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1 Introduction

One of the dark matter candidates is the scalar degree of freedom (the scalaron) of f(R)
gravity [1–11] (see also reviews [12–14]). Among various proposals in this framework, we
focus here on a straightforward suggestion, pioneered in [3], in which a key role is played by
the term quadratic in curvature. In this model, dark matter consists of a classical scalaron
field oscillating near the minimum of its potential. The oscillating scalaron field clusters
like cold dark matter, contributing to the formation of large-scale structure with its typical
gravitational effects. A notable advantage of this theory is its simplicity: it introduces no
new fundamental fields, aside from the fact that the metric acquires an additional degree
of freedom. Assuming the standard (minimal) coupling of the metric to the matter fields,
the model has only one essential free parameter — the mass of the scalaron — making it
highly predictive. The main observational implications of the model have been discussed
in [3, 4], and are reviewed and updated in this paper. Thus, due to the weak interaction
with matter, the scalaron is able to decay into photons or electron-positron pairs, which
allows one to obtain an upper limit on the scalaron mass.

While various aspects of the scalaron’s interactions with matter have been studied in the
literature, certain features of its coupling to Standard Model fields warrant a more detailed
examination. This work focuses on the scalaron’s decay into two photons — a one-loop
process of particular interest that has been subject to some controversy in the literature.
We provide an explicit derivation of the decay rate and show that applying an appropriate
regularisation to the relevant loop diagrams resolves the ambiguities arising in calculations
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that rely on regularised Jacobians from spinor field redefinitions. Assuming the scalaron
constitutes all of dark matter, we calculate the average cosmological background radiation
produced by its decays into photons.

The issue of initial conditions for the scalaron was thoroughly addressed in our recent
papers [15, 16]. However, one important aspect that has not been explored is the fraction
of thermal scalarons emitted by the hot cosmic plasma in the early universe. In this work,
we estimate their contribution to the total scalaron dark matter density and show that it
is, in fact, negligible. This supports the scenario in which scalaron dark matter behaves as
a coherently oscillating classical field, as originally proposed in [3].

The paper is organised as follows. In section 2, we introduce the f(R) gravity model and
outline the role of the scalaron as a dark matter candidate. Section 3 describes the scalaron’s
coupling to Standard Model fields. In section 4, we compute the average cosmological
background radiation resulting from scalaron decays into photons. In section 5, we estimate
the contribution of primordial thermal scalarons to the present dark matter density. Our
findings are summarised in section 6. Appendix A provides the expression for the one-loop
effective interaction between the scalaron and the electromagnetic field, while appendix B
addresses spinor field redefinitions and the associated ambiguities.

2 Scalaron of f(R) gravity as dark matter

The f(R) gravity theory assumes that the Lagrangian for gravity can be expanded in the
form of power series in the scalar curvature R:

Lg = M2

3 f(R) , f(R) = −2Λ +R+ R2

6m2 + . . . . (2.1)

Here, M =
√

3/16πG ≈ 2.98 × 1018 GeV is a conveniently normalised Planck mass, and
Λ ≈

(
3 × 10−33 eV

)2 is the cosmological constant in the natural units ℏ = c = 1. We are
working in the metric signature (−,+,+,+).

The theory involving terms up to R2 in (2.1) corresponds to the Starobinsky inflationary
model [17, 18], where setting m ≃ 10−5M yields a primordial power spectrum that is
consistent with current observations [19]. In this context, the quadratic curvature term can
be interpreted as a quantum correction to the effective action for gravity, emerging from the
integration of certain matter degrees of freedom. When applying this model to describe dark
matter, instead of inflation, the mass m must be constrained to lie between the meV and
MeV range, as will be discussed below. The mass m should then be regarded as a genuine
constant in the action for gravity. The assumed smallness of m (or, in other words, the
large dimensionless factor M2/18m2 ∼ 1041–1058 of the R2 term) can be viewed on the same
footing as the extreme relative smallness of the cosmological constant Λ in the gravitational
action, the true reason for which is also unknown.

To identify the new scalar degree of freedom, one can proceed from the Jordan frame to
the Einstein frame. We first write the action with Lagrangian (2.1) in the form

Sg = M2

3

∫
d4x

√
−g

[
ΩR− U(Ω)

]
, (2.2)
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where Ω is a new dimensionless scalar field, and the function U(Ω) is chosen so that variation
with respect to Ω and its substitution into the action returns the original action:

U ′(Ω) = R ⇒ Ω = Ω(R) , (2.3)
f(R) =

[
ΩR− U(Ω)

]
Ω=Ω(R) . (2.4)

Thus, f(R) is the Legendre transform of U(Ω), and vice versa.
As a next step, one performs a conformal transformation1 in (2.2):

gµν = Ω−1 g̃µν , Ω = eϕ/M , (2.5)

where ϕ is a new field (the scalaron) parametrising Ω, and we use a tilde to denote all
metric-related quantities in the new (Einstein) frame. Action (2.2) then becomes that of the
Einstein gravity with a scalar field (scalaron) ϕ. The Lagrangian in the Einstein frame is

Lg = M2

3 R̃− 1
2 g̃

µν∂µϕ∂νϕ− V (ϕ) , (2.6)

where the scalaron potential V (ϕ) is calculated from (2.2):

V (ϕ) = M2

3 e−2ϕ/MU
(
eϕ/M

)
. (2.7)

It is easy to establish that the scalaron potential has extrema, with V ′(ϕ) = 0, at the
Jordan-frame values of R that satisfy

Rf ′(R) = 2f(R) . (2.8)

The scalaron mass squared, m2
ϕ = V ′′(ϕ), at such an extremum is given by

m2
ϕ = 1

3

[ 1
f ′′(R) − R

f ′(R)

]
= 1

3

[
1

f ′′(R) − R2

2f(R)

]
. (2.9)

If m2
ϕ > 0, then this is a local minimum. As can be seen from (2.7), the scalaron potential

typically varies on the scale of the Planck mass M . Hence, in the neighbourhood of the
minimum, it is well approximated by a quadratic form on field scales much smaller than M .

