from the data. To achieve this, a Bayesian para-
meter estimation is performed and presented in this chapter. Using this method, the
best parameter set can be identified in a controlled way and a statistical uncertainty
can be determined. The results presented in this chapter are part of Reference [2].
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4.1 Sensitivity Study

Before advancing to the results, a short study of the influence of newly implemented
features in the model is presented. The aim is to make a well informed decision on
technical options regarding the comparison to experimental data, and to study the
importance of including physics features, namely the Coulomb potential and the
momentum-dependent term in the potential.

All model curves shown in this section are obtained by training a Gaussian
process on real SMASH calculations, and evaluating that Gaussian process. A ve-
rification of the Gaussian process is presented for the final model choice in Section
4.2. Of course, such a verification has been performed all the curves presented in
this chapter.

Next, the differences in elliptic flow resulting from various methods of centrality
selection are investigated, followed by an evaluation of the necessity of electroma-
gnetic potentials and momentum dependence.

4.1.1 Centrality selection

The classification of events into centrality intervals is an important task, since the
directed and elliptic flow signals are induced by the geometry of the system. In that
sense, the impact parameter, to a large extend, determines the anisotropy in the
final state. We compare, in this section, two methods of performing the centrality
selection.

The first one is by using a fixed range of impact parameters for each centrality
class, as it is extracted from the Glauber model. The impact parameter ranges
used for the comparison to gold-gold collisions at the HADES experiment have
been determined in [190]. The centrality selection in the experiment is, however,
performed event by event, based on the number of hits in the detector. Naturally,
small impact parameters correlate to more activity in the detector but not every
single event with a small impact parameter yields a larger number of tracks in the
detector than an event with a larger impact parameter. Clearly, it is worthwhile to
investigate how large the difference is, if the activity in the detector is simulated
for every individual event of the model calculation, and the events are grouped into
centrality classes based on that. For this purpose, the number of detector hits is
calculated in a large number of minimum-bias events in the model. The events are
then grouped into centrality classes based on the number of hits, and a mapping
from the number of hits to the corresponding centrality class is created. This way,
the centrality selection can be performed based on detector hits, even if the model
does not necessarily describe the produced number of particles perfectly.

Taking the acceptance and efficiency of the detector into account, such a centra-
lity determination is performed here. A comparison between the centrality selection
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Abbildung 4.1: Directed flow of protons for different centrality intervals in gold-gold
collisions at Ekin = 1.23AGeV, comparing different methods for classifying centrality
intervals. Solid lines represent centrality selection based on the impact parameter,
while dashed lines correspond to selection based on the simulated number of tracks
in the detector. The curves are generated using a Gaussian emulator trained on
SMASH calculations. The potential parameters chosen for this figure are set at the
center of the prior range. Taken from [2].

via the impact parameter and via the number of detector hits is shown, in Figure
4.1, for the elliptic flow of protons in different centrality classes. For this observa-
ble, mostly no difference is found for the elliptic flow, except in the forward and
backward region, but even there the difference is statistically not significant. Figure
4.1 does not include experimental data points, because both calculations were per-
formed without the momentum-dependent term, which is essential for a reasonable
description of the data, as we show in Section 4.1.3. This comparison is performed
without momentum-dependence, because the mapping from detector hits to centra-
lity classes has been generated for the potentials without momentum-dependence.
The observation was made that the dynamics of the system change quite signifi-
cantly when including the momentum-dependent part, such that the other mapping
cannot be applied without modification.
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As we do not observe a significant difference between the two methods in Figure
4.1, the centrality selection is performed based on the impact parameter in the
following calculations. Still, the method is very interesting, as it is very close to the
experiment, and it may be important for different observables or other kinematic
ranges.

4.1.2 Coulomb Potential

Charged particles interact electromagnetically. Clearly, this should be taken into
account for a realistic calculation, but one should study here how big the impact
of electromagnetic potentials is. The thought behind this sensitivity study is, that
the long range of the electromagnetic interaction makes is numerically expensive
to include in a BUU-type calculation. The difference in the elliptic flow of protons
between a calculation including the Coulomb potential and a one neglecting the
Coulomb potential is presented in Figure 4.2. While the observed elliptic flow is
almost unchanged in central events, a sizable effect is observed in other centrality
classes. As the system is positively charged, the Coulomb potential asserts a repulsive
force, so that the elliptic flow signal is enhanced due to the inclusion of the Coulomb
potential.

We conclude that the inclusion of the Coulomb potential is worth the numerical
costs. The results presented in Section 4.2 are obtained with the Coulomb potential
included. This is, for this study, especially needed, because the symmetry potential
is treated as a parameter of the Bayesian analysis, and only when the Coulomb
potential is included in the calculation, one can cleanly extract the contribution of
the symmetry energy.

4.1.3 Momentum-dependent Potentials

The optical model has been used to extract constraints on the momentum-dependence
of the nuclear potential at saturation density from p + A scattering experiments in
[144], [192]. The potential extracted this way can, of course, only be described in-
cluding a momentum-dependence in the potentials.

It is still instructive to investigate the influence of the momentum-dependent
term on flow observables in the SMASH model to verify the necessity of the momentum-
dependence based on heavy-ion collisions. In this section, we further aim to show
how good of an agreement with experimental data can be achieved with and without
momentum-dependence when the parameters are tuned to the experimental data.

For this purpose, we perform the Bayesian analysis, that is described in more
detail for the full model in Section 6.3, once with and once without momentum-
dependence. We find the maximum of the posterior distribution, which is the pa-
rameter set that has the most overlap with the experimental data. In Figure 4.3,
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Abbildung 4.2: Elliptic flow of protons for different centrality intervals in gold-gold
collisions at Ekin = 1.23AGeV, comparing calculations that include and disregard
the Coulomb potential. The curves are generated using a Gaussian emulator trained
on SMASH calculations. The potential parameters for this figure are set at the center
of the prior range. Taken from [2].

we present the elliptic flow of protons for the best possible parameter set inclu-
ding momentum-dependence and for the best parameter set without momentum-
dependence. Note that the parameters are not tuned to only this observable but to
v1 and v2 of protons and deuterons (see Fig. 4.4). For the sensitivity test presented
in Figure 4.3, the Coulomb potential is neglected, but one can clearly see that the
data cannot be described without momentum-dependence in SMASH. When the
momentum-dependent part is included, one observes a stronger elliptic flow signal.
It is still weaker than the experimental measurement, but a further improvement is
presented in Section 4.2, where the Coulomb potential is added.

All results presented in the following include the momentum-dependent part of
the potential, as it is necessary to be consistent with the findings from the optical
model and it strongly enhances the agreement with experimental data.
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description of the data shown in Figure 4.4 are selected. Taken from [2].

4.2 Results

Let us start this section with a plot of the experimental data [114], that we include
in the Bayesian analysis. It is shown in the four panels of Figure 4.4, together with a
prediction from the Gaussian process, that was trained on output from the SMASH
transport model. The prediction from the Gaussian process was done for a parameter
set located in the center of the covered parameter space to validate that the Gaussian
process can provide realistic results, before finding the best parameter set.

To further test the Gaussian process prediction for different points in the pa-
rameter space, Figure 4.5 shows the elliptic flow of protons in a single centrality
class. Let us start by comparing the curves for the small (κ = 201 MeV) and large
κ = 400 MeV incompressibilities. We observe that a larger incompressibility leads to
a stronger elliptic flow signal, which is reassuring, because a stiffer equation of state
amplifies the squeeze-out effect. As expected, the same behaviour for deuterons in
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Abbildung 4.4: Directed flow v1 and elliptic flow v2 for protons and deuterons
as a function of rapidity for 1.0 GeV < pT < 1.5 GeV in gold-gold collisions at
Ekin = 1.23AGeV. The circles represent experimental data [114] and the lines
are predictions from the Gaussian process trained on SMASH calculations. The
Gaussian process is, for validation, evaluated in the center of the parameter space
κ = 300.5 MeV, SPot = 15 MeV. Taken from [2].

Figure 4.6 is observed. The impact of the symmetry potential is shown Figures 4.5
and 4.6 at a fixed value for the incompressibility. Comparing the curves for a small
and a large symmetry potential, we observe no difference for the deuterons. This is
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Experimental data [114] are shown as black circles and compared predictions from
the Gaussian process trained on SMASH calculations for different points in the
parameter space. Taken from [2].

expected, as it does not experience any force from that potential, since the deuteron
does not carry isospin charge. For protons, we find that the elliptic flow signal is
slightly more pronounced with a weaker symmetry potential. As the gold nuclei have
more neutrons than protons, the I3 density is negative in the system. That means,
the symmetry potential is attractive for protons, which leads to the smaller elliptic
flow that we observe in Fig. 4.5.

As the Gaussian process emulator reproduces the behavior that we would expect
from the transport model, we can perform a Bayesian analysis based on it. The
posterior distribution that we obtain as a result is shown in Figure 4.7. The 68.3%
credibility interval of our parameters is κ = 348.2+4.0

−3.9 MeV and SPot = 15.8+4.7
−4.6 MeV.

First thing to note is that this analysis leads to a relatively stiff equation of state
compared to [111], for example. According to this analysis, there is only a small
uncertainty on the value for the incompressibility, and the results are, therefore,
not consistent with previous estimates. We would like to highlight here, that the
parameter estimation is based on the assumption that the model is flawless, which
is of course not the case. The problem that a different equation of state is required
to describe the data, depending on the applied transport model, persists, but efforts
within the Transport Model Evaluation Project (TMEP) aim to resolve this issue
in the future.

