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ABSTRACT

Nowadays, there has been a growing trend in the field of high-energy
physics (HEP), in both its experimental and phenomenological studies, to
incorporate machine learning (ML) and its specialized branch, deep learn-
ing (DL). This review paper provides a thorough illustration of these appli-
cations using different ML and DL approaches. The first part of the paper
examines the basics of various particle physics types and establishes
guidelines for assessing particle physics alongside the available learning
models. Next, a detailed classification is provided for representing Jets that
are reconstructed in high-energy collisions, mainly in proton-proton colli-
sions at well-defined beam energies. This section covers various datasets,
preprocessing techniques, and feature extraction and selection methods.
The presented techniques can be applied to future hadron-hadron colliders
(HHC), such as the high-luminosity LHC (HL-LHC) and the future circular
collider-hadron-hadron (FCC-hh). The authors then explore several Al
techniques analyses designed specifically for both image and point-cloud
(PC) data in HEP. Additionally, a closer look is taken at the classification
associated with Jet tagging in hadron collisions. In this review, various
state-of-the-art (SOTA) techniques in ML and DL are examined, with a
focus on their implications for HEP demands. More precisely, this discus-
sion addresses various applications in extensive detail, such as Jet tagging,
Jet tracking, and particle classification. The review concludes with an anal-
ysis of the current state of HEP using DL methodologies. It highlights the
challenges and potential areas for future research, which are illustrated for
each application.

Keywords jet images, jet point cloud, high energy physics, image
classification, deep learning, machine learning
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1 Introduction

High-energy physics (HEP) is an attracting and delicate
branch of physics that manifests at the microscopic scale
and which explores the fundamental building blocks of
the universe and forces that govern their interactions at
incredibly high energies under extremely intense conditions
[1, 2]. In this field many sophisticated instruments and
tools with large particle accelerators, like the current
CERN-LHC (located near the French and Swiss border),
to study matter at energy levels that are otherwise
unattainable to reach with conventional methods. These
gigantic machines accelerate subatomic particles at
nearly the speed of light and then smash them together,
creating energy densities analogous of the early moments
after the Big Bang [3, 4]. By studying the collisions
generated in these accelerators setups, it could be possible
to track and evaluate rare particles that have a very
short life time. This important study with the accumulated

big data at higher collider luminosity values offers an
improved understanding of the basic anatomy of different
physics process and their topologies [5, 6].

The standard model (SM) is the present theoretical
framework that describes the elementary particles and
their interactions [7]. Despite its tremendous success in
explaining many phenomena in nature, several mysteries
remain unsolved, such as matter antimatter asymmetry,
the nature of dark matter (DM), the neutrino mass and
the hierarchy problem and many other open questions
[8]. Furthermore, it is worth noting that besides its deep
investigation about the Universe puzzles, HEP has
demonstrated significant practical utility when used
with advanced technologies [9]. As a matter of fact, the
development of many techniques and technologies in this
sector has driven notable progress in medical imaging
[10, 11], radiation therapy [12, 13], and materials
research [14, 15].

The data acquisition system of large hadron collider
(LHC) stores the data on tape using grid computing
facilities, it can be disseminated for offline analysis
aimed at extracting information concerning particle
trajectories formed within the detectors. These trajectories
contain concealed details about numerous particle char-
acteristics. Jets are reconstructed by combining informa-
tion from multiple detector subsystems, primarily
calorimeters and trackers. The calorimeters (electromag-
netic and hadronic) play a central role by capturing the
energy deposits from both neutral and charged particles.
These deposits are clustered using algorithms such as
anti-k;, which group the energy into Jets based on angular
proximity in (n,¢)-space. While tracking systems
provide detailed momentum and charge information for
individual charged particles, they cannot detect neutral
particles, such as photons or neutrons. Therefore, the
calorimeter serves as the primary tool for measuring the
total energy of the Jet. This reconstruction process
ensures that Jets are defined as comprehensive objects
representing the full range of particle constituents,
crucial for subsequent analyses in HEP experiments [16].

Computer vision techniques become relevant and play
a crucial role during the analysis of offline data. Specifi-
cally, in the realm of HEP data analysis, machine learning
(ML) algorithms have found success, leading to significant
enhancements in event classification performance when
contrasted with traditional methods rooted in expert
understanding. Techniques like boosted decision trees
(BDT), shallow neural networks, and similar approaches
have been employed in HEP data analysis. More
recently, deep neural network (DNN) or deep learning
(DL) has gained widespread adoption due to its applica-
bility to intricate data structures such as images, videos,
natural language, or sensor data. There are ongoing
investigations into applying DNNs for analyzing granular
details like particle positions and momentum as they
traverse the detector. This has shown increased effec-
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tiveness in selecting signal events compared to ML algo-
rithms employing conventional feature variables rooted
in physics knowledge [17].

1.1  Motivation

In HEP, a track typically refers to the trajectory or path
followed by a charged particle as it moves through a
particle detector. HEP experiments often involve the
collision of high-energy particles, such as those produced
in particle accelerators like LHC. When these particles
collide, they produce various other particles as a result
of the collisions. These newly created particles then pass
through several sub-detectors where each designed to
measure their corresponding properties. Each charged
particle leaves behind a trace or track as it interacts
with the detector’s various components, such as tracking
chambers or silicon detectors. These tracks provide
information about the particle’s momentum, charge, and
the path it took through the detector. Analyzing these
tracks is very crucial for understanding the physics of
the collisions and for identifying the types of particles
produced.

The reconstruction of particle tracks involves sophisti-
cated algorithms and software that piece together the
recorded data from various detector components to
reconstruct the paths of the particles accurately. Then,
the reconstructed tracks are essential for a wide range of
analyses in HEP, including the discovery of new parti-
cles, the measurement of particle properties, and the
investigation of fundamental forces and interactions in
the universe.

However, in HEP experiments, there are always
chances for high background contributions or events
that are not of primary interest and can eventually
mimic the physics signal and moreover can interfere
along the physics collision. The background sources
could be the electronic components in the different
detector systems, when high-energetic particles pass
through the material budget of the detector, they can
also generate secondary tracks through different interac-
tions, and possible decay modes.

In the light of the aforementioned phenomena and
challenges, treating tracks/Jets in HEP as image or
point cloud (PC)-like data for processing and analysis is
a useful approach, especially when dealing with the
output from particle detectors. Hence, ML and DL play
vital roles in HEP experiments. They serve the following
purposes: 1) Identifying and classifying particles by
analyzing their tracks and energy deposits in detectors,
thereby enhancing precision and identification speed,
ii) assisting in the accurate reconstruction of particle
tracks from detector data, particularly in complex envi-
ronments with numerous particles and interactions,
iii) enabling efficient data analysis schemes, one can sift
through extensive datasets to pinpoint rare or noteworthy

events or particles, iv) detecting anomalies or unexpected
patterns in the recorded data, which could potentially
signify the existence of new particles and physics beyond
the SM, among other applications. These contributions
underscore the significance of ML and DL in advancing
HEP research topics.

1.2 Related work

In recent years, there has been a surge in reviews
addressing various aspects of HEP [18-21]. The review
presented in [18] delved into the realm of supervised DL
applied to high-energy phenomenology, discussing
specific use cases such as employing ML to explore new
physics parameter spaces and utilizing graph neural
networks for particle production and energy measurements
at the LHC. Meanwhile, Ref. [19] provided an overview
of the initial forays into quantum ML in the context of
HEP and offered insights into potential future applica-
tions. In Ref. [20], an array of novel tools relevant to
HEP were introduced, complete with assessments of
their performance, though there was limited discussion
about future prospects. Lastly, the review [21] compre-
hensively examined both theoretical and experimental
aspects of Jets such as triggering, data acquisition
systems, propagation, interactions, and related phenomena
in HEP.

Table 1 assesses how the proposed review aligns with
previous research in the field of HEP. Based on the
assessment, it appears that our proposed review aims to
comprehensively cover a wide range of topics related to
the ML- and DL-based in HEP, including Jet prelimi-
naries, taxonomy of HEP, available Jet datasets, Jet
tagging preprocessing, quantum ML, DL models for Jet
tagging, classification techniques, Jet tagging DL appli-
cations, and research gaps/future directions. This
suggests that the proposed review aims to provide a
comprehensive overview of the current state of research
in HEP and potential avenues for future work.

1.3 Contribution and survey structure

The objective of this survey is to provide a robust foun-
dation for both HEP researchers aiming to grasp the
principles of DL and its applications within the HEP
domain, and computer science researchers familiar with
artificial intelligence (AI) seeking insights into the
fundamental features and prerequisites essential for
constructing a robust Al model tailored specifically for
HEP, employing Jet images and PC. To achieve this
goal, our contribution is encapsulated in the following
key points:

— The survey offers preliminary insights into the various
types of particles and performance metrics associated
with both Al-based and non-Al-based Jet particle

Hamza Kheddar, et al., Front. Phys. 20(3), 035301 (2025)
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Table 1 Assessing how the proposed review aligns with previous research in the field of HEP. The (v') indicates that those
specific areas have been addressed, whereas (X) and (%) signify instances where certain areas have not been addressed, or

partially addressed, respectively.

Available Tt Quantium ML and DL Transf ML and Al-  Research
Ref Paper Publication Jet Taxonomy Jet ta em ML for HEP  models for rafr(l) i (32,?“5 DL-based based gaps and
' type year prelimanaries of HEP Jet datasets 88Ing Jet Jet P Jet classif.  Jet future

pre-process e e classification : I

and tools classification classification techniques apps direction

Mini-

g Mink o g0ig X X X X X X X x kX
[22] Review 2019 v X X v X X X * * X
[19] Review 2021 X X X X v X X X X *
[20] Review 2021 * X X X X * X * * *
[23] Review 2022 v X X * X * X * X X
[21] Review 2023 v X X X X X X X X X
V'IV‘(}EIS( Review 2024 v v v v Ve v v / / v/

physics methodologies.

— The taxonomy of ML and DL-based techniques in
HEP for analyzing Jet images and PC, along with
their respective preprocessing and feature extraction
methodologies, is thoroughly explored.

— The widely adopted Al models designed for analyzing
HEP Jet tagging, along with their descriptive
layered architectures, are extensively elaborated
upon. Furthermore, their performance metrics are
summarized and compared.

— Different state-of-theart (SOTA) methodsare clustered
based on the Al techniques employed and compre-
hensively reviewed accordingly. Additionally, the
exploration of Al-based applications in HEP Jet
classification is thoroughly detailed.

— Future directions and outlooks are explored, which
aims to offer researchers insights into existing
research gaps and areas within AI concepts and
fields that remain unexplored in Al-based Jet images
and PC.

The structure of this paper is as follows: Section 2
presents the preliminaries necessary for understanding
Jet images and PC. In Section 3, the representation of
Jet in DL-based HEP is discussed. Section 4 provides a
summary of the most available ML or DL models for
analyzing HEP Jet tagging. Section 5 showcases various
Al-based applications of Jet tagging. Section 6 highlights
the gaps and areas that remain unexplored in Al-based
Jet analysis, encompassing both techniques and applica-
tions. Finally, Section 7 concludes the survey.

2 Preliminaries

2.1  Types of particles

W and Z bosons are important closely related particles
described by the SM of particle physics. They are
together known as the weak bosons or more generally as

the intermediate vector bosons and plays a significant
role in the weak nuclear force, which is responsible for
certain types of specific interactions and radioactive
decay. The existence and properties of the Z boson,
along with the W bosons, provided strong support for
the electroweak theory and the SM as a whole. However,
as with the W boson, the SM has limitations and does
not explain all aspects of particle physics, such as grav-
ity, dark matter, and the hierarchy of particle masses.
Here are some key points about the W and Z bosons:

— Charge and variants: The W boson comes in two
varieties: the W+ and the W~ which carry a positive
and negative electric charge, respectively. These
particles are antiparticles of each other. The Z
boson is a neutral elementary particle.

— Mass and spin: The W bosons masses are around
80.4 GeV/c? (gigaelectronvolts per speed of light
squared). The Z boson has a relatively large mass.
Its mass is around 91.2 GeV/c?2. Both W and Z
bosons have a spin of 1, which is a measure of their
intrinsic angular momentum.

— Decay: The W and Z bosons are unstable and have
a very short lifetime. They quickly decay into other
particles. For example, a W+ boson can decay into a
positron (an antielectron) and a neutrino, while a
W~ boson can decay into an electron and an
antineutrino. The Z can decay into various combi-
nations of charged leptons (such as electrons and
muons) and their corresponding antiparticles, as well
as neutrinos and antineutrinos.

The Higgs boson is crucial to our understanding of
how other particles acquire mass and, by extension, how
the universe’s structure and behavior arise. The key
points about the Higgs boson are [24]

— Origin of mass is associated with the Higgs field, a
theoretical field that permeates all of space. In the
SM, particles acquire mass by interacting with the
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Higgs field. The more a particle interacts with this
field, the greater its mass will be. This mechanism
explains why some particles are heavier than others.

— Mass and spin the Higgs boson itself has a mass of
around 125.1 GeV/c?. It has a spin of 0, which
means it has no intrinsic angular momentum.