For a small cosmological constant, Λ ≪ m2, the theory has a local minimum at ϕ/M ≈
4Λ/3m2, corresponding to R ≈ 4Λ in the Jordan frame, and the scalaron mass at this
minimum is m2

ϕ = m2 + O(Λ). In what follows, we neglect the small cosmological constant
in (2.1), which is responsible for dark energy but not for dark matter. In this approximation,
the local minimum is situated at ϕ = 0 (corresponding to R = 0 in the Jordan frame), and
the scalaron mass at this minimum is mϕ = m.

The minimal non-trivial model [17, 18] is described by

f(R) = R+ R2

6m2 . (2.10)

1In quantum field theory, this transformation is typically referred to as the Weyl transformation. We use
the terminology commonly adopted in the context of gravity theory (see, e.g., [20]).
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Figure 1. Scalaron potentials (2.11) (blue) and (2.13) (orange) are plotted in units M2m2/2. In the
region |ϕ|/M ≪ 1, they both are approximated by the quadratic form with mass m.

In the Einstein frame, it produces Lagrangian (2.6) with

V (ϕ) = 1
2m

2M2
(
1 − e−ϕ/M

)2
. (2.11)

This potential has an infinitely extended plateau at ϕ ≫ M .
Scalaron potentials corresponding to f(R) with higher powers of R in their expansion

typically have different behaviour at large values of ϕ > 0, exhibiting a ‘hilltop’ or ‘tabletop’
shape [21]. As an example, consider

f(R) = R

1 −R/6m2 = R+ R2

6m2 + R3

36m4 + . . . . (2.12)

The branch of the theory containing the stable critical point R = 0 has scalaron potential

V (ϕ) = 2M2m2e−ϕ/M
(
1 − e−ϕ/2M

)2
. (2.13)

It has a local maximum at eϕ/M = 4 and exponentially decreases as ϕ → ∞. Potentials (2.11)
and (2.13) are plotted in figure 1.

A common feature of all such potentials in a theory containing the quadratic term R2/6m2

is that they are well approximated by the quadratic form with mass m at the origin. The
minimal coupling of the metric to matter in the Jordan frame results in a universal coupling
of the scalaron to matter fields, collectively denoted as Ψ, with the Lagrangian density

Lm
(
e−ϕ/M g̃µν ,Ψ

)
. (2.14)

Here, the fields Ψ are those of the Jordan frame, while the metric is transformed to the
Einstein frame. Note that it is the Jordan-frame metric gµν = e−ϕ/M g̃µν that plays the role
of the ‘observable’ metric in the Einstein frame [22–24], and the presence of the scalaron
ϕ in this metric then produces an additional gravitational force of Yukawa type, with the
total gravitational potential per unit gravitating mass [25]

Φgrav = −2G
r

(
1 + 1

3e
−mr

)
. (2.15)
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Non-observation [26, 27] of such additional Yukawa forces between non-relativistic masses at
small distances leads to a lower bound on the scalaron mass (see also [3, 4, 28])

m ≥ 2.7 meV at 95% C.L. (2.16)

If the scalaron forms dark matter, then the value of this field in the early universe should
be very close to the minimum of its potential. Indeed, for the amplitude ϕa of the scalaron
oscillations, one has the estimate

ϕa
Mp

=
√

2ρϕ
mMp

= 2
√

ΩDMH0
m

√
ρϕ
ρϕ

≃ 10−30
√
ρϕ
ρϕ

meV
m

≪ 1 . (2.17)

Here, ρϕ = m2ϕ2
a/2 is the local energy density of the scalaron dark matter, and ρϕ is

its cosmological average today. The quantities ΩDM and H0 are the current cosmological
parameter for dark matter and the Hubble constant, respectively.

In the very early universe, the scalaron field is initially frozen due to Hubble friction,
beginning to oscillate once the Hubble friction parameter 3H decreases to the value of its
mass m. For the early hot universe, this condition reads

3Hi ≡

√
3Ni
5
πT 2

i
M

≃ m, (2.18)

where Ni ≈ 100 is the number of relativistic degrees of freedom in thermal equilibrium at
this moment. Thus, Ti ∝ m1/2, and (ϕa)i /M ∝ m−1/4. Given the lower bound (2.16) on m,
the estimate (2.17) suggests that (ϕa)i /M ≲ 4 × 10−7. Therefore, the scalaron is expected
to remain very close to zero throughout the entire cosmological history.

3 Coupling to the Standard Model

We assume that matter is described by the Standard Model minimally coupled to the metric
in the Jordan frame. Note that most of the Standard Model action is classically conformally
invariant (with proper conformal transformation of the matter fields). The only part that
breaks classical conformal invariance is the Higgs sector and the neutrino sector extending
the Standard Model if it contains Majorana mass terms.

