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In this manuscript, we will discuss the construction of covariant derivative operator in
quantum gravity. We will find it is more perceptive to use affine connections more general
than metric compatible connections in quantum gravity. We will demonstrate this using
the canonical quantization procedure. This is valid irrespective of the presence and
nature of sources. General affine connections can introduce new scalar fields in gravity.

Keywords: quantization, connections, non-metricity, scalar fields

1. Introduction

In this manuscript, we will discuss a few aspects of spacetime geometry relevant to

quantum gravity. In Sec.2, we will discuss the construction of covariant derivative

operator in quantum gravity. In this article, we will deal with only affine con-

nections and denote general affine connections by affine connections or connection

coefficients.1,2 We will find it is more perceptive to use affine connections more

general than metric compatible connections in quantum gravity. We will use the

canonical quantization procedure and the Arnowitt-Deser-Misner (ADM) formal-

ism to show this.3 This is valid irrespective of the presence and nature of sources.

This is a general mathematical issue which will be there, in a theory of quantum

gravity which is not a quantum field theory in a fixed background, provided some

components of metric can be taken as independent variables in a neighborhood of

the spacetime manifold. This can be done around any regular point of the spacetime

manifold.4 We will also use the general metric-metric commutators to illustrate this

issue.2

2. Quantum Gravity and Covariant Derivatives

We now consider quantization of gravity by using the canonical quantization pro-

cedure. Canonical quantization is important to find the particle spectrum when

we quantize a classical theory. In the canonical quantization of gravity, metric be-

comes operator on a Hilbert space. We represent such operators by carets. Affine

connections present in the covariant derivatives act on the tensor operators and we

represent them also by the symbols: Θ̂α
μν . Affine connections will contain compo-

nents of metric and their spacetime derivatives and also other fields as evident from

the previous discussions.
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In a Hamiltonian formulation, induced metric on a set of constant time surfaces

is used as dynamical variable. The induced metric on a set of constant time surfaces

is given by:

hμν = gμν + nμnν (1)

where nμ is the unit normal to the constant time surfaces. An expression for

conjugate momenta is given by Eq.(4). We presently use the symbols ĥ, π̂ to denote

the corresponding collection of canonical operators. In general, the Levi-Civita

connections contain metric and time derivative of metric components and hence,

will depend on the canonical conjugate variables (ĥ, π̂). We now express covariant

derivative operator in the following form:

∇̂′
μÂν = [∂μ − Γ̂αμν(∂ĝ, ĝ)]Âα = [∂μ − Γ̂αμν(π̂, ĥ)]Âα

Here, Γ̂αμν are operator version of the Levi-Civita connections. We adopt the follow-

ing operator ordering in connection coefficients. Whenever there appears a product

between partial derivatives of metric and metric itself, the partial derivative is kept

as the first term and metric is kept as the second term. The ordering of the oper-

ators (ĥ, π̂) in Γ̂αμν is given to be the same as that written in the above equation,

i.e, ĥ is kept as the successor of π̂.

We next consider the operator: qμ∇̂′
μq
ν , where qμ is a vector field acting as qμÎ

on the Hilbert space. This operator contains canonical conjugate pairs of variables

when we choose affine connections to be given by the Levi-Civita connections. In

this case, we will have the following expression:

[qμ∇̂′
μq
ν ] |Ψ〉 �= 0 (2)

remaining valid in a given state |Ψ〉 with an arbitrary well-behaved vector field qμ.

We will not have a complete set of states for which the expectation value of the

operator in the l.h.s is zero with negligible fluctuations for all well-behaved vector

fields. This will be valid only in the classical limit, and is a subject similar to

the familiar Ehrenfest’s theorems in non-relativistic quantum mechanics. Similar

discussions will remain valid even if we choose affine connections to be given by

more general expressions.5 In general, affine connections will contain canonical pairs

of variables from metric sector to have proper classical limit of the Levi-Civita

connections, and the concept of geodesics will not remain exact for all vector fields

in a quantum state. This will also remain valid for parallel transport and the

notion of parallel transport is not exact in a quantum theory of gravity. This is

expected and indicates that we can use affine connections more general than the

metric compatible connections even in free quantum gravity.