— Decay is unstable and quickly decays into other
particles after its creation in high-energy collisions.
The specific decay modes and products depend on
the energy at which it is produced.

— Higgs field interaction is a carrier of the interaction
associated with the Higgs field. When particles move
through space, they interact with this field, which
gives them mass. The Higgs boson itself is the quantized
excitation of this field.

The top quark is one of the heavy fundamental
particles described by the SM. It holds a special place in
particle physics due to its extremely large mass and its
role in various processes involving high-energy collisions.
Here are some key points about the top quark [25]:

— Mass. The top quark is the heaviest known elementary
particle. Its mass is approximately 173.2 GeV/c?,
which is even heavier than an entire atom of gold.

— Quarks and the strong force. Quarks are the
building blocks of protons and neutrons, which are
the constituents of atomic nuclei. The top quark,
like all quarks, experiences a strong nuclear force,
which is responsible for holding quarks together
within hadrons (particles composed of quarks).

— Weak decays. Due to its high mass, the top quark
is relatively short-lived and decays before it can
form bound states with other quarks to create
hadrons. It decays primarily through weak interac-
tion, one of the fundamental forces described by the
SM.

— Production and detection. The top quark is
typically produced in high-energy particle collisions,
such as those that occur in experiments at particle
accelerators like the LHC. Due to its high mass, the
top quark is often produced along with its corre-
sponding antiquark. Researchers detect its presence
indirectly by observing its decay products, which
can include other quarks, leptons (such as electrons
and muons), and neutrinos.

— Role in electroweak symmetry breaking. The
top quark is of particular interest in theories related
to electroweak symmetry breaking, a phenomenon
that explains why certain particles acquire mass. Its
large mass plays a significant role in the behavior of
the Higgs boson and its interactions.

The b and b Jets. Jets composed of b and b pairs are
identified by mandating a minimum transverse momentum
(pr) of 20GeV/c for each Jet and restricting their pseu-

dorapidity (n) to the interval 2.2 < n < 4.2. This criterion
ensures the Jets are well contained within the detector’s
instrumented region. Following initial selection, 16
distinct Jet substructure features are utilized as inputs
for the classification algorithms. Within a Jet, the highest
pr muon, kaon, pion, electron, and proton are chosen.
For each of these particles, three physical parameters
are evaluated: the relative transverse momentum to the
Jet’s axis (pl,), the electric charge (¢q), and the separation
in the (n,¢) space from the Jet axis (AR). Should any
particle type be absent, its corresponding features are
assigned a value of 0. An additional characteristic, the
weighted Jet charge @, is computed as the sum of the
particles’ charges inside the Jet, each multiplied by its
respective p?, [26].

2.2 Key concepts of MIL-based HEP

When discussing ML and its subset DL in HEP, main-
taining uniform and precise terminology is crucial for
clear communication. Supervised learning, for instance,
refers to training models using labeled datasets, where
the model learns to map input features to known
outputs, such as identifying particles or classifying Jets
based on their physical properties. In contrast, unsuper-
vised learning involves identifying patterns or structures
in data without predefined labels, often used in anomaly
detection or clustering in particle physics. Feature selection
is an essential process that focuses on choosing the most
informative input features — such as track momentum,
calorimeter energy deposits, and hit patterns in detectors
— thereby improving the performance and efficiency of
ML models by reducing dimensionality and computational
load.

The growing adoption of DL techniques, such as
convolutional neural networks (CNNs) and graph neural
networks (GNNs), has revolutionized analyses in HEP.
These methods rely on different types of layers and
architectures designed to handle the complexity and
scale of particle physics data. Conwvolutional layers in
CNNs, for instance, are particularly effective at detecting
patterns in images or PCs, by learning local features.
These layers operate by applying convolutional filters to
input data, extracting hierarchical patterns, which are
then pooled to reduce dimensionality. Pooling layers,
such as maz-pooling, downsample the spatial dimensions
of the data, retaining the most important features while
reducing computational cost. This structure allows
CNNs to efficiently process large-scale data and is
widely used in Jet classification and particle identification
tasks. Further advancements include the use of EdgeConv
layers in GNNs [28], where the network learns the rela-
tionships between particles represented as nodes in a
graph. In these models, the EdgeConv block aggregates
local particle information, capturing spatial relationships
and interactions based on particle kinematics and

Hamza Kheddar, et al., Front. Phys. 20(3), 035301 (2025)
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Fig. 1 Mind-map of the proposed review.

connectivity, which are essential for Jet tagging. The use
of global average pooling in these models helps aggregate
information from individual particles, producing a global
representation of the Jet that can then be used for clas-
sification or regression tasks. Dense layers (also known
as fully connected layers) play a critical role in transforming
high-level features learned by convolutional and graph-
based layers into a final prediction. Dense layers are
used in DNNs, CNNs, GNNs, and others, after the
feature extraction phase, where the output of the convo-
lutional or graph layers is flattened into a one-dimensional
vector and passed through one or more fully connected
layers. These layers allow the network to combine the
learned features in a non-linear way, making complex
decisions such as event classification, particle identifica-
tion, or regression for Jet properties. The dense layer’s

ability to connect all input neurons to all output
neurons allows the model to capture intricate relationships
between features, making it highly effective for tasks like
anomaly detection, signal classification, and event recon-
struction in HEP.

An essential innovation in modern DL is the Attention
layer [29], a core layer in building Transformers, enables
the model to focus on the most relevant parts of the
input data. Attention mechanisms are particularly useful
in scenarios where certain elements in a sequence (or
graph) are more important for the task than others. In
particle physics, this could involve focusing on particular
particle interactions or energy deposits in Jets. The
scaled dot-product Attention mechanism, used in Trans-
former models, computes attention scores for each pair
of input elements [30]. The attention output
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Dllsplac techniques, such as accuracy, true positive rate (TPR),
@ 4 Charged false-positive rate (FPR), receiver operating characteristic
lepton (ROC), area under curve (AUC), mean squared error
(MSE), Fubini-study tensor (FST),
Table 2 outlines these metrics, including mathematical
Heavy-flavor . o
Tet formulations and descriptions.
3 HEP Jet representation
Jet

Fig. 2 Visualization of decay involving a reconstructed Jet
and a secondary vertex, showcasing various noteworthy
features [27].

Attention(Q, K, V) is calculated as follows:

K
Attention(Q, K, V') = softmax <Q (1)

T
)
where @, K, and V represent the query, key, and value
matrices, respectively, and d; is the dimension of the
key vectors. The softmax function normalizes the attention
scores, allowing the model to weigh the importance of
different elements in the input sequence. This mechanism
enables the model to prioritize relevant information,
improving the accuracy of particle event classification,
Jet tagging, and anomaly detection, particularly when
the input data has complex dependencies or long-range
interactions between particles.

2.3 Performance measures

In the realm of HEP, performance assessment is divided
into two main categories. The first encompasses classical
metrics like energy loss, path length, and axis distance.
The second involves metrics related to DL-based HEP

This section provides an overview of the Jet datasets
comprising various forms of Jet data obtained and
generated through different methods. Additionally, the
current section delves into diverse pre-processing and
feature extraction techniques employed in this context.

3.1  Available datasets and simulation tools

The conseil Européen pour la recherche nucléaire
(CERN) open data portal provides access to a variety of
datasets from experiments conducted at the Large LHC.
These datasets include information about collisions,
particles, and Jet images and PCs. The portal offers a
great starting point for those interested in HEP
datasets. Figure 3 illustrates samples of Jet images,
featuring the average of pr-normalized quark and gluon
Jet images across 5 distinct y bins. The Jet images or
PC may undergo different preprocessing techniques,
discussed later, prior to input into ML/DL models for
classification or prediction tasks. Table 3 presents the
datasets, along with several simulation tools, most
commonly used in the research reviewed in this paper.

3.2 Pre-processing for ML-based Jet analysis

The objective of preprocessing input data is to support
the model in addressing an optimization challenge.
Usually, these preprocessing actions are not mandatory,
but they are employed to enhance the numerical conver-
gence of the model, considering the real-world

Table 2 An overview of the metrics employed to evaluate performance in ML and DL-based HEP.

Metric Formula C/R Description
FPR and FP TP The FPR, is the ratio (or percentage) of the background signal that are incorrectly identified as
TPR — C  containing Jet. The TPR. is the ratio (or percentage) of the Jet signal that is correctly identified
FP+TN" TP + FN as Jet (particle).
1 The area beneath the ROC curve is represented. It delivers a singular numeric score reflecting the
AUC / TPR d(FPR) C  cumulative effectiveness of the classification technique. An elevated AUC score signifies superior
0 performance, with the ideal score being 1.

A TP + TN
ceuracy —— - 5 | p
Y TN+ FN + TP + FP background.
1 N i i\2
MSE LY (Pi(0)-T')° R

Precision X recall

Fl-score 2 X ———
Precision + recall

The accuracy is the ratio (or percentage) of correctly detected instances of Jet in the signal. A
high accuracy indicates that the classification algorithm is more effective in detecting Jet than

The training procedure seeks to discover the model parameter values denoted as 6, which )
minimize the loss function known as MSE. Where N is the number of training Jets, P» and T is
the predicted and target probabilities, respectively, for the i-th Jet.

Represents the harmonic mean between precision and recall metrics. This measure is applied to
assess the comprehensive efficacy of the classification algorithm in identifying or tagging Jets.

Abbreviations: Classification or regression (C/R).

Hamza Kheddar, et al., Front. Phys. 20(3), 035301 (2025)
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Fig. 3 Jet images summed online and categorized into different channels employed in the analysis within the 100-200 GeV

pr range.

Table 3 A summary of available datasets, and simulation tools for Jet HEP analysis

Name Description DLA?

ATLAS Is one of the largest particle physics experiments at the LHC. They offer an “Open Data” initiative with

dot datasets that include collision data and simulated samples. These datasets can be used to study Jet images Yes!
open data and other particle physics phenomena.
CMS Compact muon solenoid (CMS) is another major experiment at the LHC. Similar to ATLAS, CMS provides .
open data for educational and research purposes. The datasets include information about collisions, Yes?
open data -
particles, and Jets.
It belongs to CERN and contains muon, kaon, pion, electron, and proton. In the complete dataset training,
Complete 400000 Jets are used for training, and the remaining 290000 are used for testing and assessing performance  No
[26].
This dataset comprises 1.2 million training samples, 400000 for validation, and another 400000 for testing.
Top Each entry in this dataset corresponds to an individual Jet, with its source being either an energetic top Yesd)
tagging quark, a light quark, or a gluon. These events were generated using the PYTHIA8 Monte Carlo event
Datasets generator, and the response of the ATLAS detector is simulated using the DELPHES software package.
The dataset is created by generating signal Squark) and background (gluon) Jets through PYTHIAS. For

Quark- the signal Jets, the process involves Z(— vv) + (u,d, 5)7 and for the background Jets, it uses Z(—wvv)+g.
gluon  Notably, there is no simulation of the detector. The particles that are not neutrinos in the final state are No

tagging grouped into Jets using the anti-kT algorithm with a radius parameter of R = 0.4. In total, this dataset

contains 2 million Jets, evenly split between signal and background categories [31].
The dataset originates from Monte Carlo simulations. The initial 21 attributes (found in columns 2-22)
Higgs  represent particle detector-derived kinematic properties within the accelerator. The remaining seven Yest)
dataset attributes are transformations of the initial 21, constituting high-level features engineered by physicists to
aid in distinguishing between the two categories.
QCD Samples are generated across different ranges of scalar sum of pr, namely 1000-1500 GeV, 1500-2000 GeV,
multi-Jet and 2000-Inf GeV. After excluding samples with pr values less than 1000 GeV, the dataset consists of No
around 450 x 10% training images, 150 x 10° validation images, and 150 x 10° testing images [17].

Delph Is a particle physics event generator designed to produce simulated collision events that are similar to those Yes?)
€PReS  observed in real experiments. It includes tools to generate Jet based on the data produced in simulations. s
Mad Is a popular event generator used in particle physics simulations. It can generate events involving Jets and Yesb)

Simulati Graph  other particles, which can then be turned into Jet PC or images.
1mulation

tools  FASTSim

Monte
Carlo

Is a tool for simulating high-energy particle collisions. It can generate Jets from simulated collision events Yes?)
and is often used for studying ML techniques in HEP.

It is generated through a dependable framework, created by integrating various tools like Pythia 8 for

generating HEP events, Delphes for emulating the detector’s response, and RAVE for reconstructing No
secondary vertices [32].

Abbreviations: Dataset link availability (DLA).