The Higgs sector has the Lagrangian

LH = −gµν (DµΦ)†DνΦ − λ

4
(
2Φ†Φ − v2

)2
. (3.1)

Here, Dµ is the gauge covariant derivative involving the U(1)Y and SU(2)L electroweak
gauge fields and acting on the Higgs doublet Φ, and v ≈ 246 GeV is the symmetry-breaking
parameter. The Higgs boson has mass mH =

√
2λv ≈ 125 GeV in the Standard Model,

so that λ ≈ 0.13.
After the conformal transformation (2.5), the Lagrangian becomes (we remember the

factor √
−g in the Lagrangian density)

LH = −e−ϕ/M g̃µν (DµΦ)†DνΦ − λ

4 e
−2ϕ/M

(
2Φ†Φ − v2

)2
. (3.2)
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We observe the appearance of non-renormalisable interactions of the scalaron ϕ with the
Higgs field, which are suppressed by inverse powers of the large Planck mass M .

Similarly, in the new conformal frame, the scalaron has direct couplings to both the
kinetic and mass terms of fermionic fields. This complication can be circumvented by noting
that the spinor kinetic terms in the action are conformally invariant, provided the spinors
are appropriately rescaled. Hence, in the rest of the Standard Model, one can also perform
the conformal transformation of the Dirac spinor fields,

ψ = Ω3/4ψ̃ = e3ϕ/4M ψ̃ , (3.3)

which brings their kinetic terms to the canonical form in the Einstein frame. This trans-
formation belongs to the class of point transformations that preserve all symmetries. In
appendix B, we show that it satisfies the field-redefinition equivalence theorems [29–33] — at
least at the one-loop level — thereby leaving the S-matrix invariant.

Under transformation (3.3), a typical term with the Yukawa coupling to the Higgs
field transforms as

ΨLΦψR
√

−g → e−ϕ/2M Ψ̃LΦψ̃R
√

−g̃ . (3.4)

Here, ΨL is a left-handed doublet and ψR is a right-handed singlet. Possible Majorana mass
terms for neutrinos will transform in a similar way:

Mψψ
c
RψR

√
−g → e−ϕ/2MMψψ̃

c
Rψ̃R

√
−g̃ . (3.5)

In the unitary gauge for the Higgs field, we will have

Φ = 1√
2

(
0
h

)
= 1√

2

(
0

v + χ

)
, (3.6)

where χ is the deviation of the Higgs field h from its vacuum expectation value v. Then
the standard Yukawa interaction −γhψ̄ψ between the Higgs field h and a fermion ψ, where
γ is the Yukawa coupling constant, will — according to (3.4) and to first order in ϕ —
induce the following coupling:

γh

2Mϕ ψ̃ψ̃ = mψ(h)
2M ϕ ψ̃ψ̃ , (3.7)

where mψ(h) = γh is the temperature-dependent fermion mass. Similar coupling is observed
in the Majorana mass terms (3.5). Likewise, the coupling between the Higgs field and the
vector gauge fields in (3.2), to first order in ϕ, will generate the couplings2

m2
W (h)
M

ϕW+
µ W

−µ + m2
Z(h)
2M ϕZµZ

µ (3.8)

of the scalaron to the vector bosons W± and Z0. These couplings would allow for the scalaron
decays into other particles provided its mass m is sufficiently large.

2The tensor indices here and below are contracted by the Einstein metric g̃µν .
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In particular, interaction (3.7) allows for the scalaron decays into electron-positron pairs
if m > 2me. For the scalaron, with interaction (3.7), we have

Γϕ→ e+e− = m3
e

16πM2

(
r2
e − 1

)3/2

r2
e

= 4.54 × 10−25
(
r2
e − 1

)3/2

r2
e

s−1 , (3.9)

where re = m/2me ≥ 1.
For the scalaron representing all of dark matter in the universe, an upper bound on the

scalaron mass can be obtained from the observed 511 keV emission line from the Galactic
Centre [3, 4], which is consistent with a spectrum from electron-positron annihilation. A
possible source of positrons in this case could be a decaying dark matter with mass 1 MeV ≲
mDM ≲ 10 MeV satisfying the relation (see [3, 4] and references therein)

mDM ≃ ΩDMh
2
100 ΓDM→e+e− · (0.2–4) × 1027 s MeV , (3.10)

where h100 = H0/100 km/s Mpc, and ΓDM→e+e− is the decay rate of a dark-matter particle into
an electron-positron pair. The uncertainty in (3.10) comes from modelling the dark matter
halo profile. For the Planck-2018 value of ΩDMh

2
100 = 0.120 ± 0.001 [34], equations (3.9)

and (3.10) then give

1.04 MeV ≲ m ≲ 1.15 MeV , (3.11)

with the right inequality being roughly the upper bound on the scalaron mass if it constitutes
all of dark matter.

4 Photons from the scalaron decays

Interactions of the form (3.7) and (3.8) enable scalaron decays into photons via quantum
loops. These decays occur in perturbative regime, without the effects of induced radiation
(or, equivalently, development of parametric resonance) [16]. The corresponding decay rate
and lifetime, in the neighbourhood of m = 2me, are then calculated to be (see appendix A)

Γϕ→ γγ ≈ 5.2 × 10−30
(

m

MeV

)3
s−1 ≈

[
1.9 × 1029

(MeV
m

)3
s
]−1

, (4.1)

which is close to the value quoted in [3]. This can be compared with the age of the universe,
1.4 × 1010 yr ≈ 4.2 × 1017 s.