The symmetry potential we find is consistent with the default value SPot =
18 MeV used in previous studies [1], [3], but the uncertainty on this parameter is
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Abbildung 4.6: Elliptic flow v2 of deuterons as a function of rapidity for 1.0 GeV <
pT < 1.5 GeV in the 20% − 30% most central gold-gold collisions at Ekin =
1.23AGeV. Experimental data [114] are shown as black circles and compared predic-
tions from the Gaussian process trained on SMASH calculations for different points
in the parameter space. Taken from [2].

quite large. One reason for the low sensitivity is that the system has only a small
asymmetry, as there is no large excess of neutrons in the gold nuclei compared to
protons as it is the case in neutron star mergers, for example. Another reason is
that the choice of observables, proton and deuteron flow, is done to mainly obtain
information on the stiffness, but not so much on the symmetry energy. The value
for SPot can be related to the symmetry energy at saturation density S0. For the
68.3% credibility interval we find 24.2 MeV < S0 < 33.5 MeV.

One can take the maximum of the posterior distribution and calculate the ob-
servables based on the Gaussian process, as shown in Figure 4.8. As the prior was
chosen to be flat, the maximum of the posterior is the parameter set that has the
best agreement with the experimental data. A good overall agreement with the ex-
perimental data found. This is, on one hand, expected, as we fit the potentials to
match the flow data, but, on the other hand, reassuring that a fair description for
so many data points was achieved by varying only two parameters.

The equation of state for symmetric nuclear matter at vanishing temperature can
be calculated from the estimated parameters. It is given in terms of the pressure as
a function of the baryon density in Figure 4.9 in comparison with the estimates from
Danielewicz [111] and Huth [122]. Especially compared to the work by Danielewicz
et al., a relatively stiff equation of state is obtained here. This may be related to
the large amount of resonances present in the SMASH model. The influence of the
resonance content in the calculation on the conclusions regarding the EoS has been
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Abbildung 4.7: Posterior distribution for the parameters κ and SPot. The bottom-left
panel shows the posterior distribution as a function of both parameters, while the
upper and right panels show the posterior as a function of κ and SPot, respectively,
with the other parameter integrated out. Taken from [2].

reported in [110]. Another difference of the models, that can alter the required EoS
to describe data, is the assumed form of the potentials. Figure 4.9 contains only
information at zero temperature. Since nuclear matter is probed in a hot system in
heavy-ion collisions, a different form of the potential can lead to a different equation
of state at vanishing temperature.
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Abbildung 4.8: Directed flow v1 and elliptic flow v2 for protons and deuterons
as a function of rapidity for 1.0 GeV < pT < 1.5 GeV in gold-gold collisions
at Ekin = 1.23AGeV. The circles represent experimental data [114], and the li-
nes are predictions from the Gaussian process trained on SMASH calculations.
The Gaussian process is evaluated at the maximum of the posterior distribution
κ = 348.2 MeV, SPot = 15.8 MeV. Taken from [2].

In addition to the difference in the pressure, one can observe that the uncertainty
from this work, presented in Figure 4.9, is very small. This is due to the fact that
only statistical uncertainties are included in the determination of the posterior dis-

101



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
/ 0

100

101

102
P

[M
eV

]

Huth
This work
Danielewicz

Abbildung 4.9: Equation of state of symmetric nuclear matter at zero temperature
as a function of the baryon density. The estimate from this work is compared to the
results from [122] and [111]. Taken from [2].

tribution, but systematic model uncertainties are not taken into account. The small
width of the posterior distribution demonstrates how much information is contained
in the experimental data, showing a great perspective for future studies, once models
have converged in their predictions for flow observables.

4.3 Meson Spectra

In this section, calculations for the yield of pions and kaons within the improved
settings of SMASH, including nuclear mean fields compatible with the flow measu-
rements are presented. While the kaon production is known as an excellent probe
for the equation of state, the pion yield is not often considered as a suitable ob-
servable. In the SMASH model, there is a strong sensitivity of the pion yield to
the EoS, and, therefore, the number of pions that are obtained when including the
momentum-dependent potentials, with the parameters that best describe the flow
measurement, is presented. The incompressibility and symmetry potential are set to
κ = 349.5 MeV and Spot = 18.16 MeV respectively, which is close to the maximum
of the posterior from Section 6.31. In Figure 4.10, the rapidity spectra for positively

1The parameters of the potential slightly differ from the MAP values because they were obtained
in a previous analysis
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and negatively charged pions is compared to experimental data in different centra-
lity classes. For the model, we present the direct calculation using SMASH and a
Gaussian process that is trained on the model output and agrees with the direct
model calculation. We choose not to include the pion spectra in the Bayesian ana-
lysis due to the observed overshoot in the pion yield compared to the measurement.
The pions in the SMASH model do not experience nuclear potentials and, as there
is some tension between the pion multiplicity measured at the HADES and at the
FOPI experiment, the pions are not taken into account in the likelihood function.

In the current version of the SMASH model, kaons also do not experience po-
tentials. Strangeness potentials are considered to be an important ingredient for
describing the production of kaons. There is, however, a strong influence of the in-
clusion of the momentum-dependent term as well as variation of the stiffness of the
equation of state on the kaon yield in SMASH calculations. A similar dependence
was obtained in a QMD calculation in [194]. Without strangeness potentials, the
kaons are not included in the Bayesian analysis but the yield is presented in Figure
4.11.

The positively charged kaons slightly overshoot the experimental measurement,
but a realistic number of kaons is found. The rapidity distribution for the positively
charged kaons is found to be more tight than observed in the experiment.

The multiplicity of negatively charged kaons is very small. One can see, that
the kaon yield is quite well described, and the shape of the spectrum seems to be
described better than for the positively charged kaons. The limited amount of stati-
stics does not allow for more definite statements however. In future work, including
the kaon yield is certainly interesting as it provides a different angle to study the
equation of state in heavy-ion collisions. Even though the yield can be described
consistently with the flow measurements, one should investigate the influence of
strangeness potentials before including the kaon spectra in the analysis.

4.4 Conclusions

In this chapter, the SMASH transport model is applied to extract constraints on
the equation of state from flow measurements at the HADES experiment. Compa-
red to Chapter 3, several model improvements are introduced: the inclusion of a
momentum-dependent term in the nuclear potential, the Coulomb potential, and an
enhanced coalescence approach for light nuclei formation. The model is then compa-
red to the directed and elliptic flow of protons and deuterons in gold-gold collisions
across multiple centrality classes.

Constraints on the incompressibility of nuclear matter at saturation density and
the symmetry potential are obtained. Through Bayesian analysis, a tight constraint
on a relatively stiff equation of state was found, while a looser constraint was obtai-
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Abbildung 4.10: Rapidity spectra for positively and negatively charged pions for
different centrality classes, compared to experimental data from the HADES ex-
periment [193]. A direct calculation with the SMASH transport model is presented
together with the prediction from the Gaussian process, that was trained on SMASH
output. The incompressibility and symmetry potential are set to κ = 349.5 MeV and
Spot = 18.16 MeV, respectively. Taken from [2].

ned for the symmetry potential

The findings are based on a single model with all its limitations. Therefore,
extending this Bayesian analysis to include multiple transport approaches would be
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Abbildung 4.11: Rapidity spectra of positively and negatively charged kaons in the
0−40% centrality interval, compared to experimental data [195]. A direct calculation
with the SMASH transport model is presented together with the prediction from the
Gaussian process, that was trained on SMASH output. The incompressibility and
symmetry potential are set to κ = 349.5 MeV and Spot = 18.16 MeV, respectively.
Taken from [2].

valuable, allowing for the estimation of a global systematic uncertainty in future
studies.
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Kapitel 5

Investigation of the Equation of
State by Comparing to FOPI Data

To obtain information about the EoS, it is instructive to probe it at different den-
sities. In the previous chapters, conclusions about the EoS are drawn by comparing
SMASH calculations only to experimental data for gold-gold collisions at a single
collision energy. The probed density is, of course, not constant throughout the evo-
lution of a heavy-ion collision, but evolves over time and depends on the centrality.
Still, one can actively vary the probed region in the phase diagram by changing
the collision system (see Section 1.2). Useful handles to do so are by changing the
collision energy and the size of the colliding nuclei.

Flow observables have been measured at various collision energies at the FOPI
experiment, where, additionally, data for different collision systems is available. In
this chapter, flow calculations from the SMASH model are compared to the FOPI
data. In this energy range (the energy range 0.2 GeV ≤ Ekin/A ≤ 1.5 GeV is consi-
dered here), the baryon density increases with increasing energy as matter becomes
more compressed. Therefore, the collisions at larger incident energy probe the EoS
at higher densities. The variation of the incident energies helps to disentangle the
density dependence of the EoS. This chapter is based on [3].

5.1 Setup and Analysis

Before comparing the model to the experimental data, we first clarify the technical
setup of the calculation. We begin by outlining the key aspects of the numerical
setup, followed by an introduction to the scaled variables commonly used in the
FOPI experiment. Finally, we define and verify the centrality selection criteria before
presenting the results.
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5.1.1 Calculation Setup

For the calculations presented in this work, the Skyrme and symmetry potential are
applied including the momentum-dependent term. The Coulomb potential is not
applied in this study because it was at the time the calculations were performed
not sufficiently tested. Additionally the inclusion of the electromagnetic potentials
in the current implementation is numerically very expensive.

In this work, the formation of light nuclei is in most cases taken into account
with the final version of the coalescence model as described in Section 2.3. In some
cases a comparison to the dynamic formation of deuterons and A = 3 nuclei via the
stochastic collision criterion is presented.

On the technical side, the two approaches require different settings. For the
application of the coalescence model, the oversampling with test particles makes
it more difficult to define light nuclei in the final state. In this setup it is more
straight-forward to obtain a stable density calculation applying the parallel ensemble
technique with a single test particle per real particle in each ensemble. For this
calculation 300 parallel ensembles are used.

The stochastic collision criterion does rely on a sufficient number of test particles
per cell and for this reason, the setup established in [183] is used. It contains 25 test
particles per real particle with no parallel ensembles. For both calculation setups,
the time step size is ∆t = 0.1 fm. The system is evolved at least until no more
interactions take place. To achieve this, the evolution os performed until t = 100 fm
after the initial nuclei touch. A study of the time evolution of the system is shown
in the beginning of Section 5.2. One can see there that the dynamics of the system
change mostly in the first 30 fm but a flattening can be observed afterwards. Ending
the evolution at 100 fm is therefore safe.

