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ABSTRACT

Nowadays,  there  has  been  a  growing  trend  in  the  field  of  high-energy
physics (HEP), in both its experimental and phenomenological studies, to
incorporate machine learning (ML) and its specialized branch, deep learn-
ing (DL). This review paper provides a thorough illustration of these appli-
cations using different ML and DL approaches. The first part of the paper
examines  the  basics  of  various  particle  physics  types  and  establishes
guidelines  for  assessing  particle  physics  alongside  the  available  learning
models. Next, a detailed classification is provided for representing Jets that
are reconstructed in high-energy collisions, mainly in proton-proton colli-
sions at  well-defined beam energies.  This  section covers various datasets,
preprocessing  techniques,  and  feature  extraction  and  selection  methods.
The presented techniques can be applied to future hadron–hadron colliders
(HHC), such as the high-luminosity LHC (HL-LHC) and the future circular
collider–hadron–hadron  (FCC-hh).  The  authors  then  explore  several  AI
techniques analyses designed specifically for  both image and point-cloud
(PC)  data  in  HEP.  Additionally,  a  closer  look is  taken at  the  classification
associated  with  Jet  tagging  in  hadron  collisions.  In  this  review,  various
state-of-the-art  (SOTA)  techniques  in  ML  and  DL  are  examined,  with  a
focus on their implications for HEP demands. More precisely, this discus-
sion addresses various applications in extensive detail, such as Jet tagging,
Jet tracking, and particle classification. The review concludes with an anal-
ysis of the current state of HEP using DL methodologies. It highlights the
challenges and potential areas for future research, which are illustrated for
each application.
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1   Introduction

High-energy physics (HEP) is an attracting and delicate
branch of physics that manifests at the microscopic scale
and  which  explores  the  fundamental  building  blocks  of
the universe and forces that govern their interactions at
incredibly high energies under extremely intense conditions
[1, 2].  In  this  field  many sophisticated instruments  and
tools  with  large  particle  accelerators,  like  the  current
CERN-LHC (located near the French and Swiss border),
to  study  matter  at  energy  levels  that  are  otherwise
unattainable to reach with conventional methods. These
gigantic  machines  accelerate  subatomic  particles  at
nearly the speed of light and then smash them together,
creating energy densities analogous of the early moments
after  the  Big  Bang  [3, 4].  By  studying  the  collisions
generated in these accelerators setups, it could be possible
to  track  and  evaluate  rare  particles  that  have  a  very
short life time. This important study with the accumulated

big  data  at  higher  collider  luminosity  values  offers  an
improved understanding of the basic anatomy of different
physics process and their topologies [5, 6].

The  standard  model  (SM)  is  the  present  theoretical
framework  that  describes  the  elementary  particles  and
their  interactions  [7].  Despite  its  tremendous  success  in
explaining many phenomena in nature, several mysteries
remain unsolved, such as matter antimatter asymmetry,
the nature of dark matter (DM), the neutrino mass and
the  hierarchy  problem  and  many  other  open  questions
[8]. Furthermore, it is worth noting that besides its deep
investigation  about  the  Universe  puzzles,  HEP  has
demonstrated  significant  practical  utility  when  used
with advanced technologies [9]. As a matter of fact, the
development of many techniques and technologies in this
sector  has  driven  notable  progress  in  medical  imaging
[10, 11],  radiation  therapy  [12, 13],  and  materials
research [14, 15].

kt
(η, ϕ)

The  data  acquisition  system  of  large  hadron  collider
(LHC)  stores  the  data  on  tape  using  grid  computing
facilities,  it  can  be  disseminated  for  offline  analysis
aimed  at  extracting  information  concerning  particle
trajectories formed within the detectors. These trajectories
contain concealed details about numerous particle char-
acteristics. Jets are reconstructed by combining informa-
tion  from  multiple  detector  subsystems,  primarily
calorimeters and trackers. The calorimeters (electromag-
netic and hadronic) play a central role by capturing the
energy deposits from both neutral and charged particles.
These  deposits  are  clustered  using  algorithms  such  as
anti- , which group the energy into Jets based on angular
proximity  in -space.  While  tracking  systems
provide detailed momentum and charge information for
individual  charged particles,  they cannot detect  neutral
particles,  such  as  photons  or  neutrons.  Therefore,  the
calorimeter serves as the primary tool for measuring the
total  energy  of  the  Jet.  This  reconstruction  process
ensures  that  Jets  are  defined  as  comprehensive  objects
representing  the  full  range  of  particle  constituents,
crucial for subsequent analyses in HEP experiments [16].

Computer vision techniques become relevant and play
a crucial role during the analysis of offline data. Specifi-
cally, in the realm of HEP data analysis, machine learning
(ML) algorithms have found success, leading to significant
enhancements  in  event  classification  performance  when
contrasted  with  traditional  methods  rooted  in  expert
understanding.  Techniques  like  boosted  decision  trees
(BDT), shallow neural networks, and similar approaches
have  been  employed  in  HEP  data  analysis.  More
recently,  deep  neural  network  (DNN)  or  deep  learning
(DL) has gained widespread adoption due to its applica-
bility to intricate data structures such as images, videos,
natural  language,  or  sensor  data.  There  are  ongoing
investigations into applying DNNs for analyzing granular
details  like  particle  positions  and  momentum  as  they
traverse  the  detector.  This  has  shown  increased  effec-
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tiveness in selecting signal events compared to ML algo-
rithms  employing  conventional  feature  variables  rooted
in physics knowledge [17]. 

1.1   Motivation

In HEP, a track typically refers to the trajectory or path
followed  by  a  charged  particle  as  it  moves  through  a
particle  detector.  HEP  experiments  often  involve  the
collision of high-energy particles, such as those produced
in  particle  accelerators  like  LHC.  When  these  particles
collide,  they  produce  various  other  particles  as  a  result
of the collisions. These newly created particles then pass
through  several  sub-detectors  where  each  designed  to
measure  their  corresponding  properties.  Each  charged
particle  leaves  behind  a  trace  or track as  it  interacts
with the detector’s various components, such as tracking
chambers  or  silicon  detectors.  These  tracks  provide
information about the particle’s momentum, charge, and
the  path  it  took  through  the  detector.  Analyzing  these
tracks  is  very  crucial  for  understanding  the  physics  of
the  collisions  and  for  identifying  the  types  of  particles
produced.

The reconstruction of particle tracks involves sophisti-
cated  algorithms  and  software  that  piece  together  the
recorded  data  from  various  detector  components  to
reconstruct  the  paths  of  the  particles  accurately.  Then,
the reconstructed tracks are essential for a wide range of
analyses  in  HEP,  including  the  discovery  of  new  parti-
cles,  the  measurement  of  particle  properties,  and  the
investigation  of  fundamental  forces  and  interactions  in
the universe.

However,  in  HEP  experiments,  there  are  always
chances  for  high  background  contributions  or  events
that  are  not  of  primary  interest  and  can  eventually
mimic  the  physics  signal  and  moreover  can  interfere
along  the  physics  collision.  The  background  sources
could  be  the  electronic  components  in  the  different
detector  systems,  when  high-energetic  particles  pass
through  the  material  budget  of  the  detector,  they  can
also generate secondary tracks through different interac-
tions, and possible decay modes.

In  the  light  of  the  aforementioned  phenomena  and
challenges,  treating  tracks/Jets  in  HEP  as  image  or
point cloud (PC)-like data for processing and analysis is
a  useful  approach,  especially  when  dealing  with  the
output from particle detectors. Hence, ML and DL play
vital roles in HEP experiments. They serve the following
purposes:  i)  Identifying  and  classifying  particles  by
analyzing their  tracks  and energy deposits  in  detectors,
thereby  enhancing  precision  and  identification  speed,
ii)  assisting  in  the  accurate  reconstruction  of  particle
tracks from detector data, particularly in complex envi-
ronments  with  numerous  particles  and  interactions,
iii) enabling efficient data analysis schemes, one can sift
through extensive datasets to pinpoint rare or noteworthy

events or particles, iv) detecting anomalies or unexpected
patterns  in  the  recorded  data,  which  could  potentially
signify the existence of new particles and physics beyond
the  SM,  among  other  applications.  These  contributions
underscore the significance of ML and DL in advancing
HEP research topics. 

1.2   Related work

In  recent  years,  there  has  been  a  surge  in  reviews
addressing  various  aspects  of  HEP  [18–21].  The  review
presented in [18] delved into the realm of supervised DL
applied  to  high-energy  phenomenology,  discussing
specific use cases such as employing ML to explore new
physics  parameter  spaces  and  utilizing  graph  neural
networks for particle production and energy measurements
at the LHC. Meanwhile, Ref. [19] provided an overview
of the initial forays into quantum ML in the context of
HEP and  offered  insights  into  potential  future  applica-
tions.  In  Ref.  [20],  an  array  of  novel  tools  relevant  to
HEP  were  introduced,  complete  with  assessments  of
their  performance,  though  there  was  limited  discussion
about  future  prospects.  Lastly,  the  review  [21]  compre-
hensively  examined  both  theoretical  and  experimental
aspects  of  Jets  such  as  triggering,  data  acquisition
systems, propagation, interactions, and related phenomena
in HEP.

Table 1 assesses how the proposed review aligns with
previous  research  in  the  field  of  HEP.  Based  on  the
assessment, it appears that our proposed review aims to
comprehensively cover a wide range of topics related to
the  ML- and  DL-based  in  HEP,  including  Jet  prelimi-
naries,  taxonomy  of  HEP,  available  Jet  datasets,  Jet
tagging preprocessing, quantum ML, DL models for Jet
tagging,  classification techniques,  Jet  tagging DL appli-
cations,  and  research  gaps/future  directions.  This
suggests  that  the  proposed  review  aims  to  provide  a
comprehensive overview of the current state of research
in HEP and potential avenues for future work. 

1.3   Contribution and survey structure

The objective of this survey is to provide a robust foun-
dation  for  both  HEP  researchers  aiming  to  grasp  the
principles  of  DL  and  its  applications  within  the  HEP
domain,  and computer  science  researchers  familiar  with
artificial  intelligence  (AI)  seeking  insights  into  the
fundamental  features  and  prerequisites  essential  for
constructing  a  robust  AI  model  tailored  specifically  for
HEP,  employing  Jet  images  and  PC.  To  achieve  this
goal,  our  contribution  is  encapsulated  in  the  following
key points:
 
　– The survey offers preliminary insights into the various

types of particles and performance metrics associated
with  both  AI-based  and  non-AI-based  Jet  particle
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physics methodologies.
　– The  taxonomy  of  ML  and  DL-based  techniques  in

HEP  for  analyzing  Jet  images  and  PC,  along  with
their respective preprocessing and feature extraction
methodologies, is thoroughly explored.

　– The widely adopted AI models designed for analyzing
HEP  Jet  tagging,  along  with  their  descriptive
layered  architectures,  are  extensively  elaborated
upon.  Furthermore,  their  performance  metrics  are
summarized and compared.

　– Different state-of-the art (SOTA) methods are clustered
based  on  the  AI  techniques  employed  and  compre-
hensively  reviewed  accordingly.  Additionally,  the
exploration  of  AI-based  applications  in  HEP  Jet
classification is thoroughly detailed.

　– Future  directions  and  outlooks  are  explored,  which
aims  to  offer  researchers  insights  into  existing
research  gaps  and  areas  within  AI  concepts  and
fields that remain unexplored in AI-based Jet images
and PC.
 

The  structure  of  this  paper  is  as  follows:  Section  2
presents  the  preliminaries  necessary  for  understanding
Jet  images  and  PC.  In  Section  3,  the  representation  of
Jet in DL-based HEP is discussed. Section 4 provides a
summary  of  the  most  available  ML  or  DL  models  for
analyzing HEP Jet tagging. Section 5 showcases various
AI-based applications of Jet tagging. Section 6 highlights
the gaps and areas that remain unexplored in AI-based
Jet analysis, encompassing both techniques and applica-
tions. Finally, Section 7 concludes the survey. 

2   Preliminaries
 

2.1   Types of particles

W and Z bosons are important closely related particles
described  by  the  SM  of  particle  physics.  They  are
together known as the weak bosons or more generally as

Z

W

W

W Z

the  intermediate  vector  bosons  and  plays  a  significant
role  in  the  weak  nuclear  force,  which  is  responsible  for
certain  types  of  specific  interactions  and  radioactive
decay.  The  existence  and  properties  of  the  boson,
along  with  the  bosons,  provided  strong  support  for
the electroweak theory and the SM as a whole. However,
as  with the  boson,  the SM has limitations and does
not explain all aspects of particle physics, such as grav-
ity,  dark  matter,  and  the  hierarchy  of  particle  masses.
Here are some key points about the  and  bosons:
 

W

W+ W−

Z

　– Charge  and  variants:  The  boson  comes  in  two
varieties: the  and the , which carry a positive
and  negative  electric  charge,  respectively.  These
particles  are  antiparticles  of  each  other.  The 
boson is a neutral elementary particle.

W

c2

Z

c2 W Z

　– Mass  and  spin:  The  bosons  masses  are  around
80.4  GeV/  (gigaelectronvolts  per  speed  of  light
squared).  The  boson  has  a  relatively  large  mass.
Its  mass  is  around  91.2  GeV/ .  Both  and 
bosons have a spin of 1, which is a measure of their
intrinsic angular momentum.

W Z

W+

W−

Z

　– Decay: The  and  bosons are unstable and have
a very short lifetime. They quickly decay into other
particles. For example, a  boson can decay into a
positron  (an  antielectron)  and  a  neutrino,  while  a

 boson  can  decay  into  an  electron  and  an
antineutrino.  The  can  decay  into  various  combi-
nations  of  charged  leptons  (such  as  electrons  and
muons) and their corresponding antiparticles, as well
as neutrinos and antineutrinos.
 

The Higgs boson is crucial to our understanding of
how other particles acquire mass and, by extension, how
the  universe’s  structure  and  behavior  arise.  The  key
points about the Higgs boson are [24]
 
　– Origin of mass is associated with the Higgs field, a

theoretical  field  that  permeates  all  of  space.  In  the
SM,  particles  acquire  mass  by  interacting  with  the

 

Table  1 Assessing how the proposed review aligns with previous research in the field of HEP. The ( ) indicates that those
specific areas have been addressed, whereas ( ) and ( ) signify instances where certain areas have not been addressed, or
partially addressed, respectively.

Ref. Paper
type

Publication
year

Jet
prelimanaries

Taxonomy
of HEP Jet

Available
Jet

datasets
and tools

Jet
tagging

pre-process

Quantium
ML for HEP

Jet
classification

ML and DL
models for

Jet
classification

Transformers
for Jet

classification

ML and
DL-based
Jet classif.
techniques

AI-
based
Jet
apps

Research
gaps and
future
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[18] Mini-
review 2019

[22] Review 2019
[19] Review 2021
[20] Review 2021
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[21] Review 2023
This
work Review 2024
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Higgs  field.  The  more  a  particle  interacts  with  this
field,  the  greater  its  mass  will  be.  This  mechanism
explains why some particles are heavier than others.

c2
　– Mass and spin the Higgs boson itself has a mass of

around  125.1  GeV/ .  It  has  a  spin  of  0,  which
means it has no intrinsic angular momentum.

　– Decay is  unstable  and  quickly  decays  into  other
particles  after  its  creation  in  high-energy  collisions.
The  specific  decay  modes  and  products  depend  on
the energy at which it is produced.

　– Higgs field interaction is a carrier of the interaction
associated with the Higgs field. When particles move
through  space,  they  interact  with  this  field,  which
gives them mass. The Higgs boson itself is the quantized
excitation of this field.
 