In this section, we estimate the spatially averaged spectrum of cosmological photons
originating from this source, assuming a spatially homogeneous universe. By f(p)dp we
denote the comoving number density of photons with comoving absolute momentum p in
the interval dp. After photon production, this quantity remains constant in a homogeneous
universe, provided photon spectral diffusion and absorption can be neglected. To demonstrate
that these processes can indeed be ignored, we estimate the mean free path ℓc ≃ 1/σcne for
Compton scattering off free electrons with average number density ne, where σc ≃ πα2/m2

e

is the scattering cross-section. The average number density of electrons in the universe
is estimated to be

ne ≈ 2 × 10−7 (1 + z)3 cm−3 , (4.2)

– 7 –
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where z is the cosmological redshift. Hence, we obtain

ℓc ≃ 2 × 1031 (1 + z)−3 cm . (4.3)

This becomes comparable to the Hubble radius H−1(z) at z ≈ 80, well beyond the reionisation
epoch, when the universe is transparent due to its neutrality. Therefore, we can safely neglect
the effects of Compton scattering in the late-time universe.

Now we can calculate the distribution function f(p). During the photon production,
the photon comoving momentum p = am/2 is in resonance with the scalaron oscillations
(here, a is the cosmological scale factor). Hence, for an increment in the comoving number
density of photons in a small time interval ∆t during which the states in the momentum
interval ∆p are filled, we have

∆nγ = f(p)∆p = f(p)p∆a
a
. (4.4)

Dividing this by ∆t, we obtain the relation

dnγ
dt

= f(p)pH = 2Γnϕ . (4.5)

Here, Γ = Γϕ→ γγ , and nϕ is the comoving number density of scalarons. Hence,

f(p) = 2Γnϕ
Hpp

, (4.6)

where Hp is the Hubble parameter at the time when electromagnetic modes with comoving
momentum p are in resonance, i.e., p = am/2, which implies 1 + z = 1/a = m/2p (we set
a0 = 1 today). In the late-time universe, we have, neglecting the energy density of radiation,

H = H0

√
Ωm(1 + z)3 + ΩΛ . (4.7)

Using these relations in (4.6), we obtain

f(p) = 2Γnϕ
pH0

√
Ωm (m/2p)3 + ΩΛ

=
qρϕ

pH0

√
Ωm (m/2p)3 + ΩΛ

, (4.8)

where ρϕ = mnϕ is the comoving energy density of the scalaron (equal to its current energy
density), and [using estimate (4.1)]

q = 2Γ
m

≈ 0.7 × 10−50
(

m

MeV

)2
. (4.9)

The total radiated photon number density is3

nγ =
qρϕ
H0

∫ m/2

0

dp

p
√

Ωm (m/2p)3 + ΩΛ

=
qρϕ
H0

× 2 arsinh
√

1/Ωm − 1
3
√

1 − Ωm
, (4.10)

3Technically, we should integrate from p = arecm/2 = m/2(1 + zrec), where the subscript denotes the
recombination epoch, beyond which the scattering and absorption of photons cannot be ignored. However, the
integral converges rapidly in the infrared, so we can replace its lower limit by zero.

– 8 –
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Figure 2. Spectrum (4.13) for Ωm = 0.3.

where we have used the relation ΩΛ = 1 − Ωm. The last factor in the last expression in (4.10)
is approximately equal to 0.96 for the Planck-2018 value of Ωm ≈ 0.3 [34], and we can replace
it by unity. The spectral density (4.8) can then be written as

f(p) ≈ nγ

p
√

Ωm (m/2p)3 + 1 − Ωm

. (4.11)

We further have ρϕ = 2M2H2
0 Ωϕ, hence

nγ ≈ 2qM2H0Ωϕ ≈ 5.8 × 10−15
(

m

MeV

)2
h−1

70 cm−3 , (4.12)

where h70 = H0/70 km s−1Mpc−1, and we have used the Planck-2018 value for the dark-
matter parameter Ωϕh

2
70 ≈ 0.24 [34].

This gives the estimate for the average intensity energy spectrum (see figure 2):

IE = E2f(E)
4π = Enγ

4π
√

Ωm (m/2E)3 + 1 − Ωm

= ImaxE/Emax√
Ωm (Emax/E)3 + 1 − Ωm

, (4.13)

where Emax = m/2 is the maximal photon energy, and

Imax = mnγ
8π ≃ 8.5 × 10−6

(
m

MeV

)3 MeV
cm2 s sr (4.14)

is the spectrum at this energy.
As discussed previously in [3, 4], dark-matter halos of compact objects (galaxies and

clusters) should produce line emission at photon energy Eγ = m/2, the intensity of which
would be greater the closer the scalaron mass is to the upper bound in (3.11), in view of
the mass-dependence of ratio (4.9).

5 Thermal component of the scalaron

5.1 Cross-sections

Possible initial conditions for the scalaron dark matter were discussed in detail in our
papers [15, 16]. Their relation with the inflationary and preheating stages are hard to
envision, firstly, because this issue is strongly model-dependent and, secondly, because at such

– 9 –
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Figure 3. Feynman graphs for the amplitude of the scalaron production by fermions (left) and gauge
bosons (right).

high energy scales, the effective action for the theory may be qualitatively modified. In any
case, it is assumed that, at reasonably low temperatures in the early universe, the scalaron
field is either misaligned from its equilibrium value (as in the original scenario suggested
in [3]), or evolves following the equilibrium value until the electroweak crossover, where it gets
excited by the non-adiabatic evolution of the trace of the stress-energy tensor of matter [16].
This second scenario works only for a specific value of the scalaron mass, of the order of
several meV. Both scenarios involve the formation of a homogeneous classical configuration
(condensate) of the scalaron in the early universe, which then becomes dark matter.

However, scalaron quanta can also be produced in the early hot universe through
interactions with Standard Model particles. In this section, we estimate the contribution
of this thermal component and demonstrate that it is negligible compared to the scalaron
condensate. The processes for scalaron production are illustrated in figure 3.