B oW N =

o o

7

) URL: opendata.cern.ch/search?page=1&size=20&experiment=ATLAS

) URL: opendata.cern.ch/search?page=1&size=20&q=jet%20images&experiment=CMS
) URL: zenodo.org/record /2603256

) URL: archive.ics.uci.edu/dataset /280/higgs

) URL: cp3.irmp.ucl.ac.be/projects/delphes

) URL: madgraph.phys.ucl.ac.be/

) URL: twiki.cern.ch/twiki/bin/view/CMSPublic/SWCuideFastSimulation
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constraints imposed by limited datasets and model
dimensions, along with the specific parameter initialization
choices. In HEP, (i) 5 represents pseudorapidity, which
is a measure related to the polar angle of a particle’s
trajectory. It is commonly used because it is less affected
by relativistic effects and is approximately invariant
under boosts along the beamline, (ii) ¢ represents the
azimuthal angle, which is the angle around the beam-
line, (iii) together, n and ¢ provide a way to specify the
direction and position of particles or energy deposits
within the detector. These coordinates are particularly
useful for representing and analyzing the distribution of
particles produced in high-energy collisions, (iv) the
combination of  and ¢ can be thought of as a way to
navigate and map the detector’s components in a way
that is sensitive to the underlying physics processes,
(v) n— ¢ space is a coordinate system used to describe
the properties and positions of particles or objects within
particle detectors, particularly in experiments at large
colliders like the LHC.

The subsequent sequence of data-driven preprocessing
procedures was employed on the Jet images and can also
be adapted for PCs:

— Center (translation and rotation). Center the
Jet image by translating it in (n,¢) coordinates, such
that the pixel with the centroid weighted by total pr
is located at (n,¢)=(0,0). This procedure involves
rotating and boosting the Jet along the beam direction
to position it at the center.

— Crop. Trim to a region of walue x value pixels
centered around (n,¢) = (0,0), encompassing the area
where 7, ¢ fall within the range (R, R).

— Normalize. adjust the pixel intensities to ensure
that the sum of all pixel values, > i equals 1
across the image, with i and j serving as the pixel
indices.

— Zero-center. Remove the average value, represented
by pi;, from the normalized training set images
from every image, thereby altering each pixel’s
intensity to I; ; = I; j — p; ;-

— Standardize. Normalize each pixel by dividing it
by o;; (the standard deviation) of the corresponding
pixel value in the training dataset. This process is
represented as: I ;=1;;/(ci;+7). A value of
r=10"" was employed to reduce the influence of
noise.

— Clustering and trimming. Reconstruct Jets by
applying the anti-k, algorithm [33] to all calorimeter
towers, utilizing a specific Jet size parameter, such
as R=1.0, and then choose the primary (leading)
Jet. Subsequently, refine the Jet by employing the
k; algorithm with a subjet size parameter of r < R,
such as r = 0.3 [34].

— Pixelisation. Create a Jet image by discretizing
the transverse energy of the Jet into pixels with

dimensions (0.1, 0.1) in the 5 — ¢ space.

— Zooming. It is the option to magnify the Jet image
by a factor that diminishes its reliance on the Jet’s
momentum.

3.3

Feature extraction and selection

Feature extraction and selection are important techniques
in HEP for analyzing and interpreting data from experi-
ments conducted at particle accelerators like the LHC.
HEP experiments produce vast amounts of data, and
the goal is to extract relevant characteristics from this
data to make: (i) particles identifications, (ii) extract
kinematic variables, such as pr, energy (E), rapidity (y),
and azimuthal angle (¢) for each detected particle,
(iii) calculating the invariant mass of particle can reveal
the presence of new particles, (iv) extract topological
features related to the spatial distribution of particles or
their interactions such as angular separations, impact
parameters, and vertex finding. The benefit of feature
selection is to make: (i) dimensionality reduction techniques
like principal component analysis (PCA) or t-distributed
stochastic neighbor embedding (t-SNE) may be
employed to reduce the number of features while retaining
as much information as possible, (ii) identify the most
discriminating features that separate signal from back-
ground, (iii) identify the most relevant features for ML
classification and model building.

Di Luca et al. [32] presents an automated feature
selection procedure for particle Jet classification in HEP
experiments. The authors use ML boosted tree algorithms
to rank the importance of observables and select the
most important features associated with a particle Jet.
They apply this method to the specific case of boosted
Higgs boson decaying to two b-quarks (H — bb) tagging
and demonstrate the impact of feature selection on the
performance of the classifier to distinguish these events
amidst the substantial and unalterable background origi-
nating from quantum chromodynamics (QCD) multi-Jet
production. They also train a fully connected neural
network to tag the Jets and compare the results
obtained using all the features or only those selected
from the procedure which consists of two main steps:
data preparation and feature ranking extraction. The
authors discover that the azimuthal angles of the large-R
Jet and the wariable radius (VR)-track Jets appear
towards the end of the feature ranking. At the top of the
ranking, they find the pr of the two VR-track Jets,
along with certain details regarding the secondary
vertex, such as its mass, energy, and displacement. The
study shows that selecting the highest-ranked features
achieves performance nearly as effective as that of the
full model, with only a slight deviation of a few percent.
This approach can be expanded to accommodate the
increased number of observable variables that upcoming
collider experiments will gather from high pr particle
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Table 4 Possible combinations of Jet features to generate new high- and low-level features that could potentially improve
ML classification for Jet HEP. The performance of employing these features are presented in Ref. [35].

Level Suggested feature name Description Grouping
DER. mass_ MMC The Higgs boson’s mass was estimated using a hypothesis-driven fitting Higgs, Mass
method
DER_ mass_ transverse_met_lep Transverse mass associated with the lepton and B ,:ﬂss Higgs, Mass
DER_mass_ vis The mass invariant to both the lepton and the tau Higgs, Mass
. T Higgs, 3-
DER_pt_h Transverse momenta of the combined vector of the lepton, tau, and Priss mo%’;gle}lta
DER _deltacta ot et Absolute disparity in pseudorapidity between the leading and subleading ‘;(;t Ylvllé?
— —Jet Jets (undefined for less than two Jets) gwar
properties
DER_ mass_jet_jet The invariant mass of the primary and secondary Jets (not applicable Jet, Mass

High-level DER__prodeta_ jet_ jet

features

DER_ deltar_tau_ lep
DER_ pt_ tot

DER_ sum_ pt

DER_ pt_ ratio_lep_ tau
DER_ met_ phi_ centrality

DER_ lep_eta_ centrality

when there are fewer than two jets)

The multiplication of the pseudo rapidities for the foremost and next-to-
foremost Jets (inapplicable if fewer than two Jets are present)

Distance between the lepton and the tau in the n—¢ plane

The pr resulting from the vector addition of the pr of th%_ lepton, tau,
the primary and secondary Jets (when applicable), and Friss

Total transverse momentum of the lepton, tau, and all Jets

Ratio of the transverse momenta of the lepton to that of the tau

Centrality of the azimuthal angle of Pl relative to the lepton and the
tau

The centrality measure of the lepton’s pseud-orapidity in comparison to
the primary and secondary Jets (not applicable for fewer than two Jets)

Jet, 3-momenta
Final state,
Angular

Final-state,
Sum

global event,
Sum

Final state, 3-
momenta

Final state,
Angular

Jet, Angular

PRI_tau_[px/py/pz]

The 3-momenta of the tau expressed in Cartesian coordinates

Final state, 3-

momenta
PRI_lep_ [px/py/pz] The lepton’s 3-momenta represented in Cartesian coordinates Fll;?érif:rtteé 3
PRI The constituent parts of the missing transverse momentum vector Final state, 3-
RI_met_ [px/py] : . .
expressed in Cartesian coordinates momenta
PRI met The magnitude of the missing transverse momentum vector represented  Final state, 3-
Low-level — in Cartesian coordinates momenta

features PRI met sumet

PRI_jet_num

PRI jet leading [px/py/pz]
PRI_jet_subleading [px/py/pz]
PRI_jet_all pt

Total sum of transverse energy

Count of Jets present in the event

The three-dimensional momenta of the primary Jet expressed in
Cartesian coordinates (not applicable if there are no Jets present)

The 3-momenta of the secondary Jet represented in Cartesian coordinates
(not defined if fewer than two Jets are present)

Final-state,
Energy

Jet, Multiplicity

Jet, 3-momenta

Jet, 3-momenta

Total sum of the transverse momenta of all Jets in Cartesian coordinates Jet, 3-momenta

Note: PRI_jet_all pt may diverge from the sum of the transverse momenta of the leading and subleading jets because events can

feature more than two jets.

Jets. The data for this research comes from
proton—proton collision events featuring a boosted Higgs
boson that decays into two b quarks. In Ref. [35], solutions
have been proposed for classifying events extracted from
the 2014 Higgs ML Kaggle dataset®). The dataset
includes a mix of low-level and high-level attributes: it
contains 18 low-level features that include three-dimen-
sional momenta (pr, 7, ¢), missing transverse momen-
tum, and the total transverse momentum from all Jets;
additionally, there are 13 high-level features motivated
by physics, covering invariant masses and angular sepa-
rations among objects in the final state. Table 4 summarizes
the features utilized, which hold potential for future
application within the context of HEP. The authors aim

8) URL: www.kaggle.com/c/higgs-boson

to ensure that the suggested networks make effective use
of low-level information; otherwise, there’s a risk of
losing these features during selection. Their focus lies in
determining the necessity of high-level features. The
proposed DNN model effectively utilize the low-level
information in the data and autonomously learn their
own high-level representations. Boost-invariant polyno-
mial (BIP) features are a type of mathematical represen-
tation used in HEP for analyzing particle collision data.
They are constructed to be invariant under boosts,
meaning they remain unchanged under transformations
to different reference frames with different velocities.
These features are designed to capture important char-
acteristics of particle Jets, such as their energy distribution
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Table 5 A summary of available ML and DL architectures for Jet HEP classification, including columns for biases, general-
izability, and recommended use cases. Bias levels range from moderate (limited datasets) to high (overfitting, dataset
reliance), while generalizability is categorized as high (broad applicability), moderate (adequate performance with some limi-
tations), and low (poor performance or untested on other tasks).

Ref. Year Model ~ IN Acc. TT AUC TT Acc. QG AUC QG Acc. Other AUC Other Link Biases General,  Fecommended
Top quark
[45] 2017 TopoDNN Image 0.916  0.972 - - - - No M L e
[46] 2018 CNN tagger Image - - - - 0.87 (DTJ) 0.943 (DTJ) No H H Jet substructure
[47] 2019 PFN-ID PC  0.932 0.981 0.900 - - - No L L Energy flow studies
[48] 2020 LGN PC 0929 0964 0803  0.832 - - Yes? L M Lorentz invariance
studies
[49] 2020 ParticleNet PC  0.940  0.985 0.840 0.911 - - No M H  Point cloud analysis
[50] 2021 EGNN  PC 0922 0976  0.803  0.880 - - Yes'® L M Graph neural
networks
[51] 2021  PCT PC 0940 0985 0841  0.914 - - No L H Point cloud
processing
[31] 2022 LorentzNet PC  0.942  0.98  0.844  0.915 - - No L M Lorentz group
studies
Analysis of long-
[52] 2022  PartT PC 0944 0987 0852  0.923 - - Yes') L H range feature
dependencies in
particles
[38] 2022 PELICAN PC 0942  0.986 - - - - Yes' M L Particle cloud
matching
[53] 2024 CGENNs PC 0942  0.986 - - - - Yes'®) L H Clifford group
analysis
[54] 2024 L-GATr PC 00942  0.987 - - - - Yes!) M g Geometric algebra
studies
Analysis of long-
[55] 2024 MIParT-L PC 0944 0987  0.853  0.923 - - Yes'® L H range feature

dependencies in
particles

Abbreviation: Input nature (IN); Point cloud (PC); Top tagging (TT); Quark-gluon (QG); DeepTop Jets (DTJ); CMS Jets (CJ);

Moderate (M); High (H); Low (L).

and substructure, while ensuring consistency across various
experimental conditions. BIP features are particularly
useful for tasks like Jet tagging and classification in
HEP experiments, as employed in Ref. [36].

4 Available AI models for HEP Jet
classification

Many DL architectures have been proposed in the
SOTA of HEP domain to identify particles. Some of
these architectures require input data in the form of
images, while others utilize PC representations [37].
Table 5 summarizes and compares the most efficient ML
and DL models, used in HEP, based on their architectures
and performances.

ML, especially DL, has a rich historical presence in
the field of particle physics. The concept of applying
neural networks for tasks like distinguishing quarks and

9 URL: github.com/fizisist/LorentzGroupNetwork

10) URL: github.com/vgsatorras/egnn

1) URL: github.com/jet-universe/particle transformer
12) URL: github.com/abogatskiy/PELICAN

13) URL:
W URL:

15) URL: github.com/jet-universe/particle transformer

gluons, tagging Higgs particles, and identifying particle
tracks has been around for more than two and a half
decades. Nevertheless, the recent advancements in DL
and the increased computational capabilities offered by
graphics processing units (GPUs) have led to a significant
enhancement in image recognition technology. As a
result, there has been a renewed and heightened interest
in utilizing these techniques. In the subsequent sections,
we provide an overview of SOTA methods in both ML
and DL. Figure 4 depicts a taxonomy of existing ML
and DL techniques, summarizes the reviewed Al-based
Jet classification models (discussed in Section 4), prepro-
cessing and datasets (discussed in Section 3), and
metrics (discussed in Section 2).