The  top  quark is  one  of  the  heavy  fundamental
particles described by the SM. It holds a special place in
particle physics due to its extremely large mass and its
role in various processes involving high-energy collisions.
Here are some key points about the top quark [25]:
 

c2
　– Mass. The top quark is the heaviest known elementary

particle.  Its  mass  is  approximately  173.2  GeV/ ,
which is even heavier than an entire atom of gold.

　– Quarks  and  the  strong  force. Quarks  are  the
building  blocks  of  protons  and  neutrons,  which  are
the  constituents  of  atomic  nuclei.  The  top  quark,
like  all  quarks,  experiences  a  strong  nuclear  force,
which  is  responsible  for  holding  quarks  together
within hadrons (particles composed of quarks).

　– Weak decays. Due to its high mass, the top quark
is  relatively  short-lived  and  decays  before  it  can
form  bound  states  with  other  quarks  to  create
hadrons.  It  decays  primarily  through  weak  interac-
tion, one of the fundamental forces described by the
SM.

　– Production  and  detection. The  top  quark  is
typically produced in high-energy particle collisions,
such  as  those  that  occur  in  experiments  at  particle
accelerators like the LHC. Due to its high mass, the
top  quark  is  often  produced  along  with  its  corre-
sponding  antiquark.  Researchers  detect  its  presence
indirectly  by  observing  its  decay  products,  which
can include other quarks, leptons (such as electrons
and muons), and neutrinos.

　– Role  in  electroweak  symmetry  breaking. The
top quark is of particular interest in theories related
to  electroweak  symmetry  breaking,  a  phenomenon
that explains why certain particles acquire mass. Its
large mass plays a significant role in the behavior of
the Higgs boson and its interactions.
 

b b̄ b b̄

pT 20GeV/c

The  and  Jets. Jets composed of  and  pairs are
identified by mandating a minimum transverse momentum
( ) of  for each Jet and restricting their pseu-

η 2.2 < η < 4.2

pTrel q

(η, ϕ) ∆R

Q

pTrel

dorapidity ( ) to the interval . This criterion
ensures the Jets are well contained within the detector’s
instrumented  region.  Following  initial  selection,  16
distinct  Jet  substructure  features  are  utilized  as  inputs
for the classification algorithms. Within a Jet, the highest
pT muon,  kaon,  pion,  electron,  and  proton  are  chosen.
For  each  of  these  particles,  three  physical  parameters
are evaluated: the relative transverse momentum to the
Jet’s axis ( ), the electric charge ( ), and the separation
in  the  space  from the  Jet  axis  ( ).  Should  any
particle  type  be  absent,  its  corresponding  features  are
assigned  a  value  of  0.  An  additional  characteristic,  the
weighted  Jet  charge ,  is  computed  as  the  sum of  the
particles’ charges  inside  the  Jet,  each  multiplied  by  its
respective  [26]. 

2.2   Key concepts of ML-based HEP

When discussing ML and its  subset  DL in HEP, main-
taining  uniform  and  precise  terminology  is  crucial  for
clear  communication. Supervised  learning,  for  instance,
refers  to  training  models  using  labeled  datasets,  where
the  model  learns  to  map  input  features  to  known
outputs,  such as  identifying particles  or  classifying Jets
based on their physical properties. In contrast, unsuper-
vised learning involves identifying patterns or structures
in data without predefined labels, often used in anomaly
detection or clustering in particle physics. Feature selection
is an essential process that focuses on choosing the most
informative input features — such as track momentum,
calorimeter energy deposits, and hit patterns in detectors
— thereby improving the performance and efficiency of
ML models by reducing dimensionality and computational
load.

The  growing  adoption  of  DL  techniques,  such  as
convolutional neural networks (CNNs) and graph neural
networks  (GNNs),  has  revolutionized  analyses  in  HEP.
These  methods  rely  on  different  types  of  layers  and
architectures  designed  to  handle  the  complexity  and
scale  of  particle  physics  data. Convolutional  layers in
CNNs, for instance, are particularly effective at detecting
patterns  in  images  or  PCs,  by  learning  local  features.
These layers operate by applying convolutional filters to
input  data,  extracting  hierarchical  patterns,  which  are
then  pooled  to  reduce  dimensionality.  Pooling  layers,
such as max-pooling, downsample the spatial dimensions
of the data, retaining the most important features while
reducing  computational  cost.  This  structure  allows
CNNs  to  efficiently  process  large-scale  data  and  is
widely used in Jet classification and particle identification
tasks. Further advancements include the use of EdgeConv
layers in GNNs [28], where the network learns the rela-
tionships  between  particles  represented  as  nodes  in  a
graph.  In  these  models,  the EdgeConv block  aggregates
local particle information, capturing spatial relationships
and  interactions  based  on  particle  kinematics  and
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connectivity, which are essential for Jet tagging. The use
of global average pooling in these models helps aggregate
information from individual particles, producing a global
representation of the Jet that can then be used for clas-
sification  or  regression  tasks. Dense  layers (also  known
as fully connected layers) play a critical role in transforming
high-level  features  learned  by  convolutional  and  graph-
based  layers  into  a  final  prediction.  Dense  layers  are
used  in  DNNs,  CNNs,  GNNs,  and  others,  after  the
feature extraction phase, where the output of the convo-
lutional or graph layers is flattened into a one-dimensional
vector  and passed through one or  more fully  connected
layers.  These  layers  allow  the  network  to  combine  the
learned  features  in  a  non-linear  way,  making  complex
decisions such as event classification, particle identifica-
tion,  or  regression  for  Jet  properties.  The  dense  layer’s

ability  to  connect  all  input  neurons  to  all  output
neurons allows the model to capture intricate relationships
between features, making it highly effective for tasks like
anomaly detection, signal classification, and event recon-
struction in HEP.

An essential innovation in modern DL is the Attention
layer [29], a core layer in building Transformers, enables
the  model  to  focus  on  the  most  relevant  parts  of  the
input data. Attention mechanisms are particularly useful
in  scenarios  where  certain  elements  in  a  sequence  (or
graph) are more important for the task than others.  In
particle physics, this could involve focusing on particular
particle  interactions  or  energy  deposits  in  Jets.  The
scaled dot-product Attention mechanism, used in Trans-
former  models,  computes  attention  scores  for  each  pair
of  input  elements  [30].  The  attention  output
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Fig. 1  Mind-map of the proposed review.
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Attention(Q,K, V ) is calculated as follows: 

Attention(Q,K, V ) = softmax
(
QKT
√
dk

)
V, (1)

Q K V

dk

where , , and  represent the query, key, and value
matrices,  respectively,  and  is  the  dimension  of  the
key vectors. The softmax function normalizes the attention
scores,  allowing  the  model  to  weigh  the  importance  of
different elements in the input sequence. This mechanism
enables  the  model  to  prioritize  relevant  information,
improving  the  accuracy  of  particle  event  classification,
Jet  tagging,  and  anomaly  detection,  particularly  when
the  input  data  has  complex  dependencies  or  long-range
interactions between particles. 

2.3   Performance measures

In the realm of HEP, performance assessment is divided
into two main categories. The first encompasses classical
metrics like energy loss,  path length, and axis distance.
The  second  involves  metrics  related  to  DL-based  HEP

techniques,  such as  accuracy,  true  positive  rate  (TPR),
false-positive rate (FPR), receiver operating characteristic
(ROC),  area  under  curve  (AUC),  mean  squared  error
(MSE),  Fubini-study  tensor  (FST),  among  others.
Table  2 outlines  these  metrics,  including  mathematical
formulations and descriptions. 

3   HEP Jet representation

This  section  provides  an  overview  of  the  Jet  datasets
comprising  various  forms  of  Jet  data  obtained  and
generated  through  different  methods.  Additionally,  the
current  section  delves  into  diverse  pre-processing  and
feature extraction techniques employed in this context. 

3.1   Available datasets and simulation tools

χ

The  conseil  Européen  pour  la  recherche  nucléaire
(CERN) open data portal provides access to a variety of
datasets from experiments conducted at the Large LHC.
These  datasets  include  information  about  collisions,
particles,  and  Jet  images  and  PCs.  The  portal  offers  a
great  starting  point  for  those  interested  in  HEP
datasets. Figure  3 illustrates  samples  of  Jet  images,
featuring the average of pT-normalized quark and gluon
Jet  images  across  5  distinct  bins.  The  Jet  images  or
PC  may  undergo  different  preprocessing  techniques,
discussed  later,  prior  to  input  into  ML/DL  models  for
classification  or  prediction  tasks. Table  3 presents  the
datasets,  along  with  several  simulation  tools,  most
commonly used in the research reviewed in this paper. 

3.2   Pre-processing for ML-based Jet analysis

The objective  of  preprocessing input data is  to  support
the  model  in  addressing  an  optimization  challenge.
Usually, these preprocessing actions are not mandatory,
but they are employed to enhance the numerical conver-
gence  of  the  model,  considering  the  real-world
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Fig. 2  Visualization of decay involving a reconstructed Jet
and  a  secondary  vertex,  showcasing  various  noteworthy
features [27].

 

Table  2 An overview of the metrics employed to evaluate performance in ML and DL-based HEP.

Metric Formula C/R Description

FPR and
TPR

FP
FP+ TN

,
TP

TP+ FN C
The FPR, is the ratio (or percentage) of the background signal that are incorrectly identified as
containing Jet. The TPR. is the ratio (or percentage) of the Jet signal that is correctly identified
as Jet (particle).

AUC
∫ 1

0

TPR d(FPR) C
The area beneath the ROC curve is represented. It delivers a singular numeric score reflecting the
cumulative effectiveness of the classification technique. An elevated AUC score signifies superior
performance, with the ideal score being 1.

Accuracy
TP+ TN

TN+ FN+ TP+ FP C
The accuracy is the ratio (or percentage) of correctly detected instances of Jet in the signal. A
high accuracy indicates that the classification algorithm is more effective in detecting Jet than
background.

MSE 1

N

∑N

i=1
(P i

b (θ)− T i)2 R
θ

N P i
b T i

i

The training procedure seeks to discover the model parameter values denoted as , which
minimize the loss function known as MSE. Where  is the number of training Jets,  and  is
the predicted and target probabilities, respectively, for the -th Jet.

F1-score 2× Precision× recall
Precision+ recall

C Represents the harmonic mean between precision and recall metrics. This measure is applied to
assess the comprehensive efficacy of the classification algorithm in identifying or tagging Jets.

Abbreviations: Classification or regression (C/R).

TOPICAL REVIEW FRONTIERS OF PHYSICS

Hamza Kheddar, et al., Front. Phys. 20(3), 035301 (2025)   035301-7

 



 

Charged hadrons
0
5

10
15
20Q

ua
rk

 Je
t

25
30

0 10 20 30

Electrons
0
5

10
15
20
25
30

0 10 20 30

Muons
0
5

10
15
20
25
30

0 10 20 30

Neutral hadrons
0
5

10
15
20
25
30

0 10 20 30

Photon
0
5

10
15
20
25
30

0 10 20 30
0
5

10
15
20G

lu
on

 Je
t

25
30

0 10 20 30

0
5

10
15
20
25
30

0 10 20 30

0
5

10
15
20
25
30

0 10 20 30

0
5

10
15
20
25
30

0 10 20 30

0
5

10
15
20
25
30

0 10 20 30
 
Fig. 3  Jet images summed online and categorized into different channels employed in the analysis within the 100–200 GeV
pT range.

 

Table  3 A summary of available datasets, and simulation tools for Jet HEP analysis

Name Description DLA?

Datasets

ATLAS
open data

Is one of the largest particle physics experiments at the LHC. They offer an “Open Data” initiative with
datasets that include collision data and simulated samples. These datasets can be used to study Jet images
and other particle physics phenomena.

Yes1)

CMS
open data

Compact muon solenoid (CMS) is another major experiment at the LHC. Similar to ATLAS, CMS provides
open data for educational and research purposes. The datasets include information about collisions,
particles, and Jets.

Yes2)

Complete
It belongs to CERN and contains muon, kaon, pion, electron, and proton. In the complete dataset training,
400000 Jets are used for training, and the remaining 290000 are used for testing and assessing performance
[26].

No

Top
tagging

This dataset comprises 1.2 million training samples, 400000 for validation, and another 400000 for testing.
Each entry in this dataset corresponds to an individual Jet, with its source being either an energetic top
quark, a light quark, or a gluon. These events were generated using the PYTHIA8 Monte Carlo event
generator, and the response of the ATLAS detector is simulated using the DELPHES software package.

Yes3)

Quark-
gluon

tagging

Z(→ νν) + (u, d, s) Z(→ νν) + g

R = 0.4

The dataset is created by generating signal (quark) and background (gluon) Jets through PYTHIA8. For
the signal Jets, the process involves , and for the background Jets, it uses .
Notably, there is no simulation of the detector. The particles that are not neutrinos in the final state are
grouped into Jets using the anti-kT algorithm with a radius parameter of . In total, this dataset
contains 2 million Jets, evenly split between signal and background categories [31].

No

Higgs
dataset

The dataset originates from Monte Carlo simulations. The initial 21 attributes (found in columns 2–22)
represent particle detector-derived kinematic properties within the accelerator. The remaining seven
attributes are transformations of the initial 21, constituting high-level features engineered by physicists to
aid in distinguishing between the two categories.

Yes4)

QCD
multi-Jet

pT
pT

Samples are generated across different ranges of scalar sum of , namely 1000–1500 GeV, 1500–2000 GeV,
and 2000-Inf GeV. After excluding samples with  values less than 1000 GeV, the dataset consists of
around 450 × 103 training images, 150 × 103 validation images, and 150 × 103 testing images [17].

No

Simulation
tools

Delphes Is a particle physics event generator designed to produce simulated collision events that are similar to those
observed in real experiments. It includes tools to generate Jet based on the data produced in simulations. Yes5)

Mad
Graph

Is a popular event generator used in particle physics simulations. It can generate events involving Jets and
other particles, which can then be turned into Jet PC or images. Yes6)

FASTSim Is a tool for simulating high-energy particle collisions. It can generate Jets from simulated collision events
and is often used for studying ML techniques in HEP. Yes7)

Monte
Carlo

It is generated through a dependable framework, created by integrating various tools like Pythia 8 for
generating HEP events, Delphes for emulating the detector’s response, and RAVE for reconstructing
secondary vertices [32].

No

Abbreviations: Dataset link availability (DLA).

 

1) URL: opendata.cern.ch/search?page=1&size=20&experiment=ATLAS
 

2) URL: opendata.cern.ch/search?page=1&size=20&q=jet%20images&experiment=CMS
 

3) URL: zenodo.org/record/2603256
 

4) URL: archive.ics.uci.edu/dataset/280/higgs
 

5) URL: cp3.irmp.ucl.ac.be/projects/delphes
 

6) URL: madgraph.phys.ucl.ac.be/
 

7) URL: twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideFastSimulation
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η

ϕ

η ϕ

η ϕ

η − ϕ

constraints  imposed  by  limited  datasets  and  model
dimensions, along with the specific parameter initialization
choices.  In HEP, (i)  represents pseudorapidity, which
is  a  measure  related  to  the  polar  angle  of  a  particle’s
trajectory. It is commonly used because it is less affected
by  relativistic  effects  and  is  approximately  invariant
under  boosts  along  the  beamline,  (ii)  represents  the
azimuthal  angle,  which  is  the  angle  around  the  beam-
line, (iii) together,  and  provide a way to specify the
direction  and  position  of  particles  or  energy  deposits
within  the  detector.  These  coordinates  are  particularly
useful for representing and analyzing the distribution of
particles  produced  in  high-energy  collisions,  (iv)  the
combination of  and  can be thought of as a way to
navigate  and  map  the  detector’s  components  in  a  way
that  is  sensitive  to  the  underlying  physics  processes,
(v)  space  is  a  coordinate  system used  to  describe
the properties and positions of particles or objects within
particle  detectors,  particularly  in  experiments  at  large
colliders like the LHC.