The cross-section of annihilation of fermions of mass mf (T ) in thermal equilibrium into
scalarons due to interactions (3.7) is estimated as

σf ≃ 10−3
[
mf (T )
M

]4 1
T 2 , (5.1)

where T is the temperature of the cosmic plasma. For charged fermions, this expression
holds for T ≳ mf ; below this temperature, fermions vanish from the plasma. For neutrinos
with mass mν < m, it is valid for T ≳ m, as neutrinos below this temperature lack sufficient
energy to produce scalarons.

The cross-section of annihilation of vector gauge bosons W± and Z0 at temperatures below
the electroweak crossover, where these fields are massive, from the direct interaction (3.8)
with the scalaron, is estimated to be

σtree
b ≃ 10−3 T

2

M4 . (5.2)

A similar expression holds at all temperatures for the annihilation of Higgs bosons into two
scalarons, arising from the interactions described by (3.2).

The cross-section of annihilation of massless vector gauge bosons is estimated from
the loop diagrams as

σloop
b ≃ 10−1

(
α∗
M

)4
T 2 , (5.3)

where α∗ = g2
∗/4π, and g∗ is the gauge coupling constant.
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When the annihilating particles move with relativistic velocities, their relative velocity
can be set to unity (the speed of light). The scalaron number density n, taking into account
the expansion of the universe, then satisfies the Boltzmann equation

d
(
na3)
dt

= σn1n2a
3 , (5.4)

where n1 and n2 are the number densities of the colliding particles. It is convenient to proceed
from the cosmological time to the cosmological temperature using the entropy conservation
law a3T 3N = const, where N is the (temperature-dependent) effective number of degrees
of freedom in thermal equilibrium. Using also the law

H = π

√
N

60
T 2

M
≈ 0.4

√
N
T 2

M
, (5.5)

valid in a radiation-dominated universe, we can transform equation (5.4) to

d
(
n/τ3)
dτ

= −
√
NiT

2
i

Hi

σn1n2N
1/6

τ6 = −
√
NfT

2
f

Hf

σn1n2N
1/6

τ6 , (5.6)

where τ = N1/3T is proportional to the cubic root of the entropy density, and the indices
i/f denote the initial/final values of parameters. For the initial number density of the
scalaron particles, we set ni = 0.

5.2 Annihilation of fermions

In the case of annihilation of fermions, we have, counting the spin degrees of freedom of
particles and antiparticles,

n1 = n2 = 3ζ(3)
2π2 T 3 ≈ 1

6T
3 . (5.7)

Substituting this into (5.6), using (5.1), and integrating this equation with the assumption of
slow evolution of N , we obtain the scalaron number density nf at temperature Tf , where
this process of production terminates:

nf ≈ 10−4
(
mf
M

)4 T 4
f

Hf
, (5.8)

where we have assumed Tf ≪ Ti. Note that the integral is dominated by the lower integration
limit T = Tf in this case. The current number density of the scalarons produced by one
fermion specie is then obtained by multiplying by a factor of a3

f/a
3
0 ≃ 2T 3

0 /NfT
3
f , where T0

is the current cosmic microwave background temperature:

n(f) ≃ 10−4
(
mf
M

)4 TfT
3
0

NfHf
. (5.9)

The final temperature Tf will be roughly equal to the fermion mass (below this tem-
perature, the fermion specie effectively vanish from thermal equilibrium). Using (5.5), we
obtain the final estimate

n(f) ≃ 10−4

N
3/2
f

(
mf
M

)3
T 3

0 . (5.10)

We observe that the heaviest fermion will have a major contribution to the scalaron num-
ber density.
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5.3 Annihilation of bosons

In the case of annihilation of bosons, we have estimates (5.2) and (5.3) for the cross section.
As we will demonstrate shortly, the number density of thermal scalarons will be primarily
determined by their production at high temperatures. We will use expression (5.3) for the
cross-section, treating the vector bosons as massless.

We have, counting the spin degrees of freedom of vector bosons,

n1 = n2 = 2ζ(3)
π2 T 3 ≈ 1

4T
3 . (5.11)

Substituting this into (5.6), using (5.3), and integrating this equation, we obtain the scalaron
number density nf at temperature Tf , where the process of production terminates:

nf ≃ 10−2
(
α∗
M

)4 NfT
5
i T

3
f

NiHi
, (5.12)

where we have also assumed Tf ≪ Ti. Note that the scalaron production is dominant at
high temperatures Ti in this case. The current number density of the scalarons produced
by bosons is obtained by multiplying by a factor of a3

f/a
3
0 ≃ 2T 3

0 /NfT
3
f :

n(b) ≃ 10−2
(
α∗
M

)4 T 5
i T

3
0

NiHi
≃ 10−2 α∗

N
3/2
i

(
α∗Ti
M

)3
T 3

0 , (5.13)

where we have used (5.5) in obtaining the last estimate.
The ratio of (5.13) to (5.10) gives

n(b)
n(f)

≃ 102α∗

(
Nf

Ni

)3/2 (α∗Ti
mf

)3
. (5.14)

The initial temperature Ti will be roughly equal to the reheating temperature, which is typically
very large, reaching values of order 1012–1015 GeV, so that ratio (5.14) is typically much
larger than unity. In this case, production of scalarons due to bosons will strongly dominate.

The estimates for the scalaron production due to Higgs boson annihilation will be the
same with α∗ replaced by 10−1/2. All our estimates are valid up to a numerical factor.