4.1  ML-based methods

ML-based analysis of HEP Jet tagging has become an
important technique in recent years. Jets are collimated

github.com/DavidRuhe/clifford-group-equivariant-neural-networks
github.com/Qualcomm-Al-research/geometric-algebra-transformer
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Fig. 4 Taxonomy of ML and DL-based HEP techniques for Jet classification, with associated preprocessing, metrics, simulation

tools and datasets.

sprays of particles, i.e., emitted from a source in a way
that they are parallel or nearly parallel to each other,
produced in high-energy particle collisions. Analyzing
their properties is crucial for understanding the underlying
physics processes. Jet images and PC are essentially 2D
and 3D representations of the energy distribution within
a Jet, where each pixel corresponds to a small region of
the Jet. For example, Bogatskiy et al. in Ref. [38] introduced
PELICAN, an ML architecture for particle physics that
leveraged permutation-equivariant and Lorentz-invariant
techniques, along with elementary equivariant aggregators
and dense message-passing blocks. It processed 4-vector
inputs representing particle jets as point clouds and
employed a classifier to reduce rank-2 input arrays (pair-
wise dot products of 4-momentum vectors of particles in
a jet) to permutation-invariant scalars using trace and
total sum aggregation functions. Dense layers and a
cross-entropy loss function were then used for optimiza-
tion. Additionally, the PELICAN regressor predicted 4-
momentum of particles using a permutation- and
Lorentz-equivariant architecture with rank-preserving
transformations and loss functions based on relative
momentum and mass resolutions.
included accuracy, AUC, background rejection rate, and
relative resolutions. PELICAN achieved state-of-the-art
performance in Jet classification, outperforming methods
like LorentzNet while using approximately five times
parameters (45k only). Its low complexity,
enhanced by equivariant aggregation, message-passing
mechanisms, and its ability to handle regression tasks,

Evaluation metrics

fewer

made it suitable for real-time applications. However, its
limitations included evaluation on limited datasets and
reliance on hyperparameter tuning.

ML technique have been used in Ref. [39] by applying
the shapley additive explanations (SHAP) method to
explain the output of two HEP events ML classifiers
(XGBoost and DNN) using the Higgs dataset. It demon-
strates SHAP’s utility in understanding complex ML
systems, particularly in the context of HEP event classi-
fiers. The TreeExplainer and DeepExplainer methods
from the Python SHAP library were used to compute
SHAP values, revealing that features like m_bb, m_wwbb,
and m_wbb were crucial in both models, although their
distribution of SHAP values differed, indicating distinct
learning processes. The process of extracting SHAP
values are depicted in Fig. 5.

In addition, quantum machine learning (QML) methods
have recently found applications in addressing challenges
within HEP, including separating signal from background
[40], detecting anomalies [41], and reconstructing particle
tracks [42].

Blance and Spannowsky [40] proposed a hybrid varia-
tional quantum that quantum
computing methods with classical neural network tech-
niques to improve classification performance in particle
physics research. The algorithm is applied to a resonance
search in di-top final states, and it outperforms both
classical neural networks and QML methods trained
with non-quantum optimization methods. The classifier’s
ability to be trained on small amounts of data indicates

classifier combines
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Fig. 5 (a) Diagram illustrating the localized explanation of an event classifier with the SHAP method. (b) Localized
SHAP explanation represented using a waterfall plot. It can be observed that the SHAP values are associated with individual
event features. The classifier’s prediction (XGBoost) is f(x) = 1.218, while the base value is E[f(x)] = 0.123. In this context,
the feature “m_ wwbb” contributes positively with a SHAP value of 4+0.77, increasing the prediction, whereas the feature

“m_ wbb” has a SHAP value of —0.6, reducing the prediction.

its potential benefits in data-driven classification prob-
lems. The proposed methodology was applied to the
generated dataset, and the hybrid approach using the
FST metric outperformed both classical neural networks
and QML methods trained with non-quantum optimization
methods in terms of maximizing learning outcomes; its
accuracy can reach 72.6%. The hybrid approach also
learned faster than an equivalent classical neural
network or the classically trained variational quantum
classifier. The paper [43] discusses the potential applica-
tions of quantum computation and QML in HEP, rather
than focusing on deep mathematical structures. The
authors claim that statistical ML methods are used for
track and vertex reconstruction. These methods vary
depending on the detector geometry and magnetic field
used in the experiment. ML can help address these chal-
lenges by providing efficient and accurate methods for
pattern recognition and particle identification. They
suggest that quantum algorithms could potentially
improve upon existing methods by offering faster and
more efficient solutions to challenging problems in
experimental HEP, such as particle identification and
track reconstruction. This can be realized by creating a
dataset recorded on tape through grid computing, which
can be distributed for offline analysis using QML to
extract information about particle trajectories developed
inside the detectors. The work [44] investigates the
potential of QML in HEP analysis at the LHC. The
authors compare the performance of the quantum kernel
algorithm to classical ML algorithms using 15 input
variables and up to 50 000 events. They used 60 statistically
independent datasets of 20 000 events each for their
analysis. The AUC is used as the metric, and the results
show that the performance of all methods improves with

increasing dataset size. For 15 qubits, the quantum
SVM-Kernel algorithm performs similarly to the classical
support vector machine (SVM) and classical BDT algo-
rithms. The quantum SVM-Kernel performances from
the three different quantum computer simulators
(Google, IBM, and Amazon) are comparable. The
authors also claim that when a selection is implemented,
permitting a signal acceptance rate of 70%, it results in
the rejection of approximately 92% of background
events, as indicated by the AUC. Consequently, the
S/+/B ratio will experience an enhancement of approxi-
mately 150% compared to a scenario without any selec-
tion. Similarly, the researchers in Ref. [26] present a new
approach to Jet classification using QML. The method
involves embedding data into a quantum state, passing
it through a variational quantum circuit, and performing
a training procedure by minimizing a classical loss func-
tion. Probability measurements of the final state are
then used to perform the classification. By exploiting the
intrinsic properties of quantum computation, such as
superposition and entanglement, the team aims to identify
if a Jet contains a hadron formed by a b or b quark at
the moment of production. The approach could lead to
new insights and enhance the classification performance
in particle physics experiments. Two datasets have been
used in this research: the complete dataset and the
muon dataset, both of which belong to CERN. In the
muon dataset analysis, 60 000 Jets are used for training
and 40 000 Jets are used for testing. The muon dataset
is a subset of the complete dataset, and it is used to
evaluate the dependence of the quantum algorithms’
performance on the number of training events and the
circuit complexity. The researchers compare the perfor-
mance of their QML approach with that of DNN, long
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Fig. 6 An example of classifier utilizing MLP trained using
kinematic and spectrum variables for Jet classification [56].
Sa,¢rim and Sa o5 correspond to hard and soft substructure
information.

short-term memory (LSTM), and LSTM with convolu-
tional layer models. They show that the results for
tagging power as a function of the Jet pr and n are
comparable within the MSE error, and therefore, they
consider only the DNN model for comparison with QML
algorithms.

4.2  MLP and DNN-based methods

Multi-layer perceptron (MLP) is an artificial neural
network composed of multiple layers of nodes, including
an input layer, one or more hidden layers, and an
output layer. Each node in one layer is connected to
every node in the subsequent layer. MLP can handle
complex nonlinear relationships between input and
output data, making them suitable for various tasks.
MLPs are versatile, scalable, and can be trained using
back-propagation, enabling them to learn from large
datasets effectively and generalize well to unseen data.
Kinematic parameters describe the motion of particles,
including velocity, momentum (pr ;) and trimmed Jet
momentum (pr juim), energy, Jet mass m; and Jet
mass trimmed m s, and angles of emission, commonly
used in physics and engineering analyses. Chakraborty
et al. in Ref. [56] employed both kinematics and spectral
function, which typically refers to a function that
describes the distribution of energy or momentum states
of particles in a particular physical system, to feed MLP
classifier as described in Fig. 6. The authors aim is to
trim/discard Jet that are unlikely to have originated
from the process of interest (effects of background
noise). This selective removal helps to improve the accuracy
of measurements and analyses by focusing only on the
most relevant particles within a jet.

The paper [48] introduces the Lorentz group network
(LGN) neural network model designed for particle
physics identification. This model is characterized by its
full equivariance to transformations under the Lorentz
group, which represents a crucial symmetry of space-
time in physics and allows for equivariant nonlinearity.
The LGN architecture has been successfully applied to a
classification task in particle physics called top tagging,
whose objective is to distinguish top quark “Jets” from a
backdrop of lighter quarks. The LGN model consists of

Fig. 7 The architecture of LGN model suggested in Ref.
[48].

several layers, including the linear input layer (W;,),
iterated Clebsch-Gordan (CG) layers (Lcg), and the
perceptrons MLP;,, layer. This design reduces the
number of learnable parameters and provides a deeper
understanding of the physical interpretation of the
results (Fig. 7). The initial linear layer processes the 4-
momenta of N,,; particles originating from a collision
event, and it can also handle associated scalar quantities
like label, charge, spin, and more. The iterated Lcg
layers are defined by a CG decomposition of the tensor
product of representations of the Lorentz group, which
allows for equivariant non-linearity. The CG layers are
alternated with perceptrons MLP,,, layer, which act only
on Lorentz invariants. At the end of each CG layer, a
MLP is applied to the isotypic component of the tensor
product. The MLP accepts NC(? scalar inputs and generates
an equivalent number of outputs, with its parameters
uniformly applied across all N,,; nodes within the CG
layer. The output layer computes the arithmetic sum of
the activations from N,,; and extracts the invariant
isotypic aspect of this sum. It subsequently employs a
final fully connected linear layer, denoted as W,,;, on
the NC(}]LV ©% scalars, generating two scalar weights for
binary classification. In the LGN model’s output layer,
P;,,, conducts the projection onto invariants, combines
contributions from particles to ensure permutation
invariance and subsequently applies a linear transforma-
tion. Pj,, operates independently on each individual
particle but maintains consistent parameter values
across all particles. The LGN model has demonstrated
competitive performance while using between 10 and
1000 times fewer parameters than other SOTA models.

The DNNs are a type of artificial neural network that
are composed of multiple layers of nodes (i.e., MLP with
multiple hidden layers), with each node connected to
every node in the previous and next layers. They are
particularly well-suited for processing high-dimensional
data, such as images or collections of features, and can
learn complex non-linear relationships between inputs
and outputs. In the context of HEP, the DNN was used
in to classify hadronic Jets based on their input features.
DNNs typically require a fixed-size input, which can be
a limitation when working with variable-length inputs
such as particle lists.

In Ref. [57], DNNs are used in HEP to classify Jets
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Fig. 8 The architecture of the TopoDNN model, consists
of 4 layers with 300, 102, 12, and 6 nodes, respectively [45].

produced in particle collisions. DNNs can automatically
extract features from Jet tagging, allowing for more
accurate classification than traditional methods that rely
on expert-designed features. Parton shower in HEP
refers to the process where high-energy particles, such as
quarks and gluons, emit further particles as they evolve,
simulating the fragmentation and radiation patterns
observed in particle collisions within particle accelera-
tors, which is crucial for understanding particle interac-
tions. Barnard et al. [34] advocate for DNNs as hadronic
resonance taggers, trained on Jet tagging generated from
different generators. The DNN showed improved perfor-
mance on test events generated by the default PYTHIA
shower instead of using HERWIG and SHERPA genera-
tors, suggesting acquisition of PYTHIA-specific features.
However, they noticed that biases may arise from generator
approximations. They examine parton shower variations’
impact on tagger performance using LHC data. Results
show up to 50% differences in background rejection.
They introduced the “zooming” method, enhancing
performance between 10% and 20% across Jet transverse
momenta. The TopoDNN model proposed in Ref. [45] is
a DNN-based architecture (Fig. 8). The network’s input
layer is designed to process vectors containing the Jet
constituents’ pr, n, and ¢ values. Manual tuning of the
network’s architecture involved adjusting the depth and
node count per layer, within a range of 4-6 layers and
40-1000 nodes per layer, respectively. rectified linear
unit (ReLU) activation function was implemented in the
hidden layers, whereas a sigmoid function was applied to
the output node. The training process utilized the Adam
optimizer, with training sessions capped at a maximum
of 40 epochs. An early stopping mechanism was
employed, utilizing a patience parameter set to 5 epochs
based on the validation set loss. The final architecture
selected features 4 hidden layers, comprising 300, 102,
12, and 6 nodes in each layer respectively. TopoDNN
achieved a significant background rejection of 45 at a
50% efficiency operating point for reconstruction-level

Jets, yielding to correctly identify top quark Jets with a
high level of accuracy while rejecting a large portion of
background events.