The subsequent sequence of data-driven preprocessing
procedures was employed on the Jet images and can also
be adapted for PCs:
 

(η, ϕ)

(η, ϕ) = (0, 0)

　– Center  (translation  and  rotation). Center  the
Jet image by translating it in  coordinates, such
that the pixel with the centroid weighted by total pT
is  located  at .  This  procedure  involves
rotating and boosting the Jet along the beam direction
to position it at the center.

value× value

(η, ϕ) = (0, 0)

η, ϕ (−R,R)

　– Crop. Trim  to  a  region  of  pixels
centered around , encompassing the area
where  fall within the range .

∑
i,j Ii,j

i j

　– Normalize. adjust  the  pixel  intensities  to  ensure
that  the  sum  of  all  pixel  values, ,  equals  1
across  the  image,  with  and  serving as  the  pixel
indices.

µi,j

Ii,j = Ii,j − µi,j

　– Zero-center. Remove the average value, represented
by ,  from  the  normalized  training  set  images
from  every  image,  thereby  altering  each  pixel’s
intensity to .

σi,j

Ii,j = Ii,j/(σi,j + r)

r = 10−5

　– Standardize. Normalize  each  pixel  by  dividing  it
by  (the standard deviation) of the corresponding
pixel  value  in  the  training  dataset.  This  process  is
represented  as: .  A  value  of

 was  employed  to  reduce  the  influence  of
noise.

kt

R = 1.0

kt r < R

r = 0.3

　– Clustering  and  trimming. Reconstruct  Jets  by
applying the anti-  algorithm [33] to all calorimeter
towers,  utilizing  a  specific  Jet  size  parameter,  such
as ,  and  then  choose  the  primary  (leading)
Jet.  Subsequently,  refine  the  Jet  by  employing  the

 algorithm with a  subjet  size  parameter  of ,
such as  [34].

　– Pixelisation. Create  a  Jet  image  by  discretizing
the  transverse  energy  of  the  Jet  into  pixels  with

η − ϕdimensions (0.1, 0.1) in the  space.
　– Zooming. It is the option to magnify the Jet image

by a factor that diminishes its reliance on the Jet’s
momentum. 

3.3   Feature extraction and selection

ϕ

Feature extraction and selection are important techniques
in HEP for analyzing and interpreting data from experi-
ments  conducted  at  particle  accelerators  like  the  LHC.
HEP  experiments  produce  vast  amounts  of  data,  and
the  goal  is  to  extract  relevant  characteristics  from this
data  to  make:  (i)  particles  identifications,  (ii)  extract
kinematic variables, such as pT, energy (E), rapidity (y),
and  azimuthal  angle  ( )  for  each  detected  particle,
(iii) calculating the invariant mass of particle can reveal
the  presence  of  new  particles,  (iv)  extract  topological
features related to the spatial distribution of particles or
their  interactions  such  as  angular  separations,  impact
parameters,  and  vertex  finding.  The  benefit  of  feature
selection is to make: (i) dimensionality reduction techniques
like principal component analysis (PCA) or t-distributed
stochastic  neighbor  embedding  (t-SNE)  may  be
employed to reduce the number of features while retaining
as  much  information  as  possible,  (ii)  identify  the  most
discriminating  features  that  separate  signal  from  back-
ground,  (iii)  identify the most relevant features for  ML
classification and model building.

H → bb

Di  Luca et  al. [32]  presents  an  automated  feature
selection procedure for particle Jet classification in HEP
experiments. The authors use ML boosted tree algorithms
to  rank  the  importance  of  observables  and  select  the
most  important  features  associated  with  a  particle  Jet.
They  apply  this  method to  the  specific  case  of  boosted
Higgs boson decaying to two b-quarks ( ) tagging
and demonstrate  the  impact  of  feature  selection on the
performance of  the  classifier  to  distinguish these  events
amidst the substantial and unalterable background origi-
nating from quantum chromodynamics (QCD) multi-Jet
production.  They  also  train  a  fully  connected  neural
network  to  tag  the  Jets  and  compare  the  results
obtained  using  all  the  features  or  only  those  selected
from  the  procedure  which  consists  of  two  main  steps:
data  preparation  and  feature  ranking  extraction.  The
authors discover that the azimuthal angles of the large-R
Jet  and  the variable  radius  (VR)-track Jets  appear
towards the end of the feature ranking. At the top of the
ranking,  they  find  the pT of  the  two  VR-track  Jets,
along  with  certain  details  regarding  the  secondary
vertex, such as its mass, energy, and displacement. The
study  shows  that  selecting  the  highest-ranked  features
achieves  performance  nearly  as  effective  as  that  of  the
full model, with only a slight deviation of a few percent.
This  approach  can  be  expanded  to  accommodate  the
increased number of observable variables that upcoming
collider  experiments  will  gather  from  high pT particle
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Jets.  The  data  for  this  research  comes  from
proton–proton collision events featuring a boosted Higgs
boson that decays into two  quarks. In Ref. [35], solutions
have been proposed for classifying events extracted from
the  2014  Higgs  ML  Kaggle  dataset8).  The  dataset
includes  a  mix  of  low-level  and  high-level  attributes:  it
contains  18 low-level  features  that  include three-dimen-
sional  momenta  ( , , ),  missing  transverse  momen-
tum, and the total transverse momentum from all Jets;
additionally,  there  are  13  high-level  features  motivated
by physics, covering invariant masses and angular sepa-
rations among objects in the final state. Table 4 summarizes
the  features  utilized,  which  hold  potential  for  future
application within the context of HEP. The authors aim

to ensure that the suggested networks make effective use
of  low-level  information;  otherwise,  there’s  a  risk  of
losing these features during selection. Their focus lies in
determining  the  necessity  of  high-level  features.  The
proposed  DNN  model  effectively  utilize  the  low-level
information  in  the  data  and  autonomously  learn  their
own  high-level  representations.  Boost-invariant  polyno-
mial (BIP) features are a type of mathematical represen-
tation used in HEP for analyzing particle collision data.
They  are  constructed  to  be  invariant  under  boosts,
meaning  they  remain  unchanged  under  transformations
to  different  reference  frames  with  different  velocities.
These  features  are  designed to  capture  important  char-
acteristics of particle Jets, such as their energy distribution

 

Table  4 Possible combinations of Jet features to generate new high- and low-level features that could potentially improve
ML classification for Jet HEP. The performance of employing these features are presented in Ref. [35].

Level Suggested feature name Description Grouping

High-level
features

DER_mass_MMC The Higgs boson’s mass was estimated using a hypothesis-driven fitting
method Higgs, Mass

DER_mass_transverse_met_lep PT
missTransverse mass associated with the lepton and Higgs, Mass

DER_mass_vis The mass invariant to both the lepton and the tau Higgs, Mass

DER_pt_h PT
missTransverse momenta of the combined vector of the lepton, tau, and Higgs, 3-

momenta

DER_deltaeta_jet_jet Absolute disparity in pseudorapidity between the leading and subleading
Jets (undefined for less than two Jets)

Jet with
angular

properties

DER_mass_jet_jet The invariant mass of the primary and secondary Jets (not applicable
when there are fewer than two jets) Jet, Mass

DER_prodeta_jet_jet The multiplication of the pseudo rapidities for the foremost and next-to-
foremost Jets (inapplicable if fewer than two Jets are present) Jet, 3-momenta

DER_deltar_tau_lep η ϕDistance between the lepton and the tau in the –  plane Final state,
Angular

DER_pt_tot pT pT
PT
miss

The  resulting from the vector addition of the  of the lepton, tau,
the primary and secondary Jets (when applicable), and 

Final-state,
Sum

DER_sum_pt Total transverse momentum of the lepton, tau, and all Jets global event,
Sum

DER_pt_ratio_lep_tau Ratio of the transverse momenta of the lepton to that of the tau Final state, 3-
momenta

DER_met_phi_centrality PT
missCentrality of the azimuthal angle of  relative to the lepton and the

tau
Final state,

Angular

DER_lep_eta_centrality The centrality measure of the lepton’s pseud-orapidity in comparison to
the primary and secondary Jets (not applicable for fewer than two Jets) Jet, Angular

Low-level
features

PRI_tau_[px/py/pz] The 3-momenta of the tau expressed in Cartesian coordinates Final state, 3-
momenta

PRI_lep_[px/py/pz] The lepton’s 3-momenta represented in Cartesian coordinates Final state, 3-
momenta

PRI_met_[px/py] The constituent parts of the missing transverse momentum vector
expressed in Cartesian coordinates

Final state, 3-
momenta

PRI_met The magnitude of the missing transverse momentum vector represented
in Cartesian coordinates

Final state, 3-
momenta

PRI_met_sumet Total sum of transverse energy Final-state,
Energy

PRI_jet_num Count of Jets present in the event Jet, Multiplicity

PRI_jet_leading_[px/py/pz] The three-dimensional momenta of the primary Jet expressed in
Cartesian coordinates (not applicable if there are no Jets present) Jet, 3-momenta

PRI_jet_subleading_[px/py/pz] The 3-momenta of the secondary Jet represented in Cartesian coordinates
(not defined if fewer than two Jets are present) Jet, 3-momenta

PRI_jet_all_pt Total sum of the transverse momenta of all Jets in Cartesian coordinates Jet, 3-momenta
Note:  PRI_jet_all_pt  may  diverge  from the  sum of  the  transverse  momenta  of  the  leading  and  subleading  jets  because  events  can
feature more than two jets.

 

8) URL: www.kaggle.com/c/higgs-boson
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and substructure, while ensuring consistency across various
experimental  conditions.  BIP  features  are  particularly
useful  for  tasks  like  Jet  tagging  and  classification  in
HEP experiments, as employed in Ref. [36]. 

4   Available AI models for HEP Jet
classification

Many  DL  architectures  have  been  proposed  in  the
SOTA  of  HEP  domain  to  identify  particles.  Some  of
these  architectures  require  input  data  in  the  form  of
images,  while  others  utilize  PC  representations  [37].
Table 5 summarizes and compares the most efficient ML
and DL models, used in HEP, based on their architectures
and performances.

ML,  especially  DL,  has  a  rich  historical  presence  in
the  field  of  particle  physics.  The  concept  of  applying
neural networks for tasks like distinguishing quarks and

gluons,  tagging  Higgs  particles,  and  identifying  particle
tracks  has  been  around  for  more  than  two  and  a  half
decades.  Nevertheless,  the  recent  advancements  in  DL
and  the  increased  computational  capabilities  offered  by
graphics processing units (GPUs) have led to a significant
enhancement  in  image  recognition  technology.  As  a
result, there has been a renewed and heightened interest
in utilizing these techniques. In the subsequent sections,
we provide  an overview of  SOTA methods  in  both ML
and  DL. Figure  4 depicts  a  taxonomy  of  existing  ML
and  DL  techniques,  summarizes  the  reviewed  AI-based
Jet classification models (discussed in Section 4), prepro-
cessing  and  datasets  (discussed  in  Section  3),  and
metrics (discussed in Section 2). 

4.1   ML-based methods

ML-based  analysis  of  HEP  Jet  tagging  has  become  an
important technique in recent years. Jets are collimated

 

Table  5 A summary of available ML and DL architectures for Jet HEP classification, including columns for biases, general-
izability,  and  recommended  use  cases.  Bias  levels  range  from  moderate  (limited  datasets)  to  high  (overfitting,  dataset
reliance), while generalizability is categorized as high (broad applicability), moderate (adequate performance with some limi-
tations), and low (poor performance or untested on other tasks).

Ref. Year Model IN Acc. TT AUC TT Acc. QG AUC QG Acc. Other AUC Other Link Biases General. Recommended
scenarios

[45] 2017 TopoDNN Image 0.916 0.972 – – – – No M L Top quark
identification

[46] 2018 CNN tagger Image – – – – 0.87 (DTJ) 0.943 (DTJ) No H H Jet substructure
[47] 2019 PFN-ID PC 0.932 0.981 0.900 – – – No L L Energy flow studies

[48] 2020 LGN PC 0.929 0.964 0.803 0.832 – – Yes9) L M Lorentz invariance
studies

[49] 2020 ParticleNet PC 0.940 0.985 0.840 0.911 – – No M H Point cloud analysis

[50] 2021 EGNN PC 0.922 0.976 0.803 0.880 – – Yes10) L M Graph neural
networks

[51] 2021 PCT PC 0.940 0.985 0.841 0.914 – – No L H Point cloud
processing

[31] 2022 LorentzNet PC 0.942 0.986 0.844 0.915 – – No L M Lorentz group
studies

[52] 2022 PartT PC 0.944 0.987 0.852 0.923 – – Yes11) L H
Analysis of long-

range feature
dependencies in

particles

[38] 2022 PELICAN PC 0.942 0.986 – – – – Yes12) M L Particle cloud
matching

[53] 2024 CGENNs PC 0.942 0.986 – – – – Yes13) L H Clifford group
analysis

[54] 2024 L-GATr PC 0.942 0.987 – – – – Yes14) M H Geometric algebra
studies

[55] 2024 MIParT-L PC 0.944 0.987 0.853 0.923 – – Yes15) L H
Analysis of long-

range feature
dependencies in

particles

Abbreviation:  Input  nature  (IN);  Point  cloud  (PC);  Top  tagging  (TT);  Quark-gluon  (QG);  DeepTop  Jets  (DTJ);  CMS  Jets  (CJ);
Moderate (M); High (H); Low (L).

 

9) URL: github.com/fizisist/LorentzGroupNetwork
 

10) URL: github.com/vgsatorras/egnn
 

11) URL: github.com/jet-universe/particle_transformer
 

12) URL: github.com/abogatskiy/PELICAN
 

13) URL: github.com/DavidRuhe/clifford-group-equivariant-neural-networks
 

14) URL: github.com/Qualcomm-AI-research/geometric-algebra-transformer
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sprays of particles, i.e.,  emitted from a source in a way
that  they  are  parallel  or  nearly  parallel  to  each  other,
produced  in  high-energy  particle  collisions.  Analyzing
their properties is crucial for understanding the underlying
physics processes. Jet images and PC are essentially 2D
and 3D representations of the energy distribution within
a Jet, where each pixel corresponds to a small region of
the Jet. For example, Bogatskiy et al. in Ref. [38] introduced
PELICAN, an ML architecture for particle physics that
leveraged permutation-equivariant and Lorentz-invariant
techniques, along with elementary equivariant aggregators
and dense message-passing blocks.  It  processed 4-vector
inputs  representing  particle  jets  as  point  clouds  and
employed a classifier to reduce rank-2 input arrays (pair-
wise dot products of 4-momentum vectors of particles in
a  jet)  to  permutation-invariant  scalars  using  trace  and
total  sum  aggregation  functions.  Dense  layers  and  a
cross-entropy loss function were then used for optimiza-
tion. Additionally,  the PELICAN regressor predicted 4-
momentum  of  particles  using  a  permutation- and
Lorentz-equivariant  architecture  with  rank-preserving
transformations  and  loss  functions  based  on  relative
momentum  and  mass  resolutions.  Evaluation  metrics
included accuracy, AUC, background rejection rate, and
relative  resolutions.  PELICAN achieved  state-of-the-art
performance in Jet classification, outperforming methods
like  LorentzNet  while  using  approximately  five  times
fewer  parameters  (45k  only).  Its  low  complexity,
enhanced  by  equivariant  aggregation,  message-passing
mechanisms,  and  its  ability  to  handle  regression  tasks,

made it suitable for real-time applications. However, its
limitations  included  evaluation  on  limited  datasets  and
reliance on hyperparameter tuning.

m_bb m_wwbb
m_wbb

ML technique have been used in Ref. [39] by applying
the  shapley  additive  explanations  (SHAP)  method  to
explain  the  output  of  two  HEP  events  ML  classifiers
(XGBoost and DNN) using the Higgs dataset. It demon-
strates  SHAP’s  utility  in  understanding  complex  ML
systems, particularly in the context of HEP event classi-
fiers.  The  TreeExplainer  and  DeepExplainer  methods
from  the  Python  SHAP  library  were  used  to  compute
SHAP values, revealing that features like , ,
and  were  crucial  in  both  models,  although  their
distribution of SHAP values differed, indicating distinct
learning  processes.  The  process  of  extracting  SHAP
values are depicted in Fig. 5.