5.1.2 Observables and kinematic variables

Flow coefficients are the main observable studied here. They are calculated using
the reaction plane method in this study (see Section 1.2.2) for the definition of flow
coefficients). This method is very reliable if the reference plane can be estimated
experimentally.

Following published data, the directed and elliptic flow coefficients are presented
as a function of transverse momentum per nucleon and rapidity, both normalized to
the projectile values. These are defined as p

(0)
T = (pT/A)/(pP/AP) and y(0) = (y/yP),

respectively. The subscript P denotes characteristics of the projectile. In this chapter,
this quantities are called for simplicity transverse momentum and rapidity, although
they are normalized quantities.

The impact of the detector acceptance loss for very forward angles (θlab < 1.2◦)
was tested and found negligible. Thus, this geometrical cut is not applied in the
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Abbildung 5.1: Directed flow coefficient v1 as a function of rapidity (left) and trans-
verse momentum for y(0) = 0.7− 0.9 (right) for Au–Au collisions at 0.4AGeV. Two
centrality selection methods are compared, based on b and, as in data, employing
Erat. The arrows in the right panel indicate the mean p

(0)
T . Taken from [3].

simulations.

5.1.3 Centrality selection

The default way for the collision centrality selection in the SMASH simulations
is a direct setting of the impact parameter b. Since b can not be experimentally
measured directly, the collisions in the experimental data are divided based on the
charged-particle multiplicity and the Erat variable defined as

Erat =

∑
iE⊥,i∑
i E||,i

, (5.1)

where the sums run over the transverse and longitudinal kinetic energy components
of all the particles detected in an event. First, the multiplicity distribution is divided
into classes, based on percentiles of the inelastic (geometric) cross section. Then,
based on the correlation between Erat and the multiplicity, the collisions with the
highest multiplicities and highest Erat are selected as the most central collisions.
For the analysis performed here, the actual ranges of b used for different centrality
classes are taken from the assignments performed in Ref [196], [197].

In order to check that centrality selections based on the impact parameter lead
to the same centrality ranges as in the experimental selection, the Erat method is
used in simulations and compared with the selection based on the impact parameter.
The result of this check is shown in Figure 5.1 for semi-central Au–Au collisions at
Ekin/A = 0.4 GeV. As can be seen, the two methods give practically identical results
for v1, both as a function of rapidity and transverse momentum. In the appendix,
similar figures are provided also for the other two studied collision systems, Xe–CsI
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and Ni–Ni, showing consistency of the two methods in these cases, too. Based on
this, the selection on the impact parameter is used in the following analysis.

5.1.4 Particle selection

Particle selection in the model is performed as for the data, namely Z = 1 particles.
In SMASH, deuterons and tritons are produced with an afterburner based on the
coalescence model as described in Sec. 2.3. In the case of the study of v2 at midra-
pidity, the stochastic collision criterion is used as well, as described in Sec. 2.3. In
this case, the simulations are marked in the legends of the figures with an additio-
nal ß”, e.g. HMs stands for Hard EoS with momentum-dependent potentials and
the stochastic collision criterion. The impact of spectator nuclei, which can signifi-
cantly influence directed flow at forward rapidities, is suppressed by selecting only
particles which interacted at least once during the evolution of the system. This is
not possible in case of the stochastic collision criterion, where also the particles in
the spectator part of the colliding nuclei interact. As a consequence, the stochastic
collision criterion is used only for the studies of v2 at midrapidity, where the impact
of the spectators is negligible.

5.2 Results

5.2.1 Evolution of the System

The time evolution of the average density in the central cell of the participant
zone at Ekin/A = 0.4 GeV is shown in Figure 5.2 (left) for two impact parameter
ranges of Au-Au collisions. The impact parameter range shown for Ni–Ni collisions
corresponds to the more central Au–Au class. For both systems, soft and hard EoS
parametrizations are compared. As expected, a soft EoS leads to larger average
densities than the hard EoS. While differences between the two EoS parametrizations
are significant, the dependence on the system size is rather weak. The duration of
the dense phase is shorter in Ni–Ni compared to Au–Au following the expectation.
In Figure 5.2 (right), the evolution of the directed flow coefficient v1 with time for
two centralities in Au–Au collisions is shown. The directed flow is larger for the
stiffer EoS. It mainly builds up between 10 and 30 fm and continues to rise at later
times when the density is already significantly smaller in the central cell. One can
observe that the directed flow builds up earlier and more rapidly with a stiff EoS,
which can be associated to a stronger bounce off compared with the case of soft
EoS.
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5.2.2 Comparison of Directed Flow

To study the EoS and the impact of different potentials, a beginning is made by inves-
tigating the directed flow v1 of charged particles as a function of rapidity and trans-
verse momentum. Figure 5.3 compares v1 for Au–Au collisions at Ekin/A = 0.4 GeV
with a broad set of model settings. It is found that the momentum dependent poten-
tials lead to a higher directed flow for p

(0)
T -integrated values (l.h.s.). When studying

v1 as a function of p
(0)
T in a selected bin of rapidity (r.h.s) it is observed that the

larger v1 values originate from high transverse momenta, while at low p
(0)
T there is

very little, if any, sensitivity to the momentum-dependent potentials. The mean p
(0)
T ,

⟨p(0)T ⟩, also increases in case of momentum dependent potentials, as visible in the

right panel of Figure 5.3. The sensitivity on the EoS (κ) is larger at lower p
(0)
T values.

For other collision systems and energies discussed below, only Hard EoS and Soft
EoS, both with momentum dependent potentials, are studied as bracketing cases.

Figures 5.4 and 5.5 present the results of the directed flow coefficient for Ni–
Ni and Xe–CsI collisions, respectively. Like in Au-Au collisions, the soft EoS with
momentum dependence (SM) reproduces the overall data better than the hard EoS
with momentum dependence (HM) within the SMASH model. However, for all stu-
died collision systems, one can notice a poor description of the directed flow v1 at
low p

(0)
T , which for the SM EoS is significantly weaker than in experimental data.

The description of directed flow as function of rapidity is in good agreement with
the measurements for the soft momentum-dependent EoS. This is due to the fact,
that the directed flow close to the mean transverse momentum is in good agreement
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Abbildung 5.4: Directed flow coefficient v1 for Hard and Soft EoS with momentum
dependent potential as a function of rapidity (left) and transverse momentum (right)
compared with the FOPI data [197] in Ni–Ni collisions at Ekin/A = 0.4 GeV. The

arrows in the right panel indicate ⟨p(0)T ⟩ values. Taken from [3].

112



0 0.2 0.4 0.6 0.8 1 1.2(0)y
0

0.1
0.2
0.3
0.4
0.5
0.6

1v SMASH 3.0, Xe-CsI
/A = 0.4 GeVKinE

b= [1.7,4.8] fm
 = 380 MeVκHM, 
 = 215 MeVκSM, 

0 0.2 0.4 0.6 0.8 1 1.2(0)
Tp

0
0.1
0.2
0.3
0.4
0.5
0.6

1v SMASH 3.0, Xe-CsI/A = 0.4 GeVKinEb= [1.7,4.8] fm < 0.9(0)0.7 < y
 = 380 MeVκHM, 
 = 215 MeVκSM, 

Abbildung 5.5: As Figure 5.4 but for Xe–CsI collisions. Taken from [3].

with the data. At smaller momenta there might be ambiguities in the spectator
selection that affect the results.

5.2.3 Comparison of Elliptic Flow

The elliptic flow coefficient as a function of pT in Au–Au collisions at midrapidity
is shown in Figure 5.6. Model calculations at Ekin = 0.4 and 1.0 GeV are compared
to FOPI data [196]. For the collision energy 0.4AGeV (left panel of Figure 5.6), the
complete set of different EoS versions is shown, including, for some cases, calculati-
ons with the stochastic collision criterion. The impact of the momentum-dependent
potentials is illustrated and appears significant both for the medium and hard EoS.
Using a constant potential overshoots the measured elliptic flow coefficients very
strongly in both cases. When switching on the momentum dependence of the po-
tentials, the direction of v2 is reversed and brings the coefficients much closer to the
data. This effect is similar for both the hard and medium EoS. The soft EoS (with
momentum dependence) seems to describe the data on average the best, but the
trends seen in the data are not fully reproduced by the model. A milder dependence
on p

(0)
T is exhibited by the model starting around p

(0)
T = 0.7, which roughly coincides

with the mean p
(0)
T value. At a collision energy of Ekin/A = 1 GeV, shown in the

right panel of Figure 5.6, the hard EoS fits the data better, but we notice again that
the p

(0)
T dependence of the data is not reproduced well. Data-model comparisons for

other collision energies between 0.4 and 1.5AGeV can be found in Appendix C.

The elliptic flow coefficient of protons as a function of rapidity in Au–Au collisions
at two energies is calculated as well and compared with FOPI data published in [112].

For this data set an integration on p
(0)
T is performed for p

(0)
T > 0.8; note also that the

centrality ranges are slightly different compared to the other data sets. The results
for mid-peripheral collisions at Ekin/A = 0.4 GeV and Ekin/A = 1.5 GeV are shown
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and Ekin/A = 1.5 GeV (right), compared with FOPI data [112]. Taken from [3].
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in Figure 5.7. The SMASH predictions with and without the stochastic criterion
agree with each other in the rapidity range |y(0)| < 1. It can be observed that at
the low collision energy (Ekin/A = 0.4 GeV), the soft EoS describes the data clearly
better than the hard EoS, while the opposite is true for Ekin/A = 1.5 GeV. The

comparisons for mid-central collisions and for p
(0)
T > 0.4 can be found in Appendix

C.