We now consider the metric compatibility conditions. The metric compatibility

conditions are to be replaced by the operator identity: ∇̂′
μ[ĝαβ ] ≡ 0. The action of

∇̂′
μ[ĝαβ ] on any state is zero if connection operators are given by the Levi-Civita

connection operators and we choose the operator ordering same as that mentioned
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in.5 Here, we always keep metric operators as the successors of the partial deriva-

tives of themselves. The same will also remain valid for ∇̂′
μ[ĝαβ ]. Here, ĝαβ will be

kept at the right of the Levi-Civita connections. We also define the contravariant

components of metric as: ĝακĝκβ = δαβ . This ordering leads to the operator identity:

∇̂′
μ[ĝαβ ] ≡ 0 irrespective of the ordering of (ĥ, π̂) chosen in the partial derivatives

of metric components. However, the operator version of metric compatibility con-

ditions need not be consistent with a canonical quantization condition. We will

demonstrate this in the following.

As mentioned above, in a Hamiltonian formulation we use induced metric on

a set of constant time surfaces as dynamical variable. Thus, gμν is replaced by:

hμν = gμν + nμnν . Here, nμ is given by (−N, 0, 0, 0), N being the lapse function.

The contravariant nμ is given by: 1
N (1,−N1,−N2,−N3); where N i are the shift

functions. We have: g00 = NkN
k − N2, g0i = Ni and Ni = gijN

j.4 The induced

metric on the constant time surfaces coincide with the spatial part of gμν which are

expressed as gij . These fields are taken to dynamical variables in general relativity

and we have the following Poisson brackets:
{
gij(t, �x), πkl(t, �y)

}
= δk(iδ

l
j)[δ(�x, �y)] (3)

Where, �x refers to the spatial coordinates and the Poisson bracket is evaluated at

equal time. The delta function is defined without recourse to metric. The conjugate

momentum is a spatial tensor density and is given by:

πpl = −
√
|gij |(Kpl −Kgpl) (4)

Where |gij | is the determinant of the spatial metric, Kpl = −∇′
pnl is the extrinsic

curvature of the spatial sections, gpl is the inverse of gpl and K is the trace of

the extrinsic curvature taken w.r.t gij .
4 We can also define the Poisson brackets

for the lapse and shift functions although their conjugate momenta vanish giving

primary constraints.4 Thus, in a Hamiltonian formulation with the Einstein-Hilbert

action, we have constraints and we can not naively replace the Poisson brackets

by commutators when we try to quantize the theory.4 There are two principal

approaches to quantize the theory.4 In the first approach, gauge fixing conditions are

introduced to render the complete set of constraints second class.4 These conditions

also determine the lapse and shift functions. We then pick two components of gij as

independent variables and quantize these components using standard commutation

relations. We can solve the constraints to evaluate other commutators. The second

approach is similar to the Gupta-Bleuler method used to quantize electrodynamics

and was initiated by Dirac.4 In this approach the classical variables are treated as

independent variables and the constraints are imposed on the quantum states. In

this case, we can replace the classical Poisson brackets by commutators when we

quantize the theory.

We now demonstrate that it is appropriate to extend the Levi-Civita connections

and metric compatibility conditions as long as we can regard components of spatial
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metric on the constant time surfaces as independent physical variables subjected to

usual canonical quantization conditions. We will also find that we can not have a

Hilbert space on which we can impose the metric compatibility conditions when such

quantization conditions remain valid. In the following, we will restrict our attention

to a neighborhood around a regular point ′x′. We can extend the neighborhood

to the complete spacetime manifold leaving away singularities and other possible

irregular points associated with the constraints.4 We pick a component of spatial

metric, say gpl, as an independent physical variable. We then have the following

equal time commutator:

[ĝpl(t, �x), π̂pl(t, �y)] = iδp(pδ
l
l)[δ(�x, �y)] (5)

Where, the point ′y′ belongs to the above mentioned neighborhood of ′x′. There will

be another such commutator for the other independent variable. The r.h.s of the

commutator is taken to be a distribution that is a spatial tensor density in the spatial

coordinates of π̂pl(t, �y). The r.h.s will be replaced by different expressions when we

replace ĝpl(t, �x) by any dependent component of metric including g0μ. These terms

are determined by the secondary constraints, gauge fixing conditions, definitions of

the lapse and shift functions given before and the fundamental commutators given

by the above equation. Covariant derivatives give changes in a tensor when we

move from one point to a neighbouring point. If the Levi-Civita connections are

consistent with the commutators obtained above, corresponding spatial covariant

derivatives of both sides of any of the commutators w.r.t the arguments of metric

will agree since both sides are equal for all components of metric. We now consider