In addition, quantum machine learning (QML) methods
have recently found applications in addressing challenges
within HEP, including separating signal from background
[40], detecting anomalies [41], and reconstructing particle
tracks [42].

Blance and Spannowsky [40] proposed a hybrid varia-
tional  quantum  classifier  that  combines  quantum
computing  methods  with  classical  neural  network  tech-
niques  to  improve  classification  performance  in  particle
physics research. The algorithm is applied to a resonance
search  in  di-top  final  states,  and  it  outperforms  both
classical  neural  networks  and  QML  methods  trained
with non-quantum optimization methods. The classifier’s
ability to be trained on small amounts of data indicates
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Fig. 4  Taxonomy of ML and DL-based HEP techniques for Jet classification, with associated preprocessing, metrics, simulation
tools and datasets.
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its  potential  benefits  in  data-driven  classification  prob-
lems.  The  proposed  methodology  was  applied  to  the
generated  dataset,  and  the  hybrid  approach  using  the
FST metric outperformed both classical neural networks
and QML methods trained with non-quantum optimization
methods  in  terms  of  maximizing  learning  outcomes;  its
accuracy  can  reach  72.6%.  The  hybrid  approach  also
learned  faster  than  an  equivalent  classical  neural
network  or  the  classically  trained  variational  quantum
classifier. The paper [43] discusses the potential applica-
tions of quantum computation and QML in HEP, rather
than  focusing  on  deep  mathematical  structures.  The
authors  claim that  statistical  ML methods  are  used  for
track  and  vertex  reconstruction.  These  methods  vary
depending on the detector  geometry and magnetic  field
used in the experiment. ML can help address these chal-
lenges  by  providing  efficient  and  accurate  methods  for
pattern  recognition  and  particle  identification.  They
suggest  that  quantum  algorithms  could  potentially
improve  upon  existing  methods  by  offering  faster  and
more  efficient  solutions  to  challenging  problems  in
experimental  HEP,  such  as  particle  identification  and
track reconstruction. This can be realized by creating a
dataset recorded on tape through grid computing, which
can  be  distributed  for  offline  analysis  using  QML  to
extract information about particle trajectories developed
inside  the  detectors.  The  work  [44]  investigates  the
potential  of  QML  in  HEP  analysis  at  the  LHC.  The
authors compare the performance of the quantum kernel
algorithm  to  classical  ML  algorithms  using  15  input
variables and up to 50 000 events. They used 60 statistically
independent  datasets  of  20  000  events  each  for  their
analysis. The AUC is used as the metric, and the results
show that the performance of all methods improves with

S/
√
B

b b̄

increasing  dataset  size.  For  15  qubits,  the  quantum
SVM-Kernel algorithm performs similarly to the classical
support vector machine (SVM) and classical BDT algo-
rithms.  The  quantum  SVM-Kernel  performances  from
the  three  different  quantum  computer  simulators
(Google,  IBM,  and  Amazon)  are  comparable.  The
authors also claim that when a selection is implemented,
permitting a signal acceptance rate of 70%, it results in
the  rejection  of  approximately  92%  of  background
events,  as  indicated  by  the  AUC.  Consequently,  the

 ratio will  experience an enhancement of approxi-
mately 150% compared to a scenario without any selec-
tion. Similarly, the researchers in Ref. [26] present a new
approach  to  Jet  classification  using  QML.  The  method
involves  embedding data into a  quantum state,  passing
it through a variational quantum circuit, and performing
a training procedure by minimizing a classical loss func-
tion.  Probability  measurements  of  the  final  state  are
then used to perform the classification. By exploiting the
intrinsic  properties  of  quantum  computation,  such  as
superposition and entanglement, the team aims to identify
if a Jet contains a hadron formed by a  or  quark at
the moment of  production.  The approach could lead to
new insights and enhance the classification performance
in particle physics experiments. Two datasets have been
used  in  this  research:  the  complete  dataset  and  the
muon  dataset,  both  of  which  belong  to  CERN.  In  the
muon dataset analysis, 60 000 Jets are used for training
and 40 000 Jets are used for testing. The muon dataset
is  a  subset  of  the  complete  dataset,  and  it  is  used  to
evaluate  the  dependence  of  the  quantum  algorithms’
performance  on  the  number  of  training  events  and  the
circuit  complexity.  The researchers  compare  the  perfor-
mance  of  their  QML approach with  that  of  DNN,  long
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Fig. 5  (a) Diagram  illustrating  the  localized  explanation  of  an  event  classifier  with  the  SHAP  method. (b) Localized
SHAP explanation represented using a waterfall plot. It can be observed that the SHAP values are associated with individual
event features. The classifier’s prediction (XGBoost) is , while the base value is . In this context,
the  feature “m_wwbb” contributes  positively  with  a  SHAP value  of  +0.77,  increasing  the  prediction,  whereas  the  feature
“m_wbb” has a SHAP value of –0.6, reducing the prediction.
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short-term  memory  (LSTM),  and  LSTM with  convolu-
tional  layer  models.  They  show  that  the  results  for
tagging  power  as  a  function  of  the  Jet pT and  are
comparable  within  the  MSE  error,  and  therefore,  they
consider only the DNN model for comparison with QML
algorithms. 

4.2   MLP and DNN-based methods

pT,J

pT,J,trim mJ

mJ,trim

Multi-layer  perceptron  (MLP)  is  an  artificial  neural
network composed of multiple layers of nodes, including
an  input  layer,  one  or  more  hidden  layers,  and  an
output  layer.  Each  node  in  one  layer  is  connected  to
every  node  in  the  subsequent  layer.  MLP  can  handle
complex  nonlinear  relationships  between  input  and
output  data,  making  them  suitable  for  various  tasks.
MLPs  are  versatile,  scalable,  and  can  be  trained  using
back-propagation,  enabling  them  to  learn  from  large
datasets  effectively  and  generalize  well  to  unseen  data.
Kinematic  parameters  describe  the  motion  of  particles,
including  velocity,  momentum  ( )  and  trimmed  Jet
momentum  ( ),  energy,  Jet  mass  and  Jet
mass trimmed , and angles of emission, commonly
used  in  physics  and  engineering  analyses.  Chakraborty
et al. in Ref. [56] employed both kinematics and spectral
function,  which  typically  refers  to  a  function  that
describes the distribution of energy or momentum states
of particles in a particular physical system, to feed MLP
classifier  as  described  in Fig.  6.  The  authors  aim  is  to
trim/discard  Jet  that  are  unlikely  to  have  originated
from  the  process  of  interest  (effects  of  background
noise). This selective removal helps to improve the accuracy
of  measurements  and  analyses  by  focusing  only  on  the
most relevant particles within a jet.

The paper [48] introduces the Lorentz group network
(LGN)  neural  network  model  designed  for  particle
physics identification. This model is characterized by its
full  equivariance  to  transformations  under  the  Lorentz
group,  which  represents  a  crucial  symmetry  of  space-
time in  physics  and allows for  equivariant  nonlinearity.
The LGN architecture has been successfully applied to a
classification task in particle physics called top tagging,
whose objective is to distinguish top quark “Jets” from a
backdrop of  lighter quarks.  The LGN model  consists  of
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several  layers,  including  the  linear  input  layer  ( ),
iterated  Clebsch–Gordan  (CG)  layers  ( ),  and  the
perceptrons  layer.  This  design  reduces  the
number  of  learnable  parameters  and  provides  a  deeper
understanding  of  the  physical  interpretation  of  the
results (Fig. 7). The initial linear layer processes the 4-
momenta  of  particles  originating  from  a  collision
event, and it can also handle associated scalar quantities
like  label,  charge,  spin,  and  more.  The  iterated 
layers are defined by a CG decomposition of the tensor
product  of  representations  of  the  Lorentz  group,  which
allows  for  equivariant  non-linearity.  The  CG layers  are
alternated with perceptrons  layer, which act only
on  Lorentz  invariants.  At  the  end  of  each  CG layer,  a
MLP is applied to the isotypic component of the tensor
product. The MLP accepts  scalar inputs and generates
an  equivalent  number  of  outputs,  with  its  parameters
uniformly  applied  across  all  nodes  within  the  CG
layer. The output layer computes the arithmetic sum of
the  activations  from  and  extracts  the  invariant
isotypic  aspect  of  this  sum.  It  subsequently  employs  a
final  fully  connected  linear  layer,  denoted  as ,  on
the  scalars,  generating  two  scalar  weights  for
binary  classification.  In  the  LGN model’s  output  layer,

 conducts  the  projection  onto  invariants,  combines
contributions  from  particles  to  ensure  permutation
invariance and subsequently applies a linear transforma-
tion.  operates  independently  on  each  individual
particle  but  maintains  consistent  parameter  values
across  all  particles.  The  LGN  model  has  demonstrated
competitive  performance  while  using  between  10  and
1000 times fewer parameters than other SOTA models.

The DNNs are a type of artificial neural network that
are composed of multiple layers of nodes (i.e., MLP with
multiple  hidden  layers),  with  each  node  connected  to
every  node  in  the  previous  and  next  layers.  They  are
particularly  well-suited  for  processing  high-dimensional
data,  such as images or  collections of  features,  and can
learn  complex  non-linear  relationships  between  inputs
and outputs. In the context of HEP, the DNN was used
in to classify hadronic Jets based on their input features.
DNNs typically require a fixed-size input, which can be
a  limitation  when  working  with  variable-length  inputs
such as particle lists.

In  Ref.  [57],  DNNs  are  used  in  HEP  to  classify  Jets
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Fig. 6  An example of classifier utilizing MLP trained using
kinematic  and  spectrum  variables  for  Jet  classification  [56].

 and  correspond to  hard  and soft  substructure
information.
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Fig. 7  The  architecture  of  LGN  model  suggested  in  Ref.
[48].
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produced in particle collisions.  DNNs can automatically
extract  features  from  Jet  tagging,  allowing  for  more
accurate classification than traditional methods that rely
on  expert-designed  features.  Parton  shower  in  HEP
refers to the process where high-energy particles, such as
quarks and gluons, emit further particles as they evolve,
simulating  the  fragmentation  and  radiation  patterns
observed  in  particle  collisions  within  particle  accelera-
tors, which is crucial for understanding particle interac-
tions. Barnard et al. [34] advocate for DNNs as hadronic
resonance taggers, trained on Jet tagging generated from
different generators. The DNN showed improved perfor-
mance on test events generated by the default PYTHIA
shower instead of using HERWIG and SHERPA genera-
tors, suggesting acquisition of PYTHIA-specific features.
However, they noticed that biases may arise from generator
approximations. They examine parton shower variations’
impact on tagger performance using LHC data.  Results
show  up  to  50%  differences  in  background  rejection.
They  introduced  the “zooming” method,  enhancing
performance between 10% and 20% across Jet transverse
momenta. The TopoDNN model proposed in Ref. [45] is
a DNN-based architecture (Fig. 8). The network’s input
layer  is  designed  to  process  vectors  containing  the  Jet
constituents’ pT, , and  values. Manual tuning of the
network’s architecture involved adjusting the depth and
node  count  per  layer,  within  a  range  of  4–6  layers  and
40–1000  nodes  per  layer,  respectively.  rectified  linear
unit (ReLU) activation function was implemented in the
hidden layers, whereas a sigmoid function was applied to
the output node. The training process utilized the Adam
optimizer,  with training sessions capped at a maximum
of  40  epochs.  An  early  stopping  mechanism  was
employed, utilizing a patience parameter set to 5 epochs
based  on  the  validation  set  loss.  The  final  architecture
selected  features  4  hidden  layers,  comprising  300,  102,
12,  and  6  nodes  in  each  layer  respectively.  TopoDNN
achieved  a  significant  background  rejection  of  45  at  a
50%  efficiency  operating  point  for  reconstruction-level

Jets, yielding to correctly identify top quark Jets with a
high level  of  accuracy while rejecting a large portion of
background events.

The  researchers  in  Ref.  [58]  discusses  the  application
of DNNs to a wide range of physics problems, particularly
in  HEP.  Specifically,  DNNs  have  been  successfully
applied to tasks such as Jet tagging and event classifica-
tion. The authors explore the use of a simple but effective
preprocessing step that transforms observational quantities
into  a  binary  number  with  a  fixed  number  of  digits,
representing  the  quantity  or  magnitude  in  different
scales.  This  approach  has  been  shown  to  significantly
improve  the  performance  of  DNNs  for  specific  tasks
without complicating feature engineering, particularly in
b-Jet  tagging  using  daughter  particles’ momenta  and
vertex  information.  However,  the  authors  in  Ref.  [47]
used  DNNs  to  process  collections  of  ordered  inputs,
which can be thought of as a fixed-size representation of
variable-length  inputs.  This  allows  the  DNN  to  learn
features  sensitive  to  particle  ordering,  which  can  be
important  for  discriminating  between  different  types  of
Jets. Particle flow network with ID (PFN-ID) model [47]
is  another  proposed  type  of  DL architecture  that  takes
particles  as  input  and  processes  them in  a  way  that  is
dependent  on  the  order  the  particles  were  fed  into  the
network. The PFN-ID architecture is based on the Deep
Sets framework and includes full particle ID information
(Fig.  9).  The  Deep  Sets  framework  is  a  ML  approach
that allows for learning directly from sets of features or
“point clouds”. The following are the main steps of the
framework:  (i)  Map each element of  the set to a latent
space using a shared function. (ii)  Aggregate the latent
representations of the elements using a symmetric func-
tion. (iii) Map the aggregated latent representation back
to the output space using a shared function. An additive
latent space can be used to express a general symmetric
function,  as  provided  by  the  framework.  Within  the
scope  of  particle-level  collider  observables,  the  process
involves  mapping  each  particle  to  a  latent  representa-
tion,  which is  subsequently collected.  Subsequently,  the
observables  are  expressed  as  functions  on  this  latent
space.  This  decomposition  includes  a  diverse  range  of
current  collider  observables  and  representations  at  the
event  and  Jet  levels,  including  as  image-based  and
moment-based  techniques.  The  PFN-ID  improves  the
classification  performance  of  the  particle  flow  network
(PFN)  model  for  discriminating  quark  and  gluon  Jets.
Results show that PFN-ID slightly outperforms recurrent
neural  network  (RNN)-ID,  whereas  the  PFN and  RNN
are comparable.

D +D

The  authors  in  Ref.  [59]  introduce  a  novel  DNN
model, called sparse autoregressive model (SARM), that
learns data sparsity explicitly, yielding stable and inter-
pretable  results  compared  to  generative  adversarial
networks (GANs). In two case studies, the first, referred
to  as ,  employs  a  discrete  mixture  model  by
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Fig. 8  The  architecture  of  the  TopoDNN  model,  consists
of 4 layers with 300, 102, 12, and 6 nodes, respectively [45].