The p
(0)
T -integrated elliptic flow at mid-rapidity in Au–Au collisions as a function

of beam energy is presented in Figure 5.8 for two centrality classes. As this measu-
rement represents Z = 1 particles at mid-rapidity, it is not affected by spectators.
Thus, the predictions with and without the stochastic criterion, which are shown
as well, largely overlap with one another for both centrality classes and different
EoS in agreement with expectations. At the lowest collision energy considered here,
Ekin/A = 0.25 GeV, the model strongly overestimates the elliptic flow magnitude
for both EoS parametrizations, suggesting that the model reaches its limits below
Ekin/A ≃ 0.4 GeV. At those low beam energies, it is important to correct the cross-
sections for the part already treated in potentials by employing medium modified
cross-sections, which was not done for the present work. Generally, both EoS para-
metrizations, with and without stochastic criterion, predict an energy dependence of
the elliptic flow parameter v2 that is significantly stronger than what is found in da-
ta. Moreover, the hard EoS overestimates the elliptic flow magnitude at all energies
and approaches the data only above Ekin/A ≃ 1.2 GeV. The soft EoS, on the other
hand, describes the data fairly well for collision energies between 0.4 and 0.8 AGeV,
and slightly underestimates the data at higher energies. Due to limitations of the
model, the data points at Ekin/A = 0.25 GeV in the χ2/n.d.f. calculations presented
below are disregarded and one should keep in mind that conclusions about the EoS
are in general based on the model including its shortcomings.

5.2.4 Mean Transverse Momentum

The only studied observable for which the calculation with stochastic collision crite-
rion significantly differ from the geometric one, is the mean transverse momentum
for Z = 1 particles at midrapidity. As seen in Figure 5.9, this difference is significant
only for low collision energies while for Ekin/A > 0.6 GeV all four sets of simulations

lead to rather comparable values for the mean p
(0)
T . In this energy range, however,

the model overestimates the measured value for both centrality classes.

5.2.5 Quantification of Agreement with Data

In order to better quantify which version of EoS (potentials) best describes the ex-
perimental data within the model, the χ2 per number of degrees of freedom (n.d.f.)

115



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6/A (GeV)KinE

0.15−

0.1−

0.05−

0
0.05

0.1
0.15

2v SMASH 3.0, Au-Au
b= [5.5,7.5] fm

| < 0.1(0)|y
=380 MeVκHM, =380 MeVκ, SHM =215 MeVκSM, =215 MeVκ, SSMFOPI, Z=1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6/A (GeV)KinE

0.15−

0.1−

0.05−

0
0.05

0.1
0.15

2v SMASH 3.0, Au-Au
b= [2,5.5] fm

| < 0.1(0)|y
=380 MeVκHM, =380 MeVκ, SHM =215 MeVκSM, =215 MeVκ, SSMFOPI, Z=1

Abbildung 5.8: Elliptic flow coefficient of Z = 1 particles as a function of the be-
am kinetic energy for two centrality classes, mid-peripheral (left) and mid-central
(right), compared with FOPI data [196]. Taken from [3].
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is calculated, where the uncertainties are those of the data (statistical and systema-
tic) and the model (statistical) added in quadrature. The results are summarised in
Figure 5.10. In the left panel, χ2/n.d.f. is shown for all 435 available data points
for the standard geometric collision criterion and is compared with χ2/n.d.f. for a
sub-sample of 155 data points containing only the v1 results in all collision systems
at Ekin/A = 0.4 GeV, where the v1 data points are available. In both cases, the
soft EoS is characterized by a lower χ2/n.d.f.. By taking into account only the v1
data, the χ2/n.d.f. for the hard EoS increases by a factor of 2.3 while the one for
the soft EoS only by a factor of 1.64, reflecting the large deviations of the HM-EoS
from data, seen in Figure 5.3. This can be seen also in the right panel of Figure
5.10, where χ2/n.d.f. is calculated separately for all the v2 data (279 data points),
v2 at low collision energies (Ekin/A =0.4, 0.6, and 0.8 GeV, representing a total

of 121 data points, including the p
(0)
T dependent points in Figure 5.6 and C.3, and

rapidity dependent points from Figure 5.7,C.4, and C.5), and high collision energies

(1.0A, 1.2A, and 1.5AGeV; 158 data points, including the p
(0)
T dependent points

in Fig 5.6 and C.3, and rapidity dependent points from Fig 5.7,C.4, and C.5). The
χ2/n.d.f. for the soft EoS and stochastic criterion is the same for all three cases,
but there is an ordering for the geometric criterion showing the lowest χ2/n.d.f. for
lower collision energies. This ordering is reversed for the hard EoS for both criteria
with larger difference between low and high collision energy. The comparison of our
model to experimental data favors a transition from soft to hard EoS as a function
of energy. The BUU transport model of Danielewicz [111], [198] predicted a similar
trend [196], while a study within the IQMD model [113] found a preference for a
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soft EOS throughout this energy range. An onset of a softening of the EoS is im-
plied by elliptic flow data for Ekin/A ≃ 2 GeV [198], [199]. The conclusions about
the stiffness of the EoS in the energy regime from Ekin/A = 1 GeV and higher also
depend on the amount of resonances employed in the transport approach (see e.g.
[110]).

5.3 Conclusions

An exploratory study of the description of directed and elliptic flow in the SMASH
transport model at collision energies spanning Ekin/A = 0.25−1.5 GeV is performed
in this chapter. While the model clearly shows its limitations at Ekin/A = 0.25 GeV,
it describes the data well for Ekin/A ≥ 0.4 GeV. Clearly, the momentum-dependent
potentials are important and the sensitivity to the EoS is significant. While overall a
soft EoS is preferred by the data, the elliptic flow data are better described by a hard
EoS for the higher collision energies explored here (Ekin/A = 1.0 − 1.5 GeV). The
results presented in Chapter 4 agree with this finding as a relatively stiff equation
of state was preferred in a comparison to HADES data taken at 1.23AGeV.

Further quantitative studies are needed in order to understand systematic un-
certainties in transport approaches in general, and in SMASH in particular. The
relevance of better constraints on the EoS from heavy-ion collisions (together with
further constraints on the symmetry energy) for neutron stars and their collisions
will certainly motivate such studies.
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Kapitel 6

Light Nuclei Formation at RHIC
Beam Energy Scan

Until now, this thesis has focused on the equation of state of nuclear matter. To
understand how nuclear potentials affect the dynamics of baryons, the formation of
light nuclei is crucial, particularly for comparing theoretical models to experimental
data. This chapter shifts focus to the formation and dynamics of light nuclei them-
selves. As composite objects made up of baryons, light nuclei provide insights into
event-by-event fluctuations of the baryon number. These fluctuations are expected
to be enhanced near the critical point in the nuclear matter phase diagram.

The Beam Energy Scan program at RHIC aims to explore the QCD matter
phase diagram by varying both the beam energy and system size. This exploration
focuses on a region where a critical point of QCD matter may lie, and the production
of light nuclei could serve as a key observable for identifying the critical point in
experimental data. This chapter is based on [4], where the formation of light nuclei
is modeled in the afterburner phase of heavy-ion collisions at three different energies
from the BES program.

The deuteron yield has been measured in heavy-ion collisions by the ALICE
collaboration [200]. The interest in the light nuclei formation increased due to the
striking observation that the yield can be described using the statistical hadroni-
zation model [41], [42] (see Section 1.2.3). This finding suggests that light nuclei
are formed and survive at a temperature of ∼ 150 MeV. Studies within afterburner
calculations have shown that this does not necessarily correspond to the chemical
freeze-out of deuterons but their yield stays constant as formation and disintegration
processes are balanced [201]. A similar result was obtained by solving the coupled
reaction rate equations for the light nuclei yields in an expanding system [202].

A possible critical point is one of the most interesting features of the QCD phase
diagram. The production of light nuclei was suggested to serve as a probe for critical
fluctuations [26]. Calculations within a coalescence model allow to relate fluctuations
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and correlations to the light nuclei ratios [203], [204]. The STAR collaboration hence
published the measured particle number ratios Nd/Np, Nt/Np and NtNp/N

2
d [205].

Further microscopic calculations allow to relate light nuclei ratios to the interaction
between nucleons near the critical point [206], [207].

The production of deuterons and other light nuclei can be studied from a theory
perspective in various approaches. Many works successfully apply a transport des-
cription for the evolution of a heavy-ion collision. One possibility to produce light
nuclei based on a transport model is to apply coalescence based on the distribution
of nucleons in phase-space in the final state of the transport calculation. Coalescence
is the most extreme scenario of late stage formation of light nuclei. Deuteron for-
mation with a coalescence approach applied to UrQMD [115] calculations has been
studied for a wide range of energies in [187]. A further study within the UrQMD
model takes more light nuclei into account [208] and the aforementioned particle
ratios are presented as a function of collision energy. A nontrivial structure in the
excitation function is observed but is not related to critical fluctuations as they are
not incorporated in the model. Light nuclei production via coalescence has also been
studied in the JAM model [209] and the particle ratios are shown as a function of
the collision energy as well [210]. In this calculation, hardly any energy dependence
of the NtNp/N

2
d ratios is found.

Another possibility to realize light nuclei production in a transport model is
via scatterings. This approach was applied in the aforementioned work [201] to
describe the production of deuterons at the LHC within the SMASH transport
model [128]. This work was continued for lower collision energies to compare to
data from the RHIC BES [211]. The flow of deuterons within this model has been
studied at SIS18 energies [1]. While in these works the deuterons are formed in
binary reactions, including an artificial intermediate state for the pion and nucleon
catalysis reactions, the stochastic collision criterion was applied in a further step
to perform multi-particle reactions [184]. Light nuclei production via multi-particle
reactions has been studied first in [180]. The relativistic kinetic equations from
this work have been recently applied to study the production of deuterons, tritons
and 3He nuclei as well as yield ratios at RHIC and LHC energies [212]. In [213]
multi-particle reactions are implemented to investigate deuteron formation within
the PHQMD model [119]. In the PHQMD framework clusters can be identified
by using the minimum spanning tree procedure [155] or the Simulated Annealing
Clusterization Algorithm[214], [215].