5.4 Fraction of thermal scalarons

Since thermal scalarons are primarily produced by bosons, we estimate their contribution to
the total scalaron number density that constitutes dark matter. The current total number
density of dark matter scalarons is calculated as

ns = ρDM

m
, (5.15)

where ρDM is the cosmological energy density of dark matter, and m is the scalaron mass.
Taking the ratio of (5.13) to (5.15), and using the fact that T 4

0 ≈ 1.5ργ , we obtain

n(b)
ns

≃ m

ρDM
× 10−2 α∗

N
3/2
i

(
α∗Ti
M

)3
T 3

0 ≈ 10−2 α∗

N
3/2
i

m

T0

(
α∗Ti
M

)3 ργ
ρDM

. (5.16)
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Using the observational estimate ργ/ρDM ≈ 2 × 10−4, we obtain

n(b)
ns

≃ 10−6 α∗

N
3/2
i

m

T0

(
α∗Ti
M

)3
. (5.17)

For the numerical estimates, we take into account that the highest reasonable reheating
temperature is Ti ∼ 1015 GeV ∼ 10−3M , T0 ≈ 2 × 10−4 eV, α∗ ∼ 10−1, Ni ≃ 100, and the
highest allowable scalaron mass is m ≃ 1 MeV. Hence, we obtain the upper estimate

n(b)
ns

≲ 10−12 . (5.18)

The contribution from Higgs boson annihilation is estimated to be at most two orders of
magnitude higher. However, this remains a negligible fraction, indicating that scalaron
radiation from the hot plasma in the early universe can be safely ignored.

6 Discussion

It is remarkable that a light scalaron in generic f(R) gravity can serve as a candidate for dark
matter [3, 4, 10, 15, 16]. An advantage of this theory can be seen in its economy: it introduces
no new fundamental fields, aside from the fact that the metric acquires an additional degree
of freedom. When assuming minimal coupling of the Standard Model to the metric field, the
theory has a single essential free parameter — the mass of the scalaron — which makes it
highly predictive. However, a comprehensive description of the scalaron’s interaction with
matter in the Standard Model has been lacking in the literature, prompting us to fill this gap.

In this paper, we revisited the effective one-loop coupling between the scalaron and
the electromagnetic field within the Standard Model, providing a detailed derivation of the
scalaron decay rate into two photons [eq. (A.7)], confirming the result of [3, 4]. We then used
this result to compute the average background radiation generated by these decays. This
decay rate can also be used to search for the potential line emission from dark matter halos
predicted by this model [3, 4]. Our analysis addresses the existing controversy in the literature
concerning this interaction, which was also described in the initial version of this paper [35].
We have shown that directly calculating loop diagrams with proper regularisation eliminates
the ambiguities present in approaches that rely on Jacobians from field redefinitions.

The dark-matter model under consideration assumes the formation of a homogeneous
classical condensate of the scalaron in the early universe, which subsequently evolves into
dark matter. However, the early hot universe can radiate thermal scalaron quanta due to
its interaction with Standard Model particles. We have estimated the contribution of this
thermal component to the total energy density of the scalaron and shown that it is negligible
compared to the energy density of the classical condensate.

A key challenge in this theory is its connection to the inflationary epoch and preheating,
during which the initial conditions for the scalaron condensate must be set. This issue
is highly model-dependent and warrants further investigation, as the effective action may
undergo qualitative changes at such high energy scales. We intend to address these topics
in greater detail in future work.
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χ/ϕ

γ

γ

ψ χ/ϕ

γ

γ

W χ/ϕ

γ

γ

W

Figure 4. Feynman diagrams in unitary gauge contributing to the decay of the Higgs boson χ or the
scalaron ϕ into two photons γ.
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A Effective interaction with photons

We recall that the effective one-loop interaction of the Higgs boson χ with photons in the
Standard Model has the form

LHγγ = − α

8πF (mH) χ
v
FµνF

µν . (A.1)

The factor F (m) for arbitrary mass m is given by [36, 37]

F (m) = FW (βW ) +
∑
ψ

Q2
ψFf

(
βψ

)
. (A.2)

Here, the sum is taken over all fermionic fields ψ with the account of the colour of quarks,
Qψ is the electric charge in units of the positron’s charge, βi = 4m2

i /m
2, and

FW (β) = 2 + 3β + 3β(2 − β)f2(β) , (A.3)

Ff (β) = −2β
[
1 + (1 − β)f2(β)

]
, (A.4)

f(β) =


arcsin β−1/2 for β ≥ 1 ,

1
2

(
π + i ln 1 +

√
1 − β

1 −
√

1 − β

)
for β < 1 .

(A.5)

This effective interaction is responsible for the Higgs-boson decay into two photons, and the
relevant Feynman diagrams for this process are shown in figure 4.

We now use reasoning similar to that in [38]. As demonstrated in section 3, the scalaron
interactions (3.7) and (3.8) to first order in ϕ are identical to those of the Higgs boson, with
the substitution χ/v → −ϕ/2M . Since the Higgs boson enters the diagrams of figure 4 only
at a single vertex, we have, from similar diagrams for the scalaron,

Lϕγγ = α

16πF (m) ϕ
M
FµνF

µν , (A.6)

where F , in which the argument now is the scalaron mass m, is given by (A.2)–(A.5). The
function F (m) is real for m ≤ 2me. We have F (2me) ≈ −4.2, and F (m) → −11/3 as m → 0.
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0.8

0.9

1.0

1.1

1.2

RΓ

Figure 5. Ratio (A.9) as a function of the scalaron mass m.

In the formal limit of all mi → 0 (at the electroweak crossover), only the contribution from
the W± bosons survive, and we have F → 2.