TOPICAL REVIEW FRONTIERS OF PHYSICS

Hamza Kheddar, et al., Front. Phys. 20(3), 035301 (2025)   035301-15

 



D + C

discretizing pixel values using predetermined grid points,
while  the  second, ,  utilizes  a  discrete  mixture
model constructed with a truncated logistic distribution
for pixel modeling. In two case studies, SARM outperforms
GANs by 24%–52% and 66%–68% on images with high
sparsity.

b

b

b

In the study conducted by Ref. [60], the identification
of  Jets was investigated utilizing QCD inspired observ-
ables. The process entails the utilization of Jet substructure
observables,  including  one-dimensional  Jet  angularities
and  the  two-dimensional  primary  lund  plane  (PLP).
DNNs are employed to identify  Jets using these QCD-
inspired observables.  The DNNs are trained on a set of
input  features,  which  include  Jet  angularities  and  the
PLP, in order to efficiently distinguish  Jets from light
ones.  The  performance  of  the  DNNs  is  evaluated  by
comparing their results with those of conventional track-
based taggers, such as JetFitter, IP3D, and DL1 taggers.
In this study, the results indicate that the DNN discrim-
inants exhibit better performance than the IP3D tagger. 

4.3   CNN-based methods

CNNs  have  revolutionized  Jet  image  classification  and
prediction  in  particle  physics.  CNNs  excel  in  image
recognition  by  leveraging  convolutional  layers,  weight
sharing,  and  pooling  to  capture  hierarchical  features,
enabling  effective  pattern  recognition  and  classification
[61, 62]. This enables precise particle identification using
Jet  images,  improved  event  classification,  and  deeper

4× 4

2× 2

insights  into  HEP  experiments,  advancing  researchers’
understanding of fundamental particles and interactions.
For  example,  the  authors  in  Ref.  [63]  investigate  the
capability  of  CNNs  in  discriminating  quark  and  gluon
Jets,  comparing  their  performance  to  traditionally
designed physics observables. In the realm of Jet image
classification, researchers proposed combining CNN with
various  other  DL  techniques.  For  instance,  Farrell’s
paper  [64],  hybrid  DLs  revolutionize  particle  tracking.
LSTMs  excel  in  sequential  data  analysis,  replacing
Kalman  filtering  for  hit  assignment,  while  CNNs
construct  valuable  detector  data  representations.  Their
fusion  unveils  a  potent  end-to-end  model,  with  GPU
training addressing traditional tracking algorithm scaling
challenges. The CNN tagger architecture proposed in the
paper [46] consists of a CNN with four identical convolu-
tional  layers,  each  with  8  feature  maps  and  a 
kernel.  These  layers  are  separated  in  half  by  one 
max-pooling  layer.  The  CNN  also  includes  three  fully
connected layers of 64 neurons each and an output layer
of two softmax neurons. Zero-padding is included before
each  convolutional  layer  to  prevent  spurious  boundary
effects.  The  architecture  ends  with  a  flatten  layer  and
three fully connected layers with sizes 64, 256, 256, and
2, respectively (Fig. 10). The CNN is trained on a total
of 150 k + 150 k top and QCD Jet images, by minimizing
a  MSE  loss  function  using  the  stochastic  gradient
descent  algorithm  in  mini-batches  of  1000  Jet  images
and a learning rate of 0.003.

Oliveira et  al. [65]  applied  a  CNN  directly  to  Jet
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or background can be identified.
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Fig. 10  The architecture of CNN tagger model suggested in Ref. [46].
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tagging,  showcasing  its  effectiveness  as  a  powerful  tool
for  identifying boosted hadronically  decaying  bosons
amid  QCD  multi-Jet  processes.  Similarly,  in  order  to
discriminate  Quark-Gluon  Jet,  Lee et  al. in  their
research [66], employed various pretrained CNN models,
including  VGG,  ResNet,  Inception-ResNet,  DenseNet,
Xception,  Vanilla  ConvNet,  and  Inception-ResNet,  to
classify  Jet  images  for  distinguishing  quark  and  gluon
hadron  Jets.  The  study  reveals  that  DenseNet  outper-
forming  larger,  higher-structured  networks.  Despite
marginal  improvements  over  a  traditional  BDT  classi-
fier,  stability  in  training  can  be  enhanced  using  the
RMSProp optimizer, an adaptive learning rate optimiza-
tion  algorithm.  Similarly,  significant  progress  resulted
from integrating 1D CNN and LSTM, resulting in DeepJet
NN  model  [27]  for  Jet  identification.  The  architecture
extract abstract features from three input collections —
secondary  vertices,  charged  particles  (tracks),  and
neutral  particles.  The  final  Jet  flavor  probabilities  are
determined  by  combining  outputs  with  global  Jet
features  in  dense  layers.  This  architecture  was  also
applied  to  heavy  flavour  classification,  with  the  model
further  adapted  for  quark-gluon  tagging  tasks  [67].  In
Ref.  [67],  the  model  architecture  consists  of  several
components:  (i)  Automatic  feature  extraction  is
conducted  for  each  constituent  through  convolutional
branches that include  convolutional layers. Distinct
convolutional  branches  are  allocated  for  vertices,
charged  particle  flow  candidates,  and  neutral  particle
flow  candidates,  (ii)  the  output  of  the  convolutional
branches is  used to construct  a graph representation of
the Jet, where each constituent is represented as a node
in the graph. The edges between the nodes are determined
by a distance metric that takes into account the kinematic
properties of the constituents, (iii) the graph representation
of the Jet is then processed by several graph convolutional
layers,  which  are  designed  to  capture  the  correlations
between  the  constituents.  The  graph  convolutional
layers use a learnable filter that is applied to the graph
representation  of  the  Jet,  and  (iv)  the  output  of  the
graph convolutional layers is then fed into several dense
layers, which are designed to perform the final classification
task.  The  dense  layers  use  a  combination  of  fully
connected  and  batch  normalization  layers.  In  the
context  of  the  DeepJet  model,  the  RNN  layer  is  an
important component of the DeepJet model (Fig. 11), as
it allows the model to capture the sequential information

in the charged particle tracks and to use this information
to  improve  the  classification  performance.  The  DeepJet
model has been shown to achieve SOTA performance in
Jet flavour classification and quark/gluon discrimination
tasks. The model was tested using CMS simulation and
was  found  to  outperform  previous  classifiers,  including
the  IP3D  algorithm.  The  DeepJet  model  underwent  a
comparative analysis against a binary quark/gluon clas-
sifier  from  the  CMS  reconstruction  framework.  An
improvement in performance was noted with the use of
the DeepJet model on a dataset comprised exclusively of
light  quark  and  gluon  Jets.  Moreover,  the  DeepJet
model was found to be more robust to variations in the
Jet  constituents  and  kinematics,  which  makes  it  more
suitable  for  use  in  real-world  scenarios.  In  terms  of
DeepJet’s performance, using the function of reconstruc-
ted  vertices,  b-Jet  efficiency  can  reach  92%,  and  when
the function of Jet pT, b-Jet efficiency is around 95%.

Du et  al. in  their  paper  [68]  addressed  challenges  in
assessing  Jet  distribution  modification  in  a  hot  QCD
medium  during  heavy-ion  collisions.  It  utilizes  a  CNN
trained on a hybrid strong/weak coupling model, achieving
good  performance  and  emphasizing  result  interpretabil-
ity. The study reveals discriminating power in the angular
distribution  of  soft  particles  and  explores  the  potential
of DL for tomographic studies of Jet quenching.

The  study  [69]  demonstrates  CNN’s  efficacy  in
predicting energy loss for quark and gluon Jets, yielding
comparable  results.  It  highlights  distinctions  post-
quenching and employs DL for classification, emphasizing
energy  loss’s  impact  on  classification  difficulty.  In
Fig.  12,  a  CNN  architecture  is  presented  specifically
designed  for  identifying  quark  and  gluon  Jets.  The
researchers [17] employed CNN to analyze LHC proton-
proton  collision  simulation  data.  Their  CNN  model,
utilizing  detector  responses  as  images,  distinguishes  r-
parity  violating  super-symmetry  (RPV  SUSY)  signal
events from QCD multi-Jet background events. Achieving
1.85 times efficiency and 1.2 times expected significance
over  traditional  methods.  the  authors  showcased  the
model’s  scalability  on  HPC  resources,  reaching  1024
nodes. 

4.4   Adversarial training-based methods

GANs in image processing enhance creativity and realism
by generating new images through a dynamic interplay.

 

Neutral (6 features) ×25

Secondary Vtx (12 features) ×4

Global variables (6 features)

Charged (16 features) ×25 1×1 Conv. 64/32/32/8 RNN 150

RNN 50 Dense
200 nodes ×1,
100 nodes ×7 O

ut
pu

t

RNN 50

1×1 Conv. 32/16/4

1×1 Conv. 64/32/32/8

 
Fig. 11  The architecture of DeepJet model suggested in Ref. [67].
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The  generator  creates  images,  while  the  discriminator
evaluates and refines them, enabling tasks like image-to-
image translation, style transfer, and data augmentation
with unparalleled versatility [62, 70]. GANs are powerful
tools  for  Jet  image  classification  in  particle  physics.
They create realistic Jet images, enabling robust testing
of classification algorithms. GANs enhance the accuracy
of identifying particles and contribute to breakthroughs
in  HEP  research.  However,  the  authors  in  Ref.  [71]
employed  another  technique  for  adversarial  training  for
physics  object  identification and decreased the  effect  of
simulation-specific  artifacts.  They  systematically
distorted  inputs  that  have  been  generated  with  fast
gradient  sign  method  (FGSM)  adversarial  attack  tech-
nique, this latter altering model predictions using gradient
information. The method showed how model performance
and robustness  are  related.  They explored the  trade-off
between  performance  on  unperturbed  and  on  distorted
test samples, investigating ROC curves and AUC scores
for  the  used  discriminators.  Similarly,  in  Ref.  [72],  the
paper  investigates  the  loss  manifold  of  a  Jet  tagging
algorithm  concerning  input  features  on  nominal  and
adversarial  samples.  Discrepancies  in  flatness  reveal
differences  in  robustness  and  generalization.  The  study
suggests refined training approaches through macro-scale
loss  manifold  exploration  for  two  features  and  devising
attacks that maintain the gradient’s directionality. This
leverages  acquired  insights  for  enhanced  object  identifi-
cation in particle physics. 

4.5   RNN-based methods

Various  types  of  RNNs  such  as  bidirectional  RNNs

pT , η, ϕ

(BRNNs),  LSTM,  and  gated  recurrent  units  (GRUs)
differ  in  architecture  at  the  cell  level  within  the  RNN
layer.  BRNNs  propagate  information  in  both  forward
and  backward  directions,  influencing  predictions  by
surrounding  words.  LSTM  tackles  vanishing  gradients
with  inner  cells  containing  input,  output,  and  forget
gates,  regulating  information  flow.  GRUs-based
networks  address  short-term  memory  issues  with  reset
and update gates controlling information utilization akin
to  LSTM  gates  [61, 73].  Recursive  neural  networks
(RecNNs),  are  designed  to  operate  on  hierarchical  or
tree-structured  data,  where  the  relationships  between
elements are defined by a recursive structure. Instead of
processing  sequences  sequentially  with  temporal  depen-
dencies,  like RNNs, RecNNs recursively apply the same
neural  network operation  to  combine  representations  of
child  nodes  to  produce  a  representation  of  their  parent
node,  traversing  the  hierarchical  structure.  In  light  of
this,  the  authors  in  Ref.  [74]  investigate  RecNNs  for
quark/gluon  discrimination.  Results  indicate  RecNNs
outperform  baseline,  boosted  decision  tree,  in  gluon
rejection  rate  by  a  few  percent.  Even  with  minimal
input  features  such  as ,  RecNNs  yield  promising
results,  suggesting  tree  structure  contains  essential
discrimination  information.  Additionally,  rough  up  or
down quark Jet discrimination is explored. In Ref. [73],
a neural network was created specifically for Jet binary
classifying.  The  network  comprises  two  hidden  layers
employing recurrent cells, with a structure consisting of
25  LSTM cells  and  utilizing  a  tanh  activation  function
at its core. 

4.6   GNN-based methods

GNNs are neural networks designed for graph-structured
data,  learning  node  and  edge  representations  while
capturing complex relationships and dependencies within
graphs for tasks such as classification and prediction. In
the HEP context, the authors in Ref. [49] proposed the
ParticleNet  model  (Fig.  13).  The  architecture  is  a
customized  neural  network  that  operates  directly  on
particle  clouds  for  Jet  tagging.  It  uses  dynamic  graph
CNNs to process the unordered set of constituent particles
that  make  up  a  Jet.  The  architecture  consists  of  three
EdgeConv blocks, each with a different number of channels
and nearest neighbors. EdgeConv block starts by repre-
senting a point cloud as a graph, whose vertices are the
points  themselves,  and  the  edges  are  constructed  as
connections between each point to its K-nearest neighbors
(KNN) points. The EdgeConv block then finds the KNN
particles for each particle, using the “coordinates” input
of the EdgeConv block to compute the distances. Inputs
to  the  EdgeConv  operation,  the “edge  features”,  are
constructed  from the “features” input  using  the  indices
of KNN particles.  The EdgeConv procedure is executed
using  a  three-layer  MLP.  Each  layer  is  structured  to
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Fig. 12  Example  of  CNN  architecture  with  input  Jet
image,  three  convolutional  layers,  dense  layer,  and  output
layer are involved. In this context, red represents the transverse
momenta  of  charged  particles, green corresponds  to  the pT
of  neutral  particles,  and blue signifies  the  charged  particle
multiplicity [63].
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include  a  linear  transformation,  succeeded  by  batch
normalization,  and  subsequently  a  ReLU  activation.
Additionally,  a  shortcut  connection  is  integrated  into
every block parallel to the EdgeConv operation, facilitating
the direct passage of input features. An EdgeConv block
is  defined  by  two  key  hyper-parameters:  the  neighbor
count  and  the  channel  count ,  which  respectively
denote  the  number  of  neighbors  to  consider  and  the
number of  units within each layer of  linear transforma-
tion. The EdgeConv blocks play a crucial role in learning
the  local  features  of  the  particle  cloud  and  aggregating
them into a global feature vector for the Jet. Following
EdgeConv  blocks,  global  average  pooling  aggregates
particle  features,  leading  to  a  256-unit  fully  connected
layer,  ReLU  activation,  dropout,  and  a  2-unit  softmax
output  for  binary  classification.  The  ParticleNet  archi-
tecture achieves SOTA performance on two representative
Jet  tagging  benchmarks  and  is  improved  significantly
over existing methods.

Similarly,  Ref.  [50]  proposed  the  equivariant  graph
neural networks (EGNN) model, which is a GNN archi-
tecture that is translation, rotation, and reflection equiv-
ariant [E(n)],  and permutation equivariant with respect
to an input set of points. It uses a set of filters that are
equivariant to the action of the symmetry group, which
are constructed using a combination of radial basis func-
tions and Chebyshev polynomials. The EGNN algorithm
possesses  the  same  flexibility  as  the  GNN  technique,
while  also  maintaining E(n)  equivariance  similar  to  the

radial  field  algorithm.  Additionally,  it  eliminates  the
requirement  for  computationally  intensive  procedures,
such  as  spherical  harmonics.  The  EGNN exceeds  other
equivariant and non-equivariant options while maintaining
efficiency  in  terms  of  running  time.  Moreover,  the
EGNN approach demonstrates a 32% reduction in error
compared to the SOTA method.

Another  architecture  called  the  LorentzNet  is
proposed  in  Ref.  [31],  which  is  based  on  the  Lorentz
group equivariant block (LGEB) block. The structure of
LGEB  consists  of  several  layers,  including  Minkowski
norm  and  inner  product,  sum  pooling,  a  MLP,  and  a
Clebsch–Gordan tensor product. The input of LGEB is a
set  of  4-momentum  vectors,  which  are  transformed  by
the  Minkowski  norm and inner  product  layer  to  obtain
Lorentz-invariant geometric quantities. The sum pooling
layer  aggregates  the  geometric  quantities  to  obtain  a
scalar  representation  of  the  input.  The  MLP  layer  is
used to learn a nonlinear mapping from the scalar repre-
sentation to  a  new feature  space.  Finally,  the  Clebsch–
Gordan tensor product layer is used to combine the new
feature  space  with  the  original  input  to  obtain  the
output  of  LGEB.  It  is  designed  as  a  Lorentz  group-
equivariant  mapping  to  preserve  the  symmetries  of  the
Lorentz  group,  ensuring  the  model’s  equivariance  and
universality.