The researchers in Ref. [58] discusses the application
of DNNs to a wide range of physics problems, particularly
in HEP. Specifically, DNNs have been successfully
applied to tasks such as Jet tagging and event classifica-
tion. The authors explore the use of a simple but effective
preprocessing step that transforms observational quantities
into a binary number with a fixed number of digits,
representing the quantity or magnitude in different
scales. This approach has been shown to significantly
improve the performance of DNNs for specific tasks
without complicating feature engineering, particularly in
b-Jet tagging using daughter particles’ momenta and
vertex information. However, the authors in Ref. [47]
used DNNs to process collections of ordered inputs,
which can be thought of as a fixed-size representation of
variable-length inputs. This allows the DNN to learn
features sensitive to particle ordering, which can be
important for discriminating between different types of
Jets. Particle flow network with ID (PFN-ID) model [47]
is another proposed type of DL architecture that takes
particles as input and processes them in a way that is
dependent on the order the particles were fed into the
network. The PFN-ID architecture is based on the Deep
Sets framework and includes full particle ID information
(Fig. 9). The Deep Sets framework is a ML approach
that allows for learning directly from sets of features or
“point clouds”. The following are the main steps of the
framework: (i) Map each element of the set to a latent
space using a shared function. (ii) Aggregate the latent
representations of the elements using a symmetric func-
tion. (iii) Map the aggregated latent representation back
to the output space using a shared function. An additive
latent space can be used to express a general symmetric
function, as provided by the framework. Within the
scope of particle-level collider observables, the process
involves mapping each particle to a latent representa-
tion, which is subsequently collected. Subsequently, the
observables are expressed as functions on this latent
space. This decomposition includes a diverse range of
current collider observables and representations at the
event and Jet levels, including as image-based and
moment-based techniques. The PFN-ID improves the
classification performance of the particle flow network
(PFN) model for discriminating quark and gluon Jets.
Results show that PFN-ID slightly outperforms recurrent
neural network (RNN)-ID, whereas the PFN and RNN
are comparable.

The authors in Ref. [59] introduce a novel DNN
model, called sparse autoregressive model (SARM), that
learns data sparsity explicitly, yielding stable and inter-
pretable results compared to generative adversarial
networks (GANSs). In two case studies, the first, referred
to as D+ D, employs a discrete mixture model by
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Fig. 10 The architecture of CNN tagger model suggested in Ref. [46].

discretizing pixel values using predetermined grid points,
while the second, D+ C, utilizes a discrete mixture
model constructed with a truncated logistic distribution
for pixel modeling. In two case studies, SARM outperforms
GANs by 24%-52% and 66%—68% on images with high
sparsity.

In the study conducted by Ref. [60], the identification
of b Jets was investigated utilizing QCD inspired observ-
ables. The process entails the utilization of Jet substructure
observables, including one-dimensional Jet angularities
and the two-dimensional primary lund plane (PLP).
DNNs are employed to identify b Jets using these QCD-
inspired observables. The DNNs are trained on a set of
input features, which include Jet angularities and the
PLP, in order to efficiently distinguish b Jets from light
ones. The performance of the DNNs is evaluated by
comparing their results with those of conventional track-
based taggers, such as JetFitter, IP3D, and DL1 taggers.
In this study, the results indicate that the DNN discrim-
inants exhibit better performance than the IP3D tagger.

4.3  CNN-based methods

CNNs have revolutionized Jet image classification and
prediction in particle physics. CNNs excel in image
recognition by leveraging convolutional layers, weight
sharing, and pooling to capture hierarchical features,
enabling effective pattern recognition and classification
[61, 62]. This enables precise particle identification using
Jet images, improved event classification, and deeper

insights into HEP experiments, advancing researchers’
understanding of fundamental particles and interactions.
For example, the authors in Ref. [63] investigate the
capability of CNNs in discriminating quark and gluon
Jets, comparing their performance to traditionally
designed physics observables. In the realm of Jet image
classification, researchers proposed combining CNN with
various other DL techniques. For instance, Farrell’s
paper [64], hybrid DLs revolutionize particle tracking.
LSTMs excel in sequential data analysis, replacing
Kalman filtering for hit assignment, while CNNs
construct valuable detector data representations. Their
fusion unveils a potent end-to-end model, with GPU
training addressing traditional tracking algorithm scaling
challenges. The CNN tagger architecture proposed in the
paper [46] consists of a CNN with four identical convolu-
tional layers, each with 8 feature maps and a 4x4
kernel. These layers are separated in half by one 2 x 2
max-pooling layer. The CNN also includes three fully
connected layers of 64 neurons each and an output layer
of two softmax neurons. Zero-padding is included before
each convolutional layer to prevent spurious boundary
effects. The architecture ends with a flatten layer and
three fully connected layers with sizes 64, 256, 256, and
2, respectively (Fig. 10). The CNN is trained on a total
of 150 k + 150 k top and QCD Jet images, by minimizing
a MSE loss function using the stochastic gradient
descent algorithm in mini-batches of 1000 Jet images
and a learning rate of 0.003.

Oliveira et al. [65] applied a CNN directly to Jet
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Fig. 11 The architecture of DeepJet model suggested in Ref. [67].

tagging, showcasing its effectiveness as a powerful tool
for identifying boosted hadronically decaying W bosons
amid QCD multi-Jet processes. Similarly, in order to
discriminate Quark-Gluon Jet, Lee et al. in their
research [66], employed various pretrained CNN models,
including VGG, ResNet, Inception-ResNet, DenseNet,
Xception, Vanilla ConvNet, and Inception-ResNet, to
classify Jet images for distinguishing quark and gluon
hadron Jets. The study reveals that DenseNet outper-
forming larger, higher-structured networks. Despite
marginal improvements over a traditional BDT classi-
fier, stability in training can be enhanced using the
RMSProp optimizer, an adaptive learning rate optimiza-
tion algorithm. Similarly, significant progress resulted
from integrating 1D CNN and LSTM, resulting in DeepJet
NN model [27] for Jet identification. The architecture
extract abstract features from three input collections —
secondary vertices, charged particles (tracks), and
neutral particles. The final Jet flavor probabilities are
determined by combining outputs with global Jet
features in dense layers. This architecture was also
applied to heavy flavour classification, with the model
further adapted for quark-gluon tagging tasks [67]. In
Ref. [67], the model architecture consists of several
components: (i) Automatic feature extraction is
conducted for each constituent through convolutional
branches that include 1 x 1 convolutional layers. Distinct
convolutional branches are allocated for vertices,
charged particle flow candidates, and neutral particle
flow candidates, (ii) the output of the convolutional
branches is used to construct a graph representation of
the Jet, where each constituent is represented as a node
in the graph. The edges between the nodes are determined
by a distance metric that takes into account the kinematic
properties of the constituents, (iii) the graph representation
of the Jet is then processed by several graph convolutional
layers, which are designed to capture the correlations
between the constituents. The graph convolutional
layers use a learnable filter that is applied to the graph
representation of the Jet, and (iv) the output of the
graph convolutional layers is then fed into several dense
layers, which are designed to perform the final classification
task. The dense layers use a combination of fully
connected and batch normalization layers. In the
context of the DeepJet model, the RNN layer is an
important component of the DeepJet model (Fig. 11), as
it allows the model to capture the sequential information

in the charged particle tracks and to use this information
to improve the classification performance. The DeeplJet
model has been shown to achieve SOTA performance in
Jet flavour classification and quark/gluon discrimination
tasks. The model was tested using CMS simulation and
was found to outperform previous classifiers, including
the IP3D algorithm. The DeepJet model underwent a
comparative analysis against a binary quark/gluon clas-
sifier from the CMS reconstruction framework. An
improvement in performance was noted with the use of
the DeepJet model on a dataset comprised exclusively of
light quark and gluon Jets. Moreover, the DeeplJet
model was found to be more robust to variations in the
Jet constituents and kinematics, which makes it more
suitable for use in real-world scenarios. In terms of
DeeplJet’s performance, using the function of reconstruc-
ted vertices, b-Jet efficiency can reach 92%, and when
the function of Jet pr, b-Jet efficiency is around 95%.

Du et al. in their paper [68] addressed challenges in
assessing Jet distribution modification in a hot QCD
medium during heavy-ion collisions. It utilizes a CNN
trained on a hybrid strong/weak coupling model, achieving
good performance and emphasizing result interpretabil-
ity. The study reveals discriminating power in the angular
distribution of soft particles and explores the potential
of DL for tomographic studies of Jet quenching.

The study [69] demonstrates CNN’s efficacy in
predicting energy loss for quark and gluon Jets, yielding
comparable results. It highlights distinctions post-
quenching and employs DL for classification, emphasizing
energy loss’s impact on classification difficulty. In
Fig. 12, a CNN architecture is presented specifically
designed for identifying quark and gluon Jets. The
researchers [17] employed CNN to analyze LHC proton-
proton collision simulation data. Their CNN model,
utilizing detector responses as images, distinguishes r-
parity violating super-symmetry (RPV SUSY) signal
events from QCD multi-Jet background events. Achieving
1.85 times efficiency and 1.2 times expected significance
over traditional methods. the authors showcased the
model’s scalability on HPC resources, reaching 1024
nodes.

4.4

Adversarial training-based methods

GANS in image processing enhance creativity and realism
by generating new images through a dynamic interplay.
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Fig. 12 Example of CNN architecture with input Jet
image, three convolutional layers, dense layer, and output
layer are involved. In this context, red represents the transverse
momenta of charged particles, green corresponds to the prp
of neutral particles, and blue signifies the charged particle
multiplicity [63].

The generator creates images, while the discriminator
evaluates and refines them, enabling tasks like image-to-
image translation, style transfer, and data augmentation
with unparalleled versatility [62, 70]. GANs are powerful
tools for Jet image classification in particle physics.
They create realistic Jet images, enabling robust testing
of classification algorithms. GANs enhance the accuracy
of identifying particles and contribute to breakthroughs
in HEP research. However, the authors in Ref. [71]
employed another technique for adversarial training for
physics object identification and decreased the effect of
simulation-specific  artifacts. = They  systematically
distorted inputs that have been generated with fast
gradient sign method (FGSM) adversarial attack tech-
nique, this latter altering model predictions using gradient
information. The method showed how model performance
and robustness are related. They explored the trade-off
between performance on unperturbed and on distorted
test samples, investigating ROC curves and AUC scores
for the used discriminators. Similarly, in Ref. [72], the
paper investigates the loss manifold of a Jet tagging
algorithm concerning input features on nominal and
adversarial samples. Discrepancies in flatness reveal
differences in robustness and generalization. The study
suggests refined training approaches through macro-scale
loss manifold exploration for two features and devising
attacks that maintain the gradient’s directionality. This
leverages acquired insights for enhanced object identifi-
cation in particle physics.

4.5 RNN-based methods

Various types of RNNs such as bidirectional RNNs

(BRNNs), LSTM, and gated recurrent units (GRUs)
differ in architecture at the cell level within the RNN
layer. BRNNs propagate information in both forward
and backward directions, influencing predictions by
surrounding words. LSTM tackles vanishing gradients
with inner cells containing input, output, and forget
gates, regulating information flow. GRUs-based
networks address short-term memory issues with reset
and update gates controlling information utilization akin
to LSTM gates [61, 73]. Recursive neural networks
(RecNNs), are designed to operate on hierarchical or
tree-structured data, where the relationships between
elements are defined by a recursive structure. Instead of
processing sequences sequentially with temporal depen-
dencies, like RNNs, RecNNs recursively apply the same
neural network operation to combine representations of
child nodes to produce a representation of their parent
node, traversing the hierarchical structure. In light of
this, the authors in Ref. [74] investigate RecNNs for
quark/gluon discrimination. Results indicate RecNNs
outperform baseline, boosted decision tree, in gluon
rejection rate by a few percent. Even with minimal
input features such as pr,n,¢, RecNNs yield promising
results, suggesting tree structure contains essential
discrimination information. Additionally, rough up or
down quark Jet discrimination is explored. In Ref. [73],
a neural network was created specifically for Jet binary
classifying. The network comprises two hidden layers
employing recurrent cells, with a structure consisting of
25 LSTM cells and utilizing a tanh activation function
at its core.

4.6  GNN-based methods

GNNs are neural networks designed for graph-structured
data, learning node and edge representations while
capturing complex relationships and dependencies within
graphs for tasks such as classification and prediction. In
the HEP context, the authors in Ref. [49] proposed the
ParticleNet model (Fig. 13). The architecture is a
customized neural network that operates directly on
particle clouds for Jet tagging. It uses dynamic graph
CNNs to process the unordered set of constituent particles
that make up a Jet. The architecture consists of three
EdgeConv blocks, each with a different number of channels
and nearest neighbors. EdgeConv block starts by repre-
senting a point cloud as a graph, whose vertices are the
points themselves, and the edges are constructed as
connections between each point to its K-nearest neighbors
(KNN) points. The EdgeConv block then finds the KNN
particles for each particle, using the “coordinates” input
of the EdgeConv block to compute the distances. Inputs
to the EdgeConv operation, the “edge features”, are
constructed from the “features” input using the indices
of KNN particles. The EdgeConv procedure is executed
using a three-layer MLP. Each layer is structured to
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Fig. 13 The architecture of ParticleNet model suggested in Ref. [49].

include a linear transformation, succeeded by batch
normalization, and subsequently a ReLU activation.
Additionally, a shortcut connection is integrated into
every block parallel to the EdgeConv operation, facilitating
the direct passage of input features. An EdgeConv block
is defined by two key hyper-parameters: the neighbor
count k and the channel count C, which respectively
denote the number of neighbors to consider and the
number of units within each layer of linear transforma-
tion. The EdgeConv blocks play a crucial role in learning
the local features of the particle cloud and aggregating
them into a global feature vector for the Jet. Following
EdgeConv blocks, global average pooling aggregates
particle features, leading to a 256-unit fully connected
layer, ReLU activation, dropout, and a 2-unit softmax
output for binary classification. The ParticleNet archi-
tecture achieves SOTA performance on two representative
Jet tagging benchmarks and is improved significantly
over existing methods.