The total width of the scalaron decay into two photons is equal to

Γϕ→ γγ = α2m3

210π3M2 |F |2 . (A.7)

In the neighbourhood of m = 2me, equation (A.7) gives

Γϕ→ γγ ≈ 5.2 × 10−30
(

m

MeV

)3
s−1 ≈

[
1.9 × 1029

(MeV
m

)3
s
]−1

. (A.8)

This equation is valid with a good precision over the entire possible range of the scalaron
mass. In figure 5, we show the dimensionless ratio

RΓ = Γ(m)/m3

Γ(2me)/(2me)3 (A.9)

as a function of m, where Γ(m) is the exact decay width Γϕ→ γγ as a function of m. It is
observed that this ratio is close to unity over a wide range of scalaron masses.

B Field redefinition and renormalisation

Here we demonstrate that we can consistently apply the Dirac-field redefinition (3.3) when
computing the fermionic loop diagrams shown in figure 4. In terms of the original electrically
charged Dirac field, the corresponding Lagrangian in the Einstein frame is

Lψ = 1
2e
−3ϕ/2M

[
ψ
→
D̃ψ − ψ

←
D̃†ψ

]
− e−2ϕ/Mmψψψ

= 1
2e
−3ϕ/2M

[
ψ
(→
D̃ −mψ

)
ψ − ψ

(←
D̃† +mψ

)
ψ

]
−
(
e−2ϕ/M − e−3ϕ/2M

)
mψψψ , (B.1)

where D̃ = iγaẽµaD̃µ is the covariant Dirac operator in the Einstein metric frame involving
the electromagnetic field Aµ, the arrow indicates the direction of its action, and ẽµa is the
tetrad field of the Einstein metric frame. We argue that the first term (enclosed in square
brackets) in the final expression of eq. (B.1) does not contribute to the loop diagram and
can therefore be subjected to an arbitrary multiplicative redefinition of the spinor field.
This implies that the theory satisfies the field-redefinition equivalence theorems [29–33], at
least at the one-loop level, leaving the S-matrix invariant — even though the interaction
involves derivatives of the spinor.
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The first term in (B.1) is proportional to the field equation for the free Dirac spinor;
hence, it replaces one of the propagators in the triangular diagram by a constant. As a result,
each of the triangular diagrams produced by this term, though quadratically divergent in
four dimensions, depends only on one of the two photon momenta, k1 or k2. Hence, it is
proportional to the scalar product ε1 ·ε2 of the photon polarisation vectors. On the other hand,
in dimensional regularisation, which respects the gauge invariance, it should be proportional to
(k1 · k2) (ε1 · ε2)− (ε1 · k2) (ε2 · k1). This is possible only if such a diagram vanishes identically.

This can be verified by direct computation: all diagrams arising from the terms in square
brackets on the second line of eq. (B.1), after a shift of the loop momentum integration
variable, yield the same expression, proportional to∫

d4k

2 (ε1 · k) (ε2 · k) − ε1 · ε2
(
k2 +m2

ψ

)
(
k2 +m2

ψ − iϵ
)2

 . (B.2)

This expression is identically zero in dimensional regularisation. Pauli-Villars regularisation
has a similar effect. The subtracted terms introduced by this method have the same form
as the original diagram, differing only in the overall sign and coefficients and in the fermion
mass. The integration momentum shift is implemented uniformly across all terms associated
with a given diagram and does not depend on the fermion masses. The sum of these terms
yields an integrand whose integral is now convergent. This combined integral can then be
evaluated using dimensional regularisation, where each individual term is of the form (B.2)
and contributes zero — resulting in a vanishing total.

Moreover, the diagrams coming from the spinor kinetic term in (B.1) and from the
interaction vertex involving the scalaron and the electromagnetic field, while each quadratically
divergent, end up canceling each other exactly.

Only the final (mass) interaction term in eq. (B.1) remains, and it is not affected by
field redefinitions to linear order in ϕ. This term is responsible for the contribution (A.4)
to the effective interaction (A.6). This direct diagrammatic calculation using regularisation,
without the need to introduce counterterms, has the advantage of being unambiguous and
independent of the choice of conformal frame.

In the previous preprint version of this paper [35], we adopted the approach of [6], which
involves calculation of the regularised functional Jacobian for fermions following the field
redefinition in (3.3). This resulted in an anomalous contribution of the form

Lan
ϕγγ = α

16πFan
ϕ

M
FµνF

µν (B.3)

to the effective interaction, where Fan is a certain constant. Such a contribution apparently
reflects the freedom to add an arbitrary finite counterterm of this form to the effective
action during renormalisation, and this freedom is fixed by the prescription of Fujikawa’s
regularisation of the Jacobian. It now appears that this calculation is subject to several issues.

To begin with, the constant Fan in (B.3) depends on the choice of the original spinor
field variables in the functional integration measure. To illustrate this, we again consider
the case of electrodynamics in the Jordan frame, with the action

S [eµa , ψ] =
∫ [1

2
(
ψ
→
Dψ − ψ

←
D
†ψ
)

−mψψψ

]√
−g d4x , (B.4)
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where D and eµa are, respectively, the Dirac operator and tetrad field of the Jordan metric
frame. As is well known, the spinor field variables in a diffeomorphism-invariant functional
integration measure are not the original ψ but the spinor semidensities ψ′ = (−g)1/4ψ

(see [39]). So let us write the action in terms of these variables:

S′
[
eµa , ψ

′ ] =
∫ [1

2
(
ψ′
→
Dψ

′ − ψ′
←
D
†ψ′
)

−mψψ
′ψ′
]
d4x . (B.5)

Note that the flat-space limits of actions (B.4) and (B.5) are identical.
After the transformation eµa = eϕ/2M ẽµa to the Jordan frame, action (B.5) becomes