O(n) E(n)

The  paper  [53]  introduced  Clifford  group  equivariant
neural  networkss  (CGENNs),  a  novel  GNN  framework
designed to construct - and -equivariant models
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Fig. 13  The architecture of ParticleNet model suggested in Ref. [49].
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using Clifford algebra. CGENNs leveraged the geometric
properties  of  Clifford  algebras,  such  as  the  geometric
product,  to  parameterize  equivariant  neural  network
layers.  These  layers  operated  on  multivectors  — struc-
tures  encompassing  scalars,  vectors,  and  higher-dimen-
sional  geometric  features  —  enabling  symmetry-aware
computations.  Input  point  cloud  included  scalars  (e.g.,
mass) and vectors (e.g., positions), embedded into multi-
vector subspaces. CGENNs achieved SOTA performance
across  domains,  including  3D -body  simulations  and
4D Lorentz-equivariant  tasks,  and  Jet  tagging  in  HEP,
outperforming  models  like  LorentzNet  and  EGNN.
However,  their  computational  costs,  due  to  complex
geometric products,  remained a challenge for scalability
and real-time applications. 

4.7   Transformer-based methods

Transformers are AI models using self-attention mecha-
nisms  to  process  sequential  data,  excelling  in  natural
language processing [81], computer vision [82], and time-
series  tasks  by  capturing  long-range  dependencies  and
contextual  relationships  efficiently.  Researchers  in  HEP
have investigated transformers for the Jet tagging task.
For example, Ref. [51] introduced a modified point cloud
Transformer  (PCT)  for  Jet-tagging  tasks  in  collider
physics.  The  PCT  leveraged  self-attention  layers  and
EdgeConv  blocks  to  handle  the  unordered  nature  of
particle  data,  ensuring  permutation  invariance.  Jets
were  represented  as  point  clouds  with  up  to  100  parti-
cles, described by kinematic features such as momentum
and particle types. The suggested PCT achieved SOTA
performance,  with  an  high  AUC  for  both  top  tagging
and  quark-gluon  classification,  showing  up  to  a  20%
improvement  in  background  rejection  over  models  like
ParticleNet.  Despite  its  superior  performance,  the
computational  cost  was  significant,  with  266M FLOPs,
making real-time applications challenging. W

In  addition,  the  work  in  Ref.  [52]  proposed  PartT,
which  is  a  new  Transformer-based  architecture  for  Jet
tagging. Its main task is to identify the origin of a Jet of
particles produced in HEP experiments. ParT makes use
of  two  sets  of  inputs:  (i)  the  particle  input,  which
includes a list of features for every particle and forms an
array, and (ii) the interaction input, which is a matrix of
features  for  every  pair  of  particles.  ParT  employs  a
novel  pairwise  multi-head  attention  (P-MHA)  mecha-
nism, which allows the model to attend to pairs of particles
and learn their interactions. The P-MHA is more effective
than standard plain multi-head attention. This assertion
is  substantiated  when  the  pre-trained  ParT  models  are
fine-tuned  on  two  widely  adopted  Jet  tagging  bench-
marks,  the  quark-gluon  tagging  dataset  and  the  binary
classification  dataset  for  identifying  boosted  bosons
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Fig. 14  The  architecture  of  EGNN  model  suggested  in
Ref. [50].
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Fig. 15  (a) The architecture of LorentzNet model. (b) LGEB block [31].
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decaying to two quarks. The fine-tuning process involves
training  the  ParT  models  on  a  smaller  labeled  dataset
specific to each benchmark, which allows the models to
learn the specific features and patterns relevant to each
task.  The  fine-tuned  ParT  models  achieve  significantly
higher  tagging  performance  than  the  models  trained
from  scratch  and  outperform  the  previous  SOTA
models,  including  ParticleNet  and  other  Transformer-
based models.

Moving on, Ref. [54] introduced the Lorentz geometric
algebra  Transformer  (L-GATr),  a  versatile  architecture
designed  for  high-energy  physics.  L-GATr  combined
Lorentz-equivariant  geometric  algebra  with  attention
mechanisms, enabling robust handling of particle physics
data  in  four-dimensional  spacetime.  The  architecture
accommodated variable-length inputs, exploited Lorentz
symmetry,  and  extended  to  generative  modeling  via
continuous  normalizing  flows  trained  with  Riemannian
flow  matching.  It  used  Transformer-based  layers  with
Lorentz-equivariant attention and normalization tailored
to Minkowski space, processing particle data parameterized
by  type  and  four-momentum  vectors.  The  evaluation

employed  metrics  such  as  accuracy,  AUC,  background
rejection rates, MSE, likelihood, and two-sample tests. L-
GATr demonstrated competitive or superior performance
compared  to  Lorentz-equivariant  graph  networks.
However,  it  had  computational  overhead  relative  to
standard transformers and left its potential for pretraining
in HEPs unexplored. Similarly, more-interaction particle
Transformer (MIParT) scheme [55] introduced the more-
interaction  attention  (MIA)  mechanism  to  enhance  Jet
tagging  by  embedding  detailed  particle  interactions.
Based  on  the  Transformer  architecture,  MIParT-L
doubled  the  dimensions  of  interaction  embeddings  for
large  datasets  while  reducing  model  complexity,  with
30%  fewer  parameters  and  53%  lower  computational
demands  than  its  predecessor,  ParT.  Tested  on  top
tagging  and  quark-gluon  datasets,  MIParT-L  achieved
nearly  identical  accuracy  and  AUC  to  leading  models
while  improving  background  rejection  by  25% and  3%,
respectively.  Fine-tuning  on  large  pre-trained  datasets
further  improved performance by 39% and 6%. Despite
its efficiency, the interpretability of MIParT-L remained
a  challenge,  limiting  insights  into  its  decision-making
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Fig. 16  The architecture of PartT model suggested in Ref. [52]. (a) Particle transformer. (b) Particle attention block.
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process. This trade-off underscored the computational of
model  efficiency  and  robust  performance  across  diverse
Jet tagging tasks. 

5   Applications of AI-based Jet classification

Jet images and PC processed through ML and DL tech-
niques  hold  vast  potential  across  various  applications
within  the  HEP  domain,  some  of  theme  are  already
described  in  Ref.  [18].  This  section  presents  a  compre-
hensive overview of cutting-edge work in this area, cate-
gorized  into  several  key  domains:  Jet  parameter  scan-
ning, event classification, Jet tagging, multi-Jet classifi-
cation, energy estimation, and beyond [83]. The taxonomy
of AI-based Jet image and PC applications is visualized
in Fig. 17, illustrating their scope and relationships. The
section thoroughly reviews some applications conducted
by  researchers,  while  suggesting  future  directions  for
those not yet explored. Additionally, Table 6 provides a
concise  summary  of  performance  metrics,  limitations,
online  project  availability,  and  results  obtained  across
these  applications,  offering  valuable  insights  into  their
efficacy and applicability. 

5.1   Jet parameters scan

A  parameter  scan  in  HEP  involves  systematically
exploring  a  wide  range  of  values  for  the  theoretical
parameters that define a given model. These parameters
often characterize  the masses  of  new particles,  coupling
strengths, or other fundamental quantities hypothesized
in extensions of the SM. By examining different combi-
nations of  these parameters,  researchers aim to identify
which  sets  are  compatible  with  current  experimental
data  or  make  predictions  that  can  be  tested  in  future
experiments.  This  process  helps  narrow  down  the  vast
theoretical landscape to more plausible scenarios, guiding
ongoing  investigations  and informing  the  design  of  new
searches [84].

The  utilization  of  ML  and  DL  models  enables  the
comprehension and estimation of the correlation between
the  parameter  space  of  new  physics  models  and  the
experimental  physical  observables,  including  signatures
characterized  by  Jets,  leptons,  and  missing  transverse

energy.  This  facilitates  the  efficient  constraint  of  the
parameter  space  of  the  new  physics  model  [18].  Given
the  sensitivity  of  the  ATLAS  experiment  to  exploring
parameters,  event  counts,  and  Jet  distributions  in  new
physics  scenarios,  significant  computing  power  is
required to deduce the surviving regions of the parameter
space  of  constrained minimal  super-symmetric  standard
model  (CMSSM)  using  Bayesian  posterior  probability
and likelihood function ratio tests.

θ

m

fb−1

M0 M1/2

fb−1

tanβ A0

χ2

To  mitigate  computational  demands,  the  study  [85]
utilizes  an  MLP  as  a  regressor  to  learn  the  mapping
from CMSSM model  parameters  to  weak-scale  super-
symmetric particle masses . The output of the SoftSusy
physical package serves as the target output value of the
neural  network.  Approximately  4000  sample  points  in
the parameter space form the training set. With a given
set  of  CMSSM  parameters,  this  MLP  model  rapidly
predicts the corresponding supersymmetric particle mass
spectrum, which can then be used to forecast observable
distributions  at  the  LHC,  including  Jet  multiplicities
and  kinematic  features.  This  approach  significantly
accelerates the process compared to traditional methods.
To identify the parameters of a new physics model, [86]
trained an MLP using 84 physical observables from the
14 TeV LHC as inputs, many of which involve Jets and
their  kinematic  properties,  with  the  parameters  of  a
supersymmetric model as the desired outputs. The study
revealed  that  with  a  collider  luminosity  of  10 ,  the
CMSSM model’s parameters  and  could be reliably
determined  with  just  a  1%  margin  of  error.  With  a
collider luminosity of 500 , additional model parameters
such as  and  could also be accurately estimated.
In contrast, the conventional approach of minimizing 
yielded comparatively inferior results.

m0

m1/2 A0

tanβ

Generating collider event samples at the LHC through
Monte Carlo simulation can be time-intensive, especially
when  analyzing  detailed  Jet  structures.  While  a  rapid
detector  simulation  requires  only  a  few  minutes,  a
comprehensive  simulation  using  the  GEANT4  frame-
work, as employed by ATLAS and CMS, may necessitate
several  days.  To  address  this,  Ref.  [87]  applied  parallel
full  detector  simulations  using  four  parameters —
common  scalar  mass  ( ),  universal  gaugino  mass
( ),  the  trilinear  coupling  ( ),  and  the  ratio  of
vacuum  expectation  values  ( )—  to  produce  events
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Fig. 17  Taxonomy of AI-based HEP applications using Jet images or PC.
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including  Jets  and  other  final-state  objects  more  effi-
ciently.  Two  ML  models,  the  MLP  and  SVM,  were
employed to learn the correlation between the number of
signal  events  and  the  CMSSM parameters.  The  results
showed  that  predicting  the  likelihood  function,  which
strongly  depends  on  Jet  signatures  and  other  observ-
ables,  could  achieve  several  percent  accuracy  with  just
2000  training  samples.  Moving  on,  the  paper  [88]

proposed a machine learning scan (MLS) framework for
efficient  exploration  of  multi-parameter  supersymmetric
models, surpassing traditional methods like MCMC and
MultiNest.  Utilizing  deep  neural  networks,  the  MLS
incrementally  learns  parameter  space,  reducing  compu-
tational  costs  while  improving target  discovery.  It  inte-
grates  HEP  packages  for  precise  calculations,  including
tools  like  GAMBIT  and  micrOMEGAs,  demonstrating

 

Table  6 Summary of the performance of certain ML and DL frameworks proposed for HEP. Only the best performance is
reported in the case of multiple tests.

Ref. DLM Dataset Description BP (%) Limitations PLA

[17] CNN QCD multi-Jet
Classification of multi-Jet events
using CNN at high energies of 13
TeV

AUC = 99.03
The proposed CNN model needs validation
with additional datasets to ensure its
generalizability.

No

[36] SVM Simulated BIP features invariant under
boosts for improved Jet tagging Acc = 92.7 Performance could be enhanced through

comprehensive hyperparameter tuning. Yes16)

[45] DNN Simulated
Sequence of Jet components
arranged in a specific order for
training inputs.

Acc = 50
Could be enhanced by employing the LSTM
method to efficiently classify Jet from
background.

No

[57] DNN Simulated17) DNNs for categorizing Jet
substructure in HEP AUC = 95.3

The accuracy of the DNN models is limited by
the accuracy of the simulation models used to
generate the training data.

No

[39] DNN Higgs Clarifying HEP event
classification with SHAP Acc = 66

SHAP may not comprehensively capture
feature interactions or explain model behavior
in all cases. It could demand substantial
computational resources for large datasets or
intricate models.

Yes18)

[60] DNN ATLAS Detection of b Jets utilizing QCD-
inspired measurements AUC = 67 The DNN performed slightly less effectively

than the JetFitter algorithm. No

[59] DNN Pythia Jet
images D +D D + C

Creating images with low pixel
density in particle physics for two
cased  and 

AUC = 86.9,
AUC = 84.1 D +D D + C

Slower than the non-autoregressive model
LAGAN.  performed better than 
for both Pythia and Monte Carlo images.

Yes19)

[69] CNN Simulated CNN for predicting quark and
gluon Jets Acc = 75.9

The higher the energy loss, the more
challenging the task of classifying the Jets
becomes.

No

[74] RecNN Simulated Enhance Quark/gluon
classification AUC = 86.37 Event-level analysis is not performed. Yes20)

[75] CNN-AE Daya Bay
Classification for different event
types, including IBD prompt,
IBD delay, Muon, Flasher, and
other

Acc =
99.9 (Muon)

SVM and KNN exhibit inferior performance
compared to CNN in identifying event types.
Moreover, semi-supervised techniques have not
been examined.

No

[76] CNN Simulated Employing a quantum CNN to
categorize events in HEP Acc = 97.5

Quantum CNN showed a lower performance
than CNN when it comes to a binary
classification of Muon and Electron. Besides,
CNN showed low performance when classifying
Muon and Pion compared to quantum CNN.

No

[77] ML ATLAS Predict if the LHC trials have
dismissed a new physics model Acc = 93.8

Enhancing reliability can be achieved by
requiring a minimum confidence level for the
prediction.

Yes21)

[78] ANN Simulated
Identifying boosted top quarks
using pattern recognition through
an artificial neural network
(ANN) in HEP experiments

Eff = 60
It has 4% mis-tag rate. It exclusively utilizes
hadronic calorimete (HCAL) data, though
additional data, like sub-Jet b-tags, are crucial
for top tagging.

No

[79] DNN Real data Enhancing Jet reconstruction at
CMS through DL FPR = 65 The computational costs, wnen employing the

proposed model, have not been verified. No

[80] CNN Simulated
Detection of Jet quenching effects
caused by the presence of the
quarkgluon plasma (QGP)

AUC = 75
pT,jet > 30 GeV

The computational costs, when employing the
proposed model, have not been verified. When
data normalized, AUC reached only 67% (when

).
No

Abbreviations: DL model (DLM); Best performance (BP); Project link availability (PLA); auto-encoder (AE).

 

16) URL: zenodo.org/records/7271316
 

17) URL: www.igb.uci.edu/~pfbaldi/physics/
 

18) URL: github.com/rpezoa/hep_shap/
 

19) URL: mlphysics.ics.uci.edu/
 

20) URL: github.com/glouppe/recnn
 

21) URL: susyai.hepforge.org
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efficiency on toy and CMSSM datasets. Achieving up to
80%  sampling  efficiency  in  constrained  parameter
spaces, MLS outperforms MultiNest under 68% and 95%
confidence levels, offering scalability and adaptability for
physics model analysis. 