Eq.(5). The action of ∇̂′
xk on the r.h.s is same as that on a second rank covariant

tensor and will contain spatial partial derivatives of the delta function. It will also

contain additional terms dependent on connections and metric that can explicitly

depend on time due to explicit time dependence of the gauge fixing conditions.4

This covariant derivative is not vanishing in general for all values of �x. The left

hand side vanishes as can be found from the following expression:

∇̂′
xk {ĝpl(t, �x)} π̂pl(t, �y)− π̂pl(t, �y)∇̂′

xk {ĝpl(t, �x)} = 0 (6)

This follows since we are imposing the operator versions of the metric compatibility

conditions. This can also be seen by applying the l.h.s of the above equation to

any state, introducing a sum over a complete set of states between the products

of the operators and using the fact that the action of ∇̂′
μ[ĝαβ ] on any state is

zero if connection operators are given by the Levi-Civita connection operators with

operator ordering chosen below Eq.(2). Thus, the Levi-Civita connections are not

consistent with the canonical commutators given by Eq.(5). We will consider other

operator ordering in the Levi-Civita symbols in Appendix:A and we will find that

similar inconsistency arise in these cases also. Similar situation will remain valid for

any point in the manifold where we can introduce constant time surfaces and assume

the existence of a metric component as an independent field in a neighborhood
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around that point. The above inconsistency will also arise with a different choice of

constant time surfaces. Thus, there will be a multitude of coordinate systems where

we can not use the Levi-Civita connections as connection coefficients if we impose

the quantization condition given by Eq.(5). This also indicates that we can not

use the Levi-Civita connections as connection coefficients in all coordinate systems

that are diffeomorphic to these coordinate systems due to the tensorial character

of Cαμν .

In Dirac’s approach to quantize gravity, all the classical variables are indepen-

dent and we quantize them accordingly. We can find out [ĝ0β(t, �x), π̂pl(t, �y)] from

the definitions of the lapse and shift functions and [N̂λ(t, �x), π̂pl(t, �y)] = 0, where

N0 = N .4 All spatial components gij satisfy canonical commutation relations given

by Eq.(5). We will again have the inconsistency mentioned above when we use the

Levi-Civita connections. In this case, the action of ∇̂′
xk on the r.h.s of Eq.(5) is given

by expressions like: i[∂xkδ(�x, �y) − 2Γ̂0
kp(t, �x)N̂p(t, �x)δ(�x, �y) − 2Γ̂pkp(t, �x)δ(�x, �y)],

where we have taken p = l and there is no sum over the repeated indices. Also, we

can not make the Levi-Civita connections consistent with the commutation relation

given by Eq.(5) by introducing additional constraints on the physical Hilbert space.

If we demand that the action of ∇̂′
xk to the r.h.s of Eq.(5) vanishes on the physical

Hilbert space, we will have the constraint:

[∂xkδ(�x, �y)− 2Γ̂0
kp(t, �x)N̂p(t, �x)δ(�x, �y)− 2Γ̂pkp(t, �x)δ(�x, �y)]|Ψ〉 = 0 (7)

Where, we have again taken p = l and there is no sum over the repeated indices.

There will be other similar constraints associated with other commutators. These

states also satisfy the secondary constraints. We have used the operator identities

∇̂′
μĝαβ = 0, and the Levi-Civita connections. All the above conditions will lead to

singular expressions involving δ(0) and the partial derivatives δ′(0) for expectation

values of some of the variables: ĝ0μ, ĝij , N̂
p and Γ̂αμν . This is valid for all physical

states and is physically undesirable. Lastly, the above problems will arise if we use

any set of metric compatible connections.

In the first approach to quantize the theory, it is unlikely that there will exist a

set of gauges that is time dependent, render the complete set of constraints second

class and also remove the inconsistency mentioned above. It is not possible to

remove the inconsistency in the second approach to quantize the theory. Also,

it is expected that [ĝαβ(xμ), ĝαβ(yν)] will depend on (xμ, yν) non-trivially with

non-vanishing covariant derivatives.2 We can consider semiclassical theories like

quantum fields in curved spaces to assume so. Thus, it is more appropriate to use

connections more general than metric compatible connections in quantum gravity.

The above discussions are valid irrespective of the presence and nature of sources.

We can analyze this issue further in the following way. The Levi-Civita connections

and metric compatibility conditions are taken as basic assumptions to calculate

the scalar curvature when we use the Einstein-Hilbert action to describe classical

and quantum gravity. It is better to discuss quantization and non-metricity using

the metric-affine action or Palatini action where metric and affine connections are
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independent variables. We have found that nen-metricity can give scalar fields in

the theory. One of the scalar fields can give negative stress-tensor.5
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