S′
[
eϕ/2M ẽµa , ψ

′
]

=
∫ [1

2e
ϕ/2M

(
ψ′
→
D̃ψ′ − ψ′

←
D̃†ψ′

)
−mψψ

′ψ′
]
d4x . (B.6)

Comparing the Lagrangian in this expression with the first line of (B.1), we see that different
spinor field redefinitions are required in the two cases to eliminate the scalaron from the spinor
kinetic term. For (B.1), the appropriate redefinition is given by (3.3), whereas for (B.6), the
redefinition ψ′ = e−ϕ/4M ψ̃′ must be used. After these transformations, the two Lagrangians
become equivalent in the flat-space limit of the Einstein frame. However, the transformations
yield different formal Jacobians in the functional integral. When regularised in Euclidean
space using Fujikawa’s method [39], which preserves gauge invariance, the logarithms of the
corresponding Jacobians in the flat-space limit take the following forms:4

ln J = ln
∣∣∣∣∣Det Dψ

Dψ̃

∣∣∣∣∣
−2

= −3
2 Tr ϕ

M
= − Q2

16π2
ϕ

M
FµνF

µν , (B.7)

ln J ′ = ln
∣∣∣∣∣Det Dψ′

Dψ̃′

∣∣∣∣∣
−2

= 1
2 Tr ϕ

M
= Q2

48π2
ϕ

M
FµνF

µν , (B.8)

where Q is the fermion electric charge. Note that Jacobian (B.7) can also be interpreted as
arising from the transformation of a spinor semidensity — specifically, (−g̃)1/4 ψ — in the
Einstein frame. Therefore, all else being equal, the resulting anomalous interactions of the
scalaron with the electromagnetic field will differ between these two frameworks.5

We believe that the resolution of this puzzle lies in the proper regularisation of quantum
electrodynamics, and we present here a heuristic argument in support of this view. One of
the most transparent ways to implement Pauli-Villars regularisation with a single subtraction
is to augment the Lagrangian by introducing two ghost fields: a bosonic spinor field ζ, and
a massive bosonic vector ghost field Gµ, with corresponding field strength Gµν [44]. The
vector ghost couples to both fermions in the same way as the gauge field Aµ, but has negative

4The fermions in the Standard Model belong to chiral representations of the electroweak gauge group. In
this connection, there is ongoing controversy in the literature regarding the presence of parity-violating terms
of the form FαβFµνϵαβµν in the chiral determinant (see [40–43]). In any case, such terms would cancel for
interactions of the scalaron with photons and gluons, whose couplings to fermions are chirality-symmetric.

5Incidentally, it is the result in equation (B.8) that correctly captures the coupling of the scalaron to the
anomalous trace of the stress-energy tensor (see [39]).
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Lagrangian. The resulting extended action takes the form

S [eµa , . . .] =
∫ [1

2
(
ψ
→
Dψ − ψ

←
D
†ψ
)

−mψψψ − 1
4FµνF

µν
]√

−g d4x

+
∫ [1

2
(
ζ
→
Dζ − ζ

←
D
†ζ
)

−Mζζζ + 1
4GµνG

µν − 1
2M

2
GGµG

µ
]√

−g d4x . (B.9)

Now we proceed to the Einstein metric frame in this action by making the conformal
transformation eµa = eϕ/2M ẽµa , where ẽµa is the tetrad field of the Einstein frame. Apart from
the mass term of the vector ghost, the vector field part is conformally invariant, and we
omit it. Action (B.9) for the spinor fields then becomes

S
[
eϕ/2M ẽµa , ψ, ζ

]
=
∫ [1

2e
−3ϕ/2M

(
ψ
→
D̃ψ − ψ

←
D̃†ψ

)
− e−2ϕ/Mmψψψ

]√
−g̃ d4x

+
∫ [1

2e
−3ϕ/2M

(
ζ
→
D̃ ζ − ζ

←
D̃†ζ

)
− e−2ϕ/MMζζζ

]√
−g̃ d4x . (B.10)

Here, the tildes denote metric-related variables in the Einstein frame.
The scalaron field can be eliminated from the kinetic terms of the spinors by the spinor

field redefinitions

ψ = e3ϕ/4M ψ̃ , ζ = e3ϕ/4M ζ̃ . (B.11)

Each of these redefinitions yields a Jacobian in the quantum functional integral. However,
the spinors involved have opposite statistics. As a result, the corresponding Jacobians are
mutual inverses (at least at one loop), so their product yields a total Jacobian equal to unity.
After the field redefinition, the action for the spinors becomes

S̃
[
ϕ, ẽµa , ψ̃, ζ̃

]
=
∫ [1

2

(
ψ̃
→
D̃ ψ̃ − ψ̃

←
D̃†ψ̃

)
− e−ϕ/2Mmψψ̃ψ̃

]√
−g̃ d4x

+
∫ [1

2

(
ζ̃
→
D̃ ζ̃ − ζ̃

←
D̃†ζ̃

)
− e−ϕ/2MMζ ζ̃ ζ̃

]√
−g̃ d4x . (B.12)

Note that the field redefinition has been performed consistently, the scalaron is no longer
coupled to the kinetic terms, and the Pauli-Villars ghost now correctly regularises the
ultraviolet divergences in loop diagrams in the Einstein frame.

This line of reasoning breaks down when multiple Pauli-Villars subtractions are needed
to regularise the loop integrals, as they can no longer be implemented directly at the level of
the Lagrangian. Nevertheless, it provides additional support for the conclusion we previously
reached using standard dimensional regularisation and Pauli-Villars regularisation of the
relevant divergent diagrams.
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