5.2   Jet classification and tagging

Despite treating Jets as images or PC in the calorimeter
and exploiting the benefits of DNNs in classification for
improved  Jet  substructure  detection,  these  approaches
encounter hurdles. Challenges such as Jet image sparsity
and  potential  precision  loss  arise  from  constructing  Jet
images  through  pixelation  or  creating  advanced  Jet
features.  In  this  study  [45],  a  sequential  method  is
employed,  utilizing  an  ordered  sequence  of  Jet
constituents  as  inputs  for  training.  Unlike  many  prior
methods,  this  approach  avoids  information  loss  during
pixelization  or  high-level  feature  computation.  The  Jet
classification technique achieves a considerable background
rejection efficiency operating point for reconstructed Jets
with  transverse  momentum  ranging  from  600  to
2500 GeV. Moreover,  it  remains unaffected by multiple
proton-proton  interactions  at  levels  anticipated  during
Run 2 of the LHC.

Particles generated in a collider with significant center-
of-mass  energy  typically  exhibit  high  velocity.  As  a
result, their decay products tend to align closely, leading
to overlapping Jets. It is crucial in collider data analysis
to discern whether a Jet originates from a solitary light
particle or from the decay of a heavier particle. Traditional
approaches  rely  on  manually  crafted  distribution
features based on energy deposition in calorimeter cells.
However,  due  to  the  intricate  nature  of  the  data,  ML
techniques  have  proven  more  efficient  than  human
efforts  for  this  task  [89].  In  Ref.  [90],  the  Jet  image
concept  treats  the  detector  as  a  camera,  capturing  Jet
energy  distribution  in  calorimeters  as  a  digital  image.
This  enables  Jet  tagging  as  a  pattern  recognition  task,
utilizing  ML,  like  Fisher  classification,  to  differentiate
between hadronic W boson decay and Jets from quarks
or  gluons.  Monte  Carlo  simulation  shows  superior
discrimination compared to traditional methods, offering
insights  into  Jet  structure.  In  Ref.  [63],  CNNs  improve
tagging by treating Jet energy distribution as an image,
using channels for features like particle momentum and
count. Results show CNNs can surpass traditional meth-
ods,  providing  reliable  insights  from  collider  simulation
data  despite  variations  in  event  generators.  However,
CNNs demonstrate  a  lack  of  sensitivity  to  quark/gluon
Jets  from different  generators,  akin  to  conventional  Jet
measurements.  Moving  on,  in  Ref.  [91],  Jet  tagging  is
performed using RNN, leveraging the similarity between
Jet  clustering  and  natural  language  structure.  Final-
state  particle  four-momenta  are  treated  as  language
words, and Jet clustering as grammatical analysis. RNN

efficiently processes the tree-like Jet structures, enabling
direct  use  of  particle  data  regardless  of  count.  This
method  yields  higher  data  utilization  efficiency  and
prediction accuracy than Jet image-based ML, extending
to  event  classification.  In  Ref.  [74],  RNNs  distinguish
quark and gluon Jets, showing higher gluon suppression.
Factors  affecting  RNN  performance  are  explored,  with
preliminary quark tagging results. Numerous explorations
for  phenomena  beyond  the  SM at  the  LHC  depend  on
top tagging techniques that distinguish between boosted
hadronic  top  quarks  and  the  more  prevalent  Jets  that
originate  from  light  quarks  and  gluons.  The  HCAL
essentially captures a “digital image” of each Jet, where
the  pixel  brightness  represents  the  energy  deposited  in
HCAL  cells.  Therefore,  top  tagging  is  essentially  a
matter  of  recognizing  patterns.  The  work  in  Ref.  [78]
propose  a  novel  top  tagging  algorithm  based  on  an
ANN, a popular pattern recognition approach. The ANN
is developed using a substantial dataset of boosted tops
along  with  light  quark/gluon  Jets  and  is  subsequently
evaluated on separate datasets.  In Monte Carlo simula-
tions, particularly within the 1100–1200 GeV range, the
ANN-based tagger demonstrates outstanding efficacy.

Efficient  HEP  data  analysis  is  imperative  with  the
surge in data from modern particle  detectors.  However,
detectors have limited access to the substructure of Jets,
especially  those  distant  from  the  center-of-mass  frame.
To address this, the authors [36] integrate BIP features
with  standard  classification  methods,  significantly
improving  Jet  tagging  efficiency.  Notably,  supervised
methods like MLP, XGBoost, LogReg, SVM, and unsu-
pervised  approaches  like  Gaussian  mixture  model
(GMM) and KNN achieve exceptional performance with
uniform  manifold  approximation  and  projection
(UMAP) dimensionality reduction technique, surpassing
contemporary  DL  systems  while  reducing  training  and
evaluation  times  significantly.  In  Ref.  [79],  the  authors
introduce a novel  network architecture designed for Jet
tagging  in  experiments  conducted  at  the  LHC.
DeepCSV, currently endorsed by CMS and employing a
DNN,  has  significantly  improved  tagging  performance,
as validated using real collision data. It surpasses other
tagging  methods,  particularly  at  high  transverse
momenta,  with  nearly  an order  of  magnitude  reduction
in FPRs using standard threshold definitions.

Multi-Jet  classification  is  a  a  key  task  in  particle
physics  aimed  at  distinguishing  between  events  with
varying numbers of Jets.  Using ML techniques, such as
DNNs, researchers develop classification models to accu-
rately identify these events. Achieving high classification
accuracy is crucial for understanding fundamental particle
interactions  and  discovering  new physics  phenomena  in
experiments like those conducted at the LHC. The work
in  Ref.  [17]  presents  an  application  of  scalable  DL  to
analyze simulation data from proton-proton collisions at
13 TeV in the LHC. The researchers developed a CNN
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νν̄H,H → jj

model which utilizes detector responses as two-dimensional
images reflecting the geometry of the CMS detector. The
model  discriminates  between  signal  events  of  R-parity
violating  super-symmetry  and  background  events  with
multiple  Jets  resulting  from  inelastic  QCD  scattering
(QCD multi-Jets). With the CNN model, they achieved
1.85  times  higher  efficiency  and  1.2  times  higher
expected  significance  compared  to  the  traditional  cut-
based method. They demonstrated the scalability of the
model at a large scale using high-performance computing
(HPC) resources with up to 1024 nodes. The authors in
Ref.  [56]  proposing  an  interpretable  network  for  multi-
Jet classification using the Jet spectrum, termed S2(R),
derived  from  a  Taylor  series  of  an  arbitrary  Jet  MLP
classifier function. The network’s intermediate feature is
an infrared and collinear safe variables,  named C-corre-
lator,  estimating  the  importance  of  S2(R)  deposits  at
angular  scales.  It  offers  comparable  performance  to
CNNs  with  simpler  architecture  and  fewer  inputs.  The
paper [92] proposes a jet origin identification method for
the electron–positron Higgs factory, classifying Jets into
11 categories: 5 quark species, 5 anti-quarks, and gluons.
It  achieves  jet  tagging  efficiencies  ranging  from 67% to
92% and charge flip rates between 7% and 24%, utilizing
the ParticleNet model.  The method benefits  jet  physics
and HEP by enhancing rare Higgs decay measurements.
It  reduces  QCD  backgrounds  and  improves  flavor
tagging,  crucial  for  Higgs  boson  property  studies.  The
dataset consists of simulated  events at 240
GeV,  generated  with  a  Geant4-based  detector  simula-
tion. The best reported performance includes a 92% effi-
ciency  for  b-Jets  and  a  7%  charge  flip  rate  for  charm
quarks. 

5.3   Jet tracking

Jet tracking involves reconstructing the trajectories and
properties  of  particles  within  Jets,  formed when quarks
and  gluons  fragment.  Accurate  tracking  is  vital  for
particle  physics  analyses,  aiding  in  discoveries,  SM
measurements,  and  searches  for  new  phenomena.

Advanced algorithms, including pattern recognition and
ML, are employed for precise tracking in modern detec-
tors.  In  this  research  paper  [64],  the  authors  present
early  attempts  at  applying  ML  techniques  to  address
particle  tracking  challenges.  This  area  remains  largely
unexplored,  and  they  have  just  scratched  the  surface.
Nonetheless, certain DL methods show promise. LSTMs
were found to be effective in solving the hit assignment
problem in both 2D and 3D scenarios  using a sequence
of  detector  layer  measurements,  potentially  offering  an
alternative  to  the  combinatorial  Kalman  Filter.  CNNs
demonstrated the ability to construct representations of
detector data from the ground up, aiding in hit assignment
and  parameter/uncertainty  estimation.  Through  the
combination of LSTM and CNN, the authors showcased
a potentially powerful end-to-end model capable of iden-
tifying  a  variable  number  of  tracks  within  detector
images. Figure  18 displays  sample  2D  data  generated
with  various  types  of  tracks,  including  single-track,
multi-track, and single-track with uniform noise. 

5.4   Jet generation

In order to study new physics phenomena at the LHC, it
is  necessary  to  simulate  Monte  Carlo  events  for  both
new  physics  signals  and  backgrounds.  This  simulation
helps  predict  the  experimental  data  expected  from
collider  experiments.  However,  generating  the  large
number of simulated events required for data analysis is
time-consuming  and  computationally  intensive  using
existing  algorithms.  Additionally,  accurately  simulating
how energetic  particles  interact  with  detector  materials
can  be  a  time-consuming  process.  In  Ref.  [93],
researchers  proposed  using  GANs  to  build  LAGAN
framework, that is trained to generate authentic radiation
distributions  from  simulated  collisions  involving  high-
energy  particles.  The  authors  found  that  the  generated
Jet  images  exhibited  a  wide  range  of  pixel  brightness
levels and accurately reproduced low-dimensional physical
observables  such  as  reconstructed  Jet  mass  and  n-
subJettiness.  However,  the study also acknowledges the
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Fig. 18  A  toy  dataset  with  adjustable  dimensions,  straight  line  representations  for  tracks,  and  the  option  to  include
uniform noise hits, all on a smaller scale.
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limitations  of  this  method  and  presents  an  empirical
validation  of  the  image  quality.  With  further  improve-
ment,  this  approach  could  lead  to  faster  simulation  of
HEPs events. Physicists at the LHC use complex simu-
lations  to  predict  experimental  outcomes.  Generating
vast amounts of simulated data is costly, but crucial for
technique  development.  Challenges  include  accurately
modeling detectors and particle interactions. In Ref. [94],
researchers proposed a GAN-nased model for fast, accurate
simulation  of  electromagnetic  calorimeters.  Despite
ongoing precision challenges, this solution offers significant
speed-ups,  up  to  100  000×,  promising  savings  in
computing  resources  and  advancing  physics  research  at
the LHC and beyond. 

5.5   Case studies in Jet tagging and classification

To provide a deeper insight into the applications of ML
and  DL  techniques  in  jet  classification  for  HEP,  this
section  explores  three  critical  case  studies:  top  quark
tagging, Higgs boson tagging, and photon Jet classifica-
tion.
 
　– Top  quark  tagging. This  process  is  essential  for

distinguishing  boosted  top  quarks  from  background
events  involving  light  quarks  and  gluons.  Boosted
top  quarks  often  decay  into  a  collimated  spray  of
particles, which requires advanced tagging techniques
to  identify  effectively.  The  ATLAS  open  data
provides  a  comprehensive  dataset  for  top  quark
tagging  studies.  Additionally,  simulation  tools  like
Delphes  and  MadGraph  are  frequently  used  to
generate top quark events. Recent methods, including
ParticleNet [49] and LorentzNet [31],  have achieved
significant  improvements  in  classification  accuracy
by  leveraging  point-cloud  representations  of  jets.
These models employ graph-based architectures and
permutation-invariant  structures  to  enhance  the
discrimination  power.  Metrics  such  as  classification
accuracy  and  AUC  have  demonstrated  significant
improvements  for  top  quark  tagging  using
LorentzNet,  achieving  values  exceeding  94%  and
98.6%, respectively.

　– Higgs  boson  tagging. It  is  crucial  for  validating
the  SM  and  investigating  potential  new  physics
phenomena.  Higgs  bosons  decaying  into  b-quarks
generate jet  structures with distinctive substructure
features, making them a key focus for tagging stud-
ies.  Datasets  such  as  the  CMS  open  data  and  the
Higgs  dataset  from  the  University  of  California,
Irvine ML repository serve as valuable resources for
developing  tagging  algorithms.  Traditional  methods
like  BDTs  and  modern  approaches  such  as  CNNs
have  been  employed  extensively.  Furthermore,
advanced architectures like LGN [48] and ParticleNet
[49]  have  demonstrated  superior  classification  capa-

bilities.  By  utilizing  high-level  kinematic  features
and DL techniques, classification accuracies exceeding
92%  and  AUC  values  surpassing  96%  have  been
achieved,  along  with  notable  background  suppres-
sion.

　– Photon Jet classification. Photon jet classification
is a critical task for studying the quark-gluon plasma
and distinguishing between direct photons and those
originating  from  fragmentation  processes.  Quark-
gluon datasets generated using PYTHIA8 simulations
form the basis for training and evaluating classification
models,  with  additional  opportunities  provided  by
CMS  open  data  for  analyzing  real  collision  events.
Advanced models such as EGNN [50] and PCT [51]
have  demonstrated  effectiveness  in  capturing  the
energy deposits and angular distributions of particles
within  jets.  Notably,  state-of-the-art  methods,  such
as EGNN, have demonstrated exceptional performance
in photon jet classification tasks, achieving accuracies
above 92% and AUC values exceeding 97%. 

6   Future direction and outlook

The  future  of  ML  and  DL  in  HEP,  particularly  in  Jet
analysis,  is  poised  for  transformative  advancements.  As
researchers delve deeper into the petabyte-scale datasets
generated  by  experiments  like  those  at  the  LHC  and
QCD,  the  role  of  DL  becomes  increasingly  vital.  The
potential  implications  of  QML-baset  Jet  research  for
future  particle  physics  experiments  are  significant.  By
demonstrating the effectiveness  of  QML for  Jet  classifi-
cation in section 4.1, this opens up new possibilities for
improving  the  performance  of  particle  physics  experi-
ments.  Researchers  could  apply  the  suggested  QML-
based approaches to Jet images and PCs to other HEP
problems,  such  as  signal  versus  background  separation,
anomaly  detection,  and  particle  track  reconstruction.
Furthermore, QML-based research on Jet tagging could
pave the way for the development of new quantum algo-
rithms  and  hardware  that  could  be  used  to  solve
complex problems in particle physics and other fields.