6.1 Calculation Setup

This work aims to shed further light on the formation of light nuclei in heavy-ion
collisions. For this purpose, a dynamic model is essential as it allows to access the
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time evolution of the system. Hybrid approaches have proven to be well suited for
the description of heavy-ion collisions in the considered energy region (see Chapter
1). A hybrid model is applied that was previously developed in [211] for a study of
deuteron production and further applied in [184].

The evolution of the hot and dense phase of a heavy-ion collision is formulated
with the (3+1)D relativistic viscous hydrodynamic equations. A solution of the hy-
drodynamic equations is obtained using the MUSIC code [53], [59], [135], [136] where
the equation of state from [216] is used. The evolution starts after an initial state
from a collision-geometry-based 3D model [217]. As the fireball expands, the system
becomes more dilute and is more realistically described within a transport model.
As in the previous work, an energy density of ϵ = 0.26GeV/fm3 is used to define
the hypersurface where the switch between models takes place. The hypersurface is
found using CORNELIUS [62] and the switch from a macroscopic to a microscopic
description is performed using Cooper-Frye sampling [63]. For the final stage, the
SMASH transport model [128] is incorporated for hadronic rescattering.

6.2 Validation

Before showing results in the next section, the multi-particle reactions as described
in Section 2.3 to the test. For validation, a comparison to an analytical solution is
well suited. An analytical solution for the evolution of particle multiplicities in a box
with a limited number of processes can be obtained by solving the rate equations
[218]. Note that the description of a realistic heavy-ion collision requires the full
transport calculation as it incorporates all non-equilibrium dynamics and numerous
cross sections. The rate equations used in [184] are for this purpose extended to
further include the reactions for triton, helium and hypertriton. The equations are
given in Appendix D.

The rate equations can be solved numerically and the results are compared with
the multiplicities from the SMASH calculation in Figure 6.1. The multiplicities for
different particle species, such as nucleons, pions, Λ-baryons and light nuclei are
calculated in a box of (10 fm)3 at T = 150 MeV for 4000 events. The box is initially
filled with each 60 nucleons and pions.

One can observe in Figure 6.1 the formation of light nuclei over time and find that
the analytical equilibrium multiplicities are correctly reproduced by the transport
approach. We observe however a slightly slower equilibration. Hence, we investigate
technical parameters such as test particles and time step size. Finer time steps did
not change our results. The same goes for the number of test particles for which a
calculation with double the number of test particles is shown, denoted by the full
line in Figure 6.1. Since no difference can be observed, calculations for the following
sections are performed with 10 test particles.
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Abbildung 6.1: Particle multiplicities over time in a box of (10fm)3 and T = 150
MeV. The circles represent calculations with 10 test particles, and the full lines
represent calculations performed with 20 test particles. The solutions from the rate
equations are shown as dotted curves. Taken from [4].

6.3 Light nuclei production

In this section, results for the light nuclei production in gold-gold collisions at RHIC-
BES-energies are presented. More precisely, the production of deuterons, 3He nuclei,
tritons and hypertritons at 7.7 GeV, 14.5 Gev and 19.6 GeV in the 10% most central
events is investigated.

In the follwoing, results for the transverse momentum spectra for each nucleus
at the three different energies are shown. Next, particle ratios including light nuclei
are evaluated because they may give some insight on the presence of a critical point.
Further, the time evolution of the light nuclei multiplicities is studied with the aim
to understand when and under which circumstances they are formed. To under-
stand which processes are essential for the production of light nuclei, the production
mechanisms and their frequencies are studied separately.

6.3.1 Transverse momentum spectra

The light nuclei transverse momentum spectra are calculated at mid-rapidity for
the three different energies. Here the dynamic light nuclei formation via stochastic
rates is compared to the production via coalescence. In both scenarios the evolution
within the transport model starts based on particles sampled on the Cooper-Frye
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hypersurface of a hydrodynamic evolution. For the dynamic production the sampled
particles include light nuclei. They undergo interactions and can be destroyed or
newly formed in this stage.

However in the coalescence scenario no light nuclei are sampled on the Cooper-
Frye hypersurface. In the afterburner stage within this setup, rescattering also takes
place but the nuclei are not present. Instead they are formed in the final sate of the
afterburner out of nucleons based on their distance in phase-space (see Section 2.3).

For comparison, the spectra of nuclei sampled on the hydrodynamic hypersurface
without hadronic rescattering in the afterburner stage are additionally calculated.
The impact of the afterburner stage is illustrated this way.

The transverse momentum spectra for the three different energies are compared
to data from the STAR collaboration in figure 6.2. One can find, that both, coale-
scence and dynamic production describe the data points well for all energies and
each particle species with a slight undershoot for higher pT at lower collision energy.
The slopes of the nuclei spectra without any rescattering (dashed curves) are too
steep and the data clearly favors the calculations including the hadronic afterbur-
ner stage. We conclude that this stage is important to obtain realistic light nuclei
spectra as it is the case for proton spectra (see [219] and references therein).

6.3.2 Particle ratios

The STAR collaboration has published ratios of protons and light nuclei multipli-
cities such as Nd/Np, Nt/Np and NtNp/N

2
d [205]. Calculations with the coalescence

model show that the ratios are sensitive to fluctuations of the baryon density, which
in turn appear close to the critical end point or a first order phase transition [203],
[204]. The ratios can further be used to extract information on the interaction of
nucleons [206], [207].

In Figure 6.3 one can find three different particle ratios. These ratios are calcu-
lated at the end of the afterburner at mid-rapidity for different energies. The two
upper plots show the single ratios for the number of deuterons and tritons divided
by the number of protons respectively. In the lower plot the double ratio NtNp/N

2
d

is presented.

Comparing our calculations to STAR data [205] one can see, that the single ratios
are well described by both the dynamic production and the coalescence model. The
motivation to investigate the double ratio is that it can be related to critical fluc-
tuations. For both calculations an energy independent double ratio is observed. The
coalescence model performs better for the double ratio but one should emphasize,
that critical fluctuations are not implemented in the model.
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Abbildung 6.2: Transverse momentum spectra for different light nuclei species at
mid-rapidity for different energies in central Au-Au collisions. Data points are taken
from [220] and [205]. Taken from [4].
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6.3.3 Time dependence of light nuclei multiplicities

In this section the light nuclei multiplicities as a function of time are presented at 7.7,
14.5 and 19.6 GeV. Multiplicities for deuterons, tritons and hypertritons are shown
for mid-rapidity and the full phase space. Calculations for 3He nuclei yield very
similar results as tritons and are not presented here (they are given in the appendix
of [4]). For each particle species and each energy two curves are compared: the solid
curve represents the nuclei produced in multi-particle reactions in the afterburner
stage. The dashed curve denotes the nuclei, sampled on the hydrodynamic Cooper-
Frye hypersurface without performing the afterburner stage.

Figure 6.4 shows the deuteron yield as a function of time together with the expe-
rimentally observed yield in the final state [220]. At mid-rapidity one can observe for
all energies that the dynamic production of deuterons leads to a higher number of
nuclei compared to the number of sampled deuterons on the hydrodynamic hyper-
surface. This means, that at mid-rapidity, more nuclei are produced than destroyed
in the afterburner stage. This could be caused by a large number of protons and
neutrons at mid-rapidity so that the deuteron production can take place frequently.
The agreement with experimental data is improved by reactions in the afterburner
stage. In the 4π scenario the situation changes. The afterburner multiplicity stays
slightly below the number of particles from the hypersurface in the beginning of the
evolution and the amount of light nuclei is reduced at later times. This can be under-
stood by taking into account that the density decreases, as the system expands. The
destruction processes outweigh the formation processes as a consequence. Section
6.3.4 contains a detailed analysis of the corresponding production rates. In sum-
mary, the total number of deuterons is reduced as the system expands but more
deuterons are formed at mid-rapidity.

We continue with the triton multiplicities as a function of time as presented in
Figure 6.5. At mid-rapidity, we can observe a similar behavior as for the deuteron.
The increase at early times is in this case slightly more pronounced and the reduction
of the mid-rapidity multiplicity towards later times is larger. The data points are
well reproduced for the higher energies but the afterburner calculation overshoots
the measurement at 7.7 GeV as the afterburner increases the mid-rapidity yield
at this energy, where the net-baryon density is the largest. At 4π the afterburner
reduces the yields drastically, even stronger for lower energies. It is interesting to see
that for this energy at 4π the deviation from the hydro curve is immense compared
to the mid-rapidity region. The behavior for the 3He nuclei is very similar to the
triton so that the results are not presented here. They can however be found in [4].

In figure 6.6 one can find the multiplicities for the hypertritons. At mid-rapidity
the afterburner curves exceed the hydrodynamic curves at earlier times like it is the
case for the other nuclei. Within statistical uncertainties, the afterburner calculati-
ons reach the multiplicities from the hypersurface at later times. Overall, once can
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observe at mid-rapidity the same behavior as for d, t and 3He except the reduction
of the hypertriton yield brings the multiplicity down to the number of particles from
the hydrodynamic hypersurface whereas the yield of other nuclei increases due to
the afterburner stage. Hypertritons at 4π show a unique feature at 7.7 GeV: For
other light nuclei, the multiplicity is reduced during the afterburner stage. However,
for the 3

ΛH more nuclei are produced in the beginning and then the multiplicity
converges to the number of particles on the hydrodynamic hypersurface at later
times.

To summarize these results, at 4π the afterburner reduces the amount of nuclei
at later times for all energies and all nuclei species, except the 7.7 GeV hypertriton
curve. This reduction is eminently pronounced for the triton and for the 3He nuclei.
At mid-rapidity the dynamical production leads to a higher amount of nuclei in the
final state except for the hypertriton. In this case the multiplicities equilibrate to
the hydrodynamic curves.