Similarly, Ref. [50] proposed the equivariant graph
neural networks (EGNN) model, which is a GNN archi-
tecture that is translation, rotation, and reflection equiv-
ariant [E(n)], and permutation equivariant with respect
to an input set of points. It uses a set of filters that are
equivariant to the action of the symmetry group, which
are constructed using a combination of radial basis func-
tions and Chebyshev polynomials. The EGNN algorithm
possesses the same flexibility as the GNN technique,
while also maintaining E(n) equivariance similar to the

radial field algorithm. Additionally, it eliminates the
requirement for computationally intensive procedures,
such as spherical harmonics. The EGNN exceeds other
equivariant and non-equivariant options while maintaining
efficiency in terms of running time. Moreover, the
EGNN approach demonstrates a 32% reduction in error
compared to the SOTA method.

Another architecture called the LorentzNet is
proposed in Ref. [31], which is based on the Lorentz
group equivariant block (LGEB) block. The structure of
LGEB consists of several layers, including Minkowski
norm and inner product, sum pooling, a MLP, and a
Clebsch—Gordan tensor product. The input of LGEB is a
set of 4-momentum vectors, which are transformed by
the Minkowski norm and inner product layer to obtain
Lorentz-invariant geometric quantities. The sum pooling
layer aggregates the geometric quantities to obtain a
scalar representation of the input. The MLP layer is
used to learn a nonlinear mapping from the scalar repre-
sentation to a new feature space. Finally, the Clebsch—
Gordan tensor product layer is used to combine the new
feature space with the original input to obtain the
output of LGEB. It is designed as a Lorentz group-
equivariant mapping to preserve the symmetries of the
Lorentz group, ensuring the model’s equivariance and
universality.

The paper [53] introduced Clifford group equivariant
neural networkss (CGENNSs), a novel GNN framework
designed to construct O(n)- and E(n)-equivariant models
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using Clifford algebra. CGENNs leveraged the geometric
properties of Clifford algebras, such as the geometric
product, to parameterize equivariant neural network
layers. These layers operated on multivectors — struc-
tures encompassing scalars, vectors, and higher-dimen-
sional geometric features — enabling symmetry-aware
computations. Input point cloud included scalars (e.g.,
mass) and vectors (e.g., positions), embedded into multi-
vector subspaces. CGENNs achieved SOTA performance
across domains, including 3D n-body simulations and
4D Lorentz-equivariant tasks, and Jet tagging in HEP,
outperforming models like LorentzNet and EGNN.
However, their computational costs, due to complex
geometric products, remained a challenge for scalability
and real-time applications.

4.7  Transformer-based methods

Transformers are AI models using self-attention mecha-
nisms to process sequential data, excelling in natural
language processing [81], computer vision [82], and time-
series tasks by capturing long-range dependencies and
contextual relationships efficiently. Researchers in HEP
have investigated transformers for the Jet tagging task.
For example, Ref. [51] introduced a modified point cloud
Transformer (PCT) for Jet-tagging tasks in collider
physics. The PCT leveraged self-attention layers and
EdgeConv blocks to handle the unordered nature of
particle data, ensuring permutation invariance. Jets
were represented as point clouds with up to 100 parti-
cles, described by kinematic features such as momentum
and particle types. The suggested PCT achieved SOTA
performance, with an high AUC for both top tagging
and quark-gluon classification, showing up to a 20%
improvement in background rejection over models like
ParticleNet. Despite its superior performance, the
computational cost was significant, with 266M FLOPs,
making real-time applications challenging.
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Fig. 14 The architecture of EGNN model suggested in
Ref. [50].

In addition, the work in Ref. [52] proposed PartT,
which is a new Transformer-based architecture for Jet
tagging. Its main task is to identify the origin of a Jet of
particles produced in HEP experiments. ParT makes use
of two sets of inputs: (i) the particle input, which
includes a list of features for every particle and forms an
array, and (ii) the interaction input, which is a matrix of
features for every pair of particles. ParT employs a
novel pairwise multi-head attention (P-MHA) mecha-
nism, which allows the model to attend to pairs of particles
and learn their interactions. The P-MHA is more effective
than standard plain multi-head attention. This assertion
is substantiated when the pre-trained ParT models are
fine-tuned on two widely adopted Jet tagging bench-
marks, the quark-gluon tagging dataset and the binary
classification dataset for identifying boosted W bosons
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decaying to two quarks. The fine-tuning process involves
training the ParT models on a smaller labeled dataset
specific to each benchmark, which allows the models to
learn the specific features and patterns relevant to each
task. The fine-tuned ParT models achieve significantly
higher tagging performance than the models trained
from scratch and outperform the previous SOTA
models, including ParticleNet and other Transformer-
based models.

Moving on, Ref. [54] introduced the Lorentz geometric
algebra Transformer (L-GATr), a versatile architecture
designed for high-energy physics. L-GATr combined
Lorentz-equivariant geometric algebra with attention
mechanisms, enabling robust handling of particle physics
data in four-dimensional spacetime. The architecture
accommodated variable-length inputs, exploited Lorentz
symmetry, and extended to generative modeling via
continuous normalizing flows trained with Riemannian
flow matching. It used Transformer-based layers with
Lorentz-equivariant attention and normalization tailored
to Minkowski space, processing particle data parameterized
by type and four-momentum vectors. The evaluation

employed metrics such as accuracy, AUC, background
rejection rates, MSE, likelihood, and two-sample tests. L-
GATr demonstrated competitive or superior performance
compared to Lorentz-equivariant graph networks.
However, it had computational overhead relative to
standard transformers and left its potential for pretraining
in HEPs unexplored. Similarly, more-interaction particle
Transformer (MIParT) scheme [55] introduced the more-
interaction attention (MIA) mechanism to enhance Jet
tagging by embedding detailed particle interactions.
Based on the Transformer architecture, MIParT-L
doubled the dimensions of interaction embeddings for
large datasets while reducing model complexity, with
30% fewer parameters and 53% lower computational
demands than its predecessor, ParT. Tested on top
tagging and quark-gluon datasets, MIParT-L achieved
nearly identical accuracy and AUC to leading models
while improving background rejection by 25% and 3%,
respectively. Fine-tuning on large pre-trained datasets
further improved performance by 39% and 6%. Despite
its efficiency, the interpretability of MIParT-L remained
a challenge, limiting insights into its decision-making
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Fig. 17 Taxonomy of Al-based HEP applications using Jet images or PC.

process. This trade-off underscored the computational of
model efficiency and robust performance across diverse
Jet tagging tasks.

5 Applications of Al-based Jet classification

Jet images and PC processed through ML and DL tech-
niques hold vast potential across various applications
within the HEP domain, some of theme are already
described in Ref. [18]. This section presents a compre-
hensive overview of cutting-edge work in this area, cate-
gorized into several key domains: Jet parameter scan-
ning, event classification, Jet tagging, multi-Jet classifi-
cation, energy estimation, and beyond [83]. The taxonomy
of Al-based Jet image and PC applications is visualized
in Fig. 17, illustrating their scope and relationships. The
section thoroughly reviews some applications conducted
by researchers, while suggesting future directions for
those not yet explored. Additionally, Table 6 provides a
concise summary of performance metrics, limitations,
online project availability, and results obtained across
these applications, offering valuable insights into their
efficacy and applicability.

5.1  Jet parameters scan

A parameter scan in HEP involves systematically
exploring a wide range of values for the theoretical
parameters that define a given model. These parameters
often characterize the masses of new particles, coupling
strengths, or other fundamental quantities hypothesized
in extensions of the SM. By examining different combi-
nations of these parameters, researchers aim to identify
which sets are compatible with current experimental
data or make predictions that can be tested in future
experiments. This process helps narrow down the vast
theoretical landscape to more plausible scenarios, guiding
ongoing investigations and informing the design of new
searches [84].

The utilization of ML and DL models enables the
comprehension and estimation of the correlation between
the parameter space of new physics models and the
experimental physical observables, including signatures
characterized by Jets, leptons, and missing transverse

energy. This facilitates the efficient constraint of the
parameter space of the new physics model [18]. Given
the sensitivity of the ATLAS experiment to exploring
parameters, event counts, and Jet distributions in new
physics scenarios, significant computing power is
required to deduce the surviving regions of the parameter
space of constrained minimal super-symmetric standard
model (CMSSM) using Bayesian posterior probability
and likelihood function ratio tests.

To mitigate computational demands, the study [85]
utilizes an MLP as a regressor to learn the mapping
from CMSSM model parameters ¢ to weak-scale super-
symmetric particle masses m. The output of the SoftSusy
physical package serves as the target output value of the
neural network. Approximately 4000 sample points in
the parameter space form the training set. With a given
set of CMSSM parameters, this MLP model rapidly
predicts the corresponding supersymmetric particle mass
spectrum, which can then be used to forecast observable
distributions at the LHC, including Jet multiplicities
and kinematic features. This approach significantly
accelerates the process compared to traditional methods.
To identify the parameters of a new physics model, [86]
trained an MLP using 84 physical observables from the
14 TeV LHC as inputs, many of which involve Jets and
their kinematic properties, with the parameters of a
supersymmetric model as the desired outputs. The study
revealed that with a collider luminosity of 10 b, the
CMSSM model’s parameters My and M, s, could be reliably
determined with just a 1% margin of error. With a
collider luminosity of 500 fb—!, additional model parameters
such as tan3 and A, could also be accurately estimated.
In contrast, the conventional approach of minimizing y?2
yielded comparatively inferior results.

Generating collider event samples at the LHC through
Monte Carlo simulation can be time-intensive, especially
when analyzing detailed Jet structures. While a rapid
detector simulation requires only a few minutes, a
comprehensive simulation using the GEANT4 frame-
work, as employed by ATLAS and CMS, may necessitate
several days. To address this, Ref. [87] applied parallel
full detector simulations using four parameters —
common scalar mass (mg), universal gaugino mass
(my2), the trilinear coupling (Ay), and the ratio of
vacuum expectation values (tanj3)— to produce events
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Table 6 Summary of the performance of certain ML and DL frameworks proposed for HEP. Only the best performance is
reported in the case of multiple tests.

Ref. DLM Dataset Description BP (%) Limitations PLA
Classification of multi-Jet events The proposed CNN model needs validation
[17] CNN  QCD multi-Jet using CNN at high energies of 13 AUC = 99.03 with additional datasets to ensure its No
TeV generalizability.
. BIP features invariant under _ Performance could be enhanced through 16)
(36] SVM Simulated boosts for improved Jet tagging Acc = 92.7 comprehensive hyperparameter tuning. Yes
Sequence of Jet components Could be enhanced by employing the LSTM
[45] DNN Simulated  arranged in a specific order for Acc = 50 method to efficiently classify Jet from No
training inputs. background.
DNNs for categorizing Jeot The accuracy of the DNN models is limited by
[57] DNN Simulated!”) substructure ir% HEP g AUC = 95.3 the accuracy of the simulation models used to No
generate the training data.
?H?P ma}:y noi 'Comprehenlsivvely cgpltgrefl )
e s eature interactions or explain model behavior
[39] DNN Higgs Ccl;irsllff};clgﬁgl]a“at?%rﬁ AP Acc = 66 in all cases. It could demand substantial Yes'®)
computational resources for large datasets or
intricate models.
Detection of b Jets utilizing QCD- _ The DNN performed slightly less effectively
(60] DNN ATLAS inspired measurements AUC = 67 than the JetFitter algorithm. No
. Creating images with low pixel Slower than the non-autoregressive model
[59] DNN P}’thla Jet density in particle physics for two ‘g%% - 8%’%’ LAGAN. D + D performed better than D +C Yes!?
mages cased D+ D and D+ C — ©* for both Pythia and Monte Carlo images.
. The higher the energy loss, the more
[69] CNN Simulated gllil)\; %);tsredlctlng quark and Acc = 75.9 challenging the task of classifying the Jets No
becomes.
[74] RecNN Simulated gg?:{ggzt%iark/ gluon AUC = 86.37 Event-level analysis is not performed. Yes?)
Classification for different event SVM and KNN exhibit inferior performance
types, including IBD prompt Acc = compared to CNN in identifying event types.
[75] CNN-AE Daya Bay IBD delay, Muon, Flasher, aI71d 99.9 (Muon) Moreover, semi-supervised techniques have not No
other been examined.
Quantum CNN showed a lower performance
Emploving a quantum CNN to than CNN when it comes to a binary
[76] CNN Simulated catep oglizegeve%ts in HEP Acc = 97.5 classification of Muon and Electron. Besides, No
g CNN showed low performance when classifying
Muon and Pion compared to quantum CNN.
AL ATias  Predi e LHC wishave | g P bl cn beschioved by
dismissed a new physics model ’ pr%dictign
Identifying boosted top quarks It has 4% mis-tag rate. It exclusively utilizes
. using pattern recognition through _ hadronic calorimete (HCAL) data, though
(78] ANN Simulated an artificial neural network Eff = 60 additional data, like sub-Jet b-tags, are crucial No
(ANN) in HEP experiments for top tagging.
Enhancing Jet reconstruction at _ The computational costs, wnen employing the
(79] DNN Real data CMS through DL FPR = 65 proposed model, have not been verified. No
Detection of Jet quenching effects The computational costs, when emp@oying the
[80] CNN Simulated caused by the presence of the AUC = 75 Proposed model, have not been verified. When

quarkgluon plasma (QGP)

data normalized, AUC reached only 67% (when
DT jet > 30 GeV)