There  are  multiple  other  compelling  aspects  and
potential  extensions  that  warrant  further  exploration,
which  are  outlined  here.  For  examples,  for event-level
analysis,  a Jet,  in essence,  cannot be entirely separated
from an event’s remaining parts, yet “pure” Jets can be
achieved  through  grooming  techniques.  The  utility  of
color  connections  is  notable  in  various  scenarios.  The
exploration  into  how  to  effectively  demonstrate  these
effects  is  important,  as  there  is  potential  in  enhancing
event-level  analysis.  The  RNN  approach,  particularly
RecNN,  is  easily  adaptable  for  event-level  analysis  due
to  its  natural  fit  into  larger  hierarchical  structures.
Previous  studies  have  examined  event  analysis  focusing
solely on Jets, utilizing simple RNN chains to reconstruct
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events  from  Jets.  When  considering  event-level  imple-
mentation, structuring the entire event poses a significant
challenge. Viewing each event as a structured data tree,
where  the  entire  event’s  information  is  encapsulated  in
the nodes’ properties and their interconnections, is vital.
Therefore,  accurately  representing  each element  and its
connections  within  the  event  is  crucial  for  developing
neural  network  architectures.  For Jet  unsupervised
learning, within the DNN framework, adjusting Jet clus-
tering  could  potentially  enhance  performance.  Treating
Jet  finding  as  a  minimization  problem  presents  an
intriguing perspective, making it appealing to incorporate
Jet  finding  processes  directly  into  event-level  analysis.
Another  example,  for new  physics  phenomena often
display distinctive patterns related to their particle spec-
trum  and  decay  modes.  For  instance,  supersymmetry
(SUSY) events typically generate a high number of final
states, presenting a more complex hierarchical structure,
and  may  include  several  soft  leptons  in  electroweakino
searches. Investigating whether DNNs can more effectively
accommodate  such  topologies  is  also  a  worthwhile
endeavor  [74].  Moreover,  distinguishing  between  quark-
initiated  and  gluon-initiated  Jets  is  crucial  in  collider
experiments like the LHC. Discriminating between these
Jets is challenging due to complex correlations in radiation
patterns and non-perturbative effects like hadronization.
AI  methods,  such  as  deep  generative  models,  offer
promising  solutions  to  address  this  challenge  [63].
Moving forward, there is a notable scarcity of published
research on the application of auto-encoder (AE) for Jet
image  processing,  highlighting  an  opportunity  for
researchers  to  explore  this  field  further.  The  potential
for  AE  to  significantly  improve  the  separation  of  Jet
images  and  PC  from  background  noise  presents  a
promising  area  of  study.  By  focusing  on  this  niche,
researchers can contribute to advancing our understanding
and methodologies in particle physics, potentially leading
to more accurate and efficient analysis techniques.

The  complexity  and  volume  of  the  data  necessitate
sophisticated  analytical  techniques  that  DL  models,
especially  those  based  on  CNNs  and  GNNs,  are  well-
equipped  to  handle.  These  models  excel  in  identifying
intricate  patterns  and  correlations  within  the  data,
making  them  invaluable  for  tasks  such  as  Jet  tagging,
particle  tracking,  and event  classification.  Furthermore,
the  scalability  of  DL  models  needs  to  be  addressed  to
handle  the  increasing  data  rates  from  next-generation
detectors  and  accelerators.  Efficient  training  algorithms
and  model  compression  techniques  will  be  essential  for
deploying these models in real-time analysis frameworks,
enabling faster decision-making processes for data acqui-
sition  and  retention.  The  future  of  DL  in Jet  energy
progression and estimation promises enhanced precision
and efficiency. Innovations will likely focus on developing
more  sophisticated  neural  network  models  that  can
accurately predict Jet energies in complex environments.

Emphasis  on  real-time  data  analysis  capabilities  and
integration with experimental workflows will  be crucial,
driving advancements in detecting and interpreting high-
energy  particle  collisions  more  effectively  and  swiftly.
The  future  of  DL-based  Jet anomaly  detection in  HEP
lies  in  advancing  unsupervised  learning  techniques  to
uncover  new  physics  signals  hidden  in  complex  data.
Innovations  in  model  interpretability  and  real-time
processing  will  enhance  detection  capabilities.  Cross-
disciplinary collaboration will drive these advancements,
leading to breakthroughs in identifying rare phenomena
and  expanding  our  understanding  of  the  fundamental
constituents of the universe. Others applications such as
flavor tagging, pileup mitigation,  and the reconstruction
of  decay  chains.  These  DL-based  Jet  classification  can
help in distinguishing between different types of particles
based on their energy deposition patterns, aiding in the
precise determination of particle origins and decay path-
ways.  Additionally,  they  can  be  used  for  enhancing
signal-to-noise  ratios  in  complex  collision  environments,
improving  the  accuracy  of  particle  trajectory  tracking,
and  in  the  analysis  of  Jet  substructure  to  identify
specific decay processes, contributing to a deeper under-
standing  of  the  underlying  physics  in  high-energy  colli-
sions. The application of DL-based HEP Jet for tomography
is promising. This approach has the potential to revolu-
tionize  how  we  visualize  and  analyze  subatomic  parti-
cles,  offering  unprecedented  precision  and  insight.  By
leveraging  DL  techniques,  researchers  can  improve  the
accuracy of  tomographic  reconstructions,  enhancing our
understanding of particle interactions and the fundamental
structure of matter.

Transfer  learning  (TL),  encompassing  all  its  forms,
including techniques like fine-tuning and domain adapta-
tion [95, 96], is poised to revolutionize Jet HEP applications
by  leveraging  pre-trained  models  from  vast  datasets  to
enhance performance on specific tasks with limited data.
This  approach  can  significantly  reduce  computational
costs  and  training  times,  making  it  ideal  for  adapting
models to new experiments or rare phenomena. As HEP
experiments  generate  increasingly  complex  data,  the
ability to apply knowledge from one context to another
will  be  invaluable  for  improving  event  classification,
anomaly  detection,  and  signal  processing.  Looking
ahead,  TL  will  be  crucial  for  efficiently  extracting
insights  from  new  particle  interactions  and  advancing
our  understanding  of  fundamental  physics.  Exploring
advanced  architectures  as  sources  of  prior  knowledge,
such  as  EfficientNet,  vision  Transformers  (ViT),  Swin
Transformers, ConvNeXt, GNNs, neural ordinary differ-
ential  equations  (NODEs),  physics-informed  neural
networks  (PINNs),  and  and  AutoML  for  architecture
optimization,  could  offer  substantial  improvements  to
target models conducting AI-based Jet tasks [46]. These
SOTA  methods  are  better  suited  to  handling  the
complexities  of  particle  physics  data  compared  to  older
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architectures like AlexNet or VGG. Generalizing the top
tagger  to  classify  other  boosted  objects,  such  as  W/Z
bosons,  Higgs  bosons,  and  other  particles,  remains
straightforward,  and  extending  it  to  partially-merged
and fully resolved tops could enhance background rejec-
tion.

Systematic  errors  are  a  significant  concern  in  HEP
experiments,  particularly  in  image  classification  tasks
involving jet analysis. These errors can arise from various
sources,  including  detector  calibration  inaccuracies,
biases in data reconstruction, and environmental factors
during  data  acquisition.  Addressing  these  uncertainties
is crucial for the reliability and accuracy of ML models
applied in HEP. One approach to mitigating systematic
errors  is  through  systematics-aware  learning,  which
involves  developing  models  that  account  for  potential
biases  in  the  data.  For  instance,  Estrade et  al. [97]
discussed  the  importance  of  creating  benchmarks  that
capture realistic cases of systematic errors in HEP analysis
to  facilitate  experimental  comparisons  of  different  tech-
niques. Another strategy involves adversarial learning to
eliminate systematic errors [98]. This paper discusses the
application of adversarial domain adaptation in an unsu-
pervised  setting  to  reduce  sample  bias  in  supervised
HEP  event  classifier  training.  The  authors  utilize  a
neural network with a gradient reversal layer to simulta-
neously enable signal versus background event classifica-
tion  while  minimizing  differences  in  the  network’s
response  to  background  samples  from  different  Monte
Carlo models. Ghosh et al. [99] proposed classifiers that
are fully aware of uncertainties and their corresponding
nuisance  parameters,  demonstrating  that  this  approach
can  enhance  sensitivity  to  parameters  of  interest.  By
incorporating  uncertainty  directly  into  the  learning
process,  models  can  achieve  better  performance
compared  to  traditional  strategies  that  do  not  account
for such uncertainties.

To  further  enhance  the  mitigation  of  systematic
errors, future research should focus on integrating uncer-
tainty  quantification  and  robust  optimization  directly
into  the  design  of  ML  architectures.  This  includes  the
development  of  hybrid  models  that  combine  traditional
statistical  techniques  with  modern  ML  approaches  to
explicitly model and correct for systematic effects. Addi-
tionally, employing advanced simulation techniques that
better mimic real-world data will help reduce discrepancies
between  training  datasets  and  experimental  observa-
tions.  Efforts  should  also  be  directed toward leveraging
transfer  learning  to  adapt  models  trained  on  simulated
data  to  real-world  experimental  conditions  more  effec-
tively.  Another  promising  avenue  is  the  application  of
federated  learning  in  HEP,  which  enables  collaborative
training  across  multiple  experimental  datasets  while
preserving data privacy. This approach could be particu-
larly  effective  in  creating  more  generalized  models  that
are  less  sensitive  to  dataset-specific  biases.  Finally,

incorporating interpretability and explainability methods
into systematic error analysis will help researchers better
understand  how  models  respond  to  uncertainties  and
biases,  providing  actionable  insights  to  refine  both
experiments and ML methodologies. Such advancements
will  ultimately  ensure  that  ML  models  in  HEP  are
robust,  transparent,  and  ready  for  real-world  applica-
tions.

Reinforcement  learning  (RL),  with  all  its  variants
[100, 101], in HEP Jet applications is set to open novel
pathways  for  optimizing  experimental  setups  and  data
analysis  strategies.  By  leveraging  RL’s  ability  to  learn
optimal  policies  through  interaction  with  an  environ-
ment,  future  HEP  experiments  could  see  enhanced
automation  in  event  selection,  detector  alignment,  and
real-time  data  processing.  The  adaptability  of  RL
models  to  dynamic  systems  makes  them  particularly
suited for managing the complexities of particle collision
events.  As the technology matures,  integrating RL into
HEP could lead to significant advancements in experiment
efficiency, discovery potential, and the ability to navigate
vast datasets to uncover new physics phenomena. Addi-
tionally,  federated  learning  (FL)-based  computer  vision
[102] presents a promising frontier for Jet images appli-
cations,  offering  a  pathway  to  harness  collaborative
model  training  while  preserving  data  privacy  and  secu-
rity. By distributing the learning process across multiple
nodes, each holding its own subset of data, FL enables a
collective  improvement  of  models  without  direct  data
sharing.  This  approach  is  particularly  suited  for  HEP
collaborations  spread  across  global  institutions,  where
data locality  and privacy concerns  can limit  traditional
centralized training methods. Advancements in FL could
lead  to  more  robust,  accurate  models,  enhancing  our
understanding  of  complex  particle  physics  phenomena
through  cooperative,  privacy-preserving  analysis
between different LHCs.

The integration of large language models (LLMs) and
generative  AI  [103]  into  HEP  has  the  potential  to
enhance  the  precision  of  particle  detection  and  charac-
terization.  By  leveraging  these  advanced  AI  models,
researchers can identify subtle patterns and anomalies in
Jet tagging that might be missed by conventional meth-
ods.  This  improved  accuracy  is  crucial  for  discovering
new  particles  or  interactions  that  could  lead  to  break-
throughs  in  our  understanding  of  the  universe.  For
example,  in  the  search  for  dark  matter  or  other  exotic
particles, detecting faint signals amid a noisy background
is  a  significant  challenge.  Generative  AI  can  help  by
producing simulations that highlight these weak signals,
allowing  physicists  to  fine-tune  their  detection  algo-
rithms. Similarly, LLMs can assist by providing context
and  insight  into  these  findings,  suggesting  potential
theoretical implications and further areas of exploration.
The application of LLMs and generative AI in HEP also
promotes  a  more  collaborative  and  interdisciplinary
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approach  to  research.  By  integrating  AI  experts  with
physicists, new methodologies and tools can be developed
that leverage the strengths of both fields. This collaboration
can  lead  to  the  creation  of  more  sophisticated  models
that  are  specifically  tailored  to  the  needs  of  HEP.
Furthermore,  the  insights  gained  from  HEP  research
using  AI  can  be  applied  to  other  fields,  such  as  astro-
physics,  medical  imaging,  and  materials  science.  This
cross-pollination of ideas and techniques can drive inno-
vation across multiple disciplines, leading to advancements
that benefit a wide range of scientific endeavors. 

7   Conclusion

Given  the  comprehensive  assessment  of  ML  and  DL
applications  within  the  realm of  HEP presented in  this
survey, it is evident that these techniques have significantly
impacted  various  aspects  of  HEP  experimentation  and
phenomenological studies. Through a detailed exploration
of diverse DL approaches, including their application to
HEP classification, Jet particle analysis, and other perti-
nent  areas,  this  paper  has  highlighted  the  potential  of
ML and DL techniques to enhance our understanding of
particle  physics  phenomena.  The  analysis  undertaken
throughout  this  survey  underscores  the  importance  of
leveraging AI models  tailored to HEP images and PCs,
as well as the significance of SOTA ML and DL techniques
in advancing HEP inquiries. Specifically, the review has
elucidated the implications of these techniques for tasks
such as Jet tagging, Jet tracking, and particle classifica-
tion, shedding light on their capabilities and limitations
in  addressing  key  challenges  within  the  field.  As  we
reflect  on  the  current  status  of  HEP  grounded  in  DL
methodologies, it becomes evident that while significant
progress has been made, and there remain inherent chal-
lenges  that  must  be  addressed  to  fully  harness  the
potential  of  these  approaches.  These  challenges  include
issues  related  to  data  quality,  model  interpretability,
and  generalization  to  diverse  experimental  conditions.
Nonetheless, the survey also identifies promising avenues
for  future  research  endeavors,  such  as  the  development
of novel DL architectures tailored to HEP data and the
integration of domain-specific knowledge to enhance the
performance of learning models. By addressing the chal-
lenges  and  leveraging  the  opportunities  highlighted  in
this survey, researchers can continue to push the boundaries
of  HEP experimentation  and pave  the  way for  ground-
breaking  discoveries  in  particle  physics  using  AI  tech-
niques. 

Abbreviations

AE　　　auto-encoder
AI　　　 artificial intelligence
ANN　　artificial neural network

AUC　　　area under curve
BDT　　　boosted decision trees
BIP　　　 boost-invariant polynomial
BRNN　　bidirectional RNN
CERN　　 conseil Européen pour la recherche nucléaire
CG　　　  Clebsch–Gordan
CGENN　 Clifford group equivariant neural networks
CMS　　　compact muon solenoid
CMSSM　  constrained  minimal  super-symmetric  stan-
　　　　　 dard model
CNN　　　convolutional neural network
DL　　　　deep learning
DLA　　　 dataset link availability
DNN　　　 deep neural network
EGNN　　 equivariant graph neural networks
FGSM　　 fast gradient sign method
FL　　　　 federated learning
FPR　　　 false-positive rate
FST　　　 Fubini-study tensor
GAN　　　 generative adversarial network
GMM　　 Gaussian mixture model
GNN　　　 graph neural network
GPU　　　graphics processing unit
GRU　　　 gated recurrent unit
HCAL　　 hadronic calorimete
HEP　　　 high-energy physics
HPC　　　high-performance computing
KNN　　　 K-nearest neighbors
L-GATr　　 Lorentz geometric algebra transformer
LGEB　　 Lorentz group equivariant block
LGN　　　Lorentz group network
LHC　　　 large hadron collider
LLM　　　 large language model
LSTM　　 long short-term memory
MIParT　 more-interaction particle transformer
ML　　　　 machine learning
MLP　　　 multi-layer perceptron
MLS　　　machine learning scan
MSE　　　mean squared error
pT　　　　 transverse momentum
PC　　　　 point cloud
PCA　　　principal component analysis
PCT　　　point cloud transformer
PFN　　　particle flow network
PFN-ID　 particle flow network with ID
PLP　　　 primary lund plane
P-MHA　　 pairwise multi-head attention
QCD　　　 quantum chromodynamics
QGP　　　 quark-gluon plasma
QML　　　 quantum machine learning
RecNN　　 recursive neural network
ReLU　　　 rectified linear unit
RL　　　　reinforcement learning
RNN　　　 recurrent neural network
ROC　　　receiver operating characteristic
SHAP　　 shapley additive explanations
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SM　　　　 standard model
SOTA　　state-of-the art
SVM　　 support vector machine
TL　　　　 transfer learning
TPR　　　 true positive rate
t-SNE　　 t-distributed stochastic neighbor embedding
UMAP　 uniform manifold  approximation  and  projec-
　　　　　tion
ViT　　　 vision transformers 
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