A possible interpretation of the unique behaviour of the hypertriton may be the
following. In general, 4 → 2 reactions become less likely as the system expands
compared to 2 → 4 reactions. This naturally leads to a reduction of the A = 3
nuclei yield. The hypertriton is mainly formed in the reaction Λpnπ →3

Λ Hπ, so
that a Λ is required for the production. Compared to nucleons, the Λ has only
small hadronic cross sections, so that the probability to participate in a process to
form a hypertriton is increased. This may lead to the observed enhancement of the
hypertriton yield. A further aspect to consider is how many nucleons and Λ baryons
are present in an excited state. Resonances do not participate in reactions to form
or destroy light nuclei in the current state of the model.

Based on the results presented in this section, we can calculate the time de-
pendence of the particle ratios discussed in Section 6.3.2. In Figure 6.7 the time
evolution of the double ratio NtNp/N

2
d is shown. At all energies the ratios behave in

a similar way: the curves rise in the beginning and saturate towards later times. The
similarity between the curves is not surprising, considering the energy independence
observed in the lower panel of Figure 6.3. The non-trivial time dependence of deute-
ron and triton yields observed in Figures 6.4 and 6.5 cancel out in the double ratio,
as the curves rise monotonically. Figure 6.7 also includes the experimentally mea-
sured ratios[205] and the ones obtained from final state coalescence. Like in Figure
6.3 the coalescence and the experimental data points coincide while the dynamic
production overshoots slightly.

6.3.4 Production mechanisms

To get a better understanding about the formation process during the afterburner
one can have a look on the light nuclei production mechanisms. This is motivated
by the fact, that one cannot retrace the reactions in the afterburner properly by
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Abbildung 6.4: Multiplicities of deuterons at different energies in central Au-Au col-
lisions as a function of time. The full lines represent the full afterburner calculations
and the dashed lines are the multiplicities, sampled on the Cooper-Frye hypersurface
of the hydrodynamic calculation. Data points are taken from [220]. Taken from [4].
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(a) Yield at mid-rapidity.
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Abbildung 6.5: Multiplicities of tritons at different energies in central Au-Au colli-
sions as a function of time. The full lines represent the full afterburner calculations
and the dashed lines are the multiplicities, sampled on the Cooper-Frye hypersurface
of the hydrodynamic calculation. Data points are taken from [205]. Taken from [4].
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Abbildung 6.6: Multiplicities of hypertritons at different energies in central Au-
Au collisions as a function of time. The full lines represent the full afterburner
calculations and the dashed lines are the multiplicities, sampled on the Cooper-Frye
hypersurface of the hydrodynamic calculation. Taken from [4].
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Abbildung 6.8: Scattering rates for deuterons at 7.7 GeV in central Au-Au-collisions.
The solid curves represent formation mechanisms while the dashed curves represent
disintegration mechanisms. Taken from [4].

only knowing the yields. For example a constant number of particles can either be
achieved by no reactions or by as many forward as backward reactions. Also a small
reduction of the nuclei yield during the afterburner, as the case for the deuterons in
4π (see figure 6.4), does not imply that there are only few reactions. To illustrate
the production mechanisms we calculate the collision rates of the different reactions
for the formation and disintegration of deuterons, tritons and hypertritons. The
rates are shown in Figures 6.8, 6.9 and 6.10 for the energy 7.7 GeV. Here most of
the hadronic rescattering takes place in the first 30 to 40 fm and the maximum is
located around 10 to 15 fm for each particle species.

For deuterons (see Figure 6.8) one can observe that in the first 20 fm the forma-
tion and disintegration processes are roughly balanced. At later times the disinte-
gration outweighs slightly. This is consistent with the 7.7 GeV curve in Figure 6.4,
where the yield of dynamically produced nuclei in the final state at 4π is smaller
than the yield on the Cooper-Frye hypersurface. The small rates of the NN ↔ πd
reactions verify that the multiparticle reactions are the most important contribution
for the light nuclei production. For the production of deuterons, the pion catalysis
reactions are most frequent. In Appendix E the rates for higher collision energies
are shown. One can observe that with increasing energy the pion catalysis reactions
become more dominant. This can be attributed to the fact that the population of
pions is larger at higher energies.

The reaction for the formation and disintegration of tritons is presented in Figure
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Abbildung 6.9: Scattering rates for tritons at 7.7 GeV in central Au-Au-collisions.
The solid curves represent formation mechanisms, while the dashed curves represent
disintegration mechanisms. Taken from [4].

6.9. The disintegration of tritons clearly dominates and therefore the rescattering
reduces the yields drastically. This is in accord with the final yield at 7.7 GeV
in Figure 6.5. For the tritons we observe that the nucleon catalysis reactions are
as important as the pion catalysis reactions at this energy. For higher energies we
observe, again, that pion catalysis becomes more important (see Appendix E).

The reaction rates relevant for the hypertriton production are shown in Figure
6.10. We observe slightly more formation than disintegration in the first 20 fm which
is why the afterburner stage increases the 4π yield of hypertritons (Figure 6.6) in
this time frame. Between 20 and 40 fm the disintegration outweighs slightly. This
leads to the same multiplicity on the Cooper-Frye hypersurface as in the final state
of the afterburner. For the hypertriton, the pion catalysis outweighs the nucleon
catalysis reactions already at 7.7 GeV. Collision rates at higher energies can, also
here, be found in Appendix E.

In Figures 6.11, 6.12 and 6.13 one can find the cumulative collision numbers for
the formation processes compared to the disintegration processes to point out the
change in the final particle yield. The difference between the cumulative production
number and destruction number corresponds to the change in the yield of the con-
sidered nucleus compared to the particle number sampled on the hypersurface. We
observe that the difference, and hence the impact of the afterburner on the multi-
plicity, is relatively small for deuterons and hypertritons. This does not mean that
the afterburner stage can be disregarded as we see that the number of reactions
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Abbildung 6.10: Scattering rates for hypertritons at 7.7 GeV in central Au-Au-
collisions. The solid curves represent formation mechanisms, while the dashed curves
represent disintegration mechanisms. Taken from [4].

that involve light nuclei is large and significantly contributes to the dynamics of the
system. The importance of the afterburner stage has been demonstrated already in
Section 6.3.1. For the triton, a reasonable number of formation reactions takes place,
but the disintegration processes dominate, leading to the reduced triton yield in the
final state of the afterburner stage.

6.4 Summary and Conclusions

In this study, the dynamic production of deuterons, tritons, 3He nuclei and hypertri-
tons in the afterburner stage of a hybrid approach is investigated. The afterburner
calculation is performed using the transport model SMASH, where nuclei are for-
med via multi-particle reactions realized with the stochastic collision criterion or via
coalescence.

For validation, the multiplicities obtained using multi-particle reactions in a box
calculation were compared to results from rate equations. The equilibrium multi-
plicities are found to be correctly reproduced and a slightly slower equilibration as
compared to the rate equation is observed.

In the next step, transverse momentum spectra of light nuclei are confronted
with experimental data. A good agreement with the measurement is found for the
dynamic production of light nuclei and for the coalescence approach, as long as the
afterburner stage is performed.
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Abbildung 6.11: Cumulative collision numbers for disintegration and formation re-
actions of deuterons at 7.7 GeV are shown. They are compared to the difference
between these two curves to illustrate the change in the final particle yield. Taken
from [4].
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Abbildung 6.12: Cumulative collision numbers for disintegration and formation reac-
tions of tritons at 7.7 GeV are shown. They are compared to the difference between
these two curves to illustrate the change in the final particle yield. Taken from [4].
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Abbildung 6.13: Cumulative collision numbers for disintegration and formation re-
actions of hypertritons at 7.7 GeV are shown. They are compared to the difference
between these two curves to illustrate the change in the final particle yield. Taken
from [4].

Results for the particle ratios Nd/Np, Nt/Np and NtNp/N
2
d are further presented.

For the single ratios, a good agreement with the experimental data is found with both
the dynamic production of nuclei and the coalescence approach. The double ratio is
better described by the coalescence approach but the double ratio was proposed to
be sensitive to the critical point which is not included in the model.

To get a better understanding of the time evolution of the light nuclei production,
the multiplicity of light nuclei as a function of time at mid-rapidity and for the full
phase-space are presented. Considering the full phase-space, the yield of light nuclei
is observed to decrease in general as the system expands, except for the hypertriton
which experiences a slight increase in multiplicity at

√
sNN = 7.7 GeV. The yield

relaxes back to the one on the hydrodynamic Cooper-Frye hypersurface towards
later times. In contrast to the 4π multiplicities, light nuclei multiplicities tend to
increase at mid-rapidity during the afterburner stage and a good agreement with
the experimentally measured yields at mid-rapidity is found.

Finally, the scattering rates for the formation and disintegration of light nuclei
are studied. As in the considered systems the number of pions is large, one can
observe that the pion catalysis reactions are most important for the formation of
light nuclei in many cases. For deuterons and hypertritons the relatively small change
in the multiplicities does not imply a small interaction number. Instead, forward and
backward reactions are frequent and the rates are roughly balanced. For the tritons
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a larger number of disintegration compared to the formation processes are observed.
This is consistent with the observed decrease in triton multiplicity in the afterburner
stage. Multi-particle reactions in the afterburner stage are successful at capturing
the dynamics and production of light nuclei.
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Kapitel 7

Summary and Conclusions

The main focus of this work lies on the equation of state of nuclear matter. Cons-
traints on the EoS come from multiple sources, including studies of atomic nuclei,
astrophysical observations, heavy-ion collisions, and purely theoretical considerati-
ons. Given that the EoS can be probed from various perspectives, significant progress
has been made in this area.

This thesis presents work on the EoS based on heavy-ion collisions. Like astro-
physical observations, these collisions probe nuclear matter at densities well above
saturation. Heavy-ion collisions, provide the only possibility to study the EoS at
high densities in terrestrial experiments. The ability to repeat experiments indefi-
nitely in the laboratory, coupled with specifically developed detectors around the
collision, allows for the collection of highly accurate data, capturing the final state
of the collision. Therefore, heavy-ion collisions offer invaluable insights into the EoS.

