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In this manuscript, we will discuss the construction of covariant derivative operator in
quantum gravity. We will find it is more perceptive to use affine connections more general
than metric compatible connections in quantum gravity. We will demonstrate this using
the canonical quantization procedure. This is valid irrespective of the presence and
nature of sources. General affine connections can introduce new scalar fields in gravity.
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1. Introduction

In this manuscript, we will discuss a few aspects of spacetime geometry relevant to
quantum gravity. In Sec.2, we will discuss the construction of covariant derivative
operator in quantum gravity. In this article, we will deal with only affine con-
nections and denote general affine connections by affine connections or connection
coefficients. "2 We will find it is more perceptive to use affine connections more
general than metric compatible connections in quantum gravity. We will use the
canonical quantization procedure and the Arnowitt-Deser-Misner (ADM) formal-
ism to show this.® This is valid irrespective of the presence and nature of sources.
This is a general mathematical issue which will be there, in a theory of quantum
gravity which is not a quantum field theory in a fixed background, provided some
components of metric can be taken as independent variables in a neighborhood of
the spacetime manifold. This can be done around any regular point of the spacetime
manifold.* We will also use the general metric-metric commutators to illustrate this

issue. 2

2. Quantum Gravity and Covariant Derivatives

We now consider quantization of gravity by using the canonical quantization pro-
cedure. Canonical quantization is important to find the particle spectrum when
we quantize a classical theory. In the canonical quantization of gravity, metric be-
comes operator on a Hilbert space. We represent such operators by carets. Affine
connections present in the covariant derivatives act on the tensor operators and we
represent them also by the symbols: éo‘w. Affine connections will contain compo-
nents of metric and their spacetime derivatives and also other fields as evident from
the previous discussions.
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In a Hamiltonian formulation, induced metric on a set of constant time surfaces
is used as dynamical variable. The induced metric on a set of constant time surfaces
is given by:

huu = Guv + NNy (1)

where n, is the unit normal to the constant time surfaces. An expression for
conjugate momenta is given by Eq.(4). We presently use the symbols iL, 7 to denote
the corresponding collection of canonical operators. In general, the Levi-Civita
connections contain metric and time derivative of metric components and hence,
will depend on the canonical conjugate variables (ﬁ, 7). We now express covariant
derivative operator in the following form:

v;Au = [aﬂ - Fapu(agvg)]Aa = [aﬂ - ]_—‘awj(fr, h)]Aa
Here, I' . are operator version of the Levi-Civita connections. We adopt the follow-
ing operator ordering in connection coefficients. Whenever there appears a product
between partial derivatives of metric and metric itself, the partial derivative is kept
as the first term and metric is kept as the second term. The ordering of the oper-
ators (iL, ) in fO‘W is given to be the same as that written in the above equation,
i.e h is kept as the successor of 7.

We next consider the operator: q“@;iq”, where ¢* is a vector field acting as qﬂf
on the Hilbert space. This operator contains canonical conjugate pairs of variables
when we choose affine connections to be given by the Levi-Civita connections. In
this case, we will have the following expression:

[4"V},4"] 1) # 0 (2)

remaining valid in a given state |¥) with an arbitrary well-behaved vector field g*.
We will not have a complete set of states for which the expectation value of the
operator in the [.h.s is zero with negligible fluctuations for all well-behaved vector
fields. This will be valid only in the classical limit, and is a subject similar to
the familiar Ehrenfest’s theorems in non-relativistic quantum mechanics. Similar
discussions will remain valid even if we choose affine connections to be given by
more general expressions.® In general, affine connections will contain canonical pairs
of variables from metric sector to have proper classical limit of the Levi-Civita
connections, and the concept of geodesics will not remain exact for all vector fields
in a quantum state. This will also remain valid for parallel transport and the
notion of parallel transport is not exact in a quantum theory of gravity. This is
expected and indicates that we can use affine connections more general than the
metric compatible connections even in free quantum gravity.