Abbreviations: DL model (DLM); Best performance (BP); Project link availability (PLA); auto-encoder (AE).

including Jets and other final-state objects more effi-
ciently. Two ML models, the MLP and SVM, were
employed to learn the correlation between the number of
signal events and the CMSSM parameters. The results
showed that predicting the likelihood function, which
strongly depends on Jet signatures and other observ-
ables, could achieve several percent accuracy with just
2000 training samples. Moving on, the paper [88]

proposed a machine learning scan (MLS) framework for

efficient exploration of multi-parameter supersymmetric
models, surpassing traditional methods like MCMC and
MultiNest. Utilizing deep neural networks, the MLS
incrementally learns parameter space, reducing compu-

tational costs while improving target discovery. It inte-

grates HEP packages for precise calculations, including
tools like GAMBIT and micrOMEGAs, demonstrating

16) URL:
17) URL:
18) URL:
19) URL:
20) URL:
21) URL:

zenodo.org/records/ 7271316
www.igh.uci.edu/~ptbaldi/physics/
github.com/rpezoa/hep_shap/
mlphysics.ics.uci.edu/
github.com/glouppe/recnn
susyai.hepforge.org
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efficiency on toy and CMSSM datasets. Achieving up to
80% sampling efficiency in constrained parameter
spaces, MLS outperforms MultiNest under 68% and 95%
confidence levels, offering scalability and adaptability for
physics model analysis.

5.2 Jet classification and tagging

Despite treating Jets as images or PC in the calorimeter
and exploiting the benefits of DNNs in classification for
improved Jet substructure detection, these approaches
encounter hurdles. Challenges such as Jet image sparsity
and potential precision loss arise from constructing Jet
images through pixelation or creating advanced Jet
features. In this study [45], a sequential method is
employed, utilizing an ordered sequence of Jet
constituents as inputs for training. Unlike many prior
methods, this approach avoids information loss during
pixelization or high-level feature computation. The Jet
classification technique achieves a considerable background
rejection efficiency operating point for reconstructed Jets
with transverse momentum ranging from 600 to
2500 GeV. Moreover, it remains unaffected by multiple
proton-proton interactions at levels anticipated during
Run 2 of the LHC.

Particles generated in a collider with significant center-
of-mass energy typically exhibit high velocity. As a
result, their decay products tend to align closely, leading
to overlapping Jets. It is crucial in collider data analysis
to discern whether a Jet originates from a solitary light
particle or from the decay of a heavier particle. Traditional
approaches rely on manually crafted distribution
features based on energy deposition in calorimeter cells.
However, due to the intricate nature of the data, ML
techniques have proven more efficient than human
efforts for this task [89]. In Ref. [90], the Jet image
concept treats the detector as a camera, capturing Jet
energy distribution in calorimeters as a digital image.
This enables Jet tagging as a pattern recognition task,
utilizing ML, like Fisher classification, to differentiate
between hadronic W boson decay and Jets from quarks
or gluons. Monte Carlo simulation shows superior
discrimination compared to traditional methods, offering
insights into Jet structure. In Ref. [63], CNNs improve
tagging by treating Jet energy distribution as an image,
using channels for features like particle momentum and
count. Results show CNNs can surpass traditional meth-
ods, providing reliable insights from collider simulation
data despite variations in event generators. However,
CNNs demonstrate a lack of sensitivity to quark/gluon
Jets from different generators, akin to conventional Jet
measurements. Moving on, in Ref. [91], Jet tagging is
performed using RNN, leveraging the similarity between
Jet clustering and natural language structure. Final-
state particle four-momenta are treated as language
words, and Jet clustering as grammatical analysis. RNN

efficiently processes the tree-like Jet structures, enabling
direct use of particle data regardless of count. This
method yields higher data utilization efficiency and
prediction accuracy than Jet image-based ML, extending
to event classification. In Ref. [74], RNNs distinguish
quark and gluon Jets, showing higher gluon suppression.
Factors affecting RNN performance are explored, with
preliminary quark tagging results. Numerous explorations
for phenomena beyond the SM at the LHC depend on
top tagging techniques that distinguish between boosted
hadronic top quarks and the more prevalent Jets that
originate from light quarks and gluons. The HCAL
essentially captures a “digital image” of each Jet, where
the pixel brightness represents the energy deposited in
HCAL cells. Therefore, top tagging is essentially a
matter of recognizing patterns. The work in Ref. [78]
propose a novel top tagging algorithm based on an
ANN, a popular pattern recognition approach. The ANN
is developed using a substantial dataset of boosted tops
along with light quark/gluon Jets and is subsequently
evaluated on separate datasets. In Monte Carlo simula-
tions, particularly within the 1100-1200 GeV range, the
ANN-based tagger demonstrates outstanding efficacy.

Efficient HEP data analysis is imperative with the
surge in data from modern particle detectors. However,
detectors have limited access to the substructure of Jets,
especially those distant from the center-of-mass frame.
To address this, the authors [36] integrate BIP features
with standard classification methods, significantly
improving Jet tagging efficiency. Notably, supervised
methods like MLP, XGBoost, LogReg, SVM, and unsu-
pervised approaches like Gaussian mixture model
(GMM) and KNN achieve exceptional performance with
uniform  manifold approximation and projection
(UMAP) dimensionality reduction technique, surpassing
contemporary DL systems while reducing training and
evaluation times significantly. In Ref. [79], the authors
introduce a novel network architecture designed for Jet
tagging in experiments conducted at the LHC.
DeepCSV, currently endorsed by CMS and employing a
DNN, has significantly improved tagging performance,
as validated using real collision data. It surpasses other
tagging methods, particularly at high
momenta, with nearly an order of magnitude reduction
in FPRs using standard threshold definitions.

Multi-Jet classification is a a key task in particle
physics aimed at distinguishing between events with
varying numbers of Jets. Using ML techniques, such as
DNNs, researchers develop classification models to accu-
rately identify these events. Achieving high classification
accuracy is crucial for understanding fundamental particle
interactions and discovering new physics phenomena in
experiments like those conducted at the LHC. The work
in Ref. [17] presents an application of scalable DL to
analyze simulation data from proton-proton collisions at
13 TeV in the LHC. The researchers developed a CNN
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Fig. 18 A toy dataset with adjustable dimensions, straight line representations for tracks, and the option to include

uniform noise hits, all on a smaller scale.

model which utilizes detector responses as two-dimensional
images reflecting the geometry of the CMS detector. The
model discriminates between signal events of R-parity
violating super-symmetry and background events with
multiple Jets resulting from inelastic QCD scattering
(QCD multi-Jets). With the CNN model, they achieved
1.85 times higher efficiency and 1.2 times higher
expected significance compared to the traditional cut-
based method. They demonstrated the scalability of the
model at a large scale using high-performance computing
(HPC) resources with up to 1024 nodes. The authors in
Ref. [56] proposing an interpretable network for multi-
Jet classification using the Jet spectrum, termed S2(R),
derived from a Taylor series of an arbitrary Jet MLP
classifier function. The network’s intermediate feature is
an infrared and collinear safe variables, named C-corre-
lator, estimating the importance of S2(R) deposits at
angular scales. It offers comparable performance to
CNNs with simpler architecture and fewer inputs. The
paper [92] proposes a jet origin identification method for
the electron—positron Higgs factory, classifying Jets into
11 categories: 5 quark species, 5 anti-quarks, and gluons.
It achieves jet tagging efficiencies ranging from 67% to
92% and charge flip rates between 7% and 24%, utilizing
the ParticleNet model. The method benefits jet physics
and HEP by enhancing rare Higgs decay measurements.
It reduces QCD backgrounds and improves flavor
tagging, crucial for Higgs boson property studies. The
dataset consists of simulated vvH, H — jj events at 240
GeV, generated with a Geantd-based detector simula-
tion. The best reported performance includes a 92% effi-
ciency for b-Jets and a 7% charge flip rate for charm
quarks.

d.

3 Jet tracking

Jet tracking involves reconstructing the trajectories and
properties of particles within Jets, formed when quarks
and gluons fragment. Accurate tracking is vital for
particle physics analyses, aiding in discoveries, SM
measurements, and searches for new phenomena.

Advanced algorithms, including pattern recognition and
ML, are employed for precise tracking in modern detec-
tors. In this research paper [64], the authors present
early attempts at applying ML techniques to address
particle tracking challenges. This area remains largely
unexplored, and they have just scratched the surface.
Nonetheless, certain DL methods show promise. LSTMs
were found to be effective in solving the hit assignment
problem in both 2D and 3D scenarios using a sequence
of detector layer measurements, potentially offering an
alternative to the combinatorial Kalman Filter. CNNs
demonstrated the ability to construct representations of
detector data from the ground up, aiding in hit assignment
and parameter/uncertainty estimation. Through the
combination of LSTM and CNN, the authors showcased
a potentially powerful end-to-end model capable of iden-
tifying a wvariable number of tracks within detector
images. Figure 18 displays sample 2D data generated
with various types of tracks, including single-track,
multi-track, and single-track with uniform noise.

o.

4 Jet generation

In order to study new physics phenomena at the LHC, it
is necessary to simulate Monte Carlo events for both
new physics signals and backgrounds. This simulation
helps predict the experimental data expected from
collider experiments. However, generating the large
number of simulated events required for data analysis is
time-consuming and computationally intensive using
existing algorithms. Additionally, accurately simulating
how energetic particles interact with detector materials
can be a time-consuming process. In Ref. [93],
researchers proposed using GANs to build LAGAN
framework, that is trained to generate authentic radiation
distributions from simulated collisions involving high-
energy particles. The authors found that the generated
Jet images exhibited a wide range of pixel brightness
levels and accurately reproduced low-dimensional physical
observables such as reconstructed Jet mass and n-
subJettiness. However, the study also acknowledges the
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limitations of this method and presents an empirical
validation of the image quality. With further improve-
ment, this approach could lead to faster simulation of
HEPs events. Physicists at the LHC use complex simu-
lations to predict experimental outcomes. Generating
vast amounts of simulated data is costly, but crucial for
technique development. Challenges include accurately
modeling detectors and particle interactions. In Ref. [94],
researchers proposed a GAN-nased model for fast, accurate
simulation of electromagnetic calorimeters. Despite
ongoing precision challenges, this solution offers significant
speed-ups, up to 100 000x, promising savings in
computing resources and advancing physics research at
the LHC and beyond.

5.5  Case studies in Jet tagging and classification

To provide a deeper insight into the applications of ML
and DL techniques in jet classification for HEP, this
section explores three critical case studies: top quark
tagging, Higgs boson tagging, and photon Jet classifica-
tion.

— Top quark tagging. This process is essential for
distinguishing boosted top quarks from background
events involving light quarks and gluons. Boosted
top quarks often decay into a collimated spray of
particles, which requires advanced tagging techniques
to identify effectively. The ATLAS open data
provides a comprehensive dataset for top quark
tagging studies. Additionally, simulation tools like
Delphes and MadGraph are frequently used to
generate top quark events. Recent methods, including
ParticleNet [49] and LorentzNet [31], have achieved
significant improvements in classification accuracy
by leveraging point-cloud representations of jets.
These models employ graph-based architectures and
permutation-invariant structures to enhance the
discrimination power. Metrics such as classification
accuracy and AUC have demonstrated significant
improvements for top quark tagging using
LorentzNet, achieving values exceeding 94% and
98.6%, respectively.

— Higgs boson tagging. It is crucial for validating
the SM and investigating potential new physics
phenomena. Higgs bosons decaying into b-quarks
generate jet structures with distinctive substructure
features, making them a key focus for tagging stud-
ies. Datasets such as the CMS open data and the
Higgs dataset from the University of California,
Irvine ML repository serve as valuable resources for
developing tagging algorithms. Traditional methods
like BDTs and modern approaches such as CNNs
have been employed extensively. Furthermore,
advanced architectures like LGN [48] and ParticleNet
[49] have demonstrated superior classification capa-

bilities. By utilizing high-level kinematic features
and DL techniques, classification accuracies exceeding
92% and AUC values surpassing 96% have been
achieved, along with notable background suppres-
sion.

— Photon Jet classification. Photon jet classification
is a critical task for studying the quark-gluon plasma
and distinguishing between direct photons and those
originating from fragmentation processes. Quark-
gluon datasets generated using PYTHIAS simulations
form the basis for training and evaluating classification
models, with additional opportunities provided by
CMS open data for analyzing real collision events.
Advanced models such as EGNN [50] and PCT [51]
have demonstrated effectiveness in capturing the
energy deposits and angular distributions of particles
within jets. Notably, state-of-the-art methods, such
as EGNN;, have demonstrated exceptional performance
in photon jet classification tasks, achieving accuracies
above 92% and AUC values exceeding 97%.