Many studies have been performed, aiming to constrain the equation of state
using heavy-ion collisions. The difficulty in this endeavor arises, however, from the
theoretical description of a collision. Heavy-ion collisions are extremely rapid proces-
ses, making them extremely difficult to model. Theoretical modeling of the collisions
is absolutely essential to draw conclusions about the hot and dense phase of the sys-
tem, based solely on the final state particles measured in the detector. In fact, much
effort is ongoing to understand differences in theoretical models with the ultimate
goal to converge to a unique constraint on the EoS based on heavy-ion collision data.

The matter created in a heavy-ion collision is far from thermal equilibrium, ma-
king transport theory the natural framework for modeling such processes. The cal-
culations presented in this thesis are performed using the transport model SMASH,
which is described in detail. To study the equation of state, the most crucial com-
ponents of the transport calculation are the mean-field potentials. Therefore, a tho-
rough explanation of these potentials is provided, beginning with the Skyrme po-
tential, to which a momentum-dependent term has been added for this work. The
symmetry potential is also discussed along with the calculation of electric and ma-
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gnetic fields. For each potential, the corresponding equations of motion derived from
the test particle ansatz are explained. Since the accurate evaluation of mean-field po-
tentials requires a detailed density calculation, it is described thoroughly, including
an analysis of the influence of various technical parameters.

The nuclear potentials are a key focus of this work, but the collision term in the
Boltzmann equation is equally essential for accurately describing heavy-ion collisi-
ons. Therefore, a detailed description of each interaction type and its modeling is
provided. The interactions considered include elastic scattering, resonance formation
and decay, inelastic binary scattering, and string excitation. For each interaction,
the corresponding partial cross section is given, along with an explanation of how
the final state is determined. The section on the collision term concludes with a des-
cription of the collision criteria used to identify collisions in a dynamical simulation.

The last main topic considered in the model description is the formation of light
nuclei. Light nuclei formation is essential throughout this thesis. At low collision
energies, a large fraction of nucleons is bound in nuclei, making them a necessity in
theoretical modeling. At higher energies, the formation of light nuclei is extremely
interesting, because it may provide valuable insights into the structure of the QCD
phase diagram. In the context of this work, the SMASH transport model is cou-
pled to a coalescence afterburner, which creates light nuclei based on the particle
distribution in the final state. Alternatively, a dynamic model for the formation of
light nuclei can be applied, where light nuclei are formed and destroyed through
pion-catalysis or nucleon-catalysis reactions, either in multiparticle processes or in
binary reactions with an intermediate step.

The results section starts with an analysis of how flow observables are sensitive
to both the equation of state and light nuclei formation. For gold–gold collisions
at Ekin = 1.23AGeV, as measured at the HADES experiment, flow coefficients of
protons and deuterons are computed. During this analysis, the stiffness of the EoS
is varied to confirm the well-known sensitivity of flow observables to the EoS, as
reported in the literature. Additionally, light nuclei formation is modeled using both
coalescence and dynamic formation, and the results are compared. The treatment
of light nuclei has a significant effect on the flow coefficients, especially in certain
regions of phase space. By comparing the different models, regions where light nuclei
formation strongly influences the flow observables can be identified. At the same
time, regions in phase space can be identified, where the stiffness of the EoS strongly
affects the results, but the treatment of light nuclei plays a subleading role. Exactly
these regions are desirable, because they allow for a clean extraction of the EoS.

Generally, few light nuclei are formed from protons at high transverse momen-
tum. The main finding of the first study is that the flow coefficients of protons in the
transverse momentum range 1.0 GeV < pT < 1.5 GeV are particularly well-suited
for extracting the EoS. However, this study was conducted without the inclusion of
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momentum-dependent potentials, which resulted in an inability to adequately des-
cribe the experimental data. As a result, the conclusions drawn from this study do
not allow for direct inferences about the EoS.”

To allow for conclusions on the EoS, the momentum-dependent term was added
to the Skyrme potential. Based on this and the identification of the best suited
observables from the previous study, systematic constraints on the EoS are extrac-
ted in a subsequent investigation. After quantifying the effects of the momentum
dependence, the Coulomb potential, and an improved centrality selection, Bayesian
inference was used to draw conclusions about the EoS. By analyzing the directed
and elliptic flow of protons and deuterons in the specified transverse momentum
range, the posterior distributions for the incompressibility of nuclear matter and
the symmetry potential were extracted. The results indicate a relatively stiff EoS
with very small statistical uncertainty, demonstrating that the experimental data
provides valuable information for constraining the EoS. However, the constraints
obtained here do not align with those from previous studies, primarily because no
uncertainty on model choices was included in this estimate. Further work is certainly
needed to understand differences in transport models to progress in the endeavor to
find the EoS of nuclear matter.

Additional information about the density dependence of the EOS can be drawn
from the measurements taken at the FOPI experiment, because heavy-ion collisions
have been performed at various collision energies. With increasing collision energy,
the nuclear matter becomes more compressed. Therefore, the energy-dependence of
the flow observables may be studied. This provides an opportunity to investigate
whether the EoS softens or stiffens as the density increases. For this purpose, calcu-
lations from the SMASH model are compared with the FOPI measurement in the
energy range from Ekin = 250 MeV to Ekin = 1.5 GeV. The experimental data is
confronted with a soft and a hard EoS, with and without momentum-dependence.
For each of the settings, the agreement with the experiment is quantified using a χ2

estimate. Splitting the data into lower and higher energies, one can observe that a
soft EoS is clearly favored at lower collision energies, but a stiffer EoS describes the
elliptic flow better at higher collision energies. This may be a hint that the density
dependence assumed with the Skyrme potential is too simple, and there could be
an interesting structure in the EoS.

For the final results presented in this thesis, the main focus is put on the for-
mation of light nuclei, which are studied in the energy range 7.7 GeV <

√
sNN <

19.6 GeV, as measured by the STAR experiment within the Beam Energy Scan pro-
gram. The formation of light nuclei is sensitive to fluctuations of the baryon number.
Fluctuations increase in the vicinity of a critical point, so that the production of
light nuclei may shed light on the phase diagram of QCD matter.

The chosen collision energies are selected to probe key phase structures, such as
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a first-order phase transition or a critical point. Therefore, a model that goes beyond
hadronic degrees of freedom is required. In this study, a hybrid approach is employed,
where light nuclei formation is considered in the afterburner stage. Light nuclei
can be formed dynamically in multiparticle reactions during this stage or through
coalescence in the final state. By comparing the transverse momentum spectra of
deuterons and tritons with experimental data, it is shown that the afterburner stage
is essential for a realistic description of the system. The light nuclei sampled on the
Cooper-Frye hypersurface do not yield a reasonable description of the measurement.

Ratios of light nuclei are presented for both the coalescence model and the dy-
namic formation. The calculated single ratios Nd/Np and Nt/Np agree well with
experimental observations in both cases. However, the double ratio NtNp/N

2
d is par-

ticularly sensitive to baryon number fluctuations. Since critical fluctuations are not
included in the model, it is not surprising that the dynamic formation of light nuclei
results in an overestimation of this ratio.

Finally, a closer look into the dynamical evolution of the system is taken. The
production mechanisms of different nuclei are investigated, together with the time
evolution of the light nuclei yields. Insights on the importance of the various channels
can be gained from this comparison. Most importantly, it becomes evident, that an
unchanged number of light nuclei in the afterburner does not imply that the system
is frozen out. Instead, the scattering rate is large, but the production and disinte-
gration processes are balanced, so that the number of light nuclei is unchanged. This
underlines the importance of the afterburner phase.
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Anhang A

Natural Units

For the description of a physical system, it is instructive to choose units best suited
to the situation. This can be to obtain a relatable scale, for example by denoting
the masses of astrophysical objects in solar masses as compared to kilograms that
would be unhandy for the description of very heavy objects.

In this thesis the main focus lies on the microscopic description of heavy-ion
collisions for which the natural units of high energy physics (see for example [28]) are
applied. For this problem, the length and time scales are extremely small. The typical
length scale is on the order of femtometers abbreviated by fm where 1 fm = 10−15 m.
A typical energy scale for such problems is a gigaelectronvolt which is roughly the
rest energy of a proton. It is abbreviated as 1 GeV = 109 eV where an electronvolt
(eV) is the energy a particle with a single elementary charge q = e = 1.602 · 10−19 C
obtains traversing a voltage of one Volt.

Different units are connected through natural constants. Units can be chosen
such that some constants are 1. In this work the speed of light c, the reduced Planck
constant h̄ = h/2π and the Boltzmann constant kB are set to c = h̄ = kB = 1.
This way, various quantities are expressed in terms of the same units. All quantities
appearing in this thesis can be expressed either in powers of GeV of in powers of
fm.

The time is usually given in terms of fm, which really stands for fm/c = 10−15m
2.998·108m/s

≈
3.3 · 10−24 s.

The mass can be related to the energy in Einsteins theory of relativity. This is
reflected in the units as masses are given in terms of GeV or GeV/c2

1
GeV

c2
=

109 · 1.602 · 10−19 J

(2.998 · 108 m/s)2
≈ 1.78 · 10−27 kg , (A.1)

where we used that a Joule is J = kgm2

s2
.

The temperature in a heavy-ion collision is quoted in terms of MeV/kB, which
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corresponds to an unimaginably large temperature in Kelvin

1
MeV

kB
=

106 · 1.602 · 10−19 J

1.381 · 10−23 J/K
≈ 1.16 · 1010 K . (A.2)

This is over a million times higher than the surface of the sun.
The baryon density is often given in terms of the nuclear ground-state density

for which we take the value of ρ0 = 0.168 fm−3 = 1.68 · 1044 m−3. The mass density
can be roughly estimated by multiplying with the average mass of a nucleon (m ≈
1.67 · 10−27 kg) leading to the immense mass density of ρ ≈ 2.81 · 1017 kg/m3. The
density in a heavy-ion collision as well as the density in the center of neutron stars
can exceed multiples of the nuclear ground-state density.