We now consider the metric compatibility conditions. The metric compatibility
conditions are to be replaced by the operator identity: @L [Gapg] = 0. The action of
@; [Gap] on any state is zero if connection operators are given by the Levi-Civita
connection operators and we choose the operator ordering same as that mentioned
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in.® Here, we always keep metric operators as the successors of the partial deriva-
tives of themselves. The same will also remain valid for @L [Gap). Here, §op will be
kept at the right of the Levi-Civita connections. We also define the contravariant
components of metric as: §“" .3 = (52‘. This ordering leads to the operator identity:
@; [§ap] = O irrespective of the ordering of (h,#) chosen in the partial derivatives
of metric components. However, the operator version of metric compatibility con-
ditions need not be consistent with a canonical quantization condition. We will
demonstrate this in the following.

As mentioned above, in a Hamiltonian formulation we use induced metric on
a set of constant time surfaces as dynamical variable. Thus, g, is replaced by:
hyw = guv + nuny. Here, n, is given by (=N, 0,0,0), N being the lapse function.
The contravariant n* is given by: %(1, — N1, —N2 —N3); where N' are the shift
functions. We have: goo = NpN*¥ — N2, go; = N; and N; = g;;N7.* The induced
metric on the constant time surfaces coincide with the spatial part of g,, which are
expressed as g;;. These fields are taken to dynamical variables in general relativity
and we have the following Poisson brackets:

{95, 7), 7" (t,5)} = 6,05, [0(Z. D) 3)

Where, 7 refers to the spatial coordinates and the Poisson bracket is evaluated at
equal time. The delta function is defined without recourse to metric. The conjugate
momentum is a spatial tensor density and is given by:

= —\/lgis | (KP' — Kg?') (4)

Where |g;;| is the determinant of the spatial metric, K, = —V’'pny is the extrinsic
curvature of the spatial sections, gP! is the inverse of g, and K is the trace of
the extrinsic curvature taken w.r.t g;;.* We can also define the Poisson brackets
for the lapse and shift functions although their conjugate momenta vanish giving
primary constraints.* Thus, in a Hamiltonian formulation with the Einstein-Hilbert
action, we have constraints and we can not naively replace the Poisson brackets
by commutators when we try to quantize the theory.* There are two principal
approaches to quantize the theory.* In the first approach, gauge fixing conditions are
introduced to render the complete set of constraints second class.* These conditions
also determine the lapse and shift functions. We then pick two components of g;; as
independent variables and quantize these components using standard commutation
relations. We can solve the constraints to evaluate other commutators. The second
approach is similar to the Gupta-Bleuler method used to quantize electrodynamics
and was initiated by Dirac.* In this approach the classical variables are treated as
independent variables and the constraints are imposed on the quantum states. In
this case, we can replace the classical Poisson brackets by commutators when we
quantize the theory.

We now demonstrate that it is appropriate to extend the Levi-Civita connections
and metric compatibility conditions as long as we can regard components of spatial
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metric on the constant time surfaces as independent physical variables subjected to
usual canonical quantization conditions. We will also find that we can not have a
Hilbert space on which we can impose the metric compatibility conditions when such
quantization conditions remain valid. In the following, we will restrict our attention
to a neighborhood around a regular point 'z’. We can extend the neighborhood
to the complete spacetime manifold leaving away singularities and other possible
irregular points associated with the constraints.* We pick a component of spatial
metric, say gp;, as an independent physical variable. We then have the following
equal time commutator:

[y (¢, @), 7' (£, )] = 067, 0 [6(, )] (5)

Where, the point 'y’ belongs to the above mentioned neighborhood of ’z’. There will
be another such commutator for the other independent variable. The r.h.s of the
commutator is taken to be a distribution that is a spatial tensor density in the spatial
coordinates of #P!(t, 7). The r.h.s will be replaced by different expressions when we
replace g, (t, Z) by any dependent component of metric including go,,. These terms
are determined by the secondary constraints, gauge fixing conditions, definitions of
the lapse and shift functions given before and the fundamental commutators given
by the above equation. Covariant derivatives give changes in a tensor when we
move from one point to a neighbouring point. If the Levi-Civita connections are
consistent with the commutators obtained above, corresponding spatial covariant
derivatives of both sides of any of the commutators w.r.t the arguments of metric
will agree since both sides are equal for all components of metric. We now consider
Eq.(5). The action of V’,, on the r.h.s is same as that on a second rank covariant
tensor and will contain spatial partial derivatives of the delta function. It will also
contain additional terms dependent on connections and metric that can explicitly
depend on time due to explicit time dependence of the gauge fixing conditions.*
This covariant derivative is not vanishing in general for all values of Z. The left
hand side vanishes as can be found from the following expression:

@;k {gpl<t’ ‘f)} ﬁ—pl@’ 37) — &P (tv g)@/wk {gpl<t’ ‘f)} =0 (6)

This follows since we are imposing the operator versions of the metric compatibility
conditions. This can also be seen by applying the l.h.s of the above equation to
any state, introducing a sum over a complete set of states between the products
of the operators and using the fact that the action of @;[gaﬁ] on any state is
zero if connection operators are given by the Levi-Civita connection operators with
operator ordering chosen below Eq.(2). Thus, the Levi-Civita connections are not
consistent with the canonical commutators given by Eq.(5). We will consider other
operator ordering in the Levi-Civita symbols in Appendix:A and we will find that
similar inconsistency arise in these cases also. Similar situation will remain valid for
any point in the manifold where we can introduce constant time surfaces and assume
the existence of a metric component as an independent field in a neighborhood
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around that point. The above inconsistency will also arise with a different choice of
constant time surfaces. Thus, there will be a multitude of coordinate systems where
we can not use the Levi-Civita connections as connection coefficients if we impose
the quantization condition given by Eq.(5). This also indicates that we can not
use the Levi-Civita connections as connection coefficients in all coordinate systems
that are diffeomorphic to these coordinate systems due to the tensorial character
of €,

In Dirac’s approach to quantize gravity, all the classical variables are indepen-
dent and we quantize them accordingly. We can find out [gogs(t, %), 7 (¢, 7)] from
the definitions of the lapse and shift functions and [N*(t, %), #P4(t, )] = 0, where
NY = N.* All spatial components g;; satisfy canonical commutation relations given
by Eq.(5). We will again have the inconsistency mentioned above when we use the
Levi-Civita connections. In this case, the action of V/,, on the r.h.s of Eq.(5) is given
by expressions like: i[0,0(Z,7) — 200 (£, Z)NP(t,)5(Z, ) — 207, (t, F)6(Z, 7)),
where we have taken p = [ and there is no sum over the repeated indices. Also, we
can not make the Levi-Civita connections consistent with the commutation relation
given by Eq.(5) by introducing additional constraints on the physical Hilbert space.
If we demand that the action of V’,, to the r.h.s of Eq.(5) vanishes on the physical
Hilbert space, we will have the constraint:

[0210(Z, §) — 200, (8, D)NP (8, D)8(Z, §) — 207, (¢, D)O(Z P]C) =0 (7)

Where, we have again taken p = [ and there is no sum over the repeated indices.
There will be other similar constraints associated with other commutators. These
states also satisfy the secondary constraints. We have used the operator identities
@’Hgaﬁ = 0, and the Levi-Civita connections. All the above conditions will lead to
singular expressions involving §(0) and the partial derivatives ¢’(0) for expectation
values of some of the variables: go,, §i;, NP and f‘O‘W. This is valid for all physical
states and is physically undesirable. Lastly, the above problems will arise if we use
any set of metric compatible connections.

In the first approach to quantize the theory, it is unlikely that there will exist a
set of gauges that is time dependent, render the complete set of constraints second
class and also remove the inconsistency mentioned above. It is not possible to
remove the inconsistency in the second approach to quantize the theory. Also,
it is expected that [fas(z"), Jap(y”)] will depend on (z#,y") non-trivially with
non-vanishing covariant derivatives.? We can consider semiclassical theories like
quantum fields in curved spaces to assume so. Thus, it is more appropriate to use
connections more general than metric compatible connections in quantum gravity.
The above discussions are valid irrespective of the presence and nature of sources.
We can analyze this issue further in the following way. The Levi-Civita connections
and metric compatibility conditions are taken as basic assumptions to calculate
the scalar curvature when we use the Einstein-Hilbert action to describe classical
and quantum gravity. It is better to discuss quantization and non-metricity using
the metric-affine action or Palatini action where metric and affine connections are
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independent variables. We have found that nen-metricity can give scalar fields in

the theory. One of the scalar fields can give negative stress-tensor.”
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