6 Future direction and outlook

The future of ML and DL in HEP, particularly in Jet
analysis, is poised for transformative advancements. As
researchers delve deeper into the petabyte-scale datasets
generated by experiments like those at the LHC and
QCD, the role of DL becomes increasingly vital. The
potential implications of QML-baset Jet research for
future particle physics experiments are significant. By
demonstrating the effectiveness of QML for Jet classifi-
cation in section 4.1, this opens up new possibilities for
improving the performance of particle physics experi-
ments. Researchers could apply the suggested QML-
based approaches to Jet images and PCs to other HEP
problems, such as signal versus background separation,
anomaly detection, and particle track reconstruction.
Furthermore, QML-based research on Jet tagging could
pave the way for the development of new quantum algo-
rithms and hardware that could be used to solve
complex problems in particle physics and other fields.
There are multiple other compelling aspects and
potential extensions that warrant further exploration,
which are outlined here. For examples, for event-level
analysis, a Jet, in essence, cannot be entirely separated
from an event’s remaining parts, yet “pure” Jets can be
achieved through grooming techniques. The utility of
color connections is notable in various scenarios. The
exploration into how to effectively demonstrate these
effects is important, as there is potential in enhancing
event-level analysis. The RNN approach, particularly
RecNN, is easily adaptable for event-level analysis due
to its natural fit into larger hierarchical structures.
Previous studies have examined event analysis focusing
solely on Jets, utilizing simple RNN chains to reconstruct
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events from Jets. When considering event-level imple-
mentation, structuring the entire event poses a significant
challenge. Viewing each event as a structured data tree,
where the entire event’s information is encapsulated in
the nodes’ properties and their interconnections, is vital.
Therefore, accurately representing each element and its
connections within the event is crucial for developing
neural network architectures. For Jet wunsupervised
learning, within the DNN framework, adjusting Jet clus-
tering could potentially enhance performance. Treating
Jet finding as a minimization problem presents an
intriguing perspective, making it appealing to incorporate
Jet finding processes directly into event-level analysis.
Another example, for new physics phenomena often
display distinctive patterns related to their particle spec-
trum and decay modes. For instance, supersymmetry
(SUSY) events typically generate a high number of final
states, presenting a more complex hierarchical structure,
and may include several soft leptons in electroweakino
searches. Investigating whether DNNs can more effectively
accommodate such topologies is also a worthwhile
endeavor [74]. Moreover, distinguishing between quark-
initiated and gluon-initiated Jets is crucial in collider
experiments like the LHC. Discriminating between these
Jets is challenging due to complex correlations in radiation
patterns and non-perturbative effects like hadronization.
AT methods, such as deep generative models, offer
promising solutions to address this challenge [63].
Moving forward, there is a notable scarcity of published
research on the application of auto-encoder (AE) for Jet
image processing, highlighting an opportunity for
researchers to explore this field further. The potential
for AE to significantly improve the separation of Jet
images and PC from background noise presents a
promising area of study. By focusing on this niche,
researchers can contribute to advancing our understanding
and methodologies in particle physics, potentially leading
to more accurate and efficient analysis techniques.

The complexity and volume of the data necessitate
sophisticated analytical techniques that DL models,
especially those based on CNNs and GNNs, are well-
equipped to handle. These models excel in identifying
intricate patterns and correlations within the data,
making them invaluable for tasks such as Jet tagging,
particle tracking, and event classification. Furthermore,
the scalability of DL models needs to be addressed to
handle the increasing data rates from next-generation
detectors and accelerators. Efficient training algorithms
and model compression techniques will be essential for
deploying these models in real-time analysis frameworks,
enabling faster decision-making processes for data acqui-
sition and retention. The future of DL in Jet energy
progression and estimation promises enhanced precision
and efficiency. Innovations will likely focus on developing
more sophisticated neural network models that can
accurately predict Jet energies in complex environments.

Emphasis on real-time data analysis capabilities and
integration with experimental workflows will be crucial,
driving advancements in detecting and interpreting high-
energy particle collisions more effectively and swiftly.
The future of DL-based Jet anomaly detection in HEP
lies in advancing unsupervised learning techniques to
uncover new physics signals hidden in complex data.
Innovations in model interpretability and real-time
processing will enhance detection capabilities. Cross-
disciplinary collaboration will drive these advancements,
leading to breakthroughs in identifying rare phenomena
and expanding our understanding of the fundamental
constituents of the universe. Others applications such as
flavor tagging, pileup mitigation, and the reconstruction
of decay chains. These DL-based Jet classification can
help in distinguishing between different types of particles
based on their energy deposition patterns, aiding in the
precise determination of particle origins and decay path-
ways. Additionally, they can be used for enhancing
signal-to-noise ratios in complex collision environments,
improving the accuracy of particle trajectory tracking,
and in the analysis of Jet substructure to identify
specific decay processes, contributing to a deeper under-
standing of the underlying physics in high-energy colli-
sions. The application of DL-based HEP Jet for tomography
is promising. This approach has the potential to revolu-
tionize how we visualize and analyze subatomic parti-
cles, offering unprecedented precision and insight. By
leveraging DL techniques, researchers can improve the
accuracy of tomographic reconstructions, enhancing our
understanding of particle interactions and the fundamental
structure of matter.

Transfer learning (TL), encompassing all its forms,
including techniques like fine-tuning and domain adapta-
tion [95, 96], is poised to revolutionize Jet HEP applications
by leveraging pre-trained models from vast datasets to
enhance performance on specific tasks with limited data.
This approach can significantly reduce computational
costs and training times, making it ideal for adapting
models to new experiments or rare phenomena. As HEP
experiments generate increasingly complex data, the
ability to apply knowledge from one context to another
will be invaluable for improving event -classification,
anomaly detection, and signal processing. Looking
ahead, TL will be crucial for efficiently extracting
insights from new particle interactions and advancing
our understanding of fundamental physics. Exploring
advanced architectures as sources of prior knowledge,
such as EfficientNet, vision Transformers (ViT), Swin
Transformers, ConvNeXt, GNNs, neural ordinary differ-
ential equations (NODEs), physics-informed neural
networks (PINNs), and and AutoML for architecture
optimization, could offer substantial improvements to
target models conducting Al-based Jet tasks [46]. These
SOTA methods are better suited to handling the
complexities of particle physics data compared to older
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architectures like AlexNet or VGG. Generalizing the top
tagger to classify other boosted objects, such as W/Z
bosons, Higgs bosons, and other particles,
straightforward, and extending it to partially-merged
and fully resolved tops could enhance background rejec-
tion.

Systematic errors are a significant concern in HEP
experiments, particularly in image classification tasks
involving jet analysis. These errors can arise from various
sources, including detector calibration
biases in data reconstruction, and environmental factors
during data acquisition. Addressing these uncertainties
is crucial for the reliability and accuracy of ML models
applied in HEP. One approach to mitigating systematic
errors is through systematics-aware learning, which
involves developing models that account for potential
biases in the data. For instance, Estrade et al. [97]
discussed the importance of creating benchmarks that
capture realistic cases of systematic errors in HEP analysis
to facilitate experimental comparisons of different tech-
niques. Another strategy involves adversarial learning to
eliminate systematic errors [98]. This paper discusses the
application of adversarial domain adaptation in an unsu-
pervised setting to reduce sample bias in supervised
HEP event classifier training. The authors utilize a
neural network with a gradient reversal layer to simulta-
neously enable signal versus background event classifica-
tion while minimizing differences in the network’s
response to background samples from different Monte
Carlo models. Ghosh et al. [99] proposed classifiers that
are fully aware of uncertainties and their corresponding
nuisance parameters, demonstrating that this approach
can enhance sensitivity to parameters of interest. By
incorporating uncertainty directly into the learning
process, models can achieve better performance
compared to traditional strategies that do not account
for such uncertainties.

To further enhance the mitigation of systematic
errors, future research should focus on integrating uncer-
tainty quantification and robust optimization directly
into the design of ML architectures. This includes the
development of hybrid models that combine traditional
statistical techniques with modern ML approaches to
explicitly model and correct for systematic effects. Addi-
tionally, employing advanced simulation techniques that
better mimic real-world data will help reduce discrepancies
between training datasets and experimental observa-
tions. Efforts should also be directed toward leveraging
transfer learning to adapt models trained on simulated
data to real-world experimental conditions more effec-
tively. Another promising avenue is the application of
federated learning in HEP, which enables collaborative
training across multiple experimental datasets while
preserving data privacy. This approach could be particu-
larly effective in creating more generalized models that
are less sensitive to dataset-specific biases. Finally,

remains

inaccuracies,

incorporating interpretability and explainability methods
into systematic error analysis will help researchers better
understand how models respond to uncertainties and
biases, providing actionable insights to refine both
experiments and ML methodologies. Such advancements
will ultimately ensure that ML models in HEP are
robust, transparent, and ready for real-world applica-
tions.

Reinforcement learning (RL), with all its variants
[100, 101], in HEP Jet applications is set to open novel
pathways for optimizing experimental setups and data
analysis strategies. By leveraging RL’s ability to learn
optimal policies through interaction with an environ-
ment, future HEP experiments could see enhanced
automation in event selection, detector alignment, and
real-time data processing. The adaptability of RL
models to dynamic systems makes them particularly
suited for managing the complexities of particle collision
events. As the technology matures, integrating RL into
HEP could lead to significant advancements in experiment
efficiency, discovery potential, and the ability to navigate
vast datasets to uncover new physics phenomena. Addi-
tionally, federated learning (FL)-based computer vision
[102] presents a promising frontier for Jet images appli-
cations, offering a pathway to harness collaborative
model training while preserving data privacy and secu-
rity. By distributing the learning process across multiple
nodes, each holding its own subset of data, FL enables a
collective improvement of models without direct data
sharing. This approach is particularly suited for HEP
collaborations spread across global institutions, where
data locality and privacy concerns can limit traditional
centralized training methods. Advancements in FL could
lead to more robust, accurate models, enhancing our
understanding of complex particle physics phenomena
through  cooperative,  privacy-preserving  analysis
between different LHCs.

The integration of large language models (LLMs) and
generative AI [103] into HEP has the potential to
enhance the precision of particle detection and charac-
terization. By leveraging these advanced AI models,
researchers can identify subtle patterns and anomalies in
Jet tagging that might be missed by conventional meth-
ods. This improved accuracy is crucial for discovering
new particles or interactions that could lead to break-
throughs in our understanding of the universe. For
example, in the search for dark matter or other exotic
particles, detecting faint signals amid a noisy background
is a significant challenge. Generative Al can help by
producing simulations that highlight these weak signals,
allowing physicists to fine-tune their detection algo-
rithms. Similarly, LLMs can assist by providing context
and insight into these findings, suggesting potential
theoretical implications and further areas of exploration.
The application of LLMs and generative AI in HEP also
promotes a more collaborative and interdisciplinary
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approach to research. By integrating Al experts with
physicists, new methodologies and tools can be developed
that leverage the strengths of both fields. This collaboration
can lead to the creation of more sophisticated models
that are specifically tailored to the needs of HEP.
Furthermore, the insights gained from HEP research
using Al can be applied to other fields, such as astro-
physics, medical imaging, and materials science. This
cross-pollination of ideas and techniques can drive inno-
vation across multiple disciplines, leading to advancements
that benefit a wide range of scientific endeavors.

7 Conclusion

Given the comprehensive assessment of ML and DL
applications within the realm of HEP presented in this
survey, it is evident that these techniques have significantly
impacted various aspects of HEP experimentation and
phenomenological studies. Through a detailed exploration
of diverse DL approaches, including their application to
HEP classification, Jet particle analysis, and other perti-
nent areas, this paper has highlighted the potential of
ML and DL techniques to enhance our understanding of
particle physics phenomena. The analysis undertaken
throughout this survey underscores the importance of
leveraging AI models tailored to HEP images and PCs,
as well as the significance of SOTA ML and DL techniques
in advancing HEP inquiries. Specifically, the review has
elucidated the implications of these techniques for tasks
such as Jet tagging, Jet tracking, and particle classifica-
tion, shedding light on their capabilities and limitations
in addressing key challenges within the field. As we
reflect on the current status of HEP grounded in DL
methodologies, it becomes evident that while significant
progress has been made, and there remain inherent chal-
lenges that must be addressed to fully harness the
potential of these approaches. These challenges include
issues related to data quality, model interpretability,
and generalization to diverse experimental conditions.
Nonetheless, the survey also identifies promising avenues
for future research endeavors, such as the development
of novel DL architectures tailored to HEP data and the
integration of domain-specific knowledge to enhance the
performance of learning models. By addressing the chal-
lenges and leveraging the opportunities highlighted in
this survey, researchers can continue to push the boundaries
of HEP experimentation and pave the way for ground-
breaking discoveries in particle physics using Al tech-
niques.
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