For the conversion between fm to GeV−1, the relation 1 = h̄c = 197.3 MeV fm is
useful. Following this, a megaelectronvolt can be expressed as 1 MeV = 1/197.3 fm−1

and vice versa 1 fm = 1/197.3 MeV−1.
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Anhang B

Relativistic Kinematics

Heavy-ion collisions are used as a tool to study the properties of strongly-interacting
matter. This rapid process requires a relativistic description as the colliding nuclei
are accelerated to velocities near the speed of light.

The most prominent result of special relativity is the equivalence of mass m and
energy E often quoted as E = mc2, which is only true for a free particle at rest.
Taking into account the momentum p of the particle, the energy-momentum relation
for a free particle reads

E =
√

m2c4 + p2c2 , (B.1)

where the speed of light is included explicitly. Using natural units, we will set the
speed of light to one in the following (see Appendix A).

Relativistic kinematics are formulated in terms of four-vectors with indices run-
ning from 0 to 3. Most importantly the position in space-time

xµ =


t
x
y
z

 (B.2)

includes the information about the time and the position in space and treats them
on equal footing, which is a key concept of relativity1.

Equally important to xµ is the four-momentum pµ that includes the energy in
the 0-component

pµ =


E
px
py
pz

 . (B.3)

1The notation xµ really only refers to a single component of the vector, namely the µ-th one.
When writing out full vectors, we often keep the index on the left hand side free and provide all
possibilities as a tuple on the right hand side.
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The vectors are given in the contravariant form, meaning that the Lorentz-index
is upstairs. One can obtain the covariant vector using the metric gµν given any
Lorentz-vector yµ

yµ = gµνy
ν . (B.4)

The metric is flat in special relativity where its components are given by2

gµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (B.5)

In general relativity, the Einstein equations relate the metric to the energy-momentum
tensor so that the space-time is curved due to matter and energy in general.

The word tensor means that the object behaves according under a Lorentz trans-
formation Λµ

ν . A Lorentz vector is a rank one tensor. The transformation behavior
is such that the vector observed in a different frame is given by

y′µ = Λµ
νy

ν . (B.6)

For a rank two tensor it is
y′µν = Λµ

αΛν
βy

αβ (B.7)

and for a tensor of rank n

y′µ1µ2...µn = Λµ1
ν1

Λµ2
ν2
. . .Λµn

νny
ν1ν2...νn . (B.8)

This transformation behavior is only for contravariant indices but it works in a
similar way for covariant indices. The Lorentz-transformation can incorporate a
translation, rotation and a boost to a system with a constant relative velocity.

There are also Lorentz-scalars, which do not have a Lorentz-index and are frame
independent. A possibility to obtain a Lorentz-scalar is by summing over a covariant
and a contravariant Lorentz index, for example yµy

µ = yµgµνy
ν = y′µy

′µ.
In the case for the momentum four-vector, one obtains

pµp
µ = E2 − p2 = m2 , (B.9)

where we used the energy-momentum relation given in Equation B.1.
Another invariant quantity can be obtained from the position four-vector

xµx
µ = t2 − x · x = τ 2 , (B.10)

2There are two different commonly used conventions for the metric tensor. Besides the one
quoted here the metric ηµν = diag(−1, 1, 1, 1) is often applied especially in literature related to
general relativity.
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where x denotes the position three-vector (x, y, z)T . As this quantity is invariant
and there is a rest-frame of the particle where it is located at x = 0 at all times3,
one can identify τ as the eigentime. This invariant quantity is used to define the
four-velocity as a rank one tensor

uµ =
dxµ

dτ
=

dxµ

dt

dt

dτ
= γ

(
1
β

)
, (B.11)

with the velocity β = dx/dt and the gamma factor γ = (1 − β2)−0.5. For the
propagation of free particles the velocity is required, which can be obtained from
the energy and momentum because the muµ = pµ

β =
p

E
. (B.12)

The propagation of test-particles in the vicinity of mean-field potentials is described
in Section 2.1.

3Only if the particle moves at constant speed, which is the case for free particles.
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Anhang C

Additional Comparison to FOPI
Data

In this appendix, additional figures for the study presented in Chapter 5 are provi-
ded. The plots given here are taken from [3]. A wealth of experimental data of flow
coefficients, measured by the FOPI experiment, are available. Only the most import-
ant comparisons to the measurement are covered directly in Chapter 5. Still, the χ2

calculation, on which the conclusions are based, includes a larger set of experimental
data points. More of this data is given in this appendix. Before additional compa-
risons to the measurement are provided, a comparison of the different methods for
the centrality selection is given in Figure C.1. The directed flow in Au–Au collisions
at Ekin = 0.4AGeV in Figure C.2, as a function of both rapidity and transverse
momentum. Further, the elliptic flow at mid-rapidity in Au–Au collisions is shown
for different collision energies in Figure C.3 as a function of transverse momentum.
Finally, Figures C.4 and C.5 illustrate the elliptic flow as a function of rapidity.
Here, Figure C.4 focuses on mid-central collisions for different energies. Figure C.5
shows different centralities for the highest collision energy Ekin = 1.5AGeV.
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Abbildung C.1: Directed flow coefficient for Xe–CsI (upper panel) and Ni–Ni (lower
panel) collisions for centrality selection based on b and Erat. Taken from [3].
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Abbildung C.2: Directed flow coefficient for Au–Au collisions in the centrality class
corresponding to 5.5 fm ≤ b ≤ 7.5 fm. Taken from [3].
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Abbildung C.4: Elliptic flow coefficient v2 for protons with p
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T > 0.8 as a function of

rapidity for mid-central Au–Au collisions at Ekin/A = 0.4 GeV (left) and Ekin/A =
1.5 GeV (right), SMASH calculations compared with FOPI data [112]. Taken from
[3].
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Abbildung C.5: Elliptic flow coefficient v2 for protons with p
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T > 0.4 as a function

of rapidity for mid-central (left) and mid-peripheral (right) Au–Au collisions at
Ekin/A = 1.5 GeV, SMASH calculations compared with FOPI data [112]. Taken
from [3].
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Anhang D

Rate equations

This appendix contains additional information on the study presented in Chapter
6. It is based on [4]. We validated the newly introduced multi-particle reactions to
create A = 2 and A = 3 nuclei in Section 6.2. For this purpose we calculated the
multiplicities of different particle species as a function of time in a periodic box (see
Figure 6.1). To verify these calculations we compared them to the analytical solu-
tions, which are obtained by solving the corresponding rate equations. In Equation
D.1 the implemented reactions are shown.

πpn ↔ πd πppn ↔ πHe3

Npn ↔ Nd Nppn ↔ NHe3

πpnn ↔ πt πpnΛ ↔ π3
ΛH

Npnn ↔ Nt NpnΛ ↔ N3
ΛH

(D.1)

The equation NN ↔ πd is also implemented in the model but for the calculations
in Figure 6.1 it is switched off, as it is not included in the rate equations. The rate
equations read as follows

Rd = nth
d

[
⟨σvrel⟩πdnth

π λπ + ⟨σvrel⟩pdnth
p λp + ⟨σvrel⟩ndnth

n λn

]
Rt = nth

t

[
⟨σvrel⟩πtnth

π λπ + ⟨σvrel⟩ptnth
p λp + ⟨σvrel⟩ntnth

n λn

]
R3He = nth

3He

[
⟨σvrel⟩π3Hen

th
π λπ + ⟨σvrel⟩p3Hen

th
p λp + ⟨σvrel⟩n3Hen

th
n λn

]
R3

ΛH
= nth

3
ΛH

[
⟨σvrel⟩π3

ΛH
nth
π λπ + ⟨σvrel⟩p3ΛHn

th
p λp + ⟨σvrel⟩n3

ΛH
nth
n λn

] (D.2)
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nth
d λ̇d = Rd(λpλn − λd)

nth
t λ̇t = Rt(λpλnλn − λt)

nth
3He

˙λ3He = R3He(λpλpλn − λ3He)

nth
3
ΛH

˙λ3
ΛH

= R3
ΛH

(λpλnλΛ − λ3
ΛH

)

nth
p λ̇p = −nth

d λ̇d − nth
t λ̇t − 2nth

3He
˙λ3He − nth

3
ΛH

˙λ3
ΛH

nth
n λ̇n = −nth

d λ̇d − 2nth
t λ̇t − nth

3He
˙λ3He − nth

3
ΛH

˙λ3
ΛH

nth
Λ λ̇Λ = −nth

3
ΛH

˙λ3
ΛH

λ̇π = 0 .

(D.3)
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Anhang E

Scattering Rates at Higher
Energies

This appendix contains additional information on the study presented in Chapter
6. It is based on [4].

In Section 6.3.4 we only showed the results for the lowest energy 7.7 GeV. Ad-
ditionally we present here the results for 14.5 GeV and 19.6 GeV as well. Figures
E.1, E.2 and E.3 show the scattering rates for deuterons, tritons, 3He nuclei and
hypertritons. Nuclei formation via pion (blue curve) or nucleon (green curve) cata-
lysis reactions is compared to disintegration. As already discussed in Section 6.3.4,
deuterons can also be formed and disintegrated via inelastic 2 → 2 scattering as
depicted by the red curves in Figure E.1.
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Abbildung E.1: Scattering rates for deuterons in central Au-Au-collisions. The solid
curves represent formation mechanisms, while the dashed curves represent disinte-
gration mechanisms.
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Abbildung E.2: Scattering rates for tritons in central Au-Au-collisions. The solid
curves represent formation mechanisms, while the dashed curves represent disinte-
gration mechanisms. Taken from [4].
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Abbildung E.3: Scattering rates for hypertritons in central Au-Au-collisions. The
solid curves represent formation mechanisms, while the dashed curves represent
disintegration mechanisms. Taken from